NASA Technical Reports Server (NTRS)
Hansen, Patricia A.; Hughes, David W.; Hedgeland, Randy J.; Chivatero, Craig J.; Studer, Robert J.; Kostos, Peter J.
1994-01-01
The Scientific Instrument Protective Enclosures were designed for the Hubble Space Telescope Servicing Missions to provide a beginning environment to a Scientific Instrument during ground and on orbit activities. The Scientific Instruments required very stringent surface cleanliness and molecular outgassing levels to maintain ultraviolet performance. Data from the First Servicing Mission verified that both the Scientific Instruments and Scientific Instrument Protective Enclosures met surface cleanliness level requirements during ground and on-orbit activities.
LST and instrument considerations. [modular design
NASA Technical Reports Server (NTRS)
Levin, G. M.
1974-01-01
In order that the LST meet its scientific objectives and also be a National Astronomical Space Facility during the 1980's and 1990's, broad requirements have been levied by the scientific community. These scientific requirements can be directly translated into design requirements and specifications for the scientific instruments. The instrument ensemble design must be consistent with a 15-year operational lifetime. Downtime for major repair/refurbishment or instrument updating must be minimized. The overall efficiency and performance of the instruments should be maximized. Modularization of instruments and instrument subsystems, some degree of on-orbit servicing (both repair and replacement), on-axis location, minimizing the number of reflections within instruments, minimizing polarization effects, and simultaneous operation of the F/24 camera with other instruments, are just a few of the design guidelines and specifications which can and will be met in order that these broader scientific requirements be satisfied.-
Large space telescope, phase A. Volume 4: Scientific instrument package
NASA Technical Reports Server (NTRS)
1972-01-01
The design and characteristics of the scientific instrument package for the Large Space Telescope are discussed. The subjects include: (1) general scientific objectives, (2) package system analysis, (3) scientific instrumentation, (4) imaging photoelectric sensors, (5) environmental considerations, and (6) reliability and maintainability.
1971-08-01
The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM consisted of eight scientific instruments as well as a number of smaller experiments. One scientific instrument was the ATM solar shield that formed the base for the rack/frame instrument and the instrument canister. The solar shield contained aperture doors for each instrument to protect against solar radiation and space contamination.
Sources Sought for Innovative Scientific Instrumentation for Scientific Lunar Rovers
NASA Technical Reports Server (NTRS)
Meyer, C.
1993-01-01
Lunar rovers should be designed as integrated scientific measurement systems that address scientific goals as their main objective. Scientific goals for lunar rovers are presented. Teleoperated robotic field geologists will allow the science team to make discoveries using a wide range of sensory data collected by electronic 'eyes' and sophisticated scientific instrumentation. rovers need to operate in geologically interesting terrain (rock outcrops) and to identify and closely examine interesting rock samples. Enough flight-ready instruments are available to fly on the first mission, but additional instrument development based on emerging technology is desirable. Various instruments that need to be developed for later missions are described.
The LST scientific instruments
NASA Technical Reports Server (NTRS)
Levin, G. M.
1975-01-01
Seven scientific instruments are presently being studied for use with the Large Space Telescope (LST). These instruments are the F/24 Field Camera, the F/48-F/96 Planetary Camera, the High Resolution Spectrograph, the Faint Object Spectrograph, the Infrared Photometer, and the Astrometer. These instruments are being designed as facility instruments to be replaceable during the life of the Observatory.
Conceptual design of the scientific instrument arrangement for the large space telescope
NASA Technical Reports Server (NTRS)
Zurasky, J. L.
1974-01-01
A description of the scientific instrument arrangement for the large space telescope (LST) is given, with some of the rationale for selecting this concept. The first section of this report describes the basic configuration and was designed for an f/20 telescope focal plane. The subsequent LSTWG meeting held in November gave some redirection to the scientific requirements, and these changes are described in the section, Configuration Update.
The Space Telescope SI C&DH system. [Scientific Instrument Control and Data Handling Subsystem
NASA Technical Reports Server (NTRS)
Gadwal, Govind R.; Barasch, Ronald S.
1990-01-01
The Hubble Space Telescope Scientific Instrument Control and Data Handling Subsystem (SI C&DH) is designed to interface with five scientific instruments of the Space Telescope to provide ground and autonomous control and collect health and status information using the Standard Telemetry and Command Components (STACC) multiplex data bus. It also formats high throughput science data into packets. The packetized data is interleaved and Reed-Solomon encoded for error correction and Pseudo Random encoded. An inner convolutional coding with the outer Reed-Solomon coding provides excellent error correction capability. The subsystem is designed with the capacity for orbital replacement in order to meet a mission life of fifteen years. The spacecraft computer and the SI C&DH computer coordinate the activities of the spacecraft and the scientific instruments to achieve the mission objectives.
Earth Observing Scanning Polarimeter (EOSP), phase B
NASA Technical Reports Server (NTRS)
1990-01-01
Evaluations performed during a Phase B study directed towards defining an optimal design for the Earth Observing Scanning Polarimeter (EOSP) instrument is summarized. An overview of the experiment approach is included which provides a summary of the scientific objectives, the background of the measurement approach, and the measurement method. In the instrumentation section, details of the design are discussed starting with the key instrument features required to accomplish the scientific objectives and a system characterization in terms of the Stokes vector/Mueller matrix formalism. This is followed by a detailing of the instrument design concept, the design of the individual elements of the system, the predicted performance, and a summary of appropriate instrument testing and calibration. The selected design makes use of key features of predecessor polarimeters and is fully compatible with the Earth Observing System spacecraft requirements.
1970-05-01
The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM consisted of eight scientific instruments as well as a number of smaller experiments. In this image, the ATM canister, housing the solar instruments, is mated to the thermal rack that provided thermal stability.
NASA Technical Reports Server (NTRS)
Hedgeland, Randy J.; Hansen, Patricia A.
1993-01-01
A Scientific Instrument Protective Enclosure (SIPE) was designed to accommodate second generation science instruments (SIs) for the Hubble Space Telescope (HST) First Servicing Mission (FSM). One of the main design drivers for the SIPE is to provide a protective environment for the SIs against particulate and molecular contaminants that pose a viable threat to the SI performance. The focus of this paper will detail the methodology incorporated in the design of the SIPE to provide a controlled environment for SI protection at the launch site, during pre-launch/launch activities, and during on-orbit operations in the Shuttle bay.
The petrographic microscope: Evolution of a mineralogical research instrument
Kile, D.E.
2003-01-01
The petrographic microscope, designed to observe and measure the optical properties of minerals as a means of identifying them, has provided a foundation for mineralogical and petrological research for more than 120 years. Much of what is known today in these fields is attributable to this instrument, the development of which paralleled an evolution of fundamental optical theory and its correlation with mineral structure and composition. This instrument and its related accessories have evolved through a range of models and designs, which are in themselves distinctive for their scientific function and elegant construction, and are today prized by collectors of scientific instruments.
HEAO-A Observatory Description. [experimental design and instrumentation
NASA Technical Reports Server (NTRS)
Dailey, C.; Parnell, T. A.
1977-01-01
The High Energy Astronomy Observatory Program is briefly described to introduce guest observers to the HEAO-A mission. Topics discussed include spacecraft subsystems, scientific instrumentation, and the mission operations concept. Scientific participants such as principal investigators and co-investigators are listed.
1971-12-01
The Apollo Telescope Mount (ATM) was designed and constructed at the Marshall Space Flight Center and served as the primary scientific instrument unit aboard Skylab. The ATM consisted of eight scientific instruments as well as a number of smaller experiments. This photograph shows the flight unit solar shield for the ATM that formed the base for the rack, a complex frame, and the canister that contained the instruments.
Scientific Instrument Package for the large space telescope (SIP)
NASA Technical Reports Server (NTRS)
1972-01-01
The feasibility of a scientific instrument package (SIP) that will satisfy the requirements of the large space telescope was established. A reference configuration serving as a study model and data which will aid in the trade-off studies leading to the final design configuration are reported.
1971-11-01
The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM consisted of eight scientific instruments as well as a number of smaller experiments. This is a photograph of the assembly of an ATM flight unit rack. The flight unit rack was an octagonal shaped complex outer frame that housed the canister containing the solar instruments.
1971-10-01
The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM consisted of eight scientific instruments as well as a number of smaller experiments. This is a photograph of the assembly of an ATM flight unit rack. The flight unit rack was an octagonal shaped complex outer frame that housed the canister containing the solar instruments.
Advanced Aerobots for Scientific Exploration
NASA Technical Reports Server (NTRS)
Behar, Alberto; Raymond, Carol A.; Matthews, Janet B.; Nicaise, Fabien; Jones, Jack A.
2010-01-01
The Picosat and Uninhabited Aerial Vehicle Systems Engineering (PAUSE) project is developing balloon-borne instrumentation systems as aerobots for scientific exploration of remote planets and for diverse terrestrial purposes that can include scientific exploration, mapping, and military surveillance. The underlying concept of balloon-borne gondolas housing outer-space-qualified scientific instruments and associated data-processing and radio-communication equipment is not new. Instead, the novelty lies in numerous design details that, taken together, make a PAUSE aerobot smaller, less expensive, and less massive, relative to prior aerobots developed for similar purposes: Whereas the gondola (including the instrumentation system housed in it) of a typical prior aerobot has a mass of hundreds of kilograms, the mass of the gondola (with instrumentation system) of a PAUSE aerobot is a few kilograms.
1971-10-01
The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center (MSFC) and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM consisted of eight scientific instruments as well as a number of smaller experiments. This image is of the ATM flight unit sun end canister in MSFC's building 4755.
ALSEP arrays A, B, C, and A-2. [lunar surface exploration instrument specifications
NASA Technical Reports Server (NTRS)
1973-01-01
The objectives of the lunar surface exploration packages are defined and the preliminary design of scientific systems hardware is reported. Instrument packages are to collect and transmit to earth scientific data on the lunar interior, the lunar surface composition, and the lunar geomorphology
The Socio-Scientific Reasoning Model: Instruments for Evaluation.
ERIC Educational Resources Information Center
Cheu, Janey; And Others
The Environmental Issues Test (EIT) is an instrument designed to assess moral and ethical reasoning within a scientific or technological context. It is comprised of five dilemma stories each of which highlights an environmental issue and the moral conflicts inherent in that issue. Following each dilemma story is a series of 12 issues statements,…
A general-purpose balloon-borne pointing system for solar scientific instruments
NASA Technical Reports Server (NTRS)
Polites, M. E.
1990-01-01
A general purpose balloonborne pointing system for accommodating a wide variety of solar scientific instruments is described. It is designed for precise pointing, low cost, and quick launch. It offers the option of three-axis control, pitch-yaw-roll, or two-axis control, pitch-yaw, depending on the needs of the solar instrument. Simulation results are presented that indicate good pointing capability at Sun elevation angles ranging from 10 to 80 deg.
NASA Technical Reports Server (NTRS)
Parsons, C. L. (Editor)
1989-01-01
The Multimode Airborne Radar Altimeter (MARA), a flexible airborne radar remote sensing facility developed by NASA's Goddard Space Flight Center, is discussed. This volume describes the scientific justification for the development of the instrument and the translation of these scientific requirements into instrument design goals. Values for key instrument parameters are derived to accommodate these goals, and simulations and analytical models are used to estimate the developed system's performance.
NASA Astrophysics Data System (ADS)
Le Mer-Dachard, Fanny; Cansot, Elodie; Hébert, Philippe; Farges, Thomas; Ravel, Karen; Gaillac, Stéphanie
2015-10-01
The TARANIS mission aims at studying upper atmosphere coupling with a scientific nadir-pointing microsatellite - CNES Myriade family - at a low-altitude orbit (700 km). The main objectives are to measure the occurrence of Transient Luminous Event (TLE), impulsive energetic optical phenomena generated by storms according to recently discovered process, and Terrestrial Gamma-ray Flash (TGF), their emissions and trigger factors. TARANIS instruments are currently in manufacturing, assembly, integration and testing phase. The MicroCameras and Photometers instruments (MCP) are in charge of the remote sensing of the sprites and the lightning in optical wavelengths. MicroCameras instrument [MCP-MC] is an imager in the visible and Photometers instrument [MCP-PH] is a radiometer with four bands from UV to NIR, able to detect TLEs on-board and to trigger the whole payload. The satellite will provide a complete survey of the atmosphere in low resolution together with a high resolution data of sites of interest automatically detected on board. For MC and PH instruments, CEA defined scientific needs and is in charge of processing data and providing scientific results. CNES described the technical requirements of these two instruments and will run in-flight commissioning. Design, manufacturing and testing is under responsibility of Sodern for MicroCameras and Bertin Technologies for Photometers. This article shortly describes physical characteristics of TLEs and presents the final design of these instruments and first measured performances.
Latch fittings for the scientific instruments on the space telescope
NASA Technical Reports Server (NTRS)
Dozier, J. D.; Kaelber, E.
1983-01-01
Latch fittings which kinematically mount the replaceable scientific instruments onto the Space Telescope must maintain precise alignment and thermal stability for on-orbit observations. Design features which are needed to meet stringent criteria include the use of ceramic isolators for thermal and electrical insulation, materials with different coefficients of thermal expansion for athermalization, precision manufacturing procedures, and extremely tight tolerances. A specific latch fitting to be discussed is a ball-and-socket design. In addition, testing, crew aids, and problems will be covered.
1970-03-01
The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center (MSFC) and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM consisted of eight scientific instruments as well as a number of smaller experiments. In this image, the thermal unit, that controlled the temperature stability of the ATM, is being installed into a vacuum chamber.
Geostationary earth climate sensor: Scientific utility and feasibility, phase A
NASA Technical Reports Server (NTRS)
Campbell, G. Garrett; Vonderharr, T. H.; Evert, T.; Kidder, Stanley Q.; Purdom, James F. W.
1991-01-01
The possibility of accurate broad band radiation budget measurements from a GEO platform will provide a unique opportunity for viewing radiation processes in the atmosphere-ocean system. The CSU/TRW team has prepared a Phase 1 instrument design study demonstrating that measurements of radiation budget are practical from geosynchronous orbit with proven technology. This instrument concept is the Geostationary Earth Climate Sensor (GECS). A range of resolutions down to 20 km at the top of the atmosphere are possible, depending upon the scientific goals of the experiment. These tradeoffs of resolution and measurement repeat cycles are examined for scientific utility. The design of a flexible instrument is shown to be possible to meet the two goals: long-term, systematic monitoring of the diurnal cycles of radiation budget; and high time and space resolution studies of regional radiation features.
Guidelines and Suggestions for Balloon Gondola Design
NASA Technical Reports Server (NTRS)
Franco, Hugo
2017-01-01
This paper discusses the current gondola design requirements for the Columbia Scientific Balloon Facility (CSBF). The CSBF is responsible for launching and supporting balloon borne scientific instruments and has some current updated guidelines that will be discussed in this presentation. As the sophistication of Payload systems have increased in size and complexity new guidelines have been implemented in order to make these instruments stay within the acceptable launch risks. Additionally, there is a requirement to submit a proper stress analysis report that states the flight design requirements have been met. Suggestions are discussed in this presentation that establish the proper guidelines to submit these.
Scali, Marta; Pusch, Tim P; Breedveld, Paul; Dodou, Dimitra
2017-03-01
High accuracy and precision in reaching target locations inside the human body is necessary for the success of percutaneous procedures, such as tissue sample removal (biopsy), brachytherapy, and localized drug delivery. Flexible steerable needles may allow the surgeon to reach targets deep inside solid organs while avoiding sensitive structures (e.g. blood vessels). This article provides a systematic classification of possible mechanical solutions for three-dimensional steering through solid organs. A scientific and patent literature search of steerable instrument designs was conducted using Scopus and Web of Science Derwent Innovations Index patent database, respectively. First, we distinguished between mechanisms in which deflection is induced by the pre-defined shape of the instrument versus mechanisms in which an actuator changes the deflection angle of the instrument on demand. Second, we distinguished between mechanisms deflecting in one versus two planes. The combination of deflection method and number of deflection planes led to eight logically derived mechanical solutions for three-dimensional steering, of which one was dismissed because it was considered meaningless. Next, we classified the instrument designs retrieved from the scientific and patent literature into the identified solutions. We found papers and patents describing instrument designs for six of the seven solutions. We did not find papers or patents describing instruments that steer in one-plane on-demand via an actuator and in a perpendicular plane with a pre-defined deflection angle via a bevel tip or a pre-curved configuration.
Utilization of the High Flux Isotope Reactor at Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selby, Douglas L; Bilheux, Hassina Z; Meilleur, Flora
2015-01-01
This paper addresses several aspects of the scientific utilization of the Oak Ridge National Laboratory High Flux Isotope Reactor (HFIR). Topics to be covered will include: 1) HFIR neutron scattering instruments and the formal instrument user program; 2) Recent upgrades to the neutron scattering instrument stations at the reactor, and 3) eMod a new tool for addressing instrument modifications and providing configuration control and design process for scientific instruments at HFIR and the Spallation Neutron Source (SNS). There are 15 operating neutron instrument stations at HFIR with 12 of them organized into a formal user program. Since the last presentationmore » on HFIR instruments at IGORR we have installed a Single Crystal Quasi-Laue Diffractometer instrument called IMAGINE; and we have made significant upgrades to HFIR neutron scattering instruments including the Cold Triple Axis Instrument, the Wide Angle Neutron Diffractometer, the Powder Diffractometer, and the Neutron Imaging station. In addition, we have initiated upgrades to the Thermal Triple Axis Instrument and the Bio-SANS cold neutron instrument detector system. All of these upgrades are tied to a continuous effort to maintain a high level neutron scattering user program at the HFIR. For the purpose of tracking modifications such as those mentioned and configuration control we have been developing an electronic system for entering instrument modification requests that follows a modification or instrument project through concept development, design, fabrication, installation, and commissioning. This system, which we call eMod, electronically leads the task leader through a series of questions and checklists that then identifies such things as ES&H and radiological issues and then automatically designates specific individuals for the activity review process. The system has been in use for less than a year and we are still working out some of the inefficiencies, but we believe that this will become a very effective tool for achieving the configuration and process control believed to be necessary for scientific instrument systems.« less
NASA Astrophysics Data System (ADS)
Riedler, W.; Torkar, K.
1996-05-01
This issue is grouped into sections on materials, design, performance and analysis of balloons, reviews of major national and international balloon programmes, novel instrumentation and systems for scientific ballooning, and selected recent scientific observations.
NASA Technical Reports Server (NTRS)
1976-01-01
Development of the F/48, F/96 Planetary Camera for the Large Space Telescope is discussed. Instrument characteristics, optical design, and CCD camera submodule thermal design are considered along with structural subsystem and thermal control subsystem. Weight, electrical subsystem, and support equipment requirements are also included.
Beyond Black Boxes: Bringing Transparency and Aesthetics Back to Scientific Investigation.
ERIC Educational Resources Information Center
Resnick, Mitchel; Berg, Robbie; Eisenberg, Michael
2000-01-01
Presents a set of case studies in which students create, customize, and personalize their own scientific instruments. Finds that students become engaged in scientific inquiry not only through observing and measuring, but also through designing and building. (Author/CCM)
NASA Astrophysics Data System (ADS)
Wallner, Oswald; Ergenzinger, Klaus; Tuttle, Sean; Vaillon, L.; Johann, Ulrich
2017-11-01
EUCLID, a medium-class mission candidate of ESA's Cosmic Vision 2015-2025 Program, currently in Definition Phase (Phase A/B1), shall map the geometry of the Dark Universe by investigating dark matter distributions, the distance-redshift relationship, and the evolution of cosmic structures. EUCLID consists of a 1.2 m telescope and two scientific instruments for ellipticity and redshift measurements in the visible and nearinfrared wavelength regime. We present a design concept of the EUCLID mission which is fully compliant with the mission requirements. Preliminary concepts of the spacecraft and of the payload including the scientific instruments are discussed.
STARPROBE: Scientific rationale
NASA Technical Reports Server (NTRS)
Underwood, J. H. (Editor); Randolph, J. E. (Editor)
1982-01-01
The scientific rationale and instrumentation problems in the areas of solar internal dynamics and relativity, solar plasma and particle dynamics, and solar atmosphere structure were studied. Current STARPROBE mission and system design concepts are summarized.
Extreme ultraviolet and X-ray spectroheliograph for OSO-H
NASA Technical Reports Server (NTRS)
Sterk, A. A.; Kieser, F.; Peck, S.; Knox, E.
1972-01-01
A complex scientific instrument was designed, fabricated, tested, and calibrated for launch onboard OSO-H. This instrument consisted of four spectroheliographs and an X-ray polarimeter. The instrument is designed to study solar radiation at selected wavelengths in the X-ray and the extreme ultraviolet ranges, make observations at the H-alpha wavelength, and measure the degree of polarization of X-ray emissions.
1972-02-01
The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM consisted of eight scientific instruments as well as a number of smaller experiments. In this image, the set of four large solar cell arrays, which could produce up to as much as 1.1 kilowatts of electric power, are being installed on an ATM prototype.
THE VIRTUAL INSTRUMENT: SUPPORT FOR GRID-ENABLED MCELL SIMULATIONS
Casanova, Henri; Berman, Francine; Bartol, Thomas; Gokcay, Erhan; Sejnowski, Terry; Birnbaum, Adam; Dongarra, Jack; Miller, Michelle; Ellisman, Mark; Faerman, Marcio; Obertelli, Graziano; Wolski, Rich; Pomerantz, Stuart; Stiles, Joel
2010-01-01
Ensembles of widely distributed, heterogeneous resources, or Grids, have emerged as popular platforms for large-scale scientific applications. In this paper we present the Virtual Instrument project, which provides an integrated application execution environment that enables end-users to run and interact with running scientific simulations on Grids. This work is performed in the specific context of MCell, a computational biology application. While MCell provides the basis for running simulations, its capabilities are currently limited in terms of scale, ease-of-use, and interactivity. These limitations preclude usage scenarios that are critical for scientific advances. Our goal is to create a scientific “Virtual Instrument” from MCell by allowing its users to transparently access Grid resources while being able to steer running simulations. In this paper, we motivate the Virtual Instrument project and discuss a number of relevant issues and accomplishments in the area of Grid software development and application scheduling. We then describe our software design and report on the current implementation. We verify and evaluate our design via experiments with MCell on a real-world Grid testbed. PMID:20689618
1967-08-01
The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, served as the primary scientific instrument unit aboard the Skylab. The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This photo depicts a mockup of the ATM contamination monitor camera and photometer.
1967-08-01
The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, served as the primary scientific instrument unit aboard the Skylab. The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This angle view is of an ATM contamination monitor meter mockup.
NASA Astrophysics Data System (ADS)
Yusliana Ekawati, Elvin
2017-01-01
This study aimed to produce a model of scientific attitude assessment in terms of the observations for physics learning based scientific approach (case study of dynamic fluid topic in high school). Development of instruments in this study adaptation of the Plomp model, the procedure includes the initial investigation, design, construction, testing, evaluation and revision. The test is done in Surakarta, so that the data obtained are analyzed using Aiken formula to determine the validity of the content of the instrument, Cronbach’s alpha to determine the reliability of the instrument, and construct validity using confirmatory factor analysis with LISREL 8.50 program. The results of this research were conceptual models, instruments and guidelines on scientific attitudes assessment by observation. The construct assessment instruments include components of curiosity, objectivity, suspended judgment, open-mindedness, honesty and perseverance. The construct validity of instruments has been qualified (rated load factor > 0.3). The reliability of the model is quite good with the Alpha value 0.899 (> 0.7). The test showed that the model fits the theoretical models are supported by empirical data, namely p-value 0.315 (≥ 0.05), RMSEA 0.027 (≤ 0.08)
1970-03-01
The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center (MSFC) and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM consisted of eight scientific instruments as well as a number of smaller experiments. This image is of the ATM thermal unit being tested in MSFC's building 4619. The thermal unit consisted of an active fluid-cooling system of water and methanol that was circulated to radiators on the outside of the canister. The thermal unit provided temperature stability to the ultrahigh resolution optical instruments that were part of the ATM.
Scientific Applications of Optical Instruments to Materials Research
NASA Technical Reports Server (NTRS)
Witherow, William K.
1997-01-01
Microgravity is a unique environment for materials and biotechnology processing. Microgravity minimizes or eliminates some of the effects that occur in one g. This can lead to the production of new materials or crystal structures. It is important to understand the processes that create these new materials. Thus, experiments are designed so that optical data collection can take place during the formation of the material. This presentation will discuss scientific application of optical instruments at MSFC. These instruments include a near-field scanning optical microscope, a miniaturized holographic system, and a phase-shifting interferometer.
NASA Astrophysics Data System (ADS)
Dingwall, B. J.
2015-12-01
NASA's Science Mission Directorate (SMD) recognizes that suborbital carriers play a vital role in training our country's future science and technology leaders. SMD created the Undergraduate Student Instrument Project (USIP) to offer students the opportunity to design, build, and fly instruments on NASA's unique suborbital research platforms. This paper explores the projects, the impact, and the lessons learned of USIP. USIP required undergraduate teams to design, build, and fly a scientific instrument in 18 months or less. Students were required to form collaborative multidisciplinary teams to design, develop and build their instrument. Teams quickly learned that success required skills often overlooked in an academic environment. Teams quickly learned to share technical information in a clear and concise manner that could be understood by other disciplines. The aggressive schedule required team members to hold each other accountable for progress while maintaining team unity. Unanticipated problems and technical issues led students to a deeper understanding of the need for schedule and cost reserves. Students exited the program with a far deeper understanding of project management and team dynamics. Through the process of designing and building an instrument that will enable new research transforms students from textbook learners to developers of new knowledge. The initial USIP project funded 10 undergraduate teams that flew a broad range of scientific instruments on scientific balloons, sounding rockets, commercial rockets and aircraft. Students were required to prepare for and conduct the major reviews that are an integral part of systems development. Each project conducted a Preliminary Design Review, Critical Design Review and Mission Readiness review for NASA officials and flight platform providers. By preparing and presenting their designs to technical experts, the students developed a deeper understanding of the technical and programmatic project pieces that were necessary for success. A student survey was conducted to assess the impact of USIP. Over 90% of students reported a significant improvement in their technical and project management skills. Perhaps more importantly, 88% of students reported that they have a far better appreciation for the value of multi-disciplinary teams.
76 FR 20953 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-14
...., 9700 South Cass Ave., Lemont, IL 60439. Instrument: Mythen 1K Detector System. Manufacturer: Dectris... (RIXS) to study the electronic structure of highly correlated systems. This instrument is unique in that... dynamic range; and a small, lightweight and compact design. Justification for Duty-Free Entry: There are...
Design, Development and Validation of a Model of Problem Solving for Egyptian Science Classes
ERIC Educational Resources Information Center
Shahat, Mohamed A.; Ohle, Annika; Treagust, David F.; Fischer, Hans E.
2013-01-01
Educators and policymakers envision the future of education in Egypt as enabling learners to acquire scientific inquiry and problem-solving skills. In this article, we describe the validation of a model for problem solving and the design of instruments for evaluating new teaching methods in Egyptian science classes. The instruments were based on…
1967-08-01
The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, served as the primary scientific instrument unit aboard the Skylab. The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This photo depicts a side view is of a fully extended ATM contamination monitor mockup.
1967-08-01
The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, served as the primary scientific instrument unit aboard the Skylab. The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This photo of the ATM contamination monitor mockup offers an extended view of the sunshield interior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watchorn, Steven
Because this was a Phase I project, it did not add extensively to the body of A-band knowledge. There was no basic research performed on that subject. The principal addition was that a mechanical and optical design for a triple-etalon Fabry-Perot interferometer (FABSOAR) capable of A-band sensing was sketched out and shown to be within readily feasible instrument fabrication parameters. The parameters for the proposed triple-etalon Fabry-Perot were shown to be very similar to existing Fabry-Perots built by Scientific Solutions. The mechanical design for the FABSOAR instrument incorporated the design of previous Scientific Solutions imagers, condensing the three three-inch-diameter etalonsmore » into a single, sturdy tube. The design allowed for the inclusion of a commercial off-the-shelf (COTS) filter wheel and a thermocooled CCD detector from Andor. The tube has supports to mount to a horizontal or vertical opticaltable surface, and was to be coupled to a Scientific Solutions pointing head at the Millstone Hill Observatory in Massachusetts for Phase II calibration and testing.« less
MARXS: A Modular Software to Ray-trace X-Ray Instrumentation
NASA Astrophysics Data System (ADS)
Günther, Hans Moritz; Frost, Jason; Theriault-Shay, Adam
2017-12-01
To obtain the best possible scientific result, astronomers must understand the properties of the available instrumentation well. This is important both when designing new instruments and when using existing instruments close to the limits of their specified capabilities or beyond. Ray-tracing is a technique for numerical simulations where the path of many light rays is followed through the system to understand how individual system components influence the observed properties, such as the shape of the point-spread-function. In instrument design, such simulations can be used to optimize the performance. For observations with existing instruments, this helps to discern instrumental artefacts from a true signal. Here, we describe MARXS, a new python package designed to simulate X-ray instruments on satellites and sounding rockets. MARXS uses probability tracking of photons and has polarimetric capabilities.
A scientific assessment of a new technology orbital telescope
NASA Technical Reports Server (NTRS)
1995-01-01
As part of a program designed to test the Alpha chemical laser weapons system in space, the Ballistic Missile Defense Organization (BMDO) developed components of an agile, lightweight, 4-meter telescope, equipped with an advanced active-optics system. BMDO had proposed to make space available in the telescope's focal plane for instrumentation optimized for scientific applications in astrophysics and planetary astronomy for a potential flight mission. Such a flight mission could be undertaken if new or additional sponsorship can be found. Despite this uncertainty, BMDO requested assistance in defining the instrumentation and other design aspects necessary to enhance the scientific value of a pointing and tracking mission. In response to this request, the Space Studies Board established the Task Group on BMDO New Technology Orbital Observatory (TGBNTOO) and charged it to: (1) provide instrumentation, data management, and science-operations advice to BMDO to optimize the scientific value of a 4-meter mission; and (2) support a space studies board assessment of the relative scientific merit of the program. This report deals with the first of these tasks, assisting the Advanced Technology Demonstrator's (ATD's) program scientific potential. Given the potential scientific aspects of the 4-meter telescope, this project is referred to as the New Technology Orbital Telescope (NTOT), or as the ATD/NTOT, to emphasize its dual-use character. The task group's basic conclusion is that the ATD/NTOT mission does have the potential for contributing in a major way to astronomical goals.
Payload Instrument Design Rules for Safe and Efficient Flight Operations
NASA Astrophysics Data System (ADS)
Montagnon, E.; Ferri, P.
2004-04-01
Payload operations are often being neglected in favour of optimisation of scientific performance of the instrument design. This has major drawbacks in terms of cost, safety, efficiency of operations and finally science return. By taking operational aspects into account in the early phases of the instrument design, with a minimum more cultural than financial or technological additional effort, many problems can be avoided or minimized, with significant benefits to be gained in the mission execution phases. This paper presents possible improvements based on the use of the telemetry and telecommand packet standard, proper sharing of autonomy functions between instrument and platform, and enhanced interface documents.
Instrument control software requirement specification for Extremely Large Telescopes
NASA Astrophysics Data System (ADS)
Young, Peter J.; Kiekebusch, Mario J.; Chiozzi, Gianluca
2010-07-01
Engineers in several observatories are now designing the next generation of optical telescopes, the Extremely Large Telescopes (ELT). These are very complex machines that will host sophisticated astronomical instruments to be used for a wide range of scientific studies. In order to carry out scientific observations, a software infrastructure is required to orchestrate the control of the multiple subsystems and functions. This paper will focus on describing the considerations, strategies and main issues related to the definition and analysis of the software requirements for the ELT's Instrument Control System using modern development processes and modelling tools like SysML.
NASA Technical Reports Server (NTRS)
Graham, L. D.; Graff, T. G.
2013-01-01
Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) were recently completed on Mauna Kea Volcano, Hawaii. Scientific investigations, scientific input, and operational constraints were tested in the context of existing project and protocols for the field activities designed to help NASA achieve the Vision for Space Exploration [1]. Several investigations were conducted by the rover mounted instruments to determine key geophysical and geochemical properties of the site, as well as capture the geological context of the area and the samples investigated. The rover traverse and associated science investigations were conducted over a three day period on the southeast flank of the Mauna Kea Volcano, Hawaii. The test area was at an elevation of 11,500 feet and is known as "Apollo Valley" (Fig. 1). Here we report the integration and operation of the rover-mounted instruments, as well as the scientific investigations that were conducted.
The International Space Weather Initiative (ISWI)
NASA Technical Reports Server (NTRS)
Davila, Joseph M.
2010-01-01
The International Heliophysical Year (IHY) provided a successful model for the deployment of arrays of small scientific instruments in new and scientifically interesting geographic locations, and outreach. The new International Space Weather Initiative (ISWI) is designed to build on this momentum to promote the observation, understanding, and prediction space weather phenomena, and to communicate the scientific results to the public.
The TMT instrumentation program
NASA Astrophysics Data System (ADS)
Simard, Luc; Crampton, David; Ellerbroek, Brent; Boyer, Corinne
2010-07-01
An overview of the current status of the Thirty Meter Telescope (TMT) instrumentation program is presented. Conceptual designs for the three first light instruments (IRIS, WFOS and IRMS) are in progress, as well as feasibility studies of MIRES. Considerable effort is underway to understand the end-to-end performance of the complete telescopeadaptive optics-instrument system under realistic conditions on Mauna Kea. Highly efficient operation is being designed into the TMT system, based on a detailed investigation of the observation workflow to ensure very fast target acquisition and set up of all subsystems. Future TMT instruments will almost certainly involve contributions from institutions in many different locations in North America and partner nations. Coordinating and optimizing the design and construction of the instruments to ensure delivery of the best possible scientific capabilities is an interesting challenge. TMT welcomes involvement from all interested instrument teams.
OBSIP: An Evolving Facility for the Future of Geoscience
NASA Astrophysics Data System (ADS)
Evers, B.; Lodewyk, J. A.
2013-12-01
The Ocean Bottom Seismograph Instrument Pool 'OBSIP' was founded in 1999 as a National Science Foundation (NSF) sponsored instrument facility that provides ocean bottom seismometers and technical support for research in the areas of marine geology, seismology, and geodynamics. OBSIP provides both short period instruments (for active source seismic refraction studies) and long period instruments (for long term passive experiments). OBSIP is comprised of three Institutional Instrument Contributors - Lamont Doherty Earth Observatory (LDEO), Scripps Institution of Oceanography (SIO), and Woods Hole Oceanographic Institution (WHOI), each of whom contribute instruments and technical support to the pool. In 2012, NSF funded the Incorporated Research Institutions of Seismology (IRIS) to develop an OBSIP Management Office. Through the management office, IRIS will bring is extensive experience in managing facilities (PASSCAL instrument center), supporting large research experiments (Earthscope), and providing high quality data through the DMC to OBSIP. In the past year, OBSIP has provided instruments for eight experiments and supported over 20 research cruises recovering and/or deploying instruments. The most extensive OBSIP experiment in the past few years has been the Cascadia Initiative. The Cascadia Initiative is an onshore/offshore seismic and geodetic experiment deployed in the Pacific Northwest to study questions surrounding the evolution of the Juan de Fuca plate and the Gorda plate. As part of the American Recovery and Reinvestment Act, OBSIP IIC's built 60 new ocean bottom seismometers. Both LDEO and SIO designed new seismometer packages to withstand trawling by local fisherman for deployment in shallow areas. The Cascadia Initiative has required close cooperation between the OBSIP, the Deep Submergence Facility, the University National Oceanographic Laboratory System (who coordinates ship schedules for the cruises), and the Cascadia Initiative Expedition Team. At the recent OBSIP Workshop, members from the scientific community met to share scientific results and determine how OBS instrumentation can better serve the scientific community. The OBSIP Management Office is developing a comprehensive Data Quality Plan that includes all steps of the data collection process, from instrument design to quality controlling data after it is uploaded to the Data Management Center. OBSIP continues to evolve as it works to better serve the scientific community and the public.
The GRB All-sky Spectrometer Experiment I: Instrument Overview and Science Drivers
NASA Astrophysics Data System (ADS)
Martinot, Zachary; Voigt, Elana; Banks, Zachary; Pober, Jonathan; Morales, Miguel F.
2015-01-01
The GRB All-sky Spectrometer Experiment (GASE) is an experiment designed to detect low frequency highly dispersed radio emission in the afterglow of a GRB. The detection of such a signal could provide a probe of IGM density as well as the conditions near the source of a GRB. The instrument used is an eight-element array of dipole antennas located on the University of Washington campus. This poster will further elaborate the design of the instrument and its scientific goals.
Scientific study in solar and plasma physics relative to rocket and balloon projects
NASA Technical Reports Server (NTRS)
Wu, S. T.
1993-01-01
The goals of this research are to provide scientific and technical capabilities in the areas of solar and plasma physics contained in research programs and instrumentation development relative to current rocket and balloon projects; to develop flight instrumentation design, flight hardware, and flight program objectives and participate in peer reviews as appropriate; and to participate in solar-terrestrial physics modeling studies and analysis of flight data and provide theoretical investigations as required by these studies.
Thermo Scientific Sulfur Dioxide Analyzer Instrument Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springston, S. R.
The Sulfur Dioxide Analyzer measures sulfur dioxide based on absorbance of UV light at one wavelength by SO2 molecules which then decay to a lower energy state by emitting UV light at a longer wavelength. Specifically, SO2 + hυ1 →SO2 *→SO2 + hυ2 The emitted light is proportional to the concentration of SO2 in the optical cell. External communication with the analyzer is available through an Ethernet port configured through the instrument network of the AOS systems. The Model 43i-TLE is part of the i-series of Thermo Scientific instruments. The i-series instruments are designed to interface with external computers throughmore » the proprietary Thermo Scientific iPort Software. However, this software is somewhat cumbersome and inflexible. BNL has written an interface program in National Instruments LabView that both controls the Model 43i-TLE Analyzer AND queries the unit for all measurement and housekeeping data. The LabView vi (the software program written by BNL) ingests all raw data from the instrument and outputs raw data files in a uniform data format similar to other instruments in the AOS and described more fully in Section 6.0 below.« less
NASA Astrophysics Data System (ADS)
de Rossi, Giuseppe; Puccini, Massimo; Puccetti, Giuseppe
1995-12-01
The paper describes the environmental tests to be carried out on the scientific instrumentation to be flown on the M-55 Geophysika in the frame of the APE Program. The instruments, developed by different European research institutes, are for remote sensing and in situ measurements of the major components of the Earth's stratosphere. The paper presents the technological activities that ENEA (Ente Nazionale per le Nuove Tecnologie l'Energia e l'Ambiente) is carrying out in its laboratories to verify the correspondence of the various instruments to meet the requirements for airborne application. The reference documents used have been the RTCA/DO-160C and the MDB (Myasishchev Design Bureau) specifications.
Scientific Ballooning Technologies Workshop STO-2 Thermal Design and Analysis
NASA Technical Reports Server (NTRS)
Ferguson, Doug
2016-01-01
The heritage thermal model for the full STO-2 (Stratospheric Terahertz Observatory II), vehicle has been updated to model the CSBF (Columbia Scientific Balloon Facility) SIP-14 (Scientific Instrument Package) in detail. Analysis of this model has been performed for the Antarctica FY2017 launch season. Model temperature predictions are compared to previous results from STO-2 review documents.
Instrumentation for the Atmospheric Explorer photoelectron spectrometer
NASA Technical Reports Server (NTRS)
Peletier, D. P.
1973-01-01
The photoelectron spectrometer (PES) is part of the complements of scientific instruments aboard three NASA Atmosphere Explorer (AE) satellites. The PES measures the energy spectrum, angular distribution, and intensity of electrons in the earth's thermosphere. Measurements of energies between 2 and 500 eV are made at altitudes as low as 130 km. The design, characteristics, and performance of the instrument are described.
An instrument thermal data base system. [for future shuttle missions
NASA Technical Reports Server (NTRS)
Bartoszek, J. T.; Csigi, K. I.; Ollendorf, S.; Oberright, J. E.
1981-01-01
The rationale for the implementation of an Instrument Thermal Data Base System (ITDBS) is discussed and the potential application of a data base management system in support of future space missions, the design of scientific instruments needed, and the potential payload groupings is described. Two basic data files are suggested, the first containing a detailed narrative information list pertaining to design configurations and optimum performance of each instrument, and the second consisting of a description of the parameters pertinent to the instruments' thermal control and design in the form of a summary record of coded information, and serving as a recall record. The applicability of a data request sheet for preliminary planning is described and is concluded that the proposed system may additionally prove to be a method of inventory control.
1972-02-01
The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center and served as the primary scientific instrument unit aboard Skylab (1973-1979). This photograph shows the spar unit, which housed major solar instruments, being lowered into the rack, the outer octagonal complex frame of the ATM flight unit.
NASA Astrophysics Data System (ADS)
Serevina, V.; Muliyati, D.
2018-05-01
This research aims to develop students’ performance assessment instrument based on scientific approach is valid and reliable in assessing the performance of students on basic physics lab of Simple Harmonic Motion (SHM). This study uses the ADDIE consisting of stages: Analyze, Design, Development, Implementation, and Evaluation. The student performance assessment developed can be used to measure students’ skills in observing, asking, conducting experiments, associating and communicate experimental results that are the ‘5M’ stages in a scientific approach. Each grain of assessment in the instrument is validated by the instrument expert and the evaluation with the result of all points of assessment shall be eligible to be used with a 100% eligibility percentage. The instrument is then tested for the quality of construction, material, and language by panel (lecturer) with the result: 85% or very good instrument construction aspect, material aspect 87.5% or very good, and language aspect 83% or very good. For small group trial obtained instrument reliability level of 0.878 or is in the high category, where r-table is 0.707. For large group trial obtained instrument reliability level of 0.889 or is in the high category, where r-table is 0.320. Instruments declared valid and reliable for 5% significance level. Based on the result of this research, it can be concluded that the student performance appraisal instrument based on the developed scientific approach is declared valid and reliable to be used in assessing student skill in SHM experimental activity.
The ship as laboratory: making space for field science at sea.
Adler, Antony
2014-01-01
Expanding upon the model of vessels of exploration as scientific instruments first proposed by Richard Sorrenson, this essay examines the changing nature of the ship as scientific space on expedition vessels during the late nineteenth century. Particular attention is paid to the expedition of H.M.S. Challenger (1872-1876) as a turning point in the design of shipboard spaces that established a place for scientists at sea and gave scientific legitimacy to the new science of oceanography. There was a progressive development in research vessel design from "ship as instrument" to "ship as laboratory" and changing spatial practices aboard these vessels were paralleled by changes in shipboard culture. I suggest that the "ship as laboratory" has now in turn been supplanted by a new model, the "ship as invisible technician", as oceanographic research vessels deploy remote-sensing equipment and gather data that are no longer analyzed on board.
FROM THE HISTORY OF PHYSICS: Georgii L'vovich Shnirman: designer of fast-response instruments
NASA Astrophysics Data System (ADS)
Bashilov, I. P.
1994-07-01
A biography is given of the outstanding Russian scientist Georgii L'vovich Shnirman, whose scientific life had been 'top secret'. He was an experimental physicist and instrument designer, the founder of many branches of the Soviet instrument-making industry, the originator of a theory of electric methods of integration and differentiation, a theory of astasisation of pendulums, and also of original measurement methods. He was the originator and designer of automatic systems for the control of the measuring apparatus used at nuclear test sites and of automatic seismic station systems employed in monitoring nuclear tests. He also designed the first loop oscilloscopes in the Soviet Union, high-speed photographic and cine cameras (streak cameras, etc.), and many other unique instruments, including some mounted on moving objects.
A thermal control system for long-term survival of scientific instruments on lunar surface.
Ogawa, K; Iijima, Y; Sakatani, N; Otake, H; Tanaka, S
2014-03-01
A thermal control system is being developed for scientific instruments placed on the lunar surface. This thermal control system, Lunar Mission Survival Module (MSM), was designed for scientific instruments that are planned to be operated for over a year in the future Japanese lunar landing mission SELENE-2. For the long-term operations, the lunar surface is a severe environment because the soil (regolith) temperature varies widely from nighttime -200 degC to daytime 100 degC approximately in which space electronics can hardly survive. The MSM has a tent of multi-layered insulators and performs a "regolith mound". Temperature of internal devices is less variable just like in the lunar underground layers. The insulators retain heat in the regolith soil in the daylight, and it can keep the device warm in the night. We conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. Thermal vacuum tests were also conducted by using a thermal evaluation model in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The numerical and experimental results indicated a sufficient survivability potential of the concept of our thermal control system.
The FIELDS Instrument Suite for Solar Probe Plus
NASA Technical Reports Server (NTRS)
Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Andre, M.;
2016-01-01
NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.
The FIELDS Instrument Suite for Solar Probe Plus
Goetz, K.; Harvey, P.R.; Turin, P.; Bonnell, J.W.; de Wit, T. Dudok; Ergun, R.E.; MacDowall, R.J.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T.A.; Burgess, D.; Cattell, C.A.; Chandran, B.D.G.; Chaston, C.C.; Chen, C.H.K.; Choi, M.K.; Connerney, J.E.; Cranmer, S.; Diaz-Aguado, M.; Donakowski, W.; Drake, J.F.; Farrell, W.M.; Fergeau, P.; Fermin, J.; Fischer, J.; Fox, N.; Glaser, D.; Goldstein, M.; Gordon, D.; Hanson, E.; Harris, S.E.; Hayes, L.M.; Hinze, J.J.; Hollweg, J.V.; Horbury, T.S.; Howard, R. A.; Hoxie, V.; Jannet, G.; Karlsson, M.; Kasper, J.C.; Kellogg, P.J.; Kien, M.; Klimchuk, J.A.; Krasnoselskikh, V.V.; Krucker, S.; Lynch, J.J.; Maksimovic, M.; Malaspina, D.M.; Marker, S.; Martin, P.; Martinez-Oliveros, J.; McCauley, J.; McComas, D.J.; McDonald, T.; Meyer-Vernet, N.; Moncuquet, M.; Monson, S.J.; Mozer, F.S.; Murphy, S.D.; Odom, J.; Oliverson, R.; Olson, J.; Parker, E.N.; Pankow, D.; Phan, T.; Quataert, E.; Quinn, T.; Ruplin, S.W.; Salem, C.; Seitz, D.; Sheppard, D.A.; Siy, A.; Stevens, K.; Summers, D.; Szabo, A.; Timofeeva, M.; Vaivads, A.; Velli, M.; Yehle, A.; Werthimer, D.; Wygant, J.R.
2018-01-01
NASA’s Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products. PMID:29755144
NASA Technical Reports Server (NTRS)
1976-01-01
The analysis and preliminary design of a high speed point/area photometer for the space telescope are summarized. The scientific objectives, photometer requirements, and design concepts are presented.
Advanced Antenna Design for NASA's EcoSAR Instrument
NASA Technical Reports Server (NTRS)
Du Toit, Cornelis F.; Deshpande, Manohar; Rincon, Rafael F.
2016-01-01
Advanced antenna arrays were designed for NASA's EcoSAR airborne radar instrument. EcoSAR is a beamforming synthetic aperture radar instrument designed to make polarimetric and "single pass" interferometric measurements of Earth surface parameters. EcoSAR's operational requirements of a 435MHz center frequency with up to 200MHz bandwidth, dual polarization, high cross-polarization isolation (> 30 dB), +/- 45deg beam scan range and antenna form-factor constraints imposed stringent requirements on the antenna design. The EcoSAR project successfully developed, characterized, and tested two array antennas in an anechoic chamber. EcoSAR's first airborne campaign conducted in the spring of 2014 generated rich data sets of scientific and engineering value, demonstrating the successful operation of the antennas.
Psychometric Properties of the Scientific Inquiry Scale
ERIC Educational Resources Information Center
Ossa-Cornejo, Carlos; Díaz-Mujica, Alejandro; Aedo-Saravia, Jaime; Merino-Escobar, Jose M.; Bustos-Navarrete, Claudio
2017-01-01
Introduction: There are a few methods to study inquiry's abilities in Chile, despite its importance in science education. This study analyzes the psychometric properties of a Scientific Inquiry Scale in pedagogy students of two Chilean universities. Method: The study uses an instrumental design with 325 students from 3 pedagogy majors. As a…
Jesse Ramsden: the craftsman who believed that big was beautiful
NASA Astrophysics Data System (ADS)
McConnell, A.
2013-03-01
Ramsden was renowned for the design, craftsmanship and accuracy of his larger instruments, and for his workforce of up to fifty people, unusual in the scientific instrument workshops of his day. The workshop also produced a variety of lesser instruments. Following in the footsteps of Jonathan Sisson and John Bird, he built up an enduring reputation for design and precision of manufacture. Ramsden's own business archive does not survive, but correspondence with his various customers and letters between third parties illuminate his working life. These documents also reveal that there were several major astronomical instruments for which he accepted commissions but failed to deliver.
The space telescope scientific instruments
NASA Technical Reports Server (NTRS)
Leckrone, D. S.
1980-01-01
The paper describes the space telescope with a 2.4 m aperture to be launched at 500 km altitude in late 1983. Four axial-bay and one radial-bay scientific instrument, a wide-field and planetary camera, a faint-object camera, a faint-object spectrograph, and a high-speed photometer are to be installed to conduct the initial observations. The axial instruments are constrained to envelopes with dimensions 0.9 x 0.9 x 2.2 m and their masses cannot exceed 317 kg. The observatory will also be equipped with fine-guidance sensors and a microprocessor. The design concepts of the instruments are outlined and some of the astronomical capabilities including studies of distant and local galaxies, physical properties of quasars, interrelations between quasars and active galactic nuclei are mentioned.
NASA Technical Reports Server (NTRS)
Truscello, V.
1972-01-01
A major concern in the integration of a radioisotope thermoelectric generator (RTG) with a spacecraft designed to explore the outer planets is the effect of the emitted radiation on the normal operation of scientific instruments. The necessary techniques and tools developed to allow accurate calculation of the neutron and gamma spectrum emanating from the RTG. The specific sources of radiation were identified and quantified. Monte Carlo techniques are then employed to perform the nuclear transport calculations. The results of these studies are presented. An extensive experimental program was initiated to measure the response of a number of scientific components to the nuclear radiation.
NASA Astrophysics Data System (ADS)
Javier Romualdez, Luis
Scientific balloon-borne instrumentation offers an attractive, competitive, and effective alternative to space-borne missions when considering the overall scope, cost, and development timescale required to design and launch scientific instruments. In particular, the balloon-borne environment provides a near-space regime that is suitable for a number of modern astronomical and cosmological experiments, where the atmospheric interference suffered by ground-based instrumentation is negligible at stratospheric altitudes. This work is centered around the analytical strategies and implementation considerations for the attitude determination and control of SuperBIT, a scientific balloon-borne payload capable of meeting the strict sub-arcsecond pointing and image stability requirements demanded by modern cosmological experiments. Broadly speaking, the designed stability specifications of SuperBIT coupled with its observational efficiency, image quality, and accessibility rivals state-of-the-art astronomical observatories such as the Hubble Space Telescope. To this end, this work presents an end-to-end design methodology for precision pointing balloon-borne payloads such as SuperBIT within an analytical yet implementationally grounded context. Simulation models of SuperBIT are analytically derived to aid in pre-assembly trade-off and case studies that are pertinent to the dynamic balloon-borne environment. From these results, state estimation techniques and control methodologies are extensively developed, leveraging the analytical framework of simulation models and design studies. This pre-assembly design phase is physically validated during assembly, integration, and testing through implementation in real-time hardware and software, which bridges the gap between analytical results and practical application. SuperBIT attitude determination and control is demonstrated throughout two engineering test flights that verify pointing and image stability requirements in flight, where the post-flight results close the overall design loop by suggesting practical improvements to pre-design methodologies. Overall, the analytical and practical results presented in this work, though centered around the SuperBIT project, provide generically useful and implementationally viable methodologies for high precision balloon-borne instrumentation, all of which are validated, justified, and improved both theoretically and practically. As such, the continuing development of SuperBIT, built from the work presented in this thesis, strives to further the potential for scientific balloon-borne astronomy in the near future.
NASA Astrophysics Data System (ADS)
Goff, Kevin David
This pilot study evaluated the validity of a new quantitative, closed-response instrument for assessing student conceptual change regarding the theory of evolution. The instrument has two distinguishing design features. First, it is designed not only to gauge student mastery of the scientific model of evolution, but also to elicit a trio of deeply intuitive tendencies that are known to compromise many students' understanding: the projection of intentional agency, teleological directionality, and immutable essences onto biological phenomena. Second, in addition to a section of conventional multiple choice questions, the instrument contains a series of items where students may simultaneously endorse both scientifically normative propositions and intuitively appealing yet unscientific propositions, without having to choose between them. These features allow for the hypothesized possibility that the three intuitions are partly innate, themselves products of cognitive evolution in our hominin ancestors, and thus may continue to inform students' thinking even after instruction and conceptual change. The test was piloted with 340 high school students from diverse schools and communities. Confirmatory factor analysis and other statistical methods provided evidence that the instrument already has strong potential for validly distinguishing students who hold a correct scientific understanding from those who do not, but that revision and retesting are needed to render it valid for gauging students' adherence to intuitive misconceptions. Ultimately the instrument holds promise as a tool for classroom intervention studies by conceptual change researchers, for diagnostic testing and data gathering by instructional leaders, and for provoking classroom dialogue and debate by science teachers.
Global Moon Coverage via Hyperbolic Flybys
NASA Technical Reports Server (NTRS)
Buffington, Brent; Strange, Nathan; Campagnola, Stefano
2012-01-01
The scientific desire for global coverage of moons such as Jupiter's Galilean moons or Saturn's Titan has invariably led to the design of orbiter missions. These orbiter missions require a large amount of propellant needed to insert into orbit around such small bodies, and for a given launch vehicle, the additional propellant mass takes away from mass that could otherwise be used for scientific instrumentation on a multiple flyby-only mission. This paper will present methods--expanding upon techniques developed for the design of the Cassini prime and extended missions--to obtain near global moon coverage through multiple flybys. Furthermore we will show with proper instrument suite selection, a flyby-only mission can provide science return similar (and in some cases greater) to that of an orbiter mission.
NASA Technical Reports Server (NTRS)
Tarbell, Theodore D.; Title, Alan M.
1992-01-01
The Solar Optical Universal Polarimeter (SOUP) flew on the shuttle mission Spacelab 2 (STS-51F) in August, 1985, and collected historic solar observations. SOUP is the only solar telescope on either a spacecraft or balloon which has delivered long sequences of diffraction-limited images. These movies led to several discoveries about the solar atmosphere which were published in the scientific journals. After Spacelab 2, reflights were planned on the shuttle Sunlab mission, which was cancelled after the Challenger disaster, and on a balloon flights, which were also cancelled for funding reasons. In the meantime, the instrument was used in a productive program of ground-based observing, which collected excellent scientific data and served as instrument tests. Given here is an overview of the history of the SOUP program, the scientific discoveries, and the instrument design and performance.
NASA Astrophysics Data System (ADS)
Tarbell, Theodore D.; Title, Alan M.
1992-08-01
The Solar Optical Universal Polarimeter flew on the Shuttle Mission Spacelab 2 (STS-51F) in August, 1985, and collected historic solar observations. SOUP is the only solar telescope on either a spacecraft or balloon which has delivered long sequences of diffraction-limited images. These movies led to several discoveries about the solar atmosphere which were published in the scientific journals. After Spacelab 2, reflights were planned on the Space Shuttle Sunlab Mission, which was cancelled after the Challenger disaster, and on balloon flights, which were also cancelled for funding reasons. In the meantime, the instrument was used in a productive program of ground-based observing, which collected excellent scientific data and served as instrument tests. This report gives an overview of the history of the SOUP program, the scientific discoveries, and the instrument design and performance.
NASA Astrophysics Data System (ADS)
Tarbell, Theodore D.; Title, Alan M.
1992-08-01
The Solar Optical Universal Polarimeter (SOUP) flew on the shuttle mission Spacelab 2 (STS-51F) in August, 1985, and collected historic solar observations. SOUP is the only solar telescope on either a spacecraft or balloon which has delivered long sequences of diffraction-limited images. These movies led to several discoveries about the solar atmosphere which were published in the scientific journals. After Spacelab 2, reflights were planned on the shuttle Sunlab mission, which was cancelled after the Challenger disaster, and on a balloon flights, which were also cancelled for funding reasons. In the meantime, the instrument was used in a productive program of ground-based observing, which collected excellent scientific data and served as instrument tests. Given here is an overview of the history of the SOUP program, the scientific discoveries, and the instrument design and performance.
USSR and Eastern Europe Scientific Abstracts, Geophysics, Astronomy and Space, Number 425
1978-07-20
the work of artificial satellites researching the Earth is that these use such instruments which originally were designed for the exploration of...instruments were designed and built by the co- workers of the Central Research Institute of Physics of the Hungarian Academy of Sciences in Hungarian...for Public Release Distribution Unlimited 1 I U. S JOINT PUBLICATIONS RESEARCH SERVICE Reproduced From _-_-__,,_— Best Available Copy Wäi^M
Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models
NASA Technical Reports Server (NTRS)
Gagnier, Donald; Hayner, Rick; Nosek, Thomas; Roza, Michael; Hendershot, James E.; Razzaghi, Andrea I.
2004-01-01
This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric scientific instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments and the Aura spacecraft bus electronics. Aura is one of NASA s Earth Observatory System missions. The test was designed to evaluate the complex interfaces in the command and data handling subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during the flight integration phase of the observatory can cause significant cost and schedule impacts. The tests successfully revealed problems and led to their resolution before the full-up integration phase, saving significant cost and schedule. This approach could be beneficial for future environmental satellite programs involving the integration of multiple, complex scientific instruments onto a spacecraft bus.
NASA Astrophysics Data System (ADS)
Tsui, Chi-Yan; Treagust, David
2010-05-01
While genetics has remained as one key topic in school science, it continues to be conceptually and linguistically difficult for students with the concomitant debates as to what should be taught in the age of biotechnology. This article documents the development and implementation of a two-tier multiple-choice instrument for diagnosing grades 10 and 12 students' understanding of genetics in terms of reasoning. The pretest and posttest forms of the diagnostic instrument were used alongside other methods in evaluating students' understanding of genetics in a case-based qualitative study on teaching and learning with multiple representations in three Western Australian secondary schools. Previous studies have shown that a two-tier diagnostic instrument is useful in probing students' understanding or misunderstanding of scientific concepts and ideas. The diagnostic instrument in this study was designed and then progressively refined, improved, and implemented to evaluate student understanding of genetics in three case schools. The final version of the instrument had Cronbach's alpha reliability of 0.75 and 0.64, respectively, for its pretest and the posttest forms when it was administered to a group of grade 12 students (n = 17). This two-tier diagnostic instrument complemented other qualitative data collection methods in this research in generating a more holistic picture of student conceptual learning of genetics in terms of scientific reasoning. Implications of the findings of this study using the diagnostic instrument are discussed.
The VESUVIO Spectrometer Now and When?
NASA Astrophysics Data System (ADS)
Seel, A. G.; Krzystyniak, M.; Fernandez-Alonso, F.
2014-12-01
The current layout and mechanics of the VESUVIO spectrometer are presented in light of spectroscopic measurements using electron-volt neutrons. A brief background to the theoretical framework of deep inelastic neutron scattering is presented, with focus on data collection and instrumental design. The current capabilities and research themes for VESUVIO are discussed, and possible future instrumental developments highlighted which will enhance the instrument's ability to meet scientific inquiry and expectation.
VAS demonstration: (VISSR Atmospheric Sounder) description
NASA Technical Reports Server (NTRS)
Montgomery, H. E.; Uccellini, L. W.
1985-01-01
The VAS Demonstration (VISSR Atmospheric Sounder) is a project designed to evaluate the VAS instrument as a remote sensor of the Earth's atmosphere and surface. This report describes the instrument and ground processing system, the instrument performance, the valiation as a temperature and moisture profiler compared with ground truth and other satellites, and assesses its performance as a valuable meteorological tool. The report also addresses the availability of data for scientific research.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Administrator for Cooperative Services or authorized delegate. Cooperative agreement. A legal instrument... responsible for the scientific and technical direction of the project, as designated by the cooperator in the...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Administrator for Cooperative Services or authorized delegate. Cooperative agreement. A legal instrument... responsible for the scientific and technical direction of the project, as designated by the cooperator in the...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Administrator for Cooperative Services or authorized delegate. Cooperative agreement. A legal instrument... responsible for the scientific and technical direction of the project, as designated by the cooperator in the...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Administrator for Cooperative Services or authorized delegate. Cooperative agreement. A legal instrument... responsible for the scientific and technical direction of the project, as designated by the cooperator in the...
Space and Earth Sciences, Computer Systems, and Scientific Data Analysis Support, Volume 1
NASA Technical Reports Server (NTRS)
Estes, Ronald H. (Editor)
1993-01-01
This Final Progress Report covers the specific technical activities of Hughes STX Corporation for the last contract triannual period of 1 June through 30 Sep. 1993, in support of assigned task activities at Goddard Space Flight Center (GSFC). It also provides a brief summary of work throughout the contract period of performance on each active task. Technical activity is presented in Volume 1, while financial and level-of-effort data is presented in Volume 2. Technical support was provided to all Division and Laboratories of Goddard's Space Sciences and Earth Sciences Directorates. Types of support include: scientific programming, systems programming, computer management, mission planning, scientific investigation, data analysis, data processing, data base creation and maintenance, instrumentation development, and management services. Mission and instruments supported include: ROSAT, Astro-D, BBXRT, XTE, AXAF, GRO, COBE, WIND, UIT, SMM, STIS, HEIDI, DE, URAP, CRRES, Voyagers, ISEE, San Marco, LAGEOS, TOPEX/Poseidon, Pioneer-Venus, Galileo, Cassini, Nimbus-7/TOMS, Meteor-3/TOMS, FIFE, BOREAS, TRMM, AVHRR, and Landsat. Accomplishments include: development of computing programs for mission science and data analysis, supercomputer applications support, computer network support, computational upgrades for data archival and analysis centers, end-to-end management for mission data flow, scientific modeling and results in the fields of space and Earth physics, planning and design of GSFC VO DAAC and VO IMS, fabrication, assembly, and testing of mission instrumentation, and design of mission operations center.
NASA Technical Reports Server (NTRS)
Nosek, Thomas P.
2004-01-01
NASA and NOAA earth observing satellite programs are flying a number of sophisticated scientific instruments which collect data on many phenomena and parameters of the earth's environment. The NASA Earth Observing System (EOS) Program originated the EOS Common Bus approach, which featured two spacecraft (Aqua and Aura) of virtually identical design but with completely different instruments. Significant savings were obtained by the Common Bus approach and these lessons learned are presented as information for future program requiring multiple busses for new diversified instruments with increased capabilities for acquiring earth environmental data volume, accuracy, and type.
A thermal control system for long-term survival of scientific instruments on lunar surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, K., E-mail: ogawa@astrobio.k.u-tokyo.ac.jp; Iijima, Y.; Tanaka, S.
2014-03-15
A thermal control system is being developed for scientific instruments placed on the lunar surface. This thermal control system, Lunar Mission Survival Module (MSM), was designed for scientific instruments that are planned to be operated for over a year in the future Japanese lunar landing mission SELENE-2. For the long-term operations, the lunar surface is a severe environment because the soil (regolith) temperature varies widely from nighttime −200 degC to daytime 100 degC approximately in which space electronics can hardly survive. The MSM has a tent of multi-layered insulators and performs a “regolith mound”. Temperature of internal devices is lessmore » variable just like in the lunar underground layers. The insulators retain heat in the regolith soil in the daylight, and it can keep the device warm in the night. We conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. Thermal vacuum tests were also conducted by using a thermal evaluation model in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The numerical and experimental results indicated a sufficient survivability potential of the concept of our thermal control system.« less
Preliminary design of the HARMONI science software
NASA Astrophysics Data System (ADS)
Piqueras, Laure; Jarno, Aurelien; Pécontal-Rousset, Arlette; Loupias, Magali; Richard, Johan; Schwartz, Noah; Fusco, Thierry; Sauvage, Jean-François; Neichel, Benoît; Correia, Carlos M.
2016-08-01
This paper introduces the science software of HARMONI. The Instrument Numerical Model simulates the instrument from the optical point of view and provides synthetic exposures simulating detector readouts from data-cubes containing astrophysical scenes. The Data Reduction Software converts raw-data frames into a fully calibrated, scientifically usable data cube. We present the functionalities and the preliminary design of this software, describe some of the methods and algorithms used and highlight the challenges that we will have to face.
NASA Technical Reports Server (NTRS)
Lundquist, Ray; Aymergen, Cagatay; VanCampen, Julie; Abell, James; Smith, Miles; Driggers, Phillip
2008-01-01
The Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST) provides the critical functions and the environment for the four science instruments on JWST. This complex system development across many international organizations presents unique challenges and unique solutions. Here we describe how the requirement flow has been coordinated through the documentation system, how the tools and processes are used to minimize impact to the development of the affected interfaces, how the system design has matured, how the design review process operates, and how the system implementation is managed through reporting to ensure a truly world class scientific instrument compliment is created as the final product.
The Undergraduate Student Instrumentation Projects at the University of Houston
NASA Astrophysics Data System (ADS)
Bering, E. A., III; Talbot, R. W.; Glennie, C. L.; Rodrigues, D.; Jinghong, C.; Alozie, M.; Behrend, C. C.; Bias, C.; Ehteshami, A.; Fenton, A.; Greer, M.; Gunawan, B.; Harrison, W.; Jordan, J.; Lalata, M. C.; Lehnen, J. N.; Martinez, A.; Mathur, S.; Medillin, M.; Nguyen, T.; Nguyen, T. V.; Nowling, M.; Perez, D.; Pham, M.; Pina, M.; Porat, I.; Prince, J.; Thomas, G. C.; Velasquez, B.; Victor, L.
2016-12-01
The Undergraduate Student Instrumentation Project (USIP) is a NASA program to engage undergraduate students in rigorous scientific research, for the purposes of innovation and developing the next generation of professionals for an array of fields. The program is student led and executed from initial ideation to research to the design and deployment of scientific payloads. The University of Houston has been selected twice to participate in the USIP programs. The first program (USIP_UH I) ran from 2013 to 2016. USIP_UH II started in January of this year, with funding starting at the end of May. USIP_UH I (USIP_UH II) at the University of Houston was (is) composed of eight (seven) research teams developing six (seven), distinct, balloon-based scientific instruments. These instruments will contribute to a broad range of geophysical sciences from Very Low Frequency recording and Total Electron Content to exobiology and ozone profiling. USIP_UH I had 12 successful launches with 9 recoveries from Fairbanks, AK in March 2015 and 4 piggyback flights with BARREL 3 from Esrange, Kiruna, Sweden in August, 2015. Additional flights with BARREL 4 will take place in August 2016. The great opportunity of this program is capitalizing on the proliferation of electronics miniaturization to create new generations of scientific instruments that are smaller and lighter than ever before. This situation allows experiments to be done more cheaply which ultimately allows many more experiments to be done.
Durham, Mary F.; Knight, Jennifer K.; Couch, Brian A.
2017-01-01
The Scientific Teaching (ST) pedagogical framework provides various approaches for science instructors to teach in a way that more closely emulates how science is practiced by actively and inclusively engaging students in their own learning and by making instructional decisions based on student performance data. Fully understanding the impact of ST requires having mechanisms to quantify its implementation. While many useful instruments exist to document teaching practices, these instruments only partially align with the range of practices specified by ST, as described in a recently published taxonomy. Here, we describe the development, validation, and implementation of the Measurement Instrument for Scientific Teaching (MIST), a survey derived from the ST taxonomy and designed to gauge the frequencies of ST practices in undergraduate science courses. MIST showed acceptable validity and reliability based on results from 7767 students in 87 courses at nine institutions. We used factor analyses to identify eight subcategories of ST practices and used these categories to develop a short version of the instrument amenable to joint administration with other research instruments. We further discuss how MIST can be used by instructors, departments, researchers, and professional development programs to quantify and track changes in ST practices. PMID:29196428
Design and validation of general biology learning program based on scientific inquiry skills
NASA Astrophysics Data System (ADS)
Cahyani, R.; Mardiana, D.; Noviantoro, N.
2018-03-01
Scientific inquiry is highly recommended to teach science. The reality in the schools and colleges is that many educators still have not implemented inquiry learning because of their lack of understanding. The study aims to1) analyze students’ difficulties in learning General Biology, 2) design General Biology learning program based on multimedia-assisted scientific inquiry learning, and 3) validate the proposed design. The method used was Research and Development. The subjects of the study were 27 pre-service students of general elementary school/Islamic elementary schools. The workflow of program design includes identifying learning difficulties of General Biology, designing course programs, and designing instruments and assessment rubrics. The program design is made for four lecture sessions. Validation of all learning tools were performed by expert judge. The results showed that: 1) there are some problems identified in General Biology lectures; 2) the designed products include learning programs, multimedia characteristics, worksheet characteristics, and, scientific attitudes; and 3) expert validation shows that all program designs are valid and can be used with minor revisions. The first section in your paper.
ERIC Educational Resources Information Center
Schwichow, Martin; Christoph, Simon; Boone, William J.; Härtig, Hendrik
2016-01-01
The so-called control-of-variables strategy (CVS) incorporates the important scientific reasoning skills of designing controlled experiments and interpreting experimental outcomes. As CVS is a prominent component of science standards appropriate assessment instruments are required to measure these scientific reasoning skills and to evaluate the…
NASA Technical Reports Server (NTRS)
Brodsky, Alexander; Segal, Victor E.
1999-01-01
The EOSCUBE constraint database system is designed to be a software productivity tool for high-level specification and efficient generation of EOSDIS and other scientific products. These products are typically derived from large volumes of multidimensional data which are collected via a range of scientific instruments.
Apollo 17 ultraviolet spectrometer experiment (S-169)
NASA Technical Reports Server (NTRS)
Fastie, W. G.
1974-01-01
The scientific objectives of the ultraviolet spectrometer experiment are discussed, along with design and operational details, instrument preparation and performance, and scientific results. Information gained from the experiment is given concerning the lunar atmosphere and albedo, zodiacal light, astronomical observations, spacecraft environment, and the distribution of atomic hydrogen in the solar system and in the earth's atmosphere.
NASA Astrophysics Data System (ADS)
Vishnevsky, G. I.; Galyatkin, I. A.; Zhuk, A. A.; Iblyaminova, A. F.; Kossov, V. G.; Levko, G. V.; Nesterov, V. K.; Rivkind, V. L.; Rogalev, Yu. N.; Smirnov, A. V.; Gumerov, R. I.; Bikmaev, I. F.; Pinigin, G. I.; Shulga, A. V.; Kovalchyk, A. V.; Protsyuk, Yu. I.; Malevinsky, S. V.; Abrosimov, V. M.; Mironenko, V. N.; Savchenko, V. V.; Ivaschenko, Yu. N.; Andruk, V. M.; Dalinenko, I. N.; Vydrevich, M. G.
2003-01-01
The paper presents the possibilities and a list of tasks that are solved by collaboration between research and production companies, and astronomical observatories of Russia and Ukraine in the field of development, modernization and equipping of various telescopes (the AMC, RTT-150, Zeiss-600 and quantum-optical system Sazhen-S types) with advanced charge-coupled device (CCD) cameras. CCD imagers and ditital CCD cameras designed and manufactured by the "Electron-Optronic" Research & Production Company, St Petersburg, to equip astronomical telescopes and scientific instruments are described.
The Aerial Regional-scale Environmental Survey (ARES) Mission to Mars
NASA Technical Reports Server (NTRS)
Levine, J. S.
2005-01-01
ARES is an exploration mission concept for an Aerial Regional-scale Environmental Survey of Mars designed to fly an instrumented platform over the surface of Mars at very low altitudes (1-3 km) for distances of hundreds to thousands of kilometers to obtain scientific data to address fundamental problems in Mars science. ARES helps to fill a gap in the scale and perspective of the Mars Exploration Program and addresses many key COMPLEX/MEPAG questions (e.g., nature and origin of crustal magnetic anomalies) not readily pursued in other parts of the exploration program. ARES supports the human exploration program through key environmental measurements and high-resolution contiguous data essential to reference mission design. Here we describe the major types of scientific goals, candidate instruments, and reference mission profiles.
Installing scientific instruments into a cold LHe dewar - The Gravity Probe B approach
NASA Technical Reports Server (NTRS)
Parmley, Richard T.; Kusunic, Keith; Reynolds, Gary; Stephenson, Sam; Alexander, Keith
1990-01-01
Gravity Probe B is an orbital test of Einstein's general theory of relativity using gyroscopes. The precession of the gyroscopes will measure both the geodetic effect (6.6 arcsec/yr) through the curved space-time surrounding the earth and the motional effect (0.042 arcsec/yr) due to the rotating earth dragging space-time around with it. To achieve the extraordinary accuracies needed to measure these small precessions, it is necessary to have the gyroscopes operating in the following environments: a vacuum of less than 10 exp -10 torr; an acceleration level of less than 10 exp -10 g's; a magnetic field of less than 10 exp -7 gauss; and a temperature near 2 K. This paper discusses designs that allow scientific instruments to be installed into a dewar at 4.2 K. Methods for structurally supporting the instruments, transferring heat across joints at low temperature in vacuum, and excluding air during the insertion process are discussed. The structural support method is designed for Shuttle launch loads.
ERIC Educational Resources Information Center
Schönborn, K. J.; Höst, G. E.; Lundin Palmerius, K. E.
2015-01-01
As the application of nanotechnology in everyday life impacts society, it becomes critical for citizens to have a scientific basis upon which to judge their perceived hopes and fears of 'nano'. Although multiple instruments have been designed for assessing attitudinal and affective aspects of nano, surprisingly little work has focused on…
The Next Generation Space Telescope (NGST): Science and technology
NASA Technical Reports Server (NTRS)
Mather, John C.; Seery, Bernard D.; Stockman, Hervey S.; Bely, Pierre, Y.
1997-01-01
The scientific requirements and implications for the instruments and telescope design for the Next Generation Space Telescope (NGST) are described. A candidate concept is a deployable, 8 m diameter telescope, optimized for the near infrared region, but featuring instruments capable of observing up to 30 micrometers. The observatory is radiatively cooled to approximately 30 K.
Thermal control unit for long-time survival of scientific instruments on lunar surface
NASA Astrophysics Data System (ADS)
Ogawa, Kazunori; Iijima, Yuichi; Tanaka, Satoshi
A thermal control unit (lunar survival module) is being developed for scientific instruments placed on the lunar surface. This unit is designed to be used on the future Japanese lunar landing mission SELENE-2. The lunar surface is a severe environment for scientific instruments. The absence of convective cooling by an atmosphere makes the ground surface temperature variable in the wide range of -200 to 100 degC, an environment in which space electronics can hardly survive. The surface elements must have a thermal control structure to maintain the inner temperature within the operable ranges of the instruments for long-time measurements, such as 1 month or longer beyond the lunar nights. The objectives of this study are to develop a thermal control unit for the SELENE-2 mission. So far, we conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. The basic structure of the thermal module is rather simple in that a heat insulating shell covers the scientific instruments. The concept is that the conical insulator retains heat in the regolith soil in the daylight, and it can keep the device warm in the night. Results of the model calculations indicated the high potential of long-time survival. A bread board model (BBM) was manufactured, and its thermal-vacuum tests were conducted in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The thermal condition of the lunar surface was simulated by glass beads paved in a vacuum chamber, and a temperature-controlled container. Temperature variations of the BBM in thermal cycling tests were compared to a thermal mathematical model, and the thermal parameters were finally assessed. Feeding the test results back into the thermal model for the lunar surface, some thermal parameters were updated but there was no critical effect on the survivability. The experimental results indicated a sufficient survivability potential of the concept of our thermal control system.
Systems engineering and the user: Incorporation of user requirements into the SE process
NASA Technical Reports Server (NTRS)
Naugle, John E.
1993-01-01
This paper is organized into four parts. In the Gestation Phase, I describe the process of starting a new mission and establishing its rough boundaries. Next I show how the scientific experiments are selected. Then we enter the Preliminary Design Phase, where we incorporate the scientist's instruments into the systems engineering process. Finally, I show how the Preliminary Design Review (PDR) assures NASA management and the scientists that the scientific requirements have been incorporated into the systems engineering process to everyone's satisfaction.
The Hubble Space Telescope high speed photometer
NASA Technical Reports Server (NTRS)
Vancitters, G. W., Jr.; Bless, R. C.; Dolan, J. F.; Elliot, J. L.; Robinson, E. L.; White, R. L.
1988-01-01
The Hubble Space Telescope will provide the opportunity to perform precise astronomical photometry above the disturbing effects of the atmosphere. The High Speed Photometer is designed to provide the observatory with a stable, precise photometer with wide dynamic range, broad wavelenth coverage, time resolution in the microsecond region, and polarimetric capability. Here, the scientific requirements for the instrument are examined, the unique design features of the photometer are explored, and the improvements to be expected over the performance of ground-based instruments are projected.
The 2-8 GHz solar dynamic spectra and polarization measurement feasibility study
NASA Technical Reports Server (NTRS)
Haddock, F. T.
1971-01-01
The preliminary system design of a Solar Microwave Spectrograph (SMS) is presented. This design resulted from a study to determine the feasibility of measuring solar polarization and dynamic spectra over the range of two to eight GHz, using broadband radio frequency instrumentation and rapid recording equipment in conjunction with radio telescopes. The scientific value of the proposed SMS instrument is discussed, with remarks concerning data reduction and analysis and a presentation of the engineering plan to implement the SMS system.
75 FR 44940 - Withdrawal of Application for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-30
... Entry of Scientific Instruments Applications may be examined between 8:30 A.M. and 5:00 P.M. in Room... determine, inter alia, whether instruments of equivalent scientific value, for the purposes for which the... scientific instrument. They noted that the instrument will be used at a show/demonstration. As noted in the...
76 FR 52936 - Withdrawal of Application for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-24
... Entry of Scientific Instruments Applications may be examined between 8:30 a.m. and 5 p.m. in Room 3720... determine, inter alia, whether instruments of equivalent scientific value, for the purposes for which the... scientific instrument. They noted that the instrument will be cleared through Customs with duty paid by the...
NASA Astrophysics Data System (ADS)
Zelenyi, Lev; Rodin, V.; Gurevich, A.; Alferov, A.; Getsov, P.
Design and manufacturing of micro-satellite ( 50 kg) platforms for the fundamental and applied research of the Earth and near-earth outer space is a problem which is complex both scientifically and technically. Main point is to define the scientific task which could be effectively solved by micro-satellite instrumentation. It is necessary also to carry out an integral approach in the course of the spacecraft development: find methods to introduce the contemporary technological-design, use the achievements of advanced physical instrument manufacturing , microelectronics and micromechanics. Technical solutions should provide the required accuracy of spacecraft orientation and stabilization. Space Research and Physical Institutes RAS with participation of Moscow University developed the model composition and technical design of micro satellite "CHIBIS" (small bird LAPWING in Russian) with two options for scientific payload: A. The complex of scientific instruments N1 for the monitoring of Global warming and the electromagnetic environment of the Earth: spectrometer for measurements of the total content of greenhouse gases (CO2 and CH4); optical camera (spatial resolution 300 m); lowfrequency flux-gate magnetometer (DC - 64 Hz); high-frequency search-coil magnetometer (0.1 - 40 kHz); analyzer of the electromagnetic emissions (0.1 - 40 kHz); detector of ionospheric plasma. B. The complex of scientific instruments N2 for investigation of fine scale physics of lightning discharges: X-ray - gamma detector (range of X-ray and gamma emission - 50-500 keV); UV detector (range UV - emission - 300-450 nm); radiofrequency analyzer (20 - 50 MHz); optical camera. Spacecraft manufacturing and scientific experiments are prepared mostly by the institutes of Russian academy of sciences without traditional involvement of large scale space industry. So this activity serves as a substantial driver of Academic capacity building for the independent research of space science problems. Further extension of this program is planned now to be within the framework of collaboration between Russian and Bulgarian Academies of Sciences on "BalkanSat" project. Recently ((3/7 -09-2007) special international workshop on the Use of Micro-Satellite Technologies for Environmental Monitoring and Impact to Human Health was held by United Nations, IKI , RAS and ESA in the small city TARUSA near Moscow. Proceedings are available at http://www.iki.rssi.ru/ This work was partially supported of the RFBR grants 06-02-08076 and 06-02-08244
Albon, Simon P.; Cancilla, Devon A.; Hubball, Harry
2006-01-01
Objectives To pilot test and evaluate a gas chromatography-mass spectrometry (GCMS) case study as a teaching and learning tool. Design A case study incorporating remote access to a GCMS instrument through the Integrated Laboratory Network (ILN) at Western Washington University was developed and implemented. Student surveys, faculty interviews, and examination score data were used to evaluate learning. Assessment While the case study did not impact final examination scores, approximately 70% of students and all faculty members felt the ILN-supported case study improved student learning about GCMS. Faculty members felt the “live” instrument access facilitated more authentic teaching. Students and faculty members felt the ILN should continue to be developed as a teaching tool. Conclusion Remote access to scientific instrumentation can be used to modify case studies to enhance student learning and teaching practice in pharmaceutical analysis. PMID:17149450
NASA Technical Reports Server (NTRS)
Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Choi, M. K.;
2016-01-01
NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.
Bale, S D; Goetz, K; Harvey, P R; Turin, P; Bonnell, J W; de Wit, T Dudok; Ergun, R E; MacDowall, R J; Pulupa, M; Andre, M; Bolton, M; Bougeret, J-L; Bowen, T A; Burgess, D; Cattell, C A; Chandran, B D G; Chaston, C C; Chen, C H K; Choi, M K; Connerney, J E; Cranmer, S; Diaz-Aguado, M; Donakowski, W; Drake, J F; Farrell, W M; Fergeau, P; Fermin, J; Fischer, J; Fox, N; Glaser, D; Goldstein, M; Gordon, D; Hanson, E; Harris, S E; Hayes, L M; Hinze, J J; Hollweg, J V; Horbury, T S; Howard, R A; Hoxie, V; Jannet, G; Karlsson, M; Kasper, J C; Kellogg, P J; Kien, M; Klimchuk, J A; Krasnoselskikh, V V; Krucker, S; Lynch, J J; Maksimovic, M; Malaspina, D M; Marker, S; Martin, P; Martinez-Oliveros, J; McCauley, J; McComas, D J; McDonald, T; Meyer-Vernet, N; Moncuquet, M; Monson, S J; Mozer, F S; Murphy, S D; Odom, J; Oliverson, R; Olson, J; Parker, E N; Pankow, D; Phan, T; Quataert, E; Quinn, T; Ruplin, S W; Salem, C; Seitz, D; Sheppard, D A; Siy, A; Stevens, K; Summers, D; Szabo, A; Timofeeva, M; Vaivads, A; Velli, M; Yehle, A; Werthimer, D; Wygant, J R
2016-12-01
NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.
NASA Astrophysics Data System (ADS)
Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T. A.; Burgess, D.; Cattell, C. A.; Chandran, B. D. G.; Chaston, C. C.; Chen, C. H. K.; Choi, M. K.; Connerney, J. E.; Cranmer, S.; Diaz-Aguado, M.; Donakowski, W.; Drake, J. F.; Farrell, W. M.; Fergeau, P.; Fermin, J.; Fischer, J.; Fox, N.; Glaser, D.; Goldstein, M.; Gordon, D.; Hanson, E.; Harris, S. E.; Hayes, L. M.; Hinze, J. J.; Hollweg, J. V.; Horbury, T. S.; Howard, R. A.; Hoxie, V.; Jannet, G.; Karlsson, M.; Kasper, J. C.; Kellogg, P. J.; Kien, M.; Klimchuk, J. A.; Krasnoselskikh, V. V.; Krucker, S.; Lynch, J. J.; Maksimovic, M.; Malaspina, D. M.; Marker, S.; Martin, P.; Martinez-Oliveros, J.; McCauley, J.; McComas, D. J.; McDonald, T.; Meyer-Vernet, N.; Moncuquet, M.; Monson, S. J.; Mozer, F. S.; Murphy, S. D.; Odom, J.; Oliverson, R.; Olson, J.; Parker, E. N.; Pankow, D.; Phan, T.; Quataert, E.; Quinn, T.; Ruplin, S. W.; Salem, C.; Seitz, D.; Sheppard, D. A.; Siy, A.; Stevens, K.; Summers, D.; Szabo, A.; Timofeeva, M.; Vaivads, A.; Velli, M.; Yehle, A.; Werthimer, D.; Wygant, J. R.
2016-12-01
NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.
Balloon-borne three-meter telescope for far-infrared and submillimeter astronomy
NASA Technical Reports Server (NTRS)
Fazio, Giovanni G.; Hoffmann, William F.; Harper, Doyal A.
1988-01-01
The scientific objectives, engineering analysis and design, results of technology development, and focal-plane instrumentation for a two-meter balloon-borne telescope for far-infrared and submillimeter astronomy are presented. The unique capabilities of balloon-borne observations are discussed. A program summary emphasizes the development of the two-meter design. The relationship of the Large Deployable Reflector (LDR) is also discussed. Detailed treatment is given to scientific objectives, gondola design, the mirror development program, experiment accommodations, ground support equipment requirements, NSBF design drivers and payload support requirements, the implementation phase summary development plan, and a comparison of three-meter and two-meter gondola concepts.
A Mars Airplane . . . Oh really. [aerospaceplane design for Mars exploration
NASA Technical Reports Server (NTRS)
Clarke, V. C., Jr.; Kerem, A.; Lewis, R.
1979-01-01
This paper describes the mission design, scientific utilization, and prototypical design of a Mars Airplane. As a scientific platform, the airplane provides an excellent means of obtaining data in a resolution range intermediate to surface vehicles and orbiters. It has great versatility to perform a variety of missions: conduct aerial surveys, land instrument packages, collect samples, and perform atmospheric sounding. The Mars Airplane has many characteristics of a competition glider on earth. Two versions of the plane, a cruiser, and one with soft landing and takeoff capability, have been designed. Maximum range and endurance are 10,000 km and 31.1 hours with a 40-kg payload.
1981-01-01
This illustration depicts the configuration of the Spacelab-2 in the cargo bay of the orbiter. Spacelab was a versatile laboratory carried in the Space Shuttle's cargo bay for scientific research flights. Each Spacelab mission had a unique design appropriate to the mission's goals. A number of Spacelab configurations could be assembled from pressurized habitation modules and exposed platforms called pallets. Spacelab-2 was the first pallet-only mission. One of the goals of the mission was to verify that the pallets' configuration was satisfactory for observations and research. Except for two biological experiments and an experiment that used ground-based instruments, the Spacelab-2 scientific instruments needed direct exposure to space. On the first pallet, three solar instruments and one atmospheric instrument were mounted on the Instrument Pointing System, which was being tested on its first flight. The second Spacelab pallet held a large double x-ray telescope and three plasma physics detectors. The last pallet supported an infrared telescope, a superfluid helium technology experiment, and a small plasma diagnostics satellite. The Spacelab-2 mission was designed to capitalize on the Shuttle-Spacelab capabilities, to launch and retrieve satellites, and to point several instruments independently with accuracy and stability. Spacelab-2 (STS-51F, 19th Shuttle mission) was launched aboard Space Shuttle Orbiter Challenger on July 29, 1985. The Marshall Space Flight Center had overall management responsibilities of the Spacelab missions.
ICESat-2 simulated data from airborne altimetery
NASA Astrophysics Data System (ADS)
Brunt, K. M.; Neumann, T.; Markus, T.; Brenner, A. C.; Barbieri, K.; Field, C.; Sirota, M.
2010-12-01
Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) is scheduled to launch in 2015 and will carry onboard the Advanced Topographic Laser Altimeter System (ATLAS), which represents a new approach to spaceborne determination of surface elevations. Specifically, the current ATLAS design is for a micropulse, multibeam, photon-counting laser altimeter with lower energy, a shorter pulse width, and a higher repetition rate relative to the Geoscience Laser Altimeter (GLAS), the instrument that was onboard ICESat. Given the new and untested technology associated with ATLAS, airborne altimetry data is necessary (1) to test the proposed ATLAS instrument geometry, (2) to validate instrument models, and (3) to assess the atmospheric effects on multibeam altimeters. We present an overview of the airborne instruments and datasets intended to address the ATLAS instrument concept, including data collected over Greenland (July 2009) using an airborne SBIR prototype 100 channel, photon-counting, terrain mapping altimeter, which addresses the first of these 3 scientific concerns. Additionally, we present the plan for further simulator data collection over vegetated and ice covered regions using Multiple Altimeter Beam Experimental Lidar (MABEL), intended to address the latter two scientific concerns. As the ICESAT-2 project is in the design phase, the particular configuration of the ATLAS instrument may change. However, we expect this work to be relevant as long as ATLAS pursues a photon-counting approach.
Atmospheric limb sounding with imaging FTS
NASA Astrophysics Data System (ADS)
Friedl-Vallon, Felix; Riese, Martin; Preusse, Peter; Oelhaf, Hermann; Fischer, Herbert
Imaging Fourier transform spectrometers in the thermal infrared are a promising new class of sensors for atmospheric science. The availability of fast and sensitive large focal plane arrays with appropriate spectral coverage in the infrared region allows the conception and construction of innovative sensors for Nadir and Limb geometry. Instruments in Nadir geometry have already reached prototype status (e.g. Geostationary Imaging Fourier Transform Spectrometer / U. Wisconsin and NASA) or are in Phase A study (infrared sounding mission on Meteosat third generation / ESA and EUMETSAT). The first application of the new technical possibilities to atmospheric limb sounding from space, the Imaging Michelson Interferometer for Passive Atmospheric Sounding (IMIPAS), is currently studied by industry in the context of preparatory work for the next set of ESA earth explorers. The scientific focus of the instrument is on the processes controlling the composition of the mid/upper troposphere and lower stratosphere. The instrument concept of IMIPAS has been conceived at the research centres Karlsruhe and J¨lich. The development of a precursor instrument (GLORIA-AB) at these research institutions u started already in 2005. The instrument will be able to fly on board of various airborne platforms. First scientific missions are planned for the second half of the year 2009 on board the new German research aircraft HALO. This airborne sensor serves its own scientific purpose, but it also provides a test bed to learn about this new instrument class and its peculiarities and to learn to exploit and interpret the wealth of information provided by a limb imaging IR Fourier transform spectrometer. The presentation will discuss design considerations and challenges for GLORIA-AB and put them in the context of the planned satellite application. It will describe the solutions found, present first laboratory figures of merit for the prototype instrument and outline the new scientific possibilities.
ERIC Educational Resources Information Center
Greenberg, Kathleen P.
2015-01-01
A detailed rubric initially designed as a scoring instrument for grading APA-style empirical research reports was tested for its ability to help students improve their scientific writing skills. Students who used the rubric while preparing their reports wrote a higher quality report than did students who did not. Students also improved the quality…
"Beyond the walls": A research study of eighth-grade students mentored in a hospital setting
NASA Astrophysics Data System (ADS)
Grattan, Aileen
This research study was designed to evaluate twelve eighth-grade students participating in the fourth year of a mentoring program to determine what effect the mentoring experience would have on the students' sense of a scientific community, their understanding of scientific knowledge and process skills and attitudes toward science. The mentoring program was developed through a partnership established between the researcher, an eighth-grade science teacher at a junior high school, and an administrator of a local hospital, to provide educational opportunities for students mentored by medical professionals. The research design included qualitative and quantitative methods of analysis. The qualitative instruments were student journals and interviews. The quantitative instruments included the science subtest of the Stanford Nine Achievement Test, a Student Attitude Toward Science Survey (STATS), and a Hospital Questionnaire. The findings indicate that mentoring developed the students' understanding of a scientific community, revealed a wide range of attitudes and had a positive effect on the students' scientific knowledge and process skills. Finally, this research study has shown the benefits of mentoring as a model for teaching science in a community setting beyond the walls of the school.
76 FR 52314 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-22
... Scientific Instruments Pursuant to Section 6(c) of the Educational, Scientific and Cultural Materials... invite comments on the question of whether instruments of equivalent scientific value, for the purposes for which the instruments shown below are intended to be used, are being manufactured in the United...
76 FR 15945 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-22
... Scientific Instruments Pursuant to Section 6(c) of the Educational, Scientific and Cultural Materials... invite comments on the question of whether instruments of equivalent scientific value, for the purposes for which the instruments shown below are intended to be used, are being manufactured in the United...
Agile Mcal, the Mini-Calorimeter
NASA Astrophysics Data System (ADS)
Bastia, Paolo; Poulsen, Jens Michael; Monzani, Franco; Radaelli, Paolo; Marchesi, Paolo; Labanti, Claudio; Marisaldi, Martino; Fuschino, Fabio; Bulgarelli, Andrea
2006-04-01
AGILE is a scientific mission dedicated to gamma-ray astrophysics in space, and the mini-calorimeter MCAL is one of four detector systems on the satellite. The MCAL instrument is sensitive in the energy range: 300 keV - 100 MeV. It has two main functions: one autonomous mode for detection of impulsive cosmic events and the other as “a slave” supporting the energy measurements of the pair-conversion tracker. The AGILE Small Mission is funded by the Italian Space Agency (ASI), and the INAF-IASF section at Bologna has the scientific responsibility for MCAL. LABEN develops the MCAL instrument with its detectors and electronics. This paper gives an overview of the detectors on AGILE, and then it gives details on the design of MCAL, and finally we report on the tests at instrument level.
Space telescope scientific instruments
NASA Technical Reports Server (NTRS)
Leckrone, D. S.
1979-01-01
The paper describes the Space Telescope (ST) observatory, the design concepts of the five scientific instruments which will conduct the initial observatory observations, and summarizes their astronomical capabilities. The instruments are the wide-field and planetary camera (WFPC) which will receive the highest quality images, the faint-object camera (FOC) which will penetrate to the faintest limiting magnitudes and achieve the finest angular resolution possible, and the faint-object spectrograph (FOS), which will perform photon noise-limited spectroscopy and spectropolarimetry on objects substantially fainter than those accessible to ground-based spectrographs. In addition, the high resolution spectrograph (HRS) will provide higher spectral resolution with greater photometric accuracy than previously possible in ultraviolet astronomical spectroscopy, and the high-speed photometer will achieve precise time-resolved photometric observations of rapidly varying astronomical sources on short time scales.
Is it all in the game? Flow experience and scientific practices during an INPLACE mobile game
NASA Astrophysics Data System (ADS)
Bressler, Denise M.
Mobile science learning games show promise for promoting scientific practices and high engagement. Researchers have quantified this engagement according to flow theory. Using an embedded mixed methods design, this study investigated whether an INPLACE mobile game promotes flow experience, scientific practices, and effective team collaboration. Students playing the game (n=59) were compared with students in a business-as-usual control activity (n=120). Using an open-ended instrument designed to measure scientific practices and a self-report flow survey, this study empirically assessed flow and learner's scientific practices. The game players had significantly higher levels of flow and scientific practices. Using a multiple case study approach, collaboration among game teams (n=3 teams) were qualitatively compared with control teams (n=3 teams). Game teams revealed not only higher levels of scientific practices but also higher levels of engaged responses and communal language. Control teams revealed lower levels of scientific practice along with higher levels of rejecting responses and command language. Implications for these findings are discussed.
Rotary Joints With Electrical Connections
NASA Technical Reports Server (NTRS)
Osborn, F. W.
1986-01-01
Power and data transmitted on many channels. Two different rotary joints equipped with electrical connections between rotating and stationary parts. One joint transmits axial thrust and serves as interface between spinning and nonspinning parts of Galileo spacecraft. Other is scanning (limitedrotation) joint that aims scientific instruments from nonspinning part. Selected features of both useful to designers of robots, advanced production equipment, and remotely controlled instruments.
Preliminary design study for an atomospheric science facility
NASA Technical Reports Server (NTRS)
Hutchison, R.
1972-01-01
The activities and results of the Atmospheric Science Facility preliminary design study are reported. The objectives of the study were to define the scientific goals, to determine the range of experiment types, and to develop the preliminary instrument design requirements for a reusable, general purpose, optical research facility for investigating the earth's atmosphere from a space shuttle orbital vehicle.
Telescience - Concepts And Contributions To The Extreme Ultraviolet Explorer Mission
NASA Astrophysics Data System (ADS)
Marchant, Will; Dobson, Carl; Chakrabarti, Supriya; Malina, Roger F.
1987-10-01
A goal of the telescience concept is to allow scientists to use remotely located instruments as they would in their laboratory. Another goal is to increase reliability and scientific return of these instruments. In this paper we discuss the role of transparent software tools in development, integration, and postlaunch environments to achieve hands on access to the instrument. The use of transparent tools helps to reduce the parallel development of capability and to assure that valuable pre-launch experience is not lost in the operations phase. We also discuss the use of simulation as a rapid prototyping technique. Rapid prototyping provides a cost-effective means of using an iterative approach to instrument design. By allowing inexpensive produc-tion of testbeds, scientists can quickly tune the instrument to produce the desired scientific data. Using portions of the Extreme Ultraviolet Explorer (EUVE) system, we examine some of the results of preliminary tests in the use of simulation and tran-sparent tools. Additionally, we discuss our efforts to upgrade our software "EUVE electronics" simulator to emulate a full instrument, and give the pros and cons of the simulation facilities we have developed.
15 CFR 301.3 - Application for duty-free entry of scientific instruments.
Code of Federal Regulations, 2014 CFR
2014-01-01
... scientific instruments. 301.3 Section 301.3 Commerce and Foreign Trade Regulations Relating to Commerce and... REGULATIONS INSTRUMENTS AND APPARATUS FOR EDUCATIONAL AND SCIENTIFIC INSTITUTIONS § 301.3 Application for duty-free entry of scientific instruments. (a) Who may apply. An applicant for duty-free entry of an...
15 CFR 301.3 - Application for duty-free entry of scientific instruments.
Code of Federal Regulations, 2012 CFR
2012-01-01
... scientific instruments. 301.3 Section 301.3 Commerce and Foreign Trade Regulations Relating to Commerce and... REGULATIONS INSTRUMENTS AND APPARATUS FOR EDUCATIONAL AND SCIENTIFIC INSTITUTIONS § 301.3 Application for duty-free entry of scientific instruments. (a) Who may apply. An applicant for duty-free entry of an...
15 CFR 301.3 - Application for duty-free entry of scientific instruments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... scientific instruments. 301.3 Section 301.3 Commerce and Foreign Trade Regulations Relating to Commerce and... REGULATIONS INSTRUMENTS AND APPARATUS FOR EDUCATIONAL AND SCIENTIFIC INSTITUTIONS § 301.3 Application for duty-free entry of scientific instruments. (a) Who may apply. An applicant for duty-free entry of an...
15 CFR 301.3 - Application for duty-free entry of scientific instruments.
Code of Federal Regulations, 2013 CFR
2013-01-01
... scientific instruments. 301.3 Section 301.3 Commerce and Foreign Trade Regulations Relating to Commerce and... REGULATIONS INSTRUMENTS AND APPARATUS FOR EDUCATIONAL AND SCIENTIFIC INSTITUTIONS § 301.3 Application for duty-free entry of scientific instruments. (a) Who may apply. An applicant for duty-free entry of an...
15 CFR 301.3 - Application for duty-free entry of scientific instruments.
Code of Federal Regulations, 2011 CFR
2011-01-01
... scientific instruments. 301.3 Section 301.3 Commerce and Foreign Trade Regulations Relating to Commerce and... REGULATIONS INSTRUMENTS AND APPARATUS FOR EDUCATIONAL AND SCIENTIFIC INSTITUTIONS § 301.3 Application for duty-free entry of scientific instruments. (a) Who may apply. An applicant for duty-free entry of an...
1993-05-01
RESEARCH INSTRUMENT ( HAARP IRI) V. Eccles R. Armstrong Mission Research Corporation One Tara Blvd Nashua, NH 03062-2801 May 1993 Scientific Report No...INSTRUMENT ( HAARP IRI) PR 2310 STA G3 WU BM6. AUTHOR(S) V. Eccles and R. Armstrong 7. PERFOR•IlNG ORGANIZATION NAME(S) AND AOORESS(ES) 8. PERFORMING...Because the HAARP (HF Active Auroral Research Program) facility is designed to mimic and investigate certain natural processes, a study of possible
High Resolution Doppler Imager
NASA Technical Reports Server (NTRS)
Hays, Paul B.
1999-01-01
This report summarizes the accomplishments of the High Resolution Doppler Imager (HRDI) on UARS spacecraft during the period 4/l/96 - 3/31/99. During this period, HRDI operation, data processing, and data analysis continued, and there was a high level of vitality in the HRDI project. The HRDI has been collecting data from the stratosphere, mesosphere, and lower thermosphere since instrument activation on October 1, 1991. The HRDI team has stressed three areas since operations commenced: 1) operation of the instrument in a manner which maximizes the quality and versatility of the collected data; 2) algorithm development and validation to produce a high-quality data product; and 3) scientific studies, primarily of the dynamics of the middle atmosphere. There has been no significant degradation in the HRDI instrument since operations began nearly 8 years ago. HRDI operations are fairly routine, although we have continued to look for ways to improve the quality of the scientific product, either by improving existing modes, or by designing new ones. The HRDI instrument has been programmed to collect data for new scientific studies, such as measurements of fluorescence from plants, measuring cloud top heights, and lower atmosphere H2O.
Plasma wave experiment for the ISEE-3 mission
NASA Technical Reports Server (NTRS)
Scarf, F. L.
1982-01-01
Analysis of data from a scientific instrument designed to study solar wind and plasma wave phenomena on the ISEE-3 mission is presented. The performance of work on the data analysis phase is summarized.
ERIC Educational Resources Information Center
Richardson, Rayman Paul
Reported is a study to develop and test an instrument designed to measure the scientific curiosity and science interests of elementary school students. The inventory was administered to 545 students, grades six through nine, in Columbus, Ohio and 1,050 students, grades six and eight, in Portland, Oregon. Total test-retest reliability of the major…
FISICA: The Florida Image Slicer for Infrared Astrophysics and Cosmology
NASA Astrophysics Data System (ADS)
Raines, S. N.; Eikenberry, S. S.; Elston, R.; Guzman, R.; Gruel, N.; Julian, J.; Boreman, G.; Hoffman, J.; Rodgers, M.; Glenn, P.; Hull-Allen, G.; Myrick, B.; Flint, S.; Comstock, L.
2005-12-01
We report on the design, manufacture, and scientific performance of the Florida Image Slicer for Infrared Astrophysics and Cosmology (FISICA) - a fully cryogenic all-reflective image slicing integral field unit for the FLAMINGOS near-infrared spectrograph. Originally conceived as a bench-top demonstration proof-of-concept instrument, after three productive engineering runs at the KPNO 4-m telescope (as of 15 Oct 2005) we find that FISICA is capable of delivering excellent scientific results. It now operates as a 'turnkey' instrument at the KPNO 4-m telescope. FISICA is now open for community access as a visitor instrument on the KPNO 4-m telescope via collaboration with the instrument team, who can assist with the proposal preparation and observations, as well as provide the data reduction tools for integral field spectroscopy. We review the optical and opto-mechanical design, fabrication, laboratory test results, and on-telescope performance for FISICA. Designed to accept input beams near f/15, FISICA with FLAMINGOS slices a 16x33 arcsec field of view into 22 parallel elements using three sets of monolithic powered mirror arrays, each with 22 mirrored surfaces cut into a single piece of aluminum. However, slight vignetting for some field positions limits the effective field of view to 15x32 arcsec. The effective spatial sampling of 0.70 arcsec delivers 960 spatial resolution elements. Combined with the FLAMINGOS spectrograph, R 1300 spectroscopy over the 1-2.4 micron wavelength range is possible, in either the J+H combined bandpass or the H+K combined bandpass. FISICA was funded by the UCF-UF Space Research Initiative; FLAMINGOS was designed and was constructed by the IR Instrumentation Group (PI: R. Elston) at the University of Florida, Department of Astronomy, with support from NSF grant AST97-31180 and Kitt Peak National Observatory.
Hydrogen Epoch of Reionization Array (HERA)
NASA Astrophysics Data System (ADS)
DeBoer, David R.; Parsons, Aaron R.; Aguirre, James E.; Alexander, Paul; Ali, Zaki S.; Beardsley, Adam P.; Bernardi, Gianni; Bowman, Judd D.; Bradley, Richard F.; Carilli, Chris L.; Cheng, Carina; de Lera Acedo, Eloy; Dillon, Joshua S.; Ewall-Wice, Aaron; Fadana, Gcobisa; Fagnoni, Nicolas; Fritz, Randall; Furlanetto, Steve R.; Glendenning, Brian; Greig, Bradley; Grobbelaar, Jasper; Hazelton, Bryna J.; Hewitt, Jacqueline N.; Hickish, Jack; Jacobs, Daniel C.; Julius, Austin; Kariseb, MacCalvin; Kohn, Saul A.; Lekalake, Telalo; Liu, Adrian; Loots, Anita; MacMahon, David; Malan, Lourence; Malgas, Cresshim; Maree, Matthys; Martinot, Zachary; Mathison, Nathan; Matsetela, Eunice; Mesinger, Andrei; Morales, Miguel F.; Neben, Abraham R.; Patra, Nipanjana; Pieterse, Samantha; Pober, Jonathan C.; Razavi-Ghods, Nima; Ringuette, Jon; Robnett, James; Rosie, Kathryn; Sell, Raddwine; Smith, Craig; Syce, Angelo; Tegmark, Max; Thyagarajan, Nithyanandan; Williams, Peter K. G.; Zheng, Haoxuan
2017-04-01
The Hydrogen Epoch of Reionization Array (HERA) is a staged experiment to measure 21 cm emission from the primordial intergalactic medium (IGM) throughout cosmic reionization (z = 6-12), and to explore earlier epochs of our Cosmic Dawn (z ˜ 30). During these epochs, early stars and black holes heated and ionized the IGM, introducing fluctuations in 21 cm emission. HERA is designed to characterize the evolution of the 21 cm power spectrum to constrain the timing and morphology of reionization, the properties of the first galaxies, the evolution of large-scale structure, and the early sources of heating. The full HERA instrument will be a 350-element interferometer in South Africa consisting of 14 m parabolic dishes observing from 50 to 250 MHz. Currently, 19 dishes have been deployed on site and the next 18 are under construction. HERA has been designated as an SKA Precursor instrument. In this paper, we summarize HERA’s scientific context and provide forecasts for its key science results. After reviewing the current state of the art in foreground mitigation, we use the delay-spectrum technique to motivate high-level performance requirements for the HERA instrument. Next, we present the HERA instrument design, along with the subsystem specifications that ensure that HERA meets its performance requirements. Finally, we summarize the schedule and status of the project. We conclude by suggesting that, given the realities of foreground contamination, current-generation 21 cm instruments are approaching their sensitivity limits. HERA is designed to bring both the sensitivity and the precision to deliver its primary science on the basis of proven foreground filtering techniques, while developing new subtraction techniques to unlock new capabilities. The result will be a major step toward realizing the widely recognized scientific potential of 21 cm cosmology.
NASA Technical Reports Server (NTRS)
Cheng, L. Y.; Larsen, B.
2004-01-01
Launched in 1997, the Cassini-Huygens Mission sent the largest interplanetary spacecraft ever built in the service of science. Carrying a suite of 12 scientific instruments and an atmospheric entry probe, this complex spacecraft to explore the Saturn system may not have gotten off the ground without undergoing significant design changes and cost reductions.
Development of a new-generation active falling sphere
NASA Technical Reports Server (NTRS)
Croskey, C. L.; Mitchell, J. D.; Schiano, J. L.; Kenkre, N. V.; Cresci, D. J.
1997-01-01
A new generation falling sphere, designed to measure winds and temperatures, is described. This sphere combines nanotechnology accelerometers and GaAs radiofrequency transmitters in a 100 g to 150 g package. This new instrumentation can be added to the standard inflatable sphere launched by a rocket or separately deployed from a larger rocket in which it is carried as part of a much larger scientific instrument package.
The Advanced Technology Solar Telescope mount assembly
NASA Astrophysics Data System (ADS)
Warner, Mark; Cho, Myung; Goodrich, Bret; Hansen, Eric; Hubbard, Rob; Lee, Joon Pyo; Wagner, Jeremy
2006-06-01
When constructed on the summit of Haleakala on the island of Maui, Hawaii, the Advanced Technology Solar Telescope (ATST) will be the world's largest solar telescope. The ATST is a unique design that utilizes a state-of-the-art off-axis Gregorian optical layout with five reflecting mirrors delivering light to a Nasmyth instrument rotator, and nine reflecting mirrors delivering light to an instrument suite located on a large diameter rotating coude lab. The design of the telescope mount structure, which supports and positions the mirrors and scientific instruments, has presented noteworthy challenges to the ATST engineering staff. Several novel design solutions, as well as adaptations of existing telescope technologies to the ATST application, are presented in this paper. Also shown are plans for the control system and drives of the structure.
Large space telescope, phase A. Volume 3: Optical telescope assembly
NASA Technical Reports Server (NTRS)
1972-01-01
The development and characteristics of the optical telescope assembly for the Large Space Telescope are discussed. The systems considerations are based on mission-related parameters and optical equipment requirements. Information is included on: (1) structural design and analysis, (2) thermal design, (3) stabilization and control, (4) alignment, focus, and figure control, (5) electronic subsystem, and (6) scientific instrument design.
NASA Astrophysics Data System (ADS)
1995-11-01
ISO is a high-technology telescope facility designed and built in Europe for use by the scientific community in Europe, Japan and the USA. It will provide astronomers with an unprecedented opportunity - the only one in the next decade - to make scientific observations of a wide variety of weak infrared radiation sources such as cold gases, galaxies and stars dying and being born. ISO represents a leap forward in space technology harnessed for astronomical observation of the universe. ISO is the world's first astronomical observatory in space operating at infrared wavelengths. To observe the weakest heat sources in the universe, its four scientific instruments have to be cooled to extremely low temperatures, using superfluid helium which evaporates slowly at minus 271 or about 2 degrees above absolute zero. The scientific instruments, telescope and liquid helium are all contained in a cryostat, which has been likened to an extraordinarily well insulated thermos flask. It is the first such cryogenically cooled satellite developed in Europe and employs very advanced technologies, notably for the scientific instruments, telescope and attitude control system. ISO will be controlled from the ESA's Space Operations Centre (ESOC) in Darmstadt, Germany, for the first few days, until the final orbit is achieved, and then operational control will be passed to a dedicated ESA operations centre in Villafranca, Spain. The first 21/2 months of operations will be given over to commissioning the satellite and verifying the performance of the scientific instruments. The observation programme is planned to start in early February 1996. ISO's lifetime is expected to be 20 months, by the end of which the helium, steadily evaporating as it cools the cryostat, should be exhausted.
The interplanetary Pioneers. Volume 2: System design and development
NASA Technical Reports Server (NTRS)
Corliss, W. R.
1972-01-01
The Pioneer systems, subsystems, and ground support activities are described. Details are given on the launch trajectory and solar orbit plans, spacecraft design approach and evolution, scientific instrument, test and ground support equipment, Delta launch vehicle, tracking and communication, and data processing equipment. Pioneer specifications, and reliability and quality assurance are also included.
NASA Technical Reports Server (NTRS)
Saltzman, Eric S.; DeBruyn, Warren J.
2000-01-01
This project involved the design and construction of a new instrument for airborne measurement of DMS and SO2. The instrument is intended for use on field missions to study the global atmospheric sulfur cycle. The ultimate scientific goal is to provide insight into the mechanisms of atmospheric transport and transformations impacting both natural and anthropogenic sulfur emissions. This report summarizes the progress made to date and the goals for future work on the project. The PI's for this project have recently relocated from the University of Miami to the University of California, Irvine, and a request has been made to transfer remaining funds to UCI. All equipment associated with this project has been transferred to UCI. The instrument design goal was to develop an instrument roughly one quarter the size and weight of currently available airborne instrumentation used for DMS and S02 measurements. Another goal was full automation, to allow unattended operation for the duration of a P-3 or DC-8 flight. The original performance design specifications for the instrument are given.
The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source
Ferguson, Ken R.; Bucher, Maximilian; Bozek, John D.; ...
2015-05-01
The Atomic, Molecular and Optical Science (AMO) instrument at the Linac Coherent Light Source (LCLS) provides a tight soft X-ray focus into one of three experimental endstations. The flexible instrument design is optimized for studying a wide variety of phenomena requiring peak intensity. There is a suite of spectrometers and two photon area detectors available. An optional mirror-based split-and-delay unit can be used for X-ray pump–probe experiments. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument.
[Instruments for quantitative methods of nursing research].
Vellone, E
2000-01-01
Instruments for quantitative nursing research are a mean to objectify and measure a variable or a phenomenon in the scientific research. There are direct instruments to measure concrete variables and indirect instruments to measure abstract concepts (Burns, Grove, 1997). Indirect instruments measure the attributes by which a concept is made of. Furthermore, there are instruments for physiologic variables (e.g. for the weight), observational instruments (Check-lists e Rating Scales), interviews, questionnaires, diaries and the scales (Check-lists, Rating Scales, Likert Scales, Semantic Differential Scales e Visual Anologue Scales). The choice to select an instrument or another one depends on the research question and design. Instruments research are very useful in research both to describe the variables and to see statistical significant relationships. Very carefully should be their use in the clinical practice for diagnostic assessment.
NASA Astrophysics Data System (ADS)
Zemcov, M.; Arai, T.; Battle, J.; Bock, J.; Cooray, A.; Hristov, V.; Keating, B.; Kim, M. G.; Lee, D. H.; Levenson, L. R.; Mason, P.; Matsumoto, T.; Matsuura, S.; Nam, U. W.; Renbarger, T.; Sullivan, I.; Suzuki, K.; Tsumura, K.; Wada, T.
2013-08-01
The Cosmic Infrared Background Experiment (CIBER) is a suite of four instruments designed to study the near infrared (IR) background light from above the Earth's atmosphere. The instrument package comprises two imaging telescopes designed to characterize spatial anisotropy in the extragalactic IR background caused by cosmological structure during the epoch of reionization, a low resolution spectrometer to measure the absolute spectrum of the extragalactic IR background, and a narrow band spectrometer optimized to measure the absolute brightness of the zodiacal light foreground. In this paper we describe the design and characterization of the CIBER payload. The detailed mechanical, cryogenic, and electrical design of the system are presented, including all system components common to the four instruments. We present the methods and equipment used to characterize the instruments before and after flight, and give a detailed description of CIBER's flight profile and configurations. CIBER is designed to be recoverable and has flown four times, with modifications to the payload having been informed by analysis of the first flight data. All four instruments performed to specifications during the subsequent flights, and the scientific data from these flights are currently being analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemcov, M.; Bock, J.; Hristov, V.
2013-08-15
The Cosmic Infrared Background Experiment (CIBER) is a suite of four instruments designed to study the near infrared (IR) background light from above the Earth's atmosphere. The instrument package comprises two imaging telescopes designed to characterize spatial anisotropy in the extragalactic IR background caused by cosmological structure during the epoch of reionization, a low resolution spectrometer to measure the absolute spectrum of the extragalactic IR background, and a narrow band spectrometer optimized to measure the absolute brightness of the zodiacal light foreground. In this paper we describe the design and characterization of the CIBER payload. The detailed mechanical, cryogenic, andmore » electrical design of the system are presented, including all system components common to the four instruments. We present the methods and equipment used to characterize the instruments before and after flight, and give a detailed description of CIBER's flight profile and configurations. CIBER is designed to be recoverable and has flown four times, with modifications to the payload having been informed by analysis of the first flight data. All four instruments performed to specifications during the subsequent flights, and the scientific data from these flights are currently being analyzed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lord, J. S.; McKenzie, I.; Baker, P. J.
2011-07-15
The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.
University of Houston Undergraduate Student Instrumentation Projects
NASA Astrophysics Data System (ADS)
Bering, E. A., III; Talbot, R. W.; Hampton, D. L.; Molders, N.; Millan, R. M.; Halford, A. J.; Dunbar, B.; Morris, G. A.; Prince, J.; Gamblin, R.; Ehteshami, A.; Lehnen, J. N.; Greer, M.; Porat, I.; Alozie, M.; Behrend, C. C.; Bias, C.; Fenton, A.; Gunawan, B.; Harrison, W.; Martinez, A.; Mathur, S.; Medillin, M.; Nguyen, T.; Nguyen, T. V.; Nowling, M.; Perez, D.; Pham, M.; Pina, M.; Thomas, G.; Velasquez, B.; Victor, L.
2017-12-01
The Undergraduate Student Instrumentation Project (USIP) is a NASA program to engage undergraduate students in rigorous scientific research, for the purposes of innovation and developing the next generation of professionals for an array of fields. The program is student led and executed from initial ideation to research to the design and deployment of scientific payloads. The University of Houston has been selected twice to participate in the USIP programs. The first program (USIP_UH I) ran from 2013 to 2016. USIP_UH II started in January of 2016, with funding starting at the end of May. USIP_UH I (USIP_UH II) at the University of Houston was (is) composed of eight (seven) research teams developing six (seven), distinct, balloon-based scientific instruments. These instruments will contribute to a broad range of geophysical sciences from Very Low Frequency recording and Total Electron Content to exobiology and ozone profiling. USIP_UH I had 12 successful launches with 9 recoveries from Fairbanks, AK in March 2015, and 4 piggyback flights with BARREL 3 from Esrange, Kiruna, Sweden in August, 2015. USIP_UH II had 8 successful launches with 5 recoveries from Fairbanks, AK in March 2017, 3 piggyback flights with BARREL 4 from Esrange, Kiruna, Sweden in August, 2016, and 1 flight each from CSBF and UH. The great opportunity of this program is capitalizing on the proliferation of electronics miniaturization to create new generations of scientific instruments that are smaller and lighter than ever before. This situation allows experiments to be done more cheaply which ultimately allows many more experiments to be done.
Solar-B X-ray Telescope (XRT) Concept Study Report
NASA Astrophysics Data System (ADS)
Golub, Leon
1999-10-01
The X-ray observations from the Yohkoh SXT provided the greatest step forward in our understanding of the solar corona in nearly two decades. Expanding on the accomplishments of Yohkoh, we believe that the scientific objectives of the Solar-B mission are achieved with a significantly improved X-ray telescope (XRT) similar to the SXT. The Solar-B XRT will have twice the spatial resolution and a broader temperature response, while building on the knowledge gained from the successful Yohkoh mission. We present the scientific justification for this view, discuss the instrumental requirements that flow from the scientific objectives, and describe the instrumentation to meet these requirements. We then provide a detailed discussion of the design activities carried out during Phase A, noting the conclusions that were reached in terms of their implications for the detailed design activities which are now commencing. Details of the instrument that have changed as a result of the Phase A studied are specifically noted, and areas of concern going into Phase B are highlighted. XRT is a grazing-incidence (GI) modified Wolter I X-ray telescope, of 35cm inner diameter and 2.7m focal length. The 2048x2048 back-illuminated CCD (now an ISAS responsibility) has 13.5 micron pixels, corresponding to 1.0 arcsec and giving full Sun field of view. This will be the highest resolution GI X-ray telescope ever flown for Solar coronal studies, and it has been designed specifically to observe both the high and low temperature coronal plasma. A small optical telescope provides visible light images for co-alignment with the Solar-B optical and EUV instruments. The XRT science team is working in close cooperation with our Japanese colleagues in the design and construction of this instrument. All of the expertise and resources of the High Energy and Solar/Stellar Divisions of the Center for Astrophysics are being made available to this program, and our team will carry its full share of responsibility for mission operations, data reduction and education and public outreach. All aspects of the XRT design were reviewed during Phase A. The study focussed particularly on those aspects that have the greatest affect on instrument performance and extended lifetime, on the image quality error budget, and on the camera (mechanical and electrical) interface and the instrument mounting interfaces. The present instrument design differs in some details from that originally proposed. Selection of the XRT for Phase A study was contingent upon the removal of the camera and its associated electronics, and the acceptance of a stringent cost cap. The removal of the electronics left the XRT without control electronics for the instrument mechanisms. A mechanism controller was therefore added. The removal of the camera resulted in major complications to the integration and test plan. After many discussions, it was decided that the system would be less expensive, and the risk of unacceptable performance lower, if we include a focus mechanism. The remainder of the XRT design baseline matches the proposed configuration. Data requirements for the XRT are driven by the science plans, which are based on the physical processes in the solar outer atmosphere. Discussions to date of the XRT observing plan, both alone and in conjunction with the other Solar-B instruments, shows that the XRT needs 2 Gbits of on-board storage, at least one circulating buffer of 640 Mbits, and twelve 10- minute downlinks per day in order to carry out its required programs.
Solar-B X-ray Telescope (XRT) Concept Study Report
NASA Technical Reports Server (NTRS)
Golub, Leon
1999-01-01
The X-ray observations from the Yohkoh SXT provided the greatest step forward in our understanding of the solar corona in nearly two decades. Expanding on the accomplishments of Yohkoh, we believe that the scientific objectives of the Solar-B mission are achieved with a significantly improved X-ray telescope (XRT) similar to the SXT. The Solar-B XRT will have twice the spatial resolution and a broader temperature response, while building on the knowledge gained from the successful Yohkoh mission. We present the scientific justification for this view, discuss the instrumental requirements that flow from the scientific objectives, and describe the instrumentation to meet these requirements. We then provide a detailed discussion of the design activities carried out during Phase A, noting the conclusions that were reached in terms of their implications for the detailed design activities which are now commencing. Details of the instrument that have changed as a result of the Phase A studied are specifically noted, and areas of concern going into Phase B are highlighted. XRT is a grazing-incidence (GI) modified Wolter I X-ray telescope, of 35cm inner diameter and 2.7m focal length. The 2048x2048 back-illuminated CCD (now an ISAS responsibility) has 13.5 micron pixels, corresponding to 1.0 arcsec and giving full Sun field of view. This will be the highest resolution GI X-ray telescope ever flown for Solar coronal studies, and it has been designed specifically to observe both the high and low temperature coronal plasma. A small optical telescope provides visible light images for co-alignment with the Solar-B optical and EUV instruments. The XRT science team is working in close cooperation with our Japanese colleagues in the design and construction of this instrument. All of the expertise and resources of the High Energy and Solar/Stellar Divisions of the Center for Astrophysics are being made available to this program, and our team will carry its full share of responsibility for mission operations, data reduction and education and public outreach. All aspects of the XRT design were reviewed during Phase A. The study focussed particularly on those aspects that have the greatest affect on instrument performance and extended lifetime, on the image quality error budget, and on the camera (mechanical and electrical) interface and the instrument mounting interfaces. The present instrument design differs in some details from that originally proposed. Selection of the XRT for Phase A study was contingent upon the removal of the camera and its associated electronics, and the acceptance of a stringent cost cap. The removal of the electronics left the XRT without control electronics for the instrument mechanisms. A mechanism controller was therefore added. The removal of the camera resulted in major complications to the integration and test plan. After many discussions, it was decided that the system would be less expensive, and the risk of unacceptable performance lower, if we include a focus mechanism. The remainder of the XRT design baseline matches the proposed configuration. Data requirements for the XRT are driven by the science plans, which are based on the physical processes in the solar outer atmosphere. Discussions to date of the XRT observing plan, both alone and in conjunction with the other Solar-B instruments, shows that the XRT needs 2 Gbits of on-board storage, at least one circulating buffer of 640 Mbits, and twelve 10- minute downlinks per day in order to carry out its required programs.
Raman Laser Spectrometer (RLS) on-board data processing and compression
NASA Astrophysics Data System (ADS)
Diaz, C.; Lopez, G.; Hermosilla, I.; Catalá, A.; Rodriguez, J. A.; Perez, C.; Diaz, E.
2013-09-01
The Raman Laser Spectrometer (RLS) is one of the Pasteur Payload instruments, within the ESA's Aurora Exploration Programme, ExoMars mission. Particularly, the RLS scientific objectives are as follows: identify organic compound and search for life; identify the mineral products and indicators of biologic activities; characterize mineral phases produced by water-related processes; characterize igneous minerals and their alteration products; characterise water/geochemical environment as a function of depth in the shallow subsurface. The straightforward approach of operating the instrument would result in a vast amount of spectrum images. A flexible on-board data processing concept has been designed to accommodate scientific return to the sample nature and data downlink bandwidth.
NASA Astrophysics Data System (ADS)
Mattioli, Glen S.; Young, Simon R.; Voight, Barry; Sparks, R. Steven J.; Shalev, Eylon; Selwyn, Sacks; Malin, Peter; Linde, Alan; Johnston, William; Hadayat, Dannie; Elsworth, Derek; Dunkley, Peter; Herd, Richard; Neuberg, Jurgen; Norton, Gillian; Widiwijayanti, Christina
2004-08-01
This article is an update on the status of an innovative new project designed to enhance generally our understanding of andesitic volcano eruption dynamics and, specifically, the monitoring and scientific infrastructure at the active Soufriàre Hills Volcano (SHV), Montserrat. The project has been designated as the Caribbean Andesite Lava Island Precision Seismo-geodetic Observatory, known as CALIPSO. Its purpose is to investigate the dynamics of the entire SHV magmatic system using an integrated array of specialized instruments in four strategically located ~200-m-deep boreholes in concert with several shallower holes and surface sites. The project is unique, as it represents the first, and only, such borehole volcano-monitoring array deployed at an andesitic stratovolcano. CALIPSO may be considered as a prototype for planned Plate Boundary Observatory (PBO) installations at several volcanic targets in the western United States. Scientific objectives of the EarthScope Integrated Science Plan (ES-ISP) relevant to magmatic systems are to investigate (1) melt generation in the mantle; (2) melt migration from the mantle to and through the crust to the surface; (3) melt residence times at various deep reservoirs; and (4) delineation of characteristic patterns of surface deformation and seismicity, which may prove useful in eruption forecasting. The CALIPSO project shares most of the same scientific goals and has, moreover, the benefit of a rich existing geophysical context in its deployment at SHV. Our experience during instrument design, planning, drilling and installation, systems integration, and early operation of CALIPSO, moreover, may prove valuable to EarthScope and PBO managers.
Space Telescope Systems Description Handbook
NASA Technical Reports Server (NTRS)
Carter, R. E.
1985-01-01
The objective of the Space Telescope Project is to orbit a high quality optical 2.4-meter telescope system by the Space Shuttle for use by the astronomical community in conjunction with NASA. The scientific objectives of the Space Telescope are to determine the constitution, physical characteristics, and dynamics of celestial bodies; the nature of processes which occur in the extreme physical conditions existing in stellar objects; the history and evolution of the universe; and whether the laws of nature are universal in the space-time continuum. Like ground-based telescopes, the Space Telescope was designed as a general-purpose instrument, capable of utilizing a wide variety of scientific instruments at its focal plane. This multi-purpose characteristic will allow the Space Telescope to be effectively used as a national facility, capable of supporting the astronomical needs for an international user community and hence making contributions to man's needs. By using the Space Shuttle to provide scientific instrument upgrading and subsystems maintenance, the useful and effective operational lifetime of the Space Telescope will be extended to a decade or more.
Radial SI latches vibration test data review
NASA Technical Reports Server (NTRS)
Harrison, P. M.; Smith, J. L.
1984-01-01
Dynamic testing of the Space Telescope Scientific Instrument Radial Latches was performed as specified by the designated test criteria. No structural failures were observed during the test. The alignment stability of the instrument simulator was within required tolerances after testing. Particulates were discovered around the latch bases, after testing, due to wearing at the B and C latch interface surfaces. This report covers criteria derivation, testing, and test results.
AMF3 ARM's Research Facility and MAOS at Oliktok Point Alaska
NASA Astrophysics Data System (ADS)
Helsel, F.; Ivey, M.; Dexheimer, D.; Hardesty, J.; Lucero, D. A.; Roesler, E. L.
2016-12-01
Scientific Infrastructure To Support Atmospheric Science And Aerosol Science For The Department Of Energy's Atmospheric Radiation Measurement Programs Mobile Facility 3 Located At Oliktok Point, Alaska.The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility 3 (AMF3) located at Oliktok Point, Alaska is a U.S. Department of Energy (DOE) site designed to collect data to determine the impact that clouds and aerosols have on solar radiation. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Oliktok is designed to be mobile and it may be relocated in the future to support other ARM science missions. AMF3's present instruments include: scanning precipitation Radar-cloud radar, Raman Lidar, Eddy correlation flux systems, Ceilometer, Balloon sounding system, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar along with all the standard metrological measurements. A Mobile Aerosol Observing System (MAOS) has been added to AMF3 in 2016 more details of the instrumentation at www.arm.gov/sites/amf/mobile-aos. Data from these instruments are placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at the ARM Program's AMF3 and highlight the newest addition to AMF3, the Mobile Aerosol Observing System (MAOS).
"Atmospheric Radiation Measurement (ARM) Research Facility at Oliktok Point Alaska"
NASA Astrophysics Data System (ADS)
Helsel, F.; Ivey, M.; Hardesty, J.; Roesler, E. L.; Dexheimer, D.
2017-12-01
Scientific Infrastructure To Support Atmospheric Science, Aerosol Science and UAS's for The Department Of Energy's Atmospheric Radiation Measurement Programs At The Mobile Facility 3 Located At Oliktok Point, Alaska.The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility 3 (AMF3) located at Oliktok Point, Alaska is a U.S. Department of Energy (DOE) site designed to collect data and help determine the impact that clouds and aerosols have on solar radiation. AMF3 provides a scientific infrastructure to support instruments and collect arctic data for the international arctic research community. The infrastructure at AMF3/Oliktok is designed to be mobile and it may be relocated in the future to support other ARM science missions. AMF3's present base line instruments include: scanning precipitation Radars, cloud Radar, Raman Lidar, Eddy correlation flux systems, Ceilometer, Balloon sounding system, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL) Along with all the standard metrological measurements. In addition AMF3 provides aerosol measurements with a Mobile Aerosol Observing System (MAOS). Ground support for Unmanned Aerial Systems (UAS) and tethered balloon flights. Data from these instruments and systems are placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments and systems are at the ARM Research Facility at Oliktok Point Alaska.
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Spiers, Gary D.; Lobl, Elena S.; Rothermel, Jeff; Keller, Vernon W.
1996-01-01
Innovative designs of a space-based laser remote sensing 'wind machine' are presented. These designs seek compatibility with the traditionally conflicting constraints of high scientific value and low total mission cost. Mission cost is reduced by moving to smaller, lighter, more off-the-shelf instrument designs which can be accommodated on smaller launch vehicles.
MODIS Information, Data, and Control System (MIDACS) system specifications and conceptual design
NASA Technical Reports Server (NTRS)
Han, D.; Salomonson, V.; Ormsby, J.; Ardanuy, P.; Mckay, A.; Hoyt, D.; Jaffin, S.; Vallette, B.; Sharts, B.; Folta, D.
1988-01-01
The MODIS Information, Data, and Control System (MIDACS) Specifications and Conceptual Design Document discusses system level requirements, the overall operating environment in which requirements must be met, and a breakdown of MIDACS into component subsystems, which include the Instrument Support Terminal, the Instrument Control Center, the Team Member Computing Facility, the Central Data Handling Facility, and the Data Archive and Distribution System. The specifications include sizing estimates for the processing and storage capacities of each data system element, as well as traffic analyses of data flows between the elements internally, and also externally across the data system interfaces. The specifications for the data system, as well as for the individual planning and scheduling, control and monitoring, data acquisition and processing, calibration and validation, and data archive and distribution components, do not yet fully specify the data system in the complete manner needed to achieve the scientific objectives of the MODIS instruments and science teams. The teams have not yet been formed; however, it was possible to develop the specifications and conceptual design based on the present concept of EosDIS, the Level-1 and Level-2 Functional Requirements Documents, the Operations Concept, and through interviews and meetings with key members of the scientific community.
NASA Technical Reports Server (NTRS)
Gunning, George R.; Spapperi, Jeff; Wilkinson, Jeffrey P.; Eldred, Jim; Labij, Dennis; Strinni, Meredith
1990-01-01
A design proposal for an unmanned probe to Pluto is presented. The topics covered include: (1) scientific instrumentation; (2) mission management, planning, and costing; (3) power and propulsion system; (4) structural subsystem; (5) command, control, and communication; and (6) attitude and articulation control.
Simulations as a tool for higher mass resolution spectrometer: Lessons from existing observations
NASA Astrophysics Data System (ADS)
Nicolaou, Georgios; Yamauchi, Masatoshi; Nilsson, Hans; Wieser, Martin; Fedorov, Andrei
2017-04-01
Scientific requirements of each mission are crucial for the instrument's design. Ion tracing simulations of instruments can be helpful to characterize their performance, identify their limitations and improving the design for future missions. However, simulations provide the best performance in ideal case, and the actual response is determined by many other factors. Therefore, simulations should be compared with observations when possible. Characterizing the actual response of a running instrument gives valuable lessons for the future design of test instruments with the same detection principle before spending resources to build and calibrate them. In this study we use an ion tracing simulation of the Ion Composition Analyser (ICA) on board ROSETTA, in order to characterize its response and to compare it with the observations. It turned out that, due to the complicated unexpected response of the running instrument, the heavy cometary ions and molecules are sometimes difficult to be resolved. However, preliminary simulation of a slightly modified design predicts much higher mass resolution. Even after considering the complicated unexpected response, we safely expect that the modified design can resolve most abundant heavy atomic ions (e.g., O^+) and molecular ions (e.g., N_2+ and O_2^+). We show the simulation results for both designs and ICA data.
Software Framework for Controlling Unsupervised Scientific Instruments.
Schmid, Benjamin; Jahr, Wiebke; Weber, Michael; Huisken, Jan
2016-01-01
Science outreach and communication are gaining more and more importance for conveying the meaning of today's research to the general public. Public exhibitions of scientific instruments can provide hands-on experience with technical advances and their applications in the life sciences. The software of such devices, however, is oftentimes not appropriate for this purpose. In this study, we describe a software framework and the necessary computer configuration that is well suited for exposing a complex self-built and software-controlled instrument such as a microscope to laymen under limited supervision, e.g. in museums or schools. We identify several aspects that must be met by such software, and we describe a design that can simultaneously be used to control either (i) a fully functional instrument in a robust and fail-safe manner, (ii) an instrument that has low-cost or only partially working hardware attached for illustration purposes or (iii) a completely virtual instrument without hardware attached. We describe how to assess the educational success of such a device, how to monitor its operation and how to facilitate its maintenance. The introduced concepts are illustrated using our software to control eduSPIM, a fluorescent light sheet microscope that we are currently exhibiting in a technical museum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springston, Stephen R.
The Sulfur Dioxide Analyzer measures sulfur dioxide based on absorbance of UV light at one wavelength by SO 2 molecules which then decay to a lower energy state by emitting UV light at a longer wavelength. Specifically, SO 2 + hυ1 →SO 2 *→SO 2 + hυ2 The emitted light is proportional to the concentration of SO 2 in the optical cell. External communication with the analyzer is available through an Ethernet port configured through the instrument network of the AOS systems. The Model 43i-TLE is part of the i-series of Thermo Scientific instruments. The i-series instruments are designed tomore » interface with external computers through the proprietary Thermo Scientific iPort Software. However, this software is somewhat cumbersome and inflexible. Brookhaven National Laboratory (BNL) has written an interface program in National Instruments LabView that both controls the Model 43i-TLE Analyzer AND queries the unit for all measurement and housekeeping data. The LabView vi (the software program written by BNL) ingests all raw data from the instrument and outputs raw data files in a uniform data format similar to other instruments in the AOS and described more fully in Section 6.0 below.« less
The X-ray Pump–Probe instrument at the Linac Coherent Light Source
Chollet, Matthieu; Alonso-Mori, Roberto; Cammarata, Marco; ...
2015-04-21
The X-ray Pump–Probe instrument achieves femtosecond time-resolution with hard X-ray methods using a free-electron laser source. It covers a photon energy range of 4–24 keV. A femtosecond optical laser system is available across a broad spectrum of wavelengths for generating transient states of matter. The instrument is designed to emphasize versatility and the scientific goals encompass ultrafast physical, chemical and biological processes involved in the transformation of matter and transfer of energy at the atomic scale.
The X-ray Pump-Probe instrument at the Linac Coherent Light Source.
Chollet, Matthieu; Alonso-Mori, Roberto; Cammarata, Marco; Damiani, Daniel; Defever, Jim; Delor, James T; Feng, Yiping; Glownia, James M; Langton, J Brian; Nelson, Silke; Ramsey, Kelley; Robert, Aymeric; Sikorski, Marcin; Song, Sanghoon; Stefanescu, Daniel; Srinivasan, Venkat; Zhu, Diling; Lemke, Henrik T; Fritz, David M
2015-05-01
The X-ray Pump-Probe instrument achieves femtosecond time-resolution with hard X-ray methods using a free-electron laser source. It covers a photon energy range of 4-24 keV. A femtosecond optical laser system is available across a broad spectrum of wavelengths for generating transient states of matter. The instrument is designed to emphasize versatility and the scientific goals encompass ultrafast physical, chemical and biological processes involved in the transformation of matter and transfer of energy at the atomic scale.
Influence of the astrophysical requirements on dilution refrigerator design
NASA Astrophysics Data System (ADS)
Sirbi, Adriana; Pouilloux, Benjamin; Benoit, Alain; Lamarre, Jean-Michel
1999-12-01
A 300 K to 0.1 K space prototype is developed in cooperation with CRTBT, IAS Air Liquide and RAL, under CNES and ESA contracts, to demonstrate the feasibility of such a cooling system. The heart of the system is a 4 K to 0.1 K open cycle dilution refrigerator circulating 3He and 4He. All the tests are now completed. The design of this system is chosen like the nominal solution for PLANCK/HFI instrument. Since scientific requirements have changed, the design of the prototype has to be adjusted to receive the focal plane of HFI (High Frequency Instrument) instrument of PLANCK. The main goal is to optimise 3He consumption without degrading both mechanical and thermal performances. This paper presents the prototype architecture, the dilution refrigerator and the associated tests. The suitability to PLANCK mission is also assessed.
Optical Alignment of the JWST ISIM to the OTE Simulator (OSIM): Current Concept and Design Studies
NASA Technical Reports Server (NTRS)
Frey, Bradley J.; Davila, Pamela S.; Marsh, James M.; Ohl, Raymond G.; Sullivan, Joseph
2007-01-01
The James Webb Space Telescope's (JWST) Integrated Science Instrument Module (ISIM) is the scientific payload of the observatory and contai ns four science instruments. During alignment and test of the integrated ISIM (i.e. ISIM + science instruments) at NASA's Goddard Space Fli ght Center (GSFC), the Optical telescope element SIMulator (OSIM) wil l be used to optically stimulate the science instruments to verify their operation and performance. In this paper we present the design of two cryogenic alignment fixtures that will be used to determine and verify the proper alignment of OSIM to ISIM during testing at GSFC. The se fixtures, the Master Alignment Target Fixture (MATF) and the ISIM Alignment Target Fixture (IATF), will provide continuous, 6 degree of freedom feedback to OSIM during initial ambient alignment as well as during cryogenic vacuum testing.
Optical design and optical properties of a VUV spectrographic imager for ICON mission
NASA Astrophysics Data System (ADS)
Loicq, Jerome; Kintziger, Christian; Mazzoli, Alexandra; Miller, Tim; Chou, Cathy; Frey, Harald U.; Immel, Thomas J.; Mende, Stephen B.
2016-07-01
In the frame of the ICON (Ionospheric Connection Explorer) mission of NASA led by UC Berkeley, CSL and SSL Berkeley have designed in cooperation a new Far UV spectro-imager. The instrument is based on a Czerny-Turner spectrograph coupled with two back imagers. The whole field of view covers [+/- 12° vertical, +/- 9° horizontal]. The instrument is surmounted by a rotating mirror to adjust the horizontal field of view pointing by +/- 30°. To meet the scientific imaging and spectral requirements the instrument has been optimized. The optimization philosophy and related analysis are presented in the present paper. PSF, distortion map and spectral properties are described. A tolerance study and alignment cases were performed to prove the instrument can be built and aligned. Finally straylight and out of band properties are discussed.
NASA Astrophysics Data System (ADS)
Lazos, Panagiotis; Vlahakis, George N.
2016-03-01
The Greek schools operating in Istanbul date back to the 19th century. These schools have noteworthy collections of old scientific instruments that were used in teaching experimental physics. Amongst them, more outstanding are the scientific instruments used in demonstrating electrostatics. This paper briefly presents the equipment, focuses on exceptional scientific instruments and attempts to illuminate certain aspects in teaching the natural sciences.
Science Highlights and Lessons Learned from the Atmospheric Infrared Sounder (AIRS)
NASA Technical Reports Server (NTRS)
Pagano, Thomas S.; Fetzer, Eric J.; Suda, Jarrod; Licata, Steve
2011-01-01
The Atmospheric Infrared Sounder (AIRS) and companion instrument, the Advanced Microwave Sounding Unit (AMSU) on the NASA Earth Observing System Aqua spacecraft are facility instruments designed to support measurements of atmospheric temperature, water vapor and a wide range of atmospheric constituents in support of weather forecasting and scientific research in climate and atmospheric chemistry. This paper is an update to the science highlights from a paper by the authors released last year and also looks back at the lessons learned and future needs of the scientific community. These lessons not only include requirements on the measurements, but scientific shortfalls as well. Results from the NASA Science Community Workshop in IR and MW Sounders relating to AIRS and AMSU requirements and concerns are covered and reflect much of what has been learned and what is needed for future atmospheric sounding from Low Earth Orbit.
NASA Technical Reports Server (NTRS)
1976-01-01
The interfaces between the scientific instruments and the Spacelab/Labcraft equipment are described. The characteristics of the Spacelab/Labcraft equipment pertinent to the scientific instruments and the requirements placed on the scientific instruments by the Spacelab/Labcraft equipment are described.
NASA Technical Reports Server (NTRS)
Acton, Charles H., Jr.
1990-01-01
The Navigation Ancillary Information Facility (NAIF), acting under the direction of NASA's Office of Space Science and Applications, and with substantial participation of the planetary science community, is designing and implementing an ancillary data system - called SPICE - to assist scientists in planning and interpreting scientific observations taken from spaceborne instruments. The principal objective of the implemented SPICE system is that it will hold the essential geometric and related ancillary information needed to recover the full value of science instrument data, and that it will facilitate correlations of individual instrument datasets with data obtained from other instruments on the same or other spacecraft.
Superconducting gravity gradiometer mission. Volume 1: Study team executive summary
NASA Technical Reports Server (NTRS)
Morgan, Samuel H. (Editor); Paik, Ho Jung (Editor)
1989-01-01
An executive summary is presented based upon the scientific and engineering studies and developments performed or directed by a Study Team composed of various Federal and University activities involved with the development of a three-axis Superconducting Gravity Gradiometer integrated with a six-axis superconducting accelerometer. This instrument is being developed for a future orbital mission to make precise global gravity measurements. The scientific justification and requirements for such a mission are discussed. This includes geophysics, the primary mission objective, as well as secondary objectives, such as navigation and tests of fundamental laws of physics, i.e., a null test of the inverse square law of gravitation and tests of general relativity. The instrument design and status along with mission analysis, engineering assessments, and preliminary spacecraft concepts are discussed. In addition, critical spacecraft systems and required technology advancements are examined. The mission requirements and an engineering assessment of a precursor flight test of the instrument are discussed.
Superconducting gravity gradiometer mission. Volume 2: Study team technical report
NASA Technical Reports Server (NTRS)
Morgan, Samuel H. (Editor); Paik, Ho Jung (Editor)
1988-01-01
Scientific and engineering studies and developments performed or directed by a Study Team composed of various Federal and University activities involved with the development of a three-axis superconducting gravity gradiometer integrated with a six-axis superconducting accelerometer are examined. This instrument is being developed for a future orbital mission to make precise global gravity measurements. The scientific justification and requirements for such a mission are discussed. This includes geophysics, the primary mission objective, as well as secondary objective, such as navigation and feats of fundamental laws of physics, i.e., a null test of the inverse square law of gravitation and tests of general relativity. The instrument design and status along with mission analysis, engineering assessments, and preliminary spacecraft concepts are discussed. In addition, critical spacecraft systems and required technology advancements are examined. The mission requirements and an engineering assessment of a precursor flight test of the instrument are discussed.
Aerospace vehicle design, spacecraft section. Volume 1
NASA Technical Reports Server (NTRS)
1988-01-01
The objective was to create a manned Martian aircraft which can perform: scientific surveys of particular sites distant from the base; a deployment of scientific instrument packages by air drop that land rovers cannot accomplish; and rescue operations. Designing the airfoil requires a wing which can operate within the low Reynolds numbers apparent on Mars. The airfoil, NASA NLF(1)-1015 was chosen. The design of the aircraft is comparable to a P-38 military aircraft. The aircraft uses fuel cells to power the two propellers. A rocket-assisted takeoff is necessary to enable Romulus to liftoff. Although the design and creation of Romulus would be an expensive adventure, such a vehicle could be most useful in evaluating the Mars surface and in creating a habitat for mankind.
15 CFR 301.1 - General provisions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... duty-free importation of scientific instruments and apparatus by public or private nonprofit... provides that scientific instruments and apparatus intended exclusively for educational purposes or pure scientific research use by qualified nonprofit institutions shall enjoy duty-free entry if instruments or...
15 CFR 301.1 - General provisions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... duty-free importation of scientific instruments and apparatus by public or private nonprofit... provides that scientific instruments and apparatus intended exclusively for educational purposes or pure scientific research use by qualified nonprofit institutions shall enjoy duty-free entry if instruments or...
15 CFR 301.1 - General provisions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... duty-free importation of scientific instruments and apparatus by public or private nonprofit... provides that scientific instruments and apparatus intended exclusively for educational purposes or pure scientific research use by qualified nonprofit institutions shall enjoy duty-free entry if instruments or...
15 CFR 301.1 - General provisions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... duty-free importation of scientific instruments and apparatus by public or private nonprofit... provides that scientific instruments and apparatus intended exclusively for educational purposes or pure scientific research use by qualified nonprofit institutions shall enjoy duty-free entry if instruments or...
Opto-mechanical design for transmission optics in cryogenic space instrumentation
NASA Astrophysics Data System (ADS)
Kroes, Gabby; Venema, Lars; Navarro, Ramón
2017-11-01
NOVA is involved in the development and realization of various optical astronomical instruments for groundbased as well as space telescopes, with a focus on nearand mid-infrared instrumentation. NOVA has developed a suite of scientific instruments with cryogenic optics for the ESO VLT and VLTI instruments: VISIR, MIDI, the SPIFFI 2Kcamera for SINFONI, X-shooter and MATISSE. Other projects include the cryogenic optics for MIRI for the James Webb Space Telescope and several E-ELT instruments. Mounting optics is always a compromise between firmly fixing the optics and preventing stresses within the optics. The fixing should ensure mechanical stability and thus accurate positioning in various gravity orientations, temperature ranges, during launch, transport or earthquake. On the other hand, the fixings can induce deformations and sometimes birefringence in the optics and thus cause optical errors. Even cracking or breaking of the optics is a risk, especially when using brittle infrared optical materials at the cryogenic temperatures required in instruments for infrared astronomy, where differential expansion of various materials amounts easily to several millimeters per meter. Special kinematic mounts are therefore needed to ensure both accurate positioning and low stress. This paper concentrates on the opto-mechanical design of optics mountings, especially for large transmission optics in cryogenic circumstances in space instruments. It describes the development of temperature-invariant ("a-thermal") kinematic designs, their implementation in ground based instrumentation and ways to make them suitable for space instruments.
NASA Astrophysics Data System (ADS)
Levelt, Pieternel; Veefkind, Pepijn; Bhartia, Pawan; Joiner, Joanna; Tamminen, Johanna; OMI Science Team
2014-05-01
On July 15, 2004 Ozone Monitoring Instrument (OMI) was successfully launched from the Vandenberg military air force basis in California, USA, on NASA's EOS-Aura spacecraft. OMI is the first of a new generation of UV/VIS nadir solar backscatter imaging spectrometers, which provides nearly global coverage in one day with an unprecedented spatial resolution of 13 x 24 km2. OMI measures solar irradiance and Earth radiances in the wavelength range of 270 to 500 nm with a spectral resolution of about 0.5 nm. OMI is designed and built by the Netherlands and Finland and is also a third party mission of ESA. The major step that was made in the OMI instrument compared to its predecessors is the use of 2-dimensional detector arrays (CCDs) in a highly innovative small optical design. These innovations enable the combination of a high spatial resolution and a good spectral resolution with daily global coverage. OMI measures a range of trace gases (O3, NO2, SO2, HCHO, BrO, OClO, H2O), clouds and aerosols. Albeit OMI is already 5 years over its design lifetime, the instrument is still fully operational. The successor of OMI is TROPOMI (TROPOspheric Monitoring Instrument) on the Copernicus Sentinel-5 precursor mission, planned for launch in 2015. OMI's unique capabilities rely in measuring tropospheric trace gases with a small footprint and daily global coverage. The unprecedented spatial resolution of the instrument revealed for the first time tropospheric pollution maps on a daily basis with urban scale resolution leading to improved air quality forecasts. The OMI measurements also improve our understanding of air quality and the interaction between air quality and climate change by combining measurements of air pollutants and aerosols. In recent years the data are also used for obtaining high-resolution global emission maps using inverse modelling or related techniques, challenging the bottom-up inventories based emission maps. In addition to scientific research, OMI also contributes to several operational services, including volcanic plume warning systems for aviation, UV forecasts and the air quality forecasts. In this invited talk an overview will be given of unique findings and new scientific results based on OMI data over the last 10 years and which unique OMI instrument features are recurring in the new generation of UV/VIS satellite instrumentation in Europe, USA and Asia.
USSR and Eastern Europe Scientific Abstracts, Physics and Mathematics, Number 40
1978-01-25
the meteorite material with cosmic muons , and due to instrument noise. This phenomenon is attributed to the presence of some spontaneously fissile...references 4: 2 Russian, 2 Western. USSR AN INSTRUMENT FOR VISUALIZING THE X- RAY TOPOGRAPHIC PATTERNS IN P-N STRUCTURES DURING THE FABRICATION PROCESS...Special Design and Engineering Office of Industrial Television [Abstract] The x- ray topographic method according to A. P. Lang or G. Borrman is
Scientific management of Space Telescope
NASA Technical Reports Server (NTRS)
Odell, C. R.
1981-01-01
A historical summay is given on the science management of the Space Telescope, the inception of which began in 1962, when scientists and engineers first recommended the development of a nearly diffraction limited substantial-size optical telescope. Phase A, the feasibility requirements generation phase, began in 1971 and consisted largely of NASA scientists and a NASA design. Phase B, the preliminary design phase, established a tiered structure of scientists, led by the Large Space Telescope operations and Management Work Group. A Mission Operations Working Group headed six instrument definition teams to develop the essential instrument definitions. Many changes took place during Phase B, before design and development, which began in 1978 and still continues today.
NASA Astrophysics Data System (ADS)
Sandy, M.; Companion, J. A.; Connors, V. S.
2007-05-01
NASA Langley Research Center approached the Virginia Space Grant Consortium, a NASA-sponsored coalition of universities, NASA research centers and state agencies with the opportunity to develop a scientific mission and flight opportunities for an un-flown atmospheric composition remote sensor, MicroMAPS. The resulting partnership led to new life for this instrument from a space-borne carbon monoxide remote sensor to an high altitude airborne instrument that measures tropospheric carbon monoxide in the near infrared portion of the spectrum. The five year effort to date has leveraged the existing instrument with work by student teams overseen by faculty and NASA advisors, with both NASA and industry contributions. The result is a viable instrument system that has flown in four international scientific field campaigns aboard the Scaled Composites Proteus aircraft, generating 300 plus hours of CO data to date over North America, Italy, the Mediterranean, England, the North Sea, Darwin, Northern Australia, the Atlantic Ocean, the Indian Ocean, and the Pacific Ocean between Australia and California. A relatively small investment by NASA and contributions by 56 students and nine faculty members, both active and retired NASA engineers and scientists, as well as a Canadian aerospace research company (which designed and built the MicroMAPS instrument) yielded successful results that go well beyond the instrument and data retrieved. The effort provided a valuable educational research experience for students from three universities whose work included contributions in: 1) Development of the instrument system and pod design for the Proteus flights; 2) Development of assessment strategy and analysis of instrument performance; 3) Development of the operations and data management strategy; 4) Contributions to development of design, implementation, and analysis of sensor calibration at Resonance Ltd., Barrie, Canada 5) Development of a new data reduction strategy for the airborne configuration over northern mid-latitudes and tropical regions. 6) Development of the instrument system and pod design for possible flights on Altair (a unmanned airborne vehicle managed at the NASA Dryden Flight Center) and 7) Geo-referencing of MicroMAPS data. An overview of the MicroMAPS project partnership will be presented and the potential for collaboration between federal laboratories and industry with National Space Grant Consortia and their Space Grant universities on similar partnerships will be described.
The virtual mission approach: Empowering earth and space science missions
NASA Astrophysics Data System (ADS)
Hansen, Elaine
1993-08-01
Future Earth and Space Science missions will address increasingly broad and complex scientific issues. To accomplish this task, we will need to acquire and coordinate data sets from a number of different instrumetns, to make coordinated observations of a given phenomenon, and to coordinate the operation of the many individual instruments making these observations. These instruments will need to be used together as a single ``Virtual Mission.'' This coordinated approach is complicated in that these scientific instruments will generally be on different platforms, in different orbits, from different control centers, at different institutions, and report to different user groups. Before this Virtual Mission approach can be implemented, techniques need to be developed to enable separate instruments to work together harmoniously, to execute observing sequences in a synchronized manner, and to be managed by the Virtual Mission authority during times of these coordinated activities. Enabling technologies include object-oriented designed approaches, extended operations management concepts and distributed computing techniques. Once these technologies are developed and the Virtual Mission concept is available, we believe the concept will provide NASA's Science Program with a new, ``go-as-you-pay,'' flexible, and resilient way of accomplishing its science observing program. The concept will foster the use of smaller and lower cost satellites. It will enable the fleet of scientific satellites to evolve in directions that best meet prevailing science needs. It will empower scientists by enabling them to mix and match various combinations of in-space, ground, and suborbital instruments - combinations which can be called up quickly in response to new events or discoveries. And, it will enable small groups such as universities, Space Grant colleges, and small businesses to participate significantly in the program by developing small components of this evolving scientific fleet.
Engineering Feasibility and Trade Studies for the NASA/VSGC MicroMaps Space Mission
NASA Technical Reports Server (NTRS)
Abdelkhalik, Ossama O.; Nairouz, Bassem; Weaver, Timothy; Newman, Brett
2003-01-01
Knowledge of airborne CO concentrations is critical for accurate scientific prediction of global scale atmospheric behavior. MicroMaps is an existing NASA owned gas filter radiometer instrument designed for space-based measurement of atmospheric CO vertical profiles. Due to programmatic changes, the instrument does not have access to the space environment and is in storage. MicroMaps hardware has significant potential for filling a critical scientific need, thus motivating concept studies for new and innovative scientific spaceflight missions that would leverage the MicroMaps heritage and investment, and contribute to new CO distribution data. This report describes engineering feasibility and trade studies for the NASA/VSGC MicroMaps Space Mission. Conceptual studies encompass: 1) overall mission analysis and synthesis methodology, 2) major subsystem studies and detailed requirements development for an orbital platform option consisting of a small, single purpose spacecraft, 3) assessment of orbital platform option consisting of the International Space Station, and 4) survey of potential launch opportunities for gaining assess to orbit. Investigations are of a preliminary first-order nature. Results and recommendations from these activities are envisioned to support future MicroMaps Mission design decisions regarding program down select options leading to more advanced and mature phases.
Buchholz, Bernhard; Kallweit, Sören; Ebert, Volker
2016-12-30
Instrument operation in harsh environments often significantly impacts the trust level of measurement data. While commercial instrument manufacturers clearly define the deployment conditions to achieve trustworthy data in typical standard applications, it is frequently unavoidable in scientific field applications to operate instruments outside these commercial standard application specifications. Scientific instrumentation, however, is employing cutting-edge technology and often highly optimized but also lacks long-term field tests to assess the field vs. laboratory performance. Recently, we developed the Selective Extractive Laser Diode Hygrometer (SEALDH-II), which addresses field and especially airborne applications as well as metrological laboratory validations. SEALDH-II targets reducing deviations between airborne hygrometers (currently up to 20% between the most advanced hygrometers) with a new holistic, internal control and validation concept, which guarantees the transfer of the laboratory performance into a field scenario by capturing more than 80 instrument internal "housekeeping" data to nearly perfectly control SEALDH-II's health status. SEALDH-II uses a calibration-free, first principles based, direct Tuneable Diode Laser Absorption Spectroscopy (dTDLAS) approach, to cover the entire atmospheric humidity measurement range from about 3 to 40,000 ppmv with a calculated maximum uncertainty of 4.3% ± 3 ppmv. This is achieved not only by innovations in internal instrument monitoring and design, but also by active control algorithms such as a high resolution spectral stabilization. This paper describes the setup, working principles, and instrument stabilization, as well as its precision validation and long-term stress tests in an environmental chamber over an environmental temperature and humidity range of ΔT = 50 K and ΔRH = 80% RH, respectively.
Plasma wave experiment for the ISEE-3 mission
NASA Technical Reports Server (NTRS)
Scarf, F. L.
1983-01-01
An analysis of data from a scientific instrument designed to study solar wind and plasma wave phenomena on the ISEE-3 Mission is provided. Work on the data analysis phase of the contract from 1 October 1982 through 30 March 1983 is summarized.
Development status of the life marker chip instrument for ExoMars
NASA Astrophysics Data System (ADS)
Sims, Mark R.; Cullen, David C.; Rix, Catherine S.; Buckley, Alan; Derveni, Mariliza; Evans, Daniel; Miguel García-Con, Luis; Rhodes, Andrew; Rato, Carla C.; Stefinovic, Marijan; Sephton, Mark A.; Court, Richard W.; Bulloch, Christopher; Kitchingman, Ian; Ali, Zeshan; Pullan, Derek; Holt, John; Blake, Oliver; Sykes, Jonathan; Samara-Ratna, Piyal; Canali, Massimiliano; Borst, Guus; Leeuwis, Henk; Prak, Albert; Norfini, Aleandro; Geraci, Ennio; Tavanti, Marco; Brucato, John; Holm, Nils
2012-11-01
The Life Marker Chip (LMC) is one of the instruments being developed for possible flight on the 2018 ExoMars mission. The instrument uses solvents to extract organic compounds from samples of martian regolith and to transfer the extracts to dedicated detectors based around the use of antibodies. The scientific aims of the instrument are to detect organics in the form of biomarkers that might be associated with extinct life, extant life or abiotic sources of organics. The instrument relies on a novel surfactant-based solvent system and bespoke, commercial and research-developed antibodies against a number of distinct biomarkers or molecular types. The LMC comprises of a number of subsystems designed to accept up to four discrete samples of martian regolith or crushed rock, implement the solvent extraction, perform microfluidic-based multiplexed antibody-assays for biomarkers and other targets, optically detect the fluorescent output of the assays, control the internal instrument pressure and temperature, in addition to the associated instrument control electronics and software. The principle of operation, the design and the instrument development status as of December 2011 are reported here. The instrument principle can be extended to other configurations and missions as needed.
Cross-cultural perspectives of scientific misconduct.
Momen, Hooman; Gollogly, Laragh
2007-09-01
The increasing globalization of scientific research lends urgency to the need for international agreement on the concepts of scientific misconduct. Universal spiritual and moral principles on which ethical standards are generally based indicate that it is possible to reach international agreement on the ethical principles underlying good scientific practice. Concordance on an operational definition of scientific misconduct that would allow independent observers to agree which behaviour constitutes misconduct is more problematic. Defining scientific misconduct to be universally recognized and universally sanctioned means addressing the broader question of ensuring that research is not only well-designed - and addresses a real need for better evidence - but that it is ethically conducted in different cultures. An instrument is needed to ensure that uneven ethical standards do not create unnecessary obstacles to research, particularly in developing countries.
NASA Astrophysics Data System (ADS)
Schmidt, Luke M.; Ribeiro, Rafael; Taylor, Keith; Jones, Damien; Prochaska, Travis; DePoy, Darren L.; Marshall, Jennifer L.; Cook, Erika; Froning, Cynthia; Ji, Tae-Geun; Lee, Hye-In; Mendes de Oliveira, Claudia; Pak, Soojong; Papovich, Casey
2016-08-01
We present a preliminary conceptual optical design for GMACS, a wide field, multi-object, optical spectrograph currently being developed for the Giant Magellan Telescope (GMT). We include details of the optical design requirements derived from the instrument scientific and technical objectives and demonstrate how these requirements are met by the current design. Detector specifications, field acquisition/alignment optics, and optical considerations for the active flexure control system are also discussed.
Apodized Pupil Lyot Coronagraphs designs for future segmented space telescopes
NASA Astrophysics Data System (ADS)
St. Laurent, Kathryn; Fogarty, Kevin; Zimmerman, Neil; N’Diaye, Mamadou; Stark, Chris; Sivaramakrishnan, Anand; Pueyo, Laurent; Vanderbei, Robert; Soummer, Remi
2018-01-01
A coronagraphic starlight suppression system situated on a future flagship space observatory offers a promising avenue to image Earth-like exoplanets and search for biomarkers in their atmospheric spectra. One NASA mission concept that could serve as the platform to realize this scientific breakthrough is the Large UV/Optical/IR Surveyor (LUVOIR). Such a mission would also address a broad range of topics in astrophysics with a multi-wavelength suite of instruments.In support of the community’s assessment of the scientific capability of a LUVOIR mission, the Exoplanet Exploration Program (ExEP) has launched a multi-team technical study: Segmented Coronagraph Design and Analysis (SCDA). The goal of this study is to develop viable coronagraph instrument concepts for a LUVOIR-type mission. Results of the SCDA effort will directly inform the mission concept evaluation being carried out by the LUVOIR Science and Technology Definition Team. The apodized pupil Lyot coronagraph (APLC) is one of several coronagraph design families that the SCDA study is assessing. The APLC is a Lyot-style coronagraph that suppresses starlight through a series of amplitude operations on the on-axis field. Given a suite of seven plausible segmented telescope apertures, we have developed an object-oriented software toolkit to automate the exploration of thousands of APLC design parameter combinations. In the course of exploring this parameter space we have established relationships between APLC throughput and telescope aperture geometry, Lyot stop, inner working angle, bandwidth, and contrast level. In parallel with the parameter space exploration, we have investigated several strategies to improve the robustness of APLC designs to fabrication and alignment errors and integrated a Design Reference Mission framework to evaluate designs with scientific yield metrics.
Line drawing Scientific Instrument Module and lunar orbital science package
NASA Technical Reports Server (NTRS)
1970-01-01
A line drawing of the Scientific Instrument Module (SIM) with its lunar orbital science package. The SIM will be mounted in a previously vacant sector of the Apollo Service Module. It will carry specialized cameras and instrumentation for gathering lunar orbit scientific data.
Development and testing of the ultraviolet spectrometer for the Mariner Mars 1971 spacecraft
NASA Technical Reports Server (NTRS)
Farrar, J. W.
1972-01-01
The Mariner Mars 1971 ultraviolet spectrometer is an Ebert-Fastie type of the same basic design as the Mariner Mars 1969 instrument. Light enters the instrument and is split into component wavelengths by a scanning reflection diffraction grating. Two monochrometer exit slits allow the use of two independent photomultiplier tube sensors. Channel 1 has a spectral range of 1100 to 1692 A with a fixed gain, while Channel 2 has a spectral range of 1450 to 3528 A with an automatic step gain control, providing a dynamic range over the expected atmosphere and surface brightness of Mars. The scientific objectives, basic operation, design, testing, and calibration for the Mariner Mars 1971 ultraviolet spectrometer are described. The design discussion includes those modifications that were necessary to extend the lifetime of the instrument in order to accomplish the Mariner Mars 1971 mission objectives.
SAO Participation in the GOME and SCIAMACHY Satellite Instrument Programs
NASA Technical Reports Server (NTRS)
Hilsenrath, Ernest (Technical Monitor); Chance, Kelly; Kurosu, Thomas
2004-01-01
This report summarizes the progress on our three-year program of research to refine the measurement capability for satellite-based instruments that monitor ozone and other trace species in the Earth's stratosphere and troposphere, to retrieve global distributions of these and other constituents h m the GOME and SCIAMACHY satellite instruments, and to conduct scientific studies for the ILAS instruments. This continues our involvements as a U.S. participant in GOME and SCIAMACHY since their inception, and as a member of the ILAS-II Science Team. These programs have led to the launch of the first satellite instrument specifically designed to measure height-resolved ozone, including the tropospheric component (GOME), and the development of the first satellite instrument that will measure tropospheric ozone simultaneously with NO2, CO, HCHO, N2O, H2O, and CH4 (SCIAMACHY). The GOME program now includes the GOME-2 instruments, to be launched on the Eumetsat Metop satellites, providing long-term continuity in European measurements of global ozone that complement the measurements of the TOMS, SBUV, OMI, OMPS instruments. The research primarily focuses on two areas: Data analysis, including algorithm development and validation studies that will improve the quality of retrieved data products, in support for future field campaigns (to complement in situ and airborne campaigns with satellite measurements), and scientific analyses to be interfaced to atmospheric modeling studies.
SAO Participation in the GOME and SCIAMACHY Satellite Instrument Programs
NASA Technical Reports Server (NTRS)
Chance, Kelly; Kurosu, Thomas
2003-01-01
This report summarizes the progress on our three-year program of research to refine the measurement capability for satellite-based instruments that monitor ozone and other trace species in the Earth's stratosphere and troposphere, to retrieve global distributions of these and other constituents from the GOME and SCIAMACHY satellite instruments, and to conduct scientific studies for the ILAS instruments. This continues our involvements as a U.S. participant in GOME and SCIAMACHY since their inception, and as a member of the ILAS-II Science Team. These programs have led to the launch of the first satellite instrument specifically designed to measure height-resolved ozone, including the tropospheric component (GOME), and the development of the first satellite instrument that will measure tropospheric ozone simultaneously with NO2, CO, HCHO, N2O, H2O, and CH4 (SCIAMACHY). The GOME program now includes the GOME-2 instruments, to be launched on the Eumetsat Metop satellites, providing long-term continuity in European measurements of global ozone that complement the measurements of the TOMS, SBW, OMI, OMPS instruments. The research primarily focuses on two areas: Data analysis, including algorithm development and validation studies that will improve the quality of retrieved data products, in support for future field campaigns (to complement in situ and airborne campaigns with satellite measurements), and scientific analyses to be interfaced to atmospheric modeling studies.
A preliminary design for the GMT-Consortium Large Earth Finder (G-CLEF)
NASA Astrophysics Data System (ADS)
Szentgyorgyi, Andrew; Barnes, Stuart; Bean, Jacob; Bigelow, Bruce; Bouchez, Antonin; Chun, Moo-Young; Crane, Jeffrey D.; Epps, Harland; Evans, Ian; Evans, Janet; Frebel, Anna; Furesz, Gabor; Glenday, Alex; Guzman, Dani; Hare, Tyson; Jang, Bi-Ho; Jang, Jeong-Gyun; Jeong, Ueejong; Jordan, Andres; Kim, Kang-Min; Kim, Jihun; Li, Chih-Hao; Lopez-Morales, Mercedes; McCracken, Kenneth; McLeod, Brian; Mueller, Mark; Nah, Jakyung; Norton, Timothy; Oh, Heeyoung; Oh, Jae Sok; Ordway, Mark; Park, Byeong-Gon; Park, Chan; Park, Sung-Joon; Phillips, David; Plummer, David; Podgorski, William; Rodler, Florian; Seifahrt, Andreas; Tak, Kyung-Mo; Uomoto, Alan; Van Dam, Marcos A.; Walsworth, Ronald; Yu, Young Sam; Yuk, In-Soo
2014-08-01
The GMT-Consortium Large Earth Finder (G-CLEF) is an optical-band echelle spectrograph that has been selected as the first light instrument for the Giant Magellan Telescope (GMT). G-CLEF is a general-purpose, high dispersion spectrograph that is fiber fed and capable of extremely precise radial velocity measurements. The G-CLEF Concept Design (CoD) was selected in Spring 2013. Since then, G-CLEF has undergone science requirements and instrument requirements reviews and will be the subject of a preliminary design review (PDR) in March 2015. Since CoD review (CoDR), the overall G-CLEF design has evolved significantly as we have optimized the constituent designs of the major subsystems, i.e. the fiber system, the telescope interface, the calibration system and the spectrograph itself. These modifications have been made to enhance G-CLEF's capability to address frontier science problems, as well as to respond to the evolution of the GMT itself and developments in the technical landscape. G-CLEF has been designed by applying rigorous systems engineering methodology to flow Level 1 Scientific Objectives to Level 2 Observational Requirements and thence to Level 3 and Level 4. The rigorous systems approach applied to G-CLEF establishes a well defined science requirements framework for the engineering design. By adopting this formalism, we may flexibly update and analyze the capability of G-CLEF to respond to new scientific discoveries as we move toward first light. G-CLEF will exploit numerous technological advances and features of the GMT itself to deliver an efficient, high performance instrument, e.g. exploiting the adaptive optics secondary system to increase both throughput and radial velocity measurement precision.
Automatic performance budget: towards a risk reduction
NASA Astrophysics Data System (ADS)
Laporte, Philippe; Blake, Simon; Schmoll, Jürgen; Rulten, Cameron; Savoie, Denis
2014-08-01
In this paper, we discuss the performance matrix of the SST-GATE telescope developed to allow us to partition and allocate the important characteristics to the various subsystems as well as to describe the process in order to verify that the current design will deliver the required performance. Due to the integrated nature of the telescope, a large number of parameters have to be controlled and effective calculation tools must be developed such as an automatic performance budget. Its main advantages consist in alleviating the work of the system engineer when changes occur in the design, in avoiding errors during any re-allocation process and recalculate automatically the scientific performance of the instrument. We explain in this paper the method to convert the ensquared energy (EE) and the signal-to-noise ratio (SNR) required by the science cases into the "as designed" instrument. To ensure successful design, integration and verification of the next generation instruments, it is of the utmost importance to have methods to control and manage the instrument's critical performance characteristics at its very early design steps to limit technical and cost risks in the project development. Such a performance budget is a tool towards this goal.
NASA Technical Reports Server (NTRS)
1990-01-01
It is the goal of mankind to eventually visit Mars. It would be valuable to gain scientific information about the planet. The Multiple Integrated Microspacecraft Exploration System (MIMES) is designed for that very purpose. The MIMES mission will send to Mars a spacecraft carrying five probes, each of which will decend to the Martian surface to engage in scientific experiments. There will be two types of probes, a penetrator that will embed itself in the Martian surface, and a soft lander. The probes will transmit scientific data to the carrier spacecraft, which will relay the information to Earth. Information is given on mission instrumentation and operations.
Exoplanetary Science: Instrumentation, Observations, and Expectations
NASA Technical Reports Server (NTRS)
McElwain, Michael
2011-01-01
More than 700 exoplanets have been discovered and studied using indirect techniques, leading our field into the exciting new era of comparative exoplanetology. However, the direct detection of exoplanetary systems still remains at the sensitivity limits of both ground- and space-based observatories. The development of new technologies for adaptive optics systems and high contrast instruments continues to increase the ability to directly study exoplanets. The scientific impact of these developments has promising prospects for both short and long timescales. In my talk, I will discuss recent highlights from the SEEDS survey and the current instrumentation in use at the Subaru telescope. SEEDS is a high contrast imaging strategic observing program with 120 nights of time allocated at the NAOJ's flagship optical and infrared telescope. I will also describe new instrumentation I designed to improve the SEEDS capabilities and efficiency. Finally, I will briefly discuss the conceptual design of a transiting planet camera to fly as a potential second generation instrument on-board NASA's SOFIA observatory.
NASA Astrophysics Data System (ADS)
Pérez-López, F.; Vallejo, J. C.; Martínez, S.; Ortiz, I.; Macfarlane, A.; Osuna, P.; Gill, R.; Casale, M.
2015-09-01
BepiColombo is an interdisciplinary ESA mission to explore the planet Mercury in cooperation with JAXA. The mission consists of two separate orbiters: ESA's Mercury Planetary Orbiter (MPO) and JAXA's Mercury Magnetospheric Orbiter (MMO), which are dedicated to the detailed study of the planet and its magnetosphere. The MPO scientific payload comprises eleven instruments packages covering different disciplines developed by several European teams. This paper describes the design and development approach of the framework required to support the operation of the distributed BepiColombo MPO instruments pipelines, developed and operated from different locations, but designed as a single entity. An architecture based on primary-redundant configuration, fully integrated into the BepiColombo Science Operations Control System (BSCS), has been selected, where some instrument pipelines will be operated from the instrument team's data processing centres, having a pipeline replica that can be run from the Science Ground Segment (SGS), while others will be executed as primary pipelines from the SGS, adopting the SGS the pipeline orchestration role.
A multi-sensor oceanographic measurement system for coastal environments
Martini, Marinna A.; Strahle, William J.
1993-01-01
An instrument system has been developed for long-term sediment transport studies that uses a modular design to combine off the shelf components into a complete and flexible package. A common data storage format is used in each instrument system so that the same hardware can be assembled in different ways to address specific scientific studies with minimal engineering support and modification. Three systems have been constructed and successfully deployed to date in two different coastal environments.
HFI Bolometer Detectors Programmatic CDR
NASA Technical Reports Server (NTRS)
Lange, Andrew E.
2002-01-01
Programmatic Critical Design Review (CDR) of the High Frequency Instrument (HFI) Bolometer Detector on the Planck Surveyor is presented. The topics include: 1) Scientific Requirements and Goals; 2) Silicon Nitride Micromesh 'Spider-Web' Bolometers; 3) Sub-Orbital Heritage: BOOMERANG; 4) Noise stability demonstrated in BOOMERANG; 5) Instrument Partners; 6) Bolometer Environment on Planck/HFI; 7) Bolometer Modules; and 8) Mechanical Interface. Also included are the status of the receivables and delivery plans with Europe. This paper is presented in viewgraph form.
NASA Astrophysics Data System (ADS)
Schwichow, Martin; Christoph, Simon; Boone, William J.; Härtig, Hendrik
2016-01-01
The so-called control-of-variables strategy (CVS) incorporates the important scientific reasoning skills of designing controlled experiments and interpreting experimental outcomes. As CVS is a prominent component of science standards appropriate assessment instruments are required to measure these scientific reasoning skills and to evaluate the impact of instruction on CVS development. A detailed review of existing CVS instruments suggests that they utilize different, and only a few of the four, critical CVS sub-skills in the item development. This study presents a new CVS assessment instrument (CVS Inventory, CVSI) and investigates the validity of student measures derived from this instrument utilizing Rasch analyses. The results indicate that the CVSI produces reliable and valid student measures with regard to CVS. Furthermore, the results show that the item difficulty depends on the CVS sub-skills utilized in item development, but not on the item content. Accordingly, previous instruments that are restricted to a few CVS sub-skills tend to over- or underestimate students' CVS skills. In addition, these results indicate that students are able to use CVS as a domain general strategy in multiple content areas. Consequences for science instruction and assessment are discussed.
The acoustics of the violin: a review
NASA Astrophysics Data System (ADS)
Woodhouse, Jim
2014-11-01
To understand the design and function of the violin requires investigation of a range of scientific questions. This paper presents a review: the relevant physics covers the nonlinear vibration of a bowed string, the vibration of the instrument body, and the consequent sound radiation. Questions of discrimination and preference by listeners and players require additional studies using the techniques of experimental psychology, and these are also touched on in the paper. To address the concerns of players and makers of instruments requires study of the interaction of all these factors, coming together in the concept of ‘playability’ of an instrument.
NASA Technical Reports Server (NTRS)
Rust, David M.
1987-01-01
The Solar Maximum Mission (SMM), designed to study the solar activity, was launched on February 14, 1980, just before the 1980 peak of sunspot and flare activity. The seven instruments aboard the SMM, information received by each of the instruments, and the performance of these instruments are described, together with the repair mission carried out to replace the attitude control module and the defective electronics in the satellite's observatory. The highlights of the scientific results obtained by the SMM mission and the new discoveries made are discussed, with special attention given to the flare loops, flare loop interactions, and the mass ejection events recorded.
Yu, Lei
2016-08-20
The design, manufacturing, and testing of an imaging spectrometer prototype that will address new scientific requirements by the observation of the lower atmosphere's impact on the ionosphere are presented. The two sided lateral limb observation covering 130-180 nm far-ultraviolet (FUV) region allows the instrument to perform particle measurements in the daytime and nighttime. In this paper, we focus upon the working design principle, observation, and calibration.
Design of a grazing incidence EUV imaging spectrometer for the solar orbiter ESA mission
NASA Astrophysics Data System (ADS)
Da Deppo, Vania; Poletto, Luca
2017-11-01
The paper describes the optical design and performance of an extreme-ultraviolet (EUV) spectrometer for imaging spectroscopy to be part of the scientific payload of the Solar Orbiter (SOLO) mission. The main scientific objectives are to study the solar polar region and observe in detail the evolution of corona structures from a favourable point of view at only 45 solar radii from the Sun (0.2 AU). The instrument concept is based on a grazing incidence telescope, (1200 m focal length, 18 arcmin x 18 arcmin FoV), in Wolter configuration couple to a normalincidence VLS grating spectrometer, which preserve the stigmaticity in an extended spectral region and in the whole field-of-view. The spectral range covered by the instrument is the 116-126 nm region at the first order and the 57-63 nm region at the second order. The spectral resolving element is 65 mÅ (I order), corresponding to a velocity resolution of 16 km/s.
Science with ESO's Multi-conjugate Adaptive-optics Demonstrator - MAD
NASA Astrophysics Data System (ADS)
Melnick, Jorge; Marchetti, Enrico; Amico, Paola
2012-07-01
ESO's Multi-conjugate Adaptive-optics Demonstrator (MAD) was a prototype designed and built to demonstrate wide-field adaptive optics science on large telescopes. The outstanding results obtained during commissioning and guaranteed time observations (GTO) prompted ESO to issue and open call to the community for 23 science demonstration (SD) observing nights distributed in three runs (in order to provide access to the summer an winter skies). Thus, in total MAD was used for science for 33 nights including the 10 nights of GTO time. date, 19 articles in refereed journals (including one in Nature) have been published based fully or partially o MAD data. To the best of our knowledge, these are not only the first, but also the only scientific publication from MCAO instruments world-wide to date (at least in Astronomy). The scientific impact of these publication, as measured by the h-index, is comparable to that of other AO instruments on the VLT, although over the years these instruments have been allocated many more nights than MAD. In this contribution we present an overview of the scientific results from MAD and a more detailed discussion of the most cited papers.
Earth Observing System (EOS) advanced altimetry
NASA Technical Reports Server (NTRS)
Parsons, C. L.; Walsh, E. J.
1988-01-01
In the post-TOPEX era, satellite radar altimeters will be developed with the capability of measuring the earth's surface topography over a wide swath of coverage, rather than just at the satellite's nadir. The identification of potential spacecraft flight missions in the future was studied. The best opportunity was found to be the Earth Observing System (EOS). It is felt that an instrument system that has a broad appeal to the earth sciences community stands a much better chance of being selected as an EOS instrument. Consequently, the Topography and Rain Radar Imager (TARRI) will be proposed as a system that has the capability to profile the Earth's topography regardless of the surface type. The horizontal and height resolutions of interest are obviously significantly different over land, ice, and water; but, the use of radar to provide an all-weather observation capability is applicable to the whole earth. The scientific guidance for the design and development of this instrument and the eventual scientific utilization of the data produced by the TARRI will be provided by seven science teams. The teams are formed around scientific disciplines and are titled: Geology/Geophysics, Hydrology/Rain, Oceanography, Ice/Snow, Geodesy/Orbit/Attitude, Cartography, and Surface Properties/Techniques.
View of Scientific Instrument Module to be flown on Apollo 15
NASA Technical Reports Server (NTRS)
1971-01-01
Close-up view of the Scientific Instrument Module (SIM) to be flown for the first time on the Apollo 15 mission. Mounted in a previously vacant sector of the Apollo Service Module, the SIM carries specialized cameras and instrumentation for gathering lunar orbit scientific data.
NASA Astrophysics Data System (ADS)
George, L. A.; Parra, J.; Rao, M.; Offerman, L.
2007-12-01
Research experiences for science teachers are an important mechanism for increasing classroom teachers' science content knowledge and facility with "real world" research processes. We have developed and implemented a summer scientific research and education workshop model for high school teachers and students which promotes classroom science inquiry projects and produces important research results supporting our overarching scientific agenda. The summer training includes development of a scientific research framework, design and implementation of preliminary studies, extensive field research and training in and access to instruments, measurement techniques and statistical tools. The development and writing of scientific papers is used to reinforce the scientific research process. Using these skills, participants collaborate with scientists to produce research quality data and analysis. Following the summer experience, teachers report increased incorporation of research inquiry in their classrooms and student participation in science fair projects. This workshop format was developed for an NSF Biocomplexity Research program focused on the interaction of urban climates, air quality and human response and can be easily adapted for other scientific research projects.
SCIFIO: an extensible framework to support scientific image formats.
Hiner, Mark C; Rueden, Curtis T; Eliceiri, Kevin W
2016-12-07
No gold standard exists in the world of scientific image acquisition; a proliferation of instruments each with its own proprietary data format has made out-of-the-box sharing of that data nearly impossible. In the field of light microscopy, the Bio-Formats library was designed to translate such proprietary data formats to a common, open-source schema, enabling sharing and reproduction of scientific results. While Bio-Formats has proved successful for microscopy images, the greater scientific community was lacking a domain-independent framework for format translation. SCIFIO (SCientific Image Format Input and Output) is presented as a freely available, open-source library unifying the mechanisms of reading and writing image data. The core of SCIFIO is its modular definition of formats, the design of which clearly outlines the components of image I/O to encourage extensibility, facilitated by the dynamic discovery of the SciJava plugin framework. SCIFIO is structured to support coexistence of multiple domain-specific open exchange formats, such as Bio-Formats' OME-TIFF, within a unified environment. SCIFIO is a freely available software library developed to standardize the process of reading and writing scientific image formats.
Guidelines for the Design and Conduct of Clinical Studies in Knee Articular Cartilage Repair
Mithoefer, Kai; Saris, Daniel B.F.; Farr, Jack; Kon, Elizaveta; Zaslav, Kenneth; Cole, Brian J.; Ranstam, Jonas; Yao, Jian; Shive, Matthew; Levine, David; Dalemans, Wilfried; Brittberg, Mats
2011-01-01
Objective: To summarize current clinical research practice and develop methodological standards for objective scientific evaluation of knee cartilage repair procedures and products. Design: A comprehensive literature review was performed of high-level original studies providing information relevant for the design of clinical studies on articular cartilage repair in the knee. Analysis of cartilage repair publications and synopses of ongoing trials were used to identify important criteria for the design, reporting, and interpretation of studies in this field. Results: Current literature reflects the methodological limitations of the scientific evidence available for articular cartilage repair. However, clinical trial databases of ongoing trials document a trend suggesting improved study designs and clinical evaluation methodology. Based on the current scientific information and standards of clinical care, detailed methodological recommendations were developed for the statistical study design, patient recruitment, control group considerations, study endpoint definition, documentation of results, use of validated patient-reported outcome instruments, and inclusion and exclusion criteria for the design and conduct of scientifically sound cartilage repair study protocols. A consensus statement among the International Cartilage Repair Society (ICRS) and contributing authors experienced in clinical trial design and implementation was achieved. Conclusions: High-quality clinical research methodology is critical for the optimal evaluation of current and new cartilage repair technologies. In addition to generally applicable principles for orthopedic study design, specific criteria and considerations apply to cartilage repair studies. Systematic application of these criteria and considerations can facilitate study designs that are scientifically rigorous, ethical, practical, and appropriate for the question(s) being addressed in any given cartilage repair research project. PMID:26069574
The scientific data acquisition system of the GAMMA-400 space project
NASA Astrophysics Data System (ADS)
Bobkov, S. G.; Serdin, O. V.; Gorbunov, M. S.; Arkhangelskiy, A. I.; Topchiev, N. P.
2016-02-01
The description of scientific data acquisition system (SDAS) designed by SRISA for the GAMMA-400 space project is presented. We consider the problem of different level electronics unification: the set of reliable fault-tolerant integrated circuits fabricated on Silicon-on-Insulator 0.25 mkm CMOS technology and the high-speed interfaces and reliable modules used in the space instruments. The characteristics of reliable fault-tolerant very large scale integration (VLSI) technology designed by SRISA for the developing of computation systems for space applications are considered. The scalable net structure of SDAS based on Serial RapidIO interface including real-time operating system BAGET is described too.
1969-12-01
The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, served as the primary scientific instrument unit aboard the Skylab. The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This image shows the ATM spar assembly. All solar telescopes, the fine Sun sensors, and some auxiliary systems are mounted on the spar, a cruciform lightweight perforated metal mounting panel that divides the 10-foot long canister lengthwise into four equal compartments. The spar assembly was nested inside a cylindrical canister that fit into the rack, a complex frame, and was protected by the solar shield.
Two Undergraduate Projects for Data Acquisition and Control
NASA Astrophysics Data System (ADS)
Hiersche, Kelly; Pena, Tara; Grogan, Tanner; Wright, Matthew
We are designing two separate instruments for use in our undergraduate laboratory. In the first project, a Raspberry Pi is used to simultaneously monitor a large number of current and voltage readings and store them in a database. In our second project, we are constructing our own microcontrollers to work as a general-purpose interface based off work carried out in Review of Scientific Instruments 84, 103101 (2013). It was designed for low cost and simple construction, making it ideal for undergraduate level work. This circuit has room for two interchangeable daughter boards, giving it the capability to work as a general lab interface, lock-in detector, or waveform generator.
Guide to Scientific Instruments
ERIC Educational Resources Information Center
Sommer, Richard G.; Scherago, Earl J.
1977-01-01
Provides a list of scientific laboratory instruments and equipment and the names and addresses of their manufacturers. Instruments appear in alphabetical order with the names of manufactures listed below each. (SL)
Galileo: Exploration of Jupiter's system
NASA Technical Reports Server (NTRS)
Johnson, T. V.; Yeates, C. M.; Colin, L.; Fanale, F. P.; Frank, L.; Hunten, D. M.
1985-01-01
The scientific objectives of the Galileo mission to the Jovian system is presented. Topics discussed include the history of the project, our current knowledge of the system, the objectives of interrelated experiments, mission design, spacecraft, and instruments. The management, scientists, and major contractors for the project are also given.
View of model of Scientific Instrument Module to be flown on Apollo 15
NASA Technical Reports Server (NTRS)
1970-01-01
Close-up view of a scale model of the Scientific Instrument Module (SIM) to be flown for the first time on the Apollo 15 mission. Mounted in a previously vacant sector of the Apollo service module, the SIM carries specialized cameras and instrumentation for gathering lunar orbit scientific data.
Microsensors and Microinstruments for Space Science and Exploration
NASA Technical Reports Server (NTRS)
Kukkonen, C. A.; Venneri, S.
1997-01-01
Most future NASA spacecraft will be small, low cost, highly integrated vehicles using advanced technology. This will also be true of planetary rovers. In order to maintain a high scientific value to these missions, the instruments, sensors and subsystems must be dramatically miniaturized without compromising their measurement capabilities. A rover must be designed to deliver its science package. In fact, the rover should be considered as the arms, legs and/or wheels that are needed to enable a mobile integrated scientific payload.
Spacelab: An international short-stay orbiting laboratory
NASA Technical Reports Server (NTRS)
Froehlich, W.
1983-01-01
Spacelab was planned and constructed to serve as a suitable host for significant scientific research and technological development. As intended by its European builders and by its American operators, this new facility will serve scientists from many nations and in many scientific disciplines and technological specialties. Spacelab is the outgrowth of steady evolution of space technology. It enables scientists and engineers to go into space for in-orbit research with their own hands and eye-with instruments they have designed and built.
Modular Seafloor and Water Column Systems for the Ocean Observatories Initiative Cabled Array
NASA Astrophysics Data System (ADS)
Delaney, J. R.; Manalang, D.; Harrington, M.; Tilley, J.; Dosher, J.; Cram, G.; Harkins, G.; McGuire, C.; Waite, P.; McRae, E.; McGinnis, T.; Kenney, M.; Siani, C.; Michel-Hart, N.; Denny, S.; Boget, E.; Kawka, O. E.; Daly, K. L.; Luther, D. S.; Kelley, D. S.; Milcic, M.
2016-02-01
Over the past decade, cabled ocean observatories have become an increasingly important way to collect continuous real-time data at remote subsea locations. This has led to the development of a class of subsea systems designed and built specifically to distribute power and bandwidth among sensing instrumentation on the seafloor and throughout the water column. Such systems are typically powered by shore-based infrastructure and involve networks of fiber optic and electrical cabling that provide real-time data access and control of remotely deployed instrumentation. Several subsea node types were developed and/or adapted for cabled use in order to complete the installation of the largest North American scientific cabled observatory in Oct, 2014. The Ocean Observatories Initiative (OOI) Cabled Array, funded by the US National Science Foundation, consists of a core infrastructure that includes 900 km of fiber optic/electrical cables, seven primary nodes, 18 seafloor junction boxes, three mooring-mounted winched profiling systems, and three wire-crawling profiler systems. In aggregate, the installed infrastructure has 200 dedicated scientific instrument ports (of which 120 are currently assigned), and is capable of further expansion. The installed system has a 25-year design life for reliable, sustained monitoring; and all nodes, profilers and instrument packages are ROV-serviceable. Now in it's second year of operation, the systems that comprise the Cabled Array are providing reliable, 24/7 real-time data collection from deployed instrumentation, and offer a modular and scalable class of subsea systems for ocean observing. This presentation will provide an overview of the observatory-class subsystems of the OOI Cabled Array, focusing on the junction boxes, moorings and profilers that power and communicate with deployed instrumentation.
NASA Technical Reports Server (NTRS)
Neupert, W. M.
1978-01-01
A scientific investigation of heating and mass transport in the solar corona that is currently planned for a future Shuttle/Spacelab flight is outlined. The instrument to be used is a near-normal incidence grating spectrograph fed by a grazing incidence Wolter Type 2 telescope. A toroidal grating design provides stigmatic images of the corona up to 8 arc min in extent over the spectral region from 225 A to 370 A. Spatial resolution of at least 2 arc sec and spectral resolution of 0.050 A is achievable throughout the central 4 arc min field or view. Primary scientific data are recorded on Schumann-type film. An H-alpha slit jaw monitor and zero order extreme ultraviolet monitor are also planned to support instrument operation.
ERIC Educational Resources Information Center
Cacioppo, John T.; Semin, Gun R.; Berntson, Gary G.
2004-01-01
Scientific realism holds that scientific theories are approximations of universal truths about reality, whereas scientific instrumentalism posits that scientific theories are intellectual structures that provide adequate predictions of what is observed and useful frameworks for answering questions and solving problems in a given domain. These…
2006-07-12
fluxgate magnetometer for the AFRL-DSX mission. The instrument is designed to measure the medium-Earth orbit geomagnetic field with precision of 0.1 nT and...which is essential to fulfill the two primary goals of the DSX science program. 1.1. Scientific Rationale: Ring Current and The fluxgate magnetometer ...UCLA’s ments and the Radiation Belt Remediation primary motivation in providing fluxgate requirements. The magnetic field is necessary magnetometers for
NASA Astrophysics Data System (ADS)
Federer, Meghan Rector
Assessment is a key element in the process of science education teaching and research. Understanding sources of performance bias in science assessment is a major challenge for science education reforms. Prior research has documented several limitations of instrument types on the measurement of students' scientific knowledge (Liu et al., 2011; Messick, 1995; Popham, 2010). Furthermore, a large body of work has been devoted to reducing assessment biases that distort inferences about students' science understanding, particularly in multiple-choice [MC] instruments. Despite the above documented biases, much has yet to be determined for constructed response [CR] assessments in biology and their use for evaluating students' conceptual understanding of scientific practices (such as explanation). Understanding differences in science achievement provides important insights into whether science curricula and/or assessments are valid representations of student abilities. Using the integrative framework put forth by the National Research Council (2012), this dissertation aimed to explore whether assessment biases occur for assessment practices intended to measure students' conceptual understanding and proficiency in scientific practices. Using a large corpus of undergraduate biology students' explanations, three studies were conducted to examine whether known biases of MC instruments were also apparent in a CR instrument designed to assess students' explanatory practice and understanding of evolutionary change (ACORNS: Assessment of COntextual Reasoning about Natural Selection). The first study investigated the challenge of interpreting and scoring lexically ambiguous language in CR answers. The incorporation of 'multivalent' terms into scientific discourse practices often results in statements or explanations that are difficult to interpret and can produce faulty inferences about student knowledge. The results of this study indicate that many undergraduate biology majors frequently incorporate multivalent concepts into explanations of change, resulting in explanatory practices that were scientifically non-normative. However, use of follow-up question approaches was found to resolve this source of bias and thereby increase the validity of inferences about student understanding. The second study focused on issues of item and instrument structure, specifically item feature effects and item position effects, which have been shown to influence measures of student performance across assessment tasks. Results indicated that, along the instrument item sequence, items with similar surface features produced greater sequencing effects than sequences of items with dissimilar surface features. This bias could be addressed by use of a counterbalanced design (i.e., Latin Square) at the population level of analysis. Explanation scores were also highly correlated with student verbosity, despite verbosity being an intrinsically trivial aspect of explanation quality. Attempting to standardize student response length was one proposed solution to the verbosity bias. The third study explored gender differences in students' performance on constructed-response explanation tasks using impact (i.e., mean raw scores) and differential item function (i.e., item difficulties) patterns. While prior research in science education has suggested that females tend to perform better on constructed-response items, the results of this study revealed no overall differences in gender achievement. However, evaluation of specific item features patterns suggested that female respondents have a slight advantage on unfamiliar explanation tasks. That is, male students tended to incorporate fewer scientifically normative concepts (i.e., key concepts) than females for unfamiliar taxa. Conversely, females tended to incorporate more scientifically non-normative ideas (i.e., naive ideas) than males for familiar taxa. Together these results indicate that gender achievement differences for this CR instrument may be a result of differences in how males and females interpret and respond to combinations of item features. Overall, the results presented in the subsequent chapters suggest that as science education shifts toward the evaluation of fused scientific knowledge and practice (e.g., explanation), it is essential that educators and researchers investigate potential sources of bias inherent to specific assessment practices. This dissertation revealed significant sources of CR assessment bias, and provided solutions to address these problems.
Vanguard - a proposed European astrobiology experiment on Mars
NASA Astrophysics Data System (ADS)
Ellery, A. A.; Cockell, C. S.; Edwards, H. G. M.; Dickensheets, D. L.; Welch, C. S.
2002-07-01
We propose a new type of robotic mission for the exploration of Mars. This mission is called Vanguard and represents the fruits of a collaboration that is both international and multi-disciplinary. Vanguard is designed for sub-surface penetration and investigation using remote instruments and unlike previous robotic architectures it offers the opportunity for multiple subsurface site analysis using three moles. The moles increase the probability that a subsurface signature of life can be found and by accomplishing subsurface analysis across a transect, the statistical rigour of Martian scientific exploration would be improved. There is no provision for returning samples to the surface for analysis by a gas-chromatograph/mass-spectrometer (GCMS) this minimizes the complexity invoked by sophisticated robotic overheads. The primary scientific instruments to be deployed are the Raman spectrometer, infrared spectrometer and laser-induced breakdown spectroscope the Raman spectrometer in particular is discussed. We concentrate primarily on the scientific rationale for the Vanguard mission proposal. The Vanguard mission proposal represents a logical opportunity for extending European robotic missions to Mars.
NASA Astrophysics Data System (ADS)
García-Lorenzo, B.; HARMONI Consortium
2015-05-01
HARMONI is the visible and near infrared integral field spectrograph (IFS) selected as a first-light instrument for the European Extremely Large Telescope (E-ELT). With four spatial scales and a range of spectral resolving powers, astronomers will optimally configure the instrument to overtake a wide range of scientific programs and to address many of the E-ELT science cases. The Centro de Astrobiología del CSIC/INTA (CAB-CSIC) and the Instituto de Astrofísica de Canarias (IAC) form part of the international consortium developing HARMONI, participation that will constitute an unique scientific opportunity for the Spanish astronomical community, allowing the access to the E-ELT as soon as it were operative via the guaranteed time. We describe here the instrument and its capabilities with special attention to the Spanish contribution to HARMONI. At the current stage of the project, HARMONI design is being revised due to significant modifications of the Nasmyth platform affecting the interface with HARMONI.
AMF3 ARM's Research Facility at Oliktok Point Alaska
NASA Astrophysics Data System (ADS)
Helsel, F.; Lucero, D. A.; Ivey, M.; Dexheimer, D.; Hardesty, J.; Roesler, E. L.
2015-12-01
Scientific Infrastructure To Support Atmospheric Science And Aerosol Science For The Department Of Energy's Atmospheric Radiation Measurement Programs Mobile Facility 3 Located At Oliktok Point, Alaska.The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility 3 (AMF3) located at Oliktok Point, Alaska is a U.S. Department of Energy (DOE) site. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Oliktok is designed to be mobile and it may be relocated in the future to support other ARM science missions. AMF-3 instruments include: scanning precipitation Radar-cloud radar, Raman Lidar, Eddy correlation flux systems, Ceilometer, Balloon sounding system, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar along with all the standard metrological measurements. Data from these instruments is placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at AMF3 and the challenges of powering an Arctic site without the use of grid power.
NASA Astrophysics Data System (ADS)
Garcia-Belmonte, Germà
2017-06-01
Spatial visualization is a well-established topic of education research that has allowed improving science and engineering students' skills on spatial relations. Connections have been established between visualization as a comprehension tool and instruction in several scientific fields. Learning about dynamic processes mainly relies upon static spatial representations or images. Visualization of time is inherently problematic because time can be conceptualized in terms of two opposite conceptual metaphors based on spatial relations as inferred from conventional linguistic patterns. The situation is particularly demanding when time-varying signals are recorded using displaying electronic instruments, and the image should be properly interpreted. This work deals with the interplay between linguistic metaphors, visual thinking and scientific instrument mediation in the process of interpreting time-varying signals displayed by electronic instruments. The analysis draws on a simplified version of a communication system as example of practical signal recording and image visualization in a physics and engineering laboratory experience. Instrumentation delivers meaningful signal representations because it is designed to incorporate a specific and culturally favored time view. It is suggested that difficulties in interpreting time-varying signals are linked with the existing dual perception of conflicting time metaphors. The activation of specific space-time conceptual mapping might allow for a proper signal interpretation. Instruments play then a central role as visualization mediators by yielding an image that matches specific perception abilities and practical purposes. Here I have identified two ways of understanding time as used in different trajectories through which students are located. Interestingly specific displaying instruments belonging to different cultural traditions incorporate contrasting time views. One of them sees time in terms of a dynamic metaphor consisting of a static observer looking at passing events. This is a general and widespread practice common in the contemporary mass culture, which lies behind the process of making sense to moving images usually visualized by means of movie shots. In contrast scientific culture favored another way of time conceptualization (static time metaphor) that historically fostered the construction of graphs and the incorporation of time-dependent functions, as represented on the Cartesian plane, into displaying instruments. Both types of cultures, scientific and mass, are considered highly technological in the sense that complex instruments, apparatus or machines participate in their visual practices.
Science in the Wild: Technology Needs and Opportunities in Scientific Fieldwork
NASA Technical Reports Server (NTRS)
Guice, Jon; Hoffower, Heidi; Norvig, Peter (Technical Monitor)
1999-01-01
Considering that much contemporary natural science involves field expeditions, fieldwork is an under-studied topic. There is also little information technology specifically designed to support scientific fieldwork, aside from portable scientific instruments. This article describes a variety of fieldwork practices in an interdisciplinary research area, proposes a framework linking types of fieldwork to types of needs in information technology, and identifies promising opportunities for technology development. Technologies that are designed to support the integration of field observations and samples with laboratory work are likely to aid nearly all research teams who conduct fieldwork. However, technologies that support highly detailed representations of field sites will likely trigger the deepest changes in work practice. By way of illustration, we present brief case studies of how fieldwork is done today and how it might be conducted with the introduction of new information technologies.
Durham, Mary F; Knight, Jennifer K; Couch, Brian A
2017-01-01
The Scientific Teaching (ST) pedagogical framework provides various approaches for science instructors to teach in a way that more closely emulates how science is practiced by actively and inclusively engaging students in their own learning and by making instructional decisions based on student performance data. Fully understanding the impact of ST requires having mechanisms to quantify its implementation. While many useful instruments exist to document teaching practices, these instruments only partially align with the range of practices specified by ST, as described in a recently published taxonomy. Here, we describe the development, validation, and implementation of the Measurement Instrument for Scientific Teaching (MIST), a survey derived from the ST taxonomy and designed to gauge the frequencies of ST practices in undergraduate science courses. MIST showed acceptable validity and reliability based on results from 7767 students in 87 courses at nine institutions. We used factor analyses to identify eight subcategories of ST practices and used these categories to develop a short version of the instrument amenable to joint administration with other research instruments. We further discuss how MIST can be used by instructors, departments, researchers, and professional development programs to quantify and track changes in ST practices. © 2017 M. F. Durham et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
ISEE/ICE plasma wave data analysis
NASA Technical Reports Server (NTRS)
Greenstadt, E. W.
1989-01-01
The work performed for the period 1 Jan. 1985 to 30 Oct. 1989 is presented. The objective was to provide reduction and analysis of data from a scientific instrument designed to study solar wind and plasma wave phenomena on the International Sun Earth Explorer 3 (ISEE-3)/International Cometary Explorer (ICE) missions.
The profile of high school students’ scientific literacy on fluid dynamics
NASA Astrophysics Data System (ADS)
Parno; Yuliati, L.; Munfaridah, N.
2018-05-01
This study aims to describe the profile of scientific literacy of high school students on Fluid Dynamics materials. Scientific literacy is one of the ability to solve daily problems in accordance with the context of materials related to science and technology. The study was conducted on 90 high school students in Sumbawa using survey design. Data were collected using an instrument of scientific literacy for high school students on dynamic fluid materials. Data analysis was conducted descriptively to determine the students’ profile of scientific literacy. The results showed that high school students’ scientific literacy on Fluid Dynamics materials was in the low category. The highest average is obtained on indicators of scientific literacy i.e. the ability to interpret data and scientific evidence. The ability of scientific literacy is related to the mastery of concepts and learning experienced by students, therefore it is necessary to use learning that can trace this ability such as Science, Technology, Engineering, and Mathematics (STEM).
Fast Imaging Solar Spectrograph System in New Solar Telescope
NASA Astrophysics Data System (ADS)
Park, Y.-D.; Kim, Y. H.; Chae, J.; Goode, P. R.; Cho, K. S.; Park, H. M.; Nah, J. K.; Jang, B. H.
2010-12-01
In 2004, Big Bear Solar Observatory in California, USA launched a project for construction of the world's largest aperture solar telescope (D = 1.6m) called New Solar Telescope(NST). University of Hawaii (UH) and Korea Astronomy and Space Science Institute(KASI) partly collaborate on the project. NST is a designed off-axis parabolic Gregorian reflector with very high spatial resolution(0.07 arcsec at 5000A) and is equipped with several scientific instruments such as Visible Imaging Magnetograph (VIM), InfraRed Imaging Magnetograph IRIM), and so on. Since these scientific instruments are focused on studies of the solar photosphere, we need a post-focus instrument for the NST to study the fine structures and dynamic patterns of the solar chromosphere and low Transition Region (TR) layer, including filaments/prominences, spicules, jets, micro flares, etc. For this reason, we developed and installed a fast imaging solar spectrograph(FISS) system on the NST withadvantages of achieving compact design with high spectral resolution and small aberration as well as recording many solar spectral lines in a single and/or dual band mode. FISS was installed in May, 2010 and now we carry out a test observation. In this talk, we introduce the FISS system and the results of the test observation after FISS installation.
NASA Astrophysics Data System (ADS)
Butler, Bryan J.; van Moorsel, Gustaaf; Tody, Doug
2004-09-01
The Expanded Very Large Array (EVLA) project is the next generation instrument for high resolution long-millimeter to short-meter wavelength radio astronomy. It is currently funded by NSF, with completion scheduled for 2012. The EVLA will upgrade the VLA with new feeds, receivers, data transmission hardware, correlator, and a new software system to enable the instrument to achieve its full potential. This software includes both that required for controlling and monitoring the instrument and that involved with the scientific dataflow. We concentrate here on a portion of the dataflow software, including: proposal preparation, submission, and handling; observation preparation, scheduling, and remote monitoring; data archiving; and data post-processing, including both automated (pipeline) and manual processing. The primary goals of the software are: to maximize the scientific return of the EVLA; provide ease of use, for both novices and experts; exploit commonality amongst all NRAO telescopes where possible. This last point is both a bane and a blessing: we are not at liberty to do whatever we want in the software, but on the other hand we may borrow from other projects (notably ALMA and GBT) where appropriate. The software design methodology includes detailed initial use-cases and requirements from the scientists, intimate interaction between the scientists and the programmers during design and implementation, and a thorough testing and acceptance plan.
Study of a comet rendezvous mission, volume 1
NASA Technical Reports Server (NTRS)
1972-01-01
The feasibility, scientific objectives, modes of exploration and implementation alternatives of a rendezvous mission to Encke's comet in 1984 are considered. Principal emphasis is placed on developing the scientific rationale for such a mission, based on available knowledge and best estimates of this comet's physical characteristics, including current theories of its origin, evolution and composition. Studied are mission profile alternatives, performance tradeoffs, preferred exploration strategy, and a spacecraft design concept capable of performing this mission. The study showed that the major scientific objectives can be met by a Titan IIID/Centaur-launched 17.5 kw solar electric propulsion spacecraft which carries 60 kg of scientific instruments and is capable of extensive maneuvering within the comet envelope to explore the coma, tail and nucleus.
BTDI detector technology for reconnaissance application
NASA Astrophysics Data System (ADS)
Hilbert, Stefan; Eckardt, Andreas; Krutz, David
2017-11-01
The Institute of Optical Sensor Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the institute's scientific results of the leading-edge detector design in a BTDI (Bidirectional Time Delay and Integration) architecture. This project demonstrates an approved technological design for high or multi-spectral resolution spaceborne instruments. DLR OS and BAE Systems were driving the technology of new detectors and the FPA design for future projects, new manufacturing accuracy in order to keep pace with ambitious scientific and user requirements. Resulting from customer requirements and available technologies the current generation of space borne sensor systems is focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large swath and high-spectral resolution with intelligent control applications and new focal plane concepts opens the door to new remote sensing and smart deep space instruments. The paper gives an overview of the detector development and verification program at DLR on detector module level and key parameters like SNR, linearity, spectral response, quantum efficiency, PRNU, DSNU and MTF.
Nimbus/TOMS Science Data Operations Support
NASA Technical Reports Server (NTRS)
Childs, Jeff
1998-01-01
1. Participate in and provide analysis of laboratory and in-flight calibration of UV sensors used for space observations of backscattered UV radiation. 2. Provide support to the TOMS Science Operations Center, including generating instrument command lists and analysis of TOMS health and safety data. 3. Develop and maintain software and algorithms designed to capture and process raw spacecraft and instrument data, convert the instrument output into measured radiance and irradiances, and produce scientifically valid products. 4. Process the TOMS data into Level 1, Level 2, and Level 3 data products. 5. Provide analysis of the science data products in support of NASA GSFC Code 916's research.
Nimbus/TOMS Science Data Operations Support
NASA Technical Reports Server (NTRS)
1998-01-01
Projected goals include the following: (1) Participate in and provide analysis of laboratory and in-flight calibration of LTV sensors used for space observations of backscattered LTV radiation; (2) Provide support to the TOMS Science Operations Center, including generating instrument command lists and analysis of TOMS health and safety data; (3) Develop and maintain software and algorithms designed to capture and process raw spacecraft and instrument data, convert the instrument output into measured radiance and irradiances, and produce scientifically valid products; (4) Process the TOMS data into Level 1, Level 2, and Level 3 data products; (5) Provide analysis of the science data products in support of NASA GSFC Code 916's research.
Large space telescope, phase A. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1972-01-01
The Phase A study of the Large Space Telescope (LST) is reported. The study defines an LST concept based on the broad mission guidelines provided by the Office of Space Science (OSS), the scientific requirements developed by OSS with the scientific community, and an understanding of long range NASA planning current at the time the study was performed. The LST is an unmanned astronomical observatory facility, consisting of an optical telescope assembly (OTA), scientific instrument package (SIP), and a support systems module (SSM). The report consists of five volumes. The report describes the constraints and trade off analyses that were performed to arrive at a reference design for each system and for the overall LST configuration. A low cost design approach was followed in the Phase A study. This resulted in the use of standard spacecraft hardware, the provision for maintenance at the black box level, growth potential in systems designs, and the sharing of shuttle maintenance flights with other payloads.
NASA Technical Reports Server (NTRS)
1974-01-01
The 12 month Phase A Conceptual Design Study of the Atmospheric, Magnetospheric and Plasmas in Space (AMPS) payload performed within the Program Development Directorate of the Marshall Space Flight Center is presented. The AMPS payload makes use of the Spacelab pressurized module and pallet, is launched by the space shuttle, and will have initial flight durations of 7 days. Scientific instruments including particle accelerators, high power transmitters, optical instruments, and chemical release devices are mounted externally on the Spacelab pallet and are controlled by the experimenters from within the pressurized module. The capability of real-time scientist interaction on-orbit with the experiment is a major characteristic of AMPS.
Development of a motorized cryovalve for the control of superfluid liquid helium
NASA Technical Reports Server (NTRS)
Lorell, K. R.; Aubrun, J-N.; Zacharie, D. F.; Frank, D. J.
1988-01-01
Recent advances in the technology of infrared detectors have made possible a wide range of scientific measurements and investigations. One of the requirements for the use of sensitive IR detectors is that the entire instrument be cooled to temperatures approaching absolute zero. The cryogenic cooling system for these instruments is commonly designed as a large dewar containing liquid helium which completely surrounds the apparatus. Thus, there is a need for a remotely controlled, motorized cryovalve that is simple, reliable, and compact and can operate over extended periods of time in cryo-vac conditions. The design, development, and test of a motorized cryovalve with application to a variety of cryogenic systems currently under development is described.
1971-12-01
The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This image depicts the sun end and spar of the ATM flight unit showing individual telescopes. All solar telescopes, the fine Sun sensors, and some auxiliary systems are mounted on the spar, a cruciform lightweight perforated metal mounting panel that divides the canister lengthwise into four equal compartments. The spar assembly was nested inside a cylindrical canister that fit into a complex frame named the rack, and was protected by the solar shield.
75 FR 23669 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-04
... invite comments on the question of whether instruments of equivalent scientific value, for the purposes... biological interactions at the nano scale. Justification for Duty-Free Entry: There are no instruments of the...
ERBE and CERES broadband scanning radiometers
NASA Technical Reports Server (NTRS)
Weaver, William L.; Cooper, John E.
1990-01-01
Broadband scanning radiometers have been used extensively on earth-orbiting satellites to measure the Earth's outgoing radiation. The resulting estimates of longwave and shortwave fluxes have played an important role in helping to understand the Earth's radiant energy balance or budget. The Clouds and the Earth Radiant Energy System (CERES) experiment is expected to include instruments with three broadband scanning radiometers. The design of the CERES instrument will draw heavily from the flight-proven Earth Radiation Budget Experiment (ERBE) scanner instrument technology and will benefit from the several years of ERBE experience in mission operations and data processing. The discussion starts with a description of the scientific objectives of ERBE and CERES. The design and operational characteristics of the ERBE and CERES instrument are compared and the two ground-based data processing systems are compared. Finally, aspects of the CERES data processing which might be performed in near real-time aboard a spacecraft platform are discussed, and the types of algorithms and input data requirements for the onboard processing system are identified.
WFIRST: Data/Instrument Simulation Support at IPAC
NASA Astrophysics Data System (ADS)
Laine, Seppo; Akeson, Rachel; Armus, Lee; Bennett, Lee; Colbert, James; Helou, George; Kirkpatrick, J. Davy; Meshkat, Tiffany; Paladini, Roberta; Ramirez, Solange; Wang, Yun; Xie, Joan; Yan, Lin
2018-01-01
As part of WFIRST Science Center preparations, the IPAC Science Operations Center (ISOC) maintains a repository of 1) WFIRST data and instrument simulations, 2) tools to facilitate scientific performance and feasibility studies using the WFIRST, and 3) parameters summarizing the current design and predicted performance of the WFIRST telescope and instruments. The simulation repository provides access for the science community to simulation code, tools, and resulting analyses. Examples of simulation code with ISOC-built web-based interfaces include EXOSIMS (for estimating exoplanet yields in CGI surveys) and the Galaxy Survey Exposure Time Calculator. In the future the repository will provide an interface for users to run custom simulations of a wide range of coronagraph instrument (CGI) observations and sophisticated tools for designing microlensing experiments. We encourage those who are generating simulations or writing tools for exoplanet observations with WFIRST to contact the ISOC team so we can work with you to bring these to the attention of the broader astronomical community as we prepare for the exciting science that will be enabled by WFIRST.
Airborne Validation of Spatial Properties Measured by the CALIPSO Lidar
NASA Technical Reports Server (NTRS)
McGill, Matthew J.; Vaughan, Mark A.; Trepte, Charles Reginald; Hart, William D.; Hlavka, Dennis L.; Winker, David M.; Keuhn, Ralph
2007-01-01
The primary payload onboard the Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) satellite is a dual-wavelength backscatter lidar designed to provide vertical profiling of clouds and aerosols. Launched in April 2006, the first data from this new satellite was obtained in June 2006. As with any new satellite measurement capability, an immediate post-launch requirement is to verify that the data being acquired is correct lest scientific conclusions begin to be drawn based on flawed data. A standard approach to verifying satellite data is to take a similar, or validation, instrument and fly it onboard a research aircraft. Using an aircraft allows the validation instrument to get directly under the satellite so that both the satellite instrument and the aircraft instrument are sensing the same region of the atmosphere. Although there are almost always some differences in the sampling capabilities of the two instruments, it is nevertheless possible to directly compare the measurements. To validate the measurements from the CALIPSO lidar, a similar instrument, the Cloud Physics Lidar, was flown onboard the NASA high-altitude ER-2 aircraft during July- August 2006. This paper presents results to demonstrate that the CALIPSO lidar is properly calibrated and the CALIPSO Level 1 data products are correct. The importance of the results is to demonstrate to the research community that CALIPSO Level 1 data can be confidently used for scientific research.
Artist concept of the Hubble Space Telescope (HST) after STS-31 deployment
1988-09-21
Artist concept shows the Hubble Space Telescope (HST) placed in orbit above the Earth's distorting layer of atmosphere by Discovery, Orbiter Vehicle (OV) 103, during mission STS-31. Tracking and data relay satellite (TDRS) is visible in the background and ground station is visible below on the Earth's surface. HST is the first of the great observatories to go into service and one of NASA's highest priority scientific spacecraft. Capable of observing in both visible and ultraviolet wavelengths, HST has been termed the most important scientific instrument ever designed for use on orbit. It will literally be able to look back in time, observing the universe as it existed early in its lifetime and providing information on how matter has evolved over the eons. The largest scientific payload ever built, the 12 1/2-ton, 43-foot HST was developed by Lockheed Missiles & Space Company, spacecraft prime contractor, and Perkin-Elmer Corporation, prime contractor for the optical assembly. The European Space Agency (ESA) furnished the power generating solar array and one of the system's five major instruments. Marshall Space Flight Center (MSFC) manages the HST project; Goddard Space Flight Center (GSFC) will be responsible, when the spacecraft is in orbit, for controlling the telescope and processing the images and instrument data returns.
A Sneak Preview of the E-ELT Design Reference Science Plan Questionnaire Results
NASA Astrophysics Data System (ADS)
Kissler-Patig, M.; Küpcü Yoldaş, A.; Liske, J.
2009-12-01
The European Extremely Large Telescope is in its detailed design phase until the end of 2010. During this period, the telescope design is being consolidated and instrument and operation concepts are being studied. The scientific users are feeding back requirements into the project in numerous ways. One of them, the Design Reference Science Plan, was an opportunity for the entire community to provide direct feedback to the project. Here, we summarise the first results from this study. The full report will appear in the first half of 2010.
Closed and Not Closed: Mitigating a Mystery on Chandra's Door
NASA Technical Reports Server (NTRS)
Odom, Brian
2015-01-01
The Chandra X-ray Observatory is part of NASA's fleet of "Great Observatories" along with the Hubble Space Telescope, the Spitzer Space Telescope, and the now deorbited Compton Gamma Ray Observatory. The observatory was designed to detect x-ray emissions from some of the hottest regions of the galaxy including exploded stars, clusters of galaxies, and matter around black holes. One of the observatory's key scientific instruments is the Advanced CCD Imaging Spectrometer (ACIS), which is one of four primary and two focal plane instruments. Due to the sensitivity of the charged coupled devices (CCD's), an aperture door was designed and built by Lockheed-Martin that protected the instrument during testing and the time leading up to launch. The design called for a system of wax actuators (manufactured by STARSYS Corp) to be used as components in a rotary actuator that would open and close the door during ground testing and on-orbit operations. Another feature of the design was an internal shear disc located in each actuator to prevent excessive internal pressure and to shield other components from damage.
Studying Electrical Conductivity Using a 3D Printed Four-Point Probe Station
ERIC Educational Resources Information Center
Lu, Yang; Santino, Luciano M.; Acharya, Shinjita; Anandarajah, Hari; D'Arcy, Julio M.
2017-01-01
The design and fabrication of functional scientific instrumentation allows students to forge a link between commonly reported numbers and physical material properties. Here, a two-point and four-point probe station for measuring electrical properties of solid materials is fabricated via 3D printing utilizing an inexpensive benchtop…
ERIC Educational Resources Information Center
Tulbure, Bogdan T.; Szentagotai, Aurora; Dobrean, Anca; David, Daniel
2012-01-01
Investigating the empirical support of various assessment instruments, the evidence based assessment approach expands the scientific basis of psychotherapy. Starting from Hunsley and Mash's evaluative framework, we critically reviewed the rating scales designed to measure social anxiety or phobia in youth. Thirteen of the most researched social…
ERIC Educational Resources Information Center
Inverness Research, 2016
2016-01-01
In facilities throughout the United States and abroad, communities of scientists share infrastructure, instrumentation, and equipment to conduct scientific research. In these large facilities--laboratories, accelerators, telescope arrays, and research vessels--scientists are researching key questions that have the potential to make a significant…
Architecture Of A Sciencecraft To Fly Past Pluto
NASA Technical Reports Server (NTRS)
Price, Humphrey W.; Staehle, Robert L.; Alkalaj, Leon; Terrile, Richard J.; Miyake, Robert N.
1995-01-01
Two reports discuss architecture of proposed small sciencecraft carrying scientific instruments on trajectory passing near Pluto and continuing into interstellar space. Emphasizes those aspects of design pertaining to compactness, efficiency, and small mass (dry mass less than 100 kg). System block diagram of sciencecraft divided into blocks for sensors, integrated microelectronics, and motive effectors.
ERIC Educational Resources Information Center
Wylie, Ruth C.
This volume of the revised edition describes and evaluates measurement methods, research designs, and procedures which have been or might appropriately be used in self-concept research. Working from the perspective that self-concept or phenomenal personality theories can be scientifically investigated, methodological flaws and questionable…
Assembly and Validation of a Colorimeter
ERIC Educational Resources Information Center
Hughes, Bill
2013-01-01
A low-cost and portable colorimeter kit has been designed and developed as an educational tool at Penn State University by Dr. Daniel Sykes for K-12 schools' integrated STEM learning. This scientific instrument allows students to learn how scientists utilize light as a means to study the chemical and physical properties of materials with an…
NASA Astrophysics Data System (ADS)
Yusmaita, E.; Nasra, Edi
2018-04-01
This research aims to produce instrument for measuring chemical literacy assessment in basic chemistry courses with solubility topic. The construction of this measuring instrument is adapted to the PISA (Programme for International Student Assessment) problem’s characteristics and the Syllaby of Basic Chemistry in KKNI-IndonesianNational Qualification Framework. The PISA is a cross-country study conducted periodically to monitor the outcomes of learners' achievement in each participating country. So far, studies conducted by PISA include reading literacy, mathematic literacy and scientific literacy. Refered to the scientific competence of the PISA study on science literacy, an assessment designed to measure the chemical literacy of the chemistry department’s students in UNP. The research model used is MER (Model of Educational Reconstruction). The validity and reliability values of discourse questions is measured using the software ANATES. Based on the acquisition of these values is obtained a valid and reliable chemical literacy questions.There are seven question items limited response on the topic of solubility with valid category, the acquisition value of test reliability is 0,86, and has a difficulty index and distinguishing good
The PanCam Instrument for the ExoMars Rover
NASA Astrophysics Data System (ADS)
Coates, A. J.; Jaumann, R.; Griffiths, A. D.; Leff, C. E.; Schmitz, N.; Josset, J.-L.; Paar, G.; Gunn, M.; Hauber, E.; Cousins, C. R.; Cross, R. E.; Grindrod, P.; Bridges, J. C.; Balme, M.; Gupta, S.; Crawford, I. A.; Irwin, P.; Stabbins, R.; Tirsch, D.; Vago, J. L.; Theodorou, T.; Caballo-Perucha, M.; Osinski, G. R.; PanCam Team
2017-07-01
The scientific objectives of the ExoMars rover are designed to answer several key questions in the search for life on Mars. In particular, the unique subsurface drill will address some of these, such as the possible existence and stability of subsurface organics. PanCam will establish the surface geological and morphological context for the mission, working in collaboration with other context instruments. Here, we describe the PanCam scientific objectives in geology, atmospheric science, and 3-D vision. We discuss the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has an 11-position filter wheel and a High Resolution Camera (HRC) for high-resolution investigations of rock texture at a distance. The cameras and electronics are housed in an optical bench that provides the mechanical interface to the rover mast and a planetary protection barrier. The electronic interface is via the PanCam Interface Unit (PIU), and power conditioning is via a DC-DC converter. PanCam also includes a calibration target mounted on the rover deck for radiometric calibration, fiducial markers for geometric calibration, and a rover inspection mirror.
Neutral Buoyancy Test - Hubble Space Telescope Scientific Instruments (SI)
NASA Technical Reports Server (NTRS)
1979-01-01
The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the first and flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Pictured is MSFC's Neutral Buoyancy Simulator that served as the test center for shuttle astronauts training for Hubble related missions. Shown is an astronaut training on a mock-up of a modular section of the HST in the removal and replacement of scientific instruments.
2003-04-30
KENNEDY SPACE CENTER, FLA. - The overhead crane settles the Mars Exploration Rover 2 (MER-2) entry vehicle onto a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.
POLIX: A Thomson X-ray polarimeter for a small satellite mission
NASA Astrophysics Data System (ADS)
Paul, Biswajit; Gopala Krishna, M. R.; Puthiya Veetil, Rishin
2016-07-01
POLIX is a Thomson X-ray polarimeter for a small satellite mission of ISRO. The instrument consists of a collimator, a scatterer and a set proportional counters to detect the scattered X-rays. We will describe the design, specifications, sensitivity, and development status of this instrument and some of the important scientific goals. This instrument will provide unprecedented opportunity to measure X-ray polarisation in the medium energy range in a large number of sources of different classes with a minimum detectable linear polarisation degree of 2-3%. The prime objects for observation with this instrument are the X-ray bright accretion powered neutron stars, accreting black holes in different spectral states, rotation powered pulsars, magnetars, and active galactic nuclei. This instrument will be a bridge between the soft X-ray polarimeters and the Compton polarimeters.
Control and acquisition system of a space instrument for cosmic ray measurement
NASA Astrophysics Data System (ADS)
Prieto, M.; Martín, C.; Quesada, M.; Meziat, D.; Medina, J.; Sánchez, S.; Rodríguez-Frías, M. D.
2000-04-01
The PESCA Instrument Control and Acquisition System (PICAS) design, building and tests are presented. The purpose of the PESCA instrument is the study of the Solar Energetic Particles and the Anomalous Cosmic Rays. It is, therefore, a satellite on-board instrument. The PICAS is basically a computer, composed of a microprocessor with a memory block and a set of interfaces for the communication with the rest of the instrument and the satellite. The PICAS manages all the comunication processes with the satellite, that comprises the order reception from the ground station, and the telemetry sending, that includes scientific data and housekeeping data. By means of telecommands, the PICAS is completely controllable from the ground. The PICAS is also a reliable data acquisition system that guarantees the correct reception of the Cosmic Rays data collected in the ground.
Introduction: Reengaging with instruments.
Taub, Liba
2011-12-01
Over the past twenty years or so, historians of science have become increasingly sensitized to issues involved in studying and interpreting scientific and medical instruments. The contributors to this Focus section are historians of science who have worked closely with museum objects and collections, specifically instruments used in scientific and medical contexts. Such close engagement by historians of science is somewhat rare, provoking distinctive questions as to how we define and understand instruments, opening up issues regarding the value of broken or incomplete objects, and raising concerns about which scientific and medical artifacts are displayed and interpreted in museums and in what manner. It is hoped that these essays point historians of science in new directions for reengaging with scientific objects and collections.
DRAGON - 8U Nanosatellite Orbital Deployer
NASA Technical Reports Server (NTRS)
Dobrowolski, Marcin; Grygorczuk, Jerzy; Kedziora, Bartosz; Tokarz, Marta; Borys, Maciej
2014-01-01
The Space Research Centre of the Polish Academy of Sciences (SRC PAS) together with Astronika company have developed an Orbital Deployer called DRAGON for ejection of the Polish scientific nanosatellite BRITE-PL Heweliusz (Fig. 1). The device has three unique mechanisms including an adopted and scaled lock and release mechanism from the ESA Rosetta mission MUPUS instrument. This paper discusses major design restrictions of the deployer, unique design features, and lessons learned from development through testing.
Viking orbiter and its Mariner inheritance
NASA Technical Reports Server (NTRS)
1984-01-01
Improvements to the design of the Mariner spacecraft resulted in the Viking spacecraft. The Viking spacecraft would consist of two major systems - an orbiter and a lander, while the lander would provide the means for safely delivering the scientific instruments to the surface, house, and provide the necessary power source and communication links for those experiments, the orbiter would transport the lander to Mars, rovide a platform for the Viking imaging system so that proposed landing sites could be surveyed and certified, relay lander science information back to Earth, and conduct scientific observations in its own right.
Balloon stratospheric research flights, April 1976 to December 1976
NASA Technical Reports Server (NTRS)
Allen, N. C.
1977-01-01
These flights were designed to measure the vertical concentration profile of trace stratospheric species which form major links in the chlorine photochemical system of the upper atmosphere, to measure the vertical concentration profiles of atomic oxygen, the hydroxyl radical and ozone in the stratosphere. An overview of the scientific goals of the program, a statement of program management and support functions, a brief description of the instrumentation flown, pertinent engineering and payload operations data, and a summary of the scientific data obtained for four flights are presented.
Optimizing Orbit-Instrument Configuration for Global Precipitation Mission (GPM) Satellite Fleet
NASA Technical Reports Server (NTRS)
Smith, Eric A.; Adams, James; Baptista, Pedro; Haddad, Ziad; Iguchi, Toshio; Im, Eastwood; Kummerow, Christian; Einaudi, Franco (Technical Monitor)
2001-01-01
Following the scientific success of the Tropical Rainfall Measuring Mission (TRMM) spearheaded by a group of NASA and NASDA scientists, their external scientific collaborators, and additional investigators within the European Union's TRMM Research Program (EUROTRMM), there has been substantial progress towards the development of a new internationally organized, global scale, and satellite-based precipitation measuring mission. The highlights of this newly developing mission are a greatly expanded scope of measuring capability and a more diversified set of science objectives. The mission is called the Global Precipitation Mission (GPM). Notionally, GPM will be a constellation-type mission involving a fleet of nine satellites. In this fleet, one member is referred to as the "core" spacecraft flown in an approximately 70 degree inclined non-sun-synchronous orbit, somewhat similar to TRMM in that it carries both a multi-channel polarized passive microwave radiometer (PMW) and a radar system, but in this case it will be a dual frequency Ku-Ka band radar system enabling explicit measurements of microphysical DSD properties. The remainder of fleet members are eight orbit-synchronized, sun-synchronous "constellation" spacecraft each carrying some type of multi-channel PMW radiometer, enabling no worse than 3-hour diurnal sampling over the entire globe. In this configuration the "core" spacecraft serves as a high quality reference platform for training and calibrating the PMW rain retrieval algorithms used with the "constellation" radiometers. Within NASA, GPM has advanced to the pre-formulation phase which has enabled the initiation of a set of science and technology studies which will help lead to the final mission design some time in the 2003 period. This presentation first provides an overview of the notional GPM program and mission design, including its organizational and programmatic concepts, scientific agenda, expected instrument package, and basic flight architecture. Following this introduction, we focus specifically on the last topic, that being an analysis which leads to an optimal flight architecture dictated in part by science requirements but constrained by allowable orbital mechanics, instrument scan patterns, and antenna aperture properties. Because the optimal architecture involves an interplay between orbit mechanics and instrument specifications, it is important to recognize that in attempting to serve various scientific themes, the final optimal architecture will represent a compromise concerning dynamic range, spatial resolution, sampling interval, pointing, beam coincidence, and measurement uncertainty. Moreover, cost becomes a major factor in seeking the optimal architecture through the pathways of antenna and instrument scan designs, as well as propulsion requirements associated with the orbit heights of various "constellation" members. Although the results presented at the IGARSS-2001 meeting will likely not be the fully refined flight architecture specifications, they are expected to be nearly complete.
77 FR 61739 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-11
... DEPARTMENT OF COMMERCE International Trade Administration Application(s) for Duty-Free Entry of Scientific Instruments Pursuant to Section 6(c) of the Educational, Scientific and Cultural Materials... combustion, such as hydroxyl (OH) radicals. The [[Page 61740
Overview of the Solar-B Mission
NASA Technical Reports Server (NTRS)
Davis, John M.
2006-01-01
The Solar-B mission is a collaboration between the Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, the National Aeronautics and Space Administration (NASA) and the Particle Physics and Astronomy Research Council (PPARC) of the United Kingdom and the European Space Agency. The principal scientific goals of the mission are to understand the processes of magnetic field generation, transport and ultimate dissipation of solar magnetic fields and how the release of magnetic energy is responsible for the heating and structuring of the chromosphere and corona. The scientific payload consists of three instruments: the Solar Optical Telescope that consists of the Optical Telescope Assembly and the Focal Plane Package (FPP), the X-ray Telescope and the EUV Imaging Spectrometer Each instrument is a result of the combined talents of all the members of the international team and their design and performance is described in separate papers in this session. The instruments are designed to work together as an 'observatory' simultaneously studying the target, at which the spacecraft is pointed, at different levels in the atmosphere. The spacecraft is scheduled for launch in September 2006 from the Uchinoura Space Center into a 600 km circular, sun-synchronous, polar orbit with a nominal elevation of 97.9 degrees. The orbit provides at least two morning and two evening contacts in Japan. Morning contacts are used for recovering quick look science data and the evening contacts for uploading commands. In addition ESA will provide 15 contacts per day from the Norwegian high latitude (78deg 14' N) ground station at Svalbard. The data downloads are transmitted to the ISAS Sirius database. They will be reformatted into FITS files and archived as Level 0 data on the ISAS DARTS system and made available to the scientific community. Scientific operations will be conducted from the IS AS facility located in Sagamihara, Japan. They are separated into planning, implementation and archiving. The planning process involves monthly, weekly and daily planning meetings. All scientific data will be made available after the first six month approximately one week after its collection.
Flight software operation of the Hubble Space Telescope fine guidance sensor
NASA Technical Reports Server (NTRS)
Rodden, J. J.; Dougherty, H. J.; Cormier, D. J.
1988-01-01
The Hubble Space Telescope (HST) is to carry five major scientific instruments to collect imagery, spectrographic, and photometric astronomical data. The Pointing Control System is designed to achieve pointing accuracies and line of sight jitter levels an order of magnitude less than can be achieved with ground mounted telescopes. This paper describes the operation of the pointing control system flight software in targeting a celestial object in a science instrument aperture and in performing the coordinate transformations necessary for commanding the fine guidance sensor and determining the attitude-error corrections.
NASA Astrophysics Data System (ADS)
Kusnadi, K.; Rustaman, N. Y.; Redjeki, S.; Aryantha, I. N. P.
2017-09-01
The implementation of the inquiry laboratory based project to enhance scientific inquiry literacy of prospective biology teachers in Microbiology course has been done. The inquiry lab based project was designed by three stages were debriefing of basic microbiology lab skills, guided inquiry and free inquiry respectively. The Study was quasi experimental with control group pretest-posttest design. The subjects were prospective biology teachers consists of 80 students. The scientific inquiry literacy instrument refers to ScInqLiT by Wenning. The results showed that there was significant difference of scientific inquiry literacy posttest scores between experiment and control (α 0,05) and was obtained N-gain score was 0.49 (medium) to experiment and 0.24 (low) to control. Based on formative assessment showed that development of student’s scientific attitude, research and microbiology lab skills during conducting project were increased. Student’s research skills especially in identification of variables, constructing a hypothesis, communicating and concluding were increased. During implementation of inquiry project also showed that they carried out mind and hands-on and so collaborative group investigation lab activities. Our findings may aid in reforming higher-education, particularly in microbiology laboratory activities to better promote scientific inquiry literacy, scientific attitude, research and laboratory skills.
Spectrographs and Large Telescopes: A Study of Instrumentation
NASA Astrophysics Data System (ADS)
Fica, Haley Diane; Crane, Jeffrey D.; Uomoto, Alan K.; Hare, Tyson
2017-01-01
It is a truth universally acknowledged, that a telescope in possession of a large aperture, must be in want of a high resolution spectrograph. Subsystems of these instruments require testing and upgrading to ensure that they can continue to be scientifically productive and usher in a new era of astronomical research. The Planet Finder Spectrograph (PFS) and Magellan Inamori Kyocera Echelle (MIKE), both on the Magellan II Clay telescope at Las Campanas Observatory, and the Giant Magellan Telescope (GMT) Consortium Large Earth Finder (G-CLEF) are examples of such instruments. Bluer flat field lamps were designed for PFS and MIKE to replace lamps no longer available in order to ensure continued, efficient functionality. These newly designed lamps will result in better flat fielding and calibration of data, and thus result in increased reduction of instrument noise. When it is built and installed in 2022, G-CLEF will be be fed by a tertiary mirror on the GMT. Stepper motors attached to the back of this mirror will be used to correct misalignments in the optical relay system. These motors were characterized to ensure that they function as expected to an accuracy of a few microns. These projects incorporate several key aspects of astronomical instrumentation: designing, building, and testing.
Developing an Instrument of Scientific Literacy Assessment on the Cycle Theme
ERIC Educational Resources Information Center
Rusilowati, Ani; Kurniawati, Lina; Nugroho, Sunyoto E.; Widiyatmoko, Arif
2016-01-01
The purpose of this study is to develop scientific literacy evaluation instrument that tested its validity, reliability, and characteristics to measure the skill of student's scientific literacy used four scientific literacy, categories as follow:science as a body of knowledge (category A), science as a way of thinking (category B), science as a…
Cassini/Huygens Science Instruments, Spacecraft, and Mission
NASA Technical Reports Server (NTRS)
Jaffe, Leonard D.; Herrell, Linda M.
1997-01-01
The Cassini spacecraft will take 18 scientific instruments to Saturn. After launch and a seven-year cruise, Cassini will arrive at Saturn and separate into a Saturn orbiter and an atmospheric probe, called Huygens, which will descend to the surface of Titan. The orbiter will orbit the planet for four years, making close flybys of five satellites, including multiple flybys of Titan. Communication with Earth is at X-band; the maximum downlink rate from Saturn is 166 x 10(exp 3) bps. Orbiter instruments are body mounted; the spacecraft must be turned to point some of them toward objects of interest. The orbiter carries 12 instruments. Optical instruments provide imagery and spectrometry. Radar supplies imaging, altimetry, and radiometry. Radio links contribute information about intervening material and gravity fields. Other instruments measure electromagnetic fields and the properties of plasma, energetic particles, and dust particles. The probe is spin stabilized. It returns data via an S-band link to the orbiter. The probe's six instruments include sensors to determine atmospheric physical properties and composition. Radiometric and optical sensors will produce data on thermal balance and obtain images of Titan's atmosphere and surface. Doppler measurements between probe and orbiter will provide wind profiles. Surface sensors will measure impact acceleration, thermal and electrical properties, and, if the surface is liquid, density and refractive index. This design will enable Cassini to determine the composition; the physical, morphological, and geological nature; and the physical and chemical processes of the atmospheres, surfaces, and magnetosphere of the Saturnian system. This paper briefly describes the Cassini mission and spacecraft and, in somewhat more detail, the scientific instruments.
ERIC Educational Resources Information Center
Cacioppo, John T.; Berntson, Gary G.; Semin, Gu R.
2005-01-01
This article presents comments on "Psychology Needs Realism not Instrumentalism" by B. Haig, "Ontological and Epistemic Claims of Realism and Instrumentalism" by Lau and "The Scientific Denial of the Real and the Dialectic of Scientism and Humanism" by Ramey and Chrysikou which were all comments on the original article "Realism, Instrumentalism,…
2015-08-14
The BARREL team prepares to release the second scientific balloon in its Sweden campaign on Aug. 13, 2015. In addition to the instruments used in previous BARREL campaigns, this second balloon launched from the Esrange Space Center in Kiruna is carrying one of two instruments designed by a team from the University of Houston. With funding from the Undergraduate Student Instrument Program, or USIP, at NASA Goddard Space Flight Center’s Wallops Flight Facility, the team of 12 students, under the direction of Edgar Bering at the University of Houston, developed a magnetometer -- which measures magnetic fields -- and an instrument to measure electrons, which flew on this launch. To collect their data, the University of Houston team needs to recover their instrument after the balloon comes down. After this launch, the balloon began to drift toward the mountains, which would have impeded recovery. So the team terminated the flight at 1:18 pm EDT to bring the payload slowly and safely to the ground. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – measures electrons in the atmosphere near the poles. Such electrons rain down into the atmosphere from two giant radiation belts surrounding Earth, called the Van Allen belts. For its third campaign, BARREL is launching six balloons from the Esrange Space Center in Kiruna, Sweden. BARREL is led by Dartmouth College in Hanover, New Hampshire. Credit: NASA/University of Houston/Edgar Bering NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
LiteBIRD: mission overview and design tradeoffs
NASA Astrophysics Data System (ADS)
Matsumura, T.; Akiba, Y.; Borrill, J.; Chinone, Y.; Dobbs, M.; Fuke, H.; Hasegawa, M.; Hattori, K.; Hattori, M.; Hazumi, M.; Holzapfel, W.; Hori, Y.; Inatani, J.; Inoue, M.; Inoue, Y.; Ishidoshiro, K.; Ishino, H.; Ishitsuka, H.; Karatsu, K.; Kashima, S.; Katayama, N.; Kawano, I.; Kibayashi, A.; Kibe, Y.; Kimura, K.; Kimura, N.; Komatsu, E.; Kozu, M.; Koga, K.; Lee, A.; Matsuhara, H.; Mima, S.; Mitsuda, K.; Mizukami, K.; Morii, H.; Morishima, T.; Nagai, M.; Nagata, R.; Nakamura, S.; Naruse, M.; Namikawa, T.; Natsume, K.; Nishibori, T.; Nishijo, K.; Nishino, H.; Noda, A.; Noguchi, T.; Ogawa, H.; Oguri, S.; Ohta, I. S.; Okada, N.; Otani, C.; Richards, P.; Sakai, S.; Sato, N.; Sato, Y.; Segawa, Y.; Sekimoto, Y.; Shinozaki, K.; Sugita, H.; Suzuki, A.; Suzuki, T.; Tajima, O.; Takada, S.; Takakura, S.; Takei, Y.; Tomaru, T.; Uzawa, Y.; Wada, T.; Watanabe, H.; Yamada, Y.; Yamaguchi, H.; Yamasaki, N.; Yoshida, M.; Yoshida, T.; Yotsumoto, K.
2014-08-01
We present the mission design of LiteBIRD, a next generation satellite for the study of B-mode polarization and inflation from cosmic microwave background radiation (CMB) detection. The science goal of LiteBIRD is to measure the CMB polarization with the sensitivity of δr = 0:001, and this allows testing the major single-field slow-roll inflation models experimentally. The LiteBIRD instrumental design is purely driven to achieve this goal. At the earlier stage of the mission design, several key instrumental specifications, e.g. observing band, optical system, scan strategy, and orbit, need to be defined in order to process the rest of the detailed design. We have gone through the feasibility studies for these items in order to understand the tradeoffs between the requirements from the science goal and the compatibilities with a satellite bus system. We describe the overview of LiteBIRD and discuss the tradeoffs among the choices of scientific instrumental specifications and strategies. The first round of feasibility studies will be completed by the end of year 2014 to be ready for the mission definition review and the target launch date is in early 2020s.
Low-cost microwave radiometry for remote sensing of soil moisture
NASA Astrophysics Data System (ADS)
Chikando, Eric Ndjoukwe
2007-12-01
Remote sensing is now widely regarded as a dominant means of studying the Earth and its surrounding atmosphere. This science is based on blackbody theory, which states that all objects emit broadband electromagnetic radiation proportional to their temperature. This thermal emission is detectable by radiometers---highly sensitive receivers capable of measuring extremely low power radiation across a continuum of frequencies. In the particular case of a soil surface, one important parameter affecting the emitted radiation is the amount of water content or, soil moisture. A high degree of precision is required when estimating soil moisture in order to yield accurate forecasting of precipitations and short-term climate variability such as storms and hurricanes. Rapid progress within the remote sensing community in tackling current limitations necessitates an awareness of the general public towards the benefits of the science. Information about remote sensing instrumentation and techniques remain inaccessible to many higher-education institutions due to the high cost of instrumentation and the current general inaccessibility of the science. In an effort to draw more talent within the field, more affordable and reliable scientific instrumentation are needed. This dissertation introduces the first low-cost handheld microwave instrumentation fully capable of surface soil moisture studies. The framework of this research is two-fold. First, the development of a low-cost handheld microwave radiometer using the well-known Dicke configuration is examined. The instrument features a super-heterodyne architecture and is designed following a microwave integrated circuit (MIC) system approach. Validation of the instrument is performed by applying it to various soil targets and comparing measurement results to gravimetric technique measured data; a proven scientific method for determining volumetric soil moisture content. Second, the development of a fully functional receiver RF front-end is presented. This receiver module is designed in support to a digital radiometer effort under development by the Center of Microwave Satellite and RF Engineering (COMSARE) at Morgan State University. The topology of the receiver includes a low-noise amplifier, bandpass filters and a three-stage gain amplifier. Design, characterization and evaluation of these system blocks are detailed within the framework of this dissertation.
MICADO: first light imager for the E-ELT
NASA Astrophysics Data System (ADS)
Davies, R.; Schubert, J.; Hartl, M.; Alves, J.; Clénet, Y.; Lang-Bardl, F.; Nicklas, H.; Pott, J.-U.; Ragazzoni, R.; Tolstoy, E.; Agocs, T.; Anwand-Heerwart, H.; Barboza, S.; Baudoz, P.; Bender, R.; Bizenberger, P.; Boccaletti, A.; Boland, W.; Bonifacio, P.; Briegel, F.; Buey, T.; Chapron, F.; Cohen, M.; Czoske, O.; Dreizler, S.; Falomo, R.; Feautrier, P.; Förster Schreiber, N.; Gendron, E.; Genzel, R.; Glück, M.; Gratadour, D.; Greimel, R.; Grupp, F.; Häuser, M.; Haug, M.; Hennawi, J.; Hess, H. J.; Hörmann, V.; Hofferbert, R.; Hopp, U.; Hubert, Z.; Ives, D.; Kausch, W.; Kerber, F.; Kravcar, H.; Kuijken, K.; Lang-Bardl, F.; Leitzinger, M.; Leschinski, K.; Massari, D.; Mei, S.; Merlin, F.; Mohr, L.; Monna, A.; Müller, F.; Navarro, R.; Plattner, M.; Przybilla, N.; Ramlau, R.; Ramsay, S.; Ratzka, T.; Rhode, P.; Richter, J.; Rix, H.-W.; Rodeghiero, G.; Rohloff, R.-R.; Rousset, G.; Ruddenklau, R.; Schaffenroth, V.; Schlichter, J.; Sevin, A.; Stuik, R.; Sturm, E.; Thomas, J.; Tromp, N.; Turatto, M.; Verdoes-Kleijn, G.; Vidal, F.; Wagner, R.; Wegner, M.; Zeilinger, W.; Ziegler, B.; Zins, G.
2016-08-01
MICADO will equip the E-ELT with a first light capability for diffraction limited imaging at near-infrared wavelengths. The instrument's observing modes focus on various flavours of imaging, including astrometric, high contrast, and time resolved. There is also a single object spectroscopic mode optimised for wavelength coverage at moderately high resolution. This contribution provides an overview of the key functionality of the instrument, outlining the scientific rationale for its observing modes. The interface between MICADO and the adaptive optics system MAORY that feeds it is summarised. The design of the instrument is discussed, focusing on the optics and mechanisms inside the cryostat, together with a brief overview of the other key sub-systems.
Prototyping Instruments for Chemical Laboratory Using Inexpensive Electronic Modules.
Urban, Pawel L
2018-05-15
Open-source electronics and programming can augment chemical and biomedical research. Currently, chemists can choose from a broad range of low-cost universal electronic modules (microcontroller boards and single-board computers) and use them to assemble working prototypes of scientific tools to address specific experimental problems and to support daily research work. The learning time can be as short as a few hours, and the required budget is often as low as 50 USD. Prototyping instruments using low-cost electronic modules gives chemists enormous flexibility to design and construct customized instrumentation, which can reduce the delays caused by limited access to high-end commercial platforms. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Space Infrared Telescope Facility (SIRTF) science instruments
NASA Technical Reports Server (NTRS)
Ramos, R.; Hing, S. M.; Leidich, C. A.; Fazio, G.; Houck, J. R.
1989-01-01
Concepts of scientific instruments designed to perform infrared astronomical tasks such as imaging, photometry, and spectroscopy are discussed as part of the Space Infrared Telescope Facility (SIRTF) project under definition study at NASA/Ames Research Center. The instruments are: the multiband imaging photometer, the infrared array camera, and the infrared spectograph. SIRTF, a cryogenically cooled infrared telescope in the 1-meter range and wavelengths as short as 2.5 microns carrying multiple instruments with high sensitivity and low background performance, provides the capability to carry out basic astronomical investigations such as deep search for very distant protogalaxies, quasi-stellar objects, and missing mass; infrared emission from galaxies; star formation and the interstellar medium; and the composition and structure of the atmospheres of the outer planets in the solar sytem.
NASA Astrophysics Data System (ADS)
Klebe, D. I.; Colorado College Student Astronomy Instrument Team; Pikes Peak Observatory Team
1999-12-01
The Colorado College Student Astronomy Instrument Team (CCSAIT) and the Pikes Peak Observatory (PPO) present preliminary optical and mechanical designs as well as discussion on a fleet of small research-class 0.4-0.5-meter telescopes. Each telescope is being designed to accommodate a variety of visible and near-infrared instrumentation, ranging from wide-field imaging cameras to moderate resolution spectrometers. The design of these telescopes is predicated on the use of lightweight primary mirrors, which will enable the entire optical telescope assembly (OTA) including instrumentation to come in under 50 kilograms. The lightweight OTA’s will further allow the use of inexpensive high-quality off-the-shelf robotic telescope mounts for future access and computer control of these telescopes over the Internet. The basic idea is to provide astronomers with a comprehensive arsenal of modest instrumentation at their fingertips in order to conduct a wide variety of interesting scientific research programs. Some of these research programs are discussed and input from the astronomical community is strongly encouraged. Connectivity and Internet control issues are also briefly discussed as development in this area is already underway through a collaborative effort between the PPO and the Cowan-Fouts Foundation of Woodland Park, Colorado.
75 FR 3895 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-25
..., materials science and nanotechnology. Justification for Duty-Free Entry: There are no domestic manufacturers... DEPARTMENT OF COMMERCE International Trade Administration Application(s) for Duty-Free Entry of Scientific Instruments Pursuant to Section 6(c) of the Educational, Scientific and Cultural Materials...
Code of Federal Regulations, 2013 CFR
2013-01-01
... States an instrument of equivalent scientific value for the purposes for which the instrument to which... ADMINISTRATION, DEPARTMENT OF COMMERCE MISCELLANEOUS REGULATIONS INSTRUMENTS AND APPARATUS FOR EDUCATIONAL AND SCIENTIFIC INSTITUTIONS § 301.6 Appeals. (a) An appeal from a final decision made by the Director under § 301...
Code of Federal Regulations, 2014 CFR
2014-01-01
... States an instrument of equivalent scientific value for the purposes for which the instrument to which... ADMINISTRATION, DEPARTMENT OF COMMERCE MISCELLANEOUS REGULATIONS INSTRUMENTS AND APPARATUS FOR EDUCATIONAL AND SCIENTIFIC INSTITUTIONS § 301.6 Appeals. (a) An appeal from a final decision made by the Director under § 301...
Code of Federal Regulations, 2011 CFR
2011-01-01
... States an instrument of equivalent scientific value for the purposes for which the instrument to which... ADMINISTRATION, DEPARTMENT OF COMMERCE MISCELLANEOUS REGULATIONS INSTRUMENTS AND APPARATUS FOR EDUCATIONAL AND SCIENTIFIC INSTITUTIONS § 301.6 Appeals. (a) An appeal from a final decision made by the Director under § 301...
Code of Federal Regulations, 2010 CFR
2010-01-01
... States an instrument of equivalent scientific value for the purposes for which the instrument to which... ADMINISTRATION, DEPARTMENT OF COMMERCE MISCELLANEOUS REGULATIONS INSTRUMENTS AND APPARATUS FOR EDUCATIONAL AND SCIENTIFIC INSTITUTIONS § 301.6 Appeals. (a) An appeal from a final decision made by the Director under § 301...
Code of Federal Regulations, 2012 CFR
2012-01-01
... States an instrument of equivalent scientific value for the purposes for which the instrument to which... ADMINISTRATION, DEPARTMENT OF COMMERCE MISCELLANEOUS REGULATIONS INSTRUMENTS AND APPARATUS FOR EDUCATIONAL AND SCIENTIFIC INSTITUTIONS § 301.6 Appeals. (a) An appeal from a final decision made by the Director under § 301...
Galileo spacecraft power distribution and autonomous fault recovery
NASA Technical Reports Server (NTRS)
Detwiler, R. C.
1982-01-01
There is a trend in current spacecraft design to achieve greater fault tolerance through the implemenation of on-board software dedicated to detecting and isolating failures. A combination of hardware and software is utilized in the Galileo power system for autonomous fault recovery. Galileo is a dual-spun spacecraft designed to carry a number of scientific instruments into a series of orbits around the planet Jupiter. In addition to its self-contained scientific payload, it will also carry a probe system which will be separated from the spacecraft some 150 days prior to Jupiter encounter. The Galileo spacecraft is scheduled to be launched in 1985. Attention is given to the power system, the fault protection requirements, and the power fault recovery implementation.
Design of a low cost miniaturized SFCW GPR with initial results
NASA Astrophysics Data System (ADS)
Duggal, Swati; Sinha, Piyush; Gupta, Manish; Patel, Anand; Vedam, V. V.; Mevada, Pratik; Chavda, Rajesh; Shah, Amita; Putrevu, Deepak
2016-05-01
This paper discusses about the design &developmental of Ground Penetrating Radar (GPR), various scientific and commercial applications of GPR along with the testing and results of GPR at Antarctica for Ice thickness measurement. GPR instruments are categorised as per their frequency of operation, which is inversely proportional to the depth of penetration. GPRs are also categorized as per method of operation which is time-domain or frequency-domain. Indian market is presently procuring GPRs from only foreign suppliers. Space Applications Centre (SAC) had taken up GPR as R&D Technological development with a view to benchmark the technology which may be transferred to local industry for mass production of instrument at a relatively cheaper cost (~20 times cheaper). Hence, this instrument presents a viable indigenous alternative. Also, the design and configuration was targeted for terrestrial as well as future interplanetary (Lander/Rover) missions of ISRO to map subsurface features. The developed GPR has a very large bandwidth (100%, i.e. bandwidth of 500MHz with centre-frequency of 500MHz) and high dynamic range along with the advantage of being highly portable (<10kg). The system was configured as a Stepped-Frequency-Continuous-Wave (SFCW) GPR which is a frequency domain GPR with the aim to increase the detection capabilities with respect to current systems. In order to achieve this goal, innovative electronic equipment have been designed and developed. Three prototypes were developed and two of them have been delivered for Indian Scientific Expedition to Antarctica (ISEA) in 2013 and 2014-15, respectively and promising results have been obtained. The results from the same closely compare with that from commercial GPR too.
PVDaCS - A prototype knowledge-based expert system for certification of spacecraft data
NASA Technical Reports Server (NTRS)
Wharton, Cathleen; Shiroma, Patricia J.; Simmons, Karen E.
1989-01-01
On-line data management techniques to certify spacecraft information are mandated by increasing telemetry rates. Knowledge-based expert systems offer the ability to certify data electronically without the need for time-consuming human interaction. Issues of automatic certification are explored by designing a knowledge-based expert system to certify data from a scientific instrument, the Orbiter Ultraviolet Spectrometer, on an operating NASA planetary spacecraft, Pioneer Venus. The resulting rule-based system, called PVDaCS (Pioneer Venus Data Certification System), is a functional prototype demonstrating the concepts of a larger system design. A key element of the system design is the representation of an expert's knowledge through the usage of well ordered sequences. PVDaCS produces a certification value derived from expert knowledge and an analysis of the instrument's operation. Results of system performance are presented.
System Engineering the Space Infrared Interferometric Telescope (SPIRIT)
NASA Technical Reports Server (NTRS)
Hyde, Tristram T.; Leisawitz, David T.; Rinehart, Stephen
2007-01-01
The Space Infrared Interferometric Telescope (SPIRIT) was designed to accomplish three scientific objectives: (1) learn how planetary systems form from protostellar disks and how they acquire their inhomogeneous chemical composition; (2) characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets of different types form; and (3) learn how high-redshift galaxies formed and merged to form the present-day population of galaxies. SPIRIT will accomplish these objectives through infrared observations with a two aperture interferometric instrument. This paper gives an overview of SPIRIT design and operation, and how the three design cycle concept study was completed. The error budget for several key performance values allocates tolerances to all contributing factors, and a performance model of the spacecraft plus instrument system demonstrates meeting those allocations with margin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Mark Alan
This report documents progress on DOE Grant# DE-FG02-08ER64531 funded by the Department of Energy’s Atmospheric Systems Research (ASR) program covering the period between its inception in 2008 and its conclusion in 2014. The Atmospheric Radiation Measurement (ARM) Program’s Mobile Facility #1 (AMF#1) is a collection of state-of-the art atmospheric sensing systems including remote and in situ instrumentation designed to characterize the atmospheric column above and in the immediate vicinity of the deployment location. The grant discussed in this report funded the activities of the AMF#1 Site Scientist Team. Broad responsibilities of this team included examining new deployment sites and recommendingmore » instrument deployment configurations; data quality control during the early stages of deployments and for certain instruments through the course of the deployment; scientific outreach in the host country or location (particularly international deployments); scientific research oriented toward basic questions about cloud physics and radiation transfer in the deployment region; and training of Ph.D. students to conduct future research relevant to the Atmospheric Systems Research (ASR) program.« less
The development of scientific thinking in elementary school: a comprehensive inventory.
Koerber, Susanne; Mayer, Daniela; Osterhaus, Christopher; Schwippert, Knut; Sodian, Beate
2015-01-01
The development of scientific thinking was assessed in 1,581 second, third, and fourth graders (8-, 9-, 10-year-olds) based on a conceptual model that posits developmental progression from naïve to more advanced conceptions. Using a 66-item scale, five components of scientific thinking were addressed, including experimental design, data interpretation, and understanding the nature of science. Unidimensional and multidimensional item response theory analyses supported the instrument's reliability and validity and suggested that the multiple components of scientific thinking form a unitary construct, independent of verbal or reasoning skills. A partial credit model gave evidence for a hierarchical developmental progression. Across each grade transition, advanced conceptions increased while naïve conceptions decreased. Independent effects of intelligence, schooling, and parental education on scientific thinking are discussed. © 2014 The Authors. Child Development © 2014 Society for Research in Child Development, Inc.
Investigating Flow Experience and Scientific Practices During a Mobile Serious Educational Game
NASA Astrophysics Data System (ADS)
Bressler, Denise M.; Bodzin, Alec M.
2016-10-01
Mobile serious educational games (SEGs) show promise for promoting scientific practices and high engagement. Researchers have quantified this engagement according to flow theory. This study investigated whether a mobile SEG promotes flow experience and scientific practices with eighth-grade urban students. Students playing the game ( n = 59) were compared with students in a business-as-usual control activity ( n = 120). In both scenarios, students worked in small teams. Data measures included an open-ended instrument designed to measure scientific practices, a self-report flow survey, and classroom observations. The game players had significantly higher levels of flow and scientific practices compared to the control group. Observations revealed that game teams received less whole-class instruction and review compared to the control teams. Game teachers had primarily a guide-on-the-side role when facilitating the game, while control teachers predominantly used didactic instruction when facilitating the control activity. Implications for these findings are discussed.
The Athena Mars Rover Investigation
NASA Technical Reports Server (NTRS)
Squyres, S. W.; Arvidson, R. E.; Bell, J. F., III; Carr, M.; Christensen, P.; DesMarais, D.; Economou, T.; Gorevan, S.; Haskin, L.; Herkenhoff, K.
2000-01-01
The Mars Surveyor program requires tools for martian surface exploration, including remote sensing, in-situ sensing, and sample collection. The Athena Mars rover payload is a suite of scientific instruments and sample collection tools designed to: (1) Provide color stereo imaging of martian surface environments, and remotely-sensed point discrimination of mineralogical composition; (2) Determine the elemental and mineralogical composition of martian surface materials; (3) Determine the fine-scale textural properties of these materials; and (4) Collect and store samples. The Athena payload is designed to be implemented on a long-range rover such as the one now under consideration for the 2003 Mars opportunity. The payload is at a high state of maturity, and most of the instruments have now been built for flight.
The Large Deployable Reflector (LDR) - Plans and progress
NASA Technical Reports Server (NTRS)
Swanson, Paul N.
1987-01-01
The program history, scientific aims, design, and projected performance of the LDR, a 20-m-primary two-stage four-mirror orbiting sub-mm/FIR astronomical observatory under NASA development, are reviewed. It is shown that the LDR would provide capabilities complementary to those of IRAS, the Kuiper Airborne Observatory, the IRTF, the Hubble Space Telescope, and the planned Space IR Telescope Facility for observations of small-scale background anisotropies, high-redshift galaxies, and objects at temperatures of a few times 10 K or lower. The current design concept is illustrated with extensive drawings, diagrams, and tables of instrument parameters. Particular attention is given to the graphite-epoxy facing and Al-honeycomb core of the primary structure, the focal-plane instruments, and outstanding technological problems.
Introduction to Japanese exploration study to the moon
NASA Astrophysics Data System (ADS)
Hashimoto, T.; Hoshino, T.; Tanaka, S.; Otake, H.; Otsuki, M.; Wakabayashi, S.; Morimoto, H.; Masuda, K.
2014-11-01
The Japan Aerospace Exploration Agency (JAXA) views the lunar lander SELENE-2 as the successor to the SELENE mission. In this presentation, the mission objectives of SELENE-2 are shown together with the present design status of the spacecraft. JAXA launched the Kaguya (SELENE) lunar orbiter in September 2007, and the spacecraft observed the Moon and a couple of small satellites using 15 instruments. As the next step in lunar exploration, the lunar lander SELENE-2 is being considered. SELENE-2 will land on the lunar surface and perform in-situ scientific observations, environmental investigations, and research for future lunar utilization including human activity. At the same time, it will demonstrate key technologies for lunar and planetary exploration such as precise and safe landing, surface mobility, and overnight survival. The lander will carry laser altimeters, image sensors, and landing radars for precise and safe landing. Landing legs and a precisely controlled propulsion system will also be developed. A rover is being designed to be able to travel over a wide area and observe featured terrain using scientific instruments. Since some of the instruments require long-term observation on the lunar surface, technology for night survival over more than 2 weeks needs to be considered. The SELENE-2 technologies are expected to be one of the stepping stones towards future Japanese human activities on the moon and to expand the possibilities for deep space science.
Intense Pulsed Neutron Source: Progress report 1991--1996. 15. Anniversary edition -- Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-05-01
The 15th Anniversary Edition of the IPNS Progress Report is being published in recognition of the Intense Pulsed Neutron Source`s first 15 years of successful operation as a user facility. To emphasize the importance of this milestone, the author shave made the design and organization of the report significantly different from previous IPNS Progress Reports. This report consists of two volumes. For Volume 1, authors were asked to prepare articles that highlighted recent scientific accomplishments at IPNS, from 1991 to present; to focus on and illustrate the scientific advances achieved through the unique capabilities of neutron studies performed by IPNSmore » users; to report on specific activities or results from an instrument; or to focus on a body of work encompassing different neutron-scattering techniques. Articles were also included on the accelerator system, instrumentation, computing, target, and moderators. A list of published and ``in press` articles in journals, books, and conference proceedings, resulting from work done at IPNS since 1991, was compiled. This list is arranged alphabetically according to first author. Publication references in the articles are listed by last name of first author and year of publication. The IPNS experimental reports received since 1991 are compiled in Volume 2. Experimental reports referenced in the articles are listed by last name of first author, instrument designation, and experiment number.« less
NASA Astrophysics Data System (ADS)
Wiandt, T. J.
2008-06-01
The Hart Scientific Division of the Fluke Corporation operates two accredited standard platinum resistance thermometer (SPRT) calibration facilities, one at the Hart Scientific factory in Utah, USA, and the other at a service facility in Norwich, UK. The US facility is accredited through National Voluntary Laboratory Accreditation Program (NVLAP), and the UK facility is accredited through UKAS. Both provide SPRT calibrations using similar equipment and procedures, and at similar levels of uncertainty. These uncertainties are among the lowest available commercially. To achieve and maintain low uncertainties, it is required that the calibration procedures be thorough and optimized. However, to minimize customer downtime, it is also important that the instruments be calibrated in a timely manner and returned to the customer. Consequently, subjecting the instrument to repeated calibrations or extensive repeated measurements is not a viable approach. Additionally, these laboratories provide SPRT calibration services involving a wide variety of SPRT designs. These designs behave differently, yet predictably, when subjected to calibration measurements. To this end, an evaluation strategy involving both statistical process control and internal consistency measures is utilized to provide confidence in both the instrument calibration and the calibration process. This article describes the calibration facilities, procedure, uncertainty analysis, and internal quality assurance measures employed in the calibration of SPRTs. Data will be reviewed and generalities will be presented. Finally, challenges and considerations for future improvements will be discussed.
Intense Pulsed Neutron Source: Progress report 1991--1996. 15. Anniversary edition -- Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marzec, B.
1996-05-01
The 15th Anniversary Edition of the IPNS Progress Report is being published in recognition of the Intense Pulsed Neutron Source`s first 15 years of successful operation as a user facility. To emphasize the importance of this milestone, the authors have made the design and organization of the report significantly different from previous IPNS Progress Reports. This report consists of two volumes. For Volume 1, authors were asked to prepare articles that highlighted recent scientific accomplishments at IPNS, from 1991 to present; to focus on and illustrate the scientific advances achieved through the unique capabilities of neutron studies performed by IPNSmore » users; to report on specific activities or results from an instrument; or to focus on a body of work encompassing different neutron-scattering techniques. Articles were also included on the accelerator system, instrumentation, computing, target, and moderators. A list of published and ``in press` articles in journals, books, and conference proceedings, resulting from work done at IPNS since 1991, was compiled. This list is arranged alphabetically according to first author. Publication references in the articles are listed by last name of first author and year of publication. The IPNS experimental reports received since 1991 are compiled in Volume 2. Experimental reports referenced in the articles are listed by last name of first author, instrument designation, and experiment number.« less
A Primer on Building Teacher Evaluation Instruments.
ERIC Educational Resources Information Center
Bitner, Ted; Kratzner, Ron
This paper presents a primer on building a scientifically oriented teacher evaluation instrument. It stresses the importance of accurate measures and accepts the presupposition that scientific approaches provide the most accurate measures of student teacher performance. The paper discusses the scientific concepts of validity and reliability, and…
75 FR 34095 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-16
...: University of Minnesota (Dept. of Chemical Engineering and Materials Science), 151 Amundson Hall, 421... Scientific Instruments Pursuant to Section 6(c) of the Educational, Scientific and Cultural Materials... coatings, of very high crystalline quality materials known as complex oxides. A pertinent characteristic of...
NASA Technical Reports Server (NTRS)
Keating, Thomas; Ihara, Toshio; Miida, Sumio
1990-01-01
A cooperative United States/Japan study was made for one year from 1987 to 1988 regarding the feasibility of the Tropical Rainfall Measuring Mission (TRMM). As part of this study a phase-A-level design of spacecraft for TRMM was developed by NASA/GSFC, and the result was documented in a feasibility study. The phase-A-level design is developed for the TRMM satellite utilizing a multimission spacecraft.
NASA Technical Reports Server (NTRS)
Springfield, C. W., Jr.
1985-01-01
The space telescope contains various scientific instrument (SI) modules which are mounted to the Focal Plane Structure (FPS) in a statically determinate manner. This is accomplished by using three registration fittings per SI module, one resisting three translations, another resisting two and the third resisting only one. Due to thermal insulating requirements these fittings are complex devices composed of numerous pieces. The structural integrity of these fittings is of great importance to the safety of the orbiter transporting the telescope, so in addition to the stress analyses performed during the design of these components, fracture susceptibility also needs to be considered. The pieces of the registration fittings for the Radial SI Module containing the Wide Field Planetary Camera are examined to determine which would endanger the orbiter if they fractured and what is the likelihood of their fracture. The latter is stated in terms of maximum allowable initial flaw sizes in these pieces.
NASA Astrophysics Data System (ADS)
Bowman, D. C.; Albert, S.; Dexheimer, D.; Murphy, S.; Mullen, M.
2017-12-01
Existing scientific ballooning solutions for multi hour flights in the upper troposphere/lower stratosphere are expensive and/or technically challenging. In contrast, solar hot air balloons are inexpensive and simple to construct. These balloons, which rely solely on sunlight striking a darkened envelope, can deliver payloads to 22 km altitude and maintain level flight until sunset. We describe an experimental campaign in which five solar hot air balloons launched in 45 minutes created a free flying infrasound (low frequency sound) microphone network that remained in the air for over 12 hours. We discuss the balloons' trajectory, maximum altitude, and stability as well as present results from the infrasound observations. We assess the performance and limitations of this design for lightweight atmospheric instrumentation deployments that require multi-hour flight times. Finally, we address the possibilities of multi day flights during the polar summer and on other planets.
PANIC: A General-purpose Panoramic Near-infrared Camera for the Calar Alto Observatory
NASA Astrophysics Data System (ADS)
Cárdenas Vázquez, M.-C.; Dorner, B.; Huber, A.; Sánchez-Blanco, E.; Alter, M.; Rodríguez Gómez, J. F.; Bizenberger, P.; Naranjo, V.; Ibáñez Mengual, J.-M.; Panduro, J.; García Segura, A. J.; Mall, U.; Fernández, M.; Laun, W.; Ferro Rodríguez, I. M.; Helmling, J.; Terrón, V.; Meisenheimer, K.; Fried, J. W.; Mathar, R. J.; Baumeister, H.; Rohloff, R.-R.; Storz, C.; Verdes-Montenegro, L.; Bouy, H.; Ubierna, M.; Fopp, P.; Funke, B.
2018-02-01
PANIC7 is the new PAnoramic Near-Infrared Camera for Calar Alto and is a project jointly developed by the MPIA in Heidelberg, Germany, and the IAA in Granada, Spain, for the German-Spanish Astronomical Center at Calar Alto Observatory (CAHA; Almería, Spain). This new instrument works with the 2.2 m and 3.5 m CAHA telescopes covering a field of view of 30 × 30 arcmin and 15 × 15 arcmin, respectively, with a sampling of 4096 × 4096 pixels. It is designed for the spectral bands from Z to K S , and can also be equipped with narrowband filters. The instrument was delivered to the observatory in 2014 October and was commissioned at both telescopes between 2014 November and 2015 June. Science verification at the 2.2 m telescope was carried out during the second semester of 2015 and the instrument is now at full operation. We describe the design, assembly, integration, and verification process, the final laboratory tests and the PANIC instrument performance. We also present first-light data obtained during the commissioning and preliminary results of the scientific verification. The final optical model and the theoretical performance of the camera were updated according to the as-built data. The laboratory tests were made with a star simulator. Finally, the commissioning phase was done at both telescopes to validate the camera real performance on sky. The final laboratory test confirmed the expected camera performances, complying with the scientific requirements. The commissioning phase on sky has been accomplished.
Aeronautical engineering: A continuing bibliography with indexes (supplement 280)
NASA Technical Reports Server (NTRS)
1992-01-01
This bibliography lists 647 reports, articles, and other documents introduced into the NASA scientific and technical information system in June, 1991. Subject coverage includes: aerodynamics, air transportation safety, aircraft communication and navigation, aircraft design and performance, aircraft instrumentation, aircraft propulsion, aircraft stability and control, research facilities, astronautics, chemistry and materials, engineering, geosciences, computer sciences, physics, and social sciences.
CMOS-TDI detector technology for reconnaissance application
NASA Astrophysics Data System (ADS)
Eckardt, Andreas; Reulke, Ralf; Jung, Melanie; Sengebusch, Karsten
2014-10-01
The Institute of Optical Sensor Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the institute's scientific results of the leading-edge detector design CMOS in a TDI (Time Delay and Integration) architecture. This project includes the technological design of future high or multi-spectral resolution spaceborne instruments and the possibility of higher integration. DLR OS and the Fraunhofer Institute for Microelectronic Circuits and Systems (IMS) in Duisburg were driving the technology of new detectors and the FPA design for future projects, new manufacturing accuracy and on-chip processing capability in order to keep pace with the ambitious scientific and user requirements. In combination with the engineering research, the current generation of space borne sensor systems is focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large-swath and high-spectral resolution with intelligent synchronization control, fast-readout ADC (analog digital converter) chains and new focal-plane concepts opens the door to new remote-sensing and smart deep-space instruments. The paper gives an overview of the detector development status and verification program at DLR, as well as of new control possibilities for CMOS-TDI detectors in synchronization control mode.
NASA Technical Reports Server (NTRS)
1975-01-01
Cost reductions that can be obtained in experiment instrumentation by the use of standardized electronics and by the relaxation of instrument reliability requirements are studied. The feasibility of using standardized equipment for experiment instrumentation is assessed and a system design approach that most effectively incorporates standardized equipment is developed. The level and form of modularization that is appropriate for the standardized equipment is determined. Mission assurance aspects of instrument development are examined to determine the cost reductions that might be derived from the relaxation of reliability requirements and to formulate a systematic approach to the optimization of mission assurance cost reductions. The results of the analyses are applied to a representative model HEAO payload in order to provide a concrete example of the cost reductions that can be achieved by a standardized approach to the instrument electronics.
Mariner 9 mapping science sequence design.
NASA Technical Reports Server (NTRS)
Goldman, A. M., Jr.
1973-01-01
The primary mission of Mariner 9 was to map the Martian surface. This paper discusses in detail the design of the mapping science sequences which were executed by the spacecraft in sixty days and during which over eighty percent of the surface was photographed. The sequence design was influenced by many factors: experimenter scientific objectives, instrument capabilities, spacecraft capabilities, orbit characteristics, and data return rates, which are illustrated graphically. Typical orbits are depicted for each of the three different mapping phases lasting twenty days. Examples of typical orbital sequence plans prepared daily during mission operations are given.
NASA Testing the Webb Telescope's MIRI Thermal Shield
2017-12-08
NASA engineer Acey Herrera recently checked out copper test wires inside the thermal shield of the Mid-Infrared Instrument, known as MIRI, that will fly aboard NASA's James Webb Space Telescope. The shield is designed to protect the vital MIRI instrument from excess heat. At the time of the photo, the thermal shield was about to go through rigorous environmental testing to ensure it can perform properly in the extreme cold temperatures that it will encounter in space. Herrera is working in a thermal vacuum chamber at NASA's Goddard Space Flight Center in Greenbelt, Md. As the MIRI shield lead, Herrera along with a thermal engineer and cryo-engineer verify that the shield is ready for testing. On the Webb telescope, the pioneering camera and spectrometer that comprise the MIRI instrument sit inside the Integrated Science Instrument Module flight structure, that holds Webb's four instruments and their electronic systems during launch and operations. Read more: 1.usa.gov/15I0wrS Credit: NASA/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
ERIC Educational Resources Information Center
Wei, Silin; Liu, Xiufeng; Jia, Yuane
2014-01-01
Scientific models and modeling play an important role in science, and students' understanding of scientific models is essential for their understanding of scientific concepts. The measurement instrument of "Students' Understanding of Models in Science" (SUMS), developed by Treagust, Chittleborough & Mamiala ("International…
The High Level Data Reduction Library
NASA Astrophysics Data System (ADS)
Ballester, P.; Gabasch, A.; Jung, Y.; Modigliani, A.; Taylor, J.; Coccato, L.; Freudling, W.; Neeser, M.; Marchetti, E.
2015-09-01
The European Southern Observatory (ESO) provides pipelines to reduce data for most of the instruments at its Very Large telescope (VLT). These pipelines are written as part of the development of VLT instruments, and are used both in the ESO's operational environment and by science users who receive VLT data. All the pipelines are highly specific geared toward instruments. However, experience showed that the independently developed pipelines include significant overlap, duplication and slight variations of similar algorithms. In order to reduce the cost of development, verification and maintenance of ESO pipelines, and at the same time improve the scientific quality of pipelines data products, ESO decided to develop a limited set of versatile high-level scientific functions that are to be used in all future pipelines. The routines are provided by the High-level Data Reduction Library (HDRL). To reach this goal, we first compare several candidate algorithms and verify them during a prototype phase using data sets from several instruments. Once the best algorithm and error model have been chosen, we start a design and implementation phase. The coding of HDRL is done in plain C and using the Common Pipeline Library (CPL) functionality. HDRL adopts consistent function naming conventions and a well defined API to minimise future maintenance costs, implements error propagation, uses pixel quality information, employs OpenMP to take advantage of multi-core processors, and is verified with extensive unit and regression tests. This poster describes the status of the project and the lesson learned during the development of reusable code implementing algorithms of high scientific quality.
NASA Astrophysics Data System (ADS)
D'Andrea, M.; Lotti, S.; Macculi, C.; Piro, L.; Argan, A.; Gatti, F.
2017-12-01
ATHENA is a large X-ray observatory, planned to be launched by ESA in 2028 towards an L2 orbit. One of the two instruments of the payload is the X-IFU: a cryogenic spectrometer based on a large array of TES microcalorimeters, able to perform integral field spectrography in the 0.2-12 keV band (2.5 eV FWHM at 6 keV). The X-IFU sensitivity is highly degraded by the particle background expected in the L2 orbit, which is induced by primary protons of both galactic and solar origin, and mostly by secondary electrons. To reduce the particle background level and enable the mission science goals, the instrument incorporates a Cryogenic AntiCoincidence detector (CryoAC). It is a 4 pixel TES based detector, placed < 1 mm below the main array. In this paper we report a scientific assessment of the CryoAC observational capabilities in the hard X-ray band (E > 10 keV). The aim of the study has been to understand if the present detector design can be improved in order to enlarge the X-IFU scientific capability on an energy band wider than the TES array. This is beyond the CryoAC baseline, being this instrument aimed to operate as anticoincidence particle detector and not conceived to perform X-ray observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ROBINSON,K.
2006-12-31
Brookhaven National Laboratory has prepared a conceptual design for a world class user facility for scientific research using synchrotron radiation. This facility, called the ''National Synchrotron Light Source II'' (NSLS-II), will provide ultra high brightness and flux and exceptional beam stability. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility. Together these will enable the study of material properties and functions with a spatial resolution of {approx}1 nm, an energy resolution of {approx}0.1 meV, and the ultra high sensitivity required to perform spectroscopymore » on a single atom. The overall objective of the NSLS-II project is to deliver a research facility to advance fundamental science and have the capability to characterize and understand physical properties at the nanoscale, the processes by which nanomaterials can be manipulated and assembled into more complex hierarchical structures, and the new phenomena resulting from such assemblages. It will also be a user facility made available to researchers engaged in a broad spectrum of disciplines from universities, industries, and other laboratories.« less
Space Qualification of Laser Diode Arrays
NASA Technical Reports Server (NTRS)
Troupaki, Elisavet; Kashem, Nasir B.; Allan, Graham R.; Vasilyev, Aleksey; Stephen, Mark
2005-01-01
Laser instruments have great potential in enabling a new generation of remote-sensing scientific instruments. NASA s desire to employ laser instruments aboard satellites, imposes stringent reliability requirements under severe conditions. As a result of these requirements, NASA has a research program to understand, quantify and reduce the risk of failure to these instruments when deployed on satellites. Most of NASA s proposed laser missions have base-lined diode-pumped Nd:YAG lasers that generally use quasi-constant wave (QCW), 808 nm Laser Diode Arrays (LDAs). Our group has an on-going test program to measure the performance of these LDAs when operated in conditions replicating launch and orbit. In this paper, we report on the results of tests designed to measure the effect of vibration loads simulating launch into space and the radiation environment encountered on orbit. Our primary objective is to quantify the performance of the LDAs in conditions replicating those of a satellite instrument, determine their limitations and strengths which will enable better and more robust designs. To this end we have developed a systematic testing strategy to quantify the effect of environmental stresses on the optical and electrical properties of the LDA.
Space Weather Studies at Istanbul Technical University
NASA Astrophysics Data System (ADS)
Kaymaz, Zerefsan
2016-07-01
This presentation will introduce the Upper Atmosphere and Space Weather Laboratory of Istanbul Technical University (ITU). It has been established to support the educational needs of the Faculty of Aeronautics and Astronautics in 2011 to conduct scientific research in Space Weather, Space Environment, Space Environment-Spacecraft Interactions, Space instrumentation and Upper Atmospheric studies. Currently the laboratory has some essential infrastructure and the most instrumentation for ionospheric observations and ground induced currents from the magnetosphere. The laboratory has two subunits: SWIFT dealing with Space Weather Instrumentation and Forecasting unit and SWDPA dealing with Space Weather Data Processing and Analysis. The research area covers wide range of upper atmospheric and space science studies from ionosphere, ionosphere-magnetosphere coupling, magnetic storms and magnetospheric substorms, distant magnetotail, magnetopause and bow shock studies, as well as solar and solar wind disturbances and their interaction with the Earth's space environment. We also study the spacecraft environment interaction and novel plasma instrument design. Several scientific projects have been carried out in the laboratory. Operational objectives of our laboratory will be carried out with the collaboration of NASA's Space Weather Laboratory and the facilities are in the process of integration to their prediction services. Educational and research objectives, as well as the examples from the research carried out in our laboratory will be demonstrated in this presentation.
NASA Astrophysics Data System (ADS)
Orsini, S.; di Lellis, A. M.; Milillo, A.; de Angelis, E.; Mura, A.; Selci, S.; Dandouras, I.; Cerulli-Irelli, P.; Leoni, R.; Mangano, V.; Massetti, S.; Mattioli, F.; Orfei, R.; Austin, C.; Medale, J.-L.; Vertolli, N.; di Giulio, D.
2009-06-01
The neutral sensor ELENA (Emitted Low-Energy Neutral Atoms) for the ESA cornerstone BepiColombo mission to Mercury (in the SERENA instrument package) is a new kind of low energetic neutral atoms instrument, mostly devoted to sputtering emission from planetary surfaces, from E~20 eV up to E~5 keV, within 1-D (2°×76°). ELENA is a Time-of-Flight (TOF) system, based on oscillating shutter (operated at frequencies up to a 100 kHz) and mechanical gratings: the incoming neutral particles directly impinge upon the entrance with a definite timing (START) and arrive to a STOP detector after a flight path. After a brief dissertation on the achievable scientific objectives, this paper describes the instrument, with the new design techniques approached for the neutral particles identification and the nano-techniques used for designing and manufacturing the nano-structure shuttering core of the ELENA sensor. The expected count-rates, based on the Hermean environment features, are shortly presented and discussed. Such design technologies could be fruitfully exported to different applications for planetary exploration.
FLARE: The Far Side Lunar Research Expedition. A design of a far side lunar observatory
NASA Technical Reports Server (NTRS)
Bishop, David W.; Chakrabarty, Rudhmala P.; Hannula, Dawn M.; Hargus, William A., Jr.; Melendrez, A. Dean; Niemann, Christopher J.; Neuenschwander, Amy L.; Padgett, Brett D.; Patel, Sanjiv R.; Wiesehuegel, Leland J.
1991-01-01
This document outlines the design completed by members of Lone Star Aerospace, Inc. (L.S.A.) of a lunar observatory on the far side of the Moon. Such a base would not only establish a long term human presence on the Moon, but would also allow more accurate astronomical data to be obtained. A lunar observatory is more desirable than an Earth based observatory for the following reasons: instrument weight is reduced due to the Moon's weaker gravity; near vacuum conditions exist on the Moon; the Moon has slow rotation to reveal the entire sky; and the lunar surface is stable for long baseline instruments. All the conditions listed above are favorable for astronomical data recording. The technical aspects investigated in the completion of this project included site selection, mission scenario, scientific instruments, communication and power systems, habitation and transportation, cargo spacecraft design, thermal systems, robotic systems, and trajectory analysis. The site selection group focused its efforts on finding a suitable location for the observatory. Hertzsprung, a large equatorial crater on the eastern limb, was chosen as the base site.
Mission management, planning, and cost: PULSE Attitude And Control Systems (AACS)
NASA Technical Reports Server (NTRS)
1990-01-01
The Pluto unmanned long-range scientific explorer (PULSE) is a probe that will do a flyby of Pluto. It is a low weight, relatively low costing vehicle which utilizes mostly off-the-shelf hardware, but not materials or techniques that will be available after 1999. A design, fabrication, and cost analysis is presented. PULSE will be launched within the first decade of the twenty-first century. The topics include: (1) scientific instrumentation; (2) mission management, planning, and costing; (3) power and propulsion systems; (4) structural subsystem; (5) command, control, and communication; and (6) attitude and articulation control.
NASA Technical Reports Server (NTRS)
Keeley, J. T.
1976-01-01
Typical missions identified for AMPS flights in the arly 1980's are described. Experiment objectives and typical scientific instruments selected to accomplish these objectives are discussed along with mission requirements and shuttle and Spacelab capabilities assessed to determine any AMPS unique requirements. Preliminary design concepts for the first two AMPS flights form the basis for the Phase C/D program plan. This plan implements flights 1 and 2 and indicates how both the scientific and flight support hardware can be systematically evolved for future AMPS flights.
Early modern mathematical instruments.
Bennett, Jim
2011-12-01
In considering the appropriate use of the terms "science" and "scientific instrument," tracing the history of "mathematical instruments" in the early modern period is offered as an illuminating alternative to the historian's natural instinct to follow the guiding lights of originality and innovation, even if the trail transgresses contemporary boundaries. The mathematical instrument was a well-defined category, shared across the academic, artisanal, and commercial aspects of instrumentation, and its narrative from the sixteenth to the eighteenth century was largely independent from other classes of device, in a period when a "scientific" instrument was unheard of.
In-situ generation of carrier gases for scientific analyses on Mars
NASA Technical Reports Server (NTRS)
Finn, J. E.; Sridhar, K. R.
1997-01-01
The search for useful raw materials on planetary surfaces will involve various scientific analyses of soil and rock samples. The devices performing these measurements often require inert carrier gases for moving analytes and purging instrumentation. At present, the carrier or sweep gas must be carried from Earth in a compressed gas cylinder, and so the supply of this depletable resource sets a hard limit on the (flexible) life span of the experiment. If a suitable carrier gas could be produced in-situ, then the scientific return of exploration missions could be extended and enhanced greatly. Many more samples could be analyzed, long-ranging rovers could have independent gas supplies, and designs could have added flexibility with respect to gas consumption.
NASA Astrophysics Data System (ADS)
de Goeij, B. T. G.; Otter, G. C. J.; van Wakeren, J. M. O.; Veefkind, J. P.; Vlemmix, T.; Ge, X.; Levelt, P. F.; Dirks, B. P. F.; Toet, P. M.; van der Wal, L. F.; Jansen, R.
2017-09-01
In recent years TNO has investigated and developed different innovative opto-mechanical designs to realize advanced spectrometers for space applications in a more compact and cost-effective manner. This offers multiple advantages: a compact instrument can be flown on a much smaller platform or as add-on on a larger platform; a low-cost instrument opens up the possibility to fly multiple instruments in a satellite constellation, improving both global coverage and temporal sampling (e.g. multiple overpasses per day to study diurnal processes); in this way a constellation of low-cost instruments may provide added value to the larger scientific and operational satellite missions (e.g. the Copernicus Sentinel missions); a small, lightweight spectrometer can easily be mounted on a small aircraft or high-altitude UAV (offering high spatial resolution).
Recommended conceptual optical system design for China's Large Optical-infrared Telescope (LOT).
Ma, Donglin
2018-01-08
Recently, China is planning to construct a new large optical-infrared telescope (LOT), in which the aperture of the primary mirror is as large as 12m. China's LOT is a general-purpose telescope, which is aimed to work with multiple scientific instruments such as spectrographs. Based on the requirements of LOT telescope, we have compared the performance of Ritchey-Chrétien (RC) design and Aplanatic-Gregorian (AG) design from the perspective of scientific performance and construction cost. By taking the primary focal ratio, Nasmyth focal ratio, and telescope's site condition into consideration, we finally recommend a RC f/1.6 design configuration for LOT's Nasmyth telescope system. Unlike the general identical configuration, we choose a non-identical configuration for the telescope system which has a shorter Cassegrain focal ratio compared to the designed Nasmyth focal ratio. The non-identical design can allow for a shorter back focal distance and therefore a shorter telescope fork to guarantee the gravitational stability of the whole telescope structure, as well as relatively lower construction cost. Detailed analysis for the feasibility of our recommended design is provided in this paper.
NASA Technical Reports Server (NTRS)
1985-01-01
The most promising new technology for scientific research is America's Space Transportation System; the space shuttle and its companion facility, Spacelab. Spacelab is a versatile laboratory designed specifically to accommodate scientists and their instruments in low-Earth orbit. In a space laboratory, scientists can perform experiments that are impossible on Earth. They can also use very large instruments aboard the Shuttle, with the added benefit of bringing all their equipment, experiment samples, and data home for analysis. Spacelab 2 is one in a series of missions that gives the world's scientists a chance to do research in a well-equipped laboratory in space.
The Cosmic Evolution Through UV Spectroscopy (CETUS) Probe Mission Concept
NASA Astrophysics Data System (ADS)
Danchi, William; Heap, Sara; Woodruff, Robert; Hull, Anthony; Kendrick, Stephen E.; Purves, Lloyd; McCandliss, Stephan; Kelly Dodson, Greg Mehle, James Burge, Martin Valente, Michael Rhee, Walter Smith, Michael Choi, Eric Stoneking
2018-01-01
CETUS is a mission concept for an all-UV telescope with 3 scientific instruments: a wide-field camera, a wide-field multi-object spectrograph, and a point-source high-resolution and medium resolution spectrograph. It is primarily intended to work with other survey telescopes in the 2020’s (e.g. E-ROSITA (X-ray), LSST, Subaru, WFIRST (optical-near-IR), SKA (radio) to solve major, outstanding problems in astrophysics. In this poster presentation, we give an overview of CETUS key science goals and a progress report on the CETUS mission and instrument design.
2014-05-12
CAPE CANAVERAL, Fla. – The components of NASA's International Space Station-RapidScat scatterometer instrument await processing inside Kennedy Space Center's Space Station Processing Facility. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
2014-05-12
CAPE CANAVERAL, Fla. – NASA's International Space Station-RapidScat scatterometer instrument arrives at the Space Station Processing Facility at Kennedy Space Center in Florida. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
2014-05-12
CAPE CANAVERAL, Fla. – Part of NASA's International Space Station-RapidScat scatterometer instrument is moved into Space Station Processing Facility at Kennedy Space Center in Florida. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
2014-05-12
CAPE CANAVERAL, Fla. – NASA's International Space Station-RapidScat scatterometer instrument is revealed inside Kennedy Space Center's Space Station Processing Facility. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
2014-05-12
CAPE CANAVERAL, Fla. – NASA's International Space Station-RapidScat scatterometer instrument is revealed inside Kennedy Space Center's Space Station Processing Facility. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
WISDOM measurements in a cold artificial and controlled environment
NASA Astrophysics Data System (ADS)
Dechambre, M.; Saintenoy, A.; Ciarletti, V.; Biancheri-Astier, M.; Costard, F.; Hassen-Khodja, R.
2011-10-01
The WISDOM (500MHz - 3GHz) GPR is one of the instruments that have been selected as part of the Pasteur payload of ESA's 2018 ExoMars Rover mission. One of the main scientific objectives of the mission is to characterize the nature of the shallow sub-surface on Mars and WISDOM has been designed to explore the first ~ 3 meters of the subsurface with a vertical resolution of a few centimetres. Full polarimetric measurements in cold artificial and controlled conditions have been performed by the prototype to illustrate and quantify the instrument performance. Preliminary results are presented.
Study of multiple asteroid flyby missions
NASA Technical Reports Server (NTRS)
1972-01-01
The feasibility, scientific objectives, mission profile characteristics, and implementation of an asteroid belt exploration mission by a spacecraft guided to intercept three or more asteroids at close range are discussed. A principal consideration in planning a multiasteroid mission is to cut cost by adapting an available and flight-proven spacecraft design such as Pioneer F and G, augmenting its propulsion and guidance capabilities and revising the scientific payload complement in accordance with required mission characteristics. Spacecraft modification necessary to meet the objectives and requirements of the mission were studied. A ground rule of the study was to hold design changes to a minimum and to utilize available technology as much as possible. However, with mission dates not projected before the end of this decade, a reasonable technology growth in payload instrument design and some subsystem components is anticipated that can be incorporated in the spacecraft adaptation.
Scientific and Technical Development of the Next Generation Space Telescope
NASA Technical Reports Server (NTRS)
Burg, Richard
2003-01-01
The Next Generation Space Telescope (NGST) is part of the Origins program and is the key mission to discover the origins of galaxies in the Universe. It is essential that scientific requirements be translated into technical specifications at the beginning of the program and that there is technical participation by astronomers in the design and modeling of the observatory. During the active time period of this grant, the PI participated in the NGST program at GSFC by participating in the development of the Design Reference Mission, the development of the full end-to-end model of the observatory, the design trade-off based on the modeling, the Science Instrument Module definition and modeling, the study of proto-mission and test-bed development, and by participating in meetings including quarterly reviews and support of the NGST SWG. This work was documented in a series of NGST Monographs that are available on the NGST web site.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-09
... instruments of equivalent scientific value to the foreign instruments described below, for such purposes as... precursor delivery system that can be heated to 500 degrees Celsius to vaporize non-volatile chemical...: None received. Decision: Approved. We know of no instruments of equivalent scientific value to the...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-03
... [Docket No.: 131114957-3957-01] Import Administration; Change of Agency Name for Instruments and Apparatus... apparatus for educational and scientific institutions. 15 CFR Part 303 Watches, Watch movements and jewelry program. PART 301--INSTRUMENTS AND APPARATUS FOR EDUCATIONAL AND SCIENTIFIC INSTITUTIONS 0 1. The...
Corrêa, Marcelo de Paula; Godin-Beekmann, Sophie; Haeffelin, Martial; Brogniez, Colette; Verschaeve, Franck; Saiag, Philippe; Pazmiño, Andrea; Mahé, Emmanuel
2010-04-01
Ultraviolet radiation (UVR) exposure, skin cancer and other related diseases are not just subjects of scientific literature. Nowadays, these themes are also discussed on television, newspapers and magazines for the general public. Consequently, the interest in prevention of sun overexposure is increasing, as the knowledge of photoprotection methods and UVR levels. The ultraviolet index (UVI) is a well-known tool recommended by the World Health Organization to avoid harmful effects of UV sunlight. UVI forecasts are provided by many national meteorological services, but local UVI measurements can provide a more realistic and appropriate evaluation of UVR levels. Indeed, as scientific instruments are very expensive and difficult to manipulate, several manufacturers and retail shops offer cheap and simple non-scientific instruments for UVI measurements, sometimes included in objects of everyday life, such as watches, outfits and hand-held instruments. In this work, we compare measurements provided by several commercial non-scientific instruments with data provided by a Bentham spectrometer, a very accurate sensor used for UV measurements. Results show that only a few of the instruments analyzed provide trustworthy UVI measurements.
Scientific Set of Instruments "Solar Cosmic Rays"
NASA Astrophysics Data System (ADS)
Kuznetsov, S. N.; Bogomolov, A. V.; Galkin, V. I.; Denisov, Yu. I.; Podorolsky, A. N.; Ryumin, S. P.; Kudela, K.; Rojko, J.
A set of scientific instruments SCR (Solar Cosmic Rays) was developed by the scientists of SINP MSU and IEP SAS in order to study relations between the radiation conditions in the near-Earth space and solar activity. This set of instruments was installed on board the satellites CORONAS-I and CORONAS-F launched to the orbit on March 2, 1994, and July 30, 2001, respectively. Detailed description of the instruments is presented.
Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models
NASA Technical Reports Server (NTRS)
Gagnier, Don; Hayner, Rick; Roza, Michael; Nosek, Thomas; Razzaghi, Andrea
2004-01-01
This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric science instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments that will be flown on the Aura s p a c m and of the Aura spacecraft bus electronics. Aura is one of NASA's Earth Observing System @OS) Program missions managed by the Goddard Space Flight Center. The test was designed to evaluate the complex interfaces in the spacecraft and instrument command and data handling (C&DH) subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during (and not before) the flight hardware integration phase can cause significant cost and schedule impacts. The testing successfully surfaced problems and led to their resolution before the full-up integration phase, saving significant cost and schedule time. This approach could be used on future environmental satellite programs involving multiple, complex scientific instruments being integrated onto a bus.
Scientific ballooning in India Recent developments
NASA Astrophysics Data System (ADS)
Manchanda, R. K.
Established in 1971, the National Balloon Facility operated by TIFR in Hyderabad, India, is a unique facility in the country, which provides a complete solution in scientific ballooning. It is also one of its kind in the world since it combines both, the in-house balloon production and a complete flight support for scientific ballooning. With a large team working through out the year to design, fabricate and launch scientific balloons, the Hyderabad Facility is a unique centre of expertise where the balloon design, research and development, the production and launch facilities are located under one roof. Our balloons are manufactured from 100% indigenous components. The mission specific balloon design, high reliability control and support instrumentation, in-house competence in tracking, telemetry, telecommand, data processing, system design and mechanics is its hallmark. In the past few years, we have executed a major programme of upgradation of different components of balloon production, telemetry and telecommand hardware and various support facilities. This paper focuses on our increased capability of balloon production of large sizes up to 780,000 m 3 using Antrix film, development of high strength balloon load tapes with the breaking strength of 182 kg, and the recent introduction of S-band telemetry and a commandable timer cut-off unit in the flight hardware. A summary of the various flights conducted in recent years will be presented along with the plans for new facilities.
NASA Technical Reports Server (NTRS)
1990-01-01
Scientific Instruments, Inc. has now developed a second generation, commercially available instrument to detect flames in hazardous environments, typically refineries, chemical plants and offshore drilling platforms. The Model 74000 detector incorporates a sensing circuit that detects UV radiation in a 100 degree conical field of view extending as far as 250 feet from the instrument. It operates in a bandwidth that makes it virtually 'blind' to solar radiation while affording extremely high sensitivity to ultraviolet flame detection. A 'windowing' technique accurately discriminates between background UV radiation and ultraviolet emitted from an actual flame, hence the user is assured of no false alarms. Model 7410CP is a combination controller and annunciator panel designed to monitor and control as many as 24 flame detectors. *Model 74000 is no longer being manufactured.
Autonomous Instrument Placement for Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Leger, P. Chris; Maimone, Mark
2009-01-01
Autonomous Instrument Placement (AutoPlace) is onboard software that enables a Mars Exploration Rover to act autonomously in using its manipulator to place scientific instruments on or near designated rock and soil targets. Prior to the development of AutoPlace, it was necessary for human operators on Earth to plan every motion of the manipulator arm in a time-consuming process that included downlinking of images from the rover, analysis of images and creation of commands, and uplinking of commands to the rover. AutoPlace incorporates image analysis and planning algorithms into the onboard rover software, eliminating the need for the downlink/uplink command cycle. Many of these algorithms are derived from the existing groundbased image analysis and planning algorithms, with modifications and augmentations for onboard use.
MOD Tool (Microwave Optics Design Tool)
NASA Technical Reports Server (NTRS)
Katz, Daniel S.; Borgioli, Andrea; Cwik, Tom; Fu, Chuigang; Imbriale, William A.; Jamnejad, Vahraz; Springer, Paul L.
1999-01-01
The Jet Propulsion Laboratory (JPL) is currently designing and building a number of instruments that operate in the microwave and millimeter-wave bands. These include MIRO (Microwave Instrument for the Rosetta Orbiter), MLS (Microwave Limb Sounder), and IMAS (Integrated Multispectral Atmospheric Sounder). These instruments must be designed and built to meet key design criteria (e.g., beamwidth, gain, pointing) obtained from the scientific goals for the instrument. These criteria are frequently functions of the operating environment (both thermal and mechanical). To design and build instruments which meet these criteria, it is essential to be able to model the instrument in its environments. Currently, a number of modeling tools exist. Commonly used tools at JPL include: FEMAP (meshing), NASTRAN (structural modeling), TRASYS and SINDA (thermal modeling), MACOS/IMOS (optical modeling), and POPO (physical optics modeling). Each of these tools is used by an analyst, who models the instrument in one discipline. The analyst then provides the results of this modeling to another analyst, who continues the overall modeling in another discipline. There is a large reengineering task in place at JPL to automate and speed-up the structural and thermal modeling disciplines, which does not include MOD Tool. The focus of MOD Tool (and of this paper) is in the fields unique to microwave and millimeter-wave instrument design. These include initial design and analysis of the instrument without thermal or structural loads, the automation of the transfer of this design to a high-end CAD tool, and the analysis of the structurally deformed instrument (due to structural and/or thermal loads). MOD Tool is a distributed tool, with a database of design information residing on a server, physical optics analysis being performed on a variety of supercomputer platforms, and a graphical user interface (GUI) residing on the user's desktop computer. The MOD Tool client is being developed using Tcl/Tk, which allows the user to work on a choice of platforms (PC, Mac, or Unix) after downloading the Tcl/Tk binary, which is readily available on the web. The MOD Tool server is written using Expect, and it resides on a Sun workstation. Client/server communications are performed over a socket, where upon a connection from a client to the server, the server spawns a child which is be dedicated to communicating with that client. The server communicates with other machines, such as supercomputers using Expect with the username and password being provided by the user on the client.
An Overview of the Mars Reconnaissance Orbiter (MRO) Science Mission
NASA Technical Reports Server (NTRS)
Zurek, Richard W.; Smrekar, Suzanne E.
2007-01-01
The Mars Reconnaissance Orbiter (MRO) is the latest addition to the suite of missions on or orbiting Mars as part of the NASA Mars Exploration Program. Launched on 12 August 2005, the orbiter successfully entered Mars orbit on 10 March 2006 and finished aerobraking on 30 August 2006. Now in its near-polar, near-circular, low-altitude (approximately 300 km), 3 p.m. orbit, the spacecraft is operating its payload of six scientific instruments throughout a one-Mars-year Primary Science Phase (PSP) of global mapping, regional survey, and targeted observations. Eight scientific investigations were chosen for MRO, two of which use either the spacecraft accelerometers or tracking of the spacecraft telecom signal to acquire data needed for analysis. Six instruments, including three imaging systems, a visible-near infrared spectrometer, a shallow-probing subsurface radar, and a thermal-infrared profiler, were selected to complement and extend the capabilities of current working spacecraft at Mars. Whether observing the atmosphere, surface, or subsurface, the MRO instruments are designed to achieve significantly higher resolution while maintaining coverage comparable to the current best observations. The requirements to return higher-resolution data, to target routinely from a low-altitude orbit, and to operate a complex suite of instruments were major challenges successfully met in the design and build of the spacecraft, as well as by the mission design. Calibration activities during the seven-month cruise to Mars and limited payload operations during a three-day checkout prior to the start of aerobraking demonstrated, where possible, that the spacecraft and payload still had the functions critical to the science mission. Two critical events, the deployment of the SHARAD radar antenna and the opening of the CRISM telescope cover, were successfully accomplished in September 2006. Normal data collection began 7 November 2006 after solar conjunction. As part of its science mission, MRO will also aid identification and characterization of the most promising sites for future landed missions, both in terms of safety and in terms of the scientific potential for future discovery. Ultimately, MRO data will advance our understanding of how Mars has evolved and by which processes that change occurs, all within a framework of identifying the presence, extent, and role of water in shaping the planet s climate over time.
75 FR 53271 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-31
... invite comments on the question of whether instruments of equivalent scientific value, for the purposes... structure of biological macromolecules, which will be observed under cryogenic conditions. Justification for...
77 FR 25960 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-02
... invite comments on the question of whether instruments of equivalent scientific value, for the purposes... imaging biological and other materials samples. Justification for Duty-Free Entry: There are no...
Telescience testbed pilot program, volume 3: Experiment summaries
NASA Technical Reports Server (NTRS)
Leiner, Barry M.
1989-01-01
Space Station Freedom and its associated labs, coupled with the availability of new computing and communications technologies, have the potential for significantly enhancing scientific research. A Telescience Testbed Pilot Program (TTPP), aimed at developing the experience base to deal with issues in the design of the future information system of the Space Station era. The testbeds represented four scientific disciplines (astronomy and astrophysics, earth science, life sciences, and microgravity sciences) and studied issues in payload design, operation, and data analysis. This volume, of a 3 volume set, which all contain the results of the TTPP, presents summaries of the experiments. This experiment involves the evaluation of the current Internet for the use of file and image transfer between SIRTF instrument teams. The main issue addressed was current network response times.
The Voyager flights to Jupiter and Saturn
NASA Technical Reports Server (NTRS)
1982-01-01
The results of the mini-Grand Tour to Jupiter and Saturn by the Voyager 1 and 2 spacecraft are highlighted. Features of the spacecraft are depicted including the 11 instruments designed to probe the planets and their magnetic environments, the rings of Saturn, the fleets of satellites escorting the planets, and the interplanetary medium. Major scientific discoveries relating to these phenomena are summarized.
ERIC Educational Resources Information Center
Rast, Philippe; Zimprich, Daniel; Van Boxtel, Martin; Jolles, Jellemer
2009-01-01
The Cognitive Failures Questionnaire (CFQ) is designed to assess a person's proneness to committing cognitive slips and errors in the completion of everyday tasks. Although the CFQ is a widely used instrument, its factor structure remains an issue of scientific debate. The present study used data of a representative sample (N = 1,303, 24-83 years…
The Construction of a Motor Fitness Test Battery for Boys in the Lower Elementary Grades.
ERIC Educational Resources Information Center
DiNucci, James M.; Shore, John Roger
In order to construct a scientifically designed evaluative instrument to assess the motor fitness of boys in the primary grades, 30 test items purported to measure muscular strength, muscular endurance, cardiovascular endurance, power, speed, agility, flexibility, and balance were administered to an incidental sample of 238 boys ages 6 to 9 years.…
Scientific activity program for 1989
NASA Astrophysics Data System (ADS)
1989-04-01
The current research projects are summarized. The research is grouped into four main directions: infrared astronomy, interplanetary media, cosmic rays and gravitational fields. The projects include instruments for the Infrared Space Observatory (ISO) satellite, problems of star formation and star evolution, Tethered Satellite System (TSS) experiment, Opera experiment, propagation of cosmic rays in the ionosphere, design of a solar neutron detector, and gravitational wave antennas experiments.
Progression in Learning about "The Nature of Science": Issues of Conceptualisation and Methodology.
ERIC Educational Resources Information Center
Leach, John; And Others
Recently, it was proposed that a curricular aim of science education should be to engender an understanding of the nature of the scientific enterprise among students, as well as a knowledge of the technical contents of science. Seven diagnostic instruments were designed and administered to students (between the ages of 9 and 16) in an effort to…
The PanCam Instrument for the ExoMars Rover
Coates, A.J.; Jaumann, R.; Griffiths, A.D.; Leff, C.E.; Schmitz, N.; Josset, J.-L.; Paar, G.; Gunn, M.; Hauber, E.; Cousins, C.R.; Cross, R.E.; Grindrod, P.; Bridges, J.C.; Balme, M.; Gupta, S.; Crawford, I.A.; Irwin, P.; Stabbins, R.; Tirsch, D.; Vago, J.L.; Theodorou, T.; Caballo-Perucha, M.; Osinski, G.R.
2017-01-01
Abstract The scientific objectives of the ExoMars rover are designed to answer several key questions in the search for life on Mars. In particular, the unique subsurface drill will address some of these, such as the possible existence and stability of subsurface organics. PanCam will establish the surface geological and morphological context for the mission, working in collaboration with other context instruments. Here, we describe the PanCam scientific objectives in geology, atmospheric science, and 3-D vision. We discuss the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has an 11-position filter wheel and a High Resolution Camera (HRC) for high-resolution investigations of rock texture at a distance. The cameras and electronics are housed in an optical bench that provides the mechanical interface to the rover mast and a planetary protection barrier. The electronic interface is via the PanCam Interface Unit (PIU), and power conditioning is via a DC-DC converter. PanCam also includes a calibration target mounted on the rover deck for radiometric calibration, fiducial markers for geometric calibration, and a rover inspection mirror. Key Words: Mars—ExoMars—Instrumentation—Geology—Atmosphere—Exobiology—Context. Astrobiology 17, 511–541.
2003-04-30
KENNEDY SPACE CENTER, FLA. - An overhead crane lifts the Mars Exploration Rover 2 (MER-2) entry vehicle from its stand to move it to a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.
2003-04-30
KENNEDY SPACE CENTER, FLA. - With help from workers, the overhead crane lowers the Mars Exploration Rover 2 (MER-2) entry vehicle onto a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.
2003-04-30
KENNEDY SPACE CENTER, FLA. - An overhead crane moves the Mars Exploration Rover 2 (MER-2) entry vehicle across the Payload Hazardous Servicing Facility toward a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.
2003-04-30
KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility help guide the Mars Exploration Rover 2 (MER-2) entry vehicle toward a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.
2003-04-30
KENNEDY SPACE CENTER, FLA. - An overhead crane is in place to lift the Mars Exploration Rover 2 (MER-2) entry vehicle to move it to a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.
Extreme Adaptive Optics for the Thirty Meter Telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macintosh, B; al., e
2006-05-02
Direct detection of extrasolar Jovian planets is a major scientific motivation for the construction of future extremely large telescopes such as the Thirty Meter Telescope (TMT). Such detection will require dedicated high-contrast AO systems. Since the properties of Jovian planets and their parent stars vary enormously between different populations, the instrument must be designed to meet specific scientific needs rather than a simple metric such as maximum Strehl ratio. We present a design for such an instrument, the Planet Formation Imager (PFI) for TMT. It has four key science missions. The first is the study of newly-formed planets on 5-10more » AU scales in regions such as Taurus and Ophiucus--this requires very small inner working distances that are only possible with a 30m or larger telescope. The second is a robust census of extrasolar giant planets orbiting mature nearby stars. The third is detailed spectral characterization of the brightest extrasolar planets. The final targets are circumstellar dust disks, including Zodiacal light analogs in the inner parts of other solar systems. To achieve these, PFI combines advanced wavefront sensors, high-order MEMS deformable mirrors, a coronagraph optimized for a finely-segmented primary mirror, and an integral field spectrograph.« less
Spaceborne sensors (1983-2000 AD): A forecast of technology
NASA Technical Reports Server (NTRS)
Kostiuk, T.; Clark, B. P.
1984-01-01
A technical review and forecast of space technology as it applies to spaceborne sensors for future NASA missions is presented. A format for categorization of sensor systems covering the entire electromagnetic spectrum, including particles and fields is developed. Major generic sensor systems are related to their subsystems, components, and to basic research and development. General supporting technologies such as cryogenics, optical design, and data processing electronics are addressed where appropriate. The dependence of many classes of instruments on common components, basic R&D and support technologies is also illustrated. A forecast of important system designs and instrument and component performance parameters is provided for the 1983-2000 AD time frame. Some insight into the scientific and applications capabilities and goals of the sensor systems is also given.
PE-46 The Design of the Lynx X-Ray Microcalorimeter
NASA Technical Reports Server (NTRS)
Bandler, Simon; Dipirro, Michael; Eckart, Megan; Sakai, Kazuhiro; Smith, Stephen; Yoon, Wonsik; Bennett, Douglas; Kotsubo, Vincent; Mates, Benjamin; Swetz, Daneil;
2017-01-01
Lynx is an x-ray telescope, one of four large satellite mission concepts currently being studied by NASA to be the next astrophysics flagship mission after WFIRST. One of Lynx's three instruments is an imaging spectrometer consisting of an x-ray microcalorimeter behind an X-ray optic with an angular resolution of 0.5 arc-seconds and approximately 3 sq m of area at 1 keV. This instrument will provide unparalleled diagnostics of distant extended structures and in particular will allow the detailed study of the role of cosmic feedback in the evolution of the Universe. We discuss the design and read-out of the of the array configuration including a number of sub-array options for increasing the capabilities to maximize the scientific return of the Lynx observatory.
The structure of control and data transfer management system for the GAMMA-400 scientific complex
NASA Astrophysics Data System (ADS)
Arkhangelskiy, A. I.; Bobkov, S. G.; Serdin, O. V.; Gorbunov, M. S.; Topchiev, N. P.
2016-02-01
A description of the control and data transfer management system for scientific instrumentation involved in the GAMMA-400 space project is given. The technical capabilities of all specialized equipment to provide the functioning of the scientific instrumentation and satellite support systems are unified in a single structure. Control of the scientific instruments is maintained using one-time pulse radio commands, as well as program commands in the form of 16-bit code words, which are transmitted via onboard control system and scientific data acquisition system. Up to 100 GByte of data per day can be transferred to the ground segment of the project. The correctness of the proposed and implemented structure, engineering solutions and electronic elemental base selection has been verified by the experimental working-off of the prototype of the GAMMA-400 scientific complex in laboratory conditions.
Core to Atmosphere Exploration of Ice Giants: A Uranus Mission Concept Study
NASA Astrophysics Data System (ADS)
Jensema, R. J.; Arias-Young, T. M.; Wilkins, A. N.; Ermakov, A.; Bennett, C.; Dietrich, A.; Hemingway, D.; Klein, V.; Mane, P.; Marr, K. D.; Masterson, J.; Siegel, V.; Stober, K. J.; Talpe, M.; Vines, S. K.; Wetteland, C. J.
2014-12-01
Ice giants remain largely unexplored, as their large distance from the Sun limits both Earth-based observations and spacecraft visits. The significant occurrence of ice giant-sized planets among detected exoplanets presents an impetus to study Uranus to understand planetary formation, dynamics, and evolution. In addition, Uranus is also uniquely interesting, given the large inclination of its rotation axis and magnetospheric configuration. In this work, we design a mission concept that aims to maximize scientific return by measuring Uranus' chemical composition, internal structure, and magnetosphere, the first two being primary indicators of ice giant formation mechanisms. For this study, we analyze the trade space for a Uranus mission constrained by a cost cap of $1B. We discuss the decision making processes behind our choices of the science priorities, instrument suite and orbital configuration. Trade space decisions include a strong onboard instrument suite in lieu of a descent probe, an orbiter instead of a flyby mission, and design constraints on the power and propulsion systems. The mission, CAELUS (Core and Atmospheric Evolution Laboratory for Uranus Science), is designed for an August 2023 launch. Following a 14-year cruise with multiple planetary gravity assists, the spacecraft would begin its science mission, which consists of a series of ten 30-day near-polar orbits around Uranus. The instrument suite would consist of a microwave radiometer, Doppler seismometer, magnetometer, and UV spectrometer. These four instruments, along with a high-gain antenna capable of gravity science, would provide a comprehensive science return that meets the bulk of the scientific objectives of the 2013 NRC Planetary Science Decadal Survey for ice giants, most notably those regarding the chemical composition, interior structure, and dynamo of Uranus. This mission concept was created as part of an educational exercise for the 2014 Planetary Science Summer School at the Jet Propulsion Laboratory.
ERIC Educational Resources Information Center
Lin, Tzung-Jin; Tsai, Chin-Chung
2017-01-01
The purpose of this study was to develop and validate two survey instruments to evaluate high school students' scientific epistemic beliefs and goal orientations in learning science. The initial relationships between the sampled students' scientific epistemic beliefs and goal orientations in learning science were also investigated. A final valid…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-25
... received. Decision: Approved. We know of no instruments of equivalent scientific value to the foreign... received. Decision: Approved. We know of no instruments of equivalent scientific value to the foreign... magnetic fields, which requires a special selection of non-magnetic materials the instrument has to be...
1987-10-01
include Security Classification) Instrumentation for scientific computing in neural networks, information science, artificial intelligence, and...instrumentation grant to purchase equipment for support of research in neural networks, information science, artificail intellignece , and applied mathematics...in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics Contract AFOSR 86-0282 Principal Investigator: Stephen
NASA Astrophysics Data System (ADS)
Bellucci, G.; Saggin, B.; Fonti, S.; Biondi, D.; Cerulli, P.; De Luca, M.; Altieri, F.; Mattana, A.; Alberti, E.; Marzo, G.; Zasova, L.
2007-10-01
The Mars Infrared MApper (MIMA) is a FT-IR miniaturised spectrometer which is being developed for ESA ExoMars Pasteur mission. The Martian Infrared MApper Fourier Spectrometer is designed to provide remote measurements of mineralogy and atmosphere of the scene surrounding a Martian rover and guide it to key targets for detailed in situ measurements by other rover experiments. Among the main scientific objectives of the MIMA instrument are to assist the rover in rock/soils selection for further in-situ investigation and to identify rocks and soils on the Martian surface which provide evidence of past/present biological activity. The instrument is also designed to measure the water vapour abundance and vertical distribution and its diurnal and seasonal variation, dust opacity, optical properties, composition, diurnal and seasonal variation. The instrument is a double pendulum interferometer providing spectra in the 2 - 25 μm wavelength domain with a resolving power of 1000 at 2 μm and 80 at 25 μm. The radiometric performances are SNR > 40 in the near infrared and a NEDe = 0.002 in the thermal region. The instrument design is very compact, with a total mass of 1kg and an average power consumption of 5 W.
NASA Astrophysics Data System (ADS)
Zhang, Qingmin; Deng, Bangjie; Chen, Yuanmiaoliang; Liu, Bochao; Chen, Shaofei; Fan, Jinquan; Feng, Lie; Deng, Haixiao; Liu, Bo; Wang, Dong
2017-10-01
The free electron laser (FEL), as a next-generation light source, is an attractive tool in scientific frontier research because of its advantages of full coherence, ultra-short pulse duration, and controllable polarization. Owing to the demand of real-time bunch diagnosis during FEL experiments, precise nondestructive measurements of the polarization and X-ray energy spectrum using one instrument are preferred. In this paper, such an instrument based on the electron time-of-flight technique is proposed. By considering the complexity and nonlinearity, a numerical model in the framework of Geant4 has been developed for optimization. Taking the Shanghai Soft X-ray FEL user facility as an example, its measurement performances' dependence on the critical parameters was studied systematically, and, finally, an optimal design was obtained, achieving resolutions of 0.5% for the polarization degree and 0.3 eV for the X-ray energy spectrum.
Monte-Carlo background simulations of present and future detectors in x-ray astronomy
NASA Astrophysics Data System (ADS)
Tenzer, C.; Kendziorra, E.; Santangelo, A.
2008-07-01
Reaching a low-level and well understood internal instrumental background is crucial for the scientific performance of an X-ray detector and, therefore, a main objective of the instrument designers. Monte-Carlo simulations of the physics processes and interactions taking place in a space-based X-ray detector as a result of its orbital environment can be applied to explain the measured background of existing missions. They are thus an excellent tool to predict and optimize the background of future observatories. Weak points of a design and the main sources of the background can be identified and methods to reduce them can be implemented and studied within the simulations. Using the Geant4 Monte-Carlo toolkit, we have created a simulation environment for space-based detectors and we present results of such background simulations for XMM-Newton's EPIC pn-CCD camera. The environment is also currently used to estimate and optimize the background of the future instruments Simbol-X and eRosita.
Diana, Esther
2008-01-01
Around the second half of the nineteenth century, the collection of physics-mathematical instruments that Vincenzo Viviani (1622-1703) had bequeathed to the Santa Maria Nuova Hospital of Florence stirred new interest. The process of modernising the hospital was indeed to lead to the progressive alienation of the institution's rich historical patrimony, including the scientific collections. In tracing back the negotiations that led to the sale of the Viviani collection, archive documents have also brought to light the collection inventory, which is now proposed a new to help recount the history of how scientific instruments became museum collectibles in Florence.
Design and Implementation of Data Reduction Pipelines for the Keck Observatory Archive
NASA Astrophysics Data System (ADS)
Gelino, C. R.; Berriman, G. B.; Kong, M.; Laity, A. C.; Swain, M. A.; Campbell, R.; Goodrich, R. W.; Holt, J.; Lyke, J.; Mader, J. A.; Tran, H. D.; Barlow, T.
2015-09-01
The Keck Observatory Archive (KOA), a collaboration between the NASA Exoplanet Science Institute and the W. M. Keck Observatory, serves science and calibration data for all active and inactive instruments from the twin Keck Telescopes located near the summit of Mauna Kea, Hawaii. In addition to the raw data, we produce and provide quick look reduced data for four instruments (HIRES, LWS, NIRC2, and OSIRIS) so that KOA users can more easily assess the scientific content and the quality of the data, which can often be difficult with raw data. The reduced products derive from both publicly available data reduction packages (when available) and KOA-created reduction scripts. The automation of publicly available data reduction packages has the benefit of providing a good quality product without the additional time and expense of creating a new reduction package, and is easily applied to bulk processing needs. The downside is that the pipeline is not always able to create an ideal product, particularly for spectra, because the processing options for one type of target (eg., point sources) may not be appropriate for other types of targets (eg., extended galaxies and nebulae). In this poster we present the design and implementation for the current pipelines used at KOA and discuss our strategies for handling data for which the nature of the targets and the observers' scientific goals and data taking procedures are unknown. We also discuss our plans for implementing automated pipelines for the remaining six instruments.
Emirates Mars Infrared Spectrometer (EMIRS) Overview from the Emirates Mars Mission
NASA Astrophysics Data System (ADS)
Altunaiji, Eman; Edwards, Christopher; Smith, Michael; Christensen, Philip; AlMheiri, Suhail; Reed, Heather
2017-04-01
Emirates Mars Infrared Spectrometer (EMIRS) instrument is one of three scientific instruments aboard the Emirate Mars Mission (EMM), with the name of "Hope". EMM is United Arab Emirates' (UAE) mission to be launched in 2020, with the aim of exploring the dynamics of the atmosphere of Mars on a global scale with sampling on a diurnal and sub-seasonal time-scales. EMM has three scientific instruments selected to provide an improved understanding of circulation and weather in the Martian lower atmosphere as well as the thermosphere and exosphere. The EMIRS instrument is an interferometric thermal infrared spectrometer that is jointly developed by Arizona State University (ASU) and Mohammed Bin Rashid Space Centre (MBRSC), Dubai, UAE. It builds on a long heritage of thermal infrared spectrometers designed, built, and managed, by ASU's Mars Space Flight Facility, including the Thermal Emission Spectrometer (TES), Miniature Thermal Emission Spectrometer (Mini-TES), and the OSIRIS-REx Thermal Emission Spectrometer (OTES). EMIRS operates in the 6-40+ μm range with 5 cm-1 spectral sampling, enabled by a Chemical Vapor-Deposited (CVD) diamond beam splitter and state of the art electronics. This instrument utilizes a 3×3 line array detector and a scan mirror to make high-precision infrared radiance measurements over most of the Martian hemisphere. The EMIRS instrument is optimized to capture the integrated, lower-middle atmosphere dynamics over a Martian hemisphere, using a scan-mirror to make 60 global images per week ( 20 images per orbit) at a resolution of 100-300 km/pixel while requiring no special spacecraft maneuvers.
75 FR 41505 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-16
... for Scientific Review Special Emphasis Panel; Mass Spectrometry Shared Instrumentation Study Section... Instrumentation: Mass Spectrometers. Date: August 5-6, 2010. Time: 8:30 a.m. to 5 p.m. Agenda: To review and...
History of the chemical heritage foundation scientific instrumentation museum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferraro, J. R.; Brame, E. G., Jr.; Chemistry
It all began in March 1990 at the 40th Pittsburgh Conference (PittCon) meeting in the Jacob Javitz Convention Center in New York, New York. Coauthor John R. Ferraro stopped at the Beckman Booth and began discussing with Robert Jarnutowski, at the time an engineer with Beckman Instruments (Fullerton, CA), the impending 50th anniversary of the landmark instrument, the Beckman DU spectrophotometer, in 1991. The thought entered Ferraro's mind that landmark instruments such as this one should be preserved in a museum, Germany, England, and Italy host scientific instrumentation museums.
ExoMars Raman Laser Spectrometer scientific required performances check with a Breadboard
NASA Astrophysics Data System (ADS)
Moral, A.; Díaz, E.; Ramos, G.; Rodríguez Prieto, J. A.; Pérez Canora, C.; Díaz, C.; Canchal, R.; Gallego, P.; Santamaría, P.; Colombo, M.
2013-09-01
The Raman Laser Spectrometer (RLS) is one of the Pasteur Payload instruments, within the ESA's Aurora Exploration Program, ExoMars mission. For being able to verify the achievement of the scientific objectives of the instrument, a Breadboard campaign was developed, for achieving instrument TRL5. Within the Instrument TRL5 Plan, it was required to every unit to develop its own Unit Breadboard, to check their own TRL5 and then to deliver it to System Team to be integrated and tested for finally checks Instrument performances.
Ball-and-Socket Mount for Instruments
NASA Technical Reports Server (NTRS)
Kaelber, E.
1986-01-01
Jaws engage instrument precisely but release it readily. Mounting mechanism holds scientific instrument securely, allows instrument to be oriented, and minimizes conduction of heat to and from instrument. Mechanism also allows quick replacement of instrument.
PFERD Mission: Pluto Flyby Exploration/Research Design
NASA Technical Reports Server (NTRS)
Lemke, Gary; Zayed, Husni; Herring, Jason; Fuehne, Doug; Sutton, Kevin; Sharkey, Mike
1990-01-01
The Pluto Flyby Exploration/Research Design (PFERD) mission will consist of a flyby spacecraft to Pluto and its satellite, Charon. The mission lifetime is expected to be 18 years. The Titan 4 with a Centaur upper stage will be utilized to launch the craft into the transfer orbit. The proposal was divided into six main subsystems: (1) scientific instrumentation; (2) command, communications, and control: (3) altitude and articulation control; (4) power and propulsion; (5) structures and thermal control; and (6) mission management and costing. Tradeoff studies were performed to optimize all factors of design, including survivability, performance, cost, and weight. Problems encountered in the design are also presented.
sCMOS detector for imaging VNIR spectrometry
NASA Astrophysics Data System (ADS)
Eckardt, Andreas; Reulke, Ralf; Schwarzer, Horst; Venus, Holger; Neumann, Christian
2013-09-01
The facility Optical Information Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the scientific results of the institute of leading edge instruments and focal plane designs for EnMAP VIS/NIR spectrograph. EnMAP (Environmental Mapping and Analysis Program) is one of the selected proposals for the national German Space Program. The EnMAP project includes the technological design of the hyper spectral space borne instrument and the algorithms development of the classification. The EnMAP project is a joint response of German Earth observation research institutions, value-added resellers and the German space industry like Kayser-Threde GmbH (KT) and others to the increasing demand on information about the status of our environment. The Geo Forschungs Zentrum (GFZ) Potsdam is the Principal Investigator of EnMAP. DLR OS and KT were driving the technology of new detectors and the FPA design for this project, new manufacturing accuracy and on-chip processing capability in order to keep pace with the ambitious scientific and user requirements. In combination with the engineering research, the current generations of space borne sensor systems are focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large swath and high spectral resolution with intelligent synchronization control, fast-readout ADC chains and new focal-plane concepts open the door to new remote-sensing and smart deep space instruments. The paper gives an overview over the detector verification program at DLR on FPA level, new control possibilities for sCMOS detectors in global shutter mode and key parameters like PRNU, DSNU, MTF, SNR, Linearity, Spectral Response, Quantum Efficiency, Flatness and Radiation Tolerance will be discussed in detail.
Buchholz, Bernhard; Kallweit, Sören; Ebert, Volker
2016-01-01
Instrument operation in harsh environments often significantly impacts the trust level of measurement data. While commercial instrument manufacturers clearly define the deployment conditions to achieve trustworthy data in typical standard applications, it is frequently unavoidable in scientific field applications to operate instruments outside these commercial standard application specifications. Scientific instrumentation, however, is employing cutting-edge technology and often highly optimized but also lacks long-term field tests to assess the field vs. laboratory performance. Recently, we developed the Selective Extractive Laser Diode Hygrometer (SEALDH-II), which addresses field and especially airborne applications as well as metrological laboratory validations. SEALDH-II targets reducing deviations between airborne hygrometers (currently up to 20% between the most advanced hygrometers) with a new holistic, internal control and validation concept, which guarantees the transfer of the laboratory performance into a field scenario by capturing more than 80 instrument internal “housekeeping” data to nearly perfectly control SEALDH-II’s health status. SEALDH-II uses a calibration-free, first principles based, direct Tuneable Diode Laser Absorption Spectroscopy (dTDLAS) approach, to cover the entire atmospheric humidity measurement range from about 3 to 40,000 ppmv with a calculated maximum uncertainty of 4.3% ± 3 ppmv. This is achieved not only by innovations in internal instrument monitoring and design, but also by active control algorithms such as a high resolution spectral stabilization. This paper describes the setup, working principles, and instrument stabilization, as well as its precision validation and long-term stress tests in an environmental chamber over an environmental temperature and humidity range of ΔT = 50 K and ΔRH = 80% RH, respectively. PMID:28042844
Development and use of an instrument to measure scientific inquiry and related factors
NASA Astrophysics Data System (ADS)
Dunbar, Terry Frank
The use of the scientific inquiry method of teaching science was investigated in one district's elementary schools. The study generated data directly from Albuquerque Public Schools fourth- and fifth-grade teachers through a mail-out survey and through observation. Two forms of an inquiry evaluation research instrument (Elementary Science Inquiry Survey - ESIS) were created. The ESIS-A is a classroom observation tool. The ESIS-B is a survey questionnaire designed to collect information from teachers. The study was designed first to establish reliability and validity for both forms of the instrument. The study made use of multiple regression and exploratory factor analysis. Sources used to establish the instruments' reliability and validity included: (1) Input from an international panel (qualitative analysis of comments sent by raters and quantitative analysis of numerical ratings sent by raters); (2) Cronbach's alpha; (3) Results of factor analysis; (4) Survey respondents' comments (qualitative analysis); (5) Teacher observation data. Cronbach's alpha for the data set was .8955. Inquiry practices were reported to occur between twice per week and three times per week. Teachers' comments regarding inquiry were reported. The ESIS was used to collect inquiry self-report data and teacher background data. The teacher background data included teacher science knowledge and information about their standards awareness and implementation. The following teacher knowledge factors were positively correlated with inquiry use: semesters of college science, science workshops taken, conducted scientific research, and SIMSE (NSF institute) participation. The following standards awareness and implementation factors were positively correlated with inquiry use: familiarity with the National Science Education Standards, familiarity with New Mexico science standards, state or national standards as a curriculum selection factor, student interest as a curriculum selection factor, and "no limits" indicated as an inquiry-limiting factor. The following eight variables (all inquiry-limiting factors) were negatively correlated with inquiry use: available instructional materials, student prior knowledge/reading level, lack of experience with inquiry, not enough time, unsuccessful previous attempts, doubts about students' capability, insufficient time and support, and insufficient background in science.
NASA Astrophysics Data System (ADS)
Qadi, A.; Cloutis, E.; Samson, C.; Whyte, L.; Ellery, A.; Bell, J. F.; Berard, G.; Boivin, A.; Haddad, E.; Lavoie, J.; Jamroz, W.; Kruzelecky, R.; Mack, A.; Mann, P.; Olsen, K.; Perrot, M.; Popa, D.; Rhind, T.; Sharma, R.; Stromberg, J.; Strong, K.; Tremblay, A.; Wilhelm, R.; Wing, B.; Wong, B.
2015-05-01
The Canadian Space Agency (CSA), through its Analogue Missions program, supported a microrover-based analogue mission designed to simulate a Mars rover mission geared toward identifying and characterizing methane emissions on Mars. The analogue mission included two, progressively more complex, deployments in open-pit asbestos mines where methane can be generated from the weathering of olivine into serpentine: the Jeffrey mine deployment (June 2011) and the Norbestos mine deployment (June 2012). At the Jeffrey Mine, testing was conducted over 4 days using a modified off-the-shelf Pioneer rover and scientific instruments including Raman spectrometer, Picarro methane detector, hyperspectral point spectrometer and electromagnetic induction sounder for testing rock and gas samples. At the Norbestos Mine, we used the research Kapvik microrover which features enhanced autonomous navigation capabilities and a wider array of scientific instruments. This paper describes the rover operations in terms of planning, deployment, communication and equipment setup, rover path parameters and instrument performance. Overall, the deployments suggest that a search strategy of “follow the methane” is not practical given the mechanisms of methane dispersion. Rather, identification of features related to methane sources based on image tone/color and texture from panoramic imagery is more profitable.
Intermediate outcomes of a tribal community public health infrastructure assessment.
English, Kevin C; Wallerstein, Nina; Chino, Michelle; Finster, Carolyn E; Rafelito, Alvin; Adeky, Sarah; Kennedy, Marianna
2004-01-01
The purpose of this collaborative participatory project was to assess the strengths and needs of a tribal community as part of a larger public health capacity building program. Key project partners included: the Ramah Band of Navajo Indians, the Albuquerque Area Indian Health Board, the University of New Mexico Masters in Public Health Program, and the University of Nevada, Las Vegas, American Indian Research and Education Center. Principal intervention steps entailed: 1) relationship-building activities among tribal programs and between the Tribe and the scientific community; 2) an orientation to public health; 3) a comprehensive public health infrastructure assessment, utilizing a standardized CDC instrument; and 4) a prioritization of identified needs. The direct outcome was the development and beginning implementation of a community specific public health strategic action plan. Broader results included: 1) increased comprehension of public health within the Tribe; 2) the creation of a community public health task force; 3) the design of a tribally applicable assessment instrument; and 4) improved collaboration between the Tribe and the scientific community. This project demonstrated that public health assessment in tribal communities is feasible and valuable. Further, the development of a tribally applicable instrument highlights a significant tribal contribution to research and assessment.
Translations on Eastern Europe, Scientific Affairs, Number 535
1977-02-08
1976) 1 Bulgarian Scientific Instruments Used in Space Research ( Kiril Serefimov; VECHERNI NOVENI, 8 Jan 77) 7 New Nuclear...Dimitur Gavrilov; KOOPERATIVNO SELO, 13 Jan 77) 12 Development in Wheat Varieties Reviewed (Pavel Popov, Dimitur Dimitrov ; RABOTNICHESKO DELO...BULGARIA BULGARIAN SCIENTIFIC INSTRUMENTS USED IN SPACE RESEARCH Sofia VECHERNI NOVINI in Bulgarian 8 Jan 77 P ^ [Article by Professor Doctor Kiril
25 Years of Atmospheric Science with the Balloon-borne Limb Sounder MIPAS-B
NASA Astrophysics Data System (ADS)
Oelhaf, H.; Friedl-Vallon, F.; Wetzel, G.; Ebersoldt, A.; Hoepfner, M.; Kleinert, A.; Maucher, G.; Maurer, K.; Nordmeyer, H.; Piesch, C.; Ruhnke, R.; Sartorius, C.; Sinnhuber, B. M.; Orphal, J.; Fischer, H.
2017-12-01
MIPAS-B (Michelson Interferometer for Passive Atmospheric Sounding - Balloon) is a balloon-borne limb-emission sounder for atmospheric research. The heart of the instrument is a Fourier spectrometer that covers the mid-infrared spectral range (4 to 14 µm) operating at a temperature of approximately 215 K. Essential for this application is the sophisticated line of sight stabilization system, which is based on an inertial navigation system and supplemented with a star camera reference system. The major scientific benefit of the instrument is the simultaneous detection of complete trace gas families in the stratosphere, without restrictions concerning time of the day and viewing directions. MIPAS-B is an in-house development that was started in the mid-eighties. It initially served as proof of concept for the proposed space borne MIPAS instrument that was later realized and operated on the ESA satellite ENVISAT between 2002 and 2012. But actually it soon became obvious that operation from stratospheric balloons offered a number of benefits to address dedicated scientific questions in an optimal way. MIPAS-B was operated in two versions during 24 flights at tropical, mid-latitudinal and arctic latitudes between 1989 and 2014 covering the `golden era' of ozone loss research and the full operational period of ENVISAT. This paper describes briefly specifications, design considerations, technological upgrades and the characterization of the instrument. Evolving skills with respect to its remote operation from ground and to data analysis in the course of the 25 years are outlined. Scientific applications in the field of atmospheric research, spectroscopy and satellite validation are highlighted with a focus on recent research concerning bromine nitrate and age of air.
Hubble Space Telescope on-line telemetry archive for monitoring scientific instruments
NASA Astrophysics Data System (ADS)
Miebach, Manfred P.
2002-12-01
A major milestone in an effort to update the aging Hubble Space Telescope (HST) ground system was completed when HST operations were switched to a new ground system, a project called "Vision 2000 Control Center System CCS)", at the time of the third Servicing Mission in December 1999. A major CCS subsystem is the Space Telescope Engineering Data Store, the design of which is based on modern Data Warehousing technology. In fact, the Data Warehouse (DW) as implemented in the CCS Ground System that operates and monitors the Hubble Space Telescope represents, the first use of a commercial Data Warehouse to manage engineering data. By the end of February 2002, the process of populating the Data Warehouse with HST historical telemetry data had been completed, providing access to HST engineering data for a period of over 12 years with a current data volume of 2.8 Terabytes. This paper describes hands-on experience from an end user perspective, using the CCS system capabilities, including the Data Warehouse as an HST engineering telemetry archive. The Engineering Team at the Space Telescope Science Institute is using HST telemetry extensively for monitoring the Scientific Instruments, in particular for · Spacecraft anomaly resolutions · Scientific Instrument trending · Improvements of Instrument operational efficiency The overall idea is to maximize science output of the space observatory. Furthermore, the CCS provides a powerful feature to build, save, and recall real-time display pages customized to specific subsystems and operational scenarios. Engineering teams are using the real-time monitoring capabilities intensively during Servicing Missions and real time commanding to handle anomaly situations, while the Flight Operations Team (FOT) monitors the spacecraft around the clock.
The Use of Newspaper Articles as a Tool to Develop Critical Thinking in Science Classes
NASA Astrophysics Data System (ADS)
Oliveras, Begoña; Márquez, Conxita; Sanmartí, Neus
2013-04-01
The aim of this research is to identify the difficulties experienced by secondary school students (aged 15-16) with the critical reading of newspaper articles with scientific content. Two newspaper critical reading activities in relation to the study of various scientific contents were designed and carried out in two schools (61 students in total), one with a student population from a medium to high social and economic bracket and the other with students from a medium to low social and economic bracket. These activities were designed taking into account the phases of the reading process: before, during and after reading. In order to analyse the difficulties 'Elements of science critical reading' were identified on the basis of the 'Elements of reasoning' of Paul and Elder and the categories proposed by Bartz C.R.I.T.I.C. questionnaire and a scale was drawn up. The results show that the activities designed were useful in helping students to read critically. We also rated very positively the instrument created to assess the students' answers: the scale based on the performance indicators of Paul and Elder. This instrument enabled us to detect the aspects of critical thinking where students have the most difficulties: identifying the writer's purpose and looking for evidence in a text. It was also shown that the stance taken in the articles also had an influence on the results.
1985-07-01
This photograph shows the Instrument Pointing System (IPS) for Spacelab-2 being deployed in the cargo bay of the Space Shuttle Orbiter Challenger. The European Space Agency (ESA) developed this irnovative pointing system for the Spacelab program. Previously, instruments were pointed toward particular celestial objects or areas by maneuvering the Shuttle to an appropriate attitude. The IPS could aim instruments more accurately than the Shuttle and kept them fixed on a target as the Shuttle moved. On the first pallet, three solar instruments and one atmospheric instrument were mounted on the IPS. Spacelab-2 was the first pallet-only mission. One of the goals of the mission was to verify that the pallets' configuration was satisfactory for observations and research. Except for two biological experiments and an experiment that uses ground-based instruments, the Spacelab-2 scientific instruments needed direct exposure to space. The Spacelab-2 mission was designed to capitalize on the Shuttle-Spacelab capabilities to carry very large instruments, launch and retrieve satellites, and point several instruments independently with accuracy and stability. Spacelab-2 (STS-51F, 19th Shuttle mission) was launched on July 29, 1985 aboard the Space Shuttle Orbiter Challenger. The Marshall Space Flight Center had overall management responsibilities of the Spacelab missions.
1985-07-01
This photograph shows the Instrument Pointing System (IPS) for Spacelab-2 being deployed in the cargo bay of the Space Shuttle Orbiter Challenger. The European Space Agency (ESA) developed this irnovative pointing system for the Spacelab program. Previously, instruments were pointed toward particular celestial objects or areas by maneuvering the Shuttle to an appropriate attitude. The IPS could aim instruments more accurately than the Shuttle and kept them fixed on a target as the Shuttle moved. On the first pallet, three solar instruments and one atmospheric instrument were mounted on the IPS. Spacelab-2 was the first pallet-only mission. One of the goals of the mission was to verify that the pallets' configuration was satisfactory for observations and research. Except for two biological experiments and an experiment that used ground-based instruments, the Spacelab-2 scientific instruments needed direct exposure to space. The Spacelab-2 mission was designed to capitalize on the Shuttle-Spacelab capabilities to carry very large instruments, launch and retrieve satellites, and point several instruments independently with accuracy and stability. Spacelab-2 (STS-51F, 19th Shuttle mission) was launched on July 29, 1985 aboard the Space Shuttle Orbiter Challenger. The Marshall Space Flight Center had overall management responsibilities of the Spacelab missions.
Scientific and Technical Support for the Galileo Net Flux Radiometer Experiment
NASA Technical Reports Server (NTRS)
Sromovsky, Lawrence A.
1997-01-01
This report describes work in support of the Galileo Net Flux Radiometer (NFR), an instrument mounted on the Galileo probe, a spacecraft designed for entry into and direct measurements of Jupiter's atmosphere. Tasks originally proposed for the post launch period are briefly as follows: attend and support PSG (Project Science Group) and other project science meetings; support in-flight checkouts; maintain and keep safe the spare instrument and GSE (Ground Support Equipment); organize and maintain documentation; finish NFR calibration measurements, documentation, and analysis; characterize and diagnose instrument anomalies; develop descent data analysis tools; and science data analysis and publication. Because we had the capability to satisfy a project support need we also subsequently proposed and were funded to make ground- based observations of Jupiter during the period surrounding the Galileo arrival at Jupiter, using the Swedish Solar Telescope at La Palma, Canary Islands. The following section (11) provides background information on the NFR instrument.
NASA Astrophysics Data System (ADS)
Widowati, A.; Anjarsari, P.; Zuhdan, K. P.; Dita, A.
2018-03-01
The challenges of the 21st century require innovative solutions. Education must able to make an understanding of science learning that leads to the formation of scientific literacy learners. This research was conducted to produce the prototype as science worksheet based on Nature of Science (NoS) within inquiry approach and to know the effectiveness its product for developing scientific literacy. This research was the development and research design, by pointing to Four D models and Borg & Gall Model. There were 4 main phases (define, design, develop, disseminate) and additional phases (preliminary field testing, main product revision, main field testing, and operational product revision). Research subjects were students of the junior high school in Yogyakarta. The instruments used included questionnaire sheet product validation and scientific literacy test. For the validation data were analyzed descriptively. The test result was analyzed by an N-gain score. The results showed that the appropriateness of worksheet applying NoS within inquiry-based learning approach is eligible based on the assessment from excellent by experts and teachers, students’ scientific literacy can improve high category of the N-gain score at 0.71 by using student worksheet with Nature of Science (NoS) within inquiry approach.
A large-stroke cryogenic imaging FTS system for SPICA-Safari
NASA Astrophysics Data System (ADS)
Jellema, Willem; van Loon, Dennis; Naylor, David; Roelfsema, Peter
2014-08-01
The scientific goals of the far-infrared astronomy mission SPICA challenge the design of a large-stroke imaging FTS for Safari, inviting for the development of a new generation of cryogenic actuators with very low dissipation. In this paper we present the Fourier Transform Spectrometer (FTS) system concept, as foreseen for SPICA-Safari, and we discuss the technical developments required to satisfy the instrument performance.
NASA Technical Reports Server (NTRS)
Cohen, Tamar E.; Lees, David S.; Deans, Matthew C.; Lim, Darlene S. S.; Lee, Yeon Jin Grace
2018-01-01
Exploration Ground Data Systems (xGDS) supports rapid scientific decision making by synchronizing video in context with map, instrument data visualization, geo-located notes and any other collected data. xGDS is an open source web-based software suite developed at NASA Ames Research Center to support remote science operations in analog missions and prototype solutions for remote planetary exploration. (See Appendix B) Typical video systems are designed to play or stream video only, independent of other data collected in the context of the video. Providing customizable displays for monitoring live video and data as well as replaying recorded video and data helps end users build up a rich situational awareness. xGDS was designed to support remote field exploration with unreliable networks. Commercial digital recording systems operate under the assumption that there is a stable and reliable network between the source of the video and the recording system. In many field deployments and space exploration scenarios, this is not the case - there are both anticipated and unexpected network losses. xGDS' Video Module handles these interruptions, storing the available video, organizing and characterizing the dropouts, and presenting the video for streaming or replay to the end user including visualization of the dropouts. Scientific instruments often require custom or expensive software to analyze and visualize collected data. This limits the speed at which the data can be visualized and limits access to the data to those users with the software. xGDS' Instrument Module integrates with instruments that collect and broadcast data in a single snapshot or that continually collect and broadcast a stream of data. While seeing a visualization of collected instrument data is informative, showing the context for the collected data, other data collected nearby along with events indicating current status helps remote science teams build a better understanding of the environment. Further, sharing geo-located, tagged notes recorded by the scientists and others on the team spurs deeper analysis of the data.
Selecting and implementing scientific objectives. [for Voyager 1 and 2 planetary encounters
NASA Technical Reports Server (NTRS)
Miner, E. D.; Stembridge, C. H.; Doms, P. E.
1985-01-01
The procedures used to select and implement scientific objectives for the Voyager 1 and 2 planetary encounters are described. Attention is given to the scientific tradeoffs and engineering considerations must be addressed at various stages in the mission planning process, including: the limitations of ground and spacecraft communications systems, ageing of instruments in flight, and instrument calibration over long distances. The contribution of planetary science workshops to the definition of scientific objectives for deep space missions is emphasized.
Fortunato, Santo; Bergstrom, Carl T; Börner, Katy; Evans, James A; Helbing, Dirk; Milojević, Staša; Petersen, Alexander M; Radicchi, Filippo; Sinatra, Roberta; Uzzi, Brian; Vespignani, Alessandro; Waltman, Ludo; Wang, Dashun; Barabási, Albert-László
2018-03-02
Identifying fundamental drivers of science and developing predictive models to capture its evolution are instrumental for the design of policies that can improve the scientific enterprise-for example, through enhanced career paths for scientists, better performance evaluation for organizations hosting research, discovery of novel effective funding vehicles, and even identification of promising regions along the scientific frontier. The science of science uses large-scale data on the production of science to search for universal and domain-specific patterns. Here, we review recent developments in this transdisciplinary field. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Aqua's First 10 Years: An Overview
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.
2012-01-01
NASA's Aqua spacecraft was launched at 2:55 a.m. on May 4, 2002, from Vandenberg Air Force Base in California, into a near-polar, sun-synchronous orbit at an altitude of 705 km. Aqua carries six Earth-observing instruments to collect data on water in all its forms (liquid, vapor, and solid) and on a wide variety of additional Earth system variables (Parkinson 2003). The design lifetime for Aqua's prime mission was 6 years, and Aqua is now well into its extended mission, approaching 10 years of successful operations. The Aqua data have been used for hundreds of scientific studies and continue to be used for scientific discovery and numerous practical applications.
Results of NASA/NOAA HES Trade Studies
NASA Technical Reports Server (NTRS)
Susskind, Joel
2011-01-01
This slide presentation reviews the trade studies that were done for the Hyperspectral Environmental Suite (HES). The goal of the trade studies was to minimize instrument cost and risk while producing scientifically useful products. Three vendors were selected to perform the trade study, and were to conduct 11 studies, with the first study a complete wish list of things that scientists would like from GEO orbit to the 11th study which was for a Reduced Accommodation Sounder (RAS) which would still result in useful scientific products, within constrains compatible with flight on GEOS-R. The RAS's from each vendor and one other HES sounders designs are reviewed.
The ISEE-1 and ISEE-2 plasma wave investigation
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Scarf, F. L.; Fredricks, R. W.; Smith, E. J.
1978-01-01
The ISEE-1 and ISEE-2 plasma wave experiments are designed to provide basic information on wave-particle interactions in the earth's magnetosphere and in the solar wind. The ISEE-1 plasma wave instrument uses three electric dipole antennas with lengths of 215, 73.5 and 0.61 m for electric field measurements, and a triaxial search coil antenna for magnetic field measurements. The ISEE-2 instrument uses two electric dipole antennas with lengths of 30 and 0.61 m for electric field measurements and a single-axis search coil antenna for magnetic field measurements. The primary scientific objectives of the experiments are described, including the resolution of space-time relationships of plasma wave phenomena and VLBI studies. The instrumentation is described, with emphasis on the antennas and the electronics.
Science Results From The ARCADE Open-Aperture Cryogenic Balloon Payload
NASA Technical Reports Server (NTRS)
Kogut, Alan J.
2010-01-01
The Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE) is a balloon-borne instrument to measure the frequency spectrum of the cosmic microwave background and diffuse Galactic foregrounds at centimeter wavelengths. ARCADE greatly reduces measurement uncertainties compared to previous balloon-borne or ground-based instrument using a double-nulled design that features fully cryogenic optics with no windows between the atmosphere and the 2.7 K instrument. A four-hour flight in 2006 achieved sensitivity comparable to the COBE/FIRAS satellite measurement while providing new insights for emission ranging from spinning dust in the interstellar medium to an unexpectedly bright extragalactic radio background. I will discuss scientific results from the ARCADE program and implications of the ARCADE cold optics for millimeter and sub-mm astronomy.
AERONET's Development and Contributions through Two Decades of Aerosol Research
NASA Astrophysics Data System (ADS)
Holben, B. N.
2016-12-01
The name Brent Holben has been synonymous with AERONET since it's inception nearly two and a half decades ago. Like most scientific endeavors, progress relies on collaboration, persistence and the occasional good idea at the right time. And so it is with AERONET. I will use this opportunity to trace the history of AERONET's development and the scientific achievements that we, as a community, have developed and profited from in our research and understanding of aerosols, describe measurements from this simple instrument applied on a grand scale that created new research opportunities and most importantly acknowledge those that have been and continue to be key in AERONET contributions to aerosol science. Born from a need to remove atmospheric effects in remotely sensed data in the 1980's, molded at a confluence of ideas and shaped as a public domain database, the program has grown from a prototype instrument in 1992 designed to routinely monitor biomass burning aerosol optical depth to over 600 globally distributed sites providing near real-time aerosol properties for satellite validation, assimilation in models and access for numerous research projects. Although standardization and calibration are fundamental elements for scientific success, development for the scientific needs of the community drive new approaches for reprocessing archival data and making new measurements. I'll discuss these and glimpse into the future for AERONET.
NASA Astrophysics Data System (ADS)
Corrie, Brian; Zimmerman, Todd
Scientific research is fundamentally collaborative in nature, and many of today's complex scientific problems require domain expertise in a wide range of disciplines. In order to create research groups that can effectively explore such problems, research collaborations are often formed that involve colleagues at many institutions, sometimes spanning a country and often spanning the world. An increasingly common manifestation of such a collaboration is the collaboratory (Bos et al., 2007), a “…center without walls in which the nation's researchers can perform research without regard to geographical location — interacting with colleagues, accessing instrumentation, sharing data and computational resources, and accessing information from digital libraries.” In order to bring groups together on such a scale, a wide range of components need to be available to researchers, including distributed computer systems, remote instrumentation, data storage, collaboration tools, and the financial and human resources to operate and run such a system (National Research Council, 1993). Media Spaces, as both a technology and a social facilitator, have the potential to meet many of these needs. In this chapter, we focus on the use of scientific media spaces (SMS) as a tool for supporting collaboration in scientific research. In particular, we discuss the design, deployment, and use of a set of SMS environments deployed by WestGrid and one of its collaborating organizations, the Centre for Interdisciplinary Research in the Mathematical and Computational Sciences (IRMACS) over a 5-year period.
The recalibration of the IUE scientific instrument
NASA Technical Reports Server (NTRS)
Imhoff, Catherine L.; Oliversen, Nancy A.; Nichols-Bohlin, Joy; Casatella, Angelo; Lloyd, Christopher
1988-01-01
The IUE instrument was recalibrated because of long time-scale changes in the scientific instrument, a better understanding of the performance of the instrument, improved sets of calibration data, and improved analysis techniques. Calibrations completed or planned include intensity transfer functions (ITF), low-dispersion absolute calibrations, high-dispersion ripple corrections and absolute calibrations, improved geometric mapping of the ITFs to spectral images, studies to improve the signal-to-noise, enhanced absolute calibrations employing corrections for time, temperature, and aperture dependence, and photometric and geometric calibrations for the FES.
2014-05-12
CAPE CANAVERAL, Fla. – NASA's International Space Station-RapidScat scatterometer instrument waits to be removed from the truck that delivered it to the Space Station Processing Facility at Kennedy Space Center in Florida. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
2014-05-12
CAPE CANAVERAL, Fla. – A truck carrying NASA's International Space Station-RapidScat scatterometer instrument arrives outside the Space Station Processing Facility at Kennedy Space Center in Florida. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
2014-05-12
CAPE CANAVERAL, Fla. – The components of NASA's International Space Station-RapidScat scatterometer instrument rest side by side after removal of their shipping cover inside Kennedy Space Center's Space Station Processing Facility. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
2014-05-12
CAPE CANAVERAL, Fla. – A component of NASA's International Space Station-RapidScat scatterometer instrument is moved via forklift into the Space Station Processing Facility at Kennedy Space Center in Florida. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
2014-05-12
CAPE CANAVERAL, Fla. – Part of NASA's International Space Station-RapidScat scatterometer instrument is revealed after removal of its shipping container inside Kennedy Space Center's Space Station Processing Facility. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
2014-05-12
CAPE CANAVERAL, Fla. – The components of NASA's International Space Station-RapidScat scatterometer instrument are moved into a laboratory inside Kennedy Space Center's Space Station Processing Facility. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
2014-05-12
CAPE CANAVERAL, Fla. – Part of NASA's International Space Station-RapidScat scatterometer instrument is visible inside its protective enclosure as it arrives at the Space Station Processing Facility at Kennedy Space Center in Florida. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
2014-05-12
CAPE CANAVERAL, Fla. – A component of NASA's International Space Station-RapidScat scatterometer instrument is moved via forklift into the Space Station Processing Facility at Kennedy Space Center in Florida. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
2014-05-12
CAPE CANAVERAL, Fla. – A component of NASA's International Space Station-RapidScat scatterometer instrument is removed from a truck at the Space Station Processing Facility at Kennedy Space Center in Florida. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
2014-05-12
CAPE CANAVERAL, Fla. – A component of NASA's International Space Station-RapidScat scatterometer instrument is removed from the truck that delivered it to the Space Station Processing Facility at Kennedy Space Center in Florida. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
2014-05-12
CAPE CANAVERAL, Fla. – The components of NASA's International Space Station-RapidScat scatterometer instrument arrive at the Space Station Processing Facility at Kennedy Space Center in Florida. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
A solar diameter metrology measurement: the Picard microsatellite program
NASA Astrophysics Data System (ADS)
Damé, Luc; Brun, Jean-Francis; Cugnet, David; Derrien, Marc; Leroy, Claude; Meftah, Mustapha; Meissonnier, Mireille; Porteneuve, Jacques
2017-11-01
The PICARD microsatellite mission will provide 3 to 4 years simultaneous measurements of the solar diameter, differential rotation and solar constant to investigate the nature of their relations and variabilities. The major instrument, SODISM, is a whole Sun imaging telescope of Ø110 mm which will deliver an absolute measure (better than 4 mas) of the solar diameter and solar shape. Now in Phase B, PICARD is expected to be launched by 2005. We recall the scientific goals linked to the diameter measurement with interest for Earth Climate, Space Weather and Helioseismology, present the instrument optical concept and design, and give a brief overview of the program aspects.
NASA Technical Reports Server (NTRS)
1972-01-01
The selection and definition of candidate experiments and the associated experiment instrumentation requirements are described. Information is presented that addresses the following study objectives: (1) determine specific research and technology needs in the comm/nav field through a survey of the scientific/technical community; (2) develop manned low earth orbit space screening criteria and compile lists of potential candidate experiments; (3) in Blue Book format, define and describe selected candidate experiments in sufficient detail to develop laboratory configuration designs and layouts; and (4) develop experiment time phasing criteria and recommend a payload for sortie can/early laboratory missions.
NASA Astrophysics Data System (ADS)
Teague, Kelly K.; Smith, G. Louis; Priestley, Kory; Lukashin, Constantine; Roithmayr, Carlos
2012-09-01
Five CERES scanning radiometers have been flown to date. The Proto-Flight Model flew aboard the Tropical Rainfall Measurement Mission spacecraft in November 1997. Two CERES instruments, Flight Models (FM) 1 and 2, are aboard the Terra spacecraft, which was launched in December 1999. Two more CERES instruments, FM-3 and FM-4, are on the Aqua spacecraft, which was placed in orbit in May 2002. These instruments continue to operate after providing over a decade of Earth Radiation Budget data. The CERES FM-5 instrument, onboard the Suomi-NPP spacecraft, launched in October 2011. The CERES FM- 6 instrument is manifested on the JPPS-1 spacecraft to be launched in December 2016. A successor to these instruments is presently in the definition stage. This paper describes the evolving role of flight software in the operation of these instruments to meet the Science objectives of the mission and also the ability to execute supplemental tasks as they evolve. In order to obtain and maintain high accuracy in the data products from these instruments, a number of operational activities have been developed and implemented since the instruments were originally designed and placed in orbit. These new activities are possible because of the ability to exploit and modify the flight software, which operates the instruments. The CERES Flight Software interface was designed to allow for on-orbit modification, and as such, constantly evolves to meet changing needs. The purpose of this paper is to provide a brief overview of modifications which have been developed to allow dedicated targeting of specific geographic locations as the CERES sensor flies overhead on its host spacecraft. This new observing strategy greatly increases the temporal and angular sampling for specific targets of high scientific interest.
Lessons Learned from the Hubble Space Telescope (HST) Contamination Control Program
NASA Technical Reports Server (NTRS)
Hansen, Patricia A.; Townsend, Jacqueline A.; Hedgeland, Randy J.
2004-01-01
Over the past two decades, the Hubble Space Telescope (HST) Contamination Control Program has evolved from a ground-based integration program to a space-based science-sustaining program. The contamination controls from the new-generation Scientific Instruments and Orbital Replacement Units were incorporated into the HST Contamination Control Program to maintain scientific capability over the life of the telescope. Long-term on-orbit scientific data has shown that these contamination controls implemented for the instruments, Servicing Mission activities (Orbiter, Astronauts, and mission), and on-orbit operations successfully protected the HST &om contamination and the instruments from self-contamination.
Lessons Learned from the Hubble Space Telescope (HST) Contamination Control Program
NASA Technical Reports Server (NTRS)
Hansen, Patricia A.; Townsend, Jacqueline A.; Hedgeland, Randy J.
2004-01-01
Over the past two decades, the Hubble Space Telescope (HST) Contamination Control Program has evolved from a ground-based integration program to a space-based science-sustaining program. The contamination controls from the new-generation Scientific Instruments and Orbital Replacement Units were incorporated into the HST Contamination Control Program to maintain scientific capability over the life of the telescope. Long-term on-orbit scientific data has shown that these contamination controls implemented for the instruments, Servicing Mission activities (Orbiter, Astronauts, and mission), and on-orbit operations successfully protected the HST from contamination and the instruments from self-contamination.
Critical thinking in nursing: Scoping review of the literature.
Zuriguel Pérez, Esperanza; Lluch Canut, Maria Teresa; Falcó Pegueroles, Anna; Puig Llobet, Montserrat; Moreno Arroyo, Carmen; Roldán Merino, Juan
2015-12-01
This article seeks to analyse the current state of scientific knowledge concerning critical thinking in nursing. The methodology used consisted of a scoping review of the main scientific databases using an applied search strategy. A total of 1518 studies published from January 1999 to June 2013 were identified, of which 90 met the inclusion criteria. The main conclusion drawn is that critical thinking in nursing is experiencing a growing interest in the study of both its concepts and its dimensions, as well as in the development of training strategies to further its development among both students and professionals. Furthermore, the analysis reveals that critical thinking has been investigated principally in the university setting, independent of conceptual models, with a variety of instruments used for its measurement. We recommend (i) the investigation of critical thinking among working professionals, (ii) the designing of evaluative instruments linked to conceptual models and (iii) the identification of strategies to promote critical thinking in the context of providing nursing care. © 2014 Wiley Publishing Asia Pty Ltd.
IAL SPACE: A test laboratory for the ISO cryogenic payload
NASA Technical Reports Server (NTRS)
Cucchiaro, A.; Henrist, M.; Macau, J. P.; Ninane, N.; Blanpain, R.
1990-01-01
The ESA Infrared Space Observatory (ISO) satellite is a 3 axes pointed platform designed to make accurate pointed observations of astronomical objects and sources in the wavelength range between 2.5 and 200 microns. ISO is composed of a service module and a payload module which is a large cylindrical vacuum vessel. The vessel is in fact a cryostat (capacity of 2250 l of liquid He II) which contains the telescope and the four focal scientific instruments. The latter being cooled up to a temperature less than 4 K. The qualification of the payload requires the measurement respectively of: the image quality of the telescope through wave front error (WFE) measurements; and the optical alignment of the scientific instruments with respect to the telescope axis and the telescope focus, and this under cryogenic conditions. Consequently, since 1988, the FOCAL 5 IAL Space facility has been upgraded in order to perform the cryogenic optical tests of the ISO optical subsystems.
NASA Astrophysics Data System (ADS)
France, Kevin; Hoadley, Keri; Fleming, Brian T.; Kane, Robert; Nell, Nicholas; Beasley, Matthew; Green, James C.
2016-03-01
NASA’s suborbital program provides an opportunity to conduct unique science experiments above Earth’s atmosphere and is a pipeline for the technology and personnel essential to future space astrophysics, heliophysics, and atmospheric science missions. In this paper, we describe three astronomy payloads developed (or in development) by the Ultraviolet Rocket Group at the University of Colorado. These far-ultraviolet (UV) (100-160nm) spectrographic instruments are used to study a range of scientific topics, from gas in the interstellar medium (accessing diagnostics of material spanning five orders of magnitude in temperature in a single observation) to the energetic radiation environment of nearby exoplanetary systems. The three instruments, Suborbital Local Interstellar Cloud Experiment (SLICE), Colorado High-resolution Echelle Stellar Spectrograph (CHESS), and Suborbital Imaging Spectrograph for Transition region Irradiance from Nearby Exoplanet host stars (SISTINE) form a progression of instrument designs and component-level technology maturation. SLICE is a pathfinder instrument for the development of new data handling, storage, and telemetry techniques. CHESS and SISTINE are testbeds for technology and instrument design enabling high-resolution (R>105) point source spectroscopy and high throughput imaging spectroscopy, respectively, in support of future Explorer, Probe, and Flagship-class missions. The CHESS and SISTINE payloads support the development and flight testing of large-format photon-counting detectors and advanced optical coatings: NASA’s top two technology priorities for enabling a future flagship observatory (e.g. the LUVOIR Surveyor concept) that offers factors of ˜50-100 gain in UV spectroscopy capability over the Hubble Space Telescope. We present the design, component level laboratory characterization, and flight results for these instruments.
ERIC Educational Resources Information Center
Strimaitis, Anna M.; Schellinger, Jennifer; Jones, Anthony; Grooms, Jonathon; Sampson, Victor
2014-01-01
Students need to learn how to engage in several scientific practices in order to be considered proficient in science. Many of these practices are needed to evaluate scientific claims made in the popular media. Yet, there are few instruments available that science educators can use to assess whether students can apply what they know about…
NASA Technical Reports Server (NTRS)
Anderson, James G.
1994-01-01
This three-year project supported the construction, calibration, and deployment of a new instrument to measure the OH and HO2 radicals on the NASA ER-2 aircraft. The instrument has met and exceeded all of its design goals. The instrumentation represents a true quantum leap in performance over that achieved in previous HO(x) instruments built in our group. Sensitivity for OH was enhanced by over two orders of magnitude as the weight fell from approximately 1500 to less than 200 Kg. Reliability has been very high: HO(x) data are available for all flights during the first operational mission, the Stratospheric Photochemistry, Aerosols, and Dynamics Expedition (SPADE). The results of that experiment have been reported in the scientific literature and at conferences. Additionally, measurements of H2O and O3 were made and have been reported in the scientific literature. The measurements demonstrated the important role that OH and HO2 play in determining the concentration of ozone in the lower stratosphere. During the SPADE, campaign the measurements demonstrated that the catalytic removal is dominated by processes involving the odd-hydrogen and halogen radicals-and extremely important constraint for photochemical models that are being used to assess the potential deleterious effects of super-sonic aircraft effluent on the burden of stratospheric ozone.
High Energy Astronomy Observatory (HEAO)
1975-07-01
This illustration is a schematic of the High Energy Astronomy Observatory (HEAO)-2 and its experiments. It shows the focal plane instruments (at the right) plus the associated electronics for operating the telescope as it transmitted its observations to the ground. A fifth instrument, the Monitor Proportional Counter, is located near the front of the telescope. Four separate astronomical instruments are located at the focus of this telescope and they could be interchanged for different types of observations as the observatory pointed at interesting areas of the Sky. Two of these instruments produced images; a High Resolution Imaging Detector and an Imaging Proportional Counter. The other two instruments, the Solid State Spectrometer and the Crystal Spectrometer, measured the spectra of x-ray objects. A fifth instrument, the Monitor Proportional Counter, continuously viewed space independently to study a wider band of x-ray wavelengths and to examine the rapid time variations in the sources. The HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978. The HEAO-2 was originally identified as HEAO-B but the designation was changed once the spacecraft achieved orbit.
High-grade, compact spectrometers for Earth observation from SmallSats
NASA Astrophysics Data System (ADS)
van der Wal, L. F.; de Goeij, B. T. G.; Jansen, R.; Oosterling, J. A. J.; Snijders, B.
2016-10-01
The market for nano- and microsatellites is developing rapidly. There is a strong focus on 2D imaging of the Earth's surface, with limited possibilities to obtain spectral information. More demanding applications, such as monitoring trace gases, aerosols or water quality still require advanced imaging instruments, which are large, heavy and expensive. In recent years TNO has investigated and developed different innovative designs to realize advanced spectrometers for space applications in a more compact and cost-effective manner. This offers multiple advantages: a compact instrument can be flown on a much smaller platform (nano- or microsatellite); a low-cost instrument opens up the possibility to fly multiple instruments in a satellite constellation, improving both global coverage and temporal sampling (e.g. to study diurnal processes); a constellation of low-cost instruments may provide added value to the larger scientific and operational satellite missions (e.g. the Copernicus Sentinel missions); and a small, lightweight spectrometer can also be mounted easily on a high-altitude UAV (offering high spatial resolution). Last but not least, a low-cost instrument may allow to break through the `cost spiral': lower cost will allow to take more risk and thus progress more quickly. This may lead to a much faster development cycle than customary for current Earth Observation instruments. To explore the potential of a constellation of low-cost instruments a consortium of Dutch partners was formed, which currently consists of Airbus Defence and Space Netherlands, ISISpace, S and T and TNO. In this paper we will illustrate this new design approach by using the most advanced design of a hyperspectral imaging spectrometer (named `Spectrolite') as an example. We will discuss the different design and manufacturing techniques that were used to realize this compact and low-cost design. Laboratory tests as well as the first preliminary results of airborne measurements with the Spectrolite breadboard will be presented and discussed. The design of Spectrolite offers the flexibility to tune its performance (spectral range, spectral resolution) to a specific application. Thus, based on the same basic system design, Spectrolite offers a range of applications to different clients. To illustrate this, we will present a mission concept to monitor NO2 concentrations over urban areas at high spatial resolution, based on a constellation of small satellites.
A development optical course based on optical fiber white light interference
NASA Astrophysics Data System (ADS)
Jiang, Haili; Sun, Qiuhua; Zhao, Yancheng; Li, Qingbo
2017-08-01
The Michelson interferometer is a very important instrument in optical part for college physics teaching. But most students only know the instrument itself and don't know how to use it in practical engineering problems. A case about optical fiber white light interference based on engineering practice was introduced in the optical teaching of college physics and then designed a development course of university physical optics part. This system based on low-coherence white light interferometric technology can be used to measure distribution strain or temperature. It also could be used in the case of temperature compensation mode.This teaching design can use the knowledge transfer rule to enable students to apply the basic knowledge in the university physics to the new knowledge domain, which can promote the students' ability of using scientific methods to solve complex engineering problems.
Scientific Ballooning in India - Recent Developments
NASA Astrophysics Data System (ADS)
Manchanda, R. K.; Srinivasan, S.; Subbarao, J. V.
Established in 1972, the National Balloon Facility operated by TIFR in Hyderabad, India is is a unique facility in the country, which provides a complete solution in scientific ballooning. It is also one of its kind in the world since it combines both, the in-house balloon production and a complete flight support for scientific ballooning. With a large team working through out the year to design, fabricate and launch scientific balloons, the Hyderabad Facility is a unique centre of expertise where the balloon design, Research and Development, the production and launch facilities are located under one roof. Our balloons are manufactured from 100% indigenous components. The mission specific balloon design, high reliability control and support instrumentation, in-house competence in tracking, telemetry, telecommand, data processing, system design and mechanics is a hallmark of the Hyderabad balloon facility. In the past few years we have executed a major programme of upgradation of different components of balloon production, telemetry and telecommand hardware and various support facilities. This paper focuses on our increased capability of balloon production of large sizes up to size of 780,000 M^3 using Antrix film, development of high strength balloon load tapes with the breaking strength of 182 kg, and the recent introduction of S-band telemetry and a commandable timer cut-off unit in the flight hardware. A summary of the various flights conducted in recent years will be presented along with the plans for new facilities.
NASA Astrophysics Data System (ADS)
Witzig, Stephen B.; Rebello, Carina M.; Siegel, Marcelle A.; Freyermuth, Sharyn K.; Izci, Kemal; McClure, Bruce
2014-10-01
Identifying students' conceptual scientific understanding is difficult if the appropriate tools are not available for educators. Concept inventories have become a popular tool to assess student understanding; however, traditionally, they are multiple choice tests. International science education standard documents advocate that assessments should be reform based, contain diverse question types, and should align with instructional approaches. To date, no instrument of this type targeting student conceptions in biotechnology has been developed. We report here the development, testing, and validation of a 35-item Biotechnology Instrument for Knowledge Elicitation (BIKE) that includes a mix of question types. The BIKE was designed to elicit student thinking and a variety of conceptual understandings, as opposed to testing closed-ended responses. The design phase contained nine steps including a literature search for content, student interviews, a pilot test, as well as expert review. Data from 175 students over two semesters, including 16 student interviews and six expert reviewers (professors from six different institutions), were used to validate the instrument. Cronbach's alpha on the pre/posttest was 0.664 and 0.668, respectively, indicating the BIKE has internal consistency. Cohen's kappa for inter-rater reliability among the 6,525 total items was 0.684 indicating substantial agreement among scorers. Item analysis demonstrated that the items were challenging, there was discrimination among the individual items, and there was alignment with research-based design principles for construct validity. This study provides a reliable and valid conceptual understanding instrument in the understudied area of biotechnology.
Scientific planning for the VLT and VLTI
NASA Astrophysics Data System (ADS)
Leibundgut, B.; Berger, J.-P.
2016-07-01
An observatory system like the VLT/I requires careful scientific planning for operations and future instruments. Currently the ESO optical/near-infrared facilities include four 8m telescopes, four (movable) 1.8m telescopes used exclusively for interferometry, two 4m telescopes and two survey telescopes. This system offers a large range of scientific capabilities and setting the corresponding priorities depends good community interactions. Coordinating the existing and planned instrumentation is an important aspect for strong scientific return. The current scientific priorities for the VLT and VLTI are pushing for the development of the highest angular resolution imaging and astrometry, integral field spectroscopy and multi-object spectroscopy. The ESO 4m telescopes on La Silla will be dedicated to time domain spectroscopy and exo-planet searches with highly specialized instruments. The next decade will also see a significant rise in the scientific importance of massive ground and space-based surveys. We discuss how future developments in astronomical research could shape the VLT/I evolution.
THOR Fields and Wave Processor - FWP
NASA Astrophysics Data System (ADS)
Soucek, Jan; Rothkaehl, Hanna; Ahlen, Lennart; Balikhin, Michael; Carr, Christopher; Dekkali, Moustapha; Khotyaintsev, Yuri; Lan, Radek; Magnes, Werner; Morawski, Marek; Nakamura, Rumi; Uhlir, Ludek; Yearby, Keith; Winkler, Marek; Zaslavsky, Arnaud
2017-04-01
If selected, Turbulence Heating ObserveR (THOR) will become the first spacecraft mission dedicated to the study of plasma turbulence. The Fields and Waves Processor (FWP) is an integrated electronics unit for all electromagnetic field measurements performed by THOR. FWP will interface with all THOR fields sensors: electric field antennas of the EFI instrument, the MAG fluxgate magnetometer, and search-coil magnetometer (SCM), and perform signal digitization and on-board data processing. FWP box will house multiple data acquisition sub-units and signal analyzers all sharing a common power supply and data processing unit and thus a single data and power interface to the spacecraft. Integrating all the electromagnetic field measurements in a single unit will improve the consistency of field measurement and accuracy of time synchronization. The scientific value of highly sensitive electric and magnetic field measurements in space has been demonstrated by Cluster (among other spacecraft) and THOR instrumentation will further improve on this heritage. Large dynamic range of the instruments will be complemented by a thorough electromagnetic cleanliness program, which will prevent perturbation of field measurements by interference from payload and platform subsystems. Taking advantage of the capabilities of modern electronics and the large telemetry bandwidth of THOR, FWP will provide multi-component electromagnetic field waveforms and spectral data products at a high time resolution. Fully synchronized sampling of many signals will allow to resolve wave phase information and estimate wavelength via interferometric correlations between EFI probes. FWP will also implement a plasma resonance sounder and a digital plasma quasi-thermal noise analyzer designed to provide high cadence measurements of plasma density and temperature complementary to data from particle instruments. FWP will rapidly transmit information about magnetic field vector and spacecraft potential to the particle instrument data processing unit (PPU) via a dedicated digital link. This information will help particle instruments to optimize energy and angular sweeps and calculate on-board moments. FWP will also coordinate the acquisition of high resolution waveform snapshots with very high time resolution electron data from the TEA instrument. This combined wave/particle measurement will provide the ultimate dataset for investigation of wave-particle interactions on electron scales. The FWP instrument shall be designed and built by an international consortium of scientific institutes from Czech Republic, Poland, France, UK, Sweden and Austria.
Status Report on Efforts to Enhance Instrumentation to Support Advanced Test Reactor Irradiations
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Rempe; D. Knudson; J. Daw
2014-01-01
The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support the growth of nuclear science and technology in the United States (US). By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort at the Idaho National Laboratory (INL) is to design, develop, and deploy new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation.more » To address this need, an assessment of instrumentation available and under-development at other test reactors was completed. Based on this initial review, recommendations were made with respect to what instrumentation is needed at the ATR, and a strategy was developed for obtaining these sensors. In 2009, a report was issued documenting this program’s strategy and initial progress toward accomplishing program objectives. Since 2009, annual reports have been issued to provide updates on the program strategy and the progress made on implementing the strategy. This report provides an update reflecting progress as of January 2014.« less
The Science and Technology of Future Space Missions
NASA Astrophysics Data System (ADS)
Bonati, A.; Fusi, R.; Longoni, F.
1999-12-01
The future space missions span over a wide range of scientific objectives. After different successful scientific missions, other international cornerstone experiments are planned to study of the evolution of the universe and of the primordial stellar systems, and our solar system. Space missions for the survey of the microwave cosmic background radiation, deep-field search in the near and mid-infrared region and planetary exploration will be carried out. Several fields are open for research and development in the space business. Three major categories can be found: detector technology in different areas, electronics, and software. At LABEN, a Finmeccanica Company, we are focusing the technologies to respond to this challenging scientific demands. Particle trackers based on silicon micro-strips supported by lightweight structures (CFRP) are studied. In the X-ray field, CCD's are investigated with pixels of very small size so as to increase the spatial resolution of the focal plane detectors. High-efficiency and higly miniaturized high-voltage power supplies are developed for detectors with an increasingly large number of phototubes. Material research is underway to study material properties at extreme temperatures. Low-temperature mechanical structures are designed for cryogenic ( 20 K) detectors in order to maintain the high precision in pointing the instrument. Miniaturization of front end electronics with low power consumption and high number of signal processing channels is investigated; silicon-based microchips (ASIC's) are designed and developed using state-of-the-art technology. Miniaturized instruments to investigate the planets surface using X-Ray and Gamma-Ray scattering techniques are developed. The data obtained from the detectors have to be processed, compressed, formatted and stored before their transmission to ground. These tasks open up additional strategic areas of development such as microprocessor-based electronics for high-speed and parallel data processing. Powerful computers with customized architectures are designed and developed. High-speed intercommunication networks are studied and tested. In parallel to the hardware research activities, software development is undertaken for several purposes: digital and video compression algorithms, payload and spacecraft control and diagnostics, scientific processing algorithms, etc. Besides, embedded Java virtual machines are studied for tele-science applications (direct link between scientist console and scientific payload). At system engineering level, the demand for spacecraft autonomy is increased for planetology missions: reliable intelligent systems that can operate for long periods of time without human intervention from ground are requested and investigated. A technologically challenging but less glamorous area of development is represented by the laboratory equipment for end-to-end testing (on ground) of payload instruments. The main fields are cryogenics, laser and X-ray optics, microwave radiometry, UV and infrared testing systems.
Easily cracked: scientific instruments in states of disrepair.
Schaffer, Simon
2011-12-01
There has been much scholarly attention to definitions of the term "scientific instrument." Rather more mundane work by makers, curators, and users is devoted to instruments' maintenance and repair. A familiar argument holds that when a tool breaks, its character and recalcitrance become evident. Much can be gained from historical study of instruments' breakages, defects, and recuperation. Maintenance and repair technologies have been a vital aspect of relations between makers and other users. Their history illuminates systems of instruction, support, and abuse. These systems were, for example, evident in the development of astronomical instruments around 1800 within and beyond the European sphere. Episodes from that milieu are used to explore how instrument users sought autonomy, how instruments' mutable character was defined, and how judgments of instruments' failure or success were ever secured.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-20
... Applications for Duty- Free Entry of Scientific Instruments This is a decision pursuant to Section 6(c) of the Educational, Scientific, and Cultural Materials Importation Act of 1966 (Pub. L. 89- 651, as amended by Pub. L. 106-36; 80 Stat. 897; 15 CFR part 301). Related records can be viewed between 8:30 a.m. and 5 p.m. in...
European agreement on James Webb Space Telescope's Mid-Infrared Instrument (MIRI) signed
NASA Astrophysics Data System (ADS)
2004-06-01
Artist's impression of the JWST hi-res Size hi-res: 1601 kb Credits: ESA Artist's impression of the JWST An artist's impression of the selected design for the JWST spacecraft. Northrop Grumman and Ball Aerospace are the prime contractors for JWST. Artist's impression of the JWST Credits: ESA Artist's impression of the JWST An artist's impression of the selected design for the JWST spacecraft. Northrop Grumman and Ball Aerospace are the prime contractors for JWST. Observing the first light, the James Webb Space Telescope (JWST) will help to solve outstanding questions about our place in the evolving Universe. MIRI, the Mid-Infrared Instrument, is one of the four instruments on board the JWST, the mission scheduled to follow on the heritage of Hubble in 2011. MIRI will be built in cooperation between Europe and the United States (NASA), both equally contributing to its funding. MIRI’s optics, core of the instrument, will be provided by a consortium of European institutes. According to this formal agreement, ESA will manage and co-ordinate the whole development of the European part of MIRI and act as the sole interface with NASA, which is leading the JWST project. This marks a difference with respect to the previous ESA scientific missions. In the past the funding and the development of the scientific instruments was agreed by the participating ESA Member States on the basis of purely informal arrangements with ESA. In this case, the Member States involved in MIRI have agreed on formally guaranteeing the required level of funding on the basis of a multi-lateral international agreement, which still keeps scientists in key roles. Over the past years, missions have become more complex and demanding, and more costly within an ever tighter budget. They also require a more and more specific expertise which is spread throughout the vast European scientific community. As a result, a new management procedure for co-ordination of payload development has become a necessity to secure the successful and timely completion of scientific space projects. ESA’s co-ordination of the MIRI European consortium represents the first time such an approach has been used, which will be applied to the future missions of the ESA long-term Science Programme - the ‘Cosmic Vision’. The technology package for LISA (LTP), an ESA/NASA mission to detect gravitational waves, is already being prepared under the same scheme. Sergio Volonte, ESA Co-ordinator for Astrophysics and Fundamental Physics Missions, comments: “I’m delighted for such an achievement between ESA and its Member States. With MIRI we will start an even more effective co-ordination on developing our scientific instruments, setting a new framework to further enhance their excellence.” Note to Editors The James Webb Space Telescope (JWST), is a partnership between ESA, NASA and the Canadian Space Agency. Formerly known as the Next Generation Space Telescope (NGST), it is due to be launched in August 2011, and it is considered the successor of the NASA/ESA Hubble Space Telescope. It is three times larger and more powerful than its predecessor and it is expected to shed light on the 'Dark Ages of the Universe' by studying the very distant Universe, observing infrared light from the first stars and galaxies that ever emerged. MIRI (Mid-Infrared Camera-Spectrograph) is essential for the study of the old and distant stellar population; regions of obscured star formation; hydrogen emission from previously unthinkable distances; the physics of protostars; and the sizes of ‘Kuiper belt’ objects and faint comets. Further to the contribution to MIRI, Europe through ESA is contributing to JWST with the NIRSPEC (Near-Infrared multi-object Spectrograph) instrument (fully funded and managed by ESA) and, as agreed in principle with NASA, with the Ariane 5 launcher. The ESA financial contribution to JWST will be about 300 million Euros, including the launcher. The European institutions involved in MIRI will contribute about 70 million Euros overall. The European institutions who signed the MIRI agreement with ESA are: the Centre Nationale des Etudes Spatiales (CNES), the Danish Space Research Institute (DSRI), the German Aerospace Centre (DLR), the Spanish Ministerio de Educación y Ciencia (MEC), the Nederlandse Onderzoekschool voor Astronomie (NOVA), the UK Particle Physics and Astronomy Research Council (PPARC) and the Swedish National Space Board (SNSB). Four European countries, Belgium, Denmark, Ireland and Switzerland contribute to MIRI through their participation into ESA’s Scientific Experiment Development programme (PRODEX). This is an optional programme, mainly used by smaller countries, by which they delegate to ESA the management of funding to develop scientific instruments. The delivery to NASA of the MIRI instrument is due for March 2009.
Layout of personnel accommodations for the SOFIA
NASA Astrophysics Data System (ADS)
Daughters, David M.; Bruich, J. G.; Arceneaux, Gregory P.; Zirretta, Jason; Caton, William B.
2000-06-01
The NASA Stratospheric Observatory for Infrared Astronomy (SOFIA) Observatory is based upon a refurbished and heavily modified Boeing 747 SP aircraft. The Observatory, which provides accommodations for the Deutsches Zentrum Fur Luftund Raumfahrt 2.5 m telescope, science investigator teams, scientific instruments, mission crew and support systems. The US contractor team has removed most of the aircraft original furnishings and designed a new Layout of Personnel Accommodations (LOPA) tailored to SOFIA's needs.
Venus high temperature atmospheric dropsonde and extreme-environment seismometer (HADES)
NASA Astrophysics Data System (ADS)
Boll, Nathan J.; Salazar, Denise; Stelter, Christopher J.; Landis, Geoffrey A.; Colozza, Anthony J.
2015-06-01
The atmospheric composition and geologic structure of Venus have been identified by the US National Research Council's Decadal Survey for Planetary Science as priority targets for scientific exploration; however, the high temperature and pressure at the surface, along with the highly corrosive chemistry of the Venus atmosphere, present significant obstacles to spacecraft design that have severely limited past and proposed landed missions. Following the methodology of the NASA Innovative Advanced Concepts (NIAC) proposal regime and the Collaborative Modeling and Parametric Assessment of Space Systems (COMPASS) design protocol, this paper presents a conceptual study and initial feasibility analysis for a Discovery-class Venus lander capable of an extended-duration mission at ambient temperature and pressure, incorporating emerging technologies within the field of high temperature electronics in combination with novel configurations of proven, high Technology Readiness Level (TRL) systems. Radioisotope Thermal Power (RTG) systems and silicon carbide (SiC) communications and data handling are examined in detail, and various high-temperature instruments are proposed, including a seismometer and an advanced photodiode imager. The study combines this technological analysis with proposals for a descent instrument package and a relay orbiter to demonstrate the viability of an integrated atmospheric and in-situ geologic exploratory mission that differs from previous proposals by greatly reducing the mass, power requirements, and cost, while achieving important scientific goals.
2003-04-30
KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, a crane is in place to lift the fairing for the Mars Exploration Rover 2 (MER-2/MER-A). The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.
2003-04-30
KENNEDY SPACE CENTER, FLA. - The fairing for the Mars Exploration Rover 2 (MER-2/MER-A) arrives at Launch Complex 17-A, Cape Canaveral Air Force Station. It will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.
Venus High Temperature Atmospheric Dropsonde and Extreme-Environment Seismometer (HADES)
NASA Technical Reports Server (NTRS)
Boll, Nathan J.; Salazar, Denise; Stelter, Christopher J.; Landis, Geoffrey A.; Colozza, Anthony J.
2014-01-01
The atmospheric composition and geologic structure of Venus have been identified by the US National Research Council's Decadal Survey for Planetary Science as priority targets for scientific exploration, however the high temperature and pressure at the surface, along with the highly corrosive chemistry of the Venus atmosphere, present significant obstacles to spacecraft design that have severely limited past and proposed landed missions. Following the methodology of the NASA Innovative Advanced Concepts (NIAC) proposal regime and the Collaborative Modeling and Parametric Assessment of Space Systems (COMPASS) design protocol, this paper presents a conceptual study and initial feasibility analysis for a Discovery-class Venus lander capable of an extended-duration mission at ambient temperature and pressure, incorporating emerging technologies within the field of high temperature electronics in combination with novel configurations of proven, high Technology Readiness Level (TRL) systems. Radioisotope Thermal Power (RTG) systems and silicon carbide (SiC) communications and data handling are examined in detail, and various high-temperature instruments are proposed, including a seismometer and an advanced photodiode imager. The study combines this technological analysis with proposals for a descent instrument package and a relay orbiter to demonstrate the viability of an integrated atmospheric and in-situ geologic exploratory mission that differs from previous proposals by greatly reducing the mass, power requirements, and cost, while achieving important scientific goals.
The neutron star interior composition explorer (NICER): mission definition
NASA Astrophysics Data System (ADS)
Arzoumanian, Z.; Gendreau, K. C.; Baker, C. L.; Cazeau, T.; Hestnes, P.; Kellogg, J. W.; Kenyon, S. J.; Kozon, R. P.; Liu, K.-C.; Manthripragada, S. S.; Markwardt, C. B.; Mitchell, A. L.; Mitchell, J. W.; Monroe, C. A.; Okajima, T.; Pollard, S. E.; Powers, D. F.; Savadkin, B. J.; Winternitz, L. B.; Chen, P. T.; Wright, M. R.; Foster, R.; Prigozhin, G.; Remillard, R.; Doty, J.
2014-07-01
Over a 10-month period during 2013 and early 2014, development of the Neutron star Interior Composition Explorer (NICER) mission [1] proceeded through Phase B, Mission Definition. An external attached payload on the International Space Station (ISS), NICER is scheduled to launch in 2016 for an 18-month baseline mission. Its prime scientific focus is an in-depth investigation of neutron stars—objects that compress up to two Solar masses into a volume the size of a city—accomplished through observations in 0.2-12 keV X-rays, the electromagnetic band into which the stars radiate significant fractions of their thermal, magnetic, and rotational energy stores. Additionally, NICER enables the Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) demonstration of spacecraft navigation using pulsars as beacons. During Phase B, substantive refinements were made to the mission-level requirements, concept of operations, and payload and instrument design. Fabrication and testing of engineering-model components improved the fidelity of the anticipated scientific performance of NICER's X-ray Timing Instrument (XTI), as well as of the payload's pointing system, which enables tracking of science targets from the ISS platform. We briefly summarize advances in the mission's formulation that, together with strong programmatic performance in project management, culminated in NICER's confirmation by NASA into Phase C, Design and Development, in March 2014.
Exploring the performance of large-N radio astronomical arrays
NASA Astrophysics Data System (ADS)
Lonsdale, Colin J.; Doeleman, Sheperd S.; Cappallo, Roger J.; Hewitt, Jacqueline N.; Whitney, Alan R.
2000-07-01
New radio telescope arrays are currently being contemplated which may be built using hundreds, or even thousands, of relatively small antennas. These include the One Hectare Telescope of the SETI Institute and UC Berkeley, the LOFAR telescope planned for the New Mexico desert surrounding the VLA, and possibly the ambitious international Square Kilometer Array (SKA) project. Recent and continuing advances in signal transmission and processing technology make it realistic to consider full cross-correlation of signals from such a large number of antennas, permitting the synthesis of an aperture with much greater fidelity than in the past. In principle, many advantages in instrumental performance are gained by this 'large-N' approach to the design, most of which require the development of new algorithms. Because new instruments of this type are expected to outstrip the performance of current instruments by wide margins, much of their scientific productivity is likely to come from the study of objects which are currently unknown. For this reason, instrumental flexibility is of special importance in design studies. A research effort has begun at Haystack Observatory to explore large-N performance benefits, and to determine what array design properties and data reduction algorithms are required to achieve them. The approach to these problems, involving a sophisticated data simulator, algorithm development, and exploration of array configuration parameter space, will be described, and progress to date will be summarized.
Baseline Design and Performance Analysis of Laser Altimeter for Korean Lunar Orbiter
NASA Astrophysics Data System (ADS)
Lim, Hyung-Chul; Neumann, Gregory A.; Choi, Myeong-Hwan; Yu, Sung-Yeol; Bang, Seong-Cheol; Ka, Neung-Hyun; Park, Jong-Uk; Choi, Man-Soo; Park, Eunseo
2016-09-01
Korea’s lunar exploration project includes the launching of an orbiter, a lander (including a rover), and an experimental orbiter (referred to as a lunar pathfinder). Laser altimeters have played an important scientific role in lunar, planetary, and asteroid exploration missions since their first use in 1971 onboard the Apollo 15 mission to the Moon. In this study, a laser altimeter was proposed as a scientific instrument for the Korean lunar orbiter, which will be launched by 2020, to study the global topography of the surface of the Moon and its gravitational field and to support other payloads such as a terrain mapping camera or spectral imager. This study presents the baseline design and performance model for the proposed laser altimeter. Additionally, the study discusses the expected performance based on numerical simulation results. The simulation results indicate that the design of system parameters satisfies performance requirements with respect to detection probability and range error even under unfavorable conditions.
SOFIA Water Vapor Monitor Design
NASA Technical Reports Server (NTRS)
Cooper, R.; Roellig, T. L.; Yuen, L.; Shiroyama, B.; Meyer, A.; Devincenzi, D. (Technical Monitor)
2002-01-01
The SOFIA Water Vapor Monitor (WVM) is a heterodyne radiometer designed to determine the integrated amount of water vapor along the telescope line of sight and directly to the zenith. The basic technique that was chosen for the WVM uses radiometric measurements of the center and wings of the 183.3 GHz rotational line of water to measure the water vapor. The WVM reports its measured water vapor levels to the aircraft Mission Controls and Communication System (MCCS) while the SOFIA observatory is in normal operation at flight altitude. The water vapor measurements are also available to other scientific instruments aboard the observatory. The electrical, mechanical and software design of the WVM are discussed.
A Common DPU Platform for ESA JUICE Mission Instruments
NASA Astrophysics Data System (ADS)
Aberg, Martin; Hellstrom, Daniel; Samuelsson, Arne; Torelli, Felice
2016-08-01
This paper describes the resulting hardware and software platform based on GR712RC [1] LEON3-FT that Cobham Gaisler developed in accordance with the common system requirements of the ten scientific instruments on-board the ESA JUICE spacecraft destined the Jupiter system [8].The radiation hardened DPU platform features EDAC protected boot, application memory and working memory of configurable sizes and SpaceWire, FPGA I/O-32/16/8, GPIO, UART and SPI I/O interfaces. The design has undergone PSA, Risk, WCA, Radiation analyses etc. to justify component and design choices resulting in a robust design that can be used in spacecrafts requiring a total dose up to 100krad(Si). The prototype board manufactured uses engineering models of the flight components to ensure that development is representative.Validated boot, standby and driver software accommodates the various DPU platform configurations. The boot performs low-level DPU initialization, standby handles OBC SpaceWire communication and finally the loading and executing of application images typically stored in the non-volatile application memory.
MIMA: Mars Infrared MApper - The Fourier spectrometer for the ESA Pasteur/ExoMars rover mission
NASA Astrophysics Data System (ADS)
Marzo, G. A.; Bellucci, G.; Fonti, S.; Saggin, B.; Alberti, E.; Altieri, F.; Politi, R.; Zasova, L.; Mima Team
The MIMA team is developing a FT-IR miniaturized spectrometer to be mounted on the mast of the ExoMars rover Such instrument shall make remote measurements typically a few tens of meters away searching for evidence of water and of water-related processes e g carbonates sulfates clay minerals and if possible organics A survey instrument of this type will be extremely important for any rover mission on Mars especially for the Pasteur payload on the ExoMars mission whose scientific objective is to search for life and or hazards to humans Survey instruments on rover mast could provide necessary guidance if they can identify water evidence of long standing-water clay minerals carbonates sulfates so that detailed studies and drilling can be conducted at the right location The MIMA design is based on the peculiar pendulum optical design already successfully used on ESA PFS for Mars Express and Venus Express missions The wide spectral range 2-25 micron is not covered by means of a double channel as in PFS but using an innovative architecture two different detectors on the same focal plane sharing the same optical path in order to strongly reduce mass and size In this work MIMA technical and scientific issues will be discussed The MIMA team is Giancarlo Bellucci Team Coordinator Francesca Altieri Maria Blecka Roberto Bonsignori Sergio Fonti Giuseppe A Marzo Sandro Meli Jose Juan Lopez Moreno Boris Moshkin GianGabriele Ori Vincenzo Orofino Romolo Politi Giampaolo Preti Andrea Romoli Ted L Roush Bortolino Saggin Maria
First light measurements of the Total Solar Irradiance experiment CLARA on NORSAT-1
NASA Astrophysics Data System (ADS)
Schmutz, Werner
2016-07-01
NORSAT-1 is a Norwegian micro-satellite, which will be launched April 22, 2016. (In the future at the time of writing this abstract.) The satellite carries two scientific instruments and an AIS receiver for performing ship detection from space. One of the scientific instruments is a Compact Light-weight Absolute RAdiometer (CLARA) and the other is a Langmuir Probe instrument comprising four probes mounted on booms. The latter experiment will measure electron density and the platform's floating potential along the orbit. The University of Oslo provides the Langmuir probes. The radiometer experiment CLARA has been built by PMOD/WRC funded through the Swiss PRODEX program. It will measure Total Solar Irradiance with an instrument of novel design that is optimized for minimizing mass and size by still ensuring highest measuring accuracy and thermal stability. The radiometers of CLARA have been fully characterized as well as calibrated at the TRF facility. It is expected that the first light accuracy of the absolute measurement of Total Solar Irradiance will be better than pm0.3 W/m^{2, allowing to probe the current TSI composite for its absolute level. The presentation will give an overview of the CLARA instrument and its calibration. It is expected that at the time of the COSPAR conference the first light TSI value of CLARA/NORSAT-1 is ready for publication. Together with a previous absolute TSI measurements available for July 27, 2010 measured by PREMOS/PICARD the new absolute TSI measurement will be used to test the accuracy of long term TSI trend given by the relative TSI composite.
NASA Technical Reports Server (NTRS)
Anderson, James G.
1994-01-01
This three-year project supported the construction, calibration, and deployment of a new instrument to measure the OH and HO2 radicals on the NASA ER-2 aircraft. The instrument has met and exceeded all of its design goals. The instrumentation represents a true quantum leap in performance over that achieved in previous HO(x) instruments built in our group. Sensitivity for OH was enhanced by over two orders of magnitude as the weight fell from approximately 1500 to less than 200 Kg. Reliability has been very high: HO(x) data are available for all flights during the first operational mission, the Stratospheric Photochemistry, Aerosols, and Dynamics Expedition (SPADE). The results of that experiment have been reported in the scientific literature and at conferences. Additionally, measurements of H2O and O3 were made and have been reported in the scientific literature. The measurements demonstrate the important role that OH and HO2 play in determining the concentration of ozone in the lower stratosphere. During the SPADE campaign, the measurements demonstrate that the catalytic removal is dominated by processes involving the odd-hydrogen and halogen radical extremely important constraint for photochemical models that are being used to assess the potential deleterious effects of super-sonic aircraft effluent on the burden of stratospheric ozone. A list of the papers that came from this research are included, along with a copy of the paper, 'Aircraft-borne, laser-induced fluorescence instrument for the in situ detection of hydroxyl and hydroperoxyl radicals'.
NASA Astrophysics Data System (ADS)
Krisdiana, A.; Aminah, N. S.; Nurosyid, F.
2018-03-01
This study aims to investigate the scientific literacy among 12th grade science students in SMA Negeri 2 Karanganyar. The instrument used is a four-tier wave diagnostic instrument. This instrument was originally used to diagnose students’ conceptions about nature and propagation of waves. This study using quantitative descriptive method. The diagnostic results based on dominant students’ answers show the lack of knowledge percentage of 14.3%-77.1%, alternative conceptions percentage 0%-60%, scientific conceptions percentage 0%-65.7%. Lack of knowledge indicated when there is doubt about at least one tier of the student’s answer. The results of the research shows that the students’ dominant scientific literacy is in the nominal literacy category with the percentage of 22.9% - 91.4%, the functional literacy with the percentage 2.86% - 28.6%, and the conceptual/procedural literacy category with the percentage 0% - 65.7%. Description level of nominal literacy in context of the current study is student have alternative conceptions and lack of knowledge. Student recognize the scientific terms, but is not capable to justify this term.
NASA Astrophysics Data System (ADS)
Lin, Tzung-Jin; Tsai, Chin-Chung
2017-11-01
The purpose of this study was to develop and validate two survey instruments to evaluate high school students' scientific epistemic beliefs and goal orientations in learning science. The initial relationships between the sampled students' scientific epistemic beliefs and goal orientations in learning science were also investigated. A final valid sample of 600 volunteer Taiwanese high school students participated in this survey by responding to the Scientific Epistemic Beliefs Instrument (SEBI) and the Goal Orientations in Learning Science Instrument (GOLSI). Through both exploratory and confirmatory factor analyses, the SEBI and GOLSI were proven to be valid and reliable for assessing the participants' scientific epistemic beliefs and goal orientations in learning science. The path analysis results indicated that, by and large, the students with more sophisticated epistemic beliefs in various dimensions such as Development of Knowledge, Justification for Knowing, and Purpose of Knowing tended to adopt both Mastery-approach and Mastery-avoidance goals. Some interesting results were also found. For example, the students tended to set a learning goal to outperform others or merely demonstrate competence (Performance-approach) if they had more informed epistemic beliefs in the dimensions of Multiplicity of Knowledge, Uncertainty of Knowledge, and Purpose of Knowing.
Smart instruments and the national collaboratory
NASA Technical Reports Server (NTRS)
Leiner, Barry M. (Editor)
1989-01-01
Here, we explore the process of scientific experimental investigation and ask what capabilities are required of the collaboratory to support such investigations. We first look at a number of examples of scientific research being conducted using remote instruments. We then examine the process of such research, asking at each stage what are the required capabilities. We finally integrate these results into a statement of the required set of capabilities needed to support scientific research in the future.
NASA Astrophysics Data System (ADS)
Kuan, Wen-Hsuan; Tseng, Chi-Hung; Chen, Sufen; Wong, Ching-Chang
2016-06-01
We propose an integrated curriculum to establish essential abilities of computer programming for the freshmen of a physics department. The implementation of the graphical-based interfaces from Scratch to LabVIEW then to LabVIEW for Arduino in the curriculum `Computer-Assisted Instrumentation in the Design of Physics Laboratories' brings rigorous algorithm and syntax protocols together with imagination, communication, scientific applications and experimental innovation. The effectiveness of the curriculum was evaluated via statistical analysis of questionnaires, interview responses, the increase in student numbers majoring in physics, and performance in a competition. The results provide quantitative support that the curriculum remove huge barriers to programming which occur in text-based environments, helped students gain knowledge of programming and instrumentation, and increased the students' confidence and motivation to learn physics and computer languages.
NASA Astrophysics Data System (ADS)
Robinson, Wayne D.; Patt, Frederick S.; Franz, Bryan A.; Turpie, Kevin R.; McClain, Charles R.
2009-08-01
One of the roles of the VIIRS Ocean Science Team (VOST) is to assess the performance of the instrument and scientific processing software that generates ocean color parameters such as normalized water-leaving radiances and chlorophyll. A VIIRS data simulator is being developed to help aid in this work. The simulator will create a sufficient set of simulated Sensor Data Records (SDR) so that the ocean component of the VIIRS processing system can be tested. It will also have the ability to study the impact of instrument artifacts on the derived parameter quality. The simulator will use existing resources available to generate the geolocation information and to transform calibrated radiances to geophysical parameters and visa-versa. In addition, the simulator will be able to introduce land features, cloud fields, and expected VIIRS instrument artifacts. The design of the simulator and its progress will be presented.
New developments in the McStas neutron instrument simulation package
NASA Astrophysics Data System (ADS)
Willendrup, P. K.; Knudsen, E. B.; Klinkby, E.; Nielsen, T.; Farhi, E.; Filges, U.; Lefmann, K.
2014-07-01
The McStas neutron ray-tracing software package is a versatile tool for building accurate simulators of neutron scattering instruments at reactors, short- and long-pulsed spallation sources such as the European Spallation Source. McStas is extensively used for design and optimization of instruments, virtual experiments, data analysis and user training. McStas was founded as a scientific, open-source collaborative code in 1997. This contribution presents the project at its current state and gives an overview of the main new developments in McStas 2.0 (December 2012) and McStas 2.1 (expected fall 2013), including many new components, component parameter uniformisation, partial loss of backward compatibility, updated source brilliance descriptions, developments toward new tools and user interfaces, web interfaces and a new method for estimating beam losses and background from neutron optics.
Bae, Jin-Hyuk; Yi, Jaeyoung; Kim, Sungtae; Shim, June-Sung; Lee, Keun-Woo
2014-01-01
Cutting efficiency is one of the most important factors to consider when a specific dental diamond rotary instrument is selected. However, the selection of a dental diamond rotary instrument is based on clinical experience rather than any scientific evidence. The purpose of this study was to identify how the cutting efficiency of different types of dental diamond rotary instrument changed with repeated cuts and disinfection. Four types of diamond rotary instrument from 2 dental manufacturers (Shofu, Jin Dental) were investigated with a high-speed air-turbine handpiece. The groups were as follows: S cham group (n=10): chamfer design from Shofu; J cham group (n=10): chamfer design from Jin Dental; S thin group (n=10): thin tapered design from Shofu; J thin group (n=10): thin tapered design from Jin Dental. Changes in the cutting efficiency of diamond rotary instruments on glass ceramic blocks were measured after repeated cuts. Changes in cutting efficiency also were measured for 30 diamond rotary instruments, the same type as those used in group J cham after disinfection with ethylene oxide gas, immersion in solution, or autoclaving. One-way ANOVA, 2-way ANOVA, and repeated-measures ANOVA were used to identify differences in cutting efficiency, in total cutting efficiency, and change trend in cutting efficiency (α=.05). The Tukey honestly significant difference method was used for the post hoc tests. The principal metal components of the diamond rotary instruments were detected with x-ray spectrometry. The mean (standard deviation [SD]) total cutting efficiency after 10 cuts in the 4 groups was in the following order: J cham group (0.210 ± 0.064 g/min) > S cham group (0.170 ± 0.064 g/min) > J thin group (0.130 ± 0.042 g/min) > S thin group (0.010 ± 0.040 g/min) (P<.05).The decrease in the cutting efficiency was greatest after the first cut. The cutting efficiency was not influenced by repeated disinfection. The cutting efficiencies of diamond rotary instruments with different designs and particle sizes showed a decreasing trend after repeated cuts but did not show any change after various disinfecting procedures. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
2008-05-01
ESO celebrates 10 years since First Light of the VLT Today marks the 10th anniversary since First Light with ESO's Very Large Telescope (VLT), the most advanced optical telescope in the world. Since then, the VLT has evolved into a unique suite of four 8.2-m Unit Telescopes (UTs) equipped with no fewer than 13 state-of-the-art instruments, and four 1.8-m moveable Auxiliary Telescopes (ATs). The telescopes can work individually, and they can also be linked together in groups of two or three to form a giant 'interferometer' (VLTI), allowing astronomers to see details corresponding to those from a much larger telescope. Green Flash at Paranal ESO PR Photo 16a/08 The VLT 10th anniversary poster "The Very Large Telescope array is a flagship facility for astronomy, a perfect science machine of which Europe can be very proud," says Tim de Zeeuw, ESO's Director General. "We have built the most advanced ground-based optical observatory in the world, thanks to the combination of a long-term adequately-funded instrument and technology development plan with an approach where most of the instruments were built in collaboration with institutions in the member states, with in-kind contributions in labour compensated by guaranteed observing time." Sitting atop the 2600m high Paranal Mountain in the Chilean Atacama Desert, the VLT's design, suite of instruments, and operating principles set the standard for ground-based astronomy. It provides the European scientific community with a telescope array with collecting power significantly greater than any other facilities available at present, offering imaging and spectroscopy capabilities at visible and infrared wavelengths. Blue Flash at Paranal ESO PR Photo 16b/08 A Universe of Discoveries The first scientifically useful images, marking the official 'First Light' of the VLT, were obtained on the night of 25 to 26 May 1998, with a test camera attached to "Antu", Unit Telescope number 1. They were officially presented to the press on the 27 May, exactly ten years ago. Since then, all four Unit Telescopes and four Auxiliary Telescopes went into routine operations and the number of instruments has continued to grow, to fill all the possible positions in the telescopes where instruments can be attached. In 2007, about 500 peer-reviewed papers using data collected with VLT and VLTI instruments at Paranal were published in scientific journals. Since the start of science operations, in April 1999, the VLT has led to the publication of more than 2200 refereed papers, an average of about one paper published every single working day. "The combination of high operational efficiency, system reliability and uptime for scientific observations results in very high scientific productivity," says Andreas Kaufer, director of the La Silla Paranal Observatory. The VLT and VLTI have contributed to all areas of astronomy, including the nature of dark matter and dark energy; the extreme physics of gamma-ray bursts and supernovae; the formation, structure and evolution of galaxies; the properties of exoplanets, Solar System objects, star clusters and stellar populations, the interstellar and intergalactic medium, and of super-massive black holes in galactic nuclei, in particular the one in the Galactic Centre; and the formation of stars and planets. The stunning scientific success of the VLT has attracted new member states to ESO. In the past decade Portugal joined (in 2001, after a ten-year associate status), followed by the United Kingdom (2002), Finland (2004), Spain (2006) and the Czech Republic (2007). Austria also announced its intent to join later this year. Another measure of success is the number of observing proposals made every year for the use of the VLT, which is now above the 1900 mark. On average, the amount of time requested to use the VLT is 6 times higher than what is available. The VLT will continue to increase in power over the next decade. The first of the second-generation VLT instruments, X-Shooter, will come online this year, with KMOS, SPHERE and MUSE to follow, together with multiple laser guide stars, an adaptive secondary mirror on Yepun (UT4), and one or more third-generation instruments, including an ultra-stable high-resolution spectrograph at the combined focus. The VLTI will also be equipped with second-generation instruments. Clearly, the VLT's story has only begun. More Information The VLT was designed from the start as an integrated system of four 8.2m telescopes, including the possibility to combine the light from individual telescopes for optical interferometry, enabling stupendous spatial resolution. First light on Antu occurred in May 1998, with Kueyen, Melipal and Yepun following soon after. Most of the VLT and VLTI instruments were built in close collaboration with institutes in the member states. The first-generation instrument suite was completed in 2007 with the commissioning of CRIRES. The Paranal arsenal includes turnkey adaptive optics systems and a rapid-response mode to react to fast transient events. Recently, the near-infrared imager HAWK-I was added as a 'generation-1.5' instrument.
Evaluating musical instruments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, D. Murray
Scientific measurements of sound generation and radiation by musical instruments are surprisingly hard to correlate with the subtle and complex judgments of instrumental quality made by expert musicians.
Psychology Needs Realism, Not Instrumentalism
ERIC Educational Resources Information Center
Haig, Brian D.
2005-01-01
In this article, the author presents his comments on "Realism, Instrumentalism, and Scientific Symbiosis: Psychological Theory as a Search for Truth and the Discovery of Solutions" by John T. Cacioppo, Gun R. Semin and Gary G. Berntson. In the original article, the authors recommended the combined use of the philosophies of scientific realism and…
Physics Thematic Paths: Laboratorial Activities and Historical Scientific Instruments
ERIC Educational Resources Information Center
Pantano, O.; Talas, S.
2010-01-01
The Physics Department of Padua University keeps an important collection of historical physics instruments which alludes to the fruitful scientific activity of Padua through the centuries. This heritage led to the suggestion of setting up laboratory activities connected to the Museum collection for secondary school students. This article shows how…
SHARK-NIR: from K-band to a key instrument, a status update
NASA Astrophysics Data System (ADS)
Farinato, Jacopo; Bacciotti, Francesca; Baffa, Carlo; Baruffolo, Andrea; Bergomi, Maria; Bongiorno, Angela; Carbonaro, Luca; Carolo, Elena; Carlotti, Alexis; Centrone, Mauro; Close, Laird; De Pascale, Marco; Dima, Marco; D'Orazi, Valentina; Esposito, Simone; Fantinel, Daniela; Farisato, Giancarlo; Gaessler, Wolfgang; Giallongo, Emanuele; Greggio, Davide; Guyon, Olivier; Hinz, Philip; Lisi, Franco; Magrin, Demetrio; Marafatto, Luca; Mohr, Lars; Montoya, Manny; Pedichini, Fernando; Pinna, Enrico; Puglisi, Alfio; Ragazzoni, Roberto; Salasnich, Bernardo; Stangalini, Marco; Vassallo, Daniele; Verinaud, Christophe; Viotto, Valentina
2016-07-01
SHARK-NIR channel is one of the two coronagraphic instruments proposed for the Large Binocular Telescope, in the framework of the call for second generation instruments, issued in 2014. Together with the SHARK-VIS channel, it will offer a few observing modes (direct imaging, coronagraphic imaging and coronagraphic low resolution spectroscopy) covering a wide wavelength domain, going from 0.5μm to 1.7μm. Initially proposed as an instrument covering also the K-band, the current design foresees a camera working from Y to H bands, exploiting in this way the synergy with other LBT instruments such as LBTI, which is actually covering wavelengths greater than L' band, and it will be soon upgraded to work also in K band. SHARK-NIR has been undergoing the conceptual design review at the end of 2015 and it has been approved to proceed to the final design phase, receiving the green light for successive construction and installation at LBT. The current design is significantly more flexible than the previous one, having an additional intermediate pupil plane that will allow the usage of coronagraphic techniques very efficient in term of contrast and vicinity to the star, increasing the instrument coronagraphic performance. The latter is necessary to properly exploit the search of giant exo-planets, which is the main science case and the driver for the technical choices of SHARK-NIR. We also emphasize that the LBT AO SOUL upgrade will further improve the AO performance, making possible to extend the exo-planet search to target fainter than normally achieved by other 8-m class telescopes, and opening in this way to other very interesting scientific scenarios, such as the characterization of AGN and Quasars (normally too faint to be observed) and increasing considerably the sample of disks and jets to be studied. Finally, we emphasize that SHARK-NIR will offer XAO direct imaging capability on a FoV of about 15"x15", and a simple coronagraphic spectroscopic mode offering spectral resolution ranging from few hundreds to few thousands. This article presents the current instrument design, together with the milestones for its installation at LBT.
Customizable scientific web-portal for DIII-D nuclear fusion experiment
NASA Astrophysics Data System (ADS)
Abla, G.; Kim, E. N.; Schissel, D. P.
2010-04-01
Increasing utilization of the Internet and convenient web technologies has made the web-portal a major application interface for remote participation and control of scientific instruments. While web-portals have provided a centralized gateway for multiple computational services, the amount of visual output often is overwhelming due to the high volume of data generated by complex scientific instruments and experiments. Since each scientist may have different priorities and areas of interest in the experiment, filtering and organizing information based on the individual user's need can increase the usability and efficiency of a web-portal. DIII-D is the largest magnetic nuclear fusion device in the US. A web-portal has been designed to support the experimental activities of DIII-D researchers worldwide. It offers a customizable interface with personalized page layouts and list of services for users to select. Each individual user can create a unique working environment to fit his own needs and interests. Customizable services are: real-time experiment status monitoring, diagnostic data access, interactive data analysis and visualization. The web-portal also supports interactive collaborations by providing collaborative logbook, and online instant announcement services. The DIII-D web-portal development utilizes multi-tier software architecture, and Web 2.0 technologies and tools, such as AJAX and Django, to develop a highly-interactive and customizable user interface.
NASA Technical Reports Server (NTRS)
1976-01-01
Wide field measurements, namely, measurements of relative angular separations between stars over a relatively wide field for parallax and proper motion determinations, were made with the third fine guidance sensor. Narrow field measurements, i.e., double star measurements, are accomplished primarily with the area photometer or faint object camera at f/96. The wavelength range required can be met by the fine guidance sensor which has a spectral coverage from 3000 to 7500 A. The field of view of the fine guidance sensor also exceeds that required for the wide field astrometric instrument. Requirements require a filter wheel for the wide field astrometer, and so one was incorporated into the design of the fine guidance sensor. The filter wheel probably would contain two neutral density filters to extend the dynamic range of the sensor and three spectral filters for narrowing effective double star magnitude difference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foust, O J
1978-01-01
The handbook is intended for use by present and future designers in the Liquid Metals Fast Breeder Reactor (LMFBR) Program and by the engineering and scientific community performing other type investigation and exprimentation requiring high-temperature sodium and NaK technology. The arrangement of subject matter progresses from a technological discussion of sodium and sodium--potassium alloy (NaK) to discussions of varius categories and uses of hardware in sodium and NaK systems. Emphasis is placed on sodium and NaK as heat-transport media. Sufficient detail is included for basic understanding of sodium and NaK technology and of technical aspects of sodium and NaK componentsmore » and instrument systems. Information presented is considered adequate for use in feasibility studies and conceptual design, sizing components and systems, developing preliminary component and system descriptions, identifying technological limitations and problem areas, and defining basic constraints and parameters.« less
Undergraduate honors students' images of science: Nature of scientific work and scientific knowledge
NASA Astrophysics Data System (ADS)
Wallace, Michael L.
This exploratory study assessed the influence of an implicit, inquiry-oriented nature of science (NOS) instructional approach undertaken in an interdisciplinary college science course on undergraduate honor students' (UHS) understanding of the aspects of NOS for scientific work and scientific knowledge. In this study, the nature of scientific work concentrated upon the delineation of science from pseudoscience and the value scientists place on reproducibility. The nature of scientific knowledge concentrated upon how UHS view scientific theories and how they believe scientists utilize scientific theories in their research. The 39 UHS who participated in the study were non-science majors enrolled in a Honors College sponsored interdisciplinary science course where the instructors took an implicit NOS instructional approach. An open-ended assessment instrument, the UFO Scenario, was designed for the course and used to assess UHS' images of science at the beginning and end of the semester. The mixed-design study employed both qualitative and quantitative techniques to analyze the open-ended responses. The qualitative techniques of open and axial coding were utilized to find recurring themes within UHS' responses. McNemar's chi-square test for two dependent samples was used to identify whether any statistically significant changes occurred within responses from the beginning to the end of the semester. At the start of the study, the majority of UHS held mixed NOS views, but were able to accurately define what a scientific theory is and explicate how scientists utilize theories within scientific research. Postinstruction assessment indicated that UHS did not make significant gains in their understanding of the nature of scientific work or scientific knowledge and their overall images of science remained static. The results of the present study found implicit NOS instruction even with an extensive inquiry-oriented component was an ineffective approach for modifying UHS' images of science towards a more informed view of NOS.
NASA Astrophysics Data System (ADS)
Nicol, Patrick; Fleury, Joel; Le Naour, Claire; Bernard, Frédéric
2017-11-01
IASI (Infrared Atmospheric Sounding Interferometer) is an infrared atmospheric sounder. It will provide meteorologist and scientific community with atmospheric spectra. The instrument is composed of a Fourier transform spectrometer and an associated infrared imager. The presentation will describe the spectrometer detection chain architecture, composed by three different detectors cooled in a passive cryo-cooler (so called CBS : Cold Box Subsystem) and associated analog electronics up to digital conversion. It will mainly focus on design choices with regards to environment constraints, implemented technologies, and associated performances. CNES is leading the IASI program in collaboration with EUMETSAT. The instrument Prime is ALCATEL SPACE responsible, notably, of the detection chain architecture. SAGEM SA provides the detector package (so called CAU : Cold Acquisition Unit).
NASA Astrophysics Data System (ADS)
Nicol, Patrick; Fleury, Joel; Bernard, Frédéric
2004-06-01
IASI (Infrared Atmospheric Sounding Interferometer) is an infrared atmospheric sounder. It will provide meteorologist and scientific community with atmospheric spectra. The instrument is composed of a Fourier transform spectrometer and an associated infrared imager. The presentation will describe the spectrometer detection chain architecture, composed by three different detectors cooled in a passive cryo-cooler (so called CBS : Cold Box Subsystem) and associated analog electronics up to digital conversion. It will mainly focus on design choices with regards to environment constraints, implemented technologies, and associated performances . CNES is leading the IASI program in collaboration with EUMETSAT. The instrument Prime is ALCATEL SPACE responsible, notably, of the detection chain architecture. SAGEM SA provides the detector package (so called CAU: Cold Acquisition Unit).
NASA Technical Reports Server (NTRS)
Paciotti, Gabriel; Humphries, Martin; Rottmeier, Fabrice; Blecha, Luc
2014-01-01
In the frame of ESA's Solar Orbiter scientific mission, Almatech has been selected to design, develop and test the Slit Change Mechanism of the SPICE (SPectral Imaging of the Coronal Environment) instrument. In order to guaranty optical cleanliness level while fulfilling stringent positioning accuracies and repeatability requirements for slit positioning in the optical path of the instrument, a linear guiding system based on a double flexible blade arrangement has been selected. The four different slits to be used for the SPICE instrument resulted in a total stroke of 16.5 mm in this linear slit changer arrangement. The combination of long stroke and high precision positioning requirements has been identified as the main design challenge to be validated through breadboard models testing. This paper presents the development of SPICE's Slit Change Mechanism (SCM) and the two-step validation tests successfully performed on breadboard models of its flexible blade support system. The validation test results have demonstrated the full adequacy of the flexible blade guiding system implemented in SPICE's Slit Change Mechanism in a stand-alone configuration. Further breadboard test results, studying the influence of the compliant connection to the SCM linear actuator on an enhanced flexible guiding system design have shown significant enhancements in the positioning accuracy and repeatability of the selected flexible guiding system. Preliminary evaluation of the linear actuator design, including a detailed tolerance analyses, has shown the suitability of this satellite roller screw based mechanism for the actuation of the tested flexible guiding system and compliant connection. The presented development and preliminary testing of the high-precision long-stroke Slit Change Mechanism for the SPICE Instrument are considered fully successful such that future tests considering the full Slit Change Mechanism can be performed, with the gained confidence, directly on a Qualification Model. The selected linear Slit Change Mechanism design concept, consisting of a flexible guiding system driven by a hermetically sealed linear drive mechanism, is considered validated for the specific application of the SPICE instrument, with great potential for other special applications where contamination and high precision positioning are dominant design drivers.
DMD-based multi-object spectrograph on Galileo telescope
NASA Astrophysics Data System (ADS)
Zamkotsian, Frederic; Spano, Paolo; Lanzoni, Patrick; Bon, William; Riva, Marco; Nicastro, Luciano; Molinari, Emilio; Di Marcantonio, Paolo; Zerbi, Filippo; Valenziano, Luca
2013-03-01
Next-generation infrared astronomical instrumentation for ground-based and space telescopes could be based on MOEMS programmable slit masks for multi-object spectroscopy (MOS). This astronomical technique is used extensively to investigate the formation and evolution of galaxies. We propose to develop a 2048x1080 DMD-based MOS instrument to be mounted on the Galileo telescope and called BATMAN. A two-arm instrument has been designed for providing in parallel imaging and spectroscopic capabilities. The two arms with F/4 on the DMD are mounted on a common bench, and an upper bench supports the detectors thanks to two independent hexapods. Very good optical quality on the DMD and the detectors will be reached. ROBIN, a BATMAN demonstrator, has been designed, realized and integrated. It permits to determine the instrument integration procedure, including optics and mechanics integration, alignment procedure and optical quality. First images have been obtained and measured. A DMD pattern manager has been developed in order to generate any slit mask according to the list of objects to be observed; spectra have been generated and measured. Observation strategies will be studied and demonstrated for the scientific optimization strategy over the whole FOV. BATMAN on the sky is of prime importance for characterizing the actual performance of this new family of MOS instruments, as well as investigating the operational procedures on astronomical objects. This instrument will be placed on the Telescopio Nazionale Galileo at the beginning of next year, in 2014.
Neutron detectors for the ESS diffractometers
NASA Astrophysics Data System (ADS)
Stefanescu, I.; Christensen, M.; Fenske, J.; Hall-Wilton, R.; Henry, P. F.; Kirstein, O.; Müller, M.; Nowak, G.; Pooley, D.; Raspino, D.; Rhodes, N.; Šaroun, J.; Schefer, J.; Schooneveld, E.; Sykora, J.; Schweika, W.
2017-01-01
The ambitious instrument suite for the future European Spallation Source whose civil construction started recently in Lund, Sweden, demands a set of diverse and challenging requirements for the neutron detectors. For instance, the unprecedented high flux expected on the samples to be investigated in neutron diffraction or reflectometry experiments requires detectors that can handle high counting rates, while the investigation of sub-millimeter protein crystals will only be possible with large-area detectors that can achieve a position resolution as low as 200 μm. This has motivated an extensive research and development campaign to advance the state-of-the-art detector and to find new technologies that can reach maturity by the time the ESS will operate at full potential. This paper presents the key detector requirements for three of the Time-of-Flight (TOF) diffraction instrument concepts selected by the Scientific Advisory Committee to advance into the phase of preliminary engineering design. We discuss the detector technologies commonly employed at the existing similar instruments and their major challenges for ESS. The detector technologies selected by the instrument teams to collect the diffraction patterns are also presented. Analytical calculations, Monte-Carlo simulations, and real experimental data are used to develop a generic method to estimate the event rate in the diffraction detectors. We apply this method to make predictions for the future diffraction instruments, and thus provide additional information that can help the instrument teams with the optimisation of the detector designs.
NASA Astrophysics Data System (ADS)
Bouchet, François R.; Piat, Michel; Lamarre, Jean-Michel
2003-10-01
Planck, a European Space Agency satellite to be launched in 2007, is dedicated to surveying the full sky at sub-millimetre and millimetre wavelength. The primary goal of the mission is the final mapping of the Cosmic Microwave Background Anisotropies (CMBA). With an angular resolution of 5 arcmin and a sensitivity of Δ TCMB/ TCMB=2×10 -6, the Planck mission will be about 1000 times more sensitive than COBE-DMR and at least 20 times more than WMAP. Planck has also very good capabilites for measurements of polarization, although it will not exhaust the information contained in the CMBA polarization pattern. Two instruments share the Planck focal plane; the High Frequency Instrument (HFI) covers the wavelength ranging from 300 μm to 3 mm by using 48 bolometers cooled to 100 mK. This instrument is realized by an international collaboration, led by the IAS at Orsay. The other part of the relevant electromagnetic spectrum is covered by the Low Frequency Instrument (LFI) using HEMT radiometers cooled at 18 K and realized by a consortium led by the CNR in Milano. The first part of this article presents expected results of Planck on CMBA, both in intensity and polarization. In a second part, the global design of the Planck mission will be presented. We describe in particular the implications of Planck scientific goals on the instruments design, and especially on HFI that is the most sensitive Planck instrument. To cite this article: F.R. Bouchet et al., C. R. Physique 4 (2003).
High Energy Astronomy Observatory (HEAO)-2
NASA Technical Reports Server (NTRS)
1975-01-01
This illustration is a schematic of the High Energy Astronomy Observatory (HEAO)-2 and its experiments. It shows the focal plane instruments (at the right) plus the associated electronics for operating the telescope as it transmitted its observations to the ground. A fifth instrument, the Monitor Proportional Counter, is located near the front of the telescope. Four separate astronomical instruments are located at the focus of this telescope and they could be interchanged for different types of observations as the observatory pointed at interesting areas of the Sky. Two of these instruments produced images; a High Resolution Imaging Detector and an Imaging Proportional Counter. The other two instruments, the Solid State Spectrometer and the Crystal Spectrometer, measured the spectra of x-ray objects. A fifth instrument, the Monitor Proportional Counter, continuously viewed space independently to study a wider band of x-ray wavelengths and to examine the rapid time variations in the sources. The HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978. The HEAO-2 was originally identified as HEAO-B but the designation was changed once the spacecraft achieved orbit.
A Ground Systems Template for Remote Sensing Systems
NASA Astrophysics Data System (ADS)
McClanahan, Timothy P.; Trombka, Jacob I.; Floyd, Samuel R.; Truskowski, Walter; Starr, Richard D.; Clark, Pamela E.; Evans, Larry G.
2002-10-01
Spaceborne remote sensing using gamma and X-ray spectrometers requires particular attention to the design and development of reliable systems. These systems must ensure the scientific requirements of the mission within the challenging technical constraints of operating instrumentation in space. The Near Earth Asteroid Rendezvous (NEAR) spacecraft included X-ray and gamma-ray spectrometers (XGRS), whose mission was to map the elemental chemistry of the 433 Eros asteroid. A remote sensing system template, similar to a blackboard systems approach used in artificial intelligence, was identified in which the spacecraft, instrument, and ground system was designed and developed to monitor and adapt to evolving mission requirements in a complicated operational setting. Systems were developed for ground tracking of instrument calibration, instrument health, data quality, orbital geometry, solar flux as well as models of the asteroid's surface characteristics, requiring an intensive human effort. In the future, missions such as the Autonomous Nano-Technology Swarm (ANTS) program will have to rely heavily on automation to collectively encounter and sample asteroids in the outer asteroid belt. Using similar instrumentation, ANTS will require information similar to data collected by the NEAR X-ray/Gamma-Ray Spectrometer (XGRS) ground system for science and operations management. The NEAR XGRS systems will be studied to identify the equivalent subsystems that may be automated for ANTS. The effort will also investigate the possibility of applying blackboard style approaches to automated decision making required for ANTS.
NASA Astrophysics Data System (ADS)
Rockwell, A.; Clark, R. D.; Stevermer, A.
2016-12-01
The study of observational science crosses all other subject areas and requires a new innovative paradigm: a collaboration of experts to create high quality, content-rich learning modules that will elevate the scientific literacy and technical competency of undergraduate and graduate students. This collaborative project will design, develop, and openly distribute a series of interactive, multimedia, online modules that can be effectively integrated into meteorology courses on instrumentation, measurement science, and observing systems to supplement traditional pedagogies and enhance blended instruction. The modules will address topics such as principles of instrumentation and measurement to the theory and practice of measuring a host of meteorological variables. The impact will have a profound effect on the atmospheric observational sciences community by fulfilling a need for contemporary, interactive, multimedia guided education and training modules integrating the latest instructional design and assessment tools in observational science. Thousands of undergraduate and graduate students will benefit, while course instructors will value a set of high quality modules to use as supplements to their courses. The modules can serve as an alternative to observational research training and fill the void between field projects or assist those schools that lack the resources to stage a field- or laboratory-based instrumentation experience. This project brings together the intellectual capital of the scientists and engineers of National Center for Atmospheric Research Earth Observing Laboratory as subject matter experts, the artistic talents and instructional design acumen of the COMET program, and the project leadership, vision, teaching expertise in instruments and observational science at Millersville University.
CARMENES: Commissioning and first scientific results at the telescope. A precursor for HIRES@E-ELT
NASA Astrophysics Data System (ADS)
Amado, P. J.; The Carmenes Consortium
2017-03-01
CARMENES is the next generation instrument built for the CAHA 3.5m telescope by a large international consortium of 11 institutes in Spain and Germany. It consists of two separate highly-stabilized, high-resolution echelle spectrographs covering both the visible, from 550 to 950 nm, and the near-IR, from 950 to 1700 nm, wavelength ranges with spectral resolution of R=82,000. They are fed by fibres from the Cassegrain focus of the telescope and were designed and built to achieve high-accuracy radial velocities of nearby M-dwarf stars. This contribution overviews the main and unique design characteristics of CARMENES. The instrument MAIV phase was achieved in the last two years (2014-2015) and started commissioning in November 2015. The commissioning phases, both technical and scientific, took six full weeks in the last two months of 2015. They have shown that the instrument is well within requirements and performing to be able to achieve its objective, not proven before in the near-infrared, of providing radial velocities precisions of 5 ms^{-1}, with a goal of 1 ms^{-1}. The Guaranteed Time Observations (GTO) program has started in January 1st, 2016. CARMENES is, therefore, currently conducting a radial-velocity survey of 300 M dwarfs with a precision sufficient for detecting Earth-like planets in their habitable zones. It is also being offered in open time by the CAHA. Its modular design is the idea in which HIRES, the next very high-resolution, high-fidelity spectrograph with wide wavelength coverage at the E-ELT, is based on. This E-ELT instrument might consist of four different high-resolution spectrographs covering the blue, the visible, the near-infrared (Y, J and H bands) and the K band. A proposal to the ESO call for Phase-A studies for a HIRES at the E-ELT was submitted by the HIRES consortium last December. This proposal was accepted by ESO and the Phase-A kick-off meeting between ESO and the consortium took place in March 22, 2016.
NASA Technical Reports Server (NTRS)
Cooper, Bonnie L.; Mckay, David S.; Allen, Carlton C.; Hoffman, John H.; Gittleman, Mark E.
1997-01-01
The Integrated Dust/Soil Experiment Package (IDEP) is a suite of instruments that can detect and quantify the abundances of useful raw materials on Mars. We focus here on its capability for resource characterization in the martian soil; however, it is also capable of detecting and quantifying gases in the atmosphere. This paper describes the scientific rationale and the engineering design behind the IDEP.
NASA Technical Reports Server (NTRS)
1989-01-01
The Solar Activity Measurements Experiments (SAMEX) mission is described. It is designed to provide a look at the interactions of magnetic fields and plasmas that create flares and other explosive events on the sun in an effort to understand solar activity and the nature of the solar magnetic field. The need for this mission, the instruments to be used, and the expected benefits of SAMEX are discussed.
Two Week Oral Dose Range-Finding Toxicity Study of WR242511 in Rats
1993-07-08
Express Clinical Chemistry System IFCC, Committee on Standards, Part 2. IFCC Method for Aspartate Aminotransferase, Amsterdam, Elsevier Scientific...PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER DAM017-92-C-2OO1 8c ADDRESS (City, State, and ZIP Code) Fort Detrick Frederick, MO 21702-5009 10. SOURCE...7 2. INTRODUCTION 7 3. MATERIALS AND METHODS 7 3.1 Test Article 7 3.2 Animals 8 3.3 Experimental Design 8 3.4
Controversies on the values for health instruments of Chinese medicine.
Hou, Zheng-Kun; Chang, Xiang; Liu, Feng-Bin; Xie, Nelson; Guo, Nicole; Chen, Xin-Lin
2017-02-01
Currently, there are increasing debates on the necessity of health instruments in Chinese medicine (CM) emerging in China. This study aims to reevaluate its status and values. Analyzing the causes, limits, advantages, and properties characters of health instruments in CM, it is found that weak fundamental research, incomplete self-awareness, and complicated social factors are the primary causes of debates. A comprehensive analysis showed health instruments in CM have health evaluation benefits to people from a dominant Chinese culture, meet the requirements of cultural background, and bring long-term value to Chinese instrument researches. However, its values and status should be treated differently depending on various subtypes. Although little theoretical and practical evidences proved that patients-reported health instruments in CM should be proposed independently, the doctors- and nurses-reported questionnaires are necessary. With this in mind, the study group proposes the 'Chinese cultural instruments (CCIs)' and 'health-related CCIs'. The latter one aims to evaluate the health status of people in a dominant Chinese culture. The CCIs theory represents Chinese instrument researches on a larger regional and higher level, and resolves the debates on instruments between CM and Western medicine in China. Health instruments in CM bring more scientific and social benefits for Chinese instrument researches. However, it does not include cultural demands, and lacks scientific significance. CCIs have all its virtues, and add solutions to the latter's theory bottleneck and scientific debates, thus bringing increased benefits to clinical assessment in complementary and alternative medicine researches.
Magnetospheric Multiscale Instrument Suite Operations and Data System
NASA Technical Reports Server (NTRS)
Baker, D. N.; Riesberg, L.; Pankratz, C. K.; Panneton, R. S.; Giles, B. L.; Wilder, F. D.; Ergun, R. E.
2015-01-01
The four Magnetospheric Multiscale (MMS) spacecraft will collect a combined volume of approximately 100 gigabits per day of particle and field data. On average, only 4 gigabits of that volume can be transmitted to the ground. To maximize the scientific value of each transmitted data segment, MMS has developed the Science Operations Center (SOC) to manage science operations, instrument operations, and selection, downlink, distribution, and archiving of MMS science data sets. The SOC is managed by the Laboratory for Atmospheric and Space Physics (LASP) in Boulder, Colorado and serves as the primary point of contact for community participation in the mission. MMS instrument teams conduct their operations through the SOC, and utilize the SOC's Science Data Center (SOC) for data management and distribution. The SOC provides a single mission data archive for the housekeeping and science data, calibration data, ephemerides, attitude and other ancillary data needed to support the scientific use and interpretation. All levels of data products will reside at and be publicly disseminated from the SDC. Documentation and metadata describing data products, algorithms, instrument calibrations, validation, and data quality will be provided. Arguably, the most important innovation developed by the SOC is the MMS burst data management and selection system. With nested automation and 'Scientist-in-the-Loop' (SITL) processes, these systems are designed to maximize the value of the burst data by prioritizing the data segments selected for transmission to the ground. This paper describes the MMS science operations approach, processes and data systems, including the burst system and the SITL concept.
Magnetospheric Multiscale Instrument Suite Operations and Data System
NASA Astrophysics Data System (ADS)
Baker, D. N.; Riesberg, L.; Pankratz, C. K.; Panneton, R. S.; Giles, B. L.; Wilder, F. D.; Ergun, R. E.
2016-03-01
The four Magnetospheric Multiscale (MMS) spacecraft will collect a combined volume of ˜100 gigabits per day of particle and field data. On average, only 4 gigabits of that volume can be transmitted to the ground. To maximize the scientific value of each transmitted data segment, MMS has developed the Science Operations Center (SOC) to manage science operations, instrument operations, and selection, downlink, distribution, and archiving of MMS science data sets. The SOC is managed by the Laboratory for Atmospheric and Space Physics (LASP) in Boulder, Colorado and serves as the primary point of contact for community participation in the mission. MMS instrument teams conduct their operations through the SOC, and utilize the SOC's Science Data Center (SDC) for data management and distribution. The SOC provides a single mission data archive for the housekeeping and science data, calibration data, ephemerides, attitude and other ancillary data needed to support the scientific use and interpretation. All levels of data products will reside at and be publicly disseminated from the SDC. Documentation and metadata describing data products, algorithms, instrument calibrations, validation, and data quality will be provided. Arguably, the most important innovation developed by the SOC is the MMS burst data management and selection system. With nested automation and "Scientist-in-the-Loop" (SITL) processes, these systems are designed to maximize the value of the burst data by prioritizing the data segments selected for transmission to the ground. This paper describes the MMS science operations approach, processes and data systems, including the burst system and the SITL concept.
NASA Astrophysics Data System (ADS)
Nugraha, M. G.; Utari, S.; Saepuzaman, D.; Nugraha, F.
2018-05-01
Scientific process skills (SPS) are an intellectual skill to build knowledge, solve problems scientifically, train thinking skills as well as a very important part of the inquiry process and contribute to scientific literacy. Therefore, SPS is very important to be developed. This study aims to develop Student Worksheets (SW) that can trace SPS through basic physics experiments (BPE) on Melde’s law. This research uses R&D method involving 18 physics education department students who take the BPE course as a sample. The research instrument uses an SW designed with a SPS approach that have been reviewed and judged by expert, which includes observing, communicating, classifying, measuring, inferring, predicting, identifying variable, constructing hypothesis, defining variable operationally, designing experiment, acquiring and processing data to conclusions. The result of the research shows that the student’s SPS has not been trained optimally, the students’ answers are not derived from the observations and experiments conducted but derived from the initial knowledge of the students, as well as in the determination of experimental variables, inferring and hypothesis. This result is also supported by a low increase of conceptual content on Melde’s law with n-gain of 0.40. The research findings are used as the basis for the redesign of SW.
Scientific and Technical Support for the Galileo Net Flux Radiometer Experiment
NASA Technical Reports Server (NTRS)
Sromovsky, Lawrence A.
1997-01-01
This report describes work in support of the Galileo Net Flux Radiometer (NFR), an instrument mounted on the Galileo probe, a spacecraft designed for entry into and direct measurements of Jupiter's atmosphere. Tasks originally proposed for the post launch period covered by NCC 2-854 are briefly as follows: attend and support PSG (Project Science Group) and other project science meetings; support in-flight checkouts; maintain and keep safe the spare instrument and GSE (Ground Support Equipment); organize and maintain documentation; finish NFR calibration measurements, documentation, and analysis; characterize and diagnose instrument anomalies; develop descent data analysis tools; and science data analysis and publication. Because we had the capability to satisfy a project support need we also subsequently proposed and were funded to make ground-based observations of Jupiter during the period surrounding the Galileo arrival at Jupiter, using the Swedish Solar Telescope at La Palma, Canary Islands. The following section provides background information on the NFR instrument. Section 3 contains the final report of work done.
Analytic Method for Computing Instrument Pointing Jitter
NASA Technical Reports Server (NTRS)
Bayard, David
2003-01-01
A new method of calculating the root-mean-square (rms) pointing jitter of a scientific instrument (e.g., a camera, radar antenna, or telescope) is introduced based on a state-space concept. In comparison with the prior method of calculating the rms pointing jitter, the present method involves significantly less computation. The rms pointing jitter of an instrument (the square root of the jitter variance shown in the figure) is an important physical quantity which impacts the design of the instrument, its actuators, controls, sensory components, and sensor- output-sampling circuitry. Using the Sirlin, San Martin, and Lucke definition of pointing jitter, the prior method of computing the rms pointing jitter involves a frequency-domain integral of a rational polynomial multiplied by a transcendental weighting function, necessitating the use of numerical-integration techniques. In practice, numerical integration complicates the problem of calculating the rms pointing error. In contrast, the state-space method provides exact analytic expressions that can be evaluated without numerical integration.
The JWST Science Instrument Payload: Mission Context and Status
NASA Technical Reports Server (NTRS)
Greenhouse, Matthew A.
2014-01-01
The James Webb Space Telescope (JWST) is the scientific successor to the Hubble Space Telescope. It is a cryogenic infrared space observatory with a 25 sq m aperture (6 m class) telescope that will achieve diffraction limited angular resolution at a wavelength of 2 microns. The science instrument payload includes four passively cooled near-infrared instruments providing broad- and narrow-band imagery, coronography, as well as multi-object and integral-field spectroscopy over the 0.6 < lambda < 5.0 microns spectrum. An actively cooled mid-infrared instrument provides broad-band imagery, coronography, and integral-field spectroscopy over the 5.0 < lambda < 29 microns spectrum. The JWST is being developed by NASA, in partnership with the European and Canadian Space Agencies, as a general user facility with science observations to be proposed by the international astronomical community in a manner similar to the Hubble Space Telescope. Technology development and mission design are complete. Construction, integration and verification testing is underway in all areas of the program. The JWST is on schedule for launch during 2018.
NASA Technical Reports Server (NTRS)
Wright, J. P.; Wilson, D. E.
1976-01-01
Many payloads currently proposed to be flown by the space shuttle system require long-duration cooling in the 3 to 200 K temperature range. Common requirements also exist for certain DOD payloads. Parametric design and optimization studies are reported for multistage and diode heat pipe radiator systems designed to operate in this temperature range. Also optimized are ground test systems for two long-life passive thermal control concepts operating under specified space environmental conditions. The ground test systems evaluated are ultimately intended to evolve into flight test qualification prototypes for early shuttle flights.
Murch, Randall S
2014-06-01
Forensic capabilities that provide lead information, and investigative, intelligence, prosecution and policy decision support can be invaluable for responding to and resolving bioterrorism events. Attributing biological attacks through scientific and other resources and processes is an important goal, for which science can be instrumental. Some even believe that having effective microbial forensics capabilities along with others can even deter adversaries from using biological weapons. For those nations that do not have such or wish to integrate or upgrade capabilities, thoughtful analysis and consideration of certain design principles will increase the likelihood that success will be attained.
2001 Mars Odyssey Project report
NASA Technical Reports Server (NTRS)
Spencer, D. A.; Gibbs, R. G.; Mase, R. A.; Plaut, J. J.; Saunders, R. S.
2002-01-01
The Mars Odyssey orbiter was launched on April 7, 2001, and arrived at Mars on October 24, 2001. The orbiter carries scientific instruments that will determine surface elemental composition, mineralogy and morphology, and measure the Mars radiation environment from orbit. In addition, the orbiter will serve as a data relay for future surface missions. This paper will present an overview of the Odyssey project, including the key elements of the spacecraft design, mission design and navigation, mission operations, and the science approach. The project's risk management process will be described. Initial findings of the science team will be summarized.
Project Cerberus: Flyby Mission to Pluto
NASA Technical Reports Server (NTRS)
Sivier, K.; Koepke, A.; Humphrey, Theodore W.; Elbel, Jeffrey P.; Hackett, Bruce E.; Kennedy, Ralph G.; Leo, Donald J.; Zimmerman, Shery A.
1990-01-01
The goal of the Cerberus Project was to design a feasible and cost-effective unmanned flyby mission to Pluto. The requirements in the request for proposal for an unmanned probe to Pluto are presented and were met. The design stresses proven technology that will avoid show stoppers which could halt mission progress. Cerberus also utilizes the latest advances in the spacecraft industry to meet the stringent demands of the mission. The topics covered include: (1) mission management, planning, and costing; (2) structures; (3) power and propulsion; (4) attitude, articulation, and control; (5) command, control, and communication; and (6) scientific instrumentation.