Sample records for scientific inquiry process

  1. An Analysis of the Actual Processes of Physicists' Research and the Implications for Teaching Scientific Inquiry in School

    ERIC Educational Resources Information Center

    Park, Jongwon; Jang, Kyoung-Ae; Kim, Ikgyun

    2009-01-01

    Investigation of scientists' actual processes of conducting research can provide us with more realistic aspects of scientific inquiry. This study was performed to identify three aspects of scientists' actual research: their motivations for scientific inquiry, the scientific inquiry skills they used, and the main types of results obtained from…

  2. Developing the critical thinking skills of astrobiology students through creative and scientific inquiry.

    PubMed

    Foster, Jamie S; Lemus, Judith D

    2015-01-01

    Scientific inquiry represents a multifaceted approach to explore and understand the natural world. Training students in the principles of scientific inquiry can help promote the scientific learning process as well as help students enhance their understanding of scientific research. Here, we report on the development and implementation of a learning module that introduces astrobiology students to the concepts of creative and scientific inquiry, as well as provide practical exercises to build critical thinking skills. The module contained three distinct components: (1) a creative inquiry activity designed to introduce concepts regarding the role of creativity in scientific inquiry; (2) guidelines to help astrobiology students formulate and self-assess questions regarding various scientific content and imagery; and (3) a practical exercise where students were allowed to watch a scientific presentation and practice their analytical skills. Pre- and post-course surveys were used to assess the students' perceptions regarding creative and scientific inquiry and whether this activity impacted their understanding of the scientific process. Survey results indicate that the exercise helped improve students' science skills by promoting awareness regarding the role of creativity in scientific inquiry and building their confidence in formulating and assessing scientific questions. Together, the module and survey results confirm the need to include such inquiry-based activities into the higher education classroom, thereby helping students hone their critical thinking and question asking skill set and facilitating their professional development in astrobiology.

  3. Assessing Students' Abilities in Processes of Scientific Inquiry in Biology Using a Paper-and-Pencil Test

    ERIC Educational Resources Information Center

    Nowak, Kathrin Helena; Nehring, Andreas; Tiemann, Rüdiger; Upmeier zu Belzen, Annette

    2013-01-01

    The aim of the study was to describe, categorise and analyse students' (aged 14-16) processes of scientific inquiry in biology and chemistry education. Therefore, a theoretical structure for scientific inquiry for both biology and chemistry, the VerE model, was developed. This model consists of nine epistemological acts, which combine processes of…

  4. Developing the Critical Thinking Skills of Astrobiology Students through Creative and Scientific Inquiry

    PubMed Central

    Lemus, Judith D.

    2015-01-01

    Abstract Scientific inquiry represents a multifaceted approach to explore and understand the natural world. Training students in the principles of scientific inquiry can help promote the scientific learning process as well as help students enhance their understanding of scientific research. Here, we report on the development and implementation of a learning module that introduces astrobiology students to the concepts of creative and scientific inquiry, as well as provide practical exercises to build critical thinking skills. The module contained three distinct components: (1) a creative inquiry activity designed to introduce concepts regarding the role of creativity in scientific inquiry; (2) guidelines to help astrobiology students formulate and self-assess questions regarding various scientific content and imagery; and (3) a practical exercise where students were allowed to watch a scientific presentation and practice their analytical skills. Pre- and post-course surveys were used to assess the students' perceptions regarding creative and scientific inquiry and whether this activity impacted their understanding of the scientific process. Survey results indicate that the exercise helped improve students' science skills by promoting awareness regarding the role of creativity in scientific inquiry and building their confidence in formulating and assessing scientific questions. Together, the module and survey results confirm the need to include such inquiry-based activities into the higher education classroom, thereby helping students hone their critical thinking and question asking skill set and facilitating their professional development in astrobiology. Key Words: Scientific inquiry—Critical thinking—Curriculum development—Astrobiology—Microbialites. Astrobiology 15, 89–99. PMID:25474292

  5. A Review of the Scientific Misconduct Inquiry Process, Ankara Chamber of Medicine, Turkey.

    PubMed

    Gökçay, Banu; Arda, Berna

    2017-08-01

    The aim of this study is to review the inquiry process used in scientific misconduct cases in the Ankara Chamber of Medicine between the years 1998 and 2012. The violations of the "Disciplinary Regulations of the Turkish Medical Association" have been examined by keeping the names of the people, institutions, associations and journals secret. In total, 31 files have been studied and 11 of these files have been identified as related to scientific misconduct. The methods of inquiry, the decisions about the need for an investigation process, the types of scientific misconduct, and the adjudication processes have all been reported. Furthermore, the motives of researchers who made allegations, the study approaches of investigators, and the objections to the decisions about guilt and innocence have also been examined. Based on the findings obtained, the reasons for scientific misconduct and the distribution of responsibilities among the people in the inquiry process have been discussed. A major conclusion is the need to standardize the process of conducting inquiries about scientific misconduct cases for the regional chambers of medicine in Turkey.

  6. Teaching Nature of Scientific Inquiry in Chemistry: How Do German Chemistry Teachers Use Labwork to Teach NOSO?

    ERIC Educational Resources Information Center

    Strippel, C. G.; Sommer, K.

    2015-01-01

    Learning about scientific inquiry (SI) is an important aspect of scientific literacy and there is a solid international consensus of what should be learned about it. Learning about SI comprises both the doing of science (process) and knowledge about the nature of scientific inquiry (NOSI). German reform documents promote inquiry generally but do…

  7. A Scientific Method Based upon Research Scientists' Conceptions of Scientific Inquiry.

    ERIC Educational Resources Information Center

    Reiff, Rebecca; Harwood, William S.; Phillipson, Teddie

    For students to develop a more realistic picture of how scientists practice science, there must be well-researched understanding of how scientists do science. A model for the process of scientific inquiry that more closely reflects actual scientific practices can provide a means of dispelling some of the myths about scientific inquiry. This paper…

  8. The Inquiry Wheel, an Alternative to the Scientific Method

    ERIC Educational Resources Information Center

    Robinson, William R.

    2004-01-01

    The process used by scientists as they pursue research as a wheel with questions at the hub and various stages of the inquiry in a circular arrangement around the hub is described. It is noted that the process of scientific inquiry can begin from any stage and that stages may be revisited as often as the particular inquiry requires.

  9. Intertextual learning strategy with guided inquiry on solubility equilibrium concept to improve the student’s scientific processing skills

    NASA Astrophysics Data System (ADS)

    Wardani, K. U.; Mulyani, S.; Wiji

    2018-04-01

    The aim of this study was to develop intertextual learning strategy with guided inquiry on solubility equilibrium concept to enhance student’s scientific processing skills. This study was conducted with consideration of some various studies which found that lack of student’s process skills in learning chemistry was caused by learning chemistry is just a concept. The method used in this study is a Research and Development to generate the intertextual learning strategy with guided inquiry. The instruments used in the form of sheets validation are used to determine the congruence of learning activities by step guided inquiry learning and scientific processing skills with aspects of learning activities. Validation results obtained that the learning activities conducted in line with aspects of indicators of the scientific processing skills.

  10. Changes in Students' Views about Nature of Scientific Inquiry at a Science Camp

    ERIC Educational Resources Information Center

    Leblebicioglu, G.; Metin, D.; Capkinoglu, E.; Cetin, P. S.; Eroglu Dogan, E.; Schwartz, R.

    2017-01-01

    Although nature of science (NOS) and nature of scientific inquiry (NOSI) are related to each other, they are differentiated as NOS is being more related to the product of scientific inquiry (SI) which is scientific knowledge whereas NOSI is more related to the process of SI (Schwartz et al. 2008). Lederman et al. ("Journal of Research in…

  11. Scientists' conceptions of scientific inquiry: Revealing a private side of science

    NASA Astrophysics Data System (ADS)

    Reiff, Rebecca R.

    Science educators, philosophers, and pre-service teachers have contributed to conceptualizing inquiry but missing from the inquiry forum is an in-depth research study concerning science faculty conceptions of scientific inquiry. The science education literature has tended to focus on certain aspects of doing, teaching, and understanding scientific inquiry without linking these concepts. As a result, conceptions of scientific inquiry have been disjointed and are seemingly unrelated. Furthermore, confusion surrounding the meaning of inquiry has been identified as a reason teachers are not using inquiry in instruction (Welch et al., 1981). Part of the confusion surrounding scientific inquiry is it has been defined differently depending on the context (Colburn, 2000; Lederman, 1998; Shymansky & Yore, 1980; Wilson & Koran, 1976). This lack of a common conception of scientific inquiry is the reason for the timely nature of this research. The result of scientific journeys is not to arrive at a stopping point or the final destination, but to refuel with questions to drive the pursuit of knowledge. A three-member research team conducted Interviews with science faculty members using a semi-structured interview protocol designed to probe the subject's conceptions of scientific inquiry. The participants represented a total of 52 science faculty members from nine science departments (anthropology, biology, chemistry, geology, geography, school of health, physical education and recreation (HPER), medical sciences, physics, and school of environmental science) at a large mid-western research university. The method of analysis used by the team was grounded theory (Strauss & Corbin, 1990; Glaser & Strauss, 1967), in which case the frequency of concepts, patterns, and themes were coded to categorize scientists' conceptions of scientific inquiry. The results from this study address the following components: understanding and doing scientific inquiry, attributes of scientists engaged in inquiry investigations, the relationship of scientific inquiry to the nature of science, whether the process of scientific inquiry follows the traditional scientific method, and the similarities and differences in conceptualizations of scientific inquiry across science disciplines. These findings represent a private side of science, which can be useful in characterizing key features of scientific inquiry to be incorporated into K--16 teaching practices.

  12. Influence of teacher-directed scientific inquiry on students' primal inquiries in two science classrooms

    NASA Astrophysics Data System (ADS)

    Stone, Brian Andrew

    Scientific inquiry is widely used but pervasively misunderstood in elementary classrooms. The use of inquiry is often attached to direct instruction models of teaching, or is even passed as textbook readings or worksheets. Previous literature on scientific inquiry suggests a range or continuum beginning with teacher-directed inquiry on one extreme, which involves a question, process, and outcome that are predetermined by the teacher. On the other end of the continuum is an element of inquiry that is extremely personal and derived from innate curiosity without external constraints. This authentic inquiry is defined by the study as primal inquiry. If inquiry instruction is used in the elementary classroom, it is often manifested as teacher-directed inquiry, but previous research suggests the most interesting, motivating, and lasting content is owned by the individual and exists within the individual's own curiosity, questioning and processes. Therefore, the study examined the impact of teacher-directed inquiry in two elementary fourth grade classrooms on climate-related factors including interest, motivation, engagement, and student-generated inquiry involvement. The study took place at two elementary classrooms in Arizona. Both were observed for ten weeks during science instruction over the course of one semester. Field notes were written with regard for the inquiry process and ownership, along with climate indicators. Student journals were examined for evidence of primal inquiry, and twenty-two students were interviewed between the two classrooms for evidence of low climate-related factors and low inquiry involvement. Data from the three sources were triangulated. The results of this qualitative study include evidence for three propositions, which were derived from previous literature. Strong evidence was provided in support of all three propositions, which suggest an overall negative impact on climate-related factors of interest, motivation, and engagement for students working within a teacher-directed scientific inquiry environment. Very little existed in terms of time, materials, or opportunities for students to explore science using their own questions and processes. Furthermore, as students conformed to a teacher-directed inquiry environment, their own primal inquiries were displaced and undervalued. Ownership belonged to the teacher and precluded primal inquiries in both classrooms.

  13. Student cognition and motivation during the Classroom BirdWatch citizen science project

    NASA Astrophysics Data System (ADS)

    Tomasek, Terry Morton

    The purpose of this study was to examine and describe the ways various stakeholders (CBW project developer/coordinator, elementary and middle school teachers, and 5th through 8th grade students) envisioned, implemented and engaged in the citizen science project, eBird/Classroom BirdWatch. A multiple case study mixed-methods research design was used to examine student engagement in the cognitive processes associated with scientific inquiry as part of citizen science participation. Student engagement was described based on a sense of autonomy, competence, relatedness and intrinsic motivation. A goal of this study was to expand the taxonomy of differences between authentic scientific inquiry and simple inquiry to include those inquiry tasks associated with participation in citizen science by describing how students engaged in this type of science. This research study built upon the existing framework of cognitive processes associated with scientific inquiry described by Chinn and Malhotra (2002). This research provides a systematic analysis of the scientific processes and related reasoning tasks associated with the citizen science project eBird and the corresponding curriculum Classroom BirdWatch . Data consisted of responses to surveys, focus group interviews, document analysis and individual interviews. I suggest that citizen science could be an additional form of classroom-based science inquiry that can promote more authentic features of scientific inquiry and engage students in meaningful ways.

  14. Agriscience Student Engagement in Scientific Inquiry: Representations of Scientific Processes and Nature of Science.

    PubMed

    Grady, Julie R; Dolan, Erin L; Glasson, George E

    2010-01-01

    Students' experiences with science integrated into agriscience courses contribute to their developing epistemologies of science. The purpose of this case study was to gain insight into the implementation of scientific inquiry in an agriscience classroom. Also of interest was how the tenets of the nature of science were reflected in the students' experiments. Participants included an agriscience teacher and her fifteen students who were conducting plant experiments to gain insight into the role of a gene disabled by scientists. Data sources included classroom observations, conversations with students, face-to-face interviews with the teacher, and students' work. Analysis of the data indicated that the teacher viewed scientific inquiry as a mechanical process with little emphasis on the reasoning that typifies scientific inquiry. Students' participation in their experiments also centered on the procedural aspects of inquiry with little attention to scientific reasoning. There was no explicit attention to the nature of science during the experiments, but the practice implied correct, incorrect, and underdeveloped conceptions of the nature of science. Evidence from the study suggests a need for collaboration between agriscience and science teacher educators to design and conduct professional development focused on scientific inquiry and nature of science for preservice and practicing teachers.

  15. Agriscience Student Engagement in Scientific Inquiry: Representations of Scientific Processes and Nature of Science

    PubMed Central

    Grady, Julie R.; Dolan, Erin L.; Glasson, George E.

    2013-01-01

    Students’ experiences with science integrated into agriscience courses contribute to their developing epistemologies of science. The purpose of this case study was to gain insight into the implementation of scientific inquiry in an agriscience classroom. Also of interest was how the tenets of the nature of science were reflected in the students’ experiments. Participants included an agriscience teacher and her fifteen students who were conducting plant experiments to gain insight into the role of a gene disabled by scientists. Data sources included classroom observations, conversations with students, face–to–face interviews with the teacher, and students’ work. Analysis of the data indicated that the teacher viewed scientific inquiry as a mechanical process with little emphasis on the reasoning that typifies scientific inquiry. Students’ participation in their experiments also centered on the procedural aspects of inquiry with little attention to scientific reasoning. There was no explicit attention to the nature of science during the experiments, but the practice implied correct, incorrect, and underdeveloped conceptions of the nature of science. Evidence from the study suggests a need for collaboration between agriscience and science teacher educators to design and conduct professional development focused on scientific inquiry and nature of science for preservice and practicing teachers. PMID:23935256

  16. Scientific Inquiry: A Model for Online Searching.

    ERIC Educational Resources Information Center

    Harter, Stephen P.

    1984-01-01

    Explores scientific inquiry as philosophical and behavioral model for online search specialist and information retrieval process. Nature of scientific research is described and online analogs to research concepts of variable, hypothesis formulation and testing, operational definition, validity, reliability, assumption, and cyclical nature of…

  17. An Activity Model for Scientific Inquiry

    ERIC Educational Resources Information Center

    Harwood, William

    2004-01-01

    Most people are frustrated with the current scientific method presented in textbooks. The scientific method--a simplistic model of the scientific inquiry process--fails in most cases to provide a successful guide to how science is done. This is not shocking, really. Many simple models used in science are quite useful within their limitations. When…

  18. The Teaching of Anthropogenic Climate Change and Earth Science via Technology-Enabled Inquiry Education

    NASA Technical Reports Server (NTRS)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2016-01-01

    A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models, globally distributed data sets, and complex laboratory and data collection procedures. Here we examine efforts by the scientific community and educational researchers to design new curricula and technology that close this gap and impart robust AGCC and Earth Science understanding. We find technology-based teaching shows promise in promoting robust AGCC understandings if associated curricula address mitigating factors such as time constraints in incorporating technology and the need to support teachers implementing AGCC and Earth Science inquiry. We recommend the scientific community continue to collaborate with educational researchers to focus on developing those inquiry technologies and curricula that use realistic scientific processes from AGCC research and/or the methods for determining how human society should respond to global change.

  19. A New Model for Inquiry: Is the Scientific Method Dead?

    ERIC Educational Resources Information Center

    Harwood, William S.

    2004-01-01

    There has been renewed discussion of the scientific method, with many voices arguing that it presents a very limited or even wholly incorrect image of the way science is really done. At the same time, the idea of a scientific method is pervasive. This article identifies the scientific method as a simple model for the process of scientific inquiry.…

  20. Measuring the Level of Complexity of Scientific Inquiries: The LCSI Index

    ERIC Educational Resources Information Center

    Eilam, Efrat

    2015-01-01

    The study developed and applied an index for measuring the level of complexity of full authentic scientific inquiry. Complexity is a fundamental attribute of real life scientific research. The level of complexity is an overall reflection of complex cognitive and metacognitive processes which are required for navigating the authentic inquiry…

  1. Changes in Students' Views about Nature of Scientific Inquiry at a Science Camp

    NASA Astrophysics Data System (ADS)

    Leblebicioglu, G.; Metin, D.; Capkinoglu, E.; Cetin, P. S.; Eroglu Dogan, E.; Schwartz, R.

    2017-12-01

    Although nature of science (NOS) and nature of scientific inquiry (NOSI) are related to each other, they are differentiated as NOS is being more related to the product of scientific inquiry (SI) which is scientific knowledge whereas NOSI is more related to the process of SI (Schwartz et al. 2008). Lederman et al. (Journal of Research in Science Teaching, 51, 65-8, 2014) determined eight NOSI aspects for K-16 context. In this study, a science camp was conducted to teach scientific inquiry (SI) and NOSI to 24 6th and 7th graders (16 girls and 8 boys). The core of the program was guided inquiry in nature. The children working in small groups under guidance of science advisors conducted four guided-inquiries in the nature in morning sessions on nearby plants, animals, water, and soil. NOSI aspects were made explicit during and at the end of each inquiry session. Views about scientific inquiry (VASI) (Lederman et al. Journal of Research in Science Teaching, 51, 65-8, 2014) questionnaire was applied as pre- and post-test. The results of the study showed that children developed in all eight NOSI aspects, but higher developments were observed in "scientific investigations all begin with a question" and "there is no single scientific method," and "explanations are developed from data and what is already known" aspects. It was concluded that the science camp program was effective in teaching NOSI.

  2. Changes in Students' Views about Nature of Scientific Inquiry at a Science Camp

    NASA Astrophysics Data System (ADS)

    Leblebicioglu, G.; Metin, D.; Capkinoglu, E.; Cetin, P. S.; Eroglu Dogan, E.; Schwartz, R.

    2017-11-01

    Although nature of science (NOS) and nature of scientific inquiry (NOSI) are related to each other, they are differentiated as NOS is being more related to the product of scientific inquiry (SI) which is scientific knowledge whereas NOSI is more related to the process of SI (Schwartz et al. 2008). Lederman et al. ( Journal of Research in Science Teaching, 51, 65-8, 2014) determined eight NOSI aspects for K-16 context. In this study, a science camp was conducted to teach scientific inquiry (SI) and NOSI to 24 6th and 7th graders (16 girls and 8 boys). The core of the program was guided inquiry in nature. The children working in small groups under guidance of science advisors conducted four guided-inquiries in the nature in morning sessions on nearby plants, animals, water, and soil. NOSI aspects were made explicit during and at the end of each inquiry session. Views about scientific inquiry (VASI) (Lederman et al. Journal of Research in Science Teaching, 51, 65-8, 2014) questionnaire was applied as pre- and post-test. The results of the study showed that children developed in all eight NOSI aspects, but higher developments were observed in "scientific investigations all begin with a question" and "there is no single scientific method," and "explanations are developed from data and what is already known" aspects. It was concluded that the science camp program was effective in teaching NOSI.

  3. Science Inquiry as Knowledge Transformation: Investigating Metacognitive and Self-regulation Strategies to Assist Students in Writing about Scientific Inquiry Tasks

    NASA Astrophysics Data System (ADS)

    Collins, Timothy A.

    2011-12-01

    Science inquiry is central to the science education reform efforts that began in the early 1990's. It is both a topic of instruction and a process to be experienced. Student engagement in the process of scientific inquiry was the focus of this study. The process of scientific inquiry can be conceived as a two-part task. In the initial part of the task, students identify a question or problem to study and then carry out an investigation to address the issue. In the second part of the task, students analyze their data to propose explanations and then report their findings. Knowing that students struggle with science inquiry tasks, this study sought to investigate ways to help students become more successful with the communication demands of science inquiry tasks. The study took place in a high school chemistry class. Students in this study completed a total of three inquiry tasks over the course of one school year. Students were split into four experimental groups in order to determine the effect of goal setting, metacognitive prompts, and sentence stems on student inquiry tasks. The quality of the student written work was assessed using a scoring rubric familiar to the students. In addition, students were asked at four different times in the school year to respond to a self-efficacy survey that measured student self-efficacy for chemistry content and science inquiry processes. Student self-efficacy for the process of scientific inquiry was positive and did not change over the course of the study while student scores on the science inquiry tasks rose significantly. The metacognitive prompts and instruction in goal setting did not have any effect on student inquiry scores. Results related to the effect of the sentence stems were mixed. An analysis of student work indicated that students who received high marks on their initial inquiry task in this study were the ones that adopted the use of the sentence stems. Students who received low marks on their initial inquiry task did not tend to use the sentence stems. An analysis of word counts that compared the number of words used in the Framing section to the number of words used in the Analysis section indicated that students may have been using insufficient writing strategies. This study concludes with implications for classroom practice and recommendations for future research around student writing in the science classroom.

  4. Exploring the meaning of practicing classroom inquiry from the perspectives of National Board Certified Science Teachers

    NASA Astrophysics Data System (ADS)

    Karaman, Ayhan

    Inquiry has been one of the most prominent terms of the contemporary science education reform movement (Buck, Latta, & Leslie-Pelecky, 2007; Colburn, 2006; Settlage, 2007). Practicing classroom inquiry has maintained its central position in science education for several decades because science education reform documents promote classroom inquiry as the potential savior of science education from its current problems. Likewise, having the capabilities of teaching science through inquiry has been considered by National Board for Professional Teaching Standards [NBPTS] as one of the essential elements of being an accomplished science teacher. Successful completion of National Board Certification [NBC] assessment process involves presenting a clear evidence of enacting inquiry with students. Despite the high-profile of the word inquiry in the reform documents, the same is not true in schools (Crawford, 2007). Most of the science teachers do not embrace this type of approach in their everyday teaching practices of science (Johnson, 2006; Luera, Moyer, & Everett, 2005; Smolleck, Zembal-Saul, & Yoder, 2006; Trumbull, Scarano, & Bonney, 2006). And the specific meanings attributed to inquiry by science teachers do not necessarily match with the original intentions of science education reform documents (Matson & Parsons, 2006; Wheeler, 2000; Windschitl, 2003). Unveiling the various meanings held by science teachers is important in developing better strategies for the future success of science education reform efforts (Jones & Eick, 2007; Keys & Bryan, 2001). Due to the potential influences of National Board Certified Science Teachers [NBCSTs] on inexperienced science teachers as their mentors, examining inquiry conceptions of NBCSTs is called for. How do these accomplished practitioners understand and enact inquiry? The purpose of this dissertation research study was twofold. First, it investigated the role of NBC performance assessment process on the professional development of science teachers. Second, it examined the meaning of practicing classroom inquiry for National Board Certified Science Teachers [NBCSTs]. Based on the specific cases of four NBCSTs, this naturalistic inquiry study was conducted to answer to those questions with the involvement of the following qualitative data sources: classroom observations, in-depth teacher interviews, and document analyses of teacher portfolios. The specific cases in this study indicated that undergoing the performance assessment process of NBC played an affirmational role for National Board Certified Science Teachers [NBCSTs] in their professional development. Their successful completion of the portfolio assessment process created a sharpened confidence into their existing notions and ways of teaching science. In the study, not all teachers were equally open to science education reform ideas. This meant that NBC experience strengthened the conventional notions of teaching science held by some teachers rather than generating a higher affiliation with the reform ideas. The teacher cases presented in this study denoted that teachers' conceptions of classroom inquiry were driven both by scientific and constructivist rationales. However, NBCSTs failed to create broader operational definitions of classroom inquiry. They tended to reduce the meaning of classroom inquiry into empirical investigations of students. The conventional representation of the scientific method as a stepwise linear process influenced teachers' understandings and practices of classroom inquiry. NBCSTs used inquiry in their classrooms to introduce their students to the cognitive processes and the actions of practicing scientists but not necessarily to teach scientific principles. Their reluctance to teach scientific principles through inquiry developed in parallel to their tendency of associating classroom inquiry with the highest levels of student autonomy. Participant teachers' particular understandings of scientific literacy produced a tension between embracing inquiry more in their teaching practices of science and educating scientifically literate students. The teachers in the study attributed the hurdles that kept them from using more inquiry with their students to external factors. In the final chapter of the dissertation study, these findings were discussed in connection with the education literature.

  5. Approaches to Inquiry Teaching: Elementary teacher's perspectives

    NASA Astrophysics Data System (ADS)

    Ireland, Joseph; Watters, James J.; Lunn Brownlee, J.; Lupton, Mandy

    2014-07-01

    Learning science through the process of inquiry is advocated in curriculum documents across many jurisdictions. However, a number of studies suggest that teachers struggle to help students engage in inquiry practices. This is not surprising as many teachers of science have not engaged in scientific inquiry and possibly hold naïve ideas about what constitutes scientific inquiry. This study investigates teachers' self-reported approaches to teaching science through inquiry. Phenomenographic interviews undertaken with 20 elementary teachers revealed teachers identified six approaches to teaching for inquiry, clustered within three categories. These approaches were categorized as Free and Illustrated Inquiries as part of an Experience-centered category, Solution and Method Inquiries as part of a Problem-centered category, and Topic and Chaperoned Inquiries as part of a Question-centered category. This study contributes to our theoretical understanding of how teachers approach Inquiry Teaching and suggests fertile areas of future research into this valued and influential phenomenon broadly known as 'Inquiry Teaching'.

  6. Exploring prospective secondary science teachers' understandings of scientific inquiry and Mendelian genetics concepts using computer simulation

    NASA Astrophysics Data System (ADS)

    Cakir, Mustafa

    The primary objective of this case study was to examine prospective secondary science teachers' developing understanding of scientific inquiry and Mendelian genetics. A computer simulation of basic Mendelian inheritance processes (Catlab) was used in combination with small-group discussions and other instructional scaffolds to enhance prospective science teachers' understandings. The theoretical background for this research is derived from a social constructivist perspective. Structuring scientific inquiry as investigation to develop explanations presents meaningful context for the enhancement of inquiry abilities and understanding of the science content. The context of the study was a teaching and learning course focused on inquiry and technology. Twelve prospective science teachers participated in this study. Multiple data sources included pre- and post-module questionnaires of participants' view of scientific inquiry, pre-posttests of understandings of Mendelian concepts, inquiry project reports, class presentations, process videotapes of participants interacting with the simulation, and semi-structured interviews. Seven selected prospective science teachers participated in in-depth interviews. Findings suggest that while studying important concepts in science, carefully designed inquiry experiences can help prospective science teachers to develop an understanding about the types of questions scientists in that field ask, the methodological and epistemological issues that constrain their pursuit of answers to those questions, and the ways in which they construct and share their explanations. Key findings included prospective teachers' initial limited abilities to create evidence-based arguments, their hesitancy to include inquiry in their future teaching, and the impact of collaboration on thinking. Prior to this experience the prospective teachers held uninformed views of scientific inquiry. After the module, participants demonstrated extended expertise in their understandings of following aspects of scientific inquiry: (a) the iterative nature of scientific inquiry; (b) the tentativeness of specific knowledge claims; (c) the degree to which scientists rely on empirical data, as well as broader conceptual and metaphysical commitments, to assess models and to direct future inquiries; (d) the need for conceptual consistency; (e) multiple methods of investigations and multiple interpretations of data; and (f) social and cultural aspects of scientific inquiry. This research provided evidence that hypothesis testing can support the integrated acquisition of conceptual and procedural knowledge in science. Participants' conceptual elaborations of Mendelian inheritance were enhanced. There were qualitative changes in the nature of the participants' explanations. Moreover, the average percentage of correct responses improved from 39% on the pretest to 67% on the posttest. Findings also suggest those prospective science teachers' experiences as learners of science in their methods course served as a powerful tool for thinking about the role of inquiry in teaching and learning science. They had mixed views about enacting inquiry in their teaching in the future. All of them stated some kind of general willingness to do so; yet, they also mentioned some reservations and practical considerations about inquiry-based teaching.

  7. The Effects of Computerized Inquiry-Stage-Dependent Argumentation Assistance on Elementary Students' Science Process and Argument Construction Skills

    ERIC Educational Resources Information Center

    Lin, C.-H.; Chiu, C.-H.; Hsu, C.-C.; Wang, T.-I.; Chen, C.-H.

    2018-01-01

    This study proposed a computerized inquiry-stage-dependent argumentation assistance and investigated whether this can help improve elementary students' performance in science processes and the construction of quality arguments. Various argumentation assistances were developed and incorporated into each stage of scientific inquiry in a…

  8. John Dewey's Dual Theory of Inquiry and Its Value for the Creation of an Alternative Curriculum

    ERIC Educational Resources Information Center

    Harris, Fred

    2014-01-01

    Dewey's theory of inquiry cannot be reduced to the pattern of inquiry common to both common-sense inquiry and scientific inquiry, which is grounded in the human life process, since such a reduction ignores Dewey's differentiation of the two forms of inquiry. The difference has to do with the focus of inquiry, with common-sense inquiry…

  9. Personal Inquiry Learning Trajectories in Geography: Technological Support across Contexts

    ERIC Educational Resources Information Center

    Kerawalla, Lucinda; Littleton, Karen; Scanlon, Eileen; Jones, Ann; Gaved, Mark; Collins, Trevor; Mulholland, Paul; Blake, Canan; Clough, Gill; Conole, Gráinne; Petrou, Marilena

    2013-01-01

    Student engagement in the design and implementation of inquiries is an effective way for them to learn about the inquiry process and the domain being studied. However, inquiry learning in geography can be challenging for teachers and students due to the complexity of scientific inquiry and the diversity of pupils' and teachers' knowledge and…

  10. Argument-Driven Inquiry as a Way to Help Students Learn How to Participate in Scientific Argumentation and Craft Written Arguments: An Exploratory Study

    ERIC Educational Resources Information Center

    Sampson, Victor; Grooms, Jonathon; Walker, Joi Phelps

    2011-01-01

    This exploratory study examines how a series of laboratory activities designed using a new instructional model, called Argument-Driven Inquiry (ADI), influences the ways students participate in scientific argumentation and the quality of the scientific arguments they craft as part of this process. The two outcomes of interest were assessed with a…

  11. Collaboration Modality, Cognitive Load, and Science Inquiry Learning in Virtual Inquiry Environments

    ERIC Educational Resources Information Center

    Erlandson, Benjamin E.; Nelson, Brian C.; Savenye, Wilhelmina C.

    2010-01-01

    Educational multi-user virtual environments (MUVEs) have been shown to be effective platforms for situated science inquiry curricula. While researchers find MUVEs to be supportive of collaborative scientific inquiry processes, the complex mix of multi-modal messages present in MUVEs can lead to cognitive overload, with learners unable to…

  12. Approaches to Inquiry Teaching: Elementary Teachers' Perspectives

    ERIC Educational Resources Information Center

    Ireland, Joseph; Watters, James J.; Lunn Brownlee, J.; Lupton, Mandy

    2014-01-01

    Learning science through the process of inquiry is advocated in curriculum documents across many jurisdictions. However, a number of studies suggest that teachers struggle to help students engage in inquiry practices. This is not surprising as many teachers of science have not engaged in scientific inquiry and possibly hold naïve ideas about what…

  13. Kindergarten Students' Levels of Understanding Some Science Concepts and Scientific Inquiry Processes According to Demographic Variables (The Sampling of Kilis Province in Turkey)

    ERIC Educational Resources Information Center

    Ilhan, Nail; Tosun, Cemal

    2016-01-01

    The purpose of this study is to identify the kindergarten students' levels of understanding some science concepts (LUSSC) and scientific inquiry processes (SIP) and compare their LUSSC and SIP in terms of some demographic variables. Also, another purpose of this study is to identify the predictive power of those demographic variables over the…

  14. The Effect of Scientific Inquiry Learning Model Based on Conceptual Change on Physics Cognitive Competence and Science Process Skill (SPS) of Students at Senior High School

    ERIC Educational Resources Information Center

    Sahhyar; Nst, Febriani Hastini

    2017-01-01

    The purpose of this research was to analyze the physics cognitive competence and science process skill of students using scientific inquiry learning model based on conceptual change better than using conventional learning. The research type was quasi experiment and two group pretest-posttest designs were used in this study. The sample were Class…

  15. University-Level Teaching of Anthropogenic Global Climate Change (AGCC) via Student Inquiry

    NASA Technical Reports Server (NTRS)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2017-01-01

    This paper reviews university-level efforts to improve understanding of anthropogenic global climate change (AGCC) through curricula that enable student scientific inquiry. We examined 152 refereed publications and proceedings from academic conferences and selected 26 cases of inquiry learning that overcome specific challenges to AGCC teaching. This review identifies both the strengths and weaknesses of each of these case studies. It is the first to go beyond examining the impact of specific inquiry instructional approaches to offer a synthesis of cases. We find that inquiry teaching can succeed by concretising scientific processes, providing access to global data and evidence, imparting critical and higher order thinking about AGCC science policy and contextualising learning with places and scientific facts. We recommend educational researchers and scientists collaborate to create and refine curricula that utilise geospatial technologies, climate models and communication technologies to bring students into contact with scientists, climate data and authentic AGCC research processes. Many available science education technologies and curricula also require further research to maximise trade-offs between implementation and training costs and their educational value.

  16. An Interdisciplinary Guided Inquiry on Estuarine Transport Using a Computer Model in High School Classrooms

    ERIC Educational Resources Information Center

    Chan, Kit Yu Karen; Yang, Sylvia; Maliska, Max E.; Grunbaum, Daniel

    2012-01-01

    The National Science Education Standards have highlighted the importance of active learning and reflection for contemporary scientific methods in K-12 classrooms, including the use of models. Computer modeling and visualization are tools that researchers employ in their scientific inquiry process, and often computer models are used in…

  17. Project Citizen: Promoting Action-Oriented Citizen Science in the Classroom

    ERIC Educational Resources Information Center

    Green, Carie; Medina-Jerez, William

    2012-01-01

    In recent years, citizen science projects have emerged as a means to involve students in scientific inquiry, particularly in the fields of ecology and environmental science. A citizen scientist is "a volunteer who collects and/or processes data as part of a scientific inquiry" (Silverton 2009, p. 467). Participation in citizen science…

  18. Measuring the "Unmeasurable": An Inquiry Model and Test for the Social Studies.

    ERIC Educational Resources Information Center

    Van Scotter, Richard D.; Haas, John D.

    New social studies materials are based on inquiry modes of learning and teaching; however, little is known as to what students actually learn from an inquiry model (except for cognitive knowledge). An inquiry model and test to measure the "unmeasurable" in the social studies--namely, a student's ability to use the scientific process, attitudes…

  19. "Martian Boneyards": Sustained Scientific Inquiry in a Social Digital Game

    NASA Astrophysics Data System (ADS)

    Asbell-Clarke, Jordis

    Social digital gaming is an explosive phenomenon where youth and adults are engaged in inquiry for the sake of fun. The complexity of learning evidenced in social digital games is attracting the attention of educators. Martian Boneyards is a proof-of-concept game designed to study how a community of voluntary gamers can be enticed to engage in sustained, high-quality scientific inquiry. Science educators and game designers worked together to create an educational game with the polish and intrigue of a professional-level game, striving to attract a new audience to scientific inquiry. Martian Boneyards took place in the high-definition, massively multiplayer online environment, Blue Mars, where players spent an average of 30 hours in the game over the 4-month implementation period, with some exceeding 200 hours. Most of the players' time was spent in scientific inquiry activities and about 30% of the players' in-game interactions were in the analysis and theory-building phases of inquiry. Female players conducted most of the inquiry, in particular analysis and theory building. The quality of scientific inquiry processes, which included extensive information gathering by players, and the resulting content were judged to be very good by a team of independent scientists. This research suggests that a compelling storyline, a highly aesthetic environment, and the emergent social bonds among players and between players and the characters played by designers were all responsible for sustaining high quality inquiry among gamers in this free-choice experience. The gaming environment developed for Martian Boneyards is seen as an evolving ecosystem with interactions among design, players' activity, and players' progress.

  20. Pre-Service Science Teachers in Xinjiang "Scientific Inquiry" - Pedagogical Content Knowledge Research

    ERIC Educational Resources Information Center

    Li, Yufeng; Xiong, Jianwen

    2012-01-01

    Scientific inquiry is one of the science curriculum content, "Scientific inquiry" - Pedagogical Content Knowledge is the face of scientific inquiry and teachers - of course pedagogical content knowledge and scientific inquiry a teaching practice with more direct expertise. Pre-service teacher training phase of acquisition of knowledge is…

  1. The impact of collaborative groups versus individuals in undergraduate inquiry-based astronomy laboratory learning exercises

    NASA Astrophysics Data System (ADS)

    Sibbernsen, Kendra J.

    One of the long-standing general undergraduate education requirements common to many colleges and universities is a science course with a laboratory experience component. One of the objectives frequently included in the description of most of these courses is that a student will understand the nature and processes of scientific inquiry. However, recent research has shown that learners in traditional undergraduate science laboratory environments are not developing a sufficiently meaningful understanding of scientific inquiry. Recently, astronomy laboratory activities have been developed that intentionally scaffold a student from guided activities to open inquiry ones and preliminary results show that these laboratories are successful for supporting students to understand the nature of scientific inquiry (Slater, S., Slater, T. F., & Shaner, 2008). This mixed-method quasi-experimental study was designed to determine how students in an undergraduate astronomy laboratory increase their understanding of inquiry working in relative isolation compared to working in small collaborative learning groups. The introductory astronomy laboratory students in the study generally increased their understanding of scientific inquiry over the course of the semester and this held true similarly for students working in groups and students working individually in the laboratories. This was determined by the examining the change in responses from the pretest to the posttest administration of the Views of Scientific Inquiry (VOSI) survey, the increase in scores on laboratory exercises, and observations from the instructor. Because the study was successful in determining that individuals in the astronomy laboratory do as well at understanding inquiry as those who complete their exercises in small groups, it would be appropriate to offer these inquiry-based exercises in an online format.

  2. Focusing on the Processes of Science Using Inquiry-oriented Astronomy Labs for Learning Astronomy

    NASA Astrophysics Data System (ADS)

    Speck, Angela; Ruzhitskaya, L.; Whittington, A.; Witzig, S.

    2010-01-01

    The U.S. National Science Education Standards provide guidelines for teaching science through inquiry, where students actively develop their understanding of science by combining scientific knowledge with reasoning and thinking skills. Inquiry activities include reading scientific literature, generating hypotheses, designing and carrying out investigations, interpreting data, and formulating conclusions. Inquiry-based instruction emphasizes questions, evidence, and explanation, the essential features of inquiry. We present two projects designed to develop learning materials for laboratory experiences in an undergraduate astronomy course. First, we engage students in inquiry-based learning by using "mini-journal” articles that follow the format of a scientific journal article, including a title, authors, abstract, introduction, methods, results, discussion and citations to peer-reviewed literature. The mini-journal provides a scaffold and serves as a springboard for students to develop and carry out their own follow-up investigation. They then present their findings in the form of their own mini-journal. This mini-journal format more directly reflects and encourages scientific practice. We use this technique in both introductory and upper level courses. The second project develops 3D virtual reality environments to help students interact with scientific constructs, and the use of collaborative learning tools to motivate student activity, deepen understanding and support knowledge building.

  3. Confronting Scientific Misconceptions by Fostering a Classroom of Scientists in the Introductory Biology Lab

    ERIC Educational Resources Information Center

    Holding, Matthew L.; Denton, Robert D.; Kulesza, Amy E.; Ridgway, Judith S.

    2014-01-01

    A fundamental component of science curricula is the understanding of scientific inquiry. Although recent trends favor using student inquiry to learn concepts through hands-on activities, it is often unclear to students where the line is drawn between the content and the process of science. This activity explicitly introduces students to the…

  4. Supporting the Scientific Thinking and Inquiry of Toddlers and Preschoolers through Play

    ERIC Educational Resources Information Center

    Hamlin, Maria; Wisneski, Debora B.

    2012-01-01

    Play provides abundant opportunities for children to learn science concepts such as the diversity and interdependence of life, relationships between force and motion, and the structure of matter. It is also a rich context in which to introduce young children to the process of scientific inquiry. Teachers support play through intentional planning…

  5. An Inquiry-Based Practical for a Large, Foundation-Level Undergraduate Laboratory that Enhances Student Understanding of Basic Cellular Concepts and Scientific Experimental Design

    ERIC Educational Resources Information Center

    Bugarcic, A.; Zimbardi, K.; Macaranas, J.; Thorn, P.

    2012-01-01

    Student-centered education involving research experiences or inquiry have been shown to help undergraduate students understand, and become excited about, the process of scientific investigation. These benefits are particularly important for students in the early stages of their degree (Report and Kenny,…

  6. The Iterative Design of a Mobile Learning Application to Support Scientific Inquiry

    ERIC Educational Resources Information Center

    Marty, Paul F.; Mendenhall, Anne; Douglas, Ian; Southerland, Sherry A.; Sampson, Victor; Kazmer, Michelle M.; Alemanne, Nicole; Clark, Amanda; Schellinger, Jennifer

    2013-01-01

    The ubiquity of mobile devices makes them well suited for field-based learning experiences that require students to gather data as part of the process of developing scientific inquiry practices. The usefulness of these devices, however, is strongly influenced by the nature of the applications students use to collect data in the field. To…

  7. Designing Summer Research Experiences for Teachers and Students That Promote Classroom Science Inquiry Projects and Produce Research Results

    NASA Astrophysics Data System (ADS)

    George, L. A.; Parra, J.; Rao, M.; Offerman, L.

    2007-12-01

    Research experiences for science teachers are an important mechanism for increasing classroom teachers' science content knowledge and facility with "real world" research processes. We have developed and implemented a summer scientific research and education workshop model for high school teachers and students which promotes classroom science inquiry projects and produces important research results supporting our overarching scientific agenda. The summer training includes development of a scientific research framework, design and implementation of preliminary studies, extensive field research and training in and access to instruments, measurement techniques and statistical tools. The development and writing of scientific papers is used to reinforce the scientific research process. Using these skills, participants collaborate with scientists to produce research quality data and analysis. Following the summer experience, teachers report increased incorporation of research inquiry in their classrooms and student participation in science fair projects. This workshop format was developed for an NSF Biocomplexity Research program focused on the interaction of urban climates, air quality and human response and can be easily adapted for other scientific research projects.

  8. Inquiry in Limnology Lessons

    ERIC Educational Resources Information Center

    Variano, Evan; Taylor, Karen

    2006-01-01

    Inquiry can be implemented in various ways, ranging from simple classroom discussions to longterm research projects. In this article, the authors developed a project in which high school students were introduced to the nature and process of scientific discovery through a two-week guided inquiry unit on "limnology"--the study of fresh water, which…

  9. Which Sweetener Is Best for Yeast? An Inquiry-Based Learning for Conceptual Change

    ERIC Educational Resources Information Center

    Cherif, Abour H.; Siuda, JoElla E.; Kassem, Sana; Gialamas, Stefanos; Movahedzadeh, Farahnaz

    2017-01-01

    One way to help students understand the scientific inquiry process, and how it applies in investigative research, is to involve them in scientific investigation. An example of this would be letting them come to their own understanding of how different variables (e.g., starting products) can affect outcomes (e.g., variable quality end products)…

  10. SEAS (Student Experiments At Sea): Helping Teachers Foster Authentic Student Inquiry in the Science Classroom

    NASA Astrophysics Data System (ADS)

    Goehring, L.; Kelsey, K.; Carlson, J.

    2005-12-01

    Teacher professional development designed to promote authentic research in the classroom is ultimately aimed at improving student scientific literacy. In addition to providing teachers with opportunities to improve their understanding of science through research experiences, we need to help facilitate similar learning in students. This is the focus of the SEAS (Student Experiments At Sea) program: to help students learn science by doing science. SEAS offers teachers tools and a framework to help foster authentic student inquiry in the classroom. SEAS uses the excitement of deep-sea research, as well as the research facilities and human resources that comprise the deep-sea scientific community, to engage student learners. Through SEAS, students have the opportunity to practice inquiry skills and participate in research projects along side scientists. SEAS is a pilot program funded by NSF and sponsored by the Ridge 2000 research community. The pilot includes inquiry-based curricular materials, facilitated interaction with scientists, opportunities to engage students in research projects, and teacher training. SEAS offers a framework of resources designed to help translate inquiry skills and approaches to the classroom environment, recognizing the need to move students along the continuum of scientific inquiry skills. This framework includes hands-on classroom lessons, Classroom to Sea labs where students compare their investigations with at-sea investigations, and a student experiment competition. The program also uses the Web to create a virtual ``scientific community'' including students. Lessons learned from this two year pilot emphasize the importance of helping teachers feel knowledgeable and experienced in the process of scientific inquiry as well as in the subject. Teachers with experience in scientific research were better able to utilize the program. Providing teachers with access to scientists as a resource was also important, particularly given the challenges of working in the deep-sea environment. Also, fostering authentic student investigations (i.e., working through preparatory materials, developing proposals, analyzing data and writing summary reports) is challenging to fit within the academic year. Nonetheless, teacher feedback highlights that the excitement generated by participation in real research is highly motivating. Further, students experience a ``paradigm shift'' in understanding evidence-based reasoning and the process of scientific discovery.

  11. What is the role of induction and deduction in reasoning and scientific inquiry?

    NASA Astrophysics Data System (ADS)

    Lawson, Anton E.

    2005-08-01

    A long-standing and continuing controversy exists regarding the role of induction and deduction in reasoning and in scientific inquiry. Given the inherent difficulty in reconstructing reasoning patterns based on personal and historical accounts, evidence about the nature of human reasoning in scientific inquiry has been sought from a controlled experiment designed to identify the role played by enumerative induction and deduction in cognition as well as from the relatively new field of neural modeling. Both experimental results and the neurological models imply that induction across a limited set of observations plays no role in task performance and in reasoning. Therefore, support has been obtained for Popper's hypothesis that enumerative induction does not exist as a psychological process. Instead, people appear to process information in terms of increasingly abstract cycles of hypothetico-deductive reasoning. Consequently, science instruction should provide students with opportunities to generate and test increasingly complex and abstract hypotheses and theories in a hypothetico-deductive manner. In this way students can be expected to become increasingly conscious of their underlying hypothetico-deductive thought processes, increasingly skilled in their application, and hence increasingly scientifically literate.

  12. Assessing Problem Solving Competence through Inquiry-Based Teaching in School Science Education

    ERIC Educational Resources Information Center

    Zervas, Panagiotis; Sotiriou, Sofoklis; Tiemann, Rüdiger; Sampson, Demetrios G.

    2015-01-01

    Nowadays, there is a consensus that inquiry-based learning contributes to developing students' scientific literacy in schools. Inquiry-based teaching strategies are promoted for the development (among others) of the cognitive processes that cultivate problem solving (PS) competence. The build up of PS competence is a central objective for most…

  13. A Virtual Tour of Plate Tectonics: Using Google Earth for Inquiry Investigations

    ERIC Educational Resources Information Center

    Mulvey, Bridget; Bell, Randy

    2012-01-01

    Google Earth is an exciting way to engage students in scientific inquiry--the foundation of science education standards and reforms. The National Science Education Standards identify inquiry as an active process that incorporates questioning, gathering and analyzing data, and thinking critically about the interplay of evidence and explanations.…

  14. Pre-University Chemistry Students in a Mimicked Scholarly Peer Review

    ERIC Educational Resources Information Center

    van Rens, Lisette; Hermarij, Philip; Pilot, Albert; Beishuizen, Jos; Hofman, Herman; Wal, Marjolein

    2014-01-01

    Peer review is a significant component in scientific research. Introducing peer review into inquiry processes may be regarded as an aim to develop student understanding regarding quality in inquiries. This study examines student understanding in inquiry peer reviews among pre-university chemistry students, aged 16-17, when they enact a design of a…

  15. Inquiry-based science education: towards a pedagogical framework for primary school teachers

    NASA Astrophysics Data System (ADS)

    van Uum, Martina S. J.; Verhoeff, Roald P.; Peeters, Marieke

    2016-02-01

    Inquiry-based science education (IBSE) has been promoted as an inspiring way of learning science by engaging pupils in designing and conducting their own scientific investigations. For primary school teachers, the open nature of IBSE poses challenges as they often lack experience in supporting their pupils during the different phases of an open IBSE project, such as formulating a research question and designing and conducting an investigation. The current study aims to meet these challenges by presenting a pedagogical framework in which four domains of scientific knowledge are addressed in seven phases of inquiry. The framework is based on video analyses of pedagogical interventions by primary school teachers participating in open IBSE projects. Our results show that teachers can guide their pupils successfully through the process of open inquiry by explicitly addressing the conceptual, epistemic, social and/or procedural domain of scientific knowledge in the subsequent phases of inquiry. The paper concludes by suggesting further research to validate our framework and to develop a pedagogy for primary school teachers to guide their pupils through the different phases of open inquiry.

  16. Creating Personal Meaning through Technology-Supported Science Inquiry Learning across Formal and Informal Settings

    ERIC Educational Resources Information Center

    Anastopoulou, Stamatina; Sharples, Mike; Ainsworth, Shaaron; Crook, Charles; O'Malley, Claire; Wright, Michael

    2012-01-01

    In this paper, a novel approach to engaging students in personal inquiry learning is described, whereby they carry out scientific investigations that are personally meaningful and relevant to their everyday lives. The learners are supported by software that guides the inquiry process, extending from the classroom into the school grounds, home, or…

  17. The Teaching of Anthropogenic Climate Change and Earth Science via Technology-Enabled Inquiry Education

    ERIC Educational Resources Information Center

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2016-01-01

    A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models,…

  18. Development and Application of Learning Materials to Help Students Understand Ten Statements Describing the Nature of Scientific Observation

    ERIC Educational Resources Information Center

    Kim, Sangsoo; Park, Jongwon

    2018-01-01

    Observing scientific events or objects is a complex process that occurs through the interaction between the observer's knowledge or expectations, the surrounding context, physiological features of the human senses, scientific inquiry processes, and the use of observational instruments. Scientific observation has various features specific to this…

  19. Original Research and Peer Review Using Web-Based Collaborative Tools by College Students

    ERIC Educational Resources Information Center

    Cakir, Mustafa; Carlsen, William S.

    2007-01-01

    The Environmental Inquiry program supports inquiry based, student-centered science teaching on selected topics in the environmental sciences. Many teachers are unfamiliar with both the underlying science of toxicology, and the process and importance of peer review in scientific method. The protocol and peer review process was tested with college…

  20. Assessing Inquiry Process Skills in the Lab Using a Fast, Simple, Inexpensive Fermentation Model System

    ERIC Educational Resources Information Center

    Knabb, Maureen T.; Misquith, Geraldine

    2006-01-01

    Incorporating inquiry-based learning in the college-level introductory biology laboratory is challenging because the labs serve the dual purpose of providing a hands-on opportunity to explore content while also emphasizing the development of scientific process skills. Time limitations and variations in student preparedness for college further…

  1. Teaching Statistics from the Operating Table: Minimally Invasive and Maximally Educational

    ERIC Educational Resources Information Center

    Nowacki, Amy S.

    2015-01-01

    Statistics courses that focus on data analysis in isolation, discounting the scientific inquiry process, may not motivate students to learn the subject. By involving students in other steps of the inquiry process, such as generating hypotheses and data, students may become more interested and vested in the analysis step. Additionally, such an…

  2. Major Strands in Scientific Inquiry through Cluster Analysis of Research Abstracts

    ERIC Educational Resources Information Center

    Yeh, Yi-Fen; Jen, Tsung-Hau; Hsu, Ying-Shao

    2012-01-01

    Scientific inquiry involves a variety of abilities scientists use to investigate the natural world. In order to develop students' scientific inquiry, researchers and educators have developed different curricula and a variety of instructional resources, which make features and descriptors of scientific inquiry in teaching and learning even more…

  3. The Effectiveness of Scientific Inquiry With/Without Integration of Scientific Reasoning

    ERIC Educational Resources Information Center

    Chen, Chun-Ting; She, Hsiao-Ching

    2015-01-01

    This study examines the difference in effectiveness between two scientific inquiry programs-one with an emphasis on scientific reasoning and one without a scientific reasoning component-on students' scientific concepts, scientific concept-dependent reasoning, and scientific inquiry. A mixed-method approach was used in which 115 grade 5…

  4. Problems Students Experience with Inquiry Processes in the Study of Enzyme Kinetics

    ERIC Educational Resources Information Center

    Ferrés Gurt, Concepció; Marbà Tallada, Anna

    2018-01-01

    This case study describes a classroom-based questionnaire that was carried out with a group of 36 high school students (17-18 years old) in Catalonia. The aim was to examine the usefulness of questionnaires focused on scientific inquiry, both to evaluate students' inquiry abilities and for their potential as tools to improve the understanding of…

  5. Enhancing Scientific Inquiry Literacy of Prospective Biology Teachers through Inquiry Lab Project in Microbiology

    NASA Astrophysics Data System (ADS)

    Kusnadi, K.; Rustaman, N. Y.; Redjeki, S.; Aryantha, I. N. P.

    2017-09-01

    The implementation of the inquiry laboratory based project to enhance scientific inquiry literacy of prospective biology teachers in Microbiology course has been done. The inquiry lab based project was designed by three stages were debriefing of basic microbiology lab skills, guided inquiry and free inquiry respectively. The Study was quasi experimental with control group pretest-posttest design. The subjects were prospective biology teachers consists of 80 students. The scientific inquiry literacy instrument refers to ScInqLiT by Wenning. The results showed that there was significant difference of scientific inquiry literacy posttest scores between experiment and control (α 0,05) and was obtained N-gain score was 0.49 (medium) to experiment and 0.24 (low) to control. Based on formative assessment showed that development of student’s scientific attitude, research and microbiology lab skills during conducting project were increased. Student’s research skills especially in identification of variables, constructing a hypothesis, communicating and concluding were increased. During implementation of inquiry project also showed that they carried out mind and hands-on and so collaborative group investigation lab activities. Our findings may aid in reforming higher-education, particularly in microbiology laboratory activities to better promote scientific inquiry literacy, scientific attitude, research and laboratory skills.

  6. Exploring Korean Middle School Students' View about Scientific Inquiry

    ERIC Educational Resources Information Center

    Yang, Il-Ho; Park, Sang-Woo; Shin, Jung-Yun; Lim, Sung-Man

    2017-01-01

    The aim of this study is to examine Korean middle school students' view about scientific inquiry with the Views about Scientific Inquiry (VASI) questionnaire, an instrument that deals with eight aspects of scientific inquiry. 282 Korean middle school students participated in this study, and their responses were classified as informed, mixed, and…

  7. Effects of Scaffolds and Scientific Reasoning Ability on Web-Based Scientific Inquiry

    ERIC Educational Resources Information Center

    Wu, Hui-Ling; Weng, Hsiao-Lan; She, Hsiao-Ching

    2016-01-01

    This study examined how background knowledge, scientific reasoning ability, and various scaffolding forms influenced students' science knowledge and scientific inquiry achievements. The students participated in an online scientific inquiry program involving such activities as generating scientific questions and drawing evidence-based conclusions,…

  8. Enhancing endorsement of scientific inquiry increases support for pro-environment policies.

    PubMed

    Drummond, Aaron; Palmer, Matthew A; Sauer, James D

    2016-09-01

    Pro-environment policies require public support and engagement, but in countries such as the USA, public support for pro-environment policies remains low. Increasing public scientific literacy is unlikely to solve this, because increased scientific literacy does not guarantee increased acceptance of critical environmental issues (e.g. that climate change is occurring). We distinguish between scientific literacy (basic scientific knowledge) and endorsement of scientific inquiry (perceiving science as a valuable way of accumulating knowledge), and examine the relationship between people's endorsement of scientific inquiry and their support for pro-environment policy. Analysis of a large, publicly available dataset shows that support for pro-environment policies is more strongly related to endorsement of scientific inquiry than to scientific literacy among adolescents. An experiment demonstrates that a brief intervention can increase support for pro-environment policies via increased endorsement of scientific inquiry among adults. Public education about the merits of scientific inquiry may facilitate increased support for pro-environment policies.

  9. Enhancing endorsement of scientific inquiry increases support for pro-environment policies

    PubMed Central

    Palmer, Matthew A.; Sauer, James D.

    2016-01-01

    Pro-environment policies require public support and engagement, but in countries such as the USA, public support for pro-environment policies remains low. Increasing public scientific literacy is unlikely to solve this, because increased scientific literacy does not guarantee increased acceptance of critical environmental issues (e.g. that climate change is occurring). We distinguish between scientific literacy (basic scientific knowledge) and endorsement of scientific inquiry (perceiving science as a valuable way of accumulating knowledge), and examine the relationship between people's endorsement of scientific inquiry and their support for pro-environment policy. Analysis of a large, publicly available dataset shows that support for pro-environment policies is more strongly related to endorsement of scientific inquiry than to scientific literacy among adolescents. An experiment demonstrates that a brief intervention can increase support for pro-environment policies via increased endorsement of scientific inquiry among adults. Public education about the merits of scientific inquiry may facilitate increased support for pro-environment policies. PMID:27703700

  10. Designing a Web-Based Science Learning Environment for Model-Based Collaborative Inquiry

    ERIC Educational Resources Information Center

    Sun, Daner; Looi, Chee-Kit

    2013-01-01

    The paper traces a research process in the design and development of a science learning environment called WiMVT (web-based inquirer with modeling and visualization technology). The WiMVT system is designed to help secondary school students build a sophisticated understanding of scientific conceptions, and the science inquiry process, as well as…

  11. Employing Inquiry-Based Computer Simulations and Embedded Scientist Videos to Teach Challenging Climate Change and Nature of Science Concepts

    ERIC Educational Resources Information Center

    Cohen, Edward Charles

    2013-01-01

    Design based research was utilized to investigate how students use a greenhouse effect simulation in order to derive best learning practices. During this process, students recognized the authentic scientific process involving computer simulations. The simulation used is embedded within an inquiry-based technology-mediated science curriculum known…

  12. Middle School Students' Views of Scientific Inquiry: An International Comparative Study

    ERIC Educational Resources Information Center

    Senler, B.

    2015-01-01

    The aim of this study is to investigate middle school students' views of scientific inquiry. A total of 489 middle school students (238 from the United States, and 251 from Turkey) participated in the study. The Views of Scientific Inquiry-Elementary (VOSI-E) was used to assess participants' scientific inquiry views. The instrument covered four…

  13. Effect of synergetic implementation of inquiry activities across three subjects in comparison to more traditional approach to teaching

    NASA Astrophysics Data System (ADS)

    Balogová, Brigita; Ješková, Zuzana; Hančová, Martina; Kireš, Marián

    2017-01-01

    Science education standards for grammar schools (ISCED 3) urge more emphasis on students' investigations in order to develop understanding but also scientific process skills (inquiry skills). It is true for not only science, but also mathematics and informatics. This approach is promoted to increase scientific literacy and inquiry skills development, however, there has not been many studies carried out in Slovakia to show the effect on students' achievements. In cooperation with Institutes of mathematics and informatics there was a research designed in order to study the effect of synergetic implementation of inquiry activities across the three subjects of physics, mathematics and informatics. The effect was identified with the help of inquiry skills' test and results were compared to those achieved by students subjected to more traditional teaching. In the contribution there are results of the study analyzed and discussed in details.

  14. Learning and teaching science as inquiry: A case study of elementary school teachers' investigations of light

    NASA Astrophysics Data System (ADS)

    van Zee, Emily H.; Hammer, David; Bell, Mary; Roy, Patricia; Peter, Jennifer

    2005-11-01

    This case study documents an example of inquiry learning and teaching during a summer institute for elementary and middle school teachers. A small group constructed an explanatory model for an intriguing optical phenomenon that they were observing. Research questions included: What physics thinking did the learners express? What aspects of scientific inquiry were evident in what the learners said and did? What questions did the learners ask one another as they worked? How did these learners collaborate in constructing understanding? How did the instructor foster their learning? Data sources included video- and audio- tapes of instruction, copies of the participants' writings and drawings, field notes, interviews, and staff reflections. An interpretative narrative of what three group members said and did presents a detailed account of their learning process. Analyses of their utterances provide evidence of physics thinking, scientific inquiry, questioning, collaborative sense making, and insight into ways to foster inquiry learning.

  15. Do individual differences in children's curiosity relate to their inquiry-based learning?

    NASA Astrophysics Data System (ADS)

    van Schijndel, Tessa J. P.; Jansen, Brenda R. J.; Raijmakers, Maartje E. J.

    2018-06-01

    This study investigates how individual differences in 7- to 9-year-olds' curiosity relate to the inquiry-learning process and outcomes in environments differing in structure. The focus on curiosity as individual differences variable was motivated by the importance of curiosity in science education, and uncertainty being central to both the definition of curiosity and the inquiry-learning environment. Curiosity was assessed with the Underwater Exploration game (Jirout, J., & Klahr, D. (2012). Children's scientific curiosity: In search of an operational definition of an elusive concept. Developmental Review, 32, 125-160. doi:10.1016/j.dr.2012.04.002), and inquiry-based learning with the newly developed Scientific Discovery task, which focuses on the principle of designing informative experiments. Structure of the inquiry-learning environment was manipulated by explaining this principle or not. As intelligence relates to learning and possibly curiosity, it was taken into account. Results showed that children's curiosity was positively related to their knowledge acquisition, but not to their quality of exploration. For low intelligent children, environment structure positively affected their quality of exploration, but not their knowledge acquisition. There was no interaction between curiosity and environment structure. These results support the existence of two distinct inquiry-based learning processes - the designing of experiments, on the one hand, and the reflection on performed experiments, on the other - and link children's curiosity to the latter process.

  16. Confronting prospective teachers' ideas of evolution and scientific inquiry using technology and inquiry-based tasks

    NASA Astrophysics Data System (ADS)

    Crawford, Barbara A.; Zembal-Saul, Carla; Munford, Danusa; Friedrichsen, Patricia

    2005-08-01

    This study addresses the need for research in three areas: (1) teachers' understandings of scientific inquiry; (2) conceptual understandings of evolutionary processes; and (3) technology-enhanced instruction using an inquiry approach. The purpose of this study was to determine in what ways The Galapagos Finches software-based materials created a context for learning and teaching about the nature of scientific knowledge and evolutionary concepts. The research used a design experiment in which researchers significantly modified a secondary science methods course. The multiple data sources included: audiotaped conversations of two focus pairs of participants as they interacted with the software; written pre- and posttests on concepts of natural selection of the 21 prospective teachers; written pre- and posttests on views of the nature of science; three e-mail journal questions; and videotaped class discussions. Findings indicate that prospective teachers initially demonstrated alternative understandings of evolutionary concepts; there were uninformed understandings of the nature of scientific inquiry; there was little correlation between understandings and disciplines; and even the prospective teachers with research experience failed to understand the diverse methods used by scientists. Following the module there was evidence of enhanced understandings through metacognition, and the potential for interactive software to provide promising context for enhancing content understandings.

  17. The inquiry continuum: Science teaching practices and student performance on standardized tests

    NASA Astrophysics Data System (ADS)

    Jernnigan, Laura Jane

    Few research studies have been conducted related to inquiry-based scientific teaching methodologies and NCLB-required state testing. The purpose of this study was to examine the relationship between the strategies used by seventh-grade science teachers in Illinois and student scores on the Illinois Standards Achievement Test (ISAT) to aid in determining best practices/strategies for teaching middle school science. The literature review defines scientific inquiry by placing teaching strategies on a continuum of scientific inquiry methodologies from No Inquiry (Direct Instruction) through Authentic Inquiry. Five major divisions of scientific inquiry: structured inquiry, guided inquiry, learning cycle inquiry, open inquiry, and authentic inquiry, have been identified and described. These five divisions contain eight sub-categories: demonstrations; simple or hands-on activities; discovery learning; variations of learning cycles; problem-based, event-based, and project-based; and student inquiry, science partnerships, and Schwab's enquiry. Quantitative data were collected from pre- and posttests and surveys given to the participants: five seventh grade science teachers in four Academic Excellence Award and Spotlight Award schools and their 531 students. Findings revealed that teachers reported higher inquiry scores for themselves than for their students; the two greatest reported factors limiting teachers' use of inquiry were not enough time and concern about discipline and large class size. Although the correlation between total inquiry and mean difference of pre- and posttest scores was not statistically significant, the survey instrument indicated how often teachers used inquiry in their classes, not the type of inquiry used. Implications arose from the findings that increase the methodology debate between direction instruction and inquiry-based teaching strategies; teachers are very knowledgeable about the Illinois state standards, and various inquiry-based methods need to be stressed in undergraduate methods classes. While this study focused on the various types of scientific inquiry by creating a continuum of scientific inquiry methodologies, research using the continuum needs to be conducted to determine the various teaching styles of successful teachers.

  18. An Inquiry-Based Biochemistry Laboratory Structure Emphasizing Competency in the Scientific Process: A Guided Approach with an Electronic Notebook Format

    ERIC Educational Resources Information Center

    Hall, Mona L.; Vardar-Ulu, Didem

    2014-01-01

    The laboratory setting is an exciting and gratifying place to teach because you can actively engage the students in the learning process through hands-on activities; it is a dynamic environment amenable to collaborative work, critical thinking, problem-solving and discovery. The guided inquiry-based approach described here guides the students…

  19. Teachers' tendencies to promote student-led science projects: Associations with their views about science

    NASA Astrophysics Data System (ADS)

    Bencze, J. Lawrence; Bowen, G. Michael; Alsop, Steve

    2006-05-01

    School science students can benefit greatly from participation in student-directed, open-ended scientific inquiry projects. For various possible reasons, however, students tend not to be engaged in such inquiries. Among factors that may limit their opportunities to engage in open-ended inquiries of their design are teachers' conceptions about science. To explore possible relationships between teachers' conceptions about science and the types of inquiry activities in which they engage students, instrumental case studies of five secondary science teachers were developed, using field notes, repertory grids, samples of lesson plans and student activities, and semistructured interviews. Based on constructivist grounded theory analysis, participating teachers' tendencies to promote student-directed, open-ended scientific inquiry projects seemed to correspond with positions about the nature of science to which they indicated adherence. A tendency to encourage and enable students to carry out student-directed, open-ended scientific inquiry projects appeared to be associated with adherence to social constructivist views about science. Teachers who opposed social constructivist views tended to prefer tight control of student knowledge building procedures and conclusions. We suggest that these results can be explained with reference to human psychological factors, including those associated with teachers' self-esteem and their relationships with knowledge-building processes in the discipline of their teaching.

  20. Open inquiry-based learning experiences: a case study in the context of energy exchange by thermal radiation

    NASA Astrophysics Data System (ADS)

    Pizzolato, Nicola; Fazio, Claudio; Rosario Battaglia, Onofrio

    2014-01-01

    An open inquiry (OI)-based teaching/learning experience, regarding a scientific investigation of the process of energy exchange by thermal radiation, is presented. A sample of upper secondary school physics teachers carried out this experience at the University of Palermo, Italy, in the framework of ESTABLISH, a FP7 European Project aimed at promoting and developing inquiry-based science education. The teachers had the opportunity to personally experience an OI-based learning activity, with the aim of exploring the pedagogical potentialities of this teaching approach to promote both the understanding of difficult concepts and a deeper view of scientific practices. The teachers were firstly engaged in discussions concerning real-life problematic situations, and then stimulated to design and carry out their own laboratory activities, aimed at investigating the process of energy exchange by thermal radiation. A scientific study on the energy exchange between a powered resistor and its surrounding environment, during the heating and cooling processes, was designed and performed. Here we report the phases of this experiment by following the teachers' perspective. A structured interview conducted both before and after the OI experience allowed us to analyze and point out the teachers' feedback from a pedagogical point of view. The advantages and limits of an OI-based approach to promote the development of more student-centred inquiry-oriented teaching strategies are finally discussed.

  1. Promoting Cognitive and Social Aspects of Inquiry through Classroom Discourse

    ERIC Educational Resources Information Center

    Jin, Hui; Wei, Xin; Duan, Peiran; Guo, Yuying; Wang, Wenxia

    2016-01-01

    We investigated how Chinese physics teachers structured classroom discourse to support the cognitive and social aspects of inquiry-based science learning. Regarding the cognitive aspect, we examined to what extent the cognitive processes underlying the scientific skills and the disciplinary reasoning behind the content knowledge were taught.…

  2. Moving from Structured to Open Inquiry: Challenges and Limits

    ERIC Educational Resources Information Center

    Zion, Michal; Mendelovici, Ruthy

    2012-01-01

    The article provides science educators with definitions of inquiry and its levels, relating them to real-world scientific processes. Such an educational shift entails a fundamental cultural change in the epistemology of science learning in schools, shifting it from "instructionism" to social constructivist learning. The highest level of…

  3. Injecting Inquiry into Photosynthesis Investigations

    ERIC Educational Resources Information Center

    Salter, Irene; Smith, Rebecca; Nielsen, Katherine

    2008-01-01

    This is the story of how a typical middle school lab was transformed into an open-ended inquiry experience through a few small, but very powerful, changes. By allowing students to follow their own questions, the classroom filled with enthusiasm and students learned much more about photosynthesis, respiration, and the scientific processes. The…

  4. Standing Waves and Inquiry Using Water Droplets

    ERIC Educational Resources Information Center

    Sinclair, Dina; Vondracek, Mark

    2015-01-01

    Most high school and introductory college physics classes study simple harmonic motion and various wave phenomena. With the majority of states adopting the Next Generation Science Standards and pushing students to explore the scientific process for themselves, there is a growing demand for hands-on inquiry activities that involve and develop more…

  5. A Geometric Model to Teach Nature of Science, Science Practices, and Metacognition

    ERIC Educational Resources Information Center

    Nyman, Matthew; St. Clair, Tyler

    2016-01-01

    Using the science practice model in science classes for preservice teachers addresses three important aspects of science teacher preparation: teaching the nonlinear nature of scientific process, using scientific practices rather than the ambiguous term "inquiry-based," and emphasizing the process of metacognition as an important tool in…

  6. Development and validation of an instrument for evaluating inquiry-based tasks in science textbooks

    NASA Astrophysics Data System (ADS)

    Yang, Wenyuan; Liu, Enshan

    2016-12-01

    This article describes the development and validation of an instrument that can be used for content analysis of inquiry-based tasks. According to the theories of educational evaluation and qualities of inquiry, four essential functions that inquiry-based tasks should serve are defined: (1) assisting in the construction of understandings about scientific concepts, (2) providing students opportunities to use inquiry process skills, (3) being conducive to establishing understandings about scientific inquiry, and (4) giving students opportunities to develop higher order thinking skills. An instrument - the Inquiry-Based Tasks Analysis Inventory (ITAI) - was developed to judge whether inquiry-based tasks perform these functions well. To test the reliability and validity of the ITAI, 4 faculty members were invited to use the ITAI to collect data from 53 inquiry-based tasks in the 3 most widely adopted senior secondary biology textbooks in Mainland China. The results indicate that (1) the inter-rater reliability reached 87.7%, (2) the grading criteria have high discriminant validity, (3) the items possess high convergent validity, and (4) the Cronbach's alpha reliability coefficient reached 0.792. The study concludes that the ITAI is valid and reliable. Because of its solid foundations in theoretical and empirical argumentation, the ITAI is trustworthy.

  7. Enactment of Scientific Inquiry: Observation of Two Cases at Different Grade Levels in China Mainland

    ERIC Educational Resources Information Center

    Wang, Lei; Zhang, Ronghui; Clarke, David; Wang, Weizhen

    2014-01-01

    Enactment of scientific inquiry in classroom has attracted a great attention of science educators around the world. In this study, we examined two competent teachers' (one Grade 9 chemistry teacher and one Grade 4 science teacher) enactment of scientific inquiry in selected teaching units to reveal the characteristics of enacted inquiry at…

  8. The Relationship in Biology between the Nature of Science and Scientific Inquiry

    ERIC Educational Resources Information Center

    Kremer, Kerstin; Specht, Christiane; Urhahne, Detlef; Mayer, Jürgen

    2014-01-01

    Informed understandings of nature of science and scientific inquiry are generally accepted goals of biology education. This article points out central features of scientific inquiry with relation to biology and the nature of science in general terms and focuses on the relationship of students' inquiry skills in biology and their beliefs on the…

  9. Comparing the perceptions of scientific inquiry between experts and practitioners

    NASA Astrophysics Data System (ADS)

    Gooding, Julia Terese Chembars

    The purpose of this study was to determine if there was a difference in the perception of scientific inquiry between experts and practitioners, and, if a difference was shown to exist, to analyze those perceptions in order to better understand the extent of that difference or gap. A disconnect was found between how experts and practitioners perceived scientific inquiry. The practitioners differed from both the experts and the literature in three key areas. First, although the teachers indicated that students would be manipulating materials, there was no direct reference to this manipulation actually being performed for the purpose of investigating. Second, the practitioners implied active physical engagement with materials, but they did not tie this to active mental engagement or direct involvement in their own learning. Third, teachers omitted their role in laying the foundation for inquiry. Though classroom teachers lacked a complete understanding of true inquiry and its place in the K-12 classroom, most of them actually believed they were practicing the art of teaching via inquiry. Additionally, two other points of interest arose. First, an examination of the national standards for a number of curricular areas established that the process skills of scientific inquiry are mirrored in those standards, implying that inquiry is not limited to the sciences. Second, a definition of inquiry was formulated based upon interviews with experts in the field. Although the literature and the experts were in unison in their definition, there was a disparity between the accepted definition and that provided by the teachers. The struggle for a comprehensive understanding of inquiry continues to this day. It might very well be that the concept still remains elusive partly because the teacher behaviors associated with it run counter to more traditional methods of instruction...methods that most teachers have experienced throughout their own educational careers. The most pervasive theme involved improvement at the pre-service level. Experts and practitioners alike noted the lack of training and preparation provided in inquiry-based methodologies in the sciences, educational methods courses, and other areas of the curriculum. However, it was also shown that teachers are resistant to change.

  10. Creating Personal Meaning through Technology-Supported Science Inquiry Learning across Formal and Informal Settings

    NASA Astrophysics Data System (ADS)

    Anastopoulou, Stamatina; Sharples, Mike; Ainsworth, Shaaron; Crook, Charles; O'Malley, Claire; Wright, Michael

    2012-01-01

    In this paper, a novel approach to engaging students in personal inquiry learning is described, whereby they carry out scientific investigations that are personally meaningful and relevant to their everyday lives. The learners are supported by software that guides the inquiry process, extending from the classroom into the school grounds, home, or outdoors. We report on a case study of personal inquiry learning with 28 high school students on the topic of healthy eating. An analysis of how the personal inquiry was enacted in the classroom and at home, based on issues identified from a study of interviews with the students and their teacher, is provided. The outcomes showed that students were alerted to challenges associated with fieldwork and how they responded to the uncertainty and challenge of an open investigation. The study, moreover, raised an unexpected difficulty for researchers of finding the 'sweet spot' between scientifically objective but unengaging inquiry topics, and ones that are personally meaningful but potentially embarrassing. Implications for further research are shaped around ways of overcoming this difficulty.

  11. Science Camps for Introducing Nature of Scientific Inquiry Through Student Inquiries in Nature: Two Applications with Retention Study

    NASA Astrophysics Data System (ADS)

    Leblebicioglu, G.; Abik, N. M.; Capkinoglu, E.; Metin, D.; Dogan, E. Eroglu; Cetin, P. S.; Schwartz, R.

    2017-08-01

    Scientific inquiry is widely accepted as a method of science teaching. Understanding its characteristics, called Nature of Scientific Inquiry (NOSI), is also necessary for a whole conception of scientific inquiry. In this study NOSI aspects were taught explicitly through student inquiries in nature in two summer science camps. Students conducted four inquiries through their questions about surrounding soil, water, plants, and animals under the guidance of university science educators. At the end of each investigation, students presented their inquiry. NOSI aspects were made explicit by one of the science educators in the context of the investigations. Effectiveness of the science camp program and its retention were determined by applying Views of Scientific Inquiry (VOSI-S) (Schwartz et al. 2008) questionnaire as pre-, post-, and retention test after two months. The patterns in the data were similar. The science camp program was effective in developing three of six NOSI aspects which were questions guide scientific research, multiple methods of research, and difference between data and evidence. Students' learning of these aspects was retained. Discussion about these and the other three aspects is included in the paper. Implications of differences between school and out-of-school science experiences are also discussed.

  12. The Ties that Bind: Emergent Literacy and Scientific Inquiry

    ERIC Educational Resources Information Center

    Whitin, Phyllis

    2007-01-01

    This study describes one kindergarten classroom in which informational books and other nonfiction resources were used in the context of a long-term scientific study. Children became proficient in locating information and interpreting content-specific textual features in the process of making sense of their scientific observations and sharing them…

  13. Building New Partnerships--Museums, Universities, and Schools: A "Rocks and Minerals" Thematic Loan Kit.

    ERIC Educational Resources Information Center

    O'Brien, George E.; And Others

    Ten activities that feature a hands-on, student inquiry-based investigatory approach to rocks and minerals are presented. "Guided discovery" and/or inquiry instructional strategies are emphasized. They focus on a student-centered active classroom. Each activity includes the heading, science content, the scientific process skills, objective or…

  14. Inquiry-Based Laboratory Practices in a Science Teacher Training Program

    ERIC Educational Resources Information Center

    Yakar, Zeha; Baykara, Hatice

    2014-01-01

    In this study, the effects of inquiry-based learning practices on the scientific process skills, creative thinking, and attitudes towards science experiments of preservice science teachers have been analyzed. A non-experimental quantitative analysis method, the single-group pre test posttest design, has been used. In order to observe the…

  15. Magic Termites: Exploring Scientific Inquiry

    ERIC Educational Resources Information Center

    Callis, Kristine; Henkel, Melissa; Lund, Rachael

    2010-01-01

    The objective of the termite experiment is to walk students through the process of designing and conducting an experiment while allowing them to use inquiry-based methods to infer why, in this lab, termites follow the line of blue Bic or Paper Mate brand ballpoint pens. This experiment also reinforces the concept of observation versus inference…

  16. Easy Ways to Promote Inquiry in a Laboratory Course: The Power of Student Questions

    ERIC Educational Resources Information Center

    Polacek, Kelly Myer; Keeling, Elena Levine

    2005-01-01

    To teach students to think like scientists, the authors modified their laboratory course to include regular opportunities for student practice of inquiry and the scientific process. Their techniques are simple; they can be implemented without rewriting lab manuals, require little additional grading beyond typical lab reports, and are applicable…

  17. Professional Development at ERESE: Refining the inquiry process and moving towards a modularized templeate

    NASA Astrophysics Data System (ADS)

    Helly, M.; Massell Symons, C.; Reining, J.; Staudigel, H.; Koppers, A.; Helly, J.; Miller, S.

    2005-12-01

    The Enduring Resources for Earth Science Education (ERESE) project has now held two professional development workshops to teach and apply the five stage inquiry lesson model for teaching plate tectonics. This development based on a collaborative effort between earth scientists, educators, librarians, and data archive managers, and works towards a classroom practice that focuses on transferring ownership of a classroom inquiry to the learner. The ERESE inquiry model features a modular, five stage approach: (1) a thoughtful orientation to create an environment of physical and intellectual safety for the learner, (2) a carefully chosen provocative phenomenon used to allow the learner to develop a wide range of scientific questions (3) a debriefing that reviews and honors the learners' questions along with the development of a testable hypothesis, (4) learners consult with ERESE resource matrices and the internet to obtain data and other information to test the hypothesis, and (5) the learners present their results in a presentation. The process of ERESE inquiry lessons is guided by a master template and involves a detailed teachers log for documentation of all activities. All products of the process are archived. The master template and teachers log are designed in a modular fashion that ultimately will accommodate a wide range of inquiry lesson styles and the variety of resources available to support the process. Key ERESE modules include: (1) a master template that provides a framework for lesson development, (2) provocative phenomenon for question generation and hypothesis development by the learner, (3) the ERESE resource matrix (which archives text, images and data by expert level for a wide range of scientific questions), and (4) a reflective essay that monitors the ownership transfer to the learner. Modular design of ERESE products allows for the archival of specific types of materials that can be independently accessed and applied to different inquiry styles. The broad appeal is an important step toward a more general product for inquiry based teaching.

  18. Information Literacy for Science Education: Evaluating Web-Based Materials for Socioscientific Issues

    ERIC Educational Resources Information Center

    Klosterman, Michelle L.; Sadler, Troy D.

    2008-01-01

    Students who engage in scientific inquiry must be able to evaluate the processes and evidence used to reach conclusions about scientific issues, regardless of whether the process is conducted in the classroom or through an information search on the internet. To explore strategies for integrating information literacy and science, the authors…

  19. Strategies for Success: Uncovering What Makes Students Successful in Design and Learning

    ERIC Educational Resources Information Center

    Apedoe, Xornam S.; Schunn, Christian D.

    2013-01-01

    While the purposes of design and science are often different, they share some key practices and processes. Design-based science learning, which combines the processes of engineering design with scientific inquiry, is one attempt to engage students in scientific reasoning via solving practical problems. Although research suggests that engaging…

  20. Engaging Nature of Science to Preservice Teachers through Inquiry-Based Classroom

    ERIC Educational Resources Information Center

    Nuangchalerm, Prasart

    2013-01-01

    Inquiry-based classroom is widely distributed in the school science based on its useful and effective instruction. Science teachers are key elements allowing students to have scientific inquiry. If teachers understand and imply inquiry-based learning into science classroom, students will learn science as scientific inquiry and understand nature of…

  1. Connecting Inquiry and Values in Science Education. An Approach Based on John Dewey's Philosophy

    NASA Astrophysics Data System (ADS)

    Lee, Eun Ah; Brown, Matthew J.

    2018-03-01

    Conducting scientific inquiry is expected to help students make informed decisions; however, how exactly it can help is rarely explained in science education standards. According to classroom studies, inquiry that students conduct in science classes seems to have little effect on their decision-making. Predetermined values play a large role in students' decision-making, but students do not explore these values or evaluate whether they are appropriate to the particular issue they are deciding, and they often ignore relevant scientific information. We explore how to connect inquiry and values, and how this connection can contribute to informed decision-making based on John Dewey's philosophy. Dewey argues that scientific inquiry should include value judgments and that conducting inquiry can improve the ability to make good value judgments. Value judgment is essential to informed, rational decision-making, and Dewey's ideas can explain how conducting inquiry can contribute to make an informed decision through value judgment. According to Dewey, each value judgment during inquiry is a practical judgment guiding action, and students can improve their value judgments by evaluating their actions during scientific inquiry. Thus, we suggest that students need an opportunity to explore values through scientific inquiry and that practicing value judgment will help informed decision-makings.

  2. Teaching Inquiry using NASA Earth-System Science: Preparing Pre- and Inservice K-12 Educators to Use Authentic Inquiry in the Classroom

    NASA Astrophysics Data System (ADS)

    Ellis, T. D.; Tebockhorst, D.

    2012-12-01

    Teaching Inquiry using NASA Earth-System Science (TINES) is a comprehensive program to train and support pre-service and in-service K-12 teachers, and to provide them with an opportunity to use NASA Earth Science mission data and Global Learning and Observations to Benefit the Environment (GLOBE) observations to incorporate scientific inquiry-based learning in the classroom. It uses an innovative blended-learning professional development approach that combines a peer-reviewed pedagogical technique called backward-faded scaffolding (BFS), which provides a more natural entry path to understanding the scientific process, with pre-workshop online content learning and in-situ and online data resources from NASA and GLOBE. This presentation will describe efforts to date, share our impressions and evaluations, and discuss the effectiveness of the BFS approach to both professional development and classroom pedagogy.

  3. The Scientific Method and Scientific Inquiry: Tensions in Teaching and Learning

    ERIC Educational Resources Information Center

    Tang, Xiaowei; Coffey, Janet E.; Elby, Andy; Levin, Daniel M.

    2010-01-01

    Typically, the scientific method in science classrooms takes the form of discrete, ordered steps meant to guide students' inquiry. In this paper, we examine how focusing on the scientific method as discrete steps affects students' inquiry and teachers' perceptions thereof. To do so, we study a ninth-grade environmental science class in which…

  4. Understanding the Impact of an Apprenticeship-Based Scientific Research Program on High School Students' Understanding of Scientific Inquiry

    ERIC Educational Resources Information Center

    Aydeniz, Mehmet; Baksa, Kristen; Skinner, Jane

    2011-01-01

    The purpose of this study was to understand the impact of an apprenticeship program on high school students' understanding of the nature of scientific inquiry. Data related to seventeen students' understanding of science and scientific inquiry were collected through open-ended questionnaires. Findings suggest that although engagement in authentic…

  5. Pendulum Phenomena and the Assessment of Scientific Inquiry Capabilities

    ERIC Educational Resources Information Center

    Zachos, Paul

    2004-01-01

    Phenomena associated with the "pendulum" present numerous opportunities for assessing higher order human capabilities related to "scientific inquiry" and the "discovery" of natural law. This paper illustrates how systematic "assessment of scientific inquiry capabilities", using "pendulum" phenomena, can provide a useful tool for classroom teachers…

  6. The Impact of Inquiry Based Instruction on Science Process Skills and Self-Efficacy Perceptions of Pre-Service Science Teachers at a University Level Biology Laboratory

    ERIC Educational Resources Information Center

    Sen, Ceylan; Sezen Vekli, Gülsah

    2016-01-01

    The aim of this study is to determine the influence of inquiry-based teaching approach on pre-service science teachers' laboratory self-efficacy perceptions and scientific process skills. The quasi experimental model with pre-test-post-test control group design was used as an experimental design in this research. The sample of this study included…

  7. Addressing scientific literacy through content area reading and processes of scientific inquiry: What teachers report

    NASA Astrophysics Data System (ADS)

    Cooper, Susan J.

    The purpose of this study was to interpret the experiences of secondary science teachers in Florida as they address the scientific literacy of their students through teaching content reading strategies and student inquiry skills. Knowledge of the successful integration of content reading and inquiry skills by experienced classroom teachers would be useful to many educators as they plan instruction to achieve challenging state and national standards for reading as well as science. The problem was investigated using grounded theory methodology. Open-ended questions were asked in three focus groups and six individual interviews that included teachers from various Florida school districts. The constant comparative approach was used to analyze the data. Initial codes were collapsed into categories to determine the conceptual relationships among the data. From this, the five core categories were determined to be Influencers, Issues, Perceptions, Class Routines, and Future Needs. These relate to the central phenomenon, Instructional Modifications, because teachers often described pragmatic and philosophical changes in their teaching as they deliberated to meet state standards in both reading and science. Although Florida's secondary science teachers have been asked to incorporate content reading strategies into their science instruction for the past several years, there was limited evidence of using these strategies to further student understanding of scientific processes. Most teachers saw little connection between reading and inquiry, other than the fact that students must know how to read to follow directions in the lab. Scientific literacy, when it was addressed by teachers, was approached mainly through class discussions, not reading. Teachers realized that students cannot learn secondary science content unless they read science text with comprehension; therefore the focus of reading instruction was on learning science content, not scientific literacy or student inquiry. Most of the teachers were actively looking for reading materials and strategies to facilitate student understanding of science concepts, but they did not want to give up limited class time attempting methods that have not been proven to be successful in science classrooms.

  8. Searching for a Common Ground--A Literature Review of Empirical Research on Scientific Inquiry Activities

    ERIC Educational Resources Information Center

    Rönnebeck, Silke; Bernholt, Sascha; Ropohl, Mathias

    2016-01-01

    Despite the importance of scientific inquiry in science education, researchers and educators disagree considerably regarding what features define this instructional approach. While a large body of literature addresses theoretical considerations, numerous empirical studies investigate scientific inquiry on quite different levels of detail and also…

  9. Martian Boneyards: Scientific Inquiry in an MMO Game

    ERIC Educational Resources Information Center

    Asbell-Clarke, Jodi; Edwards, Teon; Rowe, Elizabeth; Larsen, Jamie; Sylvan, Elisabeth; Hewitt, Jim

    2012-01-01

    This paper reports on research of a game designed for scientific inquiry in a new and publicly available massively-multiplayer online environment (MMO). Educators and game designers worked together to create a highly immersive environment, a compelling storyline, and research-grounded tools for scientific inquiry within the game. The designers…

  10. Challenges to Inquiry Teaching and Suggestions for How to Meet Them

    ERIC Educational Resources Information Center

    Quigley, Cassie; Marshall, Jeff C.; Deaton, Cynthia C. M.; Cook, Michelle P.; Padilla, Michael

    2011-01-01

    Inquiry has been cited as an essential goal of science education for decades. While terminology has evolved over time, the notion that students need to apply various analytic and thought related skills in order to better learn underlying scientific concepts and processes, remains central to science education. This article looks at four major…

  11. Terrestrial Slugs as a Model Organism for Inquiry-Based Experimentation in a Majors General Biology Laboratory

    ERIC Educational Resources Information Center

    Peters, Brenda J.; Blair, Amy C.

    2013-01-01

    Many biology educators at the undergraduate level are revamping their laboratory curricula to incorporate inquiry-based research experiences so that students can directly participate in the process of science and improve their scientific reasoning skills. Slugs are an ideal organism for use in such a student-directed, hypothesis-driven experience.…

  12. Assessing Students' Understanding of Control of Variables across Three Grade Levels and Gender

    ERIC Educational Resources Information Center

    Tairab, Hassan H.

    2016-01-01

    Research studies that deal with student ability to investigate and carry out inquiry oriented investigations often call for educational practitioners to pay particular attention to incorporating the skills of scientific inquiry in the process of teaching and learning. This has the aim of helping learners acquire the skills needed to become problem…

  13. From Trace Evidence to Bioinformatics: Putting Bryophytes into Molecular Biology Education

    ERIC Educational Resources Information Center

    Fuselier, Linda; Bougary, Azhar; Malott, Michelle

    2011-01-01

    Students benefit most from their science education when they participate fully in the process of science in the context of real-world problems. We describe a student-directed open-inquiry lab experience that has no predetermined outcomes and requires students to engage in all components of scientific inquiry from posing a question through…

  14. Using Scaffold Supports to Improve Student Practice and Understanding of an Authentic Inquiry Process in Science

    ERIC Educational Resources Information Center

    Turcotte, Sandrine; Hamel, Christine

    2016-01-01

    This study addressed computer-supported collaborative scientific inquiries in remote networked schools (Quebec, Canada). Three dyads of Grade 5-6 classrooms from remote locations across the province collaborated using the knowledge-building tool Knowledge Forum. Customized scaffold supports embedded in the online tool were used to support student…

  15. The Proof of the Pudding?: A Case Study of an "At-Risk" Design-Based Inquiry Science Curriculum

    NASA Astrophysics Data System (ADS)

    Chue, Shien; Lee, Yew-Jin

    2013-12-01

    When students collaboratively design and build artifacts that require relevant understanding and application of science, many aspects of scientific literacy are developed. Design-based inquiry (DBI) is one such pedagogy that can serve these desired goals of science education well. Focusing on a Projectile Science curriculum previously found to be implemented with satisfactory fidelity, we investigate the many hidden challenges when using DBI with Grade 8 students from one school in Singapore. A case study method was used to analyze video recordings of DBI lessons conducted over 10 weeks, project presentations, and interviews to ascertain the opportunities for developing scientific literacy among participants. One critical factor that hindered learning was task selection by teachers, which emphasized generic scientific process skills over more important cognitive and epistemic learning goals. Teachers and students were also jointly engaged in forms of inquiry that underscored artifact completion over deeper conceptual and epistemic understanding of science. Our research surfaced two other confounding factors that undermined the curriculum; unanticipated teacher effects and the underestimation of the complexity of DBI and of inquiry science in general. Thus, even though motivated or experienced teachers can implement an inquiry science curriculum with good fidelity and enjoy school-wide support, these by themselves will not guarantee deep learning of scientific literacy in DBI. Recommendations are made for navigating the hands- and minds-on aspects of learning science that is an asset as well as inherent danger during DBI teaching.

  16. A self-study of designing and implementing an inquiry-based chemistry course for elementary education majors

    NASA Astrophysics Data System (ADS)

    Larson, Teresa

    2011-12-01

    This self-study examines my experiences with implementing an inquiry-based version of a chemistry course (Chemistry 299) designed for elementary education majors. The inquiry-based curriculum design and teaching strategies that I implement in Chemistry 299 is the focus of this study. Since my previous education and professional experiences were in the physical sciences, I position myself in this study as a scientist who engages in self-study as a form of professional development for the purpose of developing an inquiry-based curriculum and instructional practices. My research provides an inside perspective of the curriculum development process. This process involves implementing the inquiry-oriented ideas and knowledge I acquired in my graduate studies to design the curriculum and influence my teaching practice. My analysis of the curriculum and my instruction is guided by two questions: What are the strengths and weaknesses of the inquiry-based Chemistry 299 curriculum design? What does the process of developing my inquiry-based teaching practice entail and what makes is challenging? Schwab's (1973) The Practical 3: Translation into Curriculum serves as the theoretical framework for this study because of the emphasis Schwab places on combining theoretical and practical knowledge in the curriculum development process and because of the way he characterizes the curriculum. The findings in this study are separated into curriculum and instruction domains. First, the Chemistry 299 curriculum was designed to make the epistemological practices of scientists "accessible" to students by emphasizing epistemic development with respect to their ideas about scientific inquiry and science learning. Using student learning as a gauge for progress, I identify specific design elements that developed transferable inquiry skills as a means to support scientific literacy and pre-service teacher education. Second, the instruction-related findings built upon the insight I gained through my analysis of the curriculum. The data reveals four areas of inner conflict I dealt with throughout the study that related to underlying beliefs I held about science teaching and learning. The implications of the study position the Chemistry 299 curriculum in the field and speak to issues related to developing science courses for elementary education majors and professional development for scientists.

  17. Backwards Faded Scaffolding Impact on Pre-Service Teachers’ Cognition

    NASA Astrophysics Data System (ADS)

    Slater, T. F.; Slater, S. J.

    2009-12-01

    In response to national reform movements calling for future teachers to be prepared to design and deliver science instruction using the principles of inquiry in the context of Earth system science, we created and evaluated an innovative curriculum for specially designed courses for pre-service elementary education and secondary undergraduates based upon an inquiry-oriented teaching approach framed by the notions of backwards faded-scaffolding as an overarching theme for inquiry-oriented instruction. Students completed both structured- and open-inquiry projects using online scientific data bases, particularly those available from NASA, and presented the results of their investigations several times throughout the semester as a mini-science conference. Using a single-group, multiple-measures, quasi-experimental design, students demonstrated enhanced content knowledge of astronomy and inquiry as well as attitudes and self-efficacy toward teaching as measured by the Test of Astronomy STandards (TOAST), the Science Teaching Efficacy Belief Instrument - Version B, and the Attitudes Toward Science Inventory. We adopted a model of inquiry where: (i) students are engaged in questions; (ii) students are designing plans to pursue data; and (iii) students are generating and defending conclusions based on evidence they have collected. We developed an approach that is directly in contrast with the open inquiry “science fair” model to specifically use carefully scaffolded, shorter term inquiries, placing the most challenging aspects of “question generation” at the end of the lessons. In this model, during students' first experience with inquiry they are guided through the entire process, from research question to the appropriate content and format for a scientific conclusion. In their second experience, students generate their conclusions independently, with the previous experience set out as a guide for content and format. They are required to make sense of data that has been purposefully and logically planned, collected, and analyzed with instructor guidance. They construct and defend conclusions based upon evidence that is, effectively, given to them. By the time students reach their third inquiry they have been exposed to two experiences in which they were guided through the process of data collection and analysis. On this third inquiry data collection and analysis becomes an independent task. By the fourth inquiry, students have received explicit instruction on the connection between the research question or hypothesis, and the procedure undergone to address those questions three times. They are positioned to take responsibility for creating a plausible method for collecting data given a research prompt. By the fifth inquiry, students have now seen four examples of quality research questions andhypotheses, and their relationship to procedures, data collection and conclusions. At this point they are positioned to successfully conduct an entire inquiry cycle. This strategy is specifically designed to provide students with early success and a sense of how the pieces of the scientific process connect to each other.

  18. The Scientific Method and the Creative Process: Implications for the K-6 Classroom

    ERIC Educational Resources Information Center

    Nichols, Amanda J.; Stephens, April H.

    2013-01-01

    Science and the arts might seem very different, but the processes that both fields use are very similar. The scientific method is a way to explore a problem, form and test a hypothesis, and answer questions. The creative process creates, interprets, and expresses art. Inquiry is at the heart of both of these methods. The purpose of this article is…

  19. Evaluating the effectiveness of a practical inquiry-based learning bioinformatics module on undergraduate student engagement and applied skills.

    PubMed

    Brown, James A L

    2016-05-06

    A pedagogic intervention, in the form of an inquiry-based peer-assisted learning project (as a practical student-led bioinformatics module), was assessed for its ability to increase students' engagement, practical bioinformatic skills and process-specific knowledge. Elements assessed were process-specific knowledge following module completion, qualitative student-based module evaluation and the novelty, scientific validity and quality of written student reports. Bioinformatics is often the starting point for laboratory-based research projects, therefore high importance was placed on allowing students to individually develop and apply processes and methods of scientific research. Students led a bioinformatic inquiry-based project (within a framework of inquiry), discovering, justifying and exploring individually discovered research targets. Detailed assessable reports were produced, displaying data generated and the resources used. Mimicking research settings, undergraduates were divided into small collaborative groups, with distinctive central themes. The module was evaluated by assessing the quality and originality of the students' targets through reports, reflecting students' use and understanding of concepts and tools required to generate their data. Furthermore, evaluation of the bioinformatic module was assessed semi-quantitatively using pre- and post-module quizzes (a non-assessable activity, not contributing to their grade), which incorporated process- and content-specific questions (indicative of their use of the online tools). Qualitative assessment of the teaching intervention was performed using post-module surveys, exploring student satisfaction and other module specific elements. Overall, a positive experience was found, as was a post module increase in correct process-specific answers. In conclusion, an inquiry-based peer-assisted learning module increased students' engagement, practical bioinformatic skills and process-specific knowledge. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:304-313 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  20. Using Technology to Engage Preservice Elementary Teachers in Learning about Scientific Inquiry

    ERIC Educational Resources Information Center

    Jones, Loretta L.; MacArthur, James R.; Akaygün, Sevil

    2011-01-01

    Elementary teachers are often required to teach inquiry in their classrooms despite having had little exposure to inquiry learning themselves. In a capstone undergraduate science course preservice elementary teachers experience scientific inquiry through the completion of group projects, activities, readings and discussion, in order to develop a…

  1. OPASS: An Online Portfolio Assessment and Diagnosis Scheme to Support Web-Based Scientific Inquiry Experiments

    ERIC Educational Resources Information Center

    Su, Jun-Ming; Lin, Huan-Yu; Tseng, Shian-Shyong; Lu, Chia-Jung

    2011-01-01

    Promoting the development of students' scientific inquiry capabilities is a major learning objective in science education. As a result, teachers require effective assessment approaches to evaluate students' scientific inquiry-related performance. Teachers must also be able to offer appropriate supplementary instructions, as needed, to students.…

  2. Modeling and Intervening across Time in Scientific Inquiry Exploratory Learning Environment

    ERIC Educational Resources Information Center

    Ting, Choo-Yee; Phon-Amnuaisuk, Somnuk; Chong, Yen-Kuan

    2008-01-01

    This article aims at discussing how Dynamic Decision Network (DDN) can be employed to tackle the challenges in modeling temporally variable scientific inquiry skills and provision of adaptive pedagogical interventions in INQPRO, a scientific inquiry exploratory learning environment for learning O'level Physics. We begin with an overview of INQPRO…

  3. What Is the Role of Induction and Deduction in Reasoning and Scientific Inquiry?

    ERIC Educational Resources Information Center

    Lawson, Anton E.

    2005-01-01

    A long-standing and continuing controversy exists regarding the role of induction and deduction in reasoning and in scientific inquiry. Given the inherent difficulty in reconstructing reasoning patterns based on personal and historical accounts, evidence about the nature of human reasoning in scientific inquiry has been sought from a controlled…

  4. Students' Participation in an Interdisciplinary, Socioscientific Issues Based Undergraduate Human Biology Major and Their Understanding of Scientific Inquiry

    ERIC Educational Resources Information Center

    Eastwood, Jennifer L.; Sadler, Troy D.; Sherwood, Robert D.; Schlegel, Whitney M.

    2013-01-01

    The purpose of this study was to examine whether Socioscientific Issues (SSI) based learning environments affect university students' epistemological understanding of scientific inquiry differently from traditional science educational contexts. We identify and compare conceptions of scientific inquiry of students participating in an…

  5. Learning by doing? Prospective elementary teachers' developing understandings of scientific inquiry and science teaching and learning

    NASA Astrophysics Data System (ADS)

    Haefner, Leigh Ann; Zembal-Saul, Carla

    This study examined prospective elementary teachers' learning about scientific inquiry in the context of an innovative life science course. Research questions included: (1) What do prospective elementary teachers learn about scientific inquiry within the context of the course? and (2) In what ways do their experiences engaging in science investigations and teaching inquiry-oriented science influence prospective elementary teachers' understanding of science and science learning and teaching? Eleven prospective elementary teachers participated in this qualitative, multi-participant case study. Constant comparative analysis strategies attempted to build abstractions and explanations across participants around the constructs of the study. Findings suggest that engaging in scientific inquiry supported the development more appropriate understandings of science and scientific inquiry, and that prospective teachers became more accepting of approaches to teaching science that encourage children's questions about science phenomena. Implications include careful consideration of learning experiences crafted for prospective elementary teachers to support the development of robust subject matter knowledge.

  6. Inquiry-based science education: scaffolding pupils' self-directed learning in open inquiry

    NASA Astrophysics Data System (ADS)

    van Uum, Martina S. J.; Verhoeff, Roald P.; Peeters, Marieke

    2017-12-01

    This paper describes a multiple case study on open inquiry-based learning in primary schools. During open inquiry, teachers often experience difficulties in balancing support and transferring responsibility to pupils' own learning. To facilitate teachers in guiding open inquiry, we developed hard and soft scaffolds. The hard scaffolds consisted of documents with explanations and/or exercises regarding difficult parts of the inquiry process. The soft scaffolds included explicit references to and additional explanations of the hard scaffolds. We investigated how teacher implementation of these scaffolds contributed to pupils' self-directed learning during open inquiry. Four classes of pupils, aged 10-11, were observed while they conducted an inquiry lesson module of about 10 lessons in their classrooms. Data were acquired via classroom observations, audio recordings, and interviews with teachers and pupils. The results show that after the introduction of the hard scaffolds by the teacher, pupils were able and willing to apply them to their investigations. Combining hard scaffolds with additional soft scaffolding promoted pupils' scientific understanding and contributed to a shared guidance of the inquiry process by the teacher and her pupils. Our results imply that the effective use of scaffolds is an important element to be included in teacher professionalisation.

  7. Water Rockets and Indirect Measurement.

    ERIC Educational Resources Information Center

    Inman, Duane

    1997-01-01

    Describes an activity that teaches a number of scientific concepts including indirect measurement, Newton's third law of motion, manipulating and controlling variables, and the scientific method of inquiry. Uses process skills such as observation, inference, prediction, mensuration, and communication as well as problem solving and higher-order…

  8. Guiding students to develop an understanding of scientific inquiry: a science skills approach to instruction and assessment.

    PubMed

    Stone, Elisa M

    2014-01-01

    New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific investigation. An individual teacher's investigation of the strategies and tools she designed to promote scientific inquiry in her classroom is outlined. This teacher-driven action research in the high school biology classroom presents a simple study design that allowed for reciprocal testing of two simultaneous treatments, one that aimed to guide students to use vocabulary to identify and describe different scientific practices they were using in their investigations-for example, hypothesizing, data analysis, or use of controls-and another that focused on scientific collaboration. A knowledge integration (KI) rubric was designed to measure how students integrated their ideas about the skills and practices necessary for scientific inquiry. KI scores revealed that student understanding of scientific inquiry increased significantly after receiving instruction and using assessment tools aimed at promoting development of specific inquiry skills. General strategies for doing classroom-based action research in a straightforward and practical way are discussed, as are implications for teaching and evaluating introductory life sciences courses at the undergraduate level.

  9. Recognizing Mechanistic Reasoning in Student Scientific Inquiry: A Framework for Discourse Analysis Developed from Philosophy of Science

    ERIC Educational Resources Information Center

    Russ, Rosemary S.; Scherr, Rachel E.; Hammer, David; Mikeska, Jamie

    2008-01-01

    Science education reform has long focused on assessing student inquiry, and there has been progress in developing tools specifically with respect to experimentation and argumentation. We suggest the need for attention to another aspect of inquiry, namely "mechanistic reasoning." Scientific inquiry focuses largely on understanding causal…

  10. An investigation of the practice of scientific inquiry in secondary science and agriculture courses

    NASA Astrophysics Data System (ADS)

    Grady, Julie R.

    The purpose of this exploratory qualitative study was to investigate the practice of scientific inquiry in two secondary biology classes and one agriculture class from different schools in different communities. The focus was on teachers' interests and intentions for the students' participation in inquiry, the voices contributing to the inquiry, and students' opportunities to confront their conceptions of the nature of science (NOS). The Partnership for Research and Education in Plants (PREP) served as the context by providing students with opportunities to design and conduct original experiments to help elucidate the function(s) of a disabled gene in Arabidopsis thaliana . Transcripts of teacher and student semi-structured interviews, field notes of classroom observations and classroom conversations, and documents (e.g., student work, teacher handouts, school websites, PREP materials) were analyzed for evidence of the practice of scientific inquiry. Teachers were interested in implementing inquiry because of potential student learning about scientific research and because PREP supports course content and is connected to a larger scientific project outside of the school. Teachers' intentions regarding the implementation of inquiry reflected the complexity of their courses and the students' previous experiences. All inquiries were student-directed. The biology students' participation more closely mirrored the practice of scientists, while the agriculture students were more involved with the procedural display of scientific inquiry. All experiences could have been enhanced from additional knowledge-centered activities regarding scientific reasoning. No activities brought explicit attention to NOS. Biology activities tended to implicitly support NOS while the agriculture class activities tended to implicitly contradict NOS. Scientists' interactions contributed to implied support of the NOS. There were missed opportunities for explicit attention to NOS in all classes. The major voices contributing to the inquiry in all classrooms included those of teachers, students, technology, scientists, textbooks, and mandated standards; however, they were more prevalent in the biology classrooms than the agriculture classroom. The powers influencing the voice frequency may be related to the teachers' own teaching and research experiences, as well as the alignment of the expectations and values of students' participation in scientific inquiry and those associated with the school-classroom communities and the students' identities.

  11. Using Guided Inquiry and the Information Search Process to Develop Research Confidence among First Year Anatomy Students

    ERIC Educational Resources Information Center

    Bentley, Danielle Christine; Robinson, Andrea Cristina; Ruscitti, Robert Joseph

    2015-01-01

    With the growing volume of obtainable medical information and scientific literature, it is crucial that students in the field of allied health professions develop and refine the research skill set necessary to effectively find, retrieve, analyze, and use this information. This skill set can be effectively developed using student inquiry; an active…

  12. The Impact of Collaborative Groups versus Individuals in Undergraduate Inquiry-Based Astronomy Laboratory Learning Exercises

    ERIC Educational Resources Information Center

    Sibbernsen, Kendra J.

    2010-01-01

    One of the long-standing general undergraduate education requirements common to many colleges and universities is a science course with a laboratory experience component. One of the objectives frequently included in the description of most of these courses is that a student will understand the nature and processes of scientific inquiry. However,…

  13. The Classroom Sandbox: A Physical Model for Scientific Inquiry

    ERIC Educational Resources Information Center

    Feldman, Allan; Cooke, Michele L.; Ellsworth, Mary S.

    2010-01-01

    For scientists, the sandbox serves as an analog for faulting in Earth's crust. Here, the large, slow processes within the crust can be scaled to the size of a table, and time scales are directly observable. This makes it a useful tool for demonstrating the role of inquiry in science. For this reason, the sandbox is also helpful for learning…

  14. Supporting Teachers' Understanding of Nature of Science and Inquiry Through Personal Experience and Perception of Inquiry as a Dynamic Process

    NASA Astrophysics Data System (ADS)

    Zion, Michal; Schwartz, Renee S.; Rimerman-Shmueli, Esther; Adler, Idit

    2018-05-01

    One of today's challenges in science education involves the development of appropriate conceptions of inquiry teaching and realizing how these experiences can support students' understanding of the nature of science and inquiry (NOS and NOSI). To meet this challenge, we developed a course for in-service science teachers, in which explicit-reflective instruction of NOS was coupled with an open inquiry process. This process included documentation tools adjusted to emphasize the dynamic, logical, and reflective aspects of scientific inquiry. Teachers' documentations, reflections, and questionnaires were examined for indications of perceptual connection between comprehending the essence of dynamic open inquiry and understanding certain NOS tenets. The results indicated that the in-service teachers experienced all criteria of dynamic open inquiry, however not to the same extent. By focusing on four teachers who clearly addressed changes in their perspective of NOS and NOSI, we were able to examine the nature of those changes, and relate them to the teachers' personal experiences and perceptions of the characteristics of dynamic open inquiry. Our results suggest that the participants' personal experiences and perceptions of the dynamic characteristics of open inquiry play a crucial role in shaping their understanding of NOS and NOSI. The findings of this research underscore the importance of enhancing teachers' personal experiences and perceptions of the dynamic characteristics of open inquiry, as a vehicle to improve their understanding of NOS and NOSI.

  15. Students' Participation in an Interdisciplinary, Socioscientific Issues Based Undergraduate Human Biology Major and Their Understanding of Scientific Inquiry

    NASA Astrophysics Data System (ADS)

    Eastwood, Jennifer L.; Sadler, Troy D.; Sherwood, Robert D.; Schlegel, Whitney M.

    2013-06-01

    The purpose of this study was to examine whether Socioscientific Issues (SSI) based learning environments affect university students' epistemological understanding of scientific inquiry differently from traditional science educational contexts. We identify and compare conceptions of scientific inquiry of students participating in an interdisciplinary, SSI-focused undergraduate human biology major (SSI) and those participating in a traditional biology major (BIO). Forty-five SSI students and 50 BIO students completed an open-ended questionnaire examining their understanding of scientific inquiry. Eight general themes including approximately 60 subthemes emerged from questionnaire responses, and the numbers of students including each subtheme in their responses were statistically compared between groups. A subset of students participated in interviews, which were used to validate and triangulate questionnaire data and probe students' understanding of scientific inquiry in relation to their majors. We found that both groups provided very similar responses, differing significantly in only five subthemes. Results indicated that both groups held generally adequate understandings of inquiry, but also a number of misconceptions. Small differences between groups supported by both questionnaires and interviews suggest that the SSI context contributed to nuanced understandings, such as a more interdisciplinary and problem-centered conception of scientific inquiry. Implications for teaching and research are discussed.

  16. Pre-service elementary teachers' understanding of scientific inquiry and its role in school science

    NASA Astrophysics Data System (ADS)

    Macaroglu, Esra

    The purpose of this research was to explore pre-service elementary teachers' developing understanding of scientific inquiry within the context of their elementary science teaching and learning. More specifically, the study examined 24 pre-service elementary teachers' emerging understanding of (1) the nature of science and scientific inquiry; (2) the "place" of scientific inquiry in school science; and (3) the roles and responsibilities of teachers and students within an inquiry-based learning environment. Data sources consisted primarily of student-generated artifacts collected throughout the semester, including pre/post-philosophy statements and text-based materials collected from electronic dialogue journals. Individual data sources were open-coded to identify concepts and categories expressed by students. Cross-comparisons were conducted and patterns were identified. Assertions were formed with these patterns. Findings are hopeful in that they suggest pre-service teachers can develop a more contemporary view of scientific inquiry when immersed in a context that promotes this perspective. Not surprisingly, however, the prospective teachers encountered a number of barriers when attempting to translate their emerging ideas into practice. More research is needed to determine which teacher preparation experiences are most powerful in supporting pre-service teachers as they construct a framework for science teaching and learning that includes scientific inquiry as a central component.

  17. Improving Science Student Teachers' Self-Perceptions of Fluency with Innovative Technologies and Scientific Inquiry Abilities

    ERIC Educational Resources Information Center

    Çalik, Muammer; Ebenezer, Jazlin; Özsevgeç, Tuncay; Küçük, Zeynel; Artun, Hüseyin

    2015-01-01

    The aim of this study was to investigate the effects of "Environmental Chemistry" elective course via Technology-Embedded Scientific Inquiry (TESI) model on senior science student teachers' (SSSTs) self-perceptions of fluency with innovative technologies (InT) and scientific inquiry abilities. The study was conducted with 117 SSSTs (68…

  18. Teaching with Insects: An Applied Life Science Course for Supporting Prospective Elementary Teachers' Scientific Inquiry

    ERIC Educational Resources Information Center

    Haefner, Leigh A.; Friedrichsen, Patricia Meis; Zembal-Saul, Carla

    2006-01-01

    The National Science Education Standards (National Research Council [NRC], 1996) call for a greater emphasis on scientific inquiry in K-12 science classes. The Inquiry Standards recommend that students be engaged with scientific questions in which they collect and interpret data, give priority to evidence to construct explanations, test those…

  19. Promoting elementary students' epistemology of science through computer-supported knowledge-building discourse and epistemic reflection

    NASA Astrophysics Data System (ADS)

    Lin, Feng; Chan, Carol K. K.

    2018-04-01

    This study examined the role of computer-supported knowledge-building discourse and epistemic reflection in promoting elementary-school students' scientific epistemology and science learning. The participants were 39 Grade 5 students who were collectively pursuing ideas and inquiry for knowledge advance using Knowledge Forum (KF) while studying a unit on electricity; they also reflected on the epistemic nature of their discourse. A comparison class of 22 students, taught by the same teacher, studied the same unit using the school's established scientific investigation method. We hypothesised that engaging students in idea-driven and theory-building discourse, as well as scaffolding them to reflect on the epistemic nature of their discourse, would help them understand their own scientific collaborative discourse as a theory-building process, and therefore understand scientific inquiry as an idea-driven and theory-building process. As hypothesised, we found that students engaged in knowledge-building discourse and reflection outperformed comparison students in scientific epistemology and science learning, and that students' understanding of collaborative discourse predicted their post-test scientific epistemology and science learning. To further understand the epistemic change process among knowledge-building students, we analysed their KF discourse to understand whether and how their epistemic practice had changed after epistemic reflection. The implications on ways of promoting epistemic change are discussed.

  20. Examining the Learning Outcomes Included in the Turkish Science Curriculum in Terms of Science Process Skills: A Document Analysis with Standards-Based Assessment

    ERIC Educational Resources Information Center

    Duruk, Umit; Akgün, Abuzer; Dogan, Ceylan; Gülsuyu, Fatma

    2017-01-01

    Science process skills have provided a valuable chance for everyone to construct their own knowledge by means of scientific inquiry. If students are to understand what science is and how it actually works, then they should necessarily make use of their science process skills as well as scientific content knowledge compulsory to be learned in any…

  1. What We've Learned about Assessing Hands-On Science.

    ERIC Educational Resources Information Center

    Shavelson, Richard J.; Baxter, Gail P.

    1992-01-01

    A recent study compared hands-on scientific inquiry assessment to assessments involving lab notebooks, computer simulations, short-answer paper-and-pencil problems, and multiple-choice questions. Creating high quality performance assessments is a costly, time-consuming process requiring considerable scientific and technological know-how. Improved…

  2. Do students with higher self-efficacy exhibit greater and more diverse scientific inquiry skills: An exploratory investigation in "River City", a multi-user virtual environment

    NASA Astrophysics Data System (ADS)

    Ketelhut, Diane Jass

    In this thesis, I conduct an exploratory study to investigate the relationship between students' self-efficacy on entry into authentic scientific activity and the scientific inquiry behaviors they employ while engaged in that process, over time. Scientific inquiry has been a major standard in most science education policy doctrines for the past two decades and is exemplified by activities such as making observations, formulating hypotheses, gathering and analyzing data, and forming conclusions from that data. The self-efficacy literature, however, indicates that self-efficacy levels affect perseverance and engagement. This study investigated the relationship between these two constructs. The study is conducted in a novel setting, using an innovative science curriculum delivered through an interactive computer technology that recorded each student's conversations, movements, and activities while behaving as a practicing scientist in a "virtual world" called River City. River City is a Multi-User Virtual Environment designed to engage students in a collaborative scientific inquiry-based learning experience. As a result, I was able to follow students' moment-by-moment choices of behavior while they were behaving as scientists. I collected data on students' total scientific inquiry behaviors over three visits to River City, as well as the number of sources from which they gathered their scientific data. I analyzed my longitudinal data on the 96 seventh-graders using individual growth modeling. I found that self-efficacy played a role in the number of data-gathering behaviors students engaged in initially, with high self-efficacy students engaging in more data gathering than students with low self-efficacy. However, the impact of student self-efficacy on rate of change in data gathering behavior differed by gender; by the end of the study, student self-efficacy did not impact data gathering. In addition, students' level of self-efficacy did not affect how many different sources from which they chose to gather data. There are indications in my results that novel interventions like a Multi-user Virtual Environment might act as a catalyst for change in student learning. Further research using these techniques may enable a better understanding of the interaction between self-efficacy and scientific inquiry, and eventually science learning outcomes.

  3. Learning genetic inquiry through the use, revision, and justification of explanatory models

    NASA Astrophysics Data System (ADS)

    Cartier, Jennifer Lorraine

    Central to the process of inquiry in science is the construction and assessment of models that can be used to explain (and in some cases, predict) natural phenomena. This dissertation is a qualitative study of student learning in a high school biology course that was designed to give students opportunities to learn about genetic inquiry in part by providing them with authentic experiences doing inquiry in the discipline. With the aid of a computer program that generates populations of "fruit flies", the students in this class worked in groups structured like scientific communities to build, revise, and defend explanatory models for various inheritance phenomena. Analysis of the ways in which the first cohort of students assessed their inheritance models revealed that all students assessed models based upon empirical fit (data/model match). However, in contrast to the practice of scientists and despite explicit instruction, students did not consistently apply conceptual assessment criteria to their models. That is, they didn't seek consistency between underlying concepts or processes in their models and those of other important genetic models, such as meiosis. This is perhaps in part because they lacked an understanding of models as conceptual rather than physical entities. Subsequently, the genetics curriculum was altered in order to create more opportunities for students to address epistemological issues associated with model assessment throughout the course. The second cohort of students' understanding of models changed over the nine-week period: initially the majority of students equated scientific models with "proof" (generally physical) of "theories"; at the end of the course, most students demonstrated understanding of the conceptual nature of scientific models and the need to justify such knowledge according to both its empirical utility and conceptual consistency. Through model construction and assessment (i.e. scientific inquiry), students were able to come to a rich understanding of both the central concepts of transmission genetics and important epistemological aspects of genetic practice.

  4. Using the Activity Model of Inquiry to Enhance General Chemistry Students' Understanding of Nature of Science

    ERIC Educational Resources Information Center

    Marchlewicz, Sara C.; Wink, Donald J.

    2011-01-01

    Nature of science refers to the processes of scientific activity and the social and cultural premises involved in the creation of scientific knowledge. Having an informed view of nature of science is important in the development of scientifically literate citizens. However, students often come to the classroom with misconceptions about nature of…

  5. The use of writing assignments to help students synthesize content in upper-level undergraduate biology courses.

    PubMed

    Sparks-Thissen, Rebecca L

    2017-02-01

    Biology education is undergoing a transformation toward a more student-centered, inquiry-driven classroom. Many educators have designed engaging assignments that are designed to help undergraduate students gain exposure to the scientific process and data analysis. One of these types of assignments is use of a grant proposal assignment. Many instructors have used these assignments in lecture-based courses to help students process information in the literature and apply that information to a novel problem such as design of an antiviral drug or a vaccine. These assignments have been helpful in engaging students in the scientific process in the absence of an inquiry-driven laboratory. This commentary discusses the application of these grant proposal writing assignments to undergraduate biology courses. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Guiding Students to Develop an Understanding of Scientific Inquiry: A Science Skills Approach to Instruction and Assessment

    PubMed Central

    Stone, Elisa M.

    2014-01-01

    New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific investigation. An individual teacher's investigation of the strategies and tools she designed to promote scientific inquiry in her classroom is outlined. This teacher-driven action research in the high school biology classroom presents a simple study design that allowed for reciprocal testing of two simultaneous treatments, one that aimed to guide students to use vocabulary to identify and describe different scientific practices they were using in their investigations—for example, hypothesizing, data analysis, or use of controls—and another that focused on scientific collaboration. A knowledge integration (KI) rubric was designed to measure how students integrated their ideas about the skills and practices necessary for scientific inquiry. KI scores revealed that student understanding of scientific inquiry increased significantly after receiving instruction and using assessment tools aimed at promoting development of specific inquiry skills. General strategies for doing classroom-based action research in a straightforward and practical way are discussed, as are implications for teaching and evaluating introductory life sciences courses at the undergraduate level. PMID:24591508

  7. Bringing Scientific Inquiry Alive Using Real Grass Shrimp Research

    ERIC Educational Resources Information Center

    Aultman, Terry; Curran, Mary Carla; Partridge, Michael

    2010-01-01

    This lesson was developed for middle school students using actual research on grass shrimp ("Palaemonetes pugio") to illustrate the process of a scientific investigation. The research was conducted at Savannah State University and funded by the National Oceanic and Atmospheric Administration (NOAA) Office of Education through the Living Marine…

  8. Separating the Research Question from the Laboratory Techniques: Advancing High-School Biology Teachers' Ability to Ask Research Questions

    ERIC Educational Resources Information Center

    Hasson, Eilat; Yarden, Anat

    2012-01-01

    Inquiry is essentially a process in which research questions are asked and an attempt is made to find the answers. However, the formulation of operational research questions of the sort used in authentic scientific inquiry is not a trivial task. Here, we set out to explore the possible influence of separating the research question from the…

  9. Introducing Environmental Toxicology in Instructional Labs: The Use of a Modified Amphibian Developmental Toxicity Assay to Support Inquiry-Based Student Projects

    ERIC Educational Resources Information Center

    Sauterer, Roger; Rayburn, James R.

    2012-01-01

    Introducing students to the process of scientific inquiry is a major goal of high school and college labs. Environmental toxins are of great concern and public interest. Modifications of a vertebrate developmental toxicity assay using the frog Xenopus laevis can support student-initiated toxicology experiments that are relevant to humans. Teams of…

  10. Can we really make a difference? Exploring pre-service teachers' experience with socio-scientific issues aiming for democratic participation in science

    NASA Astrophysics Data System (ADS)

    Cook, Kristin Leigh

    Responding to calls for an empirical glimpse into a socioscientific issues (SSI)-based curriculum that aims to promote democratic participation, enhance students' connections to science, and empower students for the betterment of society (Dos Santos, 2008; Sadler, Barab, & Scott, 2007; Tal & Kedmi, 2006; Fusco & Barton, 2001; Hodson, 2003), this critical case study of 24 pre-service teachers (PSTs) enrolled in a scientific inquiry course offers curricular suggestions to empower learners to connect with the dynamic and socially-mediated process of science. In effect, incorporating nature of science-focused and place-based inquiry into a collaboration between PSTs and scientists were essential elements in enhancing students' connections to and feelings of inclusion in SSI. Propelled beyond a deficit model of public participation in science, the PSTs did indeed experience a public debate model and in some cases a knowledge production model in their collaborative efforts with scientists (Callon, 1999; Pouliot, 2009). While all of the PSTs engaged in rich discussion of their perspectives with scientists to enhance the investigation of their inquiry, some experienced a redistribution of the roles of participation in the production of scientific knowledge that was integrated into the scientists' decision-making processes. The materialization of these models depended on the structures of the student-scientists collaboration and the ways in which these malleable structures were flexed and negotiated. In effect, this study contributes to the literature on the potentials of SSI by providing an example of an educational approach that engages learners in a community practice as active participants in decision-making processes regarding socio-scientific issues, as well as focuses on empowering learners to be involved in the generation of scientific knowledge that contributes to their community.

  11. DATA QUALITY OBJECTIVES-FOUNDATION OF A SUCCESSFUL MONITORING PROGRAM

    EPA Science Inventory

    The data quality objectives (DQO) process is a fundamental site characterization tool and the foundation of a successful monitoring program. The DQO process is a systematic planning approach based on the scientific method of inquiry. The process identifies the goals of data col...

  12. Effects of Inquiry-Based Agriscience Instruction on Student Scientific Reasoning

    ERIC Educational Resources Information Center

    Thoron, Andrew C.; Myers, Brian E.

    2012-01-01

    The purpose of this study was to determine the effect of inquiry-based agriscience instruction on student scientific reasoning. Scientific reasoning is defined as the use of the scientific method, inductive, and deductive reasoning to develop and test hypothesis. Developing scientific reasoning skills can provide learners with a connection to the…

  13. Exploring the Development of Fifth Graders' Practical Epistemologies and Explanation Skills in Inquiry-Based Learning Classrooms

    NASA Astrophysics Data System (ADS)

    Wu, Hsin-Kai; Wu, Chia-Lien

    2011-05-01

    The purposes of this study are to explore fifth graders' epistemological views regarding their own experiences of constructing scientific knowledge through inquiry activities (i.e., practical epistemologies) and to investigate possible interactions between students' practical epistemologies and their inquiry skills to construct scientific explanations (i.e., explanation skills). Quantitative and qualitative data including interview transcripts, classroom video recordings, and pre- and post-tests of explanation skills were collected from 68 fifth graders in two science classes. Analyses of data show that after engaging in 5-week inquiry activities, students developed better inquiry skills to construct scientific explanations. More students realized the existence of experimental errors, viewed experimental data as evidence to support their claims, and had richer understanding about the nature of scientific questions. However, most students' epistemological beliefs were still naïve (the beginning level); they could not differentiate between experimental results and scientific knowledge and believed that the purpose of science is doing experiments or research. The results also show that students who held a more sophisticated epistemology (the intermediate level) tended to develop better inquiry skills than those with naïve beliefs. Analyses of classroom observations suggest possible explanations for how students reflected their epistemological views in their inquiry practices.

  14. Improving Science Student Teachers' Self-perceptions of Fluency with Innovative Technologies and Scientific Inquiry Abilities

    NASA Astrophysics Data System (ADS)

    Çalik, Muammer; Ebenezer, Jazlin; Özsevgeç, Tuncay; Küçük, Zeynel; Artun, Hüseyin

    2015-08-01

    The aim of this study was to investigate the effects of "Environmental Chemistry" elective course via Technology-Embedded Scientific Inquiry (TESI) model on senior science student teachers' (SSSTs) self-perceptions of fluency with innovative technologies (InT) and scientific inquiry abilities. The study was conducted with 117 SSSTs (68 females and 49 males—aged 21-23 years) enrolled in the "Environmental Chemistry" elective course in spring semester of 2011-2012 academic year in a Turkish University. Within a simple (causal) experimental design, Innovative Technology Fluency Survey and the SSSTs' environmental research papers were employed to collect data. The results indicate that the "Environmental Chemistry" elective course via the TESI model improved the SSSTs' self-perceptions of fluency with InT and the scientific inquiry abilities. In light of the results, it is recommended that an undergraduate course for improving the SSSTs' higher-order scientific inquiry abilities and preparing academically papers should be devised and added into the science teacher-training programmes.

  15. Struggles with learning about scientific models in a middle school science classroom

    NASA Astrophysics Data System (ADS)

    Loper, Suzanna Jane

    Two important goals in science education are teaching students about the nature of science and teaching students to do scientific inquiry. Learning about scientific models is central to both of these endeavors, but studies have shown that students have very flawed and limited understandings of the nature and purposes of scientific models (Carey & Smith, 1993; Grosslight, Unger, & Jay, 1991; Lederman, 1992). In this dissertation I investigate the processes of teaching and learning about scientific models in an 8th grade classroom in an urban middle school. In order to do so, I examine recordings of student and teacher talk about models across a period of two months in which students completed two independent inquiry projects, using the Inquiry Island software and curriculum (Eslinger, 2004; Shimoda, White, & Frederiksen, 2002; White, Shimoda, & Frederiksen, 2000). My analysis draws on video records of small-group work and whole-class interactions, as well as on students' written work. I find that in this classroom, students struggled to understand the nature and purpose of scientific models. I analyze episodes in the classroom talk in which models appeared to be a source of trouble or confusion, and describe the ways in which the teacher attempted to respond to these troubles. I find that in many cases students appeared to be able to produce scientific models of the proper form, yet still struggled with displaying an understanding of what a model was, or of the functions of models in scientific research. I propose directions for further research and curriculum development in order to build on these findings. In particular, I argue, we need to design ways to help students engage in scientific modeling as a social and communicative practice, and to find ways to build from their everyday reasoning and argumentation practices. My research also reinforces the importance of looking at classroom talk, not just pre- and post-assessments, in order to understand teaching and learning as dynamic processes.

  16. Film Canister Science

    ERIC Educational Resources Information Center

    Ferstl, Andrew; Schneider, Jamie L.

    2007-01-01

    Opaque film canisters are readily available, cheap, and useful for scientific inquiry in the classroom. They can also be surprisingly versatile and useful as a tool for stimulating scientific inquiry. In this article, the authors describe inquiry activities using film canisters for preservice teachers, including a "black box" activity and several…

  17. Inquiry science as a discourse: New challenges for teachers, students, and the design of curriculum materials

    NASA Astrophysics Data System (ADS)

    Tzou, Carrie Teh-Li

    Science education reform emphasizes learning science through inquiry as a way to engage students in the processes of science at the same time that they learn scientific concepts. However, inquiry involves practices that are challenging for students because they have underlying norms with which students may be unfamiliar. We therefore cannot expect students to know how to engage in such practices simply by giving them opportunities to do so, especially if the norms for inquiry practices violate traditional classroom norms for engaging with scientific ideas. Teachers therefore play a key role in communicating expectations for inquiry. In this dissertation, I present an analytical framework for characterizing two teachers' enactments of an inquiry curriculum. This framework, based on Gee's (1996) notion of Discourses, describes inquiry practices in terms of three dimensions: cognitive, social, and linguistic. I argue that each of these dimensions presents challenges to students and, therefore, sites at which teachers' support is important for students' participation in inquiry practices. I use this framework to analyze two teachers' support of inquiry practices as they enact an inquiry-based curriculum. I explore three questions in my study: (1) what is the nature of teachers' support of inquiry practices? (2) how do teachers accomplish goals along multiple dimensions of inquiry?, and (3) what aspects of inquiry are in tension and how can we describe teachers' practice in terms of the tradeoff spaces between elements of inquiry in tension? In order to study these questions, I studied two eighth grade teachers who both enacted the same inquiry-based science curriculum developed by me and others in the context of a large design-based research project called IQWST (Investigating and Questioning my World through Science and Technology. I found that the teachers provided support for inquiry along all three dimensions, sometimes in ways in which the dimensions were synergistic and sometimes in ways in which the dimensions were in tension. These findings have implications for the design of inquiry science learning environments and for our understanding of what it means for teachers to be "cultural brokers" between students' everyday experiences and classroom science inquiry.

  18. Teaching Harmonic Motion in Trigonometry: Inductive Inquiry Supported by Physics Simulations

    ERIC Educational Resources Information Center

    Sokolowski, Andrzej; Rackley, Robin

    2011-01-01

    In this article, the authors present a lesson whose goal is to utilise a scientific environment to immerse a trigonometry student in the process of mathematical modelling. The scientific environment utilised during this activity is a physics simulation called "Wave on a String" created by the PhET Interactive Simulations Project at…

  19. Using Puppets to Provide Opportunities for Dialogue and Scientific Inquiry

    ERIC Educational Resources Information Center

    Liston, Maeve

    2015-01-01

    Talk, peer collaboration and exchanging ideas significantly contribute to a child's conceptual understanding in science (Howe, McWilliam and Cross, 2005). Dialogue helps children to clarify their thinking and to develop their capacity to reason, which are crucial scientific process skills (Mercer et al., 2004). One very effective way of supporting…

  20. Development Instrument’s Learning of Physics Through Scientific Inquiry Model Based Batak Culture to Improve Science Process Skill and Student’s Curiosity

    NASA Astrophysics Data System (ADS)

    Nasution, Derlina; Syahreni Harahap, Putri; Harahap, Marabangun

    2018-03-01

    This research aims to: (1) developed a instrument’s learning (lesson plan, worksheet, student’s book, teacher’s guide book, and instrument test) of physics learning through scientific inquiry learning model based Batak culture to achieve skills improvement process of science students and the students’ curiosity; (2) describe the quality of the result of develop instrument’s learning in high school using scientific inquiry learning model based Batak culture (lesson plan, worksheet, student’s book, teacher’s guide book, and instrument test) to achieve the science process skill improvement of students and the student curiosity. This research is research development. This research developed a instrument’s learning of physics by using a development model that is adapted from the development model Thiagarajan, Semmel, and Semmel. The stages are traversed until retrieved a valid physics instrument’s learning, practical, and effective includes :(1) definition phase, (2) the planning phase, and (3) stages of development. Test performed include expert test/validation testing experts, small groups, and test classes is limited. Test classes are limited to do in SMAN 1 Padang Bolak alternating on a class X MIA. This research resulted in: 1) the learning of physics static fluid material specially for high school grade 10th consisted of (lesson plan, worksheet, student’s book, teacher’s guide book, and instrument test) and quality worthy of use in the learning process; 2) each component of the instrument’s learning meet the criteria have valid learning, practical, and effective way to reach the science process skill improvement and curiosity in students.

  1. Intelligent Tutoring Systems for Scientific Inquiry Skills.

    ERIC Educational Resources Information Center

    Shute, Valerie; Bonar, Jeffrey

    Described are the initial prototypes of several intelligent tutoring systems designed to build students' scientific inquiry skills. These inquiry skills are taught in the context of acquiring knowledge of principles from a microworld that models a specific domain. This paper discusses microworlds that have been implemented for microeconomics,…

  2. Psychometric Properties of the Scientific Inquiry Scale

    ERIC Educational Resources Information Center

    Ossa-Cornejo, Carlos; Díaz-Mujica, Alejandro; Aedo-Saravia, Jaime; Merino-Escobar, Jose M.; Bustos-Navarrete, Claudio

    2017-01-01

    Introduction: There are a few methods to study inquiry's abilities in Chile, despite its importance in science education. This study analyzes the psychometric properties of a Scientific Inquiry Scale in pedagogy students of two Chilean universities. Method: The study uses an instrumental design with 325 students from 3 pedagogy majors. As a…

  3. Autonomous entropy-based intelligent experimental design

    NASA Astrophysics Data System (ADS)

    Malakar, Nabin Kumar

    2011-07-01

    The aim of this thesis is to explore the application of probability and information theory in experimental design, and to do so in a way that combines what we know about inference and inquiry in a comprehensive and consistent manner. Present day scientific frontiers involve data collection at an ever-increasing rate. This requires that we find a way to collect the most relevant data in an automated fashion. By following the logic of the scientific method, we couple an inference engine with an inquiry engine to automate the iterative process of scientific learning. The inference engine involves Bayesian machine learning techniques to estimate model parameters based upon both prior information and previously collected data, while the inquiry engine implements data-driven exploration. By choosing an experiment whose distribution of expected results has the maximum entropy, the inquiry engine selects the experiment that maximizes the expected information gain. The coupled inference and inquiry engines constitute an autonomous learning method for scientific exploration. We apply it to a robotic arm to demonstrate the efficacy of the method. Optimizing inquiry involves searching for an experiment that promises, on average, to be maximally informative. If the set of potential experiments is described by many parameters, the search involves a high-dimensional entropy space. In such cases, a brute force search method will be slow and computationally expensive. We develop an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment. This helps to reduce the number of computations necessary to find the optimal experiment. We also extended the method of maximizing entropy, and developed a method of maximizing joint entropy so that it could be used as a principle of collaboration between two robots. This is a major achievement of this thesis, as it allows the information-based collaboration between two robotic units towards a same goal in an automated fashion.

  4. Examining the Features of Earth Science Logical Reasoning and Authentic Scientific Inquiry Demonstrated in a High School Earth Science Curriculum: A Case Study

    ERIC Educational Resources Information Center

    Park, Do-Yong; Park, Mira

    2013-01-01

    The purpose of this study was to investigate the inquiry features demonstrated in the inquiry tasks of a high school Earth Science curriculum. One of the most widely used curricula, Holt Earth Science, was chosen for this case study to examine how Earth Science logical reasoning and authentic scientific inquiry were related to one another and how…

  5. Development and Evaluation of a Model-Supported Scientific Inquiry Training Program for Elementary Teachers in Indonesia

    ERIC Educational Resources Information Center

    Ertikanto, Chandra; Herpratiwi; Yunarti, Tina; Saputra, Andrian

    2017-01-01

    A teacher training program, named Model-Supported Scientific Inquiry Training Program (MSSITP) has been successfully developed to improve the inquiry skills of Indonesian elementary teachers. The skills enhanced by MSSITP are defining problems, formulating hypotheses, planning and doing investigations, drawing conclusions, and communicating the…

  6. A well-started beginning elementary teacher's beliefs and practices in relation to reform recommendations about inquiry-based science

    NASA Astrophysics Data System (ADS)

    Avraamidou, Lucy

    2017-06-01

    Given reform recommendations emphasizing scientific inquiry and empirical evidence pointing to the difficulties beginning teachers face in enacting inquiry-based science, this study explores a well-started beginning elementary teacher's (Sofia) beliefs about inquiry-based science and related instructional practices. In order to explore Sofia's beliefs and instructional practices, several kinds of data were collected in a period of 9 months: a self-portrait and an accompanying narrative, a personal philosophy assignment, three interviews, three journal entries, ten lesson plans, and ten videotaped classroom observations. The analysis of these data showed that Sofia's beliefs and instructional practices were reform-minded. She articulated contemporary beliefs about scientific inquiry and how children learn science and was able to translate these beliefs into practice. Central to Sofia's beliefs about science teaching were scientific inquiry and engaging students in investigations with authentic data, with a prevalent emphasis on the role of evidence in the construction of scientific claims. These findings are important to research aiming at supporting teachers, especially beginning ones, to embrace reform recommendations.

  7. The analysis of scientific communications and students’ character development through guided inquiry learning

    NASA Astrophysics Data System (ADS)

    Sarwi, S.; Fauziah, N.; Astuti, B.

    2018-03-01

    This research is setting by the condition of students who have difficulty in ideas delivery, written scientific communication, and still need the development of student character. The objectives of the research are to determine the improvement of concept understanding, to analyze scientific communication skills and to develop the character of the students through guided inquiry learning. The design in this research is quasi experimental control group preposttest, with research subject of two group of grade X Senior High School in Semarang. One group of controller uses non tutorial and treatment group using tutorial in guided inquiry. Based on result of gain test analysis, obtained = 0.71 for treatment and control group = 0.60. The t-test result of mean mastery of concept of quantity and unit using t-test of right side is t count = 2.37 (p=0.003) while t table = 1.67 (α = 5%), which means that the results of the study differed significantly. The results of the students' scientific communication skills analysis showed that the experimental group was higher than the control, with an average of 69% and 63% scientific communication skills. The character values are effective developed through guided inquiry learning. The conclusion of the study is guided inquiry learning tutorial better than guided inquiry non tutorial learning in aspect understanding concept, scientific communication skills; but the character development result is almost the same.

  8. Scientific Reasoning in Early and Middle Childhood: The Development of Domain-General Evidence Evaluation, Experimentation, and Hypothesis Generation Skills

    ERIC Educational Resources Information Center

    Piekny, Jeanette; Maehler, Claudia

    2013-01-01

    According to Klahr's (2000, 2005; Klahr & Dunbar, 1988) Scientific Discovery as Dual Search model, inquiry processes require three cognitive components: hypothesis generation, experimentation, and evidence evaluation. The aim of the present study was to investigate (a) when the ability to evaluate perfect covariation, imperfect covariation,…

  9. Learning Biology through Research Papers: A Stimulus for Question-Asking by High-School Students

    ERIC Educational Resources Information Center

    Brill, Gilat; Yarden, Anat

    2003-01-01

    Question-asking is a basic skill, required for the development of scientific thinking. However, the way in which science lessons are conducted does not usually stimulate question-asking by students. To make students more familiar with the scientific inquiry process, we developed a curriculum in developmental biology based on research papers…

  10. Impact of Including Authentic Inquiry Experiences in Methods Courses for Pre-Service Secondary Teachers

    NASA Astrophysics Data System (ADS)

    Slater, T. F.; Elfring, L.; Novodvorsky, I.; Talanquer, V.; Quintenz, J.

    2007-12-01

    Science education reform documents universally call for students to have authentic and meaningful experiences using real data in the context of their science education. The underlying philosophical position is that students analyzing data can have experiences that mimic actual research. In short, research experiences that reflect the scientific spirit of inquiry potentially can: prepare students to address real world complex problems; develop students' ability to use scientific methods; prepare students to critically evaluate the validity of data or evidence and of the consequent interpretations or conclusions; teach quantitative skills, technical methods, and scientific concepts; increase verbal, written, and graphical communication skills; and train students in the values and ethics of working with scientific data. However, it is unclear what the broader pre-service teacher preparation community is doing in preparing future teachers to promote, manage, and successful facilitate their own students in conducting authentic scientific inquiry. Surveys of undergraduates in secondary science education programs suggests that students have had almost no experiences themselves in conducting open scientific inquiry where they develop researchable questions, design strategies to pursue evidence, and communicate data-based conclusions. In response, the College of Science Teacher Preparation Program at the University of Arizona requires all students enrolled in its various science teaching methods courses to complete an open inquiry research project and defend their findings at a specially designed inquiry science mini-conference at the end of the term. End-of-term surveys show that students enjoy their research experience and believe that this experience enhances their ability to facilitate their own future students in conducting open inquiry.

  11. Teacher Students' Dilemmas When Teaching Science through Inquiry

    ERIC Educational Resources Information Center

    Krämer, Philipp; Nessler, Stefan H.; Schlüter, Kirsten

    2015-01-01

    Background: Inquiry-based science education (IBSE) is suitable to teach scientific contents as well as to foster scientific skills. Similar conclusions are drawn by studies with respect to scientific literacy, motivational aspects, vocabulary knowledge, conceptual understandings, critical thinking, and attitudes toward science. Nevertheless, IBSE…

  12. The development of scientific reasoning in medical education: a psychological perspective.

    PubMed

    Barz, Daniela Luminita; Achimaş-Cadariu, Andrei

    2016-01-01

    Scientific reasoning has been studied from a variety of theoretical perspectives, which have tried to identify the underlying mechanisms responsible for the development of this particular cognitive process. Scientific reasoning has been defined as a problem-solving process that involves critical thinking in relation to content, procedural, and epistemic knowledge. The development of scientific reasoning in medical education was influenced by current paradigmatic trends, it could be traced along educational curriculum and followed cognitive processes. The purpose of the present review is to discuss the role of scientific reasoning in medical education and outline educational methods for its development. Current evidence suggests that medical education should foster a new ways of development of scientific reasoning, which include exploration of the complexity of scientific inquiry, and also take into consideration the heterogeneity of clinical cases found in practice.

  13. The Effects of Inquiry-Based Computer Simulation with Cooperative Learning on Scientific Thinking and Conceptual Understanding of Gas Laws

    ERIC Educational Resources Information Center

    Abdullah, Sopiah; Shariff, Adilah

    2008-01-01

    The purpose of the study was to investigate the effects of inquiry-based computer simulation with heterogeneous-ability cooperative learning (HACL) and inquiry-based computer simulation with friendship cooperative learning (FCL) on (a) scientific reasoning (SR) and (b) conceptual understanding (CU) among Form Four students in Malaysian Smart…

  14. Analysis of Inquiry Materials to Explain Complexity of Chemical Reasoning in Physical Chemistry Students' Argumentation

    ERIC Educational Resources Information Center

    Moon, Alena; Stanford, Courtney; Cole, Renee; Towns, Marcy

    2017-01-01

    One aim of inquiry activities in science education is to promote students' participation in the practices used to build scientific knowledge by providing opportunities to engage in scientific discourse. However, many factors influence the actual outcomes and effect on students' learning when using inquiry materials. In this study, discourse from…

  15. Revisions of Physical Geology Laboratory Courses to Increase the Level of Inquiry: Implications for Teaching and Learning

    ERIC Educational Resources Information Center

    Grissom, April N.; Czajka, C. Douglas; McConnell, David A.

    2015-01-01

    The introductory physical geology laboratory courses taught at North Carolina State University aims to promote scientific thinking and learning through the use of scientific inquiry-based activities. A rubric describing five possible levels of inquiry was applied to characterize the laboratory activities in the course. Two rock and mineral…

  16. Using Peer Feedback to Improve Students' Scientific Inquiry

    ERIC Educational Resources Information Center

    Tasker, Tammy Q.; Herrenkohl, Leslie Rupert

    2016-01-01

    This article examines a 7th grade teacher's pedagogical practices to support her students to provide peer feedback to one another using technology during scientific inquiry. This research is part of a larger study in which teachers in California and Washington and their classes engaged in inquiry projects using a Web-based system called Web of…

  17. Designing for Real-World Scientific Inquiry in Virtual Environments

    ERIC Educational Resources Information Center

    Ketelhut, Diane Jass; Nelson, Brian C.

    2010-01-01

    Background: Most policy doctrines promote the use of scientific inquiry in the K-12 classroom, but good inquiry is hard to implement, particularly for schools with fiscal and safety constraints and for teachers struggling with understanding how to do so. Purpose: In this paper, we present the design of a multi-user virtual environment (MUVE)…

  18. Developing Students' Scientific Writing and Presentation Skills through Argument Driven Inquiry: An Exploratory Study

    ERIC Educational Resources Information Center

    C¸etin, Pinar Seda; Eymur, Gülüzar

    2017-01-01

    In this study, we employed a new instructional model that helps students develop scientific writing and presentation skills. Argument-driven inquiry (ADI) is one of the most novel instructional models that emphasizes the role of argumentation and inquiry in science education equally. This is an exploratory study where five ADI lab activities take…

  19. The Features of Peer Argumentation in Middle School Students' Scientific Inquiry

    ERIC Educational Resources Information Center

    Kim, Heekyong; Song, Jinwoong

    2006-01-01

    This study examined the features of peer argumentation in middle school students' scientific inquiry. Participants were two boys and six girls in grade 8 of a middle school in Seoul, Korea. Students engaged in open inquiry activities in small groups. Each group prepared the report for peer review and then, during the peer discussion, presented…

  20. Interplay of Secondary Pre-Service Teacher Content Knowledge (CK), Pedagogical Content Knowledge (PCK) and Attitudes Regarding Scientific Inquiry Teaching within Teacher Training

    ERIC Educational Resources Information Center

    Smit, Robbert; Weitzel, Holger; Blank, Robert; Rietz, Florian; Tardent, Josiane; Robin, Nicolas

    2017-01-01

    Background: Beginning teachers encounter several constraints with respect to scientific inquiry. Depending on their prior beliefs, knowledge and understanding, these constraints affect their teaching of inquiry. Purpose: To investigate quantitatively the longitudinal relationship between pre-service teachers' knowledge and attitudes on scientific…

  1. Unraveling the development of scientific literacy: Domain-specific inquiry support in a system of cognitive and social interactions

    NASA Astrophysics Data System (ADS)

    Tabak, Iris Ellen

    The goal of this dissertation was to study how to harness technological tools in service of establishing a climate of inquiry in science classrooms. The research is a design experiment drawing on sociocultural and cognitive theory. As part of the BGuILE project, I developed software to support observational research of natural selection, and a complementary high school unit on evolution. Focusing on urban schools, I employed interpretive methods to examine learning as it unfolds in the classroom. I present design principles for realizing a climate of inquiry in technology-infused classrooms. This research contributes to technology design, teaching practice and educational and cognitive research. My pedagogical approach, Domain-Specific Strategic Support (DSSS), helps students analyze and synthesize primary data by making experts' considerations of content knowledge explicit. Students query data by constructing questions from a selection of comparison and variable types that are privileged in the domain. Students organize their data according to evidence categories that comprise a natural selection argument. I compared the inquiry process of contrastive cases: an honor group, a regular group and a lower track group. DSSS enabled students at different achievement levels to set up systematic comparisons, and construct empirically-based explanations. Prior knowledge and inquiry experience influenced spontaneous strategy use. Teacher guidance compensated for lack of experience, and enabled regular level students to employ strategies as frequently as honor students. I extend earlier research by proposing a taxonomy of both general and domain-specific reflective inquiry strategies. I argue that software, teacher and curriculum work in concert to sustain a climate of inquiry. Teachers help realize the potential that technological tools invite. Teachers reinforce software supports by encouraging students utilize technological tools, and by modeling their use. They also establish classroom norms that reflect scientific values. Discussions at the computer allow teachers to provide just-in-time guidance on inquiry actions. Whole class discussions afford sharing insights across groups, and relating finding to normative knowledge. Pretest to posttest improvements in both conceptual and strategic knowledge suggest that DSSS helps reconcile the tension that can exist between content and process goals in inquiry settings.

  2. The Impact of Student Self-efficacy on Scientific Inquiry Skills: An Exploratory Investigation in River City, a Multi-user Virtual Environment

    NASA Astrophysics Data System (ADS)

    Ketelhut, Diane Jass

    2007-02-01

    This exploratory study investigated data-gathering behaviors exhibited by 100 seventh-grade students as they participated in a scientific inquiry-based curriculum project delivered by a multi-user virtual environment (MUVE). This research examined the relationship between students' self-efficacy on entry into the authentic scientific activity and the longitudinal data-gathering behaviors they employed while engaged in that process. Three waves of student behavior data were gathered from a server-side database that recorded all student activity in the MUVE; these data were analyzed using individual growth modeling. The study found that self-efficacy correlated with the number of data-gathering behaviors in which students initially engaged, with high self-efficacy students engaging in more data gathering than students with low self-efficacy. Also, the impact of student self-efficacy on rate of change in data gathering behavior differed by gender. However, by the end of their time in the MUVE, initial student self-efficacy no longer correlated with data gathering behaviors. In addition, students' level of self-efficacy did not affect how many different sources from which they chose to gather data. These results suggest that embedding science inquiry curricula in novel platforms like a MUVE might act as a catalyst for change in students' self-efficacy and learning processes.

  3. Using Amphibians and Reptiles to Learn the Process of Science

    ERIC Educational Resources Information Center

    Greene, Janice Schnake; Greene, Brian D.

    2005-01-01

    Although every student must take some science courses to graduate, understanding the process of science is important, and some students never seem to really grasp science. The National Science Education Standards stress process as a major component in science instruction. The standards state that scientific inquiry is basic to science education…

  4. Science and Institutional Research: The Links. AIR 1991 Annual Forum Paper.

    ERIC Educational Resources Information Center

    McKinney, E. Bernadette; Hindera, John J.

    This paper compares the process and structure of institutional research with three ways of conceptualizing science. The first section examines the scientific method as a process of disciplined inquiry, then compares institutional research to that process. The second section compares the logical structure of institutional research with the logical…

  5. Elementary Students' Laboratory Record Keeping during Scientific Inquiry

    ERIC Educational Resources Information Center

    Garcia-Mila, Merce; Andersen, Christopher; Rojo, Nubia E.

    2011-01-01

    The present study examines the mutual interaction between students' writing and scientific reasoning among sixth-grade students (age 11-12 years) engaged in scientific inquiry. The experimental task was designed to promote spontaneous record keeping compared to previous task designs by increasing the saliency of task requirements, with the design…

  6. Turning Crisis into Opportunity: Nature of Science and Scientific Inquiry as Illustrated in the Scientific Research on Severe Acute Respiratory Syndrome

    ERIC Educational Resources Information Center

    Wong, Siu Ling; Kwan, Jenny; Hodson, Derek; Yung, Benny Hin Wai

    2009-01-01

    Interviews with key scientists who had conducted research on Severe Acute Respiratory Syndrome (SARS), together with analysis of media reports, documentaries and other literature published during and after the SARS epidemic, revealed many interesting aspects of the nature of science (NOS) and scientific inquiry in contemporary scientific research…

  7. Social Regulation of Learning During Collaborative Inquiry Learning in Science: How does it emerge and what are its functions?

    NASA Astrophysics Data System (ADS)

    Ucan, Serkan; Webb, Mary

    2015-10-01

    Students' ability to regulate their learning is considered important for the quality of collaborative inquiry learning. However, there is still limited understanding about how students engage in social forms of regulation processes and what roles these regulatory processes may play during collaborative learning. The purpose of this study was to identify when and how co- and shared regulation of metacognitive, emotional and motivational processes emerge and function during collaborative inquiry learning in science. Two groups of three students (aged 12) from a private primary school in Turkey were videotaped during collaborative inquiry activities in a naturalistic classroom setting over a seven-week period, and the transcripts were analysed in order to identify their use of regulation processes. Moreover, this was combined with the analysis of stimulated-recall interviews with the student groups. Results indicated that co- and shared regulation processes were often initiated by particular events and played a crucial role in the success of students' collaborative inquiry learning. Co-regulation of metacognitive processes had the function of stimulating students to reflect upon and clarify their thinking, as well as facilitating the construction of new scientific understanding. Shared regulation of metacognitive processes helped students to build a shared understanding of the task, clarify and justify their shared perspective, and sustain the ongoing knowledge co-construction. Moreover, the use of shared emotional and motivational regulation was identified as important for sustaining reciprocal interactions and creating a positive socio-emotional atmosphere within the groups. In addition, the findings revealed links between the positive quality of group interactions and the emergence of co- and shared regulation of metacognitive processes. This study highlights the importance of fostering students' acquisition and use of regulation processes during collaborative inquiry learning.

  8. An Analysis of Activities in Saudi Arabian Middle School Science Textbooks and Workbooks for the Inclusion of Essential Features of Inquiry

    ERIC Educational Resources Information Center

    Aldahmash, Abdulwali H.; Mansour, Nasser S.; Alshamrani, Saeed M.; Almohi, Saeed

    2016-01-01

    This study examines Saudi Arabian middle school science textbooks' coverage of the essential features of scientific inquiry. All activities in the middle school science textbooks and workbooks were analyzed by using the scientific inquiry "essential features" rubric. The results indicated that the essential features are included in about…

  9. Physiology Should Be Taught as Science Is Practiced: An Inquiry-Based Activity to Investigate the "Alkaline Tide"

    ERIC Educational Resources Information Center

    Lujan, Heidi L.; DiCarlo, Stephen E.

    2015-01-01

    The American Association for the Advancement of Science (AAAS) strongly recommends that "science be taught as science is practiced." This means that the teaching approach must be consistent with the nature of scientific inquiry. In this article, the authors describe how they added scientific inquiry to a large lecture-based physiology…

  10. Exploring the Impacts of Cognitive and Metacognitive Prompting on Students' Scientific Inquiry Practices within an E-Learning Environment

    ERIC Educational Resources Information Center

    Zhang, Wen-Xin; Hsu, Ying-Shao; Wang, Chia-Yu; Ho, Yu-Ting

    2015-01-01

    This study explores the effects of metacognitive and cognitive prompting on the scientific inquiry practices of students with various levels of initial metacognition. Two junior high school classes participated in this study. One class, the experimental group (n?=?26), which received an inquiry-based curriculum with a combination of cognitive and…

  11. Inquiry, Argumentation, and the Phases of the Moon: Helping Students Learn Important Concepts and Practices

    ERIC Educational Resources Information Center

    Hall, Cady B.; Sampson, Victor

    2009-01-01

    An important goal of the current reform movement in science education is to promote scientific literacy in the United States, and scientific inquiry is at its heart. However, the National Science Education Standards clearly indicate that to promote inquiry, more emphasis should be placed on "science as argument and explanation" rather than on…

  12. The Development of Scientific Literacy through Nature of Science (NoS) within Inquiry Based Learning Approach

    NASA Astrophysics Data System (ADS)

    Widowati, A.; Widodo, E.; Anjarsari, P.; Setuju

    2017-11-01

    Understanding of science instructional leading to the formation of student scientific literacy, seems not yet fully understood well by science teachers. Because of this, certainly needs to be reformed because science literacy is a major goal in science education for science education reform. Efforts of development science literacy can be done by help students develop an information conception of the Nature of Science (NoS) and apply inquiry approach. It is expected that students’ science literacy can develop more optimal by combining NoS within inquiry approach. The purpose of this research is to produce scientific literacy development model of NoS within inquiry-based learning. The preparation of learning tools will be maked through Research and Development (R & D) following the 4-D model (Define, Design, Develop, and Disseminate) and Borg & Gall. This study is a follow-up of preliminary research results about the inquiry profile of junior high school students indicating that most categories are quite good. The design of the model NoS within inquiry approach for developing scientific literacy is using MER Model in development educational reconstruction. This research will still proceed to the next stage that is Develop.

  13. Global Climate Models for the Classroom: The Educational Impact of Student Work with a Key Tool of Climate Scientists

    NASA Astrophysics Data System (ADS)

    Bush, D. F.; Sieber, R.; Seiler, G.; Chandler, M. A.; Chmura, G. L.

    2017-12-01

    Efforts to address climate change require public understanding of Earth and climate science. To meet this need, educators require instructional approaches and scientific technologies that overcome cultural barriers to impart conceptual understanding of the work of climate scientists. We compared student inquiry learning with now ubiquitous climate education toy models, data and tools against that which took place using a computational global climate model (GCM) from the National Aeronautics and Space Administration (NASA). Our study at McGill University and John Abbott College in Montreal, QC sheds light on how best to teach the research processes important to Earth and climate scientists studying atmospheric and Earth system processes but ill-understood by those outside the scientific community. We followed a pre/post, control/treatment experimental design that enabled detailed analysis and statistically significant results. Our research found more students succeed at understanding climate change when exposed to actual climate research processes and instruments. Inquiry-based education with a GCM resulted in significantly higher scores pre to post on diagnostic exams (quantitatively) and more complete conceptual understandings (qualitatively). We recognize the difficulty in planning and teaching inquiry with complex technology and we also found evidence that lectures support learning geared toward assessment exams.

  14. Reinstating the 'Queen': understanding philosophical inquiry in nursing.

    PubMed

    Pesut, Barbara; Johnson, Joy

    2008-01-01

    This paper is an introduction to the characteristics of philosophical inquiry. Despite over a century of philosophical thinking in nursing, philosophical inquiry has yet to be positioned as contributing substantially to the field of nursing's inquiry. There is a need to articulate the nature and characteristics of philosophical inquiry for researchers new to this perspective. We begin by addressing a common question that surfaces when one begins a work that is philosophical in nature, how does one differentiate between nursing philosophy and nursing theory? We then address the nature and characteristics of philosophical inquiry. We conclude by considering the question of whether philosophical inquiry might be considered a form of qualitative inquiry. Unlike science, which relies upon investigative methods, philosophical inquiry relies upon the capacities to think and reason. Problems characteristic of philosophical inquiry include conceptual clarification, analysis of arguments and problems related to the ontology, epistemology and ethics of nursing. Although methodological approaches to philosophical inquiry are diverse, common tools include assumptions and the intellectual processes of conceptualizing, judging and reasoning within a context of wonder. Some have argued that to neglect philosophy in nursing is to place the discipline at risk. However, there is little guidance available to researchers new to this method of inquiry. By providing a beginning roadmap, our hope is that philosophical inquiry will take its place alongside scientific methods of inquiry with the goal of constructing robust knowledge for the discipline of nursing.

  15. The Use of Lego Technologies in Elementary Teacher Preparation

    NASA Astrophysics Data System (ADS)

    Hadjiachilleos, Stella; Avraamidou, Lucy; Papastavrou, Stavros

    2013-10-01

    The need to reform science teacher preparation programs has been pointed out in research (Bryan and Abell in J Res Sci Teach 36:121-140, 1999; Bryan and Atwater in Sci Educ 8(6):821-839, 2002; Harrington and Hathaway in J Teach Educ 46(4):275-284, 1995). Science teachers are charged with the responsibility of incorporating both cognitive and non-cognitive parameters in their everyday teaching practices. This often results in their reluctance to teach science because they often lack disciplinary and/or pedagogical expertise required to promote science learning. The purpose of this study is to propose an alternative instructional approach in which Lego vehicles were used as a tool to promote pre-service elementary teachers' development and to examine whether there are non-cognitive parameters that promote or obstruct them from using Lego Technologies as a teaching tool. The context of the study was defined by a teacher preparation program of a private university in a small Mediterranean country. A sample of 28 pre-service elementary teachers, working in five 5-6-member groups were involved in scientific inquiries, during which they had to use vehicles in order to solve scientific problems related to concepts such as gear functioning, force, and motion. The nature of their cognitive engagement in the scientific inquiry process, non-cognitive parameters contributing to their cognitive engagement, and the impact of their involvement in the process on their development were examined through qualitative analysis of pre- and post-inquiry interviews, presentations of their solutions to the scientific problems and of their personal reflective journals.

  16. Scientific Inquiry Self-Efficacy and Computer Game Self-Efficacy as Predictors and Outcomes of Middle School Boys' and Girls' Performance in a Science Assessment in a Virtual Environment

    NASA Astrophysics Data System (ADS)

    Bergey, Bradley W.; Ketelhut, Diane Jass; Liang, Senfeng; Natarajan, Uma; Karakus, Melissa

    2015-10-01

    The primary aim of the study was to examine whether performance on a science assessment in an immersive virtual environment was associated with changes in scientific inquiry self-efficacy. A secondary aim of the study was to examine whether performance on the science assessment was equitable for students with different levels of computer game self-efficacy, including whether gender differences were observed. We examined 407 middle school students' scientific inquiry self-efficacy and computer game self-efficacy before and after completing a computer game-like assessment about a science mystery. Results from path analyses indicated that prior scientific inquiry self-efficacy predicted achievement on end-of-module questions, which in turn predicted change in scientific inquiry self-efficacy. By contrast, computer game self-efficacy was neither predictive of nor predicted by performance on the science assessment. While boys had higher computer game self-efficacy compared to girls, multi-group analyses suggested only minor gender differences in how efficacy beliefs related to performance. Implications for assessments with virtual environments and future design and research are discussed.

  17. Characterizing High School Students' Written Explanations in Biology Laboratories

    NASA Astrophysics Data System (ADS)

    Peker, Deniz; Wallace, Carolyn S.

    2011-03-01

    The purpose of this qualitative interpretive research study was to examine high school students' written scientific explanations during biology laboratory investigations. Specifically, we characterized the types of epistemologies and forms of reasoning involved in students' scientific explanations and students' perceptions of scientific explanations. Sixteen students from a rural high school in the Southeastern United States were the participants of this research study. The data consisted of students' laboratory reports and individual interviews. The results indicated that students' explanations were primarily based on first-hand knowledge gained in the science laboratories and mostly representing procedural recounts. Most students did not give explanations based on a theory or a principle and did not use deductive reasoning in their explanations. The students had difficulties explaining phenomena that involved intricate cause-effect relationships. Students perceived scientific explanation as the final step of a scientific inquiry and as an account of what happened in the inquiry process, and held a constructivist-empiricist view of scientific explanations. Our results imply the need for more explicit guidance to help students construct better scientific explanations and explicit teaching of the explanatory genre with particular focus on theoretical and causal explanations.

  18. Mutation-based learning to improve student autonomy and scientific inquiry skills in a large genetics laboratory course.

    PubMed

    Wu, Jinlu

    2013-01-01

    Laboratory education can play a vital role in developing a learner's autonomy and scientific inquiry skills. In an innovative, mutation-based learning (MBL) approach, students were instructed to redesign a teacher-designed standard experimental protocol by a "mutation" method in a molecular genetics laboratory course. Students could choose to delete, add, reverse, or replace certain steps of the standard protocol to explore questions of interest to them in a given experimental scenario. They wrote experimental proposals to address their rationales and hypotheses for the "mutations"; conducted experiments in parallel, according to both standard and mutated protocols; and then compared and analyzed results to write individual lab reports. Various autonomy-supportive measures were provided in the entire experimental process. Analyses of student work and feedback suggest that students using the MBL approach 1) spend more time discussing experiments, 2) use more scientific inquiry skills, and 3) find the increased autonomy afforded by MBL more enjoyable than do students following regimented instructions in a conventional "cookbook"-style laboratory. Furthermore, the MBL approach does not incur an obvious increase in labor and financial costs, which makes it feasible for easy adaptation and implementation in a large class.

  19. Empirical grounding of the nature of scientific inquiry: A study of developing researchers

    NASA Astrophysics Data System (ADS)

    Stucky, Amy Preece

    This work uses grounded theory methodology for developing theory about the nature of authentic scientific inquiry that occurs on a day-to-day basis in an academic research laboratory. Symbolic interaction and situated learning provide a theoretical framework. Data were collected from field notes, over 100 hours of videotape of researchers working in a chemical research laboratory, and interviews with participants. The phenomena of a research laboratory suggest that authentic daily work stretches scientists in three learning modalities: cognitive, affective and motivational beliefs and goals, which influence action to promote learning. A laboratory's line of research is divided into individual, thematic projects. Researchers are enabled in a specialized laboratory environment with sets of unique artifacts, substances, people and theoretical concepts to facilitate production of significant research goals. The work itself consists of chemical and mechanical processes facilitated by human actions, appropriate mental states, and theoretical explanations. The cognitive, affective (emotional), and conative (motivational) stretching then leads to explicit learning as well as implicit learning in the gain of experience and tacit knowledge. Implications of these findings about the nature of authentic scientific research on a day-to-day basis are applied to inquiry in science education in undergraduate and graduate education.

  20. Mini-Journal Inquiry Laboratory: A Case Study in a General Chemistry Kinetics Experiment

    ERIC Educational Resources Information Center

    Zhao, Ningfeng; Wardeska, Jeffrey G.

    2011-01-01

    The mini-journal curriculum for undergraduate science laboratories mirrors the format of scientific literature and helps students improve their learning through direct scientific practices. The lab embodies the essential features of scientific inquiry and replaces the traditional "cookbook" lab to engage students in active learning. A case study…

  1. Changing Our Landscape of Inquiry for a New Science of Education

    ERIC Educational Resources Information Center

    Thomas, Gary

    2012-01-01

    In this essay, Gary Thomas argues that education research repeatedly makes a mistake first noted by Dewey: it misunderstands our science. This misunderstanding has led to attempts to import various putatively scientific precepts into education inquiry. But in reality, he argues, those "scientific" precepts do not characterize scientific endeavor,…

  2. Inquiry based learning with a virtual microscope

    NASA Astrophysics Data System (ADS)

    Kelley, S. P.; Sharples, M.; Tindle, A.; Villasclaras-Fernández, E.

    2012-12-01

    As part of newly funded initiative, the Wolfson OpenScience Laboratory, we are linking a tool for inquiry based learning, nQuire (http://www.nquire.org.uk) with the virtual microscope for Earth science (http://www.virtualmicroscope.co.uk) to allow students to undertake projects and gain from inquiry based study thin sections of rocks without the need for a laboratory with expensive petrological microscopes. The Virtual Microscope (VM) was developed for undergraduate teaching of petrology and geoscience, allowing students to explore rock hand specimens and thin sections in a browser window. The system is based on HTML5 application and allows students to scan and zoom the rocks in a browser window, view in ppl and xpl conditions, and rotate specific areas to view birefringence and pleochroism. Importantly the VM allows students to gain access to rare specimens such as Moon rocks that might be too precious to suffer loss or damage. Experimentation with such specimens can inspire the learners' interest in science and allows them to investigate relevant science questions. Yet it is challenging for learners to engage in scientific processes, as they may lack scientific investigation skills or have problems in planning their activities; for teachers, managing inquiry activities is a demanding task (Quintana et al., 2004). To facilitate the realization of inquiry activities, the VM is being integrated with the nQuire tool. nQuire is a web tool that guides and supports students through the inquiry process (Mulholland et al., 2011). Learners are encouraged to construct their own personally relevant hypothesis, pose scientific questions, and plan the method to answer them. Then, the system enables users to collect and analyze data, and share their conclusions. Teachers can monitor their students' progress through inquiries, and give them access to new parts of inquiries as they advance. By means of the integration of nQuire and the VM, inquiries that involve collecting data through a microscope can be created and supported. To illustrate the possibilities of these tools, we have designed two inquiries that engage learners in the study of Moon rock samples under the microscope, starting from general questions such as comparison of Moon rocks or determining the origin of meteorites. One is aimed at undergraduate Geology students; the second has been conceived for the general public. Science teachers can reuse these inquiries, adapt them as they need, or create completely new inquiries using nQuire's authoring tool. We will report progress and demonstrate the combination of these two on-line tools to create an open educational resource allowing educators to design and run science inquiries for Earth and planetary science in a range of settings from schools to universities. Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., Kyza, E., et al. (2004). A scaffolding design framework for software to support science inquiry. Journal of the Learning Sciences, 13(3), 337-386. Mulholland, P., Anastopoulou, S., Collins, T., FeiBt, M., Gaved, M., Kerawalla, L., Paxton, M., et al. (2011). nQuire: Technological support for personal inquiry learning. IEEE Transactions on Learning Technologies. First published online, December 5, 2011, http://doi.ieeecomputersociety.org/10.1109/TLT.2011.32.

  3. Introducing Ocean Science Research to Two-Year College (2YC) Students Through Inquiry-Based Experiences

    NASA Astrophysics Data System (ADS)

    Gamage, K. R.

    2016-02-01

    An effective approach to introduce 2YC students to ocean science research is through propagating inquiry-based experiences into existing geosciences courses using a series of research activities. The proposed activity is based on scientific ocean drilling, where students begin their research experience (pre-field activity) by reading articles from scientific journals and analyzing and interpreting core and log data on a specific research topic. At the end of the pre-field activity, students will visit the Gulf Coast Repository to examine actual cores, smear slides, thin sections etc. After the visit, students will integrate findings from their pre-field and field activities to produce a term paper. These simple activities allow students to experience in the iterative process of scientific research, illuminates how scientists approach ocean science, and can be the hook to get students interested in pursuing ocean science as a career.

  4. Sensemaking: Conceptualizing and Coding for “Good” Student Reasoning

    NASA Astrophysics Data System (ADS)

    Elby, Andrew; Scherr, R.; Bing, T.

    2006-12-01

    Physics instructors’ goals often go beyond improving students’ conceptual understanding and problem solving. Instructors also want students to engage in inquiry, become scientific/critical thinkers, understand the scientific process, and so on. We see two problems with these “non-content” goals. First, notions such as inquiry and scientific thinking are often defined vaguely or inconsistently across the literature. Second, even when like-minded instructors share a vision of what we’d love to see our students do, descriptions of that vision are often too squishy to communicate, debate, or assess: “We know it when we see it!” In this talk and poster, we address these problems by introducing sensemaking vs. answermaking, two mindsets with which students can approach physics. Our definitions of those notions benefit from a theoretical base, and our coding scheme for sensemaking vs. answermaking displays high interrater reliability and rests upon a list of specific indicators.

  5. An inquiry-based practical for a large, foundation-level undergraduate laboratory that enhances student understanding of basic cellular concepts and scientific experimental design.

    PubMed

    Bugarcic, A; Zimbardi, K; Macaranas, J; Thorn, P

    2012-01-01

    Student-centered education involving research experiences or inquiry have been shown to help undergraduate students understand, and become excited about, the process of scientific investigation. These benefits are particularly important for students in the early stages of their degree (Report and Kenny, http://naplesccsunysbedu/Pres/boyernsf/1998). However, embedding such experiences into the curriculum is particularly difficult when dealing with early stage students, who are in larger cohorts and often lack the background content knowledge necessary to engage with primary research literature and research level methods and equipment. We report here the design, delivery, assessment, and subsequent student learning outcomes of a 4-week practical module for 120 students at the beginning of their second year of university, which successfully engages students in designing cell culture experiments and in understanding the molecular processes and machinery involved in the basic cellular process of macropinocytosis. Copyright © 2011 Wiley Periodicals, Inc.

  6. Rocks, Landforms, and Landscapes vs. Words, Sentences, and Paragraphs: An Interdisciplinary Team Approach to Teaching the Tie Between Scientific Literacy and Inquiry-based Writing in a Community College's Geoscience Program and a University's' Geoscience Program

    NASA Astrophysics Data System (ADS)

    Thweatt, A. M.; Giardino, J. R.; Schroeder, C.

    2014-12-01

    Scientific literacy and inquiry-based writing go together like a hand and glove. Science literacy, defined by NRC in The NSF Standards, stresses the relationship between knowledge of science and skill in literacy so "a person can ask, find, or determine answers to questions derived from curiosity about everyday experiences. It means that a person has the ability to describe, explain, and predict natural phenomena. Scientific literacy entails being able to read with understanding articles about science in the popular press and to engage in social conversation about the validity of the conclusions. Scientific literacy implies that a person can identify scientific issues underlying national and local decisions and express positions that are scientifically and technologically informed." A growing body of research and practice in science instruction suggests language is essential in the practice of the geosciences. Writing and critical thinking are iterative processes. We use this approach to educate our geoscience students to learn, write, and think critically. One does not become an accomplished writer via one course. Proficiency is gained through continued exposure, guidance and tailored assignments. Inquiry-based geoscience makes students proficient in the tools of the geosciences and to develop explanations to questions about Earth events. We have scaffolded our courses from introductory geology, English composition, writing in the geosciences, introduction to field methods and report writing to do more critical thinking, research data gatherings, and in-depth analysis and synthesis. These learning experiences that encourage students to compare their reasoning models, communicate verbally, written and graphically. The English composition course sets the stage for creative assignments through formulation of original research questions, collection of primary data, analysis, and construction of written research papers. Proper use of language allows students to clarify their ideas, make claims, present arguments, and record and present findings. Students have acquired the skills to be considered scientifically literate and capable of learning. A poster demonstrating the tie between Scientific Literacy and Inquiry-Based Writing has been produced and distributed widely around campus.

  7. Comparison of Pre-Service Physics Teachers' Conceptual Understanding of Dynamics in Model-Based Scientific Inquiry and Scientific Inquiry Environments

    ERIC Educational Resources Information Center

    Arslan Buyruk, Arzu; Ogan Bekiroglu, Feral

    2018-01-01

    The focus of this study was to evaluate the impact of model-based inquiry on pre-service physics teachers' conceptual understanding of dynamics. Theoretical framework of this research was based on models-of-data theory. True-experimental design using quantitative and qualitative research methods was carried out for this research. Participants of…

  8. Primary pre-service teachers' skills in planning a guided scientific inquiry

    NASA Astrophysics Data System (ADS)

    García-Carmona, Antonio; Criado, Ana M.; Cruz-Guzmán, Marta

    2017-10-01

    A study is presented of the skills that primary pre-service teachers (PPTs) have in completing the planning of a scientific inquiry on the basis of a guiding script. The sample comprised 66 PPTs who constituted a group-class of the subject Science Teaching, taught in the second year of an undergraduate degree in primary education at a Spanish university. The data was acquired from the responses of the PPTs (working in teams) to open-ended questions posed to them in the script concerning the various tasks involved in a scientific inquiry (formulation of hypotheses, design of the experiment, data collection, interpretation of results, drawing conclusions). Data were analyzed within the framework of a descriptive-interpretive qualitative research study with a combination of inter- and intra-rater methods, and the use of low-inference descriptors. The results showed that the PPTs have major shortcomings in planning the complete development of a guided scientific inquiry. The discussion of the results includes a number of implications for rethinking the Science Teaching course so that PPTs can attain a basic level of training in inquiry-based science education.

  9. Marine Biomedicine

    ERIC Educational Resources Information Center

    Bang, Frederik B.

    1977-01-01

    Describes early scientific research involving marine invertebrate pathologic processes that may have led to new insights into human disease. Discussed are inquiries of Metchnikoff, Loeb, and Cantacuzene (immunolgic responses in sea stars, horseshoe crabs, and marine worms, respectively). Describes current research stemming from these early…

  10. Impact of backwards faded scaffolding approach to inquiry-based astronomy laboratory experiences on undergraduate non-science majors' views of scientific inquiry

    NASA Astrophysics Data System (ADS)

    Lyons, Daniel J.

    This study explored the impact of a novel inquiry-based astronomy laboratory curriculum designed using the Backwards Faded Scaffolding inquiry teaching framework on non-science majoring undergraduate students' views of the nature of scientific inquiry (NOSI). The study focused on two aspects of NOSI: The Distinction between Data and Evidence (DvE), and The Multiple Methods of Science (MMS). Participants were 220 predominately non-science majoring undergraduate students at a small, doctoral granting, research-extensive university in the Rocky Mountain region of the United States. The student participants were enrolled in an introductory astronomy survey course with an associated laboratory section and were selected in two samples over consecutive fall and spring semesters. The participants also included four of the graduate student instructors who taught the laboratory courses using the intervention curriculum. In the first stage, student participant views of NOSI were measured using the VOSI-4 research instrument before and after the intervention curriculum was administered. The responses were quantified, and the distributions of pre and posttest scores of both samples were separately analyzed to determine if there was a significant improvement in understanding of either of the two aspects of NOSI. The results from both samples were compared to evaluate the consistency of the results. In the second stage, the quantitative results were used to strategically design a qualitative investigation, in which the four lab instructors were interviewed about their observations of how the student participants interacted with the intervention curriculum as compared to traditional lab activities, as well as their suggestions as to how the curriculum may or may not have contributed to the results of the first stage. These interviews were summarized and analyzed for common themes as to how the intervention curriculum influenced the students' understandings of the two aspect of NOSI. According to the results of a Wilcoxon Signed Rank test, there was a significant shift in the distributions of both samples toward a more informed understanding of DvE after the intervention curriculum was administered, while there was no significant change in either direction for understanding of MMS. The results of the instructor interview analysis suggested that the intervention curriculum provided multiple opportunities for students to evaluate and determine the relevance of data in the context of producing evidence-based conclusions directly related to specific research questions, thereby supporting the development of more informed views of DvE. These results also suggested that students might not have realized that they were exclusively engaged in non-experimental type inquiries, as various research methods were not explicitly addressed. The intervention curriculum used a consistently phased stepwise format, which may also have led the students to accommodate their astronomy inquiry experiences within persistent misconceptions of "The Scientific Method" as the only valid means of constructing scientific knowledge, thereby leading to no change in understanding of MMS. The results of the study suggest that a scaffolded, inquiry-based, introductory astronomy laboratory curriculum purposefully designed and scaffolded to enhance students' understandings could be effective in enhancing undergraduate non-science majoring students' views of certain aspects of NOSI. Through scaffolding inquiry experiences that deliver multiple opportunities to engage in authentic scientific inquiries, the novel curriculum provides a valuable resource for the astronomy education community to engage students in learning experiences that reflect the contemporary views of constructivist inquiry-based learning, which focuses on the interpretation of data to create evidence in light of specific questions, as well as opportunities to engage in authentic scientific discourse. As such it can enable astronomy educators in the undergraduate teaching community to support student learning beyond astronomy content knowledge toward a more informed understanding of the process of scientific knowledge construction to the end of supporting proficiency in science and science literacy.

  11. Poster Development and Presentation to Improve Scientific Inquiry and Broaden Effective Scientific Communication Skills.

    PubMed

    Rauschenbach, Ines; Keddis, Ramaydalis; Davis, Diane

    2018-01-01

    We have redesigned a tried-and-true laboratory exercise into an inquiry-based team activity exploring microbial growth control, and implemented this activity as the basis for preparing a scientific poster in a large, multi-section laboratory course. Spanning most of the semester, this project culminates in a poster presentation of data generated from a student-designed experiment. Students use and apply the scientific method and improve written and verbal communication skills. The guided inquiry format of this exercise provides the opportunity for student collaboration through cooperative learning. For each learning objective, a percentage score was tabulated (learning objective score = points awarded/total possible points). A score of 80% was our benchmark for achieving each objective. At least 76% of the student groups participating in this project over two semesters achieved each learning goal. Student perceptions of the project were evaluated using a survey. Nearly 90% of participating students felt they had learned a great deal in the areas of formulating a hypothesis, experimental design, and collecting and analyzing data; 72% of students felt this project had improved their scientific writing skills. In a separate survey, 84% of students who responded felt that peer review was valuable in improving their final poster submission. We designed this inquiry-based poster project to improve student scientific communication skills. This exercise is appropriate for any microbiology laboratory course whose learning outcomes include the development of scientific inquiry and literacy.

  12. Poster Development and Presentation to Improve Scientific Inquiry and Broaden Effective Scientific Communication Skills †

    PubMed Central

    Rauschenbach, Ines; Keddis, Ramaydalis; Davis, Diane

    2018-01-01

    We have redesigned a tried-and-true laboratory exercise into an inquiry-based team activity exploring microbial growth control, and implemented this activity as the basis for preparing a scientific poster in a large, multi-section laboratory course. Spanning most of the semester, this project culminates in a poster presentation of data generated from a student-designed experiment. Students use and apply the scientific method and improve written and verbal communication skills. The guided inquiry format of this exercise provides the opportunity for student collaboration through cooperative learning. For each learning objective, a percentage score was tabulated (learning objective score = points awarded/total possible points). A score of 80% was our benchmark for achieving each objective. At least 76% of the student groups participating in this project over two semesters achieved each learning goal. Student perceptions of the project were evaluated using a survey. Nearly 90% of participating students felt they had learned a great deal in the areas of formulating a hypothesis, experimental design, and collecting and analyzing data; 72% of students felt this project had improved their scientific writing skills. In a separate survey, 84% of students who responded felt that peer review was valuable in improving their final poster submission. We designed this inquiry-based poster project to improve student scientific communication skills. This exercise is appropriate for any microbiology laboratory course whose learning outcomes include the development of scientific inquiry and literacy. PMID:29904518

  13. Exploring the Assessment of and Relationship between Elementary Students' Scientific Creativity and Science Inquiry

    ERIC Educational Resources Information Center

    Yang, Kuay-Keng; Lin, Shu-Fen; Hong, Zuway-R; Lin, Huann-shyang

    2016-01-01

    The purposes of this study were to (a) develop and validate instruments to assess elementary students' scientific creativity and science inquiry, (b) investigate the relationship between the two competencies, and (c) compare the two competencies among different grade level students. The scientific creativity test was composed of 7 open-ended items…

  14. Computational Scientific Inquiry with Virtual Worlds and Agent-Based Models: New Ways of Doing Science to Learn Science

    ERIC Educational Resources Information Center

    Jacobson, Michael J.; Taylor, Charlotte E.; Richards, Deborah

    2016-01-01

    In this paper, we propose computational scientific inquiry (CSI) as an innovative model for learning important scientific knowledge and new practices for "doing" science. This approach involves the use of a "game-like" virtual world for students to experience virtual biological fieldwork in conjunction with using an agent-based…

  15. Teachers' Use of Curriculum to Support Students in Writing Scientific Arguments to Explain Phenomena

    ERIC Educational Resources Information Center

    McNeill, Katherine L.

    2009-01-01

    The role of the teacher is essential for students' successful engagement in scientific inquiry practices. This study focuses on teachers' use of an 8-week chemistry curriculum that explicitly supports students in one particular inquiry practice, the construction of scientific arguments to explain phenomena in which students justify their claims…

  16. The Structure of Scientific Arguments by Secondary Science Teachers: Comparison of Experimental and Historical Science Topics

    ERIC Educational Resources Information Center

    Gray, Ron; Kang, Nam-Hwa

    2014-01-01

    Just as scientific knowledge is constructed using distinct modes of inquiry (e.g. experimental or historical), arguments constructed during science instruction may vary depending on the mode of inquiry underlying the topic. The purpose of this study was to examine whether and how secondary science teachers construct scientific arguments during…

  17. Perceptions of Prospective Biology Teachers on Scientific Argumentation in Microbiology Inquiry Lab Activities

    NASA Astrophysics Data System (ADS)

    Roviati, E.; Widodo, A.; Purwianingsih, W.; Riandi, R.

    2017-09-01

    Inquiry laboratory activity and scientific argumentation in science education should be promoted and explicitly experienced by prospective biology teacher students in classes, including in microbiology courses. The goal of this study is to get information about perceptions of prospective biology teachers on scientific argumentation in microbiology inquiry lab activities. This study reported the result of a survey research to prospective biology teachers about how their perception about microbiology lab classes and their perception about inquiry and argumentation in microbiology lab activities should be. The participants of this study were 100 students of biology education department from an institute in Cirebon, West Java taking microbiology lecture during the fifth semester. The data were collected using questionnaire to explore the perceptions and knowledge of prospective biology teachers about microbiology, inquiry lab activities and argumentation. The result showed that students thought that the difficulties of microbiology as a subject were the lack of references and the way lecturer teaching. The students’ perception was that argumentation and inquiry should be implemented in microbiology courses and lab activities. Based on the data from questionnaire, It showed that prospective biology teacher students had very little knowledge about scientific argumentation and its implementation in science education. When the participants made arguments based on the problems given, they showed low quality of arguments.

  18. The Structure of Scientific Arguments by Secondary Science Teachers: Comparison of experimental and historical science topics

    NASA Astrophysics Data System (ADS)

    Gray, Ron; Kang, Nam-Hwa

    2014-01-01

    Just as scientific knowledge is constructed using distinct modes of inquiry (e.g. experimental or historical), arguments constructed during science instruction may vary depending on the mode of inquiry underlying the topic. The purpose of this study was to examine whether and how secondary science teachers construct scientific arguments during instruction differently for topics that rely on experimental or historical modes of inquiry. Four experienced high-school science teachers were observed daily during instructional units for both experimental and historical science topics. The main data sources include classroom observations and teacher interviews. The arguments were analyzed using Toulmin's argumentation pattern revealing specific patterns of arguments in teaching topics relying on these 2 modes of scientific inquiry. The teachers presented arguments to their students that were rather simple in structure but relatively authentic to the 2 different modes. The teachers used far more evidence in teaching topics based on historical inquiry than topics based on experimental inquiry. However, the differences were implicit in their teaching. Furthermore, their arguments did not portray the dynamic nature of science. Very few rebuttals or qualifiers were provided as the teachers were presenting their claims as if the data led straightforward to the claim. Implications for classroom practice and research are discussed.

  19. Trained Inquiry Skills on Heat and Temperature Concepts

    NASA Astrophysics Data System (ADS)

    Hasanah, U.; Hamidah, I.; Utari, S.

    2017-09-01

    Inquiry skills are skills that aperson needs in developing concepts, but the results of the study suggest that these skills haven’t yet been trained along with the development of concepts in science feeding, found the difficulties of students in building the concept scientifically. Therefore, this study aims to find ways that are effective in training inquiry skills trough Levels of Inquiry (LoI) learning. Experimental research with one group pretest-postest design, using non-random sampling samples in one of vocational high school in Cimahi obtained purposively 33 students of X class. The research using the inquiry skills test instrument in the form of 15questions multiple choice with reliability in very high category. The result of data processing by using the normalized gain value obtained an illustration that the ways developed in the LoI are considered effective trained inquiry skills in the middle category. Some of the ways LoI learning are considered effective in communicating aspects through discovery learning, predicting trough interactive demonstration, hypotheses through inquiry lesson, and interpreting data through inquiry lab, but the implementation of LoI learning in this study hasn’t found a way that is seen as effective for trespassing aspects of designing an experiment.

  20. Recognizing Students' Scientific Reasoning: A Tool for Categorizing Complexity of Reasoning During Teaching by Inquiry

    PubMed Central

    Grady, Julia

    2010-01-01

    Teaching by inquiry is touted for its potential to encourage students to reason scientifically. Yet, even when inquiry teaching is practiced, complexity of students' reasoning may be limited or unbalanced. We describe an analytic tool for recognizing when students are engaged in complex reasoning during inquiry teaching. Using classrooms that represented “best case scenarios” for inquiry teaching, we adapted and applied a matrix to categorize the complexity of students' reasoning. Our results revealed points when students' reasoning was quite complex and occasions when their reasoning was limited by the curriculum, instructional choices, or students' unprompted prescription. We propose that teachers use the matrix as a springboard for reflection and discussion that takes a sustained, critical view of inquiry teaching practice. PMID:21113314

  1. Draw-a-Scientist/Mystery Box Redux

    ERIC Educational Resources Information Center

    Cavallo, Ann

    2007-01-01

    It is important that students have the opportunity to experience the nature and processes of science for themselves. The sequence of activities presented in this paper--Draw-a-Scientist and the Mystery Box Redux--were designed to help students better understand the nature of science (NOS) and engage them in the process of scientific inquiry. These…

  2. Ramping up to the Biology Workbench: A Multi-Stage Approach to Bioinformatics Education

    ERIC Educational Resources Information Center

    Greene, Kathleen; Donovan, Sam

    2005-01-01

    In the process of designing and field-testing bioinformatics curriculum materials, we have adopted a three-stage, progressive model that emphasizes collaborative scientific inquiry. The elements of the model include: (1) context setting, (2) introduction to concepts, processes, and tools, and (3) development of competent use of technologically…

  3. The Parallels between Philosophical Inquiry and Scientific Inquiry: Implications for Science Education

    ERIC Educational Resources Information Center

    Burgh, Gilbert; Nichols, Kim

    2012-01-01

    The "community of inquiry" as formulated by C. S. Peirce is grounded in the notion of communities of discipline-based inquiry engaged in the construction of knowledge. The phrase "transforming the classroom into a community of inquiry" is commonly understood as a pedagogical activity with a philosophical focus to guide…

  4. An Analysis of Activities in Saudi Arabian Middle School Science Textbooks and Workbooks for the Inclusion of Essential Features of Inquiry

    NASA Astrophysics Data System (ADS)

    Aldahmash, Abdulwali H.; Mansour, Nasser S.; Alshamrani, Saeed M.; Almohi, Saeed

    2016-12-01

    This study examines Saudi Arabian middle school science textbooks' coverage of the essential features of scientific inquiry. All activities in the middle school science textbooks and workbooks were analyzed by using the scientific inquiry `essential features' rubric. The results indicated that the essential features are included in about 59 % of the analyzed science activities. However, feature 2, `making learner give priority to evidence in responding to questions' and feature 3, `allowing learner to formulate explanations from evidence' appeared more frequently than the other three features (feature 1: engaging learner in scientifically oriented questions, feature 4: helping learner connect explanations to scientific knowledge, and feature 5: helping learner communicate and justify explanations to others), whether in the activities as a whole, or in the activities included in each of the four science domains (physical science, Earth science, life science and chemistry). These features are represented in almost all activities. This means that almost all activities in the middle school science textbooks and the workbooks include features 2 and 3. Meanwhile, the mean level of inclusion of the five essential features of scientific inquiry found in the middle school science textbooks and workbooks as a whole is 2.55. However, results found for features 1, 4, 5 and for in-level inclusion of the inquiry features in each of the science domains indicate that the inclusion of the essential inquiry features is teacher-centred. As a result, neither science textbooks nor workbooks provide students with the opportunity or encouragement to develop their inquiry skills. Consequently, the results suggest important directions for educational administrators and policy-makers in the preparation and use of science educational content.

  5. Epistemic beliefs of middle and high school students in a problem-based, scientific inquiry unit: An exploratory, mixed methods study

    NASA Astrophysics Data System (ADS)

    Gu, Jiangyue

    Epistemic beliefs are individuals' beliefs about the nature of knowledge, how knowledge is constructed, and how knowledge can be justified. This study employed a mixed-methods approach to examine: (a) middle and high school students' self-reported epistemic beliefs (quantitative) and epistemic beliefs revealed from practice (qualitative) during a problem-based, scientific inquiry unit, (b) How do middle and high school students' epistemic beliefs contribute to the construction of students' problem solving processes, and (c) how and why do students' epistemic beliefs change by engaging in PBL. Twenty-one middle and high school students participated in a summer science class to investigate local water quality in a 2-week long problem-based learning (PBL) unit. The students worked in small groups to conduct water quality tests at in their local watershed and visited several stakeholders for their investigation. Pretest and posttest versions of the Epistemological Beliefs Questionnaire were conducted to assess students' self-reported epistemic beliefs before and after the unit. I videotaped and interviewed three groups of students during the unit and conducted discourse analysis to examine their epistemic beliefs revealed from scientific inquiry activities and triangulate with their self-reported data. There are three main findings from this study. First, students in this study self-reported relatively sophisticated epistemic beliefs on the pretest. However, the comparison between their self-reported beliefs and beliefs revealed from practice indicated that some students were able to apply sophisticated beliefs during the unit while others failed to do so. The inconsistency between these two types of epistemic beliefs may due to students' inadequate cognitive ability, low validity of self-report measure, and the influence of contextual factors. Second, qualitative analysis indicated that students' epistemic beliefs of the nature of knowing influenced their problem solving processes and construction of arguments during their inquiry activities. Students with more sophisticated epistemic beliefs acquired knowledge, presented solid evidence, and used it to support their claims more effectively than their peers. Third, students' self-reported epistemic beliefs became significantly more sophisticated by engaging in PBL. Findings from this study can potentially help researchers to better understand the relation between students' epistemic beliefs and their scientific inquiry practice,

  6. The Impact of Student Self-Efficacy on Scientific Inquiry Skills: An Exploratory Investigation in "River City," a Multi-User Virtual Environment

    ERIC Educational Resources Information Center

    Ketelhut, Diane Jass

    2007-01-01

    This exploratory study investigated data-gathering behaviors exhibited by 100 seventh-grade students as they participated in a scientific inquiry-based curriculum project delivered by a multi-user virtual environment (MUVE). This research examined the relationship between students' self-efficacy on entry into the authentic scientific activity and…

  7. A "Theory Bite" on the Meaning of Scientific Inquiry: A Companion to Kuhn and Pease

    ERIC Educational Resources Information Center

    diSessa, Andrea A.

    2008-01-01

    There are many meanings of "scientific reasoning" or "scientific inquiry" in use, and many corresponding orientations toward its enhancement and tracking. Deciding what these terms mean once and for all is an elusive and likely chimerical goal. However, setting down some core models might help in being clear on where different researchers stand…

  8. Teaching Science through Inquiry

    ERIC Educational Resources Information Center

    Wilcox, Jesse; Kruse, Jerrid W.; Clough, Michael P.

    2015-01-01

    Science education efforts have long emphasized inquiry, and inquiry and scientific practices are prominent in contemporary science education reform documents (NRC 1996; NGSS Lead States 2013). However, inquiry has not become commonplace in science teaching, in part because of misunderstandings regarding what it means and entails (Demir and Abell…

  9. Exploring the Impacts of Cognitive and Metacognitive Prompting on Students' Scientific Inquiry Practices Within an E-Learning Environment

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Xin; Hsu, Ying-Shao; Wang, Chia-Yu; Ho, Yu-Ting

    2015-02-01

    This study explores the effects of metacognitive and cognitive prompting on the scientific inquiry practices of students with various levels of initial metacognition. Two junior high school classes participated in this study. One class, the experimental group (n = 26), which received an inquiry-based curriculum with a combination of cognitive and metacognitive prompts, was compared to the other class, the comparison group (n = 25), which received only cognitive prompts in the same curriculum. Data sources included a test of inquiry practices, a questionnaire of metacognition, and worksheets. The results showed that the mixed cognitive and metacognitive prompts had significant impacts on the students' inquiry practices, especially their planning and analyzing abilities. Furthermore, the mixed prompts appeared to have a differential effect on those students with lower level metacognition, who showed significant improvement in their inquiry abilities. A combination of cognitive and metacognitive prompts during an inquiry cycle was found to promote students' inquiry practices.

  10. Inquiry projects in science teacher education: What can investigative experiences reveal about teacher thinking and eventual classroom practice?

    NASA Astrophysics Data System (ADS)

    Windschitl, Mark

    2003-01-01

    Science education reform documents emphasize the importance of inquiry experiences for young learners. This means that teachers must be prepared with the knowledge, skills, and habits of thinking to mentor their students through authentic investigations. This study examines how preservice teachers' inquiry experiences, in a science methods course, influenced and were influenced by their conceptions of inquiry. The study also assesses how these experiences were associated with eventual classroom practice. Six preservice secondary teachers were observed during a 2-month inquiry project and then followed into the classroom as they began a 9-week teaching practicum. Data revealed that participants' preproject conceptions of the inquiry process were related to the conduct and interpretation of their own inquiry project, and that the project experience modified the inquiry conceptions of those participants who already had sophisticated understandings of scientific investigations. Perhaps most importantly, the participants who eventually used guided and open inquiry during their student teaching were not those who had more authentic views of inquiry or reflected most deeply about their own inquiry projects, but rather they were individuals who had significant undergraduate or professional experiences with authentic science research. Finally, this article advocates that independent science investigations be part of preservice education and that these experiences should be scaffolded to prompt reflection specifically about the nature of inquiry and conceptually linked to ways in which inquiry can be brought into the K-12 classroom.

  11. Teacher's Reflection of Inquiry Teaching in Finland before and during an In-Service Program: Examination by a Progress Model of Collaborative Reflection

    ERIC Educational Resources Information Center

    Kim, Minkee; Lavonen, Jari; Juuti, Kalle; Holbrook, Jack; Rannikmae, Miia

    2013-01-01

    In inquiry-based science education, there have been gradual shifts in research interests: the nature of scientific method, the debates on the effects of inquiry learning, and, recently, inquiry teaching. However, many in-service programs for inquiry teaching have reported inconsistent results due to the static view of classroom inquiries and due…

  12. Exploring English Language Learners (ELL) experiences with scientific language and inquiry within a real life context

    NASA Astrophysics Data System (ADS)

    Algee, Lisa M.

    English Language Learners (ELL) are often at a distinct disadvantage from receiving authentic science learning opportunites. This study explored English Language Learners (ELL) learning experiences with scientific language and inquiry within a real life context. This research was theoretically informed by sociocultural theory and literature on student learning and science teaching for ELL. A qualitative, case study was used to explore students' learning experiences. Data from multiple sources was collected: student interviews, science letters, an assessment in another context, field-notes, student presentations, inquiry assessment, instructional group conversations, parent interviews, parent letters, parent homework, teacher-researcher evaluation, teacher-researcher reflective journal, and student ratings of learning activities. These data sources informed the following research questions: (1) Does participation in an out-of-school contextualized inquiry science project increase ELL use of scientific language? (2) Does participation in an out-of-school contextualized inquiry science project increase ELL understanding of scientific inquiry and their motivation to learn? (3) What are parents' funds of knowledge about the local ecology and does this inform students' experiences in the science project? All data sources concerning students were analyzed for similar patterns and trends and triangulation was sought through the use of these data sources. The remaining data sources concerning the teacher-researcher were used to inform and assess whether the pedagogical and research practices were in alignment with the proposed theoretical framework. Data sources concerning parental participation accessed funds of knowledge, which informed the curriculum in order to create continuity and connections between home and school. To ensure accuracy in the researchers' interpretations of student and parent responses during interviews, member checking was employed. The findings suggest that participation in an out-of-school contextualized inquiry science project increased ELL use of scientific language and understanding of scientific inquiry and motivation to learn. In addition, parent' funds of knowledge informed students' experiences in the science project. These findings suggest that the learning and teaching practices and the real life experiential learning contexts served as an effective means for increasing students' understandings and motivation to learn.

  13. Developing Marine Science Instructional Materials Using Integrated Scientist-Educator Collaborative Design Teams: A Discussion of Challenges and Success Developing Real Time Data Projects for the COOL Classroom

    NASA Astrophysics Data System (ADS)

    McDonnell, J.; Duncan, R. G.; Glenn, S.

    2007-12-01

    Current reforms in science education place increasing demands on teachers and students to engage not only with scientific content but also to develop an understanding of the nature of scientific inquiry (AAAS, 1993; NRC, 1996). Teachers are expected to engage students with authentic scientific practices including posing questions, conducting observations, analyzing data, developing explanations and arguing about them using evidence. This charge is challenging for many reasons most notably the difficulty in obtaining meaningful data about complex scientific phenomena that can be used to address relevant scientific questions that are interesting and understandable to K-12 students. We believe that ocean sciences provide an excellent context for fostering scientific inquiry in the classroom. Of particular interest are the technological and scientific advances of Ocean Observing Systems, which allow scientists to continuously interact with instruments, facilities, and other scientists to explore the earth-ocean- atmosphere system remotely. Oceanographers are making long-term measurements that can also resolve episodic oceanic processes on a wide range of spatial and temporal scales crucial to resolving scientific questions related to Earth's climate, geodynamics, and marine ecosystems. The availability of a diverse array of large data sets that are easily accessible provides a unique opportunity to develop inquiry-based learning environments in which students can explore many important questions that reflect current research trends in ocean sciences. In addition, due to the interdisciplinary nature of the ocean sciences these data sets can be used to examine ocean phenomena from a chemical, physical, or biological perspective; making them particularly useful for science teaching across the disciplines. In this session we will describe some of the efforts of the Centers for Ocean Sciences Education Excellence- Mid Atlantic (COSEE MA) to develop instructional materials, in which students use real-time-data (RTD) to generate explanations about important ocean phenomena. We will discuss our use of an Instructional Design Model (Gauge 1987) to: 1) assess our audience need, 2) develop an effective collaborative design team, 3) develop and evaluate the instructional product, and 4) implement professional development designed to familiarize teachers with oceans sciences as a context for scientific inquiry.

  14. Short-Term Research Experiences with Teachers in Earth and Planetary Sciences and a Model for Integrating Research into Classroom Inquiry

    NASA Astrophysics Data System (ADS)

    Morgan, P.; Bloom, J. W.

    2006-12-01

    For the past three summers, we have worked with in-service teachers on image processing, planetary geology, and earthquake and volcano content modules using inquiry methods that ended with mini-research experiences. Although almost all were science teachers, very few could give a reasonable definition of science at the start of the modules, and very few had a basic grasp of the processes of scientific research and could not include substantive scientific inquiry into their lessons. To build research understanding and confidence, an instructor-student interaction model was used in the modules. Studies have shown that children who participate in classrooms as learning and inquiry communities develop more complex understandings. The same patterns of complex understandings have resulted in similarly structured professional communities of teachers. The model is based on professional communities, emphasizing from the beginning that inquiry is a form of research. Although the actual "research" component of the modules was short, the teachers were identified as professionals and researchers from the start. Research/inquiry participation is therefore an excellent example by which to allow their teachers to learn. Initially the teachers were very reluctant to pose questions. As they were encouraged to share, collaborate, and support each other, the role of the instructor became less of a leader and more of a facilitator, and the confidence of the teachers as professionals and researchers grew. One teacher even remarked, "This is how we should be teaching our kids!' Towards the end of the modules the teachers were ready for their mini- research projects and collaborated in teams of 2-4. They selected their own research topics, but were guided toward research questions that required data collection (from existing studies), some data manipulation, interpretation, and drawing conclusions with respect to the original question. The teachers were enthusiastic about all of their research experiences and overall expressed a new understanding of science and research.

  15. The Process of Scientific Inquiry as It Relates to the Creation/Evolution Controversy: I. A Serious Social Problem

    ERIC Educational Resources Information Center

    Miller, Jon S.; Toth, Ronald

    2014-01-01

    We describe how the increased level of religiosity in the United States is correlated with the resistance to the teaching of evolution and argue that this is a social, rather than scientific, issue. Our goal is to foster teachers' understanding of the philosophy of biology and encourage them to proactively deal with creationism at all levels,…

  16. Using Art to Enhance the Learning of Math and Science: Developing an Educational Art-Science Kit about Fractal Patterns in Nature

    NASA Astrophysics Data System (ADS)

    Rao, Deepa

    This study documents the development of an educational art-science kit about natural fractals, whose aim is to unite artistic and scientific inquiry in the informal learning of science and math. Throughout this research, I argue that having an arts-integrated approach can enhance the learner of science and math concepts. A guiding metaphor in this thesis is the Enlightenment-era cabinet of curiosities that represents a time when art and science were unified in the process of inquiry about the natural world. Over time, increased specialization in the practice of arts and science led to a growing divergence between the disciplines in the educational system. Recently, initiatives like STEAM are underway at the national level to integrate "Arts and Design" into the Science, Technology, Engineering, and Math (STEM) formal education agenda. Learning artifacts like science kits present an opportunity to unite artistic and scientific inquiry in informal settings. Although science kits have been introduced to promote informal learning, presently, many science kits have a gap in their design, whereby the activities consist of recipe-like instructions that do not encourage further inquiry-based learning. In the spirit of the cabinet of curiosities, this study seeks to unify visual arts and science in the process of inquiry. Drawing from educational theories of Dewey, Piaget, and Papert, I developed a novel, prototype "art-science kit" that promotes experiential, hands-on, and active learning, and encourages inquiry, exploration, creativity, and reflection through a series of art-based activities to help users learn science and math concepts. In this study, I provide an overview of the design and development process of the arts-based educational activities. Furthermore, I present the results of a pilot usability study (n=10) conducted to receive user feedback on the designed materials for use in improving future iterations of the art-science fractal kit. The fractal kit booklet that I designed can be found in the supplemental materials to this thesis.

  17. Using guided inquiry and the information search process to develop research confidence among first year anatomy students.

    PubMed

    Bentley, Danielle Christine; Robinson, Andrea Cristina; Ruscitti, Robert Joseph

    2015-01-01

    With the growing volume of obtainable medical information and scientific literature, it is crucial that students in the field of allied health professions develop and refine the research skill set necessary to effectively find, retrieve, analyze, and use this information. This skill set can be effectively developed using student inquiry; an active learning process where students answer questions using research and data analysis. Therefore, with the pedagogical goal of developing information literacy among a cohort of allied health professional trainees, first year students studying human anatomy completed inquiry-based projects that were structured within the framework of the Information Search Process. This article thoroughly describes the conceptualization, creation, improvement, implementation, and assessment of the projects beginning with version one, the Student Inquiry Projects. Following a pilot of the Student Inquiry Projects various evidence-based improvements resulted in the final project version called the Inquiry Guided Learning Projects (IGLPs). A full assessment of the IGLPs revealed that students' self-perceived confidence improved for all tested research skills including: research question development, research question selection, exploration of peer-review literature, acquisition of resources, effective communication of results, and literature citation (all P < 0.05). Furthermore, six months following project completion students retained improved confidence in research question development and effective communication of results, with 90% of students indicating the IGLPs were directly responsible for these improvements. By guiding students through the Information Search Process, the IGLPs successfully developed research confidence among allied health trainees. © 2015 American Association of Anatomists.

  18. Dataset of Scientific Inquiry Learning Environment

    ERIC Educational Resources Information Center

    Ting, Choo-Yee; Ho, Chiung Ching

    2015-01-01

    This paper presents the dataset collected from student interactions with INQPRO, a computer-based scientific inquiry learning environment. The dataset contains records of 100 students and is divided into two portions. The first portion comprises (1) "raw log data", capturing the student's name, interfaces visited, the interface…

  19. Artificial Intelligence and Expert Systems.

    ERIC Educational Resources Information Center

    Lawlor, Joseph

    Artificial intelligence (AI) is the field of scientific inquiry concerned with designing machine systems that can simulate human mental processes. The field draws upon theoretical constructs from a wide variety of disciplines, including mathematics, psychology, linguistics, neurophysiology, computer science, and electronic engineering. Some of the…

  20. Developing Effective K-16 Geoscience Research Partnerships.

    ERIC Educational Resources Information Center

    Harnik, Paul J.; Ross, Robert M.

    2003-01-01

    Discusses the benefits of research partnerships between scientists and K-16 students. Regards the partnerships as effective vehicles for teaching scientific logic, processes, and content by integrating inquiry-based educational approaches with innovative research questions. Reviews integrated research and education through geoscience partnerships.…

  1. Learning To Live with Complexity.

    ERIC Educational Resources Information Center

    Dosa, Marta

    Neither the design of information systems and networks nor the delivery of library services can claim true user centricity without an understanding of the multifaceted psychological environment of users and potential users. The complexity of the political process, social problems, challenges to scientific inquiry, entrepreneurship, and…

  2. In the Footsteps of Galileo

    NASA Astrophysics Data System (ADS)

    van der Veen, W.; Moody, T.; Erickson, J.; White, V.; O'Dea, T.

    2008-11-01

    Are you tired of teaching that same old scientific method lesson? Are you looking for ideas that bring the process of science to life for your students? Experience hands-on inquiry based activities that allow your students to recreate the excitement of Galileo's historic observations.

  3. Learning about Cellular Respiration: An Active Approach Illustrating the Process of Scientific Inquiry.

    ERIC Educational Resources Information Center

    Johnson, Margaret (Peg)

    1998-01-01

    Details the active-learning approach to teaching cellular respiration in an introductory, one-semester course for nonmajors. Focuses on a laboratory exercise designed to answer the question of what happens to food when eaten. Contains 19 references. (DDR)

  4. Linking the Scales of Scientific inquiry and Watershed Management: A Focus on Green Infrastructure

    EPA Science Inventory

    Urbanization modifies the hydrologic cycle, resulting in potentially deleterious downstream water quality and quantity effects. However, the cumulative interacting effects of water storage, transport, and biogeochemical processes occurring within other land cover and use types of...

  5. The Evolution of Inquiry Activities in the Akamai Observatory Short Course, 2004-2009

    NASA Astrophysics Data System (ADS)

    Rice, E. L.; McElwain, M.; Sonnett, S.; Rafelski, M.

    2010-12-01

    The Akamai Observatory Short Course (AOSC) is a five-day course of activities designed to prepare college students majoring in science, technology, engineering, and mathematics (STEM) fields for internships at observatories on the Big Island of Hawai'i. The design and implementation of inquiry-based activities in the AOSC have evolved considerably over the six years of the course. The content goals have always focused on the basic understanding of light and optics necessary to understand telescopes, but the scientific process goals gradually evolved to reflect the increasingly recognized importance of engineering design skills for successful observatory internships. In 2004 the inquiry-based activities were limited to one well-established Color, Light, and Spectra activity. In subsequent years more activities were customized and expanded upon to reflect the learners' diverse academic backgrounds, the developing goals of the short course, and feedback from internship hosts. The most recent inquiry, the Design and Build a Telescope activity, engaged students in designing and building a simple telescope, emphasizing science and engineering process skills in addition to science content. This activity was influenced by the Mission Design activity, added in 2006, that incorporated the application of inquiry-based learning to the engineering design process and allowed students to draw upon their diverse prior knowledge and experience. In this paper we describe the inquiry-based activities in the AOSC in the context of its year-to-year evolution, including the conceptual and pragmatic changes to the short course that influenced the evolution.

  6. Mutation-Based Learning to Improve Student Autonomy and Scientific Inquiry Skills in a Large Genetics Laboratory Course

    PubMed Central

    Wu, Jinlu

    2013-01-01

    Laboratory education can play a vital role in developing a learner's autonomy and scientific inquiry skills. In an innovative, mutation-based learning (MBL) approach, students were instructed to redesign a teacher-designed standard experimental protocol by a “mutation” method in a molecular genetics laboratory course. Students could choose to delete, add, reverse, or replace certain steps of the standard protocol to explore questions of interest to them in a given experimental scenario. They wrote experimental proposals to address their rationales and hypotheses for the “mutations”; conducted experiments in parallel, according to both standard and mutated protocols; and then compared and analyzed results to write individual lab reports. Various autonomy-supportive measures were provided in the entire experimental process. Analyses of student work and feedback suggest that students using the MBL approach 1) spend more time discussing experiments, 2) use more scientific inquiry skills, and 3) find the increased autonomy afforded by MBL more enjoyable than do students following regimented instructions in a conventional “cookbook”-style laboratory. Furthermore, the MBL approach does not incur an obvious increase in labor and financial costs, which makes it feasible for easy adaptation and implementation in a large class. PMID:24006394

  7. Girls on Ice: An Inquiry-Based Wilderness Science Education Program

    NASA Astrophysics Data System (ADS)

    Pettit, E. C.; Koppes, M. N.

    2001-12-01

    We developed a wilderness science education program for high school girls. The program offers opportunities for students to explore and learn about mountain glaciers and the alpine landscape through scientific field studies with geologists and glaciologists. Our purpose is to give students a feeling for the natural processes that create the alpine world and provide an environment that fosters the critical thinking necessary to all scientific inquiry. The program is currently being offered through the North Cascades Institute, a non-profit organization offering outdoor education programs for the general public. We lead eight girls for a weeklong expedition to the remote USGS South Cascade Glacier Research Station in Washington's North Cascades. For four days, we explore the glacier and the nearby alpine valleys. We encourage the girls to observe and think like scientists through making observations and inferences. They develop their own experiments to test ideas about glacier dynamics and geomorphology. In addition to scientific exploration, we engage the students in discussions about the philosophy of science and its role in our everyday lives. Our program exemplifies the success of hands-on, inquiry-based teaching in small groups for science education in the outdoors. The wilderness setting and single gender field team inspires young women's interest in science and provides a challenging environment that increases their physical and intellectual self-confidence.

  8. Scientific Modeling for Inquiring Teachers Network (SMIT'N): The Influence on Elementary Teachers' Views of Nature of Science, Inquiry, and Modeling

    ERIC Educational Resources Information Center

    Akerson, Valarie L.; Townsend, J. Scott; Donnelly, Lisa A.; Hanson, Deborah L.; Tira, Praweena; White, Orvil

    2009-01-01

    This paper summarizes the findings from a K-6 professional development program that emphasized scientific inquiry and nature of science within the theme of scientific modeling. During the 2-week summer workshop and follow up school year workshops, the instruction modeled a 5-E learning cycle approach. Pre and posttesting measured teachers' views…

  9. The acquisition of inquiry skills and computer skills by 8th grade urban middle school students in a technology-supported environment

    NASA Astrophysics Data System (ADS)

    Ruffin, Monya Aisha

    The evolution of increased global accessibility and dependency on computer technologies has revolutionized most aspects of everyday life, including a rapid transformation of 21st century schools. Current changes in education reflect the need for the integration of effective computer technologies in school curricula. The principal objective of this investigation was to examine the acquisition of computer skills and inquiry skills by urban eighth grade students in a technology-supported environment. The study specifically focused on students' ability to identify, understand, and work through the process of scientific inquiry, while also developing computer technology tool skills. The unique component of the study was its contextualization within a local historically significant setting---an African-American cemetery. Approximately seventy students, in a local middle school, participated in the five-week treatment. Students conducted research investigations on site and over the Internet, worked in collaborative groups, utilized technology labs, and received inquiry and computer technology instruction. A mixed method design employing quantitative and qualitative methods was used. Two pilot studies conducted in an after-school science club format helped sharpen the research question, data collection methods, and survey used in the school-based study. Complete sets of data from pre and post surveys and journals were collected from sixty students. Six students were randomly selected to participate in in-depth focus group interviews. Researcher observations and inferences were also included in the analysis. The research findings showed that, after the treatment, students: (a) acquired more inquiry skills and computer skills, (b) broadened their basic conceptual understanding and perspective about science, (c) engaged actively in a relevant learning process, (d) created tangible evidence of their inquiry skills and computer skills, and (e) recalled and retained more details about the inquiry process and the computer technology tools (when they attended at least 80% of the treatment sessions). The findings indicated that project-based, technology-supported experiences allowed students to learn content in an interdisciplinary way (building on culturally relevant local histories) and provided enjoyable learning opportunities for students and teachers. Participation in the treatment encouraged students to think beyond the technical aspects of technology and relate its relevancy and usefulness to solving scientific queries.

  10. Assessment in Science Education

    NASA Astrophysics Data System (ADS)

    Rustaman, N. Y.

    2017-09-01

    An analyses study focusing on scientific reasoning literacy was conducted to strengthen the stressing on assessment in science by combining the important of the nature of science and assessment as references, higher order thinking and scientific skills in assessing science learning as well. Having background in developing science process skills test items, inquiry in its many form, scientific and STEM literacy, it is believed that inquiry based learning should first be implemented among science educators and science learners before STEM education can successfully be developed among science teachers, prospective teachers, and students at all levels. After studying thoroughly a number of science researchers through their works, a model of scientific reasoning was proposed, and also simple rubrics and some examples of the test items were introduced in this article. As it is only the beginning, further studies will still be needed in the future with the involvement of prospective science teachers who have interests in assessment, either on authentic assessment or in test items development. In balance usage of alternative assessment rubrics, as well as valid and reliable test items (standard) will be needed in accelerating STEM education in Indonesia.

  11. The Benefits of Using Authentic Inquiry within Biotechnology Education

    ERIC Educational Resources Information Center

    Hanegan, Nikki; Bigler, Amber

    2010-01-01

    A broad continuum exists to describe the structure of inquiry lessons (Hanegan, Friden, & Nelson, 2009). Most teachers have heard inquiry described from a range of simple questioning to completely student-designed scientific studies (Chinn & Malhotra, 2002). Biotechnology education often uses a variety of inquiries from cookbook laboratory…

  12. Connecting Inquiry and the Nature of Science

    ERIC Educational Resources Information Center

    Peters, Erin

    2006-01-01

    Inquiry has been one of the most prominent reforms in science education. One of the goals of teaching through inquiry methods is to enable students to have experiences that are authentic to scientists' experiences. Too often, inquiry science is taught as either the "scientific method" or as "hands-on," disconnected activities…

  13. Fostering Students’ and Teachers’ Understanding of the Nature of Science: Where We Need the Broadest of Broader Impacts

    NASA Astrophysics Data System (ADS)

    Laursen, S. L.; Dauber, R.; Molnar, P. H.; Smith, L. K.

    2009-12-01

    Making wise decisions about daunting societal and environmental problems requires understanding of both scientific concepts and the limits of scientific knowledge. While K-12 school standards now include topics on scientific inquiry and the nature of science, few science teachers have personal knowledge of these ideas through conducting science research first-hand. In their own education, most have experienced primarily fact-packed lecture courses rather than deep engagement with gathering, interpreting and communicating about scientific evidence. Teachers are thus at a disadvantage in teaching about the nature of science. Moreover, few curriculum materials directly address these ideas. Instead, instructors at all levels tend to rely on students gleaning ideas from their lab work, without ever making them explicit. The result is a poor understanding of the nature of science among many students and citizens. Thus the nature of science is an important and fruitful area for “broader impacts” efforts by NSF-funded projects across the entire spectrum of science. To address this gap, we have created a 20-minute educational documentary film focused on the nature and processes of science. The film is a broader impacts effort for a large, NSF-funded, multidisciplinary, collaborative research project to study the uplift of the Tibetan plateau and its impact on atmospheric and climate processes. The film, Upward and Outward: Scientific Inquiry on the Tibetan Plateau, focuses on the process of science, as seen through the lens of a specific project. Viewers follow an international team of scientists as they work in the laboratory and in the field, build new instruments and computer models, travel to exotic locales, argue about their findings, and enjoy collaboration and conversation. By gaining an insider’s glimpse into both the intellectual process of scientific inquiry and the everyday social and professional activities of science, students learn how science is a human process for building knowledge, not just a body of fact. While originally targeted to students in grades 8-12, the film has also proven effective with undergraduates in introductory science courses, and with teachers in professional development courses. The 20-minute length ensures that the film can be readily screened and discussed within a single class session, and teachers are supported with suggested pre/post writing prompts, discussion questions, teaching tips, and background materials on the film's scientific content. The presentation will describe the making of the film, its relationship to the scientific project, its use with students and teachers, and some data on their responses. We will show a short clip and make copies of the DVD available to educators and professional developers who attend the session. More information about the film, a short clip, and supporting information for educators can be found at our web site.

  14. Argumentation in the Chemistry Laboratory: Inquiry and Confirmatory Experiments

    NASA Astrophysics Data System (ADS)

    Katchevich, Dvora; Hofstein, Avi; Mamlok-Naaman, Rachel

    2013-02-01

    One of the goals of science education is to provide students with the ability to construct arguments—reasoning and thinking critically in a scientific context. Over the years, many studies have been conducted on constructing arguments in science teaching, but only few of them have dealt with studying argumentation in the laboratory. Our research focuses on the process in which students construct arguments in the chemistry laboratory while conducting various types of experiments. It was found that inquiry experiments have the potential to serve as an effective platform for formulating arguments, owing to the features of this learning environment. The discourse during inquiry-type experiments was found to be rich in arguments, whereas that during confirmatory-type experiments was found to be sparse in arguments. The arguments, which were developed during the discourse of an open inquiry experiment, focus on the hypothesis-building stage, analysis of the results, and drawing appropriate conclusions.

  15. Teaching the Combined Gas Law

    ERIC Educational Resources Information Center

    Andersen, Lauren; Nobile, Nicole; Cormas, Peter

    2011-01-01

    For students to develop an understanding of science content and processes, teachers must create classroom environments in which students use inquiry to understand the natural world. However, teachers frequently find it difficult, if not impossible, to demonstrate complex scientific concepts, which textbooks often fail to properly explain. During…

  16. Shedding Light on Engineering Design

    ERIC Educational Resources Information Center

    Capobianco, Brenda M.; Nyquist, Chell; Tyrie, Nancy

    2013-01-01

    This article describes the steps incorporated to teach an engineering design process in a fifth-grade science classroom. The engineering design-based activity was an existing scientific inquiry activity using UV light--detecting beads and purposefully creating a series of engineering design-based challenges around the investigation. The…

  17. Capitalizing on Curiosity

    ERIC Educational Resources Information Center

    Devitt, Adam

    2011-01-01

    State and national standards have shifted what science learning should be from "plug and chug" formulas, to deep understanding of natural phenomena, competence developing ideas through the inquiry process, and even communicating scientific ideas among their communities (NRC 2007). By inquiring into his own teaching endeavors, the author continues…

  18. Verbal and social interaction patterns among elementary students during self-guided "I Wonder Projects"

    NASA Astrophysics Data System (ADS)

    Huziak, Tracy Lynn

    National standards for science teaching stress the use of inquiry teaching methods. One example of inquiry teaching is the I Wonder Project, which has been used in the Madison, WI Metropolitan School District for over ten years. The purpose of the I Wonder Project is to promote scientific discourse among elementary students through the publication of their research in a journal, similar in some ways to the scientific discourse within a community of scientists. This research study utilizes the I Wonder Project method to encourage student communication and self-guided project work. Approximately fifteen students ages 6--12 participated in a six-week self-guided inquiry project called I Wonder. Students worked as a cohort to learn science process skills and to build a scientific community. During this time, each student designed and carried out a self-guided inquiry project and wrote an article about their findings, which was presented on the last day of summer camp. A mixed method approach was used conduct this study. Participants were given a pretest and a posttest to determine the changes in scientific process skills as a result of participation in the project. The students were interviewed to determine their ideas about science and how those ideas changed over the time of participation in summer camp. Also the students were observed by the researchers, as well as audio- and video-taped to capture the verbal conversations and debates that take place as a result of discussion of ideas during the program. Students participated in this study as individuals and group members. Teacher and student interactions were noted to follow three main interaction styles: structured, guided and open-ended. These interactions work much like the inquiry levels described in the literature. Students also interacted with each other in three different ways: independently, dependently, and multifunctioning. Some students wished to work alone, while others preferred others to contribute to their work as well. Finally, there were five main types of science talk described by this study based on Gee's (1997) four types of science talk: design and debate, anomaly talk, everyday speculation talk, and explanation talk. What was also noted was an overwhelming amount of prior experience talk. Because students were given free choice in their topics of study, many chose to study topics that they had some interest or prior experience with. This led to a comparison of current findings to those they had already anticipated or expected. This study shows that self-guided inquiry projects require a range of interaction styles between students and also teachers. Many students need differing levels of support in order to be successful. In addition, it is important that students have an opportunity to select a topic of choice so that they have the opportunity to build on their scientific knowledge from their prior experiences.

  19. PlantingScience: Fostering student research through scientific inquiry and online mentorship

    USDA-ARS?s Scientific Manuscript database

    PlantingScience is an inquiry and science mentorship program, led by the Botanical Society of America and supported by 14 Scientific Society partners that brings together students (middle school through high school), plant scientists (as mentors), and teachers from across the nation. Using several l...

  20. Ethical Issues of Scientific Inquiry in Health Science Education.

    ERIC Educational Resources Information Center

    Pigg, R. Morgan, Jr., Ed.

    1994-01-01

    This monograph contains 13 papers on the ethics of planning, conducting, and reporting research in health sciences education. It includes four background papers and nine perspective papers. The titles are: (1) "The Imperative for Ethical Conduct in Scientific Inquiry" (Steve M. Dorman); (2) "Fundamental Principles of Ethical…

  1. Effects of '"Environmental Chemistry" Elective Course via Technology-Embedded Scientific Inquiry Model on Some Variables

    ERIC Educational Resources Information Center

    Çalik, Muammer; Özsevgeç, Tuncay; Ebenezer, Jazlin; Artun, Hüseyin; Küçük, Zeynel

    2014-01-01

    The purpose of this study is to examine the effects of "environmental chemistry" elective course via Technology-Embedded Scientific Inquiry (TESI) model on senior science student teachers' (SSSTs) conceptions of environmental chemistry concepts/issues, attitudes toward chemistry, and technological pedagogical content knowledge…

  2. The Effects of Socio-Scientific Issue Based Inquiry Learning on Pupils' Representations of Landscape

    ERIC Educational Resources Information Center

    Kärkkäinen, Sirpa; Keinonen, Tuula; Kukkonen, Jari; Juntunen, Seija; Ratinen, Ilkka

    2017-01-01

    Research has demonstrated that socio-scientific issues based inquiry learning has significant advantages for learning outcomes and students' motivation. Further, a successful understanding of landscapes in environmental and geographical education can be achieved by combining informal learning environments with school education. Therefore this case…

  3. Seeing the Unseen Learner: Designing and Using Social Media to Recognize Children's Science Dispositions in Action

    ERIC Educational Resources Information Center

    Ahn, June; Clegg, Tamara; Yip, Jason; Bonsignore, Elizabeth; Pauw, Daniel; Gubbels, Michael; Lewittes, Charley; Rhodes, Emily

    2016-01-01

    This paper describes the development of "ScienceKit," a mobile, social media application to promote children's scientific inquiry. We deployed "ScienceKit" in "Kitchen Chemistry" ("KC"), an informal science program where children learn about scientific inquiry through cooking. By iteratively integrating…

  4. Scientific Inquiry, Digital Literacy, and Mobile Computing in Informal Learning Environments

    ERIC Educational Resources Information Center

    Marty, Paul F.; Alemanne, Nicole D.; Mendenhall, Anne; Maurya, Manisha; Southerland, Sherry A.; Sampson, Victor; Douglas, Ian; Kazmer, Michelle M.; Clark, Amanda; Schellinger, Jennifer

    2013-01-01

    Understanding the connections between scientific inquiry and digital literacy in informal learning environments is essential to furthering students' critical thinking and technology skills. The Habitat Tracker project combines a standards-based curriculum focused on the nature of science with an integrated system of online and mobile computing…

  5. STEM Integration through Design and Inquiry

    ERIC Educational Resources Information Center

    Johns, Gary; Mentzer, Nathan

    2016-01-01

    Teachers can find opportunities to incorporate design thinking and scientific inquiry within any lesson where a constraint of the design can be connected to a scientific experiment. Within a lesson, this connection establishes context between engineering and science and can positively impact students' learning and interest in these subjects. The…

  6. Energy and Sociology.

    ERIC Educational Resources Information Center

    Cottrell, Fred

    The realization that all scientific phenomena are manifestations of energy, rather than separate subjects of inquiry for chemists, physicists, or biologists, has encouraged scientists to explore gaps between the traditional fields of scientific inquiry. In light of this fact, it would seem that the flow of energy should be a major area of concern…

  7. If It Can Be Studied or Developed, Should It Be?

    ERIC Educational Resources Information Center

    Sarason, Seymour B.

    1984-01-01

    Challenges the axiom that unalloyed benefits accrue to society by virtue of untrammeled scientific inquiry and technological advance. Discusses examples of challenges from within and without the scientific community in matters of atomic energy, space exploration, genetic engineering, and inquiry into racial and ethnic differences in intelligence.…

  8. High School Chemistry Students' Scientific Epistemologies and Perceptions of the Nature of Laboratory Inquiry

    ERIC Educational Resources Information Center

    Vhurumuku, Elaosi

    2011-01-01

    This quantitative study investigated the relationship between Chemistry students' scientific epistemologies and their perceptions of the nature of laboratory inquiry. Seventy-two Advanced Level Chemistry students were surveyed. The students were sampled from twelve schools in three of Zimbabwe's nine administrative provinces. Students' scientific…

  9. Invasion Ecology. Student Edition. Cornell Scientific Inquiry Series.

    ERIC Educational Resources Information Center

    Krasny, Marianne E.; Trautmann, Nancy; Carlsen, William; Cunningham, Christine

    This book contains the student edition of the Environmental Inquiry curriculum series developed at Cornell University. It is designed to teach learning skills for investigating the behaviors of non-native and native species and demonstrate how to apply scientific knowledge to solve real-life problems. This book focuses on strange intruders…

  10. Enhancing the Student Experiment Experience: Visible Scientific Inquiry Through a Virtual Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Donnelly, Dermot; O'Reilly, John; McGarr, Oliver

    2013-08-01

    Practical work is often noted as a core reason many students take on science in secondary schools (high schools). However, there are inherent difficulties associated with classroom practical work that militate against scientific inquiry, an approach espoused by many science educators. The use of interactive simulations to facilitate student inquiry has emerged as a complement to practical work. This study presents case studies of four science teachers using a virtual chemistry laboratory (VCL) with their students in an explicitly guided inquiry manner. Research tools included the use of the Inquiry Science Implementation Scale in a `talk-aloud' manner, Reformed Teaching Observation Protocol for video observations, and teacher interviews. The findings suggest key aspects of practical work that hinder teachers in adequately supporting inquiry and highlight where a VCL can overcome many of these difficulties. The findings also indicate considerations in using the VCL in its own right.

  11. The Development of "Water Strider" Inquiry Learning Program for Improving Scientific Inquiry Learning Ability in the Chapter "The Little Creatures World" of the Korea Elementary School 5th Grade Science Textbook

    ERIC Educational Resources Information Center

    Kim, Dongryeul

    2017-01-01

    The purpose of this study was to develop a "Water strider" Inquiry Learning Program for improved inquiry learning, and to analyze the validity of the "Water strider." The Inquiry Learning Program's goal was to create an application for finding out an on-site applicability for the "Water strider" Inquiry Learning…

  12. Turning Crisis into Opportunity: Enhancing Student-Teachers' Understanding of Nature of Science and Scientific Inquiry through a Case Study of the Scientific Research in Severe Acute Respiratory Syndrome

    ERIC Educational Resources Information Center

    Wong, Siu Ling; Hodson, Derek; Kwan, Jenny; Yung, Benny Hin Wai

    2008-01-01

    Interviews with key scientists involved in research on severe acute respiratory syndrome (SARS), together with analysis of media reports and documentaries produced during and after the SARS epidemic, revealed many interesting aspects of nature of science (NOS) and authentic scientific inquiry. This novel insight into practice in the rapidly…

  13. Some Key Issues in Creating Inquiry-Based Instructional Practices that Aim at the Understanding of Simple Electric Circuits

    NASA Astrophysics Data System (ADS)

    Kock, Zeger-Jan; Taconis, Ruurd; Bolhuis, Sanneke; Gravemeijer, Koeno

    2013-04-01

    Many students in secondary schools consider the sciences difficult and unattractive. This applies to physics in particular, a subject in which students attempt to learn and understand numerous theoretical concepts, often without much success. A case in point is the understanding of the concepts current, voltage and resistance in simple electric circuits. In response to these problems, reform initiatives in education strive for a change of the classroom culture, putting emphasis on more authentic contexts and student activities containing elements of inquiry. The challenge then becomes choosing and combining these elements in such a manner that they foster an understanding of theoretical concepts. In this article we reflect on data collected and analyzed from a series of 12 grade 9 physics lessons on simple electric circuits. Drawing from a theoretical framework based on individual (conceptual change based) and socio-cultural views on learning, instruction was designed addressing known conceptual problems and attempting to create a physics (research) culture in the classroom. As the success of the lessons was limited, the focus of the study became to understand which inherent characteristics of inquiry based instruction complicate the process of constructing conceptual understanding. From the analysis of the data collected during the enactment of the lessons three tensions emerged: the tension between open inquiry and student guidance, the tension between students developing their own ideas and getting to know accepted scientific theories, and the tension between fostering scientific interest as part of a scientific research culture and the task oriented school culture. An outlook will be given on the implications for science lessons.

  14. Conducting Guided Inquiry in Science Classes Using Authentic, Archived, Web-Based Data

    ERIC Educational Resources Information Center

    Ucar, Sedat; Trundle, Kathy Cabe

    2011-01-01

    Students are often unable to collect the real-time data necessary for conducting inquiry in science classrooms. Web-based, real-time data could, therefore, offer a promising tool for conducting scientific inquiries within classroom environments. This study used a quasi-experimental research design to investigate the effects of inquiry-based…

  15. The Wisdom of Scientific Inquiry on Education. Science Education Information Reports, Occasional Paper Series, Science Paper 4.

    ERIC Educational Resources Information Center

    Glass, Gene V.

    After distinguishing between elucidatory inquiry (directed toward theory and model construction for understanding and explaining phenomena) and evaluative inquiry (determining the worth of a thing), and providing nine differentiating characteristics, the author discusses the progress of educational elucidatory inquiry. He concludes that it has not…

  16. The Science ELF: Assessing the enquiry levels framework as a heuristic for professional development

    NASA Astrophysics Data System (ADS)

    Wheeler, Lindsay B.; Bell, Randy L.; Whitworth, Brooke A.; Maeng, Jennifer L.

    2015-01-01

    This study utilized an explanatory sequential mixed methods approach to explore randomly assigned treatment and control participants' frequency of inquiry instruction in secondary science classrooms. Eleven treatment participants received professional development (PD) that emphasized a structured approach to inquiry instruction, while 10 control participants received no PD. Two representative treatment participants were interviewed and observed to provide an in-depth understanding of inquiry instruction and factors affecting implementation. Paired t-tests were used to analyze quantitative data from observation forms, and a constant comparative approach was used to analyze qualitative data from surveys, interviews, purposeful observations and artifacts. Results indicated that treatment participants implemented inquiry significantly more frequently than control participants (p < .01). Two treatment participants' instruction revealed that both used a similar structure of inquiry but employed different types of interactions and emphasized different scientific practices. These differences may be explained by the participants' understandings of and beliefs about inquiry and structuring inquiry. The present study has the potential to inform how methods of structuring inquiry instruction and teaching scientific practices are addressed in teacher preparation.

  17. Mixing and Making Changes

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2006-01-01

    Young children do science exploration and observation every day in their play. They spontaneously engage in parts of the scientific inquiry process--wondering, asking a question, planning how to answer the question, documenting their work, thinking about what happened, and sharing their results with others. Conducting an entire experiment is…

  18. Investigating Students' Similarity Judgments in Organic Chemistry

    ERIC Educational Resources Information Center

    Graulich, N.; Bhattacharyya, G.

    2017-01-01

    Organic chemistry is possibly the most visual science of all chemistry disciplines. The process of scientific inquiry in organic chemistry relies on external representations, such as Lewis structures, mechanisms, and electron arrows. Information about chemical properties or driving forces of mechanistic steps is not available through direct…

  19. Talking Science

    ERIC Educational Resources Information Center

    Shwartz, Yael; Weizman, Ayelet; Fortus, David; Sutherland, LeeAnn; Merrit, Joi; Krajcik, Joe

    2009-01-01

    Science is a social process--one that involves particular ways of talking, reasoning, observing, analyzing, and writing, which often have meaning only when shared within the scientific community. Discussions are one of the best ways to help students learn to "talk science" and construct understanding in a social context. Since inquiry is an…

  20. Reorienting Esthetic Knowing as an Appropriate "Object" of Scientific Inquiry to Advance Understanding of a Critical Pattern of Nursing Knowledge in Practice.

    PubMed

    Bender, Miriam; Elias, Dina

    The esthetic pattern of knowing is critical for nursing practice, yet remains weakly defined and understood. This gap has arguably relegated esthetic knowing to an "ineffable" creativity that resists transparency and understanding, which is a barrier to articulating its value for nursing and its importance in producing beneficial health outcomes. Current philosophy of science developments are synthesized to argue that esthetic knowing is an appropriate "object" of scientific inquiry. Examples of empirical scholarship that can be conceived as scientific inquiry into manifestations of esthetic knowing are highlighted. A program of research is outlined to advance a science of esthetic knowing.

  1. Development of a Model for Measuring Scientific Processing Skills Based on Brain-Imaging Technology: Focused on the Experimental Design Process

    ERIC Educational Resources Information Center

    Lee, Il-Sun; Byeon, Jung-Ho; Kim, Young-shin; Kwon, Yong-Ju

    2014-01-01

    The purpose of this study was to develop a model for measuring experimental design ability based on functional magnetic resonance imaging (fMRI) during biological inquiry. More specifically, the researchers developed an experimental design task that measures experimental design ability. Using the developed experimental design task, they measured…

  2. Inquiry Based Learning and Meaning Generation through Modelling on Geometrical Optics in a Constructionist Environment

    ERIC Educational Resources Information Center

    Kotsari, Constantina; Smyrnaiou, Zacharoula

    2017-01-01

    The central roles that modelling plays in the processes of scientific enquiry and that models play as the outcomes of that enquiry are well established (Gilbert & Boulter, 1998). Besides, there are considerable similarities between the processes and outcomes of science and technology (Cinar, 2016). In this study, we discuss how the use of…

  3. Inquiry Learning: Students' Perception of Light Wave Phenomena in an Informal Environment

    ERIC Educational Resources Information Center

    Ford, Ken

    2011-01-01

    This study involved identifying students' perception of light phenomena and determined if they learned the scientific concepts of light that were presented to them by an interactive science exhibit. The participants in this study made scientific inquiry about light by using a powerful white light source, a prism, converging lenses, diverging…

  4. Re-Visions of Psychology: Feminism as a Paradigm of Scientific Inquiry.

    ERIC Educational Resources Information Center

    Brownell, Arlene

    An intellectual revolution is described in which the logic-centered, value-free model that has served as the foundation for paradigms in psychology is being reevaluated. As part of the intellectual revolution, feminism is presented as a paradigm of scientific inquiry meeting Thomas Kuhn's definition. The question is posed of whether psychologists…

  5. Teaching Lab Report Writing through Inquiry: A Green Chemistry Stoichiometry Experiment for General Chemistry

    ERIC Educational Resources Information Center

    Cacciatore, Kristen L.; Sevian, Hannah

    2006-01-01

    We present an alternative to a traditional first-year chemistry laboratory experiment. This experiment has four key features: students utilize stoichiometry, learn and apply principles of green chemistry, engage in authentic scientific inquiry, and discover why each part of a scientific lab report is necessary. The importance and essential…

  6. Development and Validation of a Multimedia-Based Assessment of Scientific Inquiry Abilities

    ERIC Educational Resources Information Center

    Kuo, Che-Yu; Wu, Hsin-Kai; Jen, Tsung-Hau; Hsu, Ying-Shao

    2015-01-01

    The potential of computer-based assessments for capturing complex learning outcomes has been discussed; however, relatively little is understood about how to leverage such potential for summative and accountability purposes. The aim of this study is to develop and validate a multimedia-based assessment of scientific inquiry abilities (MASIA) to…

  7. Exploring English Language Learners (ELL) Experiences with Scientific Language and Inquiry within a Real Life Context

    ERIC Educational Resources Information Center

    Algee, Lisa M.

    2012-01-01

    English Language Learners (ELL) are often at a distinct disadvantage from receiving authentic science learning opportunites. This study explored English Language Learners (ELL) learning experiences with scientific language and inquiry within a real life context. This research was theoretically informed by sociocultural theory and literature on…

  8. Meaningful Science: Teachers Doing Inquiry + Teaching Science.

    ERIC Educational Resources Information Center

    Kielborn, Terrie L., Ed.; Gilmer, Penny J., Ed.

    This publication relates the experiences of seven K-8 teachers who participated in a science education doctoral cohort group during which each of the teachers engaged in a different real-world scientific research project. The idea was to immerse teachers in scientific research so that they could experience inquiry in science first-hand and become…

  9. Making the Grounds of Scientific Inquiry Visible in the Classroom

    ERIC Educational Resources Information Center

    Lucas, Deborah; Broderick, Nichole; Lehrer, Richard; Bohanan, Robert

    2005-01-01

    As every parent knows, children are no slouches at generating questions. But the scientific potential in a child's spontaneous question can easily be lost; children often fail to take the step beyond casual curiosity into systematic inquiry. Questioning is indeed robustly rooted in children's everyday ways of thinking about the world, but serious…

  10. Reading, Writing, and Conducting Inquiry about Science in Kindergarten

    ERIC Educational Resources Information Center

    Patrick, Helen; Mantzicopoulos, Panayota; Samarapungavan, Ala

    2009-01-01

    Over the past three years, the authors have worked with kindergarten teachers to develop study units with sequences of integrated science inquiry and literacy activities appropriate for kindergartners. Their work, which is part of the Scientific Literacy Project, has been very successful. The success of the Scientific Literacy Project (SLP) is in…

  11. The Texture of Educational Inquiry: An Exploration of George Herbert Mead's Concept of the Scientific.

    ERIC Educational Resources Information Center

    Franzosa, Susan Douglas

    1984-01-01

    Explores the implications of Mead's philosophic social psychology for current disputes concerning the nature of the scientific in educational studies. Mead's contextualization of the knower and the known are found to be compatible with a contemporary critique of positivist paradigms and a critical reconceptualization of educational inquiry.…

  12. Enhancing the Student Experiment Experience: Visible Scientific Inquiry through a Virtual Chemistry Laboratory

    ERIC Educational Resources Information Center

    Donnelly, Dermot; O'Reilly, John; McGarr, Oliver

    2013-01-01

    Practical work is often noted as a core reason many students take on science in secondary schools (high schools). However, there are inherent difficulties associated with classroom practical work that militate against scientific inquiry, an approach espoused by many science educators. The use of interactive simulations to facilitate student…

  13. Scientific Inquiry Based Professional Development Models in Teacher Education

    ERIC Educational Resources Information Center

    Corlu, Mehmet Ali; Corlu, M. Sencer

    2012-01-01

    Scientific inquiry helps students develop critical thinking abilities and enables students to think and construct knowledge like a scientist. The study describes a method course implementation at a major public teachers college in Turkey. The main goal of the course was to improve research and teaching abilities of prospective physics teachers…

  14. Crayfish Behavior: Observing Arthropods to Learn about Science & Scientific Inquiry

    ERIC Educational Resources Information Center

    Rop, Charles J.

    2010-01-01

    This is a set of animal behavior investigations in which students will practice scientific inquiry as they observe crayfish, ask questions, and discuss territoriality, social interactions, and other behaviors. In doing this, they hone their skills of observation, learn to record and analyze data, control for variables, write hypotheses, make…

  15. A Context-Aware Ubiquitous Learning Approach to Conducting Scientific Inquiry Activities in a Science Park

    ERIC Educational Resources Information Center

    Hwang, Gwo-Jen; Tsai, Chin-Chung; Chu, Hui-Chun; Kinshuk; Chen, Chieh-Yuan

    2012-01-01

    Fostering students' scientific inquiry competence has been recognised as being an important and challenging objective of science education. To strengthen the understanding of science theories or notations, researchers have suggested conducting some learning activities in the field via operating relevant devices. In a traditional infield scientific…

  16. Snapshots of Authentic Scientific Inquiry and Teacher Preparation: Undergraduate STEM Courses, Preservice and Inservice Teachers' Experiences

    ERIC Educational Resources Information Center

    French, Debbie Ann

    2016-01-01

    In this dissertation, the researcher describes authentic scientific inquiry (ASI) within three stages of teacher preparation and development: a1) undergraduate STEM courses, b2) preservice secondary science education methods courses, and c3) inservice teacher professional development (PD). Incorporating (ASI)--pedagogy closely modeling the…

  17. A Method for Understanding Their Method: Discovering Scientific Inquiry through Biographies of Famous Scientists

    ERIC Educational Resources Information Center

    Fairweather, Elizabeth; Fairweather, Thomas

    2010-01-01

    Mendel and his peas. Goodall and her chimpanzees. Bentley and his snowflakes. Pasteur and his sheep. Not only do these stories intrigue students, but they also demonstrate the trials and tribulations associated with scientific inquiry. Using scientists' biographies piques student interest while providing an added dimension to their understanding…

  18. Informal Formative Assessment and Scientific Inquiry: Exploring Teachers' Practices and Student Learning

    ERIC Educational Resources Information Center

    Ruiz-Primo, Maria Araceli; Furtak, Erin Marie

    2006-01-01

    What does informal formative assessment look like in the context of scientific inquiry teaching? Is it possible to identify different levels of informal assessment practices? Can different levels of informal assessment practices be related to levels of student learning? This study addresses these issues by exploring how 4 middle school science…

  19. Invasion Ecology. Teacher's Guide [and Student Edition]. Cornell Scientific Inquiry Series.

    ERIC Educational Resources Information Center

    Krasny, Marianne E.; Trautmann, Nancy; Carlsen, William; Cunningham, Christine

    This book contains the teacher's guide of the Environmental Inquiry curriculum series developed at Cornell University. It is designed to teach learning skills for investigating the behaviors of non-native and native species and demonstrate how to apply scientific knowledge to solve real-life problems. This book focuses on strange intruders…

  20. Teacher Argumentation in the Secondary Science Classroom: Images of Two Modes of Scientific Inquiry

    ERIC Educational Resources Information Center

    Gray, Ron E.

    2009-01-01

    The purpose of this exploratory study was to examine scientific arguments constructed by secondary science teachers during instruction. The analysis focused on how arguments constructed by teachers differed based on the mode of inquiry underlying the topic. Specifically, how did the structure and content of arguments differ between experimentally…

  1. Design and validation of general biology learning program based on scientific inquiry skills

    NASA Astrophysics Data System (ADS)

    Cahyani, R.; Mardiana, D.; Noviantoro, N.

    2018-03-01

    Scientific inquiry is highly recommended to teach science. The reality in the schools and colleges is that many educators still have not implemented inquiry learning because of their lack of understanding. The study aims to1) analyze students’ difficulties in learning General Biology, 2) design General Biology learning program based on multimedia-assisted scientific inquiry learning, and 3) validate the proposed design. The method used was Research and Development. The subjects of the study were 27 pre-service students of general elementary school/Islamic elementary schools. The workflow of program design includes identifying learning difficulties of General Biology, designing course programs, and designing instruments and assessment rubrics. The program design is made for four lecture sessions. Validation of all learning tools were performed by expert judge. The results showed that: 1) there are some problems identified in General Biology lectures; 2) the designed products include learning programs, multimedia characteristics, worksheet characteristics, and, scientific attitudes; and 3) expert validation shows that all program designs are valid and can be used with minor revisions. The first section in your paper.

  2. Effects of explicit and implicit prompts on students' inquiry practices in computer-supported learning environments in high school earth science

    NASA Astrophysics Data System (ADS)

    Fang, Su-Chi; Hsu, Ying-Shao; Hsu, Wei Hsiu

    2016-07-01

    The study explored how to best use scaffolds for supporting students' inquiry practices in computer-supported learning environments. We designed a series of inquiry units assisted with three versions of written inquiry prompts (generic and context-specific); that is, three scaffold-fading conditions: implicit, explicit, and fading. We then examined how the three scaffold-fading conditions influenced students' conceptual understanding, understanding of scientific inquiry, and inquiry abilities. Three grade-10 classes (N = 105) participated in this study; they were randomly assigned to and taught in the three conditions. Data-collection procedures included a pretest-posttest approach and in-depth observations of the target students. The findings showed that after these inquiry units, all of the students exhibited significant learning gains in conceptual knowledge and performed better inquiry abilities regardless of which condition was used. The explicit and fading conditions were more effective in enhancing students' understanding of scientific inquiry. The fading condition tended to better support the students' development of inquiry abilities and help transfer these abilities to a new setting involving an independent socioscientific task about where to build a dam. The results suggest that fading plays an essential role in enhancing the effectiveness of scaffolds.

  3. Pedagogical Practices to Support Classroom Cultures of Scientific Inquiry

    ERIC Educational Resources Information Center

    Herrenkohl, Leslie Rupert; Tasker, Tammy; White, Barbara

    2011-01-01

    This article examines the pedagogical practices of two science inquiry teachers and their students using a Web-based system called Web of Inquiry (WOI). There is a need to build a collective repertoire of pedagogical practices that can assist elementary and middle school teachers as they support students to develop a complex model of inquiry based…

  4. Expressive Thought and Non-Rational Inquiry.

    ERIC Educational Resources Information Center

    Newton, Richard F.

    A significant problem with inquiry teaching is that too much emphasis is placed on inquiry as a logical, scientific, and rational way of knowing. Feelings and mood are rarely dealt with except in rather off-handed remarks about intuitive leaps and creative encounters. Few consider what a model of inquiry based on mood and feeling might look like.…

  5. Bridging Inquiry-Based Science and Constructionism: Exploring the Alignment between Students Tinkering with Code of Computational Models and Goals of Inquiry

    ERIC Educational Resources Information Center

    Wagh, Aditi; Cook-Whitt, Kate; Wilensky, Uri

    2017-01-01

    Research on the design of learning environments for K-12 science education has been informed by two bodies of literature: inquiry-based science and Constructionism. Inquiry-based science has emphasized engagement in activities that reflect authentic scientific practices. Constructionism has focused on designing intuitively accessible authoring…

  6. Scientific Inquiry and Real-Life Applications Bring Middle School Students up to Standard

    ERIC Educational Resources Information Center

    Dass, Pradeep M.; Kilby, Diana; Chappell, Alicia

    2005-01-01

    The emphasis in both the National Science Education Standards (NSES) and "Science for All Americans" is on "science as inquiry" and inquiry-based science instruction as a way to accomplish the goals of science literacy. The NSES considers science as inquiry as a part of the content of science and include science as inquiry…

  7. Designing for Learner Engagement in Middle School Science: Technology, Inquiry, and the Hierarchies of Engagement

    ERIC Educational Resources Information Center

    Harmer, Andrea J.; Cates, Ward Mitchell

    2007-01-01

    Engaging middle-school students in scientific inquiry is typically recognized as important, but difficult. Designed to foster learner engagement, this method used an online, problem-based, science inquiry that investigated the West Nile virus during four weeks of collaborative classroom sessions. The inquiry prototype was authored in WISE, the…

  8. A Well-Started Beginning Elementary Teacher's Beliefs and Practices in Relation to Reform Recommendations about Inquiry-Based Science

    ERIC Educational Resources Information Center

    Avraamidou, Lucy

    2017-01-01

    Given reform recommendations emphasizing scientific inquiry and empirical evidence pointing to the difficulties beginning teachers face in enacting inquiry-based science, this study explores a well-started beginning elementary teacher's (Sofia) beliefs about inquiry-based science and related instructional practices. In order to explore Sofia's…

  9. Deathcore, creativity, and scientific thinking

    USGS Publications Warehouse

    Angeler, David G.; Sundstrom, Shana M.; Allen, Craig R.

    2016-01-01

    BackgroundMajor scientific breakthroughs are generally the result of materializing creative ideas, the result of an inductive process that sometimes spontaneously and unexpectedly generates a link between thoughts and/or objects that did not exist before. Creativity is the cornerstone of scientific thinking, but scientists in academia are judged by metrics of quantification that often leave little room for creative thinking. In many scientific fields, reductionist approaches are rewarded and new ideas viewed skeptically. As a result, scientific inquiry is often confined to narrow but safe disciplinary ivory towers, effectively preventing profoundly creative explorations that could yield unexpected benefits.New informationThis paper argues how apparently unrelated fields specifically music and belief systems can be combined in a provocative allegory to provide novel perspectives regarding patterns in nature, thereby potentially inspiring innovation in the natural, social and other sciences. The merger between basic human tensions such as those embodied by religion and music, for example the heavy metal genre of deathcore, may be perceived as controversial, challenging, and uncomfortable. However, it is an example of moving the thinking process out of unconsciously established comfort zones, through the connection of apparently unrelated entities. We argue that music, as an auditory art form, has the potential to enlighten and boost creative thinking in science. Metal, as a fast evolving and diversifying extreme form of musical art, may be particularly suitable to trigger surprising associations in scientific inquiry. This may pave the way for dealing with questions about what we don´t know that we don´t know in a fast-changing planet.

  10. Examining Educational Climate Change Technology: How Group Inquiry Work with Realistic Scientific Technology Alters Classroom Learning

    NASA Astrophysics Data System (ADS)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2018-04-01

    This study with 79 students in Montreal, Quebec, compared the educational use of a National Aeronautics and Space Administration (NASA) global climate model (GCM) to climate education technologies developed for classroom use that included simpler interfaces and processes. The goal was to show how differing climate education technologies succeed and fail at getting students to evolve in their understanding of anthropogenic global climate change (AGCC). Many available climate education technologies aim to convey key AGCC concepts or Earth systems processes; the educational GCM used here aims to teach students the methods and processes of global climate modeling. We hypothesized that challenges to learning about AGCC make authentic technology-enabled inquiry important in developing accurate understandings of not just the issue but how scientists research it. The goal was to determine if student learning trajectories differed between the comparison and treatment groups based on whether each climate education technology allowed authentic scientific research. We trace learning trajectories using pre/post exams, practice quizzes, and written student reflections. To examine the reasons for differing learning trajectories, we discuss student pre/post questionnaires, student exit interviews, and 535 min of recorded classroom video. Students who worked with a GCM demonstrated learning trajectories with larger gains, higher levels of engagement, and a better idea of how climate scientists conduct research. Students who worked with simpler climate education technologies scored lower in the course because of lower levels of engagement with inquiry processes that were perceived to not actually resemble the work of climate scientists.

  11. Reframing Science Learning and Teaching: A Communities of Practice Approach

    ERIC Educational Resources Information Center

    Sansone, Anna

    2018-01-01

    Next Generation Science Standards encourage science instruction that offers not only opportunities for inquiry but also the diverse social and cognitive processes involved in scientific thinking and communication. This article gives an introduction to Lave and Wenger's (1991) communities of practice framework as a potential way of viewing…

  12. Designing for Family Science Explorations Anytime, Anywhere

    ERIC Educational Resources Information Center

    Luce, Megan R.; Goldman, Shelley; Vea, Tanner

    2017-01-01

    Families play an important role in informal science learning, but they may need supports for engaging in science that is exploratory, inquiry based, and builds on family practices. We designed resources that frame scientific sensemaking as an active and playful process of exploration in which family members are coparticipants. This approach…

  13. Reinvigorating Science Journals

    ERIC Educational Resources Information Center

    Bricker, Patricia

    2007-01-01

    Science-themed books are wonderful tools for emphasizing the importance of observation and journaling. They can also be used to effectively promote literacy skills in science. This article shares a selection of nature books and the ways teachers and students used them to engage in the process of scientific inquiry. (Contains 3 figures and 10…

  14. Snap! Catch Students' Attention with Mousetrap Vehicles

    ERIC Educational Resources Information Center

    Roberts, Ed; Gonzalez-Espada, Wilson J.

    2006-01-01

    The current paradigm in science education calls for greater emphasis on guiding students in active and extended scientific inquiry. This is supported by research suggesting that using a hands-on approach to learning fosters ownership in the learning process and allows students to gain greater appreciation for the design and implementation of…

  15. Teaching Evolution through Inquiry-Based Lessons of Uncontroversial Science

    ERIC Educational Resources Information Center

    DeSantis, Larisa R. G.

    2009-01-01

    Antibiotic resistance, genetically modified produce, avian flu, and invasive species persistence are just a few scientific issues pulled from the headlines that affect society on a daily basis. Understanding these issues requires knowledge of evolutionary processes. Educating students about evolution may never have been as necessary as it is…

  16. The 6-E Learning Model

    ERIC Educational Resources Information Center

    Chessin, Debby A.; Moore, Virginia J.

    2004-01-01

    Most of teachers are familiar with the 5-E model of science instruction-engage, Explore, Explain, Expand, and Evaluate (Trowbridge and Bybee 1990). It is a valuable tool that allows teachers to structure science experiences so students use the processes of scientific inquiry to construct and connect ideas rather than simply memorize seemingly…

  17. Bringing the Ocean to the Precollege Classroom through field Investigations at a National Underwater Laboratory

    DTIC Science & Technology

    1998-09-30

    was to use field experiences to 1) enhance educator capability in science content and skills, 2) immerse school systems in an inquiry-driven, active ... learning process, and 3) establish links to real-time scientific information in support of classroom activities. Participants capability in marine

  18. Using Peer Feedback to Improve Students' Scientific Inquiry

    NASA Astrophysics Data System (ADS)

    Tasker, Tammy Q.; Herrenkohl, Leslie Rupert

    2016-02-01

    This article examines a 7th grade teacher's pedagogical practices to support her students to provide peer feedback to one another using technology during scientific inquiry. This research is part of a larger study in which teachers in California and Washington and their classes engaged in inquiry projects using a Web-based system called Web of Inquiry. Videotapes of classroom lessons and artifacts such as student work were collected as part of the corpus of data. In the case examined, Ms. E supports her students to collectively define "meaningful feedback," thereby improving the quality of feedback that was provided in the future. This is especially timely, given the attention in Next Generation Science Standards to cross-cutting concepts and practices that require students discuss and debate ideas with each other in order to improve their understanding and their written inquiry reports (NGSS, 2013).

  19. Bringing Back Books

    ERIC Educational Resources Information Center

    Cervetti, Gina; Barber, Jacqueline

    2009-01-01

    How can you connect, supplement, and extend students' firsthand investigations? Look toward your bookshelves for a clue. Books and other textual materials can serve the following roles in support of scientific inquiry: providing context, modeling, supporting firsthand inquiry, supporting secondhand inquiry, and delivering content. Each of these…

  20. Exploring students' interactions, arguments, and reflections in general chemistry laboratories with different levels of inquiry

    NASA Astrophysics Data System (ADS)

    Xu, Haozhi

    Students' learning in inquiry-based investigations has drawn considerable attention of the science education community. Inquiry activities can be viewed as knowledge construction processes in which students are expected to develop conceptual understanding and critical thinking abilities. Our study aimed to explore the effect of experiments with different levels of inquiry on students' interactions in the laboratory setting, as well as on students' written arguments and reflections. Our results are based on direct observations of group work in college general chemistry laboratories and analysis of associated written lab reports. The analysis of students' interactions in the laboratory was approached from three major analytic dimensions: Functional analysis, cognitive processing, and social processing. According to our results, higher levels of inquiry were associated with an increase in the relative frequency of episodes where students were engaged in proposing ideas versus asking and answering each others' questions. Higher levels of inquiry also favored episodes in which experimental work was approached in a more exploratory (versus procedural) manner. However, no major changes were observed in the extent to which students were engaged in either interpretive discussions of central scientific concepts and ideas. As part of our study we were also interested in characterizing the effects of experiments involving different levels of inquiry on the structure and adequacy of university general chemistry students' written arguments, as well as on the nature of their reflections about laboratory work. Our findings indicate that the level of inquiry of the observed experiments had no significant impact on the structure or adequacy of arguments generated by students. However, the level of inquiry of the experiments seemed to have a major impact on several areas of students' written reflections about laboratory work. In general, our results elicit trends and highlight issues that can help instructors and curriculum developers identify strategies to better support and scaffold productive engagement in the laboratory. Our results suggest that careful design and implementation of instructional interventions may be needed to maximize the learning effects of the more open-ended inquiry activities at the college level.

  1. The Communication in Science Inquiry Project (CISIP): A Project to Enhance Scientific Literacy through the Creation of Science Classroom Discourse Communities

    ERIC Educational Resources Information Center

    Baker, Dale R.; Lewis, Elizabeth B.; Purzer, Senay; Watts, Nievita Bueno; Perkins, Gita; Uysal, Sibel; Wong, Sissy; Beard, Rachelle; Lang, Michael

    2009-01-01

    This study reports on the context and impact of the Communication in Science Inquiry Project (CISIP) professional development to promote teachers' and students' scientific literacy through the creation of science classroom discourse communities. The theoretical underpinnings of the professional development model are presented and key professional…

  2. The Effects of Computer-Supported Inquiry-Based Learning Methods and Peer Interaction on Learning Stellar Parallax

    ERIC Educational Resources Information Center

    Ruzhitskaya, Lanika

    2011-01-01

    The presented research study investigated the effects of computer-supported inquiry-based learning and peer interaction methods on effectiveness of learning a scientific concept. The stellar parallax concept was selected as a basic, and yet important in astronomy, scientific construct, which is based on a straightforward relationship of several…

  3. Sailing toward Understanding Surface Currents: A Science and Geography Integration Activity for Upper-Elementary Students

    ERIC Educational Resources Information Center

    Eidietis, Laura; Rutherford, Sandra

    2009-01-01

    In the activities presented in this article, students mimic real scientists while constructing predictions and scientific explanations about surface currents. The activities are inspired by and couched within true scientific inquiries regarding the ocean and the North American Great Lakes. Students engage in a classroom inquiry and use map-reading…

  4. Examining Elementary Students' Development of Oral and Written Argumentation Practices through Argument-Based Inquiry

    ERIC Educational Resources Information Center

    Chen, Ying-Chih; Hand, Brian; Park, Soonhye

    2016-01-01

    Argumentation, and the production of scientific arguments are critical elements of inquiry that are necessary for helping students become scientifically literate through engaging them in constructing and critiquing ideas. This case study employed a mixed methods research design to examine the development in 5th grade students' practices of oral…

  5. Using Cloud-Computing Applications to Support Collaborative Scientific Inquiry: Examining Pre-Service Teachers' Perceived Barriers to Integration

    ERIC Educational Resources Information Center

    Donna, Joel D.; Miller, Brant G.

    2013-01-01

    Technology plays a crucial role in facilitating collaboration within the scientific community. Cloud-computing applications, such as Google Drive, can be used to model such collaboration and support inquiry within the secondary science classroom. Little is known about pre-service teachers' beliefs related to the envisioned use of collaborative,…

  6. Effect of Technology-Embedded Scientific Inquiry on Senior Science Student Teachers' Self-Efficacy

    ERIC Educational Resources Information Center

    Calik, Muammer

    2013-01-01

    The aim of this study was to investigate the effect of technology-embedded scientific inquiry (TESI) on senior science student teachers' (SSSTs) self-efficacy. The sample consisted of 117 SSSTs (68 females and 49 males aged 21-23 years) enrolled in an Environmental Chemistry elective course. Within a quasi-experimental design, the…

  7. Exploring South African High School Teachers' Conceptions of the Nature of Scientific Inquiry: A Case Study

    ERIC Educational Resources Information Center

    Dudu, Washington T.

    2014-01-01

    The paper explores conceptions of the nature of scientific inquiry (NOSI) held by five teachers who were purposively and conveniently sampled. Teachers' conceptions of the NOSI were determined using a Probes questionnaire. To confirm teachers' responses, a semi-structured interview was conducted with each teacher. The Probes questionnaire was…

  8. Cricket Behavior: Observing Insects to Learn about Science & Scientific Inquiry

    ERIC Educational Resources Information Center

    Rop, Charles J.

    2008-01-01

    Biology teachers know how important it is for them and for their students to engage first-hand with nature. Ideally, bringing students to fields, woodlands, and wetlands to observe, explore, and wonder is the best way to stimulate curiosity and practice scientific inquiry. However, for many reasons, field excursions are not always practical or…

  9. Promoting Argumentative Practice in Socio-Scientific Issues through a Science Inquiry Activity

    ERIC Educational Resources Information Center

    Nam, Younkyeong; Chen, Ying-Chih

    2017-01-01

    This study examines how the use of a science inquiry activity in an environmental socio-scientific issue (SSI) impacts pre-service teachers' argumentative practice in two ways: social negotiation and epistemic understanding of arguments. Twenty pre-service science teachers participated in this study as a part of their science methods class. Small…

  10. Guiding Students to Develop an Understanding of Scientific Inquiry: A Science Skills Approach to Instruction and Assessment

    ERIC Educational Resources Information Center

    Stone, Elisa M.

    2014-01-01

    New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific…

  11. Mutation-Based Learning to Improve Student Autonomy and Scientific Inquiry Skills in a Large Genetics Laboratory Course

    ERIC Educational Resources Information Center

    Wu, Jinlu

    2013-01-01

    Laboratory education can play a vital role in developing a learner's autonomy and scientific inquiry skills. In an innovative, mutation-based learning (MBL) approach, students were instructed to redesign a teacher-designed standard experimental protocol by a "mutation" method in a molecular genetics laboratory course. Students could…

  12. The Influence of RET's on Elementary and Secondary Grade Teachers' Views of Scientific Inquiry

    ERIC Educational Resources Information Center

    Bahbah, Sibel; Golden, Barry W.; Roseler, Katrina; Elderle, Patrick; Saka, Yavuz; Shoutherland, Sherry A.

    2013-01-01

    This study explores in-service elementary and secondary science teachers' conceptions of the Nature of Scientific Inquiry and the influence of participation in two different Research Experience for Teacher (RET) programs had on these conceptions. Participant teachers attended one of two six week RET programs in which they worked with scientists to…

  13. Scaffolding Middle School Students' Construction of Scientific Explanations: Comparing a Cognitive versus a Metacognitive Evaluation Approach

    ERIC Educational Resources Information Center

    Wang, Chia-Yu

    2015-01-01

    This study investigated the effects of scaffolds as cognitive prompts and as metacognitive evaluation on seventh-grade students' growth of content knowledge and construction of scientific explanations in five inquiry-based biology activities. Students' scores on multiple-choice pretest and posttest and worksheets for five inquiry-based activities…

  14. 5E Mobile Inquiry Learning Approach for Enhancing Learning Motivation and Scientific Inquiry Ability of University Students

    ERIC Educational Resources Information Center

    Cheng, Ping-Han; Yang, Ya-Ting Carolyn; Chang, Shih-Hui Gilbert; Kuo, Fan-Ray Revon

    2016-01-01

    In recent years, many universities have opened courses to increase students' knowledge in the field of nanotechnology. These have been shown to increase students' knowledge of nanotechnology, but beyond this, advanced and applied nanotechnology courses should also focus on learning motivation and scientific enquiry abilities to equip students to…

  15. Development and use of an instrument to measure scientific inquiry and related factors

    NASA Astrophysics Data System (ADS)

    Dunbar, Terry Frank

    The use of the scientific inquiry method of teaching science was investigated in one district's elementary schools. The study generated data directly from Albuquerque Public Schools fourth- and fifth-grade teachers through a mail-out survey and through observation. Two forms of an inquiry evaluation research instrument (Elementary Science Inquiry Survey - ESIS) were created. The ESIS-A is a classroom observation tool. The ESIS-B is a survey questionnaire designed to collect information from teachers. The study was designed first to establish reliability and validity for both forms of the instrument. The study made use of multiple regression and exploratory factor analysis. Sources used to establish the instruments' reliability and validity included: (1) Input from an international panel (qualitative analysis of comments sent by raters and quantitative analysis of numerical ratings sent by raters); (2) Cronbach's alpha; (3) Results of factor analysis; (4) Survey respondents' comments (qualitative analysis); (5) Teacher observation data. Cronbach's alpha for the data set was .8955. Inquiry practices were reported to occur between twice per week and three times per week. Teachers' comments regarding inquiry were reported. The ESIS was used to collect inquiry self-report data and teacher background data. The teacher background data included teacher science knowledge and information about their standards awareness and implementation. The following teacher knowledge factors were positively correlated with inquiry use: semesters of college science, science workshops taken, conducted scientific research, and SIMSE (NSF institute) participation. The following standards awareness and implementation factors were positively correlated with inquiry use: familiarity with the National Science Education Standards, familiarity with New Mexico science standards, state or national standards as a curriculum selection factor, student interest as a curriculum selection factor, and "no limits" indicated as an inquiry-limiting factor. The following eight variables (all inquiry-limiting factors) were negatively correlated with inquiry use: available instructional materials, student prior knowledge/reading level, lack of experience with inquiry, not enough time, unsuccessful previous attempts, doubts about students' capability, insufficient time and support, and insufficient background in science.

  16. Inquiry Science and Active Reading

    ERIC Educational Resources Information Center

    Sandifer, Cody

    2011-01-01

    Pairing an inquiry lesson with a traditional reading activity creates a jarring philosophical mismatch between the interaction, deep thinking, and scientific reasoning that drives meaningful inquiry instruction and the "scan the text, copy the answers" response often obtained from elementary nonfiction readers. Realizing that there must be a…

  17. Postpositivist Conceptions of Science in Educational Administration: An Introduction.

    ERIC Educational Resources Information Center

    Willower, Donald J.

    1996-01-01

    Presents a naturalistic perspective on inquiry as a compelling philosophy for educational administration. Naturalistic inquiry is ethical, open, growing, self-corrective, fallible, and resembles scientific inquiry. Subjectivism, neo-Marxist critical theory, postmodernism, and identity politics are all creatures of the times. Thriving on relativism…

  18. Sustaining inquiry-based teaching methods in the middle school science classroom

    NASA Astrophysics Data System (ADS)

    Murphy, Amy Fowler

    This dissertation used a combination of case study and phenomenological research methods to investigate how individual teachers of middle school science in the Alabama Math, Science, and Technology Initiative (AMSTI) program sustain their use of inquiry-based methods of teaching and learning. While the overall context for the cases was the AMSTI program, each of the four teacher participants in this study had a unique, individual context as well. The researcher collected data through a series of interviews, multiple-day observations, and curricular materials. The interview data was analyzed to develop a textural, structural, and composite description of the phenomenon. The Reformed Teaching Observation Protocol (RTOP) was used along with the Assesing Inquiry Potential (AIP) questionnaire to determine the level of inquiry-based instruction occuring in the participants classrooms. Analysis of the RTOP data and AIP data indicated all of the participants utilized inquiry-based methods in their classrooms during their observed lessons. The AIP data also indicated the level of inquiry in the AMSTI curricular materials utilized by the participants during the observations was structured inquiry. The findings from the interview data suggested the ability of the participants to sustain their use of structured inquiry was influenced by their experiences with, beliefs about, and understandings of inquiry. This study contributed to the literature by supporting existing studies regarding the influence of teachers' experiences, beliefs, and understandings of inquiry on their classroom practices. The inquiry approach stressed in current reforms in science education targets content knowledge, skills, and processes needed in a future scientifically literate citizenry.

  19. A Comparative Analysis of Earth Science Curriculum Using Inquiry Methodology between Korean and the U.S. Textbooks

    ERIC Educational Resources Information Center

    Park, Mira; Park, Do-Yong; Lee, Robert E.

    2009-01-01

    The purpose of this study is to investigate in what ways the inquiry task of teaching and learning in earth science textbooks reflect the unique characteristics of earth science inquiry methodology, and how it provides students with opportunities to develop their scientific reasoning skills. This study analyzes a number of inquiry activities in…

  20. Bit by Bit or All at Once? Splitting up the Inquiry Task to Promote Children's Scientific Reasoning

    ERIC Educational Resources Information Center

    Lazonder, Ard W.; Kamp, Ellen

    2012-01-01

    This study examined whether and why assigning children to a segmented inquiry task makes their investigations more productive. Sixty-one upper elementary-school pupils engaged in a simulation-based inquiry assignment either received a multivariable inquiry task (n = 21), a segmented version of this task that addressed the variables in successive…

  1. Science Teachers' Views and Stereotypes of Religion, Scientists and Scientific Research: A call for scientist-science teacher partnerships to promote inquiry-based learning

    NASA Astrophysics Data System (ADS)

    Mansour, Nasser

    2015-07-01

    Despite a growing consensus regarding the value of inquiry-based learning (IBL) for students' learning and engagement in the science classroom, the implementation of such practices continues to be a challenge. If science teachers are to use IBL to develop students' inquiry practices and encourage them to think and act as scientists, a better understanding of factors that influence their attitudes towards scientific research and scientists' practices is very much needed. Within this context there is a need to re-examine the science teachers' views of scientists and the cultural factors that might have an impact on teachers' views and pedagogical practices. A diverse group of Egyptian science teachers took part in a quantitative-qualitative study using a questionnaire and in-depth interviews to explore their views of scientists and scientific research, and to understand how they negotiated their views of scientists and scientific research in the classroom, and how these views informed their practices of using inquiry in the classroom. The findings highlighted how the teachers' cultural beliefs and views of scientists and scientific research had constructed idiosyncratic pedagogical views and practices. The study suggested implications for further research and argued for teacher professional development based on partnerships with scientists.

  2. Pre-university Chemistry Students in a Mimicked Scholarly Peer Review

    NASA Astrophysics Data System (ADS)

    van Rens, Lisette; Hermarij, Philip; Pilot, Albert; Beishuizen, Jos; Hofman, Herman; Wal, Marjolein

    2014-10-01

    Peer review is a significant component in scientific research. Introducing peer review into inquiry processes may be regarded as an aim to develop student understanding regarding quality in inquiries. This study examines student understanding in inquiry peer reviews among pre-university chemistry students, aged 16-17, when they enact a design of a mimicked scholarly peer review. This design is based on a model of a human activity system. Twenty-five different schools in Brazil, Germany, Poland and The Netherlands participated. The students (n = 880) conducted in small groups (n = 428) open inquiries on fermentation. All groups prepared an inquiry report for peer review. These reports were published on a website. Groups were randomly paired in an internet symposium, where they posted review comments to their peers. These responses were qualitatively analyzed on small groups' level of understanding regarding seven categories: inquiry question, hypothesis, management of control variables, accurate measurement, presenting results, reliability of results, discussion and conclusion. The mimicked scholarly review prompted a collective practice. Student understanding was significantly well on presenting results, discussion and conclusion, and significantly less on inquiry question and reliability of results. An enacted design, based on a model of a human activity system, created student understanding of quality in inquiries as well as an insight in a peer-reviewing practice. To what extent this model can be applied in a broader context of design research in science education needs further study.

  3. International Journal of Educology: A Journal of Research, Inquiry and Development about the Educational Process from an Educological Perspective, 1987-1991.

    ERIC Educational Resources Information Center

    Christensen, James E., Ed.; Fisher, James E., Ed.

    1991-01-01

    The "International Journal of Educology" publishes works that examine the educational process from an educological perspective. The term educology means knowledge about education and has been in use since the seminal work in educology by L. W. Harding in the 1950s. The educological perspective is inclusive of scientific, praxiological,…

  4. Tracking the Footprints Puzzle: The Problematic Persistence of Science-as-Process in Teaching the Nature and Culture of Science

    ERIC Educational Resources Information Center

    Ault, Charles R., Jr.; Dodick, Jeff

    2010-01-01

    For many decades, science educators have asked, "In what ways should learning the content of traditional subjects serve as the means to more general ends, such as understanding the nature of science or the processes of scientific inquiry?" Acceptance of these ends reduces the role of disciplinary context; the "Footprints Puzzle" and Oregon's…

  5. Motion in action: A study of second graders' trajectories of experience during guided inquiry science instruction

    NASA Astrophysics Data System (ADS)

    Hapgood, Susanna Elizabeth

    This interpretive case study describes a 10-day inquiry science program of study of motion down inclined planes during which a class of 21 second graders investigated scientific relationships such as mass and speed, speed and momentum, and mass and momentum via both text-based experiences ("second-hand investigations") and hands-on materials-based experiments ("first-hand investigations"). Data sources included over 11 hours of videotaped instruction in addition to children's written work, class-generated artifacts, and paper-and-pencil pre- and posttests. Content analyses informed by both sociocultural and developmental perspectives revealed that, in addition to a significant increase in pre- to posttest scores, children in the class engaged in several processes integral to inquiry, namely, (a) using data as evidence, (b) evaluating investigative procedures, and (c) making sense of multiple forms of representations. In addition, the study describes the range of and shifts in children's ideas about scientific relationships fundamental to developing an understanding of motion. Many children were observed to make causal attributions involving a relationship between two variables, such as the mass and momentum of a ball rolling down a ramp. Discussed are mediating factors such as the teacher's role in scaffolding the class's investigations and features of the innovative "scientists' notebook" texts, which were integral to the instruction. Also presented is evidence of first-hand and second-hand investigations working in concert to provide the elementary school students with rich opportunities to learn and to express their developing understandings of scientific ideas. This study provides a rare glimpse of primary-grade inquiry-based science instruction within a classroom context.

  6. Using Rubrics as a Scientific Writing Instructional Method in Early Stage Undergraduate Neuroscience Study.

    PubMed

    Clabough, Erin B D; Clabough, Seth W

    2016-01-01

    Scientific writing is an important communication and learning tool in neuroscience, yet it is a skill not adequately cultivated in introductory undergraduate science courses. Proficient, confident scientific writers are produced by providing specific knowledge about the writing process, combined with a clear student understanding about how to think about writing (also known as metacognition). We developed a rubric for evaluating scientific papers and assessed different methods of using the rubric in inquiry-based introductory biology classrooms. Students were either 1) given the rubric alone, 2) given the rubric, but also required to visit a biology subject tutor for paper assistance, or 3) asked to self-grade paper components using the rubric. Students who were required to use a peer tutor had more negative attitudes towards scientific writing, while students who used the rubric alone reported more confidence in their science writing skills by the conclusion of the semester. Overall, students rated the use of an example paper or grading rubric as the most effective ways of teaching scientific writing, while rating peer review as ineffective. Our paper describes a concrete, simple method of infusing scientific writing into inquiry-based science classes, and provides clear avenues to enhance communication and scientific writing skills in entry-level classes through the use of a rubric or example paper, with the goal of producing students capable of performing at a higher level in upper level neuroscience classes and independent research.

  7. Using Rubrics as a Scientific Writing Instructional Method in Early Stage Undergraduate Neuroscience Study

    PubMed Central

    Clabough, Erin B.D.; Clabough, Seth W.

    2016-01-01

    Scientific writing is an important communication and learning tool in neuroscience, yet it is a skill not adequately cultivated in introductory undergraduate science courses. Proficient, confident scientific writers are produced by providing specific knowledge about the writing process, combined with a clear student understanding about how to think about writing (also known as metacognition). We developed a rubric for evaluating scientific papers and assessed different methods of using the rubric in inquiry-based introductory biology classrooms. Students were either 1) given the rubric alone, 2) given the rubric, but also required to visit a biology subject tutor for paper assistance, or 3) asked to self-grade paper components using the rubric. Students who were required to use a peer tutor had more negative attitudes towards scientific writing, while students who used the rubric alone reported more confidence in their science writing skills by the conclusion of the semester. Overall, students rated the use of an example paper or grading rubric as the most effective ways of teaching scientific writing, while rating peer review as ineffective. Our paper describes a concrete, simple method of infusing scientific writing into inquiry-based science classes, and provides clear avenues to enhance communication and scientific writing skills in entry-level classes through the use of a rubric or example paper, with the goal of producing students capable of performing at a higher level in upper level neuroscience classes and independent research. PMID:27980476

  8. Designing a Web-Based Science Learning Environment for Model-Based Collaborative Inquiry

    NASA Astrophysics Data System (ADS)

    Sun, Daner; Looi, Chee-Kit

    2013-02-01

    The paper traces a research process in the design and development of a science learning environment called WiMVT (web-based inquirer with modeling and visualization technology). The WiMVT system is designed to help secondary school students build a sophisticated understanding of scientific conceptions, and the science inquiry process, as well as develop critical learning skills through model-based collaborative inquiry approach. It is intended to support collaborative inquiry, real-time social interaction, progressive modeling, and to provide multiple sources of scaffolding for students. We first discuss the theoretical underpinnings for synthesizing the WiMVT design framework, introduce the components and features of the system, and describe the proposed work flow of WiMVT instruction. We also elucidate our research approach that supports the development of the system. Finally, the findings of a pilot study are briefly presented to demonstrate of the potential for learning efficacy of the WiMVT implementation in science learning. Implications are drawn on how to improve the existing system, refine teaching strategies and provide feedback to researchers, designers and teachers. This pilot study informs designers like us on how to narrow the gap between the learning environment's intended design and its actual usage in the classroom.

  9. Promoting cognitive and social aspects of inquiry through classroom discourse

    NASA Astrophysics Data System (ADS)

    Jin, Hui; Wei, Xin; Duan, Peiran; Guo, Yuying; Wang, Wenxia

    2016-01-01

    We investigated how Chinese physics teachers structured classroom discourse to support the cognitive and social aspects of inquiry-based science learning. Regarding the cognitive aspect, we examined to what extent the cognitive processes underlying the scientific skills and the disciplinary reasoning behind the content knowledge were taught. Regarding the social aspect, we examined how classroom discourse supported student learning in terms of students' opportunities to talk and interaction patterns. Our participants were 17 physics teachers who were actively engaged in teacher education programs in universities and professional development programs in local school districts. We analyzed one lesson video from each participating teacher. The results suggest both promises and challenges. Regarding the cognitive aspect of inquiry, the teachers in general recognized the importance of teaching the cognitive processes and disciplinary reasoning. However, they were less likely to address common intuitive ideas about science concepts and principles. Regarding the social aspect of inquiry, the teachers frequently interacted with students in class. However, it appeared that facilitating conversations among students and prompting students to talk about their own ideas are challenging. We discuss the implications of these findings for teacher education programs and professional development programs in China.

  10. Turning Crisis into Opportunity: Nature of Science and Scientific Inquiry as Illustrated in the Scientific Research on Severe Acute Respiratory Syndrome

    NASA Astrophysics Data System (ADS)

    Wong, Siu Ling; Kwan, Jenny; Hodson, Derek; Yung, Benny Hin Wai

    2009-01-01

    Interviews with key scientists who had conducted research on Severe Acute Respiratory Syndrome (SARS), together with analysis of media reports, documentaries and other literature published during and after the SARS epidemic, revealed many interesting aspects of the nature of science (NOS) and scientific inquiry in contemporary scientific research in the rapidly growing field of molecular biology. The story of SARS illustrates vividly some NOS features advocated in the school science curriculum, including the tentative nature of scientific knowledge, theory-laden observation and interpretation, multiplicity of approaches adopted in scientific inquiry, the inter-relationship between science and technology, and the nexus of science, politics, social and cultural practices. The story also provided some insights into a number of NOS features less emphasised in the school curriculum—for example, the need to combine and coordinate expertise in a number of scientific fields, the intense competition between research groups (suspended during the SARS crisis), the significance of affective issues relating to intellectual honesty and the courage to challenge authority, the pressure of funding issues on the conduct of research and the ‘peace of mind’ of researchers, These less emphasised elements provided empirical evidence that NOS knowledge, like scientific knowledge itself, changes over time. They reflected the need for teachers and curriculum planners to revisit and reconsider whether the features of NOS currently included in the school science curriculum are fully reflective of the practice of science in the 21st century. In this paper, we also report on how we made use of extracts from the news reports and documentaries on SARS, together with episodes from the scientists’ interviews, to develop a multimedia instructional package for explicitly teaching the prominent features of NOS and scientific inquiry identified in the SARS research.

  11. Intersection of opposing pedagogical frameworks: Native Hawaiian ancestral stories and scientific inquiry in a high school science class

    NASA Astrophysics Data System (ADS)

    Kanahele-Mossman, Huihui

    Inquiry is defined as "an examination into facts and principles." In science education science inquiry is a process through which important discoveries are made by students through scientific methodology. The most important step in this process is forming the right question. The questions formed by students are usually the wrong questions which deem the remainder of the inquiry process impotent. This research will look at the pedagogy of ancestral stories for a solution. For the researcher, ancestral stories were a source of wonderment and learning not only from the lessons the stories revealed but mainly from the questions that still remained after the stories were told. Questions such as "why does the eel only swim near that part?", or "why does the story only talk about the uhu?" are examples of questions that remained after experiencing an ancestral narrative. The research questions were composed for the purpose of finding compatibility between the two pedagogies. The first research question which reads "how can Native Hawaiian ancestral stories encourage an increased level of student driven interactions at all levels of feedback from Native Hawaiian students in science classroom" focuses the research on the level of student feedback that initiate questions. Question two which reads "how can teachers of Native Hawaiian students facilitate the construction of science inquiry projects from ancestral stories" addresses the skill of the teacher and imbeds the concept of pedagogical knowledge into the literature. The last research question "how do analysis and discussion of the stories connect Native Hawaiian students to their ancestral intelligence" examines the role of identity and identity to ancestral intelligence. The method intended for this research was Grounded theory which allows the researcher to develop principles, concepts and theories based on the data presented. Another method utilized in this research is an undocumented but culturally imbedded method identified as the Native Hawaiian Research method for lack of a better title. The result of the data analysis was the development of the intersection of story and science that occurs when the story line is stripped away to reveal an interconnection of natural phenomena.

  12. Scientific method discourses in the construction of 'EMF' science: interests, resources and rhetoric in submissions to a public inquiry.

    PubMed

    Mercer, David

    2002-04-01

    Since the late 1970s, there has been considerable debate surrounding the question of whether or not exposures to non-ionizing radiation and electric and magnetic fields (EMF), produced by powerlines and electrical and telecommunications technologies, are harmful to health. Whilst there has been some recent evidence of regulatory fatigue, and attempts to enforce closure, the EMF debate nevertheless still continues. This paper will explore the rôle played by competing images of scientific method in the argumentative strategies used by two of the main protagonists in an Australian public inquiry (held in 1990-91) which investigated the EMF issue: 'Inquiry into Community Needs and High Voltage (132kv and above) Transmission Line Development', the so-called Gibbs Inquiry. Apart from documenting some of the epistemologically intricate features of the EMF controversy, the following discussion will also consider the way scientific method discourses can contribute to enhancing the durability of knowledge claims in legal and regulatory settings.

  13. Teacher Discourse Strategies Used in Kindergarten Inquiry-Based Science Learning

    ERIC Educational Resources Information Center

    Harris, Karleah; Crabbe, Jordan Jimmy; Harris, Charlene

    2017-01-01

    This study examines teacher discourse strategies used in kindergarten inquiry-based science learning as part of the Scientific Literacy Project (SLP) (Mantzicopoulos, Patrick & Samarapungavan, 2005). Four public kindergarten science classrooms were chosen to implement science teaching strategies using a guided-inquiry approach. Data were…

  14. Variations on an Historical Case Study

    ERIC Educational Resources Information Center

    Field, Patrick

    2006-01-01

    The National Inquiry Standard for Science Education Preparation requires science teachers to introduce students to scientific inquiry to solve problems by various methods, including active learning in a collaborative environment. In order for science teachers to comply with this inquiry standard, activities must be designed for students to…

  15. Journeying "Down the Rabbit Hole"

    ERIC Educational Resources Information Center

    Rossman, Alan; Dummer, John

    2004-01-01

    In describing the professional development journey of science teachers, the National Science Standards (NRC 1996) provides a useful cartography. Inquiry, those standards suggest, is the central strategy for the teaching of science. By illustrating the parallels between inquiry as a form of scientific investigation and inquiry as a classroom…

  16. Practice and Malpractice in Philosophy of Education.

    ERIC Educational Resources Information Center

    Popp, Jerome A.

    1978-01-01

    Examines educational philosophy as an area of inquiry in light of several points of view from other areas of philosophic inquiry. Topics discussed include activities engaged in by philosophers, analogues in science, theoretical vs practical inquiry, epistemic utilities in philosophy, and the scientific context of educational philosophizing. (DB)

  17. Using NASA-Unique Lunar Sample Disks and Resources to Inspire and Promote Scientific Inquiry

    NASA Technical Reports Server (NTRS)

    Allen, J.; Graff, P. V.; Willis, K. J.; Runco, S.

    2014-01-01

    The opportunity for educators and students across the nation to hold precious, NASA lunar samples in their hands and examine materials brought back by astronauts during the Apollo era is an experience and memory that can last a lifetime. Combine that experience with the opportunity to be engaged with hands-on activities that promote scientific inquiry and an understanding of the importance of these samples...now you are preparing our nation's future scientific explorers.

  18. The environment and human health; USGS science for solutions

    USGS Publications Warehouse

    ,

    2001-01-01

    Emerging infectious diseases, ground-water contamination, trace-metal poisoning...environmental threats to public health the world over require new solutions. Because of an increased awareness of the issues, greater cooperation among scientific and policy agencies, and powerful new tools and techniques to conduct research, there is new hope that complex ecological health problems can be solved. U.S. Geological Survey scientists are forming partnerships with experts in the public health and biomedical research communities to conduct rigorous scientific inquiries into the health effects of ecological processes.

  19. Immediate Dissemination of Student Discoveries to a Model Organism Database Enhances Classroom-Based Research Experiences

    PubMed Central

    Wiley, Emily A.; Stover, Nicholas A.

    2014-01-01

    Use of inquiry-based research modules in the classroom has soared over recent years, largely in response to national calls for teaching that provides experience with scientific processes and methodologies. To increase the visibility of in-class studies among interested researchers and to strengthen their impact on student learning, we have extended the typical model of inquiry-based labs to include a means for targeted dissemination of student-generated discoveries. This initiative required: 1) creating a set of research-based lab activities with the potential to yield results that a particular scientific community would find useful and 2) developing a means for immediate sharing of student-generated results. Working toward these goals, we designed guides for course-based research aimed to fulfill the need for functional annotation of the Tetrahymena thermophila genome, and developed an interactive Web database that links directly to the official Tetrahymena Genome Database for immediate, targeted dissemination of student discoveries. This combination of research via the course modules and the opportunity for students to immediately “publish” their novel results on a Web database actively used by outside scientists culminated in a motivational tool that enhanced students’ efforts to engage the scientific process and pursue additional research opportunities beyond the course. PMID:24591511

  20. Immediate dissemination of student discoveries to a model organism database enhances classroom-based research experiences.

    PubMed

    Wiley, Emily A; Stover, Nicholas A

    2014-01-01

    Use of inquiry-based research modules in the classroom has soared over recent years, largely in response to national calls for teaching that provides experience with scientific processes and methodologies. To increase the visibility of in-class studies among interested researchers and to strengthen their impact on student learning, we have extended the typical model of inquiry-based labs to include a means for targeted dissemination of student-generated discoveries. This initiative required: 1) creating a set of research-based lab activities with the potential to yield results that a particular scientific community would find useful and 2) developing a means for immediate sharing of student-generated results. Working toward these goals, we designed guides for course-based research aimed to fulfill the need for functional annotation of the Tetrahymena thermophila genome, and developed an interactive Web database that links directly to the official Tetrahymena Genome Database for immediate, targeted dissemination of student discoveries. This combination of research via the course modules and the opportunity for students to immediately "publish" their novel results on a Web database actively used by outside scientists culminated in a motivational tool that enhanced students' efforts to engage the scientific process and pursue additional research opportunities beyond the course.

  1. Primary Pre-Service Teachers' Skills in Planning a Guided Scientific Inquiry

    ERIC Educational Resources Information Center

    García-Carmona, Antonio; Criado, Ana M.; Cruz-Guzmán, Marta

    2017-01-01

    A study is presented of the skills that primary pre-service teachers (PPTs) have in completing the planning of a scientific inquiry on the basis of a guiding script. The sample comprised 66 PPTs who constituted a group-class of the subject "Science Teaching," taught in the second year of an undergraduate degree in primary education at a…

  2. Assessing Astronomy Students' Views about the Nature of Scientific Inquiry

    ERIC Educational Resources Information Center

    Blue, Jennifer

    2018-01-01

    [This paper is part of the Focused Collection on Astronomy Education Research.] Students taking a second astronomy course for nonscientists were asked to reflect on the nature of scientific inquiry three times during the first half of the semester. First, they were assigned a short paper in which they were asked to argue for or against the thesis…

  3. Look at That!: Using Madagascar Hissing Cockroaches to Develop and Enhance the Scientific Inquiry Skill of Observation in Middle School Students

    ERIC Educational Resources Information Center

    Wagler, Ron

    2011-01-01

    Middle school students can develop and enhance their observation skills by participating in teacher-guided scientific inquiry (NRC 1996) activities where they observe animals that tend to act in known, predictable ways. Madagascar hissing cockroaches ("Gromphadorhina portentosa") are one such animal. This article presents beginning, intermediate,…

  4. The Effects of Teacher-Introduced Multimodal Representations and Discourse on Students' Task Engagement and Scientific Language during Cooperative, Inquiry-Based Science

    ERIC Educational Resources Information Center

    Gillies, Robyn M.; Baffour, Bernard

    2017-01-01

    The study sought to determine the effects of teacher-introduced multimodal representations and discourse on students' task engagement and scientific language during cooperative, inquiry-based science. The study involved eight Year 6 teachers in two conditions (four very effective teachers and four effective teachers) who taught two units of…

  5. Predicting Students' Skills in the Context of Scientific Inquiry with Cognitive, Motivational, and Sociodemographic Variables

    ERIC Educational Resources Information Center

    Nehring, Andreas; Nowak, Kathrin H.; zu Belzen, Annette Upmeier; Tiemann, Rüdiger

    2015-01-01

    Research on predictors of achievement in science is often targeted on more traditional content-based assessments and single student characteristics. At the same time, the development of skills in the field of scientific inquiry constitutes a focal point of interest for science education. Against this background, the purpose of this study was to…

  6. Navigating the Language Demands of an Inquiry-Based Science Performance Assessment: Classroom Challenges and Opportunities for English Learners

    ERIC Educational Resources Information Center

    Lyon, Edward G.; Bunch, George C.; Shaw, Jerome M.

    2012-01-01

    Science performance assessments (SPAs) are designed to elicit a wider range of scientific knowledge and abilities than ordinarily measured by more traditional paper-and-pencil tests. To engage in SPAs and thus demonstrate abilities such as scientific inquiry, students must interact with various participants and communicate in a variety of ways.…

  7. The Influence of Anomalies on Knowledge Construction and Scientific Reasoning during Inquiry.

    ERIC Educational Resources Information Center

    Echevarria, Marissa

    The knowledge construction and scientific reasoning of two classes of seventh grade students (22 to 24 students in each class) were examined during a 3-week inquiry unit in genetics, in which anomalies were used as a catalyst for conceptual change. During the unit, students used genetics simulation software to mate fruit flies that varied on a…

  8. The Utility of Person-Specific Analyses for Investigating Developmental Processes: An Analytic Primer on Studying the Individual

    ERIC Educational Resources Information Center

    Gayles, Jochebed G.; Molenaar, Peter C. M.

    2013-01-01

    The fields of psychology and human development are experiencing a resurgence of scientific inquiries about phenomena that unfold at the level of the individual. This article addresses the issues of analyzing intraindividual psychological/developmental phenomena using standard analytical techniques for interindividual variation. When phenomena are…

  9. Unified Science Approach K-12, Proficiency Levels 7-12.

    ERIC Educational Resources Information Center

    Oickle, Eileen M., Ed.

    Presented is the second part of the K-12 unified science materials used in the public schools of Anne Arundel County, Maryland. Detailed descriptions are made of the roles of students and teachers, purposes of the bibliography, major concepts in unified science, processes of inquiry, a scheme and model for scientific literacy, and program…

  10. Polanyi and the Role of Tradition in Scientific Inquiry

    ERIC Educational Resources Information Center

    Mitchell, Mark T.

    2011-01-01

    A characteristic of the modern mind is a disdain for tradition. Polanyi argues that neglecting the role of tradition leads to philosophical incoherence as well as moral and political chaos. Polanyi's postcritical philosophy represents an attempt to show how tradition plays a vital role in the process of discovery. Ultimately, a coherent account of…

  11. Prior Knowledge and Online Inquiry-Based Science Reading: Evidence from Eye Tracking

    ERIC Educational Resources Information Center

    Ho, Hsin Ning Jessie; Tsai, Meng-Jung; Wang, Ching-Yeh; Tsai, Chin-Chung

    2014-01-01

    This study employed eye-tracking technology to examine how students with different levels of prior knowledge process text and data diagrams when reading a web-based scientific report. Students' visual behaviors were tracked and recorded when they read a report demonstrating the relationship between the greenhouse effect and global climate…

  12. Unified Science Approach K-12, Proficiency Levels 1-6.

    ERIC Educational Resources Information Center

    Oickle, Eileen M., Ed.

    Presented are first-revision materials of the K-12 unified science program implemented in the public schools of Anne Arundel County, Maryland. Detailed descriptions are given of the roles of students and teachers, purposes of bibliography, major concepts in unified science, processes of inquiry, scheme and model for scientific literacy, and…

  13. Teachers, Research, and Reform: Improving Teaching and Learning in High School Science Courses.

    ERIC Educational Resources Information Center

    Kaiser, Bonnie

    One of the challenges issued by the National Science Education Standards is for students to learn the content and process of modern scientific inquiry by engaging in research and entering science competitions. The Rockefeller University Precollege Science Education Outreach Programs (Science Outreach) provide access for about 70 students from…

  14. Minnows as a Classroom Model for Human Environmental Health

    ERIC Educational Resources Information Center

    Weber, Daniel N.; Hesselbach, Renee; Kane, Andrew S.; Petering, David H.; Petering, Louise; Berg, Craig A.

    2013-01-01

    Understanding human environmental health is difficult for high school students, as is the process of scientific investigation. This module provides a framework to address both concerns through an inquiry-based approach using a hypothesis-driven set of experiments that draws upon a real-life concern, environmental exposures to lead (Pb2+). Students…

  15. Facilitating Family Group Inquiry at Science Museum Exhibits

    ERIC Educational Resources Information Center

    Gutwill, Joshua P.; Allen, Sue

    2010-01-01

    We describe a study of programs to deepen families' scientific inquiry practices in a science museum setting. The programs incorporated research-based learning principles from formal and informal educational environments. In a randomized experimental design, two versions of the programs, called "inquiry games," were compared to two control…

  16. Bilingual Language Supports in Online Science Inquiry Environments

    ERIC Educational Resources Information Center

    Clark, Douglas B.; Touchman, Stephanie; Martinez-Garza, Mario; Ramirez-Marin, Frank; Drews, Tina Skjerping

    2012-01-01

    Research over the past fifteen years has investigated and developed online science inquiry environments to support students engaging in authentic scientific inquiry practices. This research has focused on developing activity structures and tools to scaffold students in engaging in different aspects of these practices, but relatively little of this…

  17. Using POE Centers

    ERIC Educational Resources Information Center

    Rios, Jose M.

    2002-01-01

    Inquiry. It's a word that every teacher has heard repeatedly since the publication of the National Science Education Standards. Given the challenges of teaching core content, preparing students for inquiry may seem like a daunting task. Yet there are many different approaches to inquiry. Examining the nature of the scientific method and reducing…

  18. University-Level Teaching of Anthropogenic Global Climate Change (AGCC) via Student Inquiry

    ERIC Educational Resources Information Center

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2017-01-01

    This paper reviews university-level efforts to improve understanding of anthropogenic global climate change (AGCC) through curricula that enable student scientific inquiry. We examined 152 refereed publications and proceedings from academic conferences and selected 26 cases of inquiry learning that overcome specific challenges to AGCC teaching.…

  19. Exploring the Development of Fifth Graders' Practical Epistemologies and Explanation Skills in Inquiry-Based Learning Classrooms

    ERIC Educational Resources Information Center

    Wu, Hsin-Kai; Wu, Chia-Lien

    2011-01-01

    The purposes of this study are to explore fifth graders' epistemological views regarding their own experiences of constructing scientific knowledge through inquiry activities (i.e., practical epistemologies) and to investigate possible interactions between students' practical epistemologies and their inquiry skills to construct scientific…

  20. Place-Based Investigations and Authentic Inquiry

    ERIC Educational Resources Information Center

    Sarkar, Somnath; Frazier, Richard

    2008-01-01

    Although many science students perform hands-on activities as inquiry exercises, such activities sometimes remain disconnected in the student's mind and fail to nurture a deeper understanding of methods of science and the role these methods play in scientific inquiry. Students may be able to reiterate the steps of the standard "scientific…

  1. Incorporating Inquiry into Upper-Level Homework Assignments: The Mini-Journal

    NASA Astrophysics Data System (ADS)

    Whittington, A. G.; Speck, A. K.; Witzig, S. B.; Abell, S. K.

    2009-12-01

    The U.S. National Science Education Standards provide guidelines for teaching science through inquiry, where students actively develop their understanding of science by combining scientific knowledge with reasoning and thinking skills. Inquiry activities include reading scientific literature, generating hypotheses, designing and carrying out investigations, interpreting data, and formulating conclusions. Inquiry-based instruction emphasizes questions, evidence, and explanation, the essential features of inquiry. As part of an NSF-funded project, “CUES: Connecting Undergraduates to the Enterprise of Science,” new inquiry-based homework materials were developed for two upper-level classes at the University of Missouri: Geochemistry (required for Geology majors), and Solar System Science (open to seniors and graduate students, co-taught and cross-listed between Geology and Physics & Astronomy). We engage students in inquiry-based learning by presenting homework exercises as “mini-journal” articles that follow the format of a scientific journal article, including a title, authors, abstract, introduction, methods, results, discussion and citations to peer-reviewed literature. The mini-journal provides a scaffold and serves as a springboard for students to develop and carry out their own follow-up investigation. They then present their findings in the form of their own mini-journal. Mini-journals replace traditional homework problem sets with a format that more directly reflects and encourages scientific practice. Students are engaged in inquiry-based homework which encompass doing, thinking, and communicating, while the minijournal allows the instructor to contain lines of inquiry within the limits posed by available resources. In the examples we present, research is conducted via spreadsheet modeling, where the students develop their own spreadsheets. The key differences between the old and new formats include (i) the active participation of the students in defining the problem that they will pursue, (ii) the open-ended nature of the inquiry, such that students need to recognize when they have enough information to answer their question, (iii) presentation of results in graphical and tabular formats, and (iv) a written discussion of their findings. We present both the rationale for and concept of using mini-journal homeworks, and provide specific examples we are currently employing in classes. In addition, we explore the challenges (real and perceived) and successes associated with implementing such a technique, and examine student feedback comparing mini-journal and traditional homework formats from the same classes.

  2. Relating Narrative, Inquiry, and Inscriptions: Supporting Consequential Play

    NASA Astrophysics Data System (ADS)

    Barab, Sasha A.; Sadler, Troy D.; Heiselt, Conan; Hickey, Daniel; Zuiker, Steven

    2007-02-01

    In this paper we describe our research using a multi-user virtual environment, Quest Atlantis, to embed fourth grade students in an aquatic habitat simulation. Specifically targeted towards engaging students in a rich inquiry investigation, we layered a socio-scientific narrative and an interactive rule set into a multi-user virtual environment gaming engine to establish a virtual world through which students learned about science inquiry, water quality concepts, and the challenges in balancing scientific and socio-economic factors. Overall, students were clearly engaged, participated in rich scientific discourse, submitted quality work, and learned science content. Further, through participation in this narrative, students developed a rich perceptual, conceptual, and ethical understanding of science. This study suggests that multi-user virtual worlds can be effectively leveraged to support academic content learning.

  3. Erratum to: Relating Narrative, Inquiry, and Inscriptions: Supporting Consequential Play

    NASA Astrophysics Data System (ADS)

    Barab, Sasha A.; Sadler, Troy D.; Heiselt, Conan; Hickey, Daniel; Zuiker, Steven

    2010-08-01

    In this paper we describe our research using a multi-user virtual environment, Quest Atlantis, to embed fourth grade students in an aquatic habitat simulation. Specifically targeted towards engaging students in a rich inquiry investigation, we layered a socio-scientific narrative and an interactive rule set into a multi-user virtual environment gaming engine to establish a virtual world through which students learned about science inquiry, water quality concepts, and the challenges in balancing scientific and socio-economic factors. Overall, students were clearly engaged, participated in rich scientific discourse, submitted quality work, and learned science content. Further, through participation in this narrative, students developed a rich perceptual, conceptual, and ethical understanding of science. This study suggests that multi-user virtual worlds can be effectively leveraged to support academic content learning.

  4. Exploration of Epistemological Beliefs in a Summer Science Program for High Achieving Students(1)

    NASA Astrophysics Data System (ADS)

    Cormier, Sebastien; Raia, F.; Steinberg, R.

    2006-12-01

    We will describe changes in epistemology of students in a comprehensive summer science program for high achieving students at City College New York. The program focuses on having students participate in the process of scientific discovery using inquiry based activities such as the astronomy units from Physics by Inquiry(2). Multiple tools were used throughout the program to study student epistemological beliefs about science. We administered a Likert scale survey about how science is done as well as multiple content questions from which student beliefs were inferred. Instructor perspectives on student epistemologies are used in conjunction with these tools to study improvements and correlations between the different measures. (1) Supported in part by the National Science Foundation (2) Physics by Inquiry, L.C. McDermott, John Wiley & Sons, Inc., New York, 1996

  5. Incorporating inquiry and the process of science into introductory astronomy labs at the George Washington University

    NASA Astrophysics Data System (ADS)

    Cobb, Bethany E.

    2018-01-01

    Since 2013, the Physics Department at GWU has used student-centered active learning in the introductory astronomy course “Introduction to the Cosmos.” Class time is spent in groups on questions, math problems, and hands-on activities, with multiple instructors circulating to answer questions and engage with the students. The students have responded positively to this active-learning. Unfortunately, in transitioning to active-learning there was no time to rewrite the labs. Very quickly, the contrast between the dynamic classroom and the traditional labs became apparent. The labs were almost uniformly “cookie-cutter” in that the procedure and analysis were specified step-by-step and there was just one right answer. Students rightly criticized the labs for lacking a clear purpose and including busy-work. Furthermore, this class fulfills the GWU scientific reasoning general education requirement and thus includes learning objectives related to understanding the scientific method, testing hypotheses with data, and considering uncertainty – but the traditional labs did not require these skills. I set out to rejuvenate the lab sequence by writing new inquiry labs based on both topic-specific and scientific reasoning learning objectives. While inquiry labs can be challenging for the students, as they require active thinking and creativity, these labs engage the students more thoroughly in the scientific process. In these new labs, whenever possible, I include real astronomical data and ask the students to use digital tools (SDSS SkyServer, SOHO archive) as if they are real astronomers. To allow students to easily plot, manipulate and analyze data, I built “smart” Excel files using formulas, dropdown menus and macros. The labs are now much more authentic and thought-provoking. Whenever possible, students independently develop questions, hypotheses, and procedures and the scientific method is “scaffolded” over the semester by providing more guidance in the early labs and more independence later on. Finally, in every lab, students must identify and reflect on sources of error. These labs are more challenging for the instructors to run and to grade, but they are much more satisfying when it comes to student learning.

  6. Using the First-Year English Class to Develop Scientific Thinking Skills

    NASA Astrophysics Data System (ADS)

    McNamara, B. J.; Burnham, C.; Green, S.; Ball, E.; Schryer, A.

    2002-12-01

    This poster presents the preliminary results from an experimental approach to teaching first-year writing using the scientific method as an organizing theme. The approach presumes a close connection between the classical scientific method: observing, hypothesis forming, hypothesis testing, and generalizing from the results of the testing, and the writing process: inventing and prewriting, drafting, and revising. The project has four goals: 1. To introduce students to the relations between scientific method, academic inquiry, and the writing process; 2. To help students see that academic inquiry, the work of generating, testing, and validating knowledge and then applying that knowledge in real contexts, is actually a hybrid form of the scientific method; 3. To encourage students to connect the work they are doing in the writing classroom with the work they are doing in other classes so they can transfer the skills learned in one context to the other; and 4. To cause students who have previously been alienated by science and science teaching to reconsider their attitudes, and to see the powerful influence of science and scientific thinking in our world. In short, we are teaching science literacy in a humanities classroom. The materials we use include science-based reading and the kinds of writing typically required in science classes. The poster presents the basic premises of the project, samples of class materials, and preliminary results of a controlled pre- and post-test of student attitudes toward science and writing, analyzed especially according to gender and minority status. We also present insights by participating instructors including a female graduate teaching assistant who had been trained as a scientist and a male who had not.

  7. Making Quantitative Genetics Relevant: Effectiveness of a Laboratory Investigation that Links Scientific Research, Commercial Applications, and Legal Issues

    ERIC Educational Resources Information Center

    Rutledge, Michael L.; Mathis, Philip M.; Seipelt, Rebecca L.

    2005-01-01

    As students apply their knowledge of scientific concepts and of science as a method of inquiry, learning becomes relevant. This laboratory exercise is designed to foster students' understanding of the genetics of quantitative traits and of the nature of science as a method of inquiry by engaging them in a real-world business scenario. During the…

  8. Science Teacher Educators' Engagement with Pedagogical Content Knowledge and Scientific Inquiry in Predominantly Paper-Based Distance Learning Programs

    ERIC Educational Resources Information Center

    Fraser, William J.

    2017-01-01

    This article focuses on the dilemmas science educators face when having to introduce Pedagogical Content Knowledge (PCK) to science student teachers in a predominantly paper-based distance learning environment. It draws on the premise that science education is bound by the Nature of Science (NOS), and by the Nature of Scientific Inquiry (NOSI).…

  9. Triangle Computer Science Distinguished Lecture Series

    DTIC Science & Technology

    2018-01-30

    scientific inquiry - the cell, the brain, the market - as well as in the models developed by scientists over the centuries for studying them. Human...the great objects of scientific inquiry - the cell, the brain, the market - as well as in the models developed by scientists over the centuries for...in principle , secure system operation can be achieved. Massive-Scale Streaming Analytics David Bader, Georgia Institute of Technology (telecast from

  10. Scientific Inquiry Competency Perception Scale (The Case of Kazak Post-Graduate Students) Reliability and Validity Study

    ERIC Educational Resources Information Center

    Gelisli, Yücel; Beisenbayeva, Lyazzat

    2017-01-01

    The purpose of the current study is to develop a reliable scale to be used to determine the scientific inquiry competency perception of post-graduate students engaged in post-graduate studies in the field of educational sciences and teacher education in Kazakhstan. The study employed the descriptive method. Within the context of the study, a scale…

  11. Mendelian Genetics as a Platform for Teaching about Nature of Science and Scientific Inquiry: The Value of Textbooks

    ERIC Educational Resources Information Center

    Campanile, Megan F.; Lederman, Norman G.; Kampourakis, Kostas

    2015-01-01

    The purpose of this study was to analyze seven widely used high school biology textbooks in order to assess the nature of science knowledge (NOS) and scientific inquiry (SI) aspects they, explicitly or implicitly, conveyed in the Mendelian genetics sections. Textbook excerpts that directly and/or fully matched our statements about NOS and SI were…

  12. Inquiry in early years science teaching and learning: Curriculum design and the scientific story

    NASA Astrophysics Data System (ADS)

    McMillan, Barbara Alexander

    2001-07-01

    Inquiry in school science, as conceived by the authors of the Common Framework of Science Learning Outcomes K--12, is dependent upon four areas of skills. These are the skills of initiating and planning, performing and recording, analysing and interpreting, and communication and teamwork that map onto what Hodson calls the five phases of scientific inquiry in school science: initiation, design and planning, performance, interpretation, and reporting and communicating. This study looked at initiation in a multiage (Grades 1--3) classroom, and the curriculum, design tools, and inquiry acts believed to be necessary precursors of design and planning phases whether the inquiry in which young children engage is archival or laboratory investigation. The curriculum was designed to build upon children's everyday biological knowledge and through a series of carefully organized lessons to help them to begin to build scientifically valid conceptual models in the area of animal life cycles. The lessons began with what is called benchmark-invention after the historical work of Robert Karplus and the contemporary work of Earl Hunt and Jim Minstrell. The introduction of a biological concept was followed by a series of exploration activities in which children were encouraged to apply the concept invented in the benchmark lesson. Enlargement followed. This was the instructional phase in which children were helped to establish scientifically valid relationships between the invented concept and other biological concepts. The pre-instruction and post-instruction interview data suggest that the enacted curriculum and sequence in which the biological knowledge was presented helped the nineteen children in the study to recognize the connections and regularities within the life cycles of the major groupings of animals, and to begin to build scientific biological conceptual models. It is, however, argued that everyday biology, in the form of the person analogy, acts as an obstacle to biological understanding, and that the construction of scientific knowledge depends upon first hand experiences with organisms, as much as it does dialogical interaction, "acts of inquiry", and reflective exploration of multiple sources of information.

  13. Predicting Students' Skills in the Context of Scientific Inquiry with Cognitive, Motivational, and Sociodemographic Variables

    NASA Astrophysics Data System (ADS)

    Nehring, Andreas; Nowak, Kathrin H.; Belzen, Annette Upmeier zu; Tiemann, Rüdiger

    2015-06-01

    Research on predictors of achievement in science is often targeted on more traditional content-based assessments and single student characteristics. At the same time, the development of skills in the field of scientific inquiry constitutes a focal point of interest for science education. Against this background, the purpose of this study was to investigate to which extent multiple student characteristics contribute to skills of scientific inquiry. Based on a theoretical framework describing nine epistemological acts, we constructed and administered a multiple-choice test that assesses these skills in lower and upper secondary school level (n = 780). The test items contained problem-solving situations that occur during chemical investigations in school and had to be solved by choosing an appropriate inquiry procedure. We collected further data on 12 cognitive, motivational, and sociodemographic variables such as conceptual knowledge, enjoyment of chemistry, or language spoken at home. Plausible values were drawn to quantify students' inquiry skills. The results show that students' characteristics predict their inquiry skills to a large extent (55%), whereas 9 out of 12 variables contribute significantly on a multivariate level. The influence of sociodemographic traits such as gender or the social background becomes non-significant after controlling for cognitive and motivational variables. Furthermore, the performance advance of students from upper secondary school level can be explained by controlling for cognitive covariates. We discuss our findings with regard to curricular aspects and raise the question whether the inquiry skills can be considered as an autonomous trait in science education research.

  14. Framing Inquiry in High School Chemistry: Helping Students See the Bigger Picture

    ERIC Educational Resources Information Center

    Criswell, Brett

    2012-01-01

    Inquiry has been advocated as an effective pedagogical strategy for promoting deep conceptual understanding and more sophisticated scientific thinking by numerous bodies associated with chemistry (and science) education. To allow inquiry to achieve these goals, the teacher must manage the amount of cognitive load experienced by students while they…

  15. Teaching, as Learning, as Inquiry: Moving beyond Activity in the Analysis of Teaching Practice.

    ERIC Educational Resources Information Center

    Sandoval, William A.; Deneroff, Victoria; Franke, Megan L.

    This paper describes an ongoing high school science teacher professional development project, Beyond Final Form Science, that focuses on developing teachers' ideas of scientific inquiry and inquiry pedagogy. It analyzes the first several months of the project, highlighting analyses of teachers' interactions during monthly professional development…

  16. Closing the Gap: Inquiry in Research and the Secondary Science Classroom

    ERIC Educational Resources Information Center

    Gengarelly, Lara M.; Abrams, Eleanor D.

    2009-01-01

    Teaching students how to conduct authentic scientific inquiry is an essential aspect of recent science education reform efforts. Our National Science Foundation-funded GK-12 program paired science graduate students--fellows--with secondary science teachers in order to enhance inquiry-based instruction. This research examined the roles of the…

  17. Lipman, Dewey, and Philosophical Inquiry in the Mathematics Classroom

    ERIC Educational Resources Information Center

    Kennedy, Nadia Stoyanova

    2012-01-01

    The paper discusses Matthew Lipman's approach to inquiry as shaped and fashioned by John Dewey's model of scientific inquiry. Although Lipman's program adopted the major aspects of Dewey's pedagogy, at least two characteristics of that program stand out as radically different--his use of relatively free-form philosophical discussions to teach…

  18. Inquiry Based Teaching in Turkey: A Content Analysis of Research Reports

    ERIC Educational Resources Information Center

    Kizilaslan, Aydin; Sozbilir, Mustafa; Yasar, M. Diyaddin

    2012-01-01

    Inquiry-based learning [IBL] enhances students' critical thinking abilities and help students to act as a scientist through using scientific method while learning. Specifically, inquiry as a teaching approach has been defined in many ways, the most important one is referred to nature of constructing knowledge while the individuals possess a…

  19. An Inquiry-Based Approach of Traditional "Step-by-Step" Experiments

    ERIC Educational Resources Information Center

    Szalay, L.; Tóth, Z.

    2016-01-01

    This is the start of a road map for the effective introduction of inquiry-based learning in chemistry. Advantages of inquiry-based approaches to the development of scientific literacy are widely discussed in the literature. However, unless chemistry educators take account of teachers' reservations and identified disadvantages such approaches will…

  20. Leveraging Educational Data Mining for Real-Time Performance Assessment of Scientific Inquiry Skills within Microworlds

    ERIC Educational Resources Information Center

    Gobert, Janice D.; Sao Pedro, Michael A.; Baker, Ryan S. J. D.; Toto, Ermal; Montalvo, Orlando

    2012-01-01

    We present "Science Assistments," an interactive environment, which assesses students' inquiry skills as they engage in inquiry using science microworlds. We frame our variables, tasks, assessments, and methods of analyzing data in terms of "evidence-centered design." Specifically, we focus on the "student model," the…

  1. From Teacher-at-Sea to Authentic Science in the Classroom

    NASA Astrophysics Data System (ADS)

    Holzer, M. A.; Laj, C.

    2007-12-01

    Research has shown that most teachers will teach the way they have been taught, unless a sustainable intervention has taken place. This has the greatest implications for teachers of science, where those who have been taught with inquiry approaches will employ inquiry approaches in their classrooms, and those who have been taught with lecture and note taking will teach primarily using lectures and note taking. If our children are to learn about the nature of science, they need to be taught using constructivist and inquiry methods. A teacher who only uses textbooks and lectures will not create students who can employ critical thinking skills indicative of the nature of science. There is a way to change the way our teachers teach science, and that is by exposing teachers to authentic inquiry. The Teacher at Sea Program sponsored by Institut Polaire Francais (IPEV) created such an opportunity for 4 teachers, who participated in the PACHIDERME deep sea sediment cruise on the R/V Marion Dufresne off the coast of Chile for 3 weeks in February, 2007. While onboard the teachers assisted research scientists from France, Germany, Norway, and Chile in their quest to gather and analyze sediment cores for clues to past climates. The teachers were immersed in the research projects right from the start. They all participated in a "watch" and assisted those on the watch with the processing of the cores, which included properly labeling and packaging each of the core segments. Prior to the packaging, preliminary analysis was done to identify the physical and biological attributes of the core. The scientists gave of their time to coach the teachers not only on the techniques they were using, but also on the process of science. Whether it's working on an unstable platform, coring into the unknown, or adjusting to the weather that Mother Nature brings, the nature and process of science out at sea is complicated. The teachers came to realize this as they sailed in and out of the fjord region and into the open ocean off the coast of Chile, and shared these experiences with colleagues and students from around the world. They sent daily logs via email, sent pictures, and answered questions sent by teachers and students from Europe, the United States, and Chile. Students kept journals as they followed the daily events of the teachers at sea. A powerpoint presentation documenting the scientific endeavors of the cruise was created and is being used by many teachers as a tool to show how scientific research is done at sea. Was this cruise effective in changing the teaching styles of those teachers on board? The teachers observed how scientists generate questions, propose study plans, and employ creative methods to answer those questions. Having witnessed the nature and process first hand, these teachers reassessed their teaching styles for scientific validity. They are employing a greater number of open/full inquiry projects where the students are constructing and seeking to answer their own questions. These students will leave their classes knowing about the challenges of doing science, and the excitement in doing science. Whether it's out at sea, in the field, or in a lab, the participation of teachers in authentic inquiry is the best way to ensure our students are participating in authentic inquiry.

  2. Using the Virtual Vee Map for Inquiry with Geoscience Research Data

    NASA Astrophysics Data System (ADS)

    Rutherford, S.

    2009-04-01

    The Vee Map is a method by which any teacher can implement guided inquiry in their classroom. It was originally designed to work with classic laboratories. However, Coffman and Riggs (2006) used the idea so that students could gather online scientific data to answer a research question. This is known as the "Virtual Vee Map" because the scientific data collected is online or virtual. Students have great difficulty with designing and conducting a research project. They also are not able to work with scientific data. Many organizations are now making their scientific data available for use by the educational community. However, many educators and students have found geoscience data difficult to find and use. Ledley et al. (2008) suggests that organizations use educationally relevant review criteria for their data sites. As part of a National Oceanic and Atmosphere Administration (NOAA) research project, a website was developed using the Great Lakes Environmental Research Laboratory's (GLERL) scientific data about the Great Lakes. This data was made available such that pre-service Earth Science elementary teachers could design a research question for use with the Virtual Vee Map's guided inquiry approach.

  3. Amplify scientific discovery with artificial intelligence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gil, Yolanda; Greaves, Mark T.; Hendler, James

    Computing innovations have fundamentally changed many aspects of scientific inquiry. For example, advances in robotics, high-end computing, networking, and databases now underlie much of what we do in science such as gene sequencing, general number crunching, sharing information between scientists, and analyzing large amounts of data. As computing has evolved at a rapid pace, so too has its impact in science, with the most recent computing innovations repeatedly being brought to bear to facilitate new forms of inquiry. Recently, advances in Artificial Intelligence (AI) have deeply penetrated many consumer sectors, including for example Apple’s Siri™ speech recognition system, real-time automatedmore » language translation services, and a new generation of self-driving cars and self-navigating drones. However, AI has yet to achieve comparable levels of penetration in scientific inquiry, despite its tremendous potential in aiding computers to help scientists tackle tasks that require scientific reasoning. We contend that advances in AI will transform the practice of science as we are increasingly able to effectively and jointly harness human and machine intelligence in the pursuit of major scientific challenges.« less

  4. Learning by exploring planets, plate tectonics, and the process of inquiry

    NASA Astrophysics Data System (ADS)

    Bartlett, M. G.

    2006-12-01

    Inquiry-based instruction should be question driven, involve good triggers for learning, emphasize researchable questions, build research skills, provide mechanisms for students to monitor their progress, and draw on the expertise of the instruction to promote inquiry and reflection. At Brigham Young University Hawaii, we have implemented an inquiry based approach to teaching introductory Earth science which provides students with little or no background in the sciences immediate access to participation in current research of genuine scientific interest. An example of this process is presented in which students are engaged in reflecting on whether plate tectonics is a general theory of planetary organization and evolution. Students use topographic, magnetic, spectral, and other data from NASA and ESA missions to determine whether "Earth-style" plate tectonics is functional on planets and moons elsewhere in the solar system. Students are engaged in a data- rich environment from which they must formulate and test multiple hypotheses. Throughout the process, students are engaged in small groups to identify what they need to learn to answer their questions, what resources are available to them, how best to report their findings, and how they can assess the amount of learning that is taking place. Students' responses to the course have been overwhelmingly positive and suggest that many of the students are internalizing the meta-cognitive skills the course is designed to inculcate.

  5. Cosmology Without Finality

    NASA Astrophysics Data System (ADS)

    Mahootian, F.

    2009-12-01

    The rapid convergence of advancing sensor technology, computational power, and knowledge discovery techniques over the past decade has brought unprecedented volumes of astronomical data together with unprecedented capabilities of data assimilation and analysis. A key result is that a new, data-driven "observational-inductive'' framework for scientific inquiry is taking shape and proving viable. The anticipated rise in data flow and processing power will have profound effects, e.g., confirmations and disconfirmations of existing theoretical claims both for and against the big bang model. But beyond enabling new discoveries can new data-driven frameworks of scientific inquiry reshape the epistemic ideals of science? The history of physics offers a comparison. The Bohr-Einstein debate over the "completeness'' of quantum mechanics centered on a question of ideals: what counts as science? We briefly examine lessons from that episode and pose questions about their applicability to cosmology. If the history of 20th century physics is any indication, the abandonment of absolutes (e.g., space, time, simultaneity, continuity, determinacy) can produce fundamental changes in understanding. The classical ideal of science, operative in both physics and cosmology, descends from the European Enlightenment. This ideal has for over 200 years guided science to seek the ultimate order of nature, to pursue the absolute theory, the "theory of everything.'' But now that we have new models of scientific inquiry powered by new technologies and driven more by data than by theory, it is time, finally, to relinquish dreams of a "final'' theory.

  6. Teaching science as inquiry in US and in Japan: A cross-cultural comparison of science teachers' understanding of, and attitudes toward inquiry-based teaching

    NASA Astrophysics Data System (ADS)

    Tosa, Sachiko

    Since the publication of the National Science Education Standards in 1996, learning science through inquiry has been regarded as the heart of science education. However, the TIMSS 1999 Video Study showed that inquiry-based teaching has been taking place less in the United States than in Japan. This study examined similarities and differences in how Japanese and American middle-school science teachers think and feel about inquiry-based teaching. Teachers' attitudes toward the use of inquiry in science teaching were measured through a survey instrument (N=191). Teachers' understanding of inquiry-based teaching was examined through interviews and classroom observations in the United States (N=9) and Japan (N=15). The results show that in spite of the variations in teachers' definitions of inquiry-based teaching, teachers in both countries strongly agree with the idea of inquiry-based teaching. However, little inquiry-based teaching was observed in either of the countries for different reasons. The data indicate that Japanese teachers did not generally help students construct their own understanding of scientific concepts in spite of well-planned lesson structures and activity set-ups. On the other hand, the observational data indicate that American teachers often lacked meaningful science content in spite of their high level of pedagogical knowledge. The need for addressing the importance of scientific concepts in teacher preparation programs in higher education institutions in the US is advocated. To the Japanese science education community, the need for teachers' acquisition of instructional strategies for inquiry-based teaching is strongly addressed.

  7. Learning Science, Learning about Science, Doing Science: Different goals demand different learning methods

    NASA Astrophysics Data System (ADS)

    Hodson, Derek

    2014-10-01

    This opinion piece paper urges teachers and teacher educators to draw careful distinctions among four basic learning goals: learning science, learning about science, doing science and learning to address socio-scientific issues. In elaboration, the author urges that careful attention is paid to the selection of teaching/learning methods that recognize key differences in learning goals and criticizes the common assertion that 'current wisdom advocates that students best learn science through an inquiry-oriented teaching approach' on the grounds that conflating the distinction between learning by inquiry and engaging in scientific inquiry is unhelpful in selecting appropriate teaching/learning approaches.

  8. Using a Module-based Laboratory To Incorporate Inquiry into a Large Cell Biology Course

    PubMed Central

    2005-01-01

    Because cell biology has rapidly increased in breadth and depth, instructors are challenged not only to provide undergraduate science students with a strong, up-to-date foundation of knowledge, but also to engage them in the scientific process. To these ends, revision of the Cell Biology Lab course at the University of Wisconsin–La Crosse was undertaken to allow student involvement in experimental design, emphasize data collection and analysis, make connections to the “big picture,” and increase student interest in the field. Multiweek laboratory modules were developed as a method to establish an inquiry-based learning environment. Each module utilizes relevant techniques to investigate one or more questions within the context of a fictional story, and there is a progression during the semester from more instructor-guided to more open-ended student investigation. An assessment tool was developed to evaluate student attitudes regarding their lab experience. Analysis of five semesters of data strongly supports the module format as a successful model for inquiry education by increasing student interest and improving attitude toward learning. In addition, student performance on inquiry-based assignments improved over the course of each semester, suggesting an improvement in inquiry-related skills. PMID:16220145

  9. Using Student-Developed, Inquiry-Based Experiments to Investigate the Contributions of Ca and Mg to Water Hardness

    ERIC Educational Resources Information Center

    Yang, Shui-Ping; Li, Chung-Chia

    2009-01-01

    This study provided a challenging opportunity for general chemistry students to mimic the scientific research process by solving a water-quality problem concerning individual calcium and magnesium concentrations. We found that general chemistry students were able to develop their own experiments to solve real-world, multivariable problems through…

  10. Inquiry in the Large-Enrollment Science Classroom: Simulating a Research Investigation

    ERIC Educational Resources Information Center

    Reeve, Suzanne; Hammond, Jennetta W.; Bradshaw, William S.

    2004-01-01

    We conduct research workshops twice each semester in our cell biology lecture course. Instead of solely analyzing data obtained by others, students form groups to design research questions and experimental protocols on a given topic. The main focus is the process of scientific thinking, not simply obtaining a correct product. (Contains 3 tables…

  11. Unified Science Approach K-12, Proficiency Levels 13-21 and Semester Courses.

    ERIC Educational Resources Information Center

    Oickle, Eileen M., Ed.

    Presented is the third part of the K-12 unified science materials used in the public schools of Anne Arundel County, Maryland. Detailed descriptions are presented for the roles of students and teachers, purposes of bibliography, major concepts in unified science, processes of inquiry, scheme and model for scientific literacy, and program…

  12. Examining Educational Climate Change Technology: How Group Inquiry Work with Realistic Scientific Technology Alters Classroom Learning

    ERIC Educational Resources Information Center

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2018-01-01

    This study with 79 students in Montreal, Quebec, compared the educational use of a National Aeronautics and Space Administration (NASA) global climate model (GCM) to climate education technologies developed for classroom use that included simpler interfaces and processes. The goal was to show how differing climate education technologies succeed…

  13. Immediate Dissemination of Student Discoveries to a Model Organism Database Enhances Classroom-Based Research Experiences

    ERIC Educational Resources Information Center

    Wiley, Emily A.; Stover, Nicholas A.

    2014-01-01

    Use of inquiry-based research modules in the classroom has soared over recent years, largely in response to national calls for teaching that provides experience with scientific processes and methodologies. To increase the visibility of in-class studies among interested researchers and to strengthen their impact on student learning, we have…

  14. Determinism and Underdetermination in Genetics: Implications for Students' Engagement in Argumentation and Epistemic Practices

    ERIC Educational Resources Information Center

    Jiménez-Aleixandre, María Pilar

    2014-01-01

    In the last two decades science studies and science education research have shifted from an interest in products (of science or of learning), to an interest in processes and practices. The focus of this paper is on students' engagement in epistemic practices (Kelly in "Teaching scientific inquiry: Recommendations for research and…

  15. Encouraging Uncertainty in the "Scientific Method": Promoting Understanding in the Processes of Science with Preservice Teachers

    ERIC Educational Resources Information Center

    Melville, Wayne; Bartley, Anthony; Fazio, Xavier

    2012-01-01

    Teachers' feelings of uncertainty are an overlooked, though crucial, condition necessary for the promotion of educational change. This article investigates the feelings of uncertainty that preservice teachers have toward the conduct of science as inquiry and the extent to which methods courses can confront and embrace those uncertainties. Our work…

  16. Modelling Transformations of Quadratic Functions: A Proposal of Inductive Inquiry

    ERIC Educational Resources Information Center

    Sokolowski, Andrzej

    2013-01-01

    This paper presents a study about using scientific simulations to enhance the process of mathematical modelling. The main component of the study is a lesson whose major objective is to have students mathematise a trajectory of a projected object and then apply the model to formulate other trajectories by using the properties of function…

  17. Using Science and the Internet as Everyday Classroom Tools

    NASA Technical Reports Server (NTRS)

    Mandel, Eric

    1999-01-01

    The Everyday Classroom Tools project developed a K-6 inquiry-based curriculum to bring the tools of scientific inquiry, together with the Internet, into the elementary school classroom. Our curriculum encourages students and teachers to experience the adventure of science through investigation of the world around us. In this project, experts in computer science and astronomy at SAO worked closely with teachers and students in Massachusetts elementary schools to design and model activities which are developmentally appropriate, fulfill the needs of the curriculum standards of the school district, and provide students with a chance to experience for themselves the joy and excitement of scientific inquiry. The results of our efforts are embodied in the Threads of Inquiry, a series of free-flowing dialogues about inquiry-inspiring investigations that maintain a solid connection with our experience and with one another. These investigations are concerned with topics such as the motion of the Earth, shadows, light, and time. Our work emphasizes a direct hands-on approach through concrete experience, rather than memorization of facts.

  18. Using Nikola Tesla's Story and His Experiments as Presented in the Film "The Prestige" to Promote Scientific Inquiry: A Report of an Action Research Project

    ERIC Educational Resources Information Center

    Hadzigeorgiou, Yannis; Garganourakis, Vassilios

    2010-01-01

    This paper reports on an action research project undertaken with the primary aim of investigating the extent to which situations that evoke a sense of wonder can promote scientific inquiry. Given the intense interest, curiosity, and wonder that some students had begun to develop after seeing the film "The Prestige", a science teacher…

  19. An exploration of middle school science teachers' understandings and teaching practice of science as inquiry

    NASA Astrophysics Data System (ADS)

    Castle, Margaret Ann

    A number of reports have raised a concern that the U.S. is not meeting the demands of 21st century skill preparation of students, teachers, and practitioners in the areas of science, technology, engineering, and mathematics (STEM). In 2005 and 2006 five reports were released indicating a need for improvement in science and mathematics education in the U.S. The reports were: Keeping America Competitive: Five Strategies To Improve Mathematics and Science Education (Coble & Allen, 2005); National Defense Education and Innovation Initiative: Meeting America's Economic and Security Challenges in the 21st Century (The Association of American Universities, 2006); Rising Above the Gathering Storm: Energizing and Employing America for a Brighter Economic Future (National Academies Press, 2007); Tapping America's Potential: The Education for Innovation Initiative (Business Roundtable Taskforce , 2005); and Waiting for Sputnik: Basic Research and Strategic Competition (Lewis, 2005). Consensus of data in these reports indicates that the U.S., as compared to other industrialized nations, does not fare very well in science achievement and STEM degree attainment. For example, on the 2003 Program for International Assessment (PISA), 15-year-old students in the U.S. ranked 28th in math and 24th in science literacy (Kuenzi, Matthews, & Mangon, 2006). Furthermore, the U.S. ranked 20th among all nations in the proportion of 24-year-olds who earned degrees in natural sciences or engineering (Kuenzi, 2008). As a result, if the U.S. is to remain scientifically and technologically competitive in the world, it is necessary to increase our efforts to incorporate scientific practices associated with science, technology, engineering, and mathematics into the science classroom. Middle school is a critical point in students' science education and it is in middle school that they begin to dislike science. Research indicates that when students learn science through inquiry their interest in and understanding of science increases (Akkus, Gunel & Hand, 2007; Gibson, 2002; Liu, Lee & Linn, 2010). As a result, it is important to explore middle school science teachers' definition of science as inquiry because of its importance in how their understandings are reflected in their practice. Researchers must witness, first- hand, what is taking place in middle school science classrooms with respect to the teaching of scientific inquiry before recommendations for improvements can be made. We must also allow opportunities for middle school science teachers to broach, examine, explore, interpret and report implementation strategies when practicing the elements of scientific inquiry as a science content area. It then stands to reason that more research needs to be done to: (1) assess teachers' knowledge related to reform-based teaching, (2) investigate teachers' views about the goals and purposes of inquiry, and (3) investigate the processes by which teachers carry out SI and motivation for undertaking such a complex and difficult to manage form of instruction. The purpose of this study was to examine middle school science teachers' understandings and skills related to scientific inquiry; how those understandings and skills were translated into classroom practice, and the role the school district played in the development of such understandings and skills.

  20. Providing Middle School Students With Science Research Experiences Through Community Partnerships

    NASA Astrophysics Data System (ADS)

    Rodriguez, D.

    2007-12-01

    Science research courses have been around for years at the university and high school level. As inquiry based learning has become more and more a part of the science teacher's vocabulary, many of these courses have adopted an inquiry model for studying science. Learners of all ages benefit from learning through the natural process of inquiry. I participated in the CIRES Earthworks program for science teachers (Colorado University) in the summer of 2007 and experienced, first hand, the value of inquiry learning. With the support and vision of my school administration, and with the support and commitment of community partners, I have developed a Middle School Science Research Program that is transforming how science is taught to students in my community. Swift Creek Middle School is located in Tallahassee, Florida. There are approximately 1000 students in this suburban public school. Students at Swift Creek are required to take one science class each year through 8th grade. As more emphasis is placed on learning a large number of scientific facts and information, in order to prepare students for yearly, standardized tests, there is a concern that less emphasis may be placed on the process and nature of science. The program I developed draws from the inquiry model followed at the CIRES Earthworks program, utilizes valuable community partnerships, and plays an important role in meeting that need. There are three major components to this Middle School Research Program, and the Center for Integrated Research and Learning (CIRL) at the National High Magnetic Field Lab (NHMFL) at Florida State University is playing an important role in all three. First, each student will develop their own research question and design experiments to answer the question. Scientists from the NHMFL are serving as mentors, or "buddy scientists," to my students as they work through the process of inquiry. Scientists from the CIRES - Earthworks program, Florida State University, and other institutions are also volunteering to be mentors. Second, each student will participate in the GLOBE-FLEXE pilot program that involves comparing environmental conditions of local environments to those of extreme environments, like hydrothermal vents in the deep sea. This real-world science program is being coordinated through the FLEXE Project Office at Penn State University, and the GLOBE Program Office in Boulder, Co. We will spend 18 class periods collecting local weather data and analyzing meteorological data from around the world, writing scientific reports, and peer reviewing other students reports. The NHMFL is a sponsor of the Communtiy Classroom Consortium in Tallahassee that is has funded a grant for equipment needed to conduct the data collection portion of this process. Finally, the students will share their research with other students, parents, teachers, and scientists at a school science fair in the fall, and a scientific poster session in the spring. The NHMFL will be supplying judges for the two sessions. They will also be offering the use of their facilities at the laboratory in the spring. Scientists from the lab will mingle with the students, discuss their research, and critique and encourage the young scientists at the first annual Middle School Research Symposium in May, 2008.

  1. The Nature of Pre-service Science Teachers' Argumentation in Inquiry-oriented Laboratory Context

    NASA Astrophysics Data System (ADS)

    Ozdem, Yasemin; Ertepinar, Hamide; Cakiroglu, Jale; Erduran, Sibel

    2013-10-01

    The aim of this study was to investigate the kinds of argumentation schemes generated by pre-service elementary science teachers (PSTs) as they perform inquiry-oriented laboratory tasks, and to explore how argumentation schemes vary by task as well as by experimentation and discussion sessions. The model of argumentative and scientific inquiry was used as a design framework in the present study. According to the model, the inquiry of scientific topics was employed by groups of participants through experimentation and critical discussion sessions. The participants of the study were 35 PSTs, who teach middle school science to sixth through eighth grade students after graduation. The data were collected through video- and audio-recordings of the discussions made by PSTs in six inquiry-oriented laboratory sessions. For the analysis of data, pre-determined argumentation schemes by Walton were employed. The results illustrated that PSTs applied varied premises rather than only observations or reliable sources to ground their claims or to argue for a case or an action. It is also worthy of notice that the construction and evaluation of scientific knowledge claims resulted in different numbers and kinds of arguments. Results of this study suggest that designing inquiry-oriented laboratory environments, which are enriched with critical discussion, provides discourse opportunities that can support argumentation. Moreover, PSTs can be encouraged to support and promote argumentation in their future science classrooms if they engage in argumentation integrated instructional strategies.

  2. A Scientist's Guide to Achieving Broader Impacts through K-12 STEM Collaboration.

    PubMed

    Komoroske, Lisa M; Hameed, Sarah O; Szoboszlai, Amber I; Newsom, Amanda J; Williams, Susan L

    2015-03-01

    The National Science Foundation and other funding agencies are increasingly requiring broader impacts in grant applications to encourage US scientists to contribute to science education and society. Concurrently, national science education standards are using more inquiry-based learning (IBL) to increase students' capacity for abstract, conceptual thinking applicable to real-world problems. Scientists are particularly well suited to engage in broader impacts via science inquiry outreach, because scientific research is inherently an inquiry-based process. We provide a practical guide to help scientists overcome obstacles that inhibit their engagement in K-12 IBL outreach and to attain the accrued benefits. Strategies to overcome these challenges include scaling outreach projects to the time available, building collaborations in which scientists' research overlaps with curriculum, employing backward planning to target specific learning objectives, encouraging scientists to share their passion, as well as their expertise with students, and transforming institutional incentives to support scientists engaging in educational outreach.

  3. Self-reported student confidence in troubleshooting ability increases after completion of an inquiry-based PCR practical.

    PubMed

    Cook, Anthony L; Snow, Elizabeth T; Binns, Henrica; Cook, Peta S

    2015-01-01

    Inquiry-based learning (IBL) activities are complementary to the processes of laboratory discovery, as both are focused on producing new findings through research and inquiry. Here, we describe the results of student surveys taken pre- and postpractical to an IBL undergraduate practical on PCR. Our analysis focuses primarily student perceptions of knowledge acquisition and their ability to troubleshoot problems. The survey results demonstrate significant self-reported gains in knowledge related to DNA structure and PCR, and an increase in confidence with "troubleshooting problems during scientific experiments." We conclude that the IBL-based approach that combines PCR primer design with wet laboratory experimentation using student-designed primers, provides students a sense of confidence by imparting workplace and research skills that are integral to diverse forms and applications of laboratory practices. © 2015 The International Union of Biochemistry and Molecular Biology.

  4. Inquiry Guided Learning Projects for the Development of Critical Thinking in the College Classroom: A Pilot Study

    ERIC Educational Resources Information Center

    Bentley, Danielle C.

    2014-01-01

    This paper describes the inaugural success of implementing Inquiry Guided Learning Projects within a college-level human anatomy and physiology course. In this context, scientific inquiry was used as a means of developing skills required for critical thinking among students. The projects were loosely designed using the Information Search Process…

  5. Inspiring Young Minds: Scientific Inquiry in the Early Years

    ERIC Educational Resources Information Center

    Smart, Julie

    2017-01-01

    Learn to use inquiry-based practice to inspire young minds through science. This book gives educators a solid guide for using research-based principles of inquiry to help children explore their world. With real-life examples and information on facilitating and guiding children, you will be able to engage and maximize STEM learning. Web content and…

  6. JELL-O and Detergents: A Successful Inquiry Recipe

    ERIC Educational Resources Information Center

    Brown, Patrick; Friedrichsen, Patricia

    2006-01-01

    This article presents an activity for early-in-the-year parents' night. The beginning of a new school year is an exciting time. The authors, as teachers, like to capture that excitement by engaging their 10th-grade biology students in an inquiry project demonstrating the nature of science and scientific inquiry. They developed the Next Step…

  7. The Inquiry Flame: Scaffolding for Scientific Inquiry through Experimental Design

    ERIC Educational Resources Information Center

    Pardo, Richard; Parker, Jennifer

    2010-01-01

    In the lesson presented in this article, students learn to organize their thinking and design their own inquiry experiments through careful observation of an object, situation, or event. They then conduct these experiments and report their findings in a lab report, poster, trifold board, slide, or video that follows the typical format of the…

  8. Towards General Models of Effective Science Inquiry in Virtual Performance Assessments

    ERIC Educational Resources Information Center

    Baker, R. S.; Clarke-Midura, J.; Ocumpaugh, J.

    2016-01-01

    Recent interest in online assessment of scientific inquiry has led to several new online systems that attempt to assess these skills, but producing models that detect when students are successfully practising these skills can be challenging. In this paper, we study models that assess student inquiry in an immersive virtual environment, where a…

  9. Teachers' Tendencies to Promote Student-Led Science Projects: Associations with Their Views about Science

    ERIC Educational Resources Information Center

    Bencze, J. Lawrence; Bowen, G. Michael; Alsop, Steve

    2006-01-01

    School science students can benefit greatly from participation in student-directed, open-ended scientific inquiry projects. For various possible reasons, however, students tend not to be engaged in such inquiries. Among factors that may limit their opportunities to engage in open-ended inquiries of their design are teachers' conceptions about…

  10. Examining Arguments Generated by Year 5, 7, and 10 Students in Science Classrooms

    ERIC Educational Resources Information Center

    Choi, Aeran; Notebaert, Andrew; Diaz, Juan; Hand, Brian

    2010-01-01

    A critical component of science is the role of inquiry and argument in moving scientific knowledge forward. However, while students are expected to engage in inquiry activities in science classrooms, there is not always a similar emphasis on the role of argument within the inquiry activities. Building from previous studies on the Science Writing…

  11. Mathematical Modeling in Science: Using Spreadsheets to Create Mathematical Models and Address Scientific Inquiry

    ERIC Educational Resources Information Center

    Horton, Robert M.; Leonard, William H.

    2005-01-01

    In science, inquiry is used as students explore important and interesting questions concerning the world around them. In mathematics, one contemporary inquiry approach is to create models that describe real phenomena. Creating mathematical models using spreadsheets can help students learn at deep levels in both science and mathematics, and give…

  12. The Nature of Pre-Service Science Teachers' Argumentation in Inquiry-Oriented Laboratory Context

    ERIC Educational Resources Information Center

    Ozdem, Yasemin; Ertepinar, Hamide; Cakiroglu, Jale; Erduran, Sibel

    2013-01-01

    The aim of this study was to investigate the kinds of argumentation schemes generated by pre-service elementary science teachers (PSTs) as they perform inquiry-oriented laboratory tasks, and to explore how argumentation schemes vary by task as well as by experimentation and discussion sessions. The model of argumentative and scientific inquiry was…

  13. An investigation of Taiwanese graduate students' level of civic scientific literacy

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Mei

    2003-07-01

    Professionals in a variety of disciplines have stressed the importance of advancing the scientific literacy of all citizens in a democratic and science- and technology-based society. Taiwan has been striving hard to advance its democracy and heavily relies on a knowledge-based economy. The high rank Taiwan receives in international comparisons demonstrates Taiwan's high achievement in science at the middle school level. However, no empirical evidence has been collected to examine whether this high achievement at the middle school level promises a high level of scientific literacy in adults. This study investigated the level of scientific literacy of Taiwanese graduate students using Miller's framework of three dimensions of civic scientific literacy, including: (1) a vocabulary of basic scientific constructs, (2) an understanding of the process of scientific inquiry, and (3) some level of understanding of the impact of science and technology on individuals and on society. A web-based questionnaire was employed to survey Taiwanese graduate students studying in three different types of graduate schools and eleven academic fields. A total of 525 responses were collected. In addition, following the survey, eight participants were purposefully selected for individual interviews in order to obtain additional information on participants' scientific literacy. Descriptive statistical analyses were computed to summarize the participants' overall responses to each of the survey sections. Regression models using dummy coding of categorical variables (i.e., gender, school type, and academic areas) were performed to examine whether significant differences exist among different groups. The major findings suggest that: (1) Taiwanese graduate students' civic scientific literacy is not at a satisfactory level; (2) the participants carry mixed attitudes toward science and technology, (3) Taiwanese graduate students are not very attentive to new information of science and technology; (4) all three categorical variables had an impact on the participants' understanding of basic scientific constructs, while only school type had an effect on the participants' understanding of the scientific inquiry process; and (5) the interview results did not support the survey results. The researcher suggests that further studies are required to determine the reasons behind these findings.

  14. Gondwana Tales: an inquiry approach to plate tectonics

    NASA Astrophysics Data System (ADS)

    Domènech Casal, Jordi

    2014-05-01

    Plate tectonics and its effects on the constitution of seas and continents are key models in science education. Fossil evidences are usually taught in demostrative key when Wegener's discoverings about Pangea are introduced. In order to introduce inquiry-based science education (IBSE) approaches to this topic, we propose "Gondwana Tales", an activity where students are asked to use fossil data to reconstruct the geologic history of an imaginary planet. Grouped in independent teams, each team is furnished with stratigraphic columns from several sites containing faunistic successions of real organisms existing in the past in Earth. Students are told to reconstruct a model of the evolution of the continents, by making calculations of relative ages of the fossils, and relating each fossil to a geologic era. The different teams have incomplete and complementary information. After a first step where they have to propose a partial model based on incomplete data, each team receives a "visitor scientist" from another team, this implying an informal scientific communication event. This process is performed several times, engaging a discussion in each team and getting a final consensus model created by the whole class. Correct answer is not given to the students, even at the end of the activity, to keep the activity under the parameters of real scientific experience, where there is not a "correct answer" to compare. Instead of this, and following the IBSE standards, a reflection on the process is proposed to students. The lack of complete information and the need to collaborate are part of classroom dynamics focused to the understanding of the process of creation of the scientific knowledge. This activity is part of the C3 Project on Creation of Scientific Knowledge that is being applied in the school.

  15. Project CUES: A New Middle-School Earth System Science Curriculum Being Developed by the American Geological Institute

    NASA Astrophysics Data System (ADS)

    Smith, M. C.; Smith, M. J.; Lederman, N.; Southard, J. B.; Rogers, E. A.; Callahan, C. N.

    2002-12-01

    Project CUES is a middle-school earth systems science curriculum project under development by the American Geological Institute (AGI) and funded by the National Science Foundation (ESI-0095938). CUES features a student-centered, inquiry pedagogy and approaches earth science from a systems perspective. CUES will use the expanded learning cycle approach of Trowbridge and Bybee (1996), known as the 5E model (engage-explore-explain-elaborate-evaluate). Unlike AGI's Investigating Earth Systems (IES) curriculum modules, CUES will include a single hard-bound textbook, and will take one school-year to complete. The textbook includes a prologue that addresses systems concepts and four main units: Geosphere, Hydrosphere, Atmosphere, and Biosphere. Each eight-week unit takes students through a progression from guided inquiry to open-ended, student-driven inquiry. During first 4 to 5 weeks of each unit, students explore important earth science phenomena and concepts through scripted investigations and narrative reading passages written by scientists as "inquiry narratives". The narratives address the development of scientific ideas and relay the personal experiences of a scientist during their scientific exploration. Aspects of the nature of science will be explicitly addressed in investigations and inquiry narratives. After the guided inquiry, students will develop a research proposal and conduct their own inquiry into local or regional scientific problems. Each unit culminates with a science conference at which students present their research. CUES will be the first NSF-funded, comprehensive earth systems textbook for middle school that is based on national standards. CUES will be pilot tested in 12 classrooms in January 2003, with a national field test of the program in 50 classrooms during the 2003-2004 school year.

  16. Exploring the complexity of inquiry learning in an open-ended problem space

    NASA Astrophysics Data System (ADS)

    Clarke, Jody

    Data-gathering and problem identification are key components of scientific inquiry. However, few researchers have studied how students learn these skills because historically this required a time-consuming, complicated method of capturing the details of learners' data-gathering processes. Nor are classroom settings authentic contexts in which students could exhibit problem identification skills parallel to those involved in deconstructing complex real world situations. In this study of middle school students, because of my access to an innovative technology, I simulated a disease outbreak in a virtual community as a complicated, authentic problem. As students worked through the curriculum in the virtual world, their time-stamped actions were stored by the computer in event-logs. Using these records, I tracked in detail how the student scientists made sense of the complexity they faced and how they identified and investigated the problem using science-inquiry skills. To describe the degree to which students' data collection narrowed and focused on a specific disease over time, I developed a rubric and automated the coding of records in the event-logs. I measured the ongoing development of the students' "systematicity" in investigating the disease outbreak. I demonstrated that coding event-logs is an effective yet non-intrusive way of collecting and parsing detailed information about students' behaviors in real time in an authentic setting. My principal research question was "Do students who are more thoughtful about their inquiry prior to entry into the curriculum demonstrate increased systematicity in their inquiry behavior during the experience, by narrowing the focus of their data-gathering more rapidly than students who enter with lower levels of thoughtfulness about inquiry?" My sample consisted of 403 middle-school students from public schools in the US who volunteered to participate in the River City Project in spring 2008. Contrary to my hypothesis, I found that prior thoughtfulness of inquiry was not a predictor of the subsequent development of systematicity. However, all students did indeed become more systematic in their scientific behavior over time. On average, boys were generally more systematic than girls, but the rates at which systematicity increased with time was identical across the genders.

  17. Scientific Inquiry Self-Efficacy and Computer Game Self-Efficacy as Predictors and Outcomes of Middle School Boys' and Girls' Performance in a Science Assessment in a Virtual Environment

    ERIC Educational Resources Information Center

    Bergey, Bradley W.; Ketelhut, Diane Jass; Liang, Senfeng; Natarajan, Uma; Karakus, Melissa

    2015-01-01

    The primary aim of the study was to examine whether performance on a science assessment in an immersive virtual environment was associated with changes in scientific inquiry self-efficacy. A secondary aim of the study was to examine whether performance on the science assessment was equitable for students with different levels of computer game…

  18. Can medical schools teach high school students to be scientists?

    PubMed

    Rosenbaum, James T; Martin, Tammy M; Farris, Kendra H; Rosenbaum, Richard B; Neuwelt, Edward A

    2007-07-01

    The preeminence of science in the United States is endangered for multiple reasons, including mediocre achievement in science education by secondary school students. A group of scientists at Oregon Health and Science University has established a class to teach the process of scientific inquiry to local high school students. Prominent aspects of the class include pairing of the student with a mentor; use of a journal club format; preparation of a referenced, hypothesis driven research proposal; and a "hands-on" laboratory experience. A survey of our graduates found that 73% were planning careers in health or science. In comparison to conventional science classes, including chemistry, biology, and algebra, our students were 7 times more likely to rank the scientific inquiry class as influencing career or life choices. Medical schools should make research opportunities widely available to teenagers because this experience dramatically affects one's attitude toward science and the likelihood that a student will pursue a career in science or medicine. A federal initiative could facilitate student opportunities to pursue research.

  19. Learner Characteristics and Understanding Nature of Science. Is There an Association?

    NASA Astrophysics Data System (ADS)

    Çetinkaya-Aydın, Gamze; Çakıroğlu, Jale

    2017-11-01

    The purpose of this study was to investigate the possible associations between preservice science teachers' understanding of nature of science and their learner characteristics; understanding of nature of scientific inquiry, science teaching self-efficacy beliefs, metacognitive awareness level, and faith/worldview schemas. The sample of the current study was 60 3rd-year preservice science teachers enrolled in the Nature of Science and History of Science course. Using a descriptive and associational case study design, data were collected by means of different qualitative and quantitative questionnaires. Analysis of the data revealed that preservice science teachers' understanding of nature of science and nature of scientific inquiry were highly associated. Similarly, science teaching self-efficacy beliefs, metacognitive awareness levels, and faith/worldviews of the preservice science teachers were found to be significantly associated with their understanding of nature of science. Thus, it can be concluded that there might be other factors interfering with the learning processes of nature of science.

  20. Using Lunar Sample Disks and Resources to Promote Scientific Inquiry

    NASA Technical Reports Server (NTRS)

    Graff, Paige; Allen, Jaclyn; Runco, Susan

    2014-01-01

    This poster presentation will illustrate the use of NASA Lunar Sample Disks and resources to promote scientific inquiry and address the Next Generation Science Standards. The poster will present information on the Lunar Sample Disks, housed and managed by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center. The poster will also present information on an inquiry-based planetary sample and impact cratering unit designed to introduce students in grades 4-10 to the significance of studying the rocks, soils, and surfaces of a planetary world. The unit, consisting of many hands-on activities, provides context and background information to enhance the impact of the Lunar Sample Disks.

  1. Student-Generated Scientific Inquiry for Elementary Education Undergraduates: Course Development, Outcomes and Implications

    ERIC Educational Resources Information Center

    Salter, Irene; Atkins, Leslie

    2013-01-01

    While some researchers have argued for science classrooms that embrace open-inquiry by engaging students in doing science as scientists do (cf. National Research Council [NRC] 1996; Driver et al. in "Sci Educ" 84:287-312, 2000; Windschitl et al. in "Sci Educ" 87(1):112-143, 2008), others have argued that open-inquiry is impractical, ineffective,…

  2. A Science Teacher's Wisdom of Practice in Teaching Inquiry-Based Oceanography.

    ERIC Educational Resources Information Center

    Nelson, Tamara Holmlund

    Inquiry-based research is recommended as a method for helping more students understand the nature of science as well as learn the substance of scientific knowledge, yet there is much to learn about how teachers might adapt inquiry for science teaching and what teachers need to know in order to do this. This case study of an exemplary teacher's…

  3. Life-Cycle Thinking in Inquiry-Based Sustainability Education--Effects on Students' Attitudes towards Chemistry and Environmental Literacy

    ERIC Educational Resources Information Center

    Juntunen, Marianne; Aksela, Maija

    2013-01-01

    The aim of the present study is to improve the quality of students' environmental literacy and sustainability education in chemistry teaching by combining the socio-scientific issue of life-cycle thinking with inquiry-based learning approaches. This case study presents results from an inquiry-based life-cycle thinking project: an interdisciplinary…

  4. Inquiry in the Life Sciences: The Plant-in-a-Jar as a Catalyst for Learning

    ERIC Educational Resources Information Center

    Thompson, Stephen L.

    2007-01-01

    In this article, the author presents and discusses activities that use a phenomena-first, guided inquiry approach to teach important concepts related to plant function, as well as the history and nature of scientific inquiry. These activities are intended for use with students in grades 3-8, as well as in elementary science methods courses. The…

  5. The Impact of Research on the Future of Dental Education: How Research and Innovation Shape Dental Education and the Dental Profession.

    PubMed

    Slavkin, Harold C

    2017-09-01

    Scientific inquiry and discovery are the fuel for education, research, technology, and health care in all the health professions: dentistry, medicine, nursing, pharmacy, and allied health sciences. The progression of discoveries from basic or fundamental to clinical research is followed by the progression from clinical to implementation and improved health outcomes and processes. Generally, implementation science is the scientific study of methods to promote the systematic uptake of research findings (e.g., basic, translational, behavioral, socioeconomic, and clinical) as well as other related evidence-based practices into standards of care, thereby improving the quality, effectiveness, and cost benefits of health care services. There is little doubt that science has and will continue to provide the essential fuel for innovations that lead to new and improved technologies for risk assessment, prevention, diagnosis, treatments and therapeutics, and implementation for addressing oral and craniofacial diseases and disorders. The history of the U.S. dental profession reviewed in this article gives testimony to the continued need for investments in scientific inquiry that accelerate progress in comprehensive health care for all people. This article was written as part of the project "Advancing Dental Education in the 21 st Century."

  6. Investigating Brine Shrimp.

    ERIC Educational Resources Information Center

    Duran, Lena Ballone

    2003-01-01

    Presents a brine shrimp activity designed for students in grades 5-12 to foster authentic scientific inquiry in addition to providing an engaging and exciting avenue for student exploration. Emphasizes that inquiry should be a critical component in the science classroom. (KHR)

  7. Using a Module-Based Laboratory to Incorporate Inquiry into a Large Cell Biology Course

    ERIC Educational Resources Information Center

    Howard, David R.; Miskowski, Jennifer A.

    2005-01-01

    Because cell biology has rapidly increased in breadth and depth, instructors are challenged not only to provide undergraduate science students with a strong, up-to-date foundation of knowledge, but also to engage them in the scientific process. To these ends, revision of the Cell Biology Lab course at the University of Wisconsin-La Crosse was…

  8. Introducing Engineering Design to a Science Teaching Methods Course through Educational Robotics and Exploring Changes in Views of Preservice Elementary Teachers

    ERIC Educational Resources Information Center

    Kaya, Erdogan; Newley, Anna; Deniz, Hasan; Yesilyurt, Ezgi; Newley, Patrick

    2017-01-01

    Engineering has become an important subject in the Next Generation Science Standards (NGSS), which have raised engineering design to the same level as scientific inquiry when teaching science disciplines at all levels. Therefore, preservice elementary teachers (PSTs) need to know how to integrate the engineering design process (EDP) into their…

  9. Growing a Thicker Skin: An Exercise for Measuring Organismal Adaptations to Terrestrial Habitats

    ERIC Educational Resources Information Center

    Nash, Troy R.; Yang, Suann; Inman, John C.

    2015-01-01

    We describe an alternative to the kinds of observation-based lab exercises that are often used to cover animal and plant evolution with respect to transitioning from aquatic to terrestrial habitats. We wrote this activity to address these objectives, but also to model the process of scientific inquiry and to require students to collect and analyze…

  10. New Science Curriculum Based on Inquiry Based Learning--A Model of Modern Educational System in Republic of Macedonia

    ERIC Educational Resources Information Center

    Aceska, Natalija

    2016-01-01

    The process of globalization, more progressive development of the scientific findings, new technology and the way of communicating with the new forms of literacy in which the most secure spot has been taken by the development of natural sciences in the spirit of "sustainable development" have been the reasons that make science and…

  11. Rearing Media as a Variable in Fruit Fly Fecundity: An Activity to Introduce Scientific Methods of Inquiry to Biology Students

    ERIC Educational Resources Information Center

    Wollard, Laura; Klein, Benjamin; Carlson, Darby J.; Carlson, Kimberly A.

    2006-01-01

    A major challenge in teaching the process of science to students is designing and implementing laboratory activities that emulate what is actually done in a research laboratory. To facilitate this effort, science educators have been encouraged to design exercises that span multiple laboratory periods, encourage independent thinking, promote…

  12. Inquiry learning: Students' perception of light wave phenomena in an informal environment

    NASA Astrophysics Data System (ADS)

    Ford, Ken

    This study involved identifying students' perception of light phenomena and determined if they learned the scientific concepts of light that were presented to them by an interactive science exhibit. The participants in this study made scientific inquiry about light by using a powerful white light source, a prism, converging lenses, diverging lenses, concave and convex mirrors in an informal science setting. The sample used in the study consisted of 40 subjects (15 males and 25 females) in a college program at a University located in the Southern region of the United States. The participants were selected using a convenient sampling process from a population enrolled in a pre-calculus class and a physics class. The participants were engaged in pretest on light wave phenomena using the Inquiry Laboratory Light Island exhibit. After the pretest, the participants were engaged in activities, where they reflected white light off the surface of concave and convex mirrors, refracted white light through converging and diverging lens, and passed white light through a prism. They also made observations of the behavior and characteristics of light from the patterns that it created. After three weeks, the participants were given the Inquiry Laboratory Light Island exhibit posttest. The findings of the study indicated that the means yielded a higher average for the participants' posttest scores. The t-Test results were statistically significant, which confirmed that the concepts of light wave phenomena were perceived and learned by the participants. The Inquiry Laboratory survey questions analyzed using the chi-square test suggested that participants were in agreement with the concepts about light. In addition, Cramer's phi and Cramer's V suggested a moderate relationship and association between the genders of the participants on the concepts of light wave phenomena. Furthermore, the interview and observation protocol processes confirmed that students perceived and learned the science concepts of light wave phenomena by the way they responded to the researcher's interview questions. Implications from the study suggested that further study be carried out on the learning process in an informal science setting and should be supported by corporations, businesses, educational institutions, and organizations. Although the findings from this study aided in the development of a structured approach that enhanced student motivation, interest, and learning about light waves in physics/physical science there is still a need to do more research in this area.

  13. Supporting Scientific Experimentation and Reasoning in Young Elementary School Students

    NASA Astrophysics Data System (ADS)

    Varma, Keisha

    2014-06-01

    Researchers from multiple perspectives have shown that young students can engage in the scientific reasoning involved in science experimentation. However, there is little research on how well these young students learn in inquiry-based learning environments that focus on using scientific experimentation strategies to learn new scientific information. This work investigates young children's science concept learning via inquiry-based instruction on the thermodynamics system in a developmentally appropriate, technology-supported learning environment. First- and third-grade students participate in three sets of guided experimentation activities that involve using handheld computers to measure change in temperature given different types of insulation materials. Findings from pre- and post-comparisons show that students at both grade levels are able to learn about the thermodynamics system through engaging in the guided experiment activities. The instruction groups outperformed the control groups on multiple measures of thermodynamics knowledge, and the older children outperform the younger children. Knowledge gains are discussed in the context of mental models of the thermodynamics system that include the individual concepts mentioned above and the relationships between them. This work suggests that young students can benefit from science instruction centered on experimentation activities. It shows the benefits of presenting complex scientific information authentic contexts and the importance of providing the necessary scaffolding for meaningful scientific inquiry and experimentation.

  14. Composing Science

    NASA Astrophysics Data System (ADS)

    Atkins, Leslie

    2015-03-01

    The course Scientific Inquiry at California State University was developed by faculty in biology, physics and English to meet ``writing proficiency'' requirements for non-science majors. Drawing from previous work in composition studies, the position that we take in this course is that we should be engaging students in writing that replicates the work that writing does in science, rather than replicating the particular structural conventions characteristic of scientific writing. That is, scientists use writing to have, remember, share, vet, challenge, and stabilize ideas, and our course requires students use writing to achieve those aims, rather than produce writing that obeys particular conventions of scientific writing. This talk will describe how we have integrated findings from composition studies with a course on scientific inquiry, and provide examples of how scientific communication has resulted from this dialogue. Funding by NSF #1140860.

  15. ERESE: An online forum for research-based earth science inquiry

    NASA Astrophysics Data System (ADS)

    Symons, C. M.; Koppers, A.; Helly, M.; Staudigel, H.; Miller, S. P.

    2007-12-01

    The Enduring Resources for Earth Science Education (ERESE) Project bridges the gap between earth science research and science education by providing a forum for electronic collaboration between practicing scientists and classroom teachers. By combining the resources of Scripps Institution of Oceanography (SIO) and the expertise of educators, ERESE leverages a wide variety of assets to provide state-of-the-art, online digital resources through two National Science Digital Library collections: Earthref.org (http://www.Earthref.org/ERESE) and SIOExplorer (http://SIOExplorer.ucsd.edu). Earthref.org provides a wealth of plate tectonic-related content appropriate for designing and enacting inquiry lessons. The SIOExplorer Digital Library houses marine geophysical data from over 800 research cruises each containing a variety of data types from meteorological, to oceanographic, geophysical and navigational data. Built on successful collaboration between scientists and middle and high school teachers from across the country beginning in 2004, ERESE has expanded into a multifaceted repository for thought-provoking earth science data and images, virtual field trips and inquiry lessons designed by our partner teachers. More than static interfaces, both Earthref.org and SIOExplorer introduce users to current topics in science, seeking to answer outstanding questions about the earth, its processes, formation, and future. To provide a starting point for new users to design and contribute lessons to Earthref.org we have created a basic inquiry lesson plan template that models the process of investigating a real scientific problem. The template is designed on the basis of our five-stage model of inquiry adapted to the National Science Education Standards. As with all inquiry lessons, our model focuses on the shift of power from the teacher at the outset of the lesson to the students upon completion of the lesson.

  16. Coordinating Scientific Argumentation and the Next Generation Science Standards through Argument Driven Inquiry

    ERIC Educational Resources Information Center

    Grooms, Jonathon; Enderle, Patrick; Sampson, Victor

    2015-01-01

    Scientific argumentation is an essential activity for the development and refinement of scientific knowledge. Additionally, fostering argumentation related to scientific concepts can help students engage in a variety of essential scientific practices and enhance their science content knowledge. With the increasing prevalence and emphasis on…

  17. Socio-Scientific Decision Making in the Science Classroom

    ERIC Educational Resources Information Center

    Siribunnam, Siripun; Nuangchalerm, Prasart; Jansawang, Natchanok

    2014-01-01

    The learning ability of students in science is improved by socio-scientific decision-making, an important activity that improves a student's scientific literacy, conceptual understanding, scientific inquiry, attitudes, and social values. The socio-scientific issues must be discussed during science classroom activities in the current state of 21st…

  18. On Myopia: A Complaint from Down Below

    ERIC Educational Resources Information Center

    Sizer, Theodore R.

    1974-01-01

    Both the support of inquiry in education and the character of university attention to the problems of school are two reasons for the attitude in research and policy studies which restricts scholarly approaches to social scientific inquiry. (Author/KM)

  19. Achieving a coherent curriculum in second grade: Science as the organizer

    NASA Astrophysics Data System (ADS)

    Park Rogers, Meredith A.

    The purpose of this study was to examine how a team of four second grade teachers used their approach to teaching science as a means for designing and implementing a coherent curriculum. Within this study, curriculum coherency refers to making logical instructional connections that are both visible and explicit for students. A teacher using a common teaching strategy or critical thinking skills in such a way that the commonalities between subject areas are clearly demonstrated to students is one example of curriculum coherency. The research framework guiding this study was phenomenology; I used a case study method for data analysis. The primary data source was field notes gathered during 10 weeks of classroom observations. Secondary data sources included observations of team meetings, two sets of interviews with each of the four teachers, an interview with the school principal, and artifacts used and developed by the teachers. An analysis of the data led me to interpret the following findings: (1) the teachers viewed science as a tool to motivate their students to learn and believed in teaching science through an inquiry-based approach; (2) they described science inquiry as a process of thinking organized around questions, and saw their teaching role as shifting between guided and open classroom inquiry; (3) they taught all subjects using an inquiry-based approach, emphasized the process skills associated with doing scientific inquiry, and consistently used the language of the process skills throughout their instruction of all disciplines; (4) their team's collaborative approach played a significant role in achieving their vision of a coherent curriculum; the successfulness of their collaboration relied on the unique contributions of each member and her commitment to professional development. This study demonstrates how an inquiry-based science curriculum can provide educators with an effective model for designing and implementing a coherent curriculum. Furthermore, the findings have implications for elementary preservice and inservice programs with respect to using science teaching as a foundation for developing curriculum coherency.

  20. Preservice special education teachers' understandings, enactments, views, and plans for scientific inquiry: Issues and hopes

    NASA Astrophysics Data System (ADS)

    Ghosh, Rajlakshmi

    This study examined the understandings, enactments, views, and plans for scientific inquiry held by preservice special education teachers enrolled in a K--8 general science methods course. Sixteen participants from four special education concentration areas---Mild to Moderate Educational Needs, Moderate to Intense Educational Needs, Mild to Moderate Educational Needs with Language Arts and Reading Emphasis, and Early Childhood Intervention---participated in this study. Qualitative data were collected from questionnaires, interviews, teaching videos, lesson plans, planning commentaries, and reflection papers. Data were analyzed using a grounded theory approach (Strauss & Corbin, 1990) and compared against the theoretical view of inquiry as conceptualized by the National Research Council (NRC, 2000). The participants held unique interpretations of inquiry that only partially matched with the theoretical insights provided by the NRC. The participants' previous science learning experiences and experiences in special education played an important role in shaping their conceptualizations of inquiry as learned in the science methods class. The impacts of such unique interpretations are discussed with reference to both science education and special education, and implications for teacher education are provided.

  1. Modeling "Tiktaalik": Using a Model-Based Inquiry Approach to Engage Community College Students in the Practices of Science during an Evolution Unit

    ERIC Educational Resources Information Center

    Baze, Christina L.; Gray, Ron

    2018-01-01

    Inquiry methods have been successful in improving science literacy in students of all ages. Model-Based Inquiry (MBI) is an instructional model that engages students in the practices of science through the collaborative development of scientific models to explain an anchoring phenomenon. Student ideas are tested through engagement in content-rich…

  2. Inquiry-Based Science Education Competencies of Primary School Teachers: A Literature Study and Critical Review of the American National Science Education Standards

    ERIC Educational Resources Information Center

    Alake-Tuenter, Ester; Biemans, Harm J. A.; Tobi, Hilde; Wals, Arjen E. J.; Oosterheert, Ida; Mulder, Martin

    2012-01-01

    Inquiry-based science education is an important innovation. Researchers and teachers consider it to be stimulating for pupils' application of research skills, construction of meaning and acquiring scientific knowledge. However, there is ambiguity as to what competencies are required to teach inquiry-based science. Our purpose is to develop a…

  3. A Cool Controversy

    ERIC Educational Resources Information Center

    Biddy, Quentin

    2015-01-01

    As society becomes more technological, the need for scientific literacy grows . Part of scientific literacy is understanding the nature of science, which can be revealed, in part, by learning the historical context of current science concepts. History of science can be taught using scientific inquiry, scientific argumentation, and authentic…

  4. Astronomy Village: Innovative Uses of Planetary Astronomy Images and Data

    NASA Astrophysics Data System (ADS)

    Croft, S. K.; Pompea, S. M.

    2008-06-01

    Teaching and learning science is best done by hands-on experience with real scientific data and real scientific problems. Getting such experiences into public and home-schooling classrooms is a challenge. Here we describe two award-winning multimedia products that embody one successful solution to the problem: Astronomy Village: Investigating the Universe, and Astronomy Village: Investigating the Solar System. Each Village provides a virtual environment for inquiry-based scientific exploration of ten planetary and astronomical problems such as ``Mission to Pluto'' and ``Search for a Supernova.'' Both Villages are standards-based and classroom tested. Investigating the Solar System is designed for middle and early high school students, while Investigating the Universe is at the high school and introductory college level. The objective of both Villages is to engage students in scientific inquiry by having them acquire, explore, and analyze real scientific data and images drawn from real scientific problems.

  5. Enhancing Science Education Instruction: A Mixed-Methods Study on University and Middle School Collaborations

    NASA Astrophysics Data System (ADS)

    Owen-Stone, Deborah S.

    The purpose of this concurrent mixed methods study was to examine the collaborative relationship between scientists and science teachers and to incorporate and advocate scientific literacy based on past and current educational theories such as inquiry based teaching. The scope of this study included archived student standardized test scores, semi-structured interviews, and a Likert scale survey to include open-ended comments. The methodology was based on the guiding research question: To what extent and in what ways does the collaboration and inquiry methodology, with GTF and PT teams, serve toward contributing to a more comprehensive and nuanced understanding of this predicting relationship between student PASS scores, inquiry skills, and increased scientific literacy for GTF's, PT's, and students via an integrative mixed methods analysis? The data analysis considerations were derived from the qualitative data collected from the three GTF/PT teams by the use of recorded interviews and text answered survey comments. The quantitative data of archived student Palmetto Assessment of State Standards (PASS) scores on scientific literacy and inquiry tests and the Likert-scale portion of the survey were support data to the aforementioned qualitative data findings. Limitations of the study were (1) the population of only the GK-12 teachers and their students versus the inclusion of participants that did not experience the GK-12 Fellow partnerships within their classrooms, should they be considered as participants, (2) involved the researcher as a participant for two years of the program and objectivity remained through interpretation and well documented personal reflections and experiences to inform accuracy, and (3) cultural diversity contributed to the relationship formed between the research Fellow and science educator and communication and scientific language did form a barrier between the Fellow, educator, and student rapport within the classroom. This study's contribution benefits science education, scientists, university science education, and future collaborations. Key Terms: mixed methods, GK-12, scientific literacy, inquiry, collaboration.

  6. Science Classroom Inquiry (SCI) Simulations: A Novel Method to Scaffold Science Learning

    PubMed Central

    Peffer, Melanie E.; Beckler, Matthew L.; Schunn, Christian; Renken, Maggie; Revak, Amanda

    2015-01-01

    Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students’ self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study. PMID:25786245

  7. Science classroom inquiry (SCI) simulations: a novel method to scaffold science learning.

    PubMed

    Peffer, Melanie E; Beckler, Matthew L; Schunn, Christian; Renken, Maggie; Revak, Amanda

    2015-01-01

    Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.

  8. Dewey's Theory of Inquiry and Reflective Administration.

    ERIC Educational Resources Information Center

    Willower, Donald J.

    1994-01-01

    Presents John Dewey's version of pragmatism and discusses implications for reflective administration. Dewey's pragmatist perspective represents a severe challenge to subjectivists and critical theorists. Deweyan science emphasizes the creative, human, and fallible, but self-corrective, aspects of scientific inquiry. For administrators, reflective…

  9. Whoooo Knew?

    ERIC Educational Resources Information Center

    Schiller, Ellen; Melin, Jacque

    2011-01-01

    Classroom assessment practices have shifted from a focus on checking for students' understanding of memorized material to examining their conceptual understanding as they engage in activities that involve scientific reasoning, inquiry skills, performances, and products. Inquiry-based science has shifted instruction away from teacher-centered,…

  10. The opportunities and challenges of guided inquiry science for students with special needs

    NASA Astrophysics Data System (ADS)

    Miller, Marianne

    Research in science education has been conducted with various goals for instruction. Four outcomes identified include: immediate and delayed recall, literal comprehension, science skills and processes, and conceptual understanding. The promise of developing important thinking skills exists for all students if science instruction is designed to teach students the products of science and the principled process of inquiry. Guided inquiry science seeks to develop conceptual understanding through the pursuit of meaningful questions using scientific problem solving to conduct investigations that are thoughtfully generated and evaluated. Using a social constructivist perspective, this study examines the learning experiences of four students, identified by their teachers as learning disabled or underachieving. Four case studies are presented of the students' participation in a guided inquiry investigation of the behavior of light. Measures of conceptual understanding included pre- and post-instruction assessments, interviews, journal writing, videotapes, and fieldnotes. All four students demonstrated improved conceptual understanding of light. Five patterns of relationships influenced the development of the students' thinking. First, differences in the culture of the two classrooms altered the learning environment, Second, the nature of teacher interaction with the target students affected conceptual understanding. Third, interactions with peers modified the learning experiences for the identified students. Fourth, the conceptual and procedural complexity of the tasks increased the tendency for the students to lose focus. Finally, the literacy requirements of the work were challenging for these students.

  11. Combining Laboratory Experiments with Digital Tools to Do Scientific Inquiry

    ERIC Educational Resources Information Center

    Kluge, Anders

    2014-01-01

    This qualitative study investigates the gap between a lab experiment and theory of science. Two groups of 4 students in 2 different classes in 11th grade (15-16 years old) are followed as they process results and experiences from a lab experiment using a digital environment. The experiment is as a part of a larger project about genes and cells,…

  12. Analysis of Instructor Facilitation Strategies and Their Influences on Student Argumentation: A Case Study of a Process Oriented Guided Inquiry Learning Physical Chemistry Classroom

    ERIC Educational Resources Information Center

    Stanford, Courtney; Moon, Alena; Towns, Marcy; Cole, Renee

    2016-01-01

    Encouraging students to participate in collaborative discourse allows students to constructively engage one another, share ideas, develop joint understanding of the course content, and practice making scientific arguments. Argumentation is an important skill for students to learn, but students need to be given the opportunity in class to engage in…

  13. Teachers' Readiness to Use Inquiry-Based Learning: An Investigation of Teachers' Sense of Efficacy and Attitudes toward Inquiry-Based Learning

    ERIC Educational Resources Information Center

    Silm, Gerli; Tiitsaar, Kai; Pedaste, Margus; Zacharia, Zacharias C.; Papaevripidou, Marios

    2017-01-01

    The use of inquiry-based learning (IBL) is encouraged in schools, as it has been shown to be an effective method for raising students' motivation in STEM subjects and increasing their understanding of scientific concepts. Nevertheless, IBL is not very often used in classrooms by teachers due to different (perceived) obstacles. Within the Ark of…

  14. Science Teachers' Views and Stereotypes of Religion, Scientists and Scientific Research: A Call for Scientist-Science Teacher Partnerships to Promote Inquiry-Based Learning

    ERIC Educational Resources Information Center

    Mansour, Nasser

    2015-01-01

    Despite a growing consensus regarding the value of inquiry-based learning (IBL) for students' learning and engagement in the science classroom, the implementation of such practices continues to be a challenge. If science teachers are to use IBL to develop students' inquiry practices and encourage them to think and act as scientists, a better…

  15. What Is a Scientific Experiment? The Impact of a Professional Development Course on Teachers' Ability to Design an Inquiry-Based Science Curriculum

    ERIC Educational Resources Information Center

    Pérez, María del Carmen B.; Furman, Melina

    2016-01-01

    Designing inquiry-based science lessons can be a challenge for secondary school teachers. In this study we evaluated the development of in-service teachers' lesson plans as they took part in a 10-month professional development course in Peru which engaged teachers in the design of inquiry-based lessons. At the beginning, most teachers designed…

  16. Development of guided inquiry-based laboratory worksheet on topic of heat of combustion

    NASA Astrophysics Data System (ADS)

    Sofiani, D.; Nurhayati; Sunarya, Y.; Suryatna, A.

    2018-03-01

    Chemistry curriculum reform shows an explicit shift from traditional approach to scientific inquiry. This study aims to develop a guided inquiry-based laboratory worksheet on topic of heat of combustion. Implementation of this topic in high school laboratory is new because previously some teachers only focused the experiment on determining the heat of neutralization. The method used in this study was development research consisted of three stages: define, design, and develop. In the define stage, curriculum analysis and material analysis were performed. In the design stage, laboratory optimization and product preparation were conducted. In the development stage, the product was evaluated by the experts and tested to a total of 20 eleventh-grade students. The instruments used in this study were assessment sheet and students’ response questionnaire. The assessment results showed that the guided inquiry-based laboratory worksheet has very good quality based on the aspects of content, linguistic, and graphics. The students reacted positively to the use of this guided inquiry-based worksheet as demonstrated by the results from questionnaire. The implications of this study is the laboratory activity should be directed to development of scientific inquiry skills in order to enhance students’ competences as well as the quality of science education.

  17. Deaf, Hard-of-Hearing, and Hearing Signing Undergraduates’ Attitudes toward Science in Inquiry-Based Biology Laboratory Classes

    PubMed Central

    Gormally, Cara

    2017-01-01

    For science learning to be successful, students must develop attitudes toward support future engagement with challenging social issues related to science. This is especially important for increasing participation of students from underrepresented populations. This study investigated how participation in inquiry-based biology laboratory classes affected students’ attitudes toward science, focusing on deaf, hard-of-hearing, and hearing signing students in bilingual learning environments (i.e., taught in American Sign Language and English). Analysis of reflection assignments and interviews revealed that the majority of students developed positive attitudes toward science and scientific attitudes after participating in inquiry-based biology laboratory classes. Attitudinal growth appears to be driven by student value of laboratory activities, repeated direct engagement with scientific inquiry, and peer collaboration. Students perceived that hands-on experimentation involving peer collaboration and a positive, welcoming learning environment were key features of inquiry-based laboratories, affording attitudinal growth. Students who did not perceive biology as useful for their majors, careers, or lives did not develop positive attitudes. Students highlighted the importance of the climate of the learning environment for encouraging student contribution and noted both the benefits and pitfalls of teamwork. Informed by students’ characterizations of their learning experiences, recommendations are made for inquiry-based learning in college biology. PMID:28188279

  18. Collaborative Group Learning Approaches for Teaching Comparative Planetology

    NASA Astrophysics Data System (ADS)

    Slater, S. J.; Slater, T. F.

    2013-12-01

    Modern science education reform documents propose that the teaching of contemporary students should focus on doing science, rather than simply memorizing science. Duschl, Schweingruber, and Shouse (2007) eloquently argue for four science proficiencies for students. Students should: (i) Know, use, and interpret scientific explanations of the natural world; (ii) Generate and evaluate scientific evidence and explanations; (iii) Understand the nature and development of scientific knowledge; and (iv) Participate productively in scientific practices and discourse. In response, scholars with the CAPER Center for Astronomy & Physics Education Research are creating and field-tested two separate instructional approaches. The first of these is a series of computer-mediated, inquiry learning experiences for non-science majoring undergraduates based upon an inquiry-oriented teaching approach framed by the notions of backwards faded-scaffolding as an overarching theme for instruction. Backwards faded-scaffolding is a strategy where the conventional and rigidly linear scientific method is turned on its head and students are first taught how to create conclusions based on evidence, then how experimental design creates evidence, and only at the end introduces students to the most challenging part of inquiry - inventing scientifically appropriate questions. Planetary science databases and virtual environments used by students to conduct scientific investigations include the NASA and JPL Solar System Simulator and Eyes on the Solar System as well as the USGS Moon and Mars Global GIS Viewers. The second of these is known widely as a Lecture-Tutorial approach. Lecture-Tutorials are self-contained, collaborative group activities. The materials are designed specifically to be easily integrated into the lecture course and directly address the needs of busy and heavily-loaded teaching faculty for effective, student-centered, classroom-ready materials that do not require a drastic course revision for implementation. Students are asked to reason about difficult concepts, while working in pairs, and to discuss their ideas openly. Extensive evaluation results consistently suggest that both the backwards faded-scaffolding and the Lecture-Tutorials approaches are successful at engaging students in self-directed scientific discourse as measured by the Views on Scientific Inquiry (VOSI) as well as increasing their knowledge of science as measured by the Test Of Atronomy STandards (TOAST).

  19. The effect of explicit, inquiry instruction on freshman college science majors' understanding of the nature of science

    NASA Astrophysics Data System (ADS)

    Kenyon, Lisa Orvik

    Reform efforts have placed strong emphasis on teaching practices that should help students learn about the nature of science. Researchers have examined two general instructional approaches, explicit and implicit, believed to be useful in teaching science. Of these two approaches, researchers emphasize explicit instruction as the more effective approach when enhancing students' views of the scientific endeavor (Abd-El-Khalick & Lederman, 2000; Bell, 2001; Billeh & Hasan, 1975; Carey & Stauss, 1968; Schwartz et al., 2000). Furthermore, recent studies (Schwartz et al ., 2000, 2001) indicate that teaching science inquiry through investigative activities and reflective discussions have demonstrated to be most effective for understanding science. The purpose of this study was to describe the effect of explicit, inquiry instruction on the understanding of freshman college science majors regarding the nature of science. Participants included 74 freshman college science majors, 50 students in the experimental group and 24 students in the control group. The experimental group was exposed to the treatment of the study, which took place in a Succeeding in Science course. The course content included explicit instruction on the nature of science, emphasizing scientific inquiry and the processes that scientists carry out in their work. The course reflected three aspects of inquiry-based science that are discussed in the Inquiry and the National Science Education Standards (2000) which are (1) to learn the principles and concepts of science; (2) to participate in scientific investigations; and (3) to reflect on the epistemology of science. The research design of this study used a pretest-posttest instrument, The Views of Nature of Science Questionnaire Form C (VNOS-C) (Lederman et al., 2001) and an essay paper at the end of the course to assess students' understanding about the nature of science. The results from the VNOS-C were analyzed using analysis of covariance in which the dependent variable was student understanding of science as measured by the posttest, and the covariate was student understanding of nature of science as measured by the pretest. The results indicated that the understanding of the nature of science of freshman college science majors who have participated in explicit, inquiry instruction is statistically greater than the understanding of the nature of science of freshman college science majors who have participated in traditional instruction. The essays provided insight into the apparent increase in student understanding of the nature of science. The results from pretesting and posttesting indicated that a one-semester credit hour course, which focuses directly on teaching about the nature of science can improve freshman science majors' understanding of the nature of science.

  20. Students' attitude-related responses to inquiry learning in undergraduate kinesiology laboratory instruction

    NASA Astrophysics Data System (ADS)

    Henige, Kimberly Ann

    The purpose of this investigation was to determine whether the student attitudes are impacted when teaching methods in an undergraduate Kinesiology lab course shift from a traditional, cookbook-style, low inquiry-level to an investigative, high inquiry-level approach. Students participated in five weeks of Level 0-1 (low) inquiry activities, followed by five weeks of a Level 3 (high) inquiry project. The same Likert-scale survey was administered to students before and after each 5-week period. The attitudes measured by the survey included students' (a) attitude to scientific inquiry, (b) adoption of scientific attitudes, (c) enjoyment of science lessons, and (d) motivation in science. Repeated measures ANOVAs revealed no significant change in any of the attitude measures when the survey results from the different time points were compared. An open-ended qualitative survey was given to the students at the end of the semester and provided more insight. When asked to compare the low and high-level inquiry experiences, most students reported enjoying the higher level of inquiry more. On the other hand, most students felt they learned more during the low inquiry-level activities. The reported level of motivation in lab was about the same for both levels. When asked what they liked most about the high-level inquiry project, students favored aspects such as the independence, responsibility, and personal relevance. When asked what they liked the least, most students said there was nothing they disliked. Of the minority of students who did not like the high-level of inquiry, most claimed to be uncomfortable with the lack of structure and guidance. Other findings were that many students expressed a new or increased respect and appreciation for what scientists do. Some students experienced a decrease in their reliance on science to be true and correct. While some students thought the high-level inquiry was harder, others perceived it as being easier. These findings illustrate how students enrolled in the same course can have very different experiences with inquiry. In general, the effect of high-level inquiry was not negative, and in fact, was found to have some desirable effects on students.

  1. Influence of subject matter discipline and science content knowledge on National Board Certified science teachers' conceptions, enactment, and goals for inquiry

    NASA Astrophysics Data System (ADS)

    Breslyn, Wayne Gene

    The present study investigated differences in the continuing development of National Board Certified Science Teachers' (NBCSTs) conceptions of inquiry across the disciplines of biology, chemistry, earth science, and physics. The central research question of the study was, "How does a NBCST's science discipline (biology, chemistry, earth science, or physics) influence their conceptions, enactment, and goals for inquiry-based teaching and learning?" A mixed methods approach was used that included an analysis of the National Board portfolio entry, Active Scientific Inquiry, for participants (n=48) achieving certification in the 2007 cohort. The portfolio entry provided detailed documentation of teachers' goals and enactment of an inquiry lesson taught in their classroom. Based on the results from portfolio analysis, participant interviews were conducted with science teachers (n=12) from the 2008 NBCST cohort who represented the science disciplines of biology, chemistry, earth science, and physics. The interviews provided a broader range of contexts to explore teachers' conceptions, enactment, and goals of inquiry. Other factors studied were disciplinary differences in NBCSTs' views of the nature of science, the relation between their science content knowledge and use of inquiry, and changes in their conceptions of inquiry as result of the NB certification process. Findings, based on a situated cognitive framework, suggested that differences exist between biology, chemistry, and earth science teachers' conceptions, enactment, and goals for inquiry. Further, individuals teaching in more than one discipline often held different conceptions of inquiry depending on the discipline in which they were teaching. Implications for the research community include being aware of disciplinary differences in studies on inquiry and exercising caution in generalizing findings across disciplines. In addition, teachers who teach in more than one discipline can highlight the contextual and culturally based nature of teachers' conceptions of inquiry. For the education community, disciplinary differences should be considered in the development of curriculum and professional development. An understanding of disciplinary trends can allow for more targeted and relevant representations of inquiry.

  2. Inquiry-Based Early Undergraduate Research Using High-Altitude Ballooning

    NASA Astrophysics Data System (ADS)

    Sibbernsen, K.; Sibbernsen, M.

    2012-12-01

    One common objective for undergraduate science classes is to have students learn how to do scientific inquiry. However, often in science laboratory classes, students learn to take data, analyze the data, and come to conclusions, but they are told what to study and do not have the opportunity to ask their own research questions, a crucial part of scientific inquiry. A special topics class in high-altitude ballooning (HAB) was offered at Metropolitan Community College, a large metropolitan two-year college in Omaha, Nebraska to focus on scientific inquiry for the participants through support of NASA Nebraska Space Grant. A weather balloon with payloads attached (balloonSAT) was launched to near space where the balloon burst and fell back to the ground with a parachute. Students worked in small groups to ask their research questions, they designed their payloads, participated in the launch and retrieval of equipment, analyzed data, and presented the results of their research. This type of experience has potential uses in physics, physical science, engineering, electronics, computer programming, meteorology, astronomy, and chemistry classes. The balloonSAT experience can act as a stepping-stone to designing sounding rocket payloads and it can allow students the opportunity to participate in regional competitions and present at HAB conferences. Results from the workshop are shared, as well as student responses to the experience and suggestions for administering a high-altitude ballooning program for undergraduates or extending inquiry-based ballooning experiences into high-school or middle-school.

  3. Applying innovative approach “Nature of Science (NoS) within inquiry” for developing scientific literacy in the student worksheet

    NASA Astrophysics Data System (ADS)

    Widowati, A.; Anjarsari, P.; Zuhdan, K. P.; Dita, A.

    2018-03-01

    The challenges of the 21st century require innovative solutions. Education must able to make an understanding of science learning that leads to the formation of scientific literacy learners. This research was conducted to produce the prototype as science worksheet based on Nature of Science (NoS) within inquiry approach and to know the effectiveness its product for developing scientific literacy. This research was the development and research design, by pointing to Four D models and Borg & Gall Model. There were 4 main phases (define, design, develop, disseminate) and additional phases (preliminary field testing, main product revision, main field testing, and operational product revision). Research subjects were students of the junior high school in Yogyakarta. The instruments used included questionnaire sheet product validation and scientific literacy test. For the validation data were analyzed descriptively. The test result was analyzed by an N-gain score. The results showed that the appropriateness of worksheet applying NoS within inquiry-based learning approach is eligible based on the assessment from excellent by experts and teachers, students’ scientific literacy can improve high category of the N-gain score at 0.71 by using student worksheet with Nature of Science (NoS) within inquiry approach.

  4. Scientific Explanations: Characterizing and Evaluating the Effects of Teachers' Instructional Practices on Student Learning

    ERIC Educational Resources Information Center

    McNeill, Katherine L.; Krajcik, Joseph

    2008-01-01

    Teacher practices are essential for supporting students in scientific inquiry practices, such as the construction of scientific explanations. In this study, we examine what instructional practices teachers engage in when they introduce scientific explanation and whether these practices influence students' ability to construct scientific…

  5. A Scientist's Guide to Achieving Broader Impacts through K–12 STEM Collaboration

    PubMed Central

    Komoroske, Lisa M.; Hameed, Sarah O.; Szoboszlai, Amber I.; Newsom, Amanda J.; Williams, Susan L.

    2015-01-01

    The National Science Foundation and other funding agencies are increasingly requiring broader impacts in grant applications to encourage US scientists to contribute to science education and society. Concurrently, national science education standards are using more inquiry-based learning (IBL) to increase students’ capacity for abstract, conceptual thinking applicable to real-world problems. Scientists are particularly well suited to engage in broader impacts via science inquiry outreach, because scientific research is inherently an inquiry-based process. We provide a practical guide to help scientists overcome obstacles that inhibit their engagement in K–12 IBL outreach and to attain the accrued benefits. Strategies to overcome these challenges include scaling outreach projects to the time available, building collaborations in which scientists’ research overlaps with curriculum, employing backward planning to target specific learning objectives, encouraging scientists to share their passion, as well as their expertise with students, and transforming institutional incentives to support scientists engaging in educational outreach. PMID:26955078

  6. Scientific research and human rights: a response to Kitcher on the limitations of inquiry.

    PubMed

    Victor, Elizabeth

    2014-12-01

    In his recent work exploring the role of science in democratic societies Kitcher (Science in a democratic society. Prometheus Books, New York, 2011) claims that scientists ought to have a prominent role in setting the agenda for and limits to research. Against the backdrop of the claim that the proper limits of scientific inquiry is John Stuart Mill’s Harm Principle (Kitcher in Science, truth, and democracy. Oxford University Press, New York, 2001), he identifies the limits of inquiry as the point where the outcomes of research could cause harm to already vulnerable populations. Nonetheless, Kitcher argues against explicit limitations on unscrupulous research on the grounds that restrictions would exacerbate underlying social problems. I show that Kitcher’s argument in favor of dissuading inquiry through conventional standards is problematic and falls prey to the same critique he offers in opposition to official bans. I expand the conversation of limiting scientific research by recognizing that the actions that count as ‘science’ are located in the space between ‘thinking’ and ‘doing’. In this space, we often attempt to balance freedom of research, as scientific speech, against the disparate impact citizens might experience in light of such research. I end by exploring if such disparate impact justifies limiting research, within the context of the United States, under Title VII of the Civil Rights Act of 1964 or under international human rights standards more generally.

  7. Protocol (P-SOP)

    ERIC Educational Resources Information Center

    Forbes, Cory T.; Biggers, Mandy; Zangori, Laura

    2013-01-01

    Within the field of science education, there remains little agreement as to the definition and characteristics of classroom inquiry. The emerging emphasis on scientific practices in science education reform discourse is underpinned by a need to better articulate the constituent elements of inquiry-based science. While a small number of…

  8. Teachers' Practices of Inquiry When Teaching Investigations: A Case Study

    ERIC Educational Resources Information Center

    Dudu, Washington T.; Vhurumuku, Elaosi

    2012-01-01

    Teacher practices are essential for supporting learners in scientific inquiry practices of framing research questions, designing and conducting investigations, collecting data, and drawing conclusions. This study examines instructional practices of two Grade 11 Physical Science teachers engaged in teaching practical investigations. Data were…

  9. ThinkerTools. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2012

    2012-01-01

    "ThinkerTools" is a computer-based program that aims to develop students' understanding of physics and scientific modeling. The program is composed of two curricula for middle school students, "ThinkerTools Inquiry" and "Model-Enhanced ThinkerTools". "ThinkerTools Inquiry" allows students to explore the…

  10. Promoting children's agency and communication skills in an informal science program

    NASA Astrophysics Data System (ADS)

    Wulf, Rosemary; Hinko, Kathleen; Finkelstein, Noah

    2013-01-01

    The Partnerships for Informal Science Education in the Community (PISEC) program at the University of Colorado Boulder brings together university and community institutions to create an environment where K-12 students join with university educators to engage in inquiry-based scientific practices after school. In our original framing, these afterschool activities were developed to reinforce the traditional learning goals of the classroom, including mastering scientific content, skills and processes. Recently, the primary focus of the PISEC curriculum has been shifted towards the development of students' scientific identity, an explicit objective of informal learning environments. The new curriculum offers students more activity choices, affords opportunities for scientific drawings and descriptions, and provides incentive for students to design their own experiments. We have analyzed student science notebooks from both old and new curricula and find that with the redesigned curriculum, students exhibit increased agency and more instances of scientific communication while still demonstrating substantial content learning gains.

  11. Educator Exploration of Authentic Environmental Issues of the Coastal Margin Through Information Technology

    NASA Astrophysics Data System (ADS)

    Herbert, B. E.; Schielack, J. F.

    2004-12-01

    Teachers immersed in authentic science inquiry in professional development programs, with the goal of transferring the nature of scientific research to the classroom, face two enormous problems: (1) issues surrounding the required knowledgebase, skills set, and habits of mind of the teachers that control, to a large degree, the ability of teachers to immerse themselves in authentic scientific research in the available time, and (2) the difficulties in transferring this experience to the classroom. Most professional development programs utilize one of two design models, the first limits the authenticity of the scientific experience while placing more emphasis on pedagogical issues, and second where teachers are immersed in scientific research, often through mentoring programs with scientists, but with less explicit attention to problems of transfer to the classroom. The ITS Center for Teaching and Learning (its.tamu.edu), a five-year NSF-funded collaborative program that engages scientists, educational researchers, and educators in the use of information technology to improve science teaching and learning at all levels, has developed a model that supports teachers' learning about authentic scientific research, pedagogical training in inquiry-based learning, and educational research in their own classrooms on the impacts of using information technology to promote authentic science experiences for their students. This connection is achieved through scaffolding by information technology that supports the modeling, visualization and exploration of complex data sets to explore authentic scientific questions that can be integrated within the 7-16 curriculum. Our professional development model constitutes a Learning Research Cycle, which is characterized as a seamless continuum of inquiry activities and prolonged engagement in a learning community of educators, scientists, and mathematicians centered on the development of teachers' pedagogical content knowledge as it relates to the use of information technology in doing, learning, and teaching science. This talk will explore the design changes of the geoscience team of the ITS as it moved from Phase I (the planned program designed in-house) to Phase II (the experimental program being tested in-house) over two, two-year cohorts. We have assessed the impact of our Learning Research Cycle model on ITS participants using both a mixed model assessment of learning products, surveys, interviews, and teacher inquiry projects. Assessment results indicate that teachers involved in the second cohort improved their understanding of geoscience and inquiry-based learning, while improving their ability to establish authentic inquiry in their classrooms through the use of information technology and to assess student learning.

  12. Supporting Survey Courses with Lecture-Tutorials and Backwards-Faded Scaffolded Inquiry

    NASA Astrophysics Data System (ADS)

    Slater, T. F.; Slater, S. J.

    2013-12-01

    In the course of learning science, it is generally accepted that successful science learning experiences should result in learners developing a meaningful understanding of the nature of science as inquiry where: (i) students are engaged in questions; (ii) students are designing plans to pursue data; and (iii) students are generating and defending conclusions based on evidence they have collected. Few of these learning targets can be effectively reached through a professor-centered, information download lecture. In response to national reform movements calling for professors to adopt teaching strategies and learning environments where non-science majors and future teachers can actively engage in scientific discourse, scholars with the CAPER Center for Astronomy & Physics Education Research have leveraged NSF DUE funding over the last decade to develop and systematically field-test two separate instructional approaches. The first of these is called Lecture-Tutorials (NSF 99077755 and NSF 9952232) . These are self-contained, classroom-ready, collaborative group activities. The materials are designed specifically to be easily integrated into the lecture course and directly address the needs of busy and heavily-loaded teaching faculty for effective, student-centered, classroom-ready materials that do not require a drastic course revision for implementation. Students are asked to reason about difficult concepts, while working in pairs, and to discuss their ideas openly. The second of these is a series of computer-mediated, inquiry learning experiences for non-science majoring undergraduates based upon an inquiry-oriented teaching approach framed by the notions of backwards faded-scaffolding as an overarching theme for instruction (NSF 1044482). Backwards faded-scaffolding is a strategy where the conventional and rigidly linear scientific method is turned on its head and students are first taught how to create conclusions based on evidence, then how experimental design creates evidence, and only at the end introduces students to - what we believe is the most challenging part of inquiry - inventing scientifically appropriate questions. Dissemination efforts have been supported by NSF 0715517 and evaluation results consistently suggest that both the Lecture-Tutorials and the backwards faded-scaffolding approaches are successfully engaging students in self-directed scientific discourse as measured by the Views on Scientific Inquiry (VOSI) as well as increasing their knowledge of science as measured by various measures.

  13. Construction of technological artifacts and teaching strategies to promote flexible scientific understanding

    NASA Astrophysics Data System (ADS)

    Spitulnik, Michele Wisnudel

    Science education reforms advocate inquiry as a way to build explanations and make informed decisions. Based on this call this dissertation (1) defines flexible scientific understanding by elaborating on content, inquiry and epistemic understandings; (2) describes an inquiry based unit that integrates dynamic modeling software; (3) examines students' understandings as they construct models; and (4) identifies instructional strategies that support inquiry and model building. A curriculum unit was designed to engage students in inquiry by identifying problems and constructing models to represent, explain and predict phenomena. Ninth grade students in a public mid-western high school worked in teams of 2-3 to ask questions, find information and reflect on the purposes of models. Data sources including classroom video, observations, interviews, student models and handouts were used to formulate cases that examine how two groups construct understanding. A teacher case study identifies the teaching strategies that support understanding. Categories within content, inquiry and epistemic understandings were used to analyze student understandings and teaching supports. The findings demonstrate that students can build flexible understanding by constructing models. Students built: (1) content understanding by identifying key ideas and building relationships and explanations of phenomena; (2) inquiry understanding by defining problems, constructing models and developing positions; and (3) epistemic understanding by describing the purposes of models as generalizing phenomena, testing hypotheses and making predictions. However, students demonstrated difficulty in using evidence to defend scientific arguments. Strategies that support flexible understanding were also identified. Content supports include: setting expectations for explanations; using examples to illustrate explanations; modeling questions; and providing feedback that prompts detailed explanations. Supports for inquiry are setting expectations for data gathering; using examples that illustrate model building; modeling the development of an argument; and providing feedback to promote coherent models. Epistemic supports include: using examples to illustrate purposes and assumptions within models, and providing feedback as students evaluate their models. The dissertation demonstrates that teaching strategies impact student understanding but are challenging to implement. When strategies are not used, students do not necessarily construct desired outcomes such as, using evidence to support arguments.

  14. 'I'm a consumer, I'm not a scientist': Cultivating Student Domain Identification, Agency, and Affect through Engagement in Scientific Practices

    NASA Astrophysics Data System (ADS)

    Scalone, Giovanna

    This study investigates the potential benefits of redesigning hands-on, commercial inquiry science kits for fifth grade that afford agency and the development of science identities by leveraging youth's interests, personal or shared concerns, challenges or desires. Science identification is considered in relation to learning processes of being, becoming, knowing and doing. As identities are constructed dialogically through engagement, emotion, intentionality, innovation, and solidarity, students' agency is mediated and conceptualized as it develops in practice. The study is introduced in Chapter 1 by acknowledging how agency and identity are constructed from an ideological frame, thus problematizing the current neo-liberal policies undergirding educational reform. The conceptual argument in Chapter 2 outlines a theoretical synthesis of agency and learning. Subsequently, I leveraged a theory of semiosis to highlight how these perspectives on agency and identity contribute to the meaning-making processes of language, culture, and mind. Finally, conceptualizations of agency and identity are mapped to the sociology of scientific knowledge perspective. Chapter 3 situates the study context within a design-based implementation research model where the existing science curriculum units serve as comparisons (Inquiry group) to the experimental units (Agency group). The findings first demonstrate how student and teacher positioning are revealed during the turns of exchange by using functional grammar as a method to analyze how discourse works to construe experience and enact social relationships. Secondly, I analyze youth positioning across conditions highlighting the importance of raising student consciousness to the variegated ways scientists practice science and inducts students into how scientists intentionally and purposefully employ genres to engage in scientific ways of communicating. Student's perspectives, positioning, and emotional investments are then analyzed using appraisal analysis to show how students talking about their images of science yield different ways of knowing and dispositions in science. Thirdly, by tracing the inclination and obligation of doing science, I illustrate how subjectivity versus materiality/objectivity in science impact how students perceive science. Fourth, student images of science, ways of identifying with science and having agency in science are analyzed using a thematic analysis to identify patterns and emerging themes. Next, I assess students' developing understanding of scientific inquiry using HLM to determine whether the Agency units versus the Inquiry units predicted students' learning outcomes based on the inquiry assessment. Finally, I discuss the implications of these analyses. This study accounts for how youth develop practice-linked identities in science entails the fleeting identity performances and language choices made for and by youth in the science classroom. Central to this notion of identity is agency where positionality as well as material and symbolic, interactional and situational resources constrain or enable identity development. In a learning context, these choices and values inherent in language use are relational to learner agency outside of language, but ensouled in performative curating where solidarity, intention, creativity, emotion, accountability, anticipation, cognition, and rewards enable the capacity to transform the self, others, and communities. This dissertation demonstrates how design features embedded in curriculum related to personal relevance and the societal context for science affords teachers to engage youth in agentic science learning in the classroom in ways that become more meaningful and supportive of science identification than traditional inquiry approaches to teaching science.

  15. Beyond Black Boxes: Bringing Transparency and Aesthetics Back to Scientific Investigation.

    ERIC Educational Resources Information Center

    Resnick, Mitchel; Berg, Robbie; Eisenberg, Michael

    2000-01-01

    Presents a set of case studies in which students create, customize, and personalize their own scientific instruments. Finds that students become engaged in scientific inquiry not only through observing and measuring, but also through designing and building. (Author/CCM)

  16. Emergent self-regulatory activity among young children during scientific inquiry: An analysis of six kindergarten children

    NASA Astrophysics Data System (ADS)

    Lomangino, Adrienne Gelpi

    2000-10-01

    This qualitative investigation extends the study of self-regulation to examine young children's developing self-regulated learning competencies. The framework for this research draws upon social cognitive, developmental, and sociocultural perspectives on self-regulation and research on children's scientific thinking. Taking a multiple case study approach, this study examines six kindergarten children's emerging self-regulatory competencies during inquiry-based science instruction. Data were collected during two inquiry-based science programs of study, one pertaining to light and shadow and a second pertaining to motion on inclined planes. Data sources included: videotaped records of the instruction, transcriptions of the videotapes, interviews with the children and teacher, student work, and field notes. Taking an inductive approach to analysis, patterns in the children's activity were identified through a recursive process of defining and refining categories that characterized the children's verbal and behavioral activity. Each case study examines a child's behavior within each phase of the inquiry for evidence of emerging self-regulatory competence. Analysis revealed nascent forms of goal-setting and planning, monitoring, resource management, seeking social assistance, and evaluating. Monitoring activity occurred more frequently than planning or evaluating. For several children, animating materials served to promote motivation. Children's efforts to support peers' activity and monitor the meaning of ongoing discourse contrast with common assumptions about children's attention to others' thinking. Variations in self-regulatory activity were found across phases of instruction. The children exhibited interpersonal self-regulatory efforts, in which monitoring and control of the self was entwined with the activity of others. Joint participation also played a critical role in supporting the metacognitive demands of self-regulation and prompting metacognitive awareness. However, planning and self-evaluation were constrained by the opportunities provided within the instruction for engaging in self-regulatory activity.

  17. Development and Validation of a Multimedia-based Assessment of Scientific Inquiry Abilities

    NASA Astrophysics Data System (ADS)

    Kuo, Che-Yu; Wu, Hsin-Kai; Jen, Tsung-Hau; Hsu, Ying-Shao

    2015-09-01

    The potential of computer-based assessments for capturing complex learning outcomes has been discussed; however, relatively little is understood about how to leverage such potential for summative and accountability purposes. The aim of this study is to develop and validate a multimedia-based assessment of scientific inquiry abilities (MASIA) to cover a more comprehensive construct of inquiry abilities and target secondary school students in different grades while this potential is leveraged. We implemented five steps derived from the construct modeling approach to design MASIA. During the implementation, multiple sources of evidence were collected in the steps of pilot testing and Rasch modeling to support the validity of MASIA. Particularly, through the participation of 1,066 8th and 11th graders, MASIA showed satisfactory psychometric properties to discriminate students with different levels of inquiry abilities in 101 items in 29 tasks when Rasch models were applied. Additionally, the Wright map indicated that MASIA offered accurate information about students' inquiry abilities because of the comparability of the distributions of student abilities and item difficulties. The analysis results also suggested that MASIA offered precise measures of inquiry abilities when the components (questioning, experimenting, analyzing, and explaining) were regarded as a coherent construct. Finally, the increased mean difficulty thresholds of item responses along with three performance levels across all sub-abilities supported the alignment between our scoring rubrics and our inquiry framework. Together with other sources of validity in the pilot testing, the results offered evidence to support the validity of MASIA.

  18. Good Student Questions in Inquiry Learning

    ERIC Educational Resources Information Center

    Lombard, François E.; Schneider, Daniel K.

    2013-01-01

    Acquisition of scientific reasoning is one of the big challenges in education. A popular educational strategy advocated for acquiring deep knowledge is inquiry-based learning, which is driven by emerging "good questions". This study will address the question: "Which design features allow learners to refine questions while preserving…

  19. Increasing Motivation and Science Learning Achievement through the Implementation of Outdoor Cooperative Learning Model in Class VIII SMP 2 Banguntapan Academic Year 2015/2016

    ERIC Educational Resources Information Center

    Cahyono, Adi; Haryanto, Samsi; Sudarsono

    2016-01-01

    Science can be a tool for studying the human and the natural surroundings, both directly and indirectly. The learning process can directly develop the competence to be able to study nature scientifically. Science education is hoped to be more inquiry that helps students gain experience and understand the natural surroundings. This study aims to…

  20. The Academic Tree of Howard V. Malmstadt: From Early Scientific Exploration to Modern Analytical Chemistry.

    PubMed

    Storey, Andrew P; Hieftje, Gary M

    2016-12-01

    Over the last several decades, science has benefited tremendously by the implementation of digital electronic components for analytical instrumentation. A pioneer in this area of scientific inquiry was Howard Malmstadt. Frequently, such revolutions in scientific history can be viewed as a series of discoveries without a great deal of attention as to how mentorship shapes the careers and methodologies of those who made great strides forward for science. This paper focuses on the verifiable relationships of those who are connected through the academic tree of Malmstadt and how their experiences and the context of world events influenced their scientific pursuits. Particular attention is dedicated to the development of American chemistry departments and the critical role played by many of the individuals in the tree in this process. © The Author(s) 2016.

Top