Concept Formation in Scientific Knowledge Discovery from a Constructivist View
NASA Astrophysics Data System (ADS)
Peng, Wei; Gero, John S.
The central goal of scientific knowledge discovery is to learn cause-effect relationships among natural phenomena presented as variables and the consequences their interactions. Scientific knowledge is normally expressed as scientific taxonomies and qualitative and quantitative laws [1]. This type of knowledge represents intrinsic regularities of the observed phenomena that can be used to explain and predict behaviors of the phenomena. It is a generalization that is abstracted and externalized from a set of contexts and applicable to a broader scope. Scientific knowledge is a type of third-person knowledge, i.e., knowledge that independent of a specific enquirer. Artificial intelligence approaches, particularly data mining algorithms that are used to identify meaningful patterns from large data sets, are approaches that aim to facilitate the knowledge discovery process [2]. A broad spectrum of algorithms has been developed in addressing classification, associative learning, and clustering problems. However, their linkages to people who use them have not been adequately explored. Issues in relation to supporting the interpretation of the patterns, the application of prior knowledge to the data mining process and addressing user interactions remain challenges for building knowledge discovery tools [3]. As a consequence, scientists rely on their experience to formulate problems, evaluate hypotheses, reason about untraceable factors and derive new problems. This type of knowledge which they have developed during their career is called “first-person” knowledge. The formation of scientific knowledge (third-person knowledge) is highly influenced by the enquirer’s first-person knowledge construct, which is a result of his or her interactions with the environment. There have been attempts to craft automatic knowledge discovery tools but these systems are limited in their capabilities to handle the dynamics of personal experience. There are now trends in developing approaches to assist scientists applying their expertise to model formation, simulation, and prediction in various domains [4], [5]. On the other hand, first-person knowledge becomes third-person theory only if it proves general by evidence and is acknowledged by a scientific community. Researchers start to focus on building interactive cooperation platforms [1] to accommodate different views into the knowledge discovery process. There are some fundamental questions in relation to scientific knowledge development. What aremajor components for knowledge construction and how do people construct their knowledge? How is this personal construct assimilated and accommodated into a scientific paradigm? How can one design a computational system to facilitate these processes? This chapter does not attempt to answer all these questions but serves as a basis to foster thinking along this line. A brief literature review about how people develop their knowledge is carried out through a constructivist view. A hydrological modeling scenario is presented to elucidate the approach.
Concept Formation in Scientific Knowledge Discovery from a Constructivist View
NASA Astrophysics Data System (ADS)
Peng, Wei; Gero, John S.
The central goal of scientific knowledge discovery is to learn cause-effect relationships among natural phenomena presented as variables and the consequences their interactions. Scientific knowledge is normally expressed as scientific taxonomies and qualitative and quantitative laws [1]. This type of knowledge represents intrinsic regularities of the observed phenomena that can be used to explain and predict behaviors of the phenomena. It is a generalization that is abstracted and externalized from a set of contexts and applicable to a broader scope. Scientific knowledge is a type of third-person knowledge, i.e., knowledge that independent of a specific enquirer. Artificial intelligence approaches, particularly data mining algorithms that are used to identify meaningful patterns from large data sets, are approaches that aim to facilitate the knowledge discovery process [2]. A broad spectrum of algorithms has been developed in addressing classification, associative learning, and clustering problems. However, their linkages to people who use them have not been adequately explored. Issues in relation to supporting the interpretation of the patterns, the application of prior knowledge to the data mining process and addressing user interactions remain challenges for building knowledge discovery tools [3]. As a consequence, scientists rely on their experience to formulate problems, evaluate hypotheses, reason about untraceable factors and derive new problems. This type of knowledge which they have developed during their career is called "first-person" knowledge. The formation of scientific knowledge (third-person knowledge) is highly influenced by the enquirer's first-person knowledge construct, which is a result of his or her interactions with the environment. There have been attempts to craft automatic knowledge discovery tools but these systems are limited in their capabilities to handle the dynamics of personal experience. There are now trends in developing approaches to assist scientists applying their expertise to model formation, simulation, and prediction in various domains [4], [5]. On the other hand, first-person knowledge becomes third-person theory only if it proves general by evidence and is acknowledged by a scientific community. Researchers start to focus on building interactive cooperation platforms [1] to accommodate different views into the knowledge discovery process. There are some fundamental questions in relation to scientific knowledge development. What aremajor components for knowledge construction and how do people construct their knowledge? How is this personal construct assimilated and accommodated into a scientific paradigm? How can one design a computational system to facilitate these processes? This chapter does not attempt to answer all these questions but serves as a basis to foster thinking along this line. A brief literature review about how people develop their knowledge is carried out through a constructivist view. A hydrological modeling scenario is presented to elucidate the approach.
Predicting future discoveries from current scientific literature.
Petrič, Ingrid; Cestnik, Bojan
2014-01-01
Knowledge discovery in biomedicine is a time-consuming process starting from the basic research, through preclinical testing, towards possible clinical applications. Crossing of conceptual boundaries is often needed for groundbreaking biomedical research that generates highly inventive discoveries. We demonstrate the ability of a creative literature mining method to advance valuable new discoveries based on rare ideas from existing literature. When emerging ideas from scientific literature are put together as fragments of knowledge in a systematic way, they may lead to original, sometimes surprising, research findings. If enough scientific evidence is already published for the association of such findings, they can be considered as scientific hypotheses. In this chapter, we describe a method for the computer-aided generation of such hypotheses based on the existing scientific literature. Our literature-based discovery of NF-kappaB with its possible connections to autism was recently approved by scientific community, which confirms the ability of our literature mining methodology to accelerate future discoveries based on rare ideas from existing literature.
A New System To Support Knowledge Discovery: Telemakus.
ERIC Educational Resources Information Center
Revere, Debra; Fuller, Sherrilynne S.; Bugni, Paul F.; Martin, George M.
2003-01-01
The Telemakus System builds on the areas of concept representation, schema theory, and information visualization to enhance knowledge discovery from scientific literature. This article describes the underlying theories and an overview of a working implementation designed to enhance the knowledge discovery process through retrieval, visual and…
On the Growth of Scientific Knowledge: Yeast Biology as a Case Study
He, Xionglei; Zhang, Jianzhi
2009-01-01
The tempo and mode of human knowledge expansion is an enduring yet poorly understood topic. Through a temporal network analysis of three decades of discoveries of protein interactions and genetic interactions in baker's yeast, we show that the growth of scientific knowledge is exponential over time and that important subjects tend to be studied earlier. However, expansions of different domains of knowledge are highly heterogeneous and episodic such that the temporal turnover of knowledge hubs is much greater than expected by chance. Familiar subjects are preferentially studied over new subjects, leading to a reduced pace of innovation. While research is increasingly done in teams, the number of discoveries per researcher is greater in smaller teams. These findings reveal collective human behaviors in scientific research and help design better strategies in future knowledge exploration. PMID:19300476
On the growth of scientific knowledge: yeast biology as a case study.
He, Xionglei; Zhang, Jianzhi
2009-03-01
The tempo and mode of human knowledge expansion is an enduring yet poorly understood topic. Through a temporal network analysis of three decades of discoveries of protein interactions and genetic interactions in baker's yeast, we show that the growth of scientific knowledge is exponential over time and that important subjects tend to be studied earlier. However, expansions of different domains of knowledge are highly heterogeneous and episodic such that the temporal turnover of knowledge hubs is much greater than expected by chance. Familiar subjects are preferentially studied over new subjects, leading to a reduced pace of innovation. While research is increasingly done in teams, the number of discoveries per researcher is greater in smaller teams. These findings reveal collective human behaviors in scientific research and help design better strategies in future knowledge exploration.
To ontologise or not to ontologise: An information model for a geospatial knowledge infrastructure
NASA Astrophysics Data System (ADS)
Stock, Kristin; Stojanovic, Tim; Reitsma, Femke; Ou, Yang; Bishr, Mohamed; Ortmann, Jens; Robertson, Anne
2012-08-01
A geospatial knowledge infrastructure consists of a set of interoperable components, including software, information, hardware, procedures and standards, that work together to support advanced discovery and creation of geoscientific resources, including publications, data sets and web services. The focus of the work presented is the development of such an infrastructure for resource discovery. Advanced resource discovery is intended to support scientists in finding resources that meet their needs, and focuses on representing the semantic details of the scientific resources, including the detailed aspects of the science that led to the resource being created. This paper describes an information model for a geospatial knowledge infrastructure that uses ontologies to represent these semantic details, including knowledge about domain concepts, the scientific elements of the resource (analysis methods, theories and scientific processes) and web services. This semantic information can be used to enable more intelligent search over scientific resources, and to support new ways to infer and visualise scientific knowledge. The work describes the requirements for semantic support of a knowledge infrastructure, and analyses the different options for information storage based on the twin goals of semantic richness and syntactic interoperability to allow communication between different infrastructures. Such interoperability is achieved by the use of open standards, and the architecture of the knowledge infrastructure adopts such standards, particularly from the geospatial community. The paper then describes an information model that uses a range of different types of ontologies, explaining those ontologies and their content. The information model was successfully implemented in a working geospatial knowledge infrastructure, but the evaluation identified some issues in creating the ontologies.
Big, Deep, and Smart Data in Scanning Probe Microscopy.
Kalinin, Sergei V; Strelcov, Evgheni; Belianinov, Alex; Somnath, Suhas; Vasudevan, Rama K; Lingerfelt, Eric J; Archibald, Richard K; Chen, Chaomei; Proksch, Roger; Laanait, Nouamane; Jesse, Stephen
2016-09-27
Scanning probe microscopy (SPM) techniques have opened the door to nanoscience and nanotechnology by enabling imaging and manipulation of the structure and functionality of matter at nanometer and atomic scales. Here, we analyze the scientific discovery process in SPM by following the information flow from the tip-surface junction, to knowledge adoption by the wider scientific community. We further discuss the challenges and opportunities offered by merging SPM with advanced data mining, visual analytics, and knowledge discovery technologies.
Effects of Students' Prior Knowledge on Scientific Reasoning in Density.
ERIC Educational Resources Information Center
Yang, Il-Ho; Kwon, Yong-Ju; Kim, Young-Shin; Jang, Myoung-Duk; Jeong, Jin-Woo; Park, Kuk-Tae
2002-01-01
Investigates the effects of students' prior knowledge on the scientific reasoning processes of performing the task of controlling variables with computer simulation and identifies a number of problems that students encounter in scientific discovery. Involves (n=27) 5th grade students and (n=33) 7th grade students. Indicates that students' prior…
A knowledgebase system to enhance scientific discovery: Telemakus
Fuller, Sherrilynne S; Revere, Debra; Bugni, Paul F; Martin, George M
2004-01-01
Background With the rapid expansion of scientific research, the ability to effectively find or integrate new domain knowledge in the sciences is proving increasingly difficult. Efforts to improve and speed up scientific discovery are being explored on a number of fronts. However, much of this work is based on traditional search and retrieval approaches and the bibliographic citation presentation format remains unchanged. Methods Case study. Results The Telemakus KnowledgeBase System provides flexible new tools for creating knowledgebases to facilitate retrieval and review of scientific research reports. In formalizing the representation of the research methods and results of scientific reports, Telemakus offers a potential strategy to enhance the scientific discovery process. While other research has demonstrated that aggregating and analyzing research findings across domains augments knowledge discovery, the Telemakus system is unique in combining document surrogates with interactive concept maps of linked relationships across groups of research reports. Conclusion Based on how scientists conduct research and read the literature, the Telemakus KnowledgeBase System brings together three innovations in analyzing, displaying and summarizing research reports across a domain: (1) research report schema, a document surrogate of extracted research methods and findings presented in a consistent and structured schema format which mimics the research process itself and provides a high-level surrogate to facilitate searching and rapid review of retrieved documents; (2) research findings, used to index the documents, allowing searchers to request, for example, research studies which have studied the relationship between neoplasms and vitamin E; and (3) visual exploration interface of linked relationships for interactive querying of research findings across the knowledgebase and graphical displays of what is known as well as, through gaps in the map, what is yet to be tested. The rationale and system architecture are described and plans for the future are discussed. PMID:15507158
Text-based discovery in biomedicine: the architecture of the DAD-system.
Weeber, M; Klein, H; Aronson, A R; Mork, J G; de Jong-van den Berg, L T; Vos, R
2000-01-01
Current scientific research takes place in highly specialized contexts with poor communication between disciplines as a likely consequence. Knowledge from one discipline may be useful for the other without researchers knowing it. As scientific publications are a condensation of this knowledge, literature-based discovery tools may help the individual scientist to explore new useful domains. We report on the development of the DAD-system, a concept-based Natural Language Processing system for PubMed citations that provides the biomedical researcher such a tool. We describe the general architecture and illustrate its operation by a simulation of a well-known text-based discovery: The favorable effects of fish oil on patients suffering from Raynaud's disease [1].
An Evaluation of Text Mining Tools as Applied to Selected Scientific and Engineering Literature.
ERIC Educational Resources Information Center
Trybula, Walter J.; Wyllys, Ronald E.
2000-01-01
Addresses an approach to the discovery of scientific knowledge through an examination of data mining and text mining techniques. Presents the results of experiments that investigated knowledge acquisition from a selected set of technical documents by domain experts. (Contains 15 references.) (Author/LRW)
NASA Astrophysics Data System (ADS)
Sharkov, N. A.; Sharkova, O. A.
2018-05-01
The paper identifies the importance of the Leonhard Euler's discoveries in the field of shipbuilding for the scientific evolution of academician A. N. Krylov and for the modern knowledge in survivability and safety of ships. The works by Leonard Euler "Marine Science" and "The Moon Motion New Theory" are discussed.
Development of Scientific Approach Based on Discovery Learning Module
NASA Astrophysics Data System (ADS)
Ellizar, E.; Hardeli, H.; Beltris, S.; Suharni, R.
2018-04-01
Scientific Approach is a learning process, designed to make the students actively construct their own knowledge through stages of scientific method. The scientific approach in learning process can be done by using learning modules. One of the learning model is discovery based learning. Discovery learning is a learning model for the valuable things in learning through various activities, such as observation, experience, and reasoning. In fact, the students’ activity to construct their own knowledge were not optimal. It’s because the available learning modules were not in line with the scientific approach. The purpose of this study was to develop a scientific approach discovery based learning module on Acid Based, also on electrolyte and non-electrolyte solution. The developing process of this chemistry modules use the Plomp Model with three main stages. The stages are preliminary research, prototyping stage, and the assessment stage. The subject of this research was the 10th and 11th Grade of Senior High School students (SMAN 2 Padang). Validation were tested by the experts of Chemistry lecturers and teachers. Practicality of these modules had been tested through questionnaire. The effectiveness had been tested through experimental procedure by comparing student achievement between experiment and control groups. Based on the findings, it can be concluded that the developed scientific approach discovery based learning module significantly improve the students’ learning in Acid-based and Electrolyte solution. The result of the data analysis indicated that the chemistry module was valid in content, construct, and presentation. Chemistry module also has a good practicality level and also accordance with the available time. This chemistry module was also effective, because it can help the students to understand the content of the learning material. That’s proved by the result of learning student. Based on the result can conclude that chemistry module based on discovery learning and scientific approach in electrolyte and non-electrolyte solution and Acid Based for the 10th and 11th grade of senior high school students were valid, practice, and effective.
Choosing experiments to accelerate collective discovery
Rzhetsky, Andrey; Foster, Jacob G.; Foster, Ian T.; ...
2015-11-24
Scientists perform a tiny subset of all possible experiments. What characterizes the experiments they choose? What are the consequences of those choices for the pace of scientific discovery? We model scientific knowledge as a network and science as a sequence of experiments designed to gradually uncover it. By analyzing millions of biomedical articles published over 30 y, we find that biomedical scientists pursue conservative research strategies exploring the local neighborhood of central, important molecules. Although such strategies probably serve scientific careers, we show that they slow scientific advance, especially in mature fields, where more risk and less redundant experimentation wouldmore » accelerate discovery of the network. Lastly, we also consider institutional arrangements that could help science pursue these more efficient strategies.« less
Choosing experiments to accelerate collective discovery
Rzhetsky, Andrey; Foster, Jacob G.; Foster, Ian T.
2015-01-01
A scientist’s choice of research problem affects his or her personal career trajectory. Scientists’ combined choices affect the direction and efficiency of scientific discovery as a whole. In this paper, we infer preferences that shape problem selection from patterns of published findings and then quantify their efficiency. We represent research problems as links between scientific entities in a knowledge network. We then build a generative model of discovery informed by qualitative research on scientific problem selection. We map salient features from this literature to key network properties: an entity’s importance corresponds to its degree centrality, and a problem’s difficulty corresponds to the network distance it spans. Drawing on millions of papers and patents published over 30 years, we use this model to infer the typical research strategy used to explore chemical relationships in biomedicine. This strategy generates conservative research choices focused on building up knowledge around important molecules. These choices become more conservative over time. The observed strategy is efficient for initial exploration of the network and supports scientific careers that require steady output, but is inefficient for science as a whole. Through supercomputer experiments on a sample of the network, we study thousands of alternatives and identify strategies much more efficient at exploring mature knowledge networks. We find that increased risk-taking and the publication of experimental failures would substantially improve the speed of discovery. We consider institutional shifts in grant making, evaluation, and publication that would help realize these efficiencies. PMID:26554009
48 CFR 31.205-18 - Independent research and development and bid and proposal costs.
Code of Federal Regulations, 2012 CFR
2012-10-01
... determine and exploit the potential of scientific discoveries or improvements in technology, materials... systematic use, under whatever name, of scientific and technical knowledge in the design, development, test...
48 CFR 31.205-18 - Independent research and development and bid and proposal costs.
Code of Federal Regulations, 2013 CFR
2013-10-01
... determine and exploit the potential of scientific discoveries or improvements in technology, materials... systematic use, under whatever name, of scientific and technical knowledge in the design, development, test...
48 CFR 31.205-18 - Independent research and development and bid and proposal costs.
Code of Federal Regulations, 2011 CFR
2011-10-01
... determine and exploit the potential of scientific discoveries or improvements in technology, materials... systematic use, under whatever name, of scientific and technical knowledge in the design, development, test...
48 CFR 31.205-18 - Independent research and development and bid and proposal costs.
Code of Federal Regulations, 2014 CFR
2014-10-01
... determine and exploit the potential of scientific discoveries or improvements in technology, materials... systematic use, under whatever name, of scientific and technical knowledge in the design, development, test...
Full, Robert J; Dudley, Robert; Koehl, M A R; Libby, Thomas; Schwab, Cheryl
2015-11-01
Experiencing the thrill of an original scientific discovery can be transformative to students unsure about becoming a scientist, yet few courses offer authentic research experiences. Increasingly, cutting-edge discoveries require an interdisciplinary approach not offered in current departmental-based courses. Here, we describe a one-semester, learning laboratory course on organismal biomechanics offered at our large research university that enables interdisciplinary teams of students from biology and engineering to grow intellectually, collaborate effectively, and make original discoveries. To attain this goal, we avoid traditional "cookbook" laboratories by training 20 students to use a dozen research stations. Teams of five students rotate to a new station each week where a professor, graduate student, and/or team member assists in the use of equipment, guides students through stages of critical thinking, encourages interdisciplinary collaboration, and moves them toward authentic discovery. Weekly discussion sections that involve the entire class offer exchange of discipline-specific knowledge, advice on experimental design, methods of collecting and analyzing data, a statistics primer, and best practices for writing and presenting scientific papers. The building of skills in concert with weekly guided inquiry facilitates original discovery via a final research project that can be presented at a national meeting or published in a scientific journal. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Serendipity: Accidental Discoveries in Science
NASA Astrophysics Data System (ADS)
Roberts, Royston M.
1989-06-01
Many of the things discovered by accident are important in our everyday lives: Teflon, Velcro, nylon, x-rays, penicillin, safety glass, sugar substitutes, and polyethylene and other plastics. And we owe a debt to accident for some of our deepest scientific knowledge, including Newton's theory of gravitation, the Big Bang theory of Creation, and the discovery of DNA. Even the Rosetta Stone, the Dead Sea Scrolls, and the ruins of Pompeii came to light through chance. This book tells the fascinating stories of these and other discoveries and reveals how the inquisitive human mind turns accident into discovery. Written for the layman, yet scientifically accurate, this illuminating collection of anecdotes portrays invention and discovery as quintessentially human acts, due in part to curiosity, perserverance, and luck.
ERIC Educational Resources Information Center
MacKenzie, Marion
1983-01-01
Scientific research leading to the discovery of female plants of the red alga Palmaria plamata (dulse) is described. This discovery has not only advanced knowledge of marine organisms and taxonomic relationships but also has practical implications. The complete life cycle of this organism is included. (JN)
Building Scalable Knowledge Graphs for Earth Science
NASA Technical Reports Server (NTRS)
Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick; Zhang, Jia; Duan, Xiaoyi; Miller, J. J.; Bugbee, Kaylin; Christopher, Sundar; Freitag, Brian
2017-01-01
Knowledge Graphs link key entities in a specific domain with other entities via relationships. From these relationships, researchers can query knowledge graphs for probabilistic recommendations to infer new knowledge. Scientific papers are an untapped resource which knowledge graphs could leverage to accelerate research discovery. Goal: Develop an end-to-end (semi) automated methodology for constructing Knowledge Graphs for Earth Science.
Toward Routine Automatic Pathway Discovery from On-line Scientific Text Abstracts.
Ng; Wong
1999-01-01
We are entering a new era of research where the latest scientific discoveries are often first reported online and are readily accessible by scientists worldwide. This rapid electronic dissemination of research breakthroughs has greatly accelerated the current pace in genomics and proteomics research. The race to the discovery of a gene or a drug has now become increasingly dependent on how quickly a scientist can scan through voluminous amount of information available online to construct the relevant picture (such as protein-protein interaction pathways) as it takes shape amongst the rapidly expanding pool of globally accessible biological data (e.g. GENBANK) and scientific literature (e.g. MEDLINE). We describe a prototype system for automatic pathway discovery from on-line text abstracts, combining technologies that (1) retrieve research abstracts from online sources, (2) extract relevant information from the free texts, and (3) present the extracted information graphically and intuitively. Our work demonstrates that this framework allows us to routinely scan online scientific literature for automatic discovery of knowledge, giving modern scientists the necessary competitive edge in managing the information explosion in this electronic age.
Mapping the Sloan Digital Sky Survey's Global Impact
NASA Astrophysics Data System (ADS)
Chen, Chaomei; Zhang, Jian; Vogeley, Michael S.
2009-07-01
The scientific capacity of a country is essential in todayâ's increasingly globalized science and technology ecosystem. Scientific capacity has four increasingly advanced levels of capabilities: absorbing, applying, creating, and retaining scientific knowledge. Moving to a advanced level requires additional skills and training. For example, it requires more specialized skills to apply scientific knowledge than to absorb knowledge. Similarly, making new discoveries requires more knowledge than applying existing procedures. Research has shown the importance of addressing specific, local problems while tapping into globally available expertise and resources. Accessing scientific knowledge is the first step towards absorbing knowledge. Low-income countries have increased their access to scientific literature on the Internet, but to what extent has this access led to more advanced levels of scientific capacity? Interdisciplinary and international collaboration may hold the key to creating and retaining knowledge. For example, creative ideas tend to be associated with inspirations originated from a diverse range of perspectives On the other hand, not all collaborations are productive. Assessing global science and technology needs to address both successes and failures and reasons behind them.
On the Limitations of Biological Knowledge
Dougherty, Edward R; Shmulevich, Ilya
2012-01-01
Scientific knowledge is grounded in a particular epistemology and, owing to the requirements of that epistemology, possesses limitations. Some limitations are intrinsic, in the sense that they depend inherently on the nature of scientific knowledge; others are contingent, depending on the present state of knowledge, including technology. Understanding limitations facilitates scientific research because one can then recognize when one is confronted by a limitation, as opposed to simply being unable to solve a problem within the existing bounds of possibility. In the hope that the role of limiting factors can be brought more clearly into focus and discussed, we consider several sources of limitation as they apply to biological knowledge: mathematical complexity, experimental constraints, validation, knowledge discovery, and human intellectual capacity. PMID:23633917
Discovery informatics in biological and biomedical sciences: research challenges and opportunities.
Honavar, Vasant
2015-01-01
New discoveries in biological, biomedical and health sciences are increasingly being driven by our ability to acquire, share, integrate and analyze, and construct and simulate predictive models of biological systems. While much attention has focused on automating routine aspects of management and analysis of "big data", realizing the full potential of "big data" to accelerate discovery calls for automating many other aspects of the scientific process that have so far largely resisted automation: identifying gaps in the current state of knowledge; generating and prioritizing questions; designing studies; designing, prioritizing, planning, and executing experiments; interpreting results; forming hypotheses; drawing conclusions; replicating studies; validating claims; documenting studies; communicating results; reviewing results; and integrating results into the larger body of knowledge in a discipline. Against this background, the PSB workshop on Discovery Informatics in Biological and Biomedical Sciences explores the opportunities and challenges of automating discovery or assisting humans in discovery through advances (i) Understanding, formalization, and information processing accounts of, the entire scientific process; (ii) Design, development, and evaluation of the computational artifacts (representations, processes) that embody such understanding; and (iii) Application of the resulting artifacts and systems to advance science (by augmenting individual or collective human efforts, or by fully automating science).
CCR Careers | Center for Cancer Research
Be part of our mission to make breakthrough scientific discoveries to find cures and treatments for cancer. Our principal investigators lead teams of laboratory scientists, trainees, clinicians, and administrators to unlock scientific knowledge to advance the fight against cancer and HIV/AIDS.
Big, Deep, and Smart Data in Scanning Probe Microscopy
Kalinin, Sergei V.; Strelcov, Evgheni; Belianinov, Alex; ...
2016-09-27
Scanning probe microscopy techniques open the door to nanoscience and nanotechnology by enabling imaging and manipulation of structure and functionality of matter on nanometer and atomic scales. We analyze the discovery process by SPM in terms of information flow from tip-surface junction to the knowledge adoption by scientific community. Furthermore, we discuss the challenges and opportunities offered by merging of SPM and advanced data mining, visual analytics, and knowledge discovery technologies.
Code of Federal Regulations, 2012 CFR
2012-10-01
... determine and exploit the potential of scientific discoveries or improvements in technology, materials... aim is the design, development, or testing of specific items or services to be considered for sale..., means the systematic use of scientific and technical knowledge in the design, development, testing, or...
Code of Federal Regulations, 2014 CFR
2014-10-01
... determine and exploit the potential of scientific discoveries or improvements in technology, materials... aim is the design, development, or testing of specific items or services to be considered for sale..., means the systematic use of scientific and technical knowledge in the design, development, testing, or...
Code of Federal Regulations, 2011 CFR
2011-10-01
... determine and exploit the potential of scientific discoveries or improvements in technology, materials... aim is the design, development, or testing of specific items or services to be considered for sale..., means the systematic use of scientific and technical knowledge in the design, development, testing, or...
Code of Federal Regulations, 2013 CFR
2013-10-01
... determine and exploit the potential of scientific discoveries or improvements in technology, materials... aim is the design, development, or testing of specific items or services to be considered for sale..., means the systematic use of scientific and technical knowledge in the design, development, testing, or...
DataHub: Knowledge-based data management for data discovery
NASA Astrophysics Data System (ADS)
Handley, Thomas H.; Li, Y. Philip
1993-08-01
Currently available database technology is largely designed for business data-processing applications, and seems inadequate for scientific applications. The research described in this paper, the DataHub, will address the issues associated with this shortfall in technology utilization and development. The DataHub development is addressing the key issues in scientific data management of scientific database models and resource sharing in a geographically distributed, multi-disciplinary, science research environment. Thus, the DataHub will be a server between the data suppliers and data consumers to facilitate data exchanges, to assist science data analysis, and to provide as systematic approach for science data management. More specifically, the DataHub's objectives are to provide support for (1) exploratory data analysis (i.e., data driven analysis); (2) data transformations; (3) data semantics capture and usage; analysis-related knowledge capture and usage; and (5) data discovery, ingestion, and extraction. Applying technologies that vary from deductive databases, semantic data models, data discovery, knowledge representation and inferencing, exploratory data analysis techniques and modern man-machine interfaces, DataHub will provide a prototype, integrated environement to support research scientists' needs in multiple disciplines (i.e. oceanography, geology, and atmospheric) while addressing the more general science data management issues. Additionally, the DataHub will provide data management services to exploratory data analysis applications such as LinkWinds and NCSA's XIMAGE.
Genomics, "Discovery Science," Systems Biology, and Causal Explanation: What Really Works?
Davidson, Eric H
2015-01-01
Diverse and non-coherent sets of epistemological principles currently inform research in the general area of functional genomics. Here, from the personal point of view of a scientist with over half a century of immersion in hypothesis driven scientific discovery, I compare and deconstruct the ideological bases of prominent recent alternatives, such as "discovery science," some productions of the ENCODE project, and aspects of large data set systems biology. The outputs of these types of scientific enterprise qualitatively reflect their radical definitions of scientific knowledge, and of its logical requirements. Their properties emerge in high relief when contrasted (as an example) to a recent, system-wide, predictive analysis of a developmental regulatory apparatus that was instead based directly on hypothesis-driven experimental tests of mechanism.
Kell, Douglas B
2012-01-01
A considerable number of areas of bioscience, including gene and drug discovery, metabolic engineering for the biotechnological improvement of organisms, and the processes of natural and directed evolution, are best viewed in terms of a ‘landscape’ representing a large search space of possible solutions or experiments populated by a considerably smaller number of actual solutions that then emerge. This is what makes these problems ‘hard’, but as such these are to be seen as combinatorial optimisation problems that are best attacked by heuristic methods known from that field. Such landscapes, which may also represent or include multiple objectives, are effectively modelled in silico, with modern active learning algorithms such as those based on Darwinian evolution providing guidance, using existing knowledge, as to what is the ‘best’ experiment to do next. An awareness, and the application, of these methods can thereby enhance the scientific discovery process considerably. This analysis fits comfortably with an emerging epistemology that sees scientific reasoning, the search for solutions, and scientific discovery as Bayesian processes. PMID:22252984
Kell, Douglas B
2012-03-01
A considerable number of areas of bioscience, including gene and drug discovery, metabolic engineering for the biotechnological improvement of organisms, and the processes of natural and directed evolution, are best viewed in terms of a 'landscape' representing a large search space of possible solutions or experiments populated by a considerably smaller number of actual solutions that then emerge. This is what makes these problems 'hard', but as such these are to be seen as combinatorial optimisation problems that are best attacked by heuristic methods known from that field. Such landscapes, which may also represent or include multiple objectives, are effectively modelled in silico, with modern active learning algorithms such as those based on Darwinian evolution providing guidance, using existing knowledge, as to what is the 'best' experiment to do next. An awareness, and the application, of these methods can thereby enhance the scientific discovery process considerably. This analysis fits comfortably with an emerging epistemology that sees scientific reasoning, the search for solutions, and scientific discovery as Bayesian processes. Copyright © 2012 WILEY Periodicals, Inc.
Featured Article: Genotation: Actionable knowledge for the scientific reader
Willis, Ethan; Sakauye, Mark; Jose, Rony; Chen, Hao; Davis, Robert L
2016-01-01
We present an article viewer application that allows a scientific reader to easily discover and share knowledge by linking genomics-related concepts to knowledge of disparate biomedical databases. High-throughput data streams generated by technical advancements have contributed to scientific knowledge discovery at an unprecedented rate. Biomedical Informaticists have created a diverse set of databases to store and retrieve the discovered knowledge. The diversity and abundance of such resources present biomedical researchers a challenge with knowledge discovery. These challenges highlight a need for a better informatics solution. We use a text mining algorithm, Genomine, to identify gene symbols from the text of a journal article. The identified symbols are supplemented with information from the GenoDB knowledgebase. Self-updating GenoDB contains information from NCBI Gene, Clinvar, Medgen, dbSNP, KEGG, PharmGKB, Uniprot, and Hugo Gene databases. The journal viewer is a web application accessible via a web browser. The features described herein are accessible on www.genotation.org. The Genomine algorithm identifies gene symbols with an accuracy shown by .65 F-Score. GenoDB currently contains information regarding 59,905 gene symbols, 5633 drug–gene relationships, 5981 gene–disease relationships, and 713 pathways. This application provides scientific readers with actionable knowledge related to concepts of a manuscript. The reader will be able to save and share supplements to be visualized in a graphical manner. This provides convenient access to details of complex biological phenomena, enabling biomedical researchers to generate novel hypothesis to further our knowledge in human health. This manuscript presents a novel application that integrates genomic, proteomic, and pharmacogenomic information to supplement content of a biomedical manuscript and enable readers to automatically discover actionable knowledge. PMID:26900164
Featured Article: Genotation: Actionable knowledge for the scientific reader.
Nagahawatte, Panduka; Willis, Ethan; Sakauye, Mark; Jose, Rony; Chen, Hao; Davis, Robert L
2016-06-01
We present an article viewer application that allows a scientific reader to easily discover and share knowledge by linking genomics-related concepts to knowledge of disparate biomedical databases. High-throughput data streams generated by technical advancements have contributed to scientific knowledge discovery at an unprecedented rate. Biomedical Informaticists have created a diverse set of databases to store and retrieve the discovered knowledge. The diversity and abundance of such resources present biomedical researchers a challenge with knowledge discovery. These challenges highlight a need for a better informatics solution. We use a text mining algorithm, Genomine, to identify gene symbols from the text of a journal article. The identified symbols are supplemented with information from the GenoDB knowledgebase. Self-updating GenoDB contains information from NCBI Gene, Clinvar, Medgen, dbSNP, KEGG, PharmGKB, Uniprot, and Hugo Gene databases. The journal viewer is a web application accessible via a web browser. The features described herein are accessible on www.genotation.org The Genomine algorithm identifies gene symbols with an accuracy shown by .65 F-Score. GenoDB currently contains information regarding 59,905 gene symbols, 5633 drug-gene relationships, 5981 gene-disease relationships, and 713 pathways. This application provides scientific readers with actionable knowledge related to concepts of a manuscript. The reader will be able to save and share supplements to be visualized in a graphical manner. This provides convenient access to details of complex biological phenomena, enabling biomedical researchers to generate novel hypothesis to further our knowledge in human health. This manuscript presents a novel application that integrates genomic, proteomic, and pharmacogenomic information to supplement content of a biomedical manuscript and enable readers to automatically discover actionable knowledge. © 2016 by the Society for Experimental Biology and Medicine.
Using JournalMap to improve discovery and visualization of rangeland scientific knowledge
USDA-ARS?s Scientific Manuscript database
Most of the ecological research conducted around the world is tied to specific places; however, that location information is locked up in the text and figures of scientific articles in myriad forms that are not easily searchable. While access to ecological literature has improved dramatically in the...
Semantically-enabled Knowledge Discovery in the Deep Carbon Observatory
NASA Astrophysics Data System (ADS)
Wang, H.; Chen, Y.; Ma, X.; Erickson, J. S.; West, P.; Fox, P. A.
2013-12-01
The Deep Carbon Observatory (DCO) is a decadal effort aimed at transforming scientific and public understanding of carbon in the complex deep earth system from the perspectives of Deep Energy, Deep Life, Extreme Physics and Chemistry, and Reservoirs and Fluxes. Over the course of the decade DCO scientific activities will generate a massive volume of data across a variety of disciplines, presenting significant challenges in terms of data integration, management, analysis and visualization, and ultimately limiting the ability of scientists across disciplines to make insights and unlock new knowledge. The DCO Data Science Team (DCO-DS) is applying Semantic Web methodologies to construct a knowledge representation focused on the DCO Earth science disciplines, and use it together with other technologies (e.g. natural language processing and data mining) to create a more expressive representation of the distributed corpus of DCO artifacts including datasets, metadata, instruments, sensors, platforms, deployments, researchers, organizations, funding agencies, grants and various awards. The embodiment of this knowledge representation is the DCO Data Science Infrastructure, in which unique entities within the DCO domain and the relations between them are recognized and explicitly identified. The DCO-DS Infrastructure will serve as a platform for more efficient and reliable searching, discovery, access, and publication of information and knowledge for the DCO scientific community and beyond.
Code of Federal Regulations, 2011 CFR
2011-07-01
... increasing knowledge or understanding in science and engineering. Applied research is defined as efforts that attempt to determine and exploit the potential of scientific discoveries or improvements in technology...
[The discovery of blood circulation: revolution or revision?].
Crignon, Claire
2011-01-01
The discovery of the principle of blood circulation by William Harvey is generally considered as one of the major events of the "scientific revolution" of the 17th century. This paper reconsiders the question by taking in account the way Harvey's discovery was discussed by some contemporary philosophers and physicians, in particular Fontenelle, who insisted on the necessity of redefining methods and principles of medical knowledge, basing themselves on the revival of anatomy and physiology, and of its consequences on the way it permits to think about the human nature. This return allows us to consider the opportunity of substituting the kuhnian scheme of "structure of scientific revolutions" for the bachelardian concept of "refonte".
A bioinformatics knowledge discovery in text application for grid computing
Castellano, Marcello; Mastronardi, Giuseppe; Bellotti, Roberto; Tarricone, Gianfranco
2009-01-01
Background A fundamental activity in biomedical research is Knowledge Discovery which has the ability to search through large amounts of biomedical information such as documents and data. High performance computational infrastructures, such as Grid technologies, are emerging as a possible infrastructure to tackle the intensive use of Information and Communication resources in life science. The goal of this work was to develop a software middleware solution in order to exploit the many knowledge discovery applications on scalable and distributed computing systems to achieve intensive use of ICT resources. Methods The development of a grid application for Knowledge Discovery in Text using a middleware solution based methodology is presented. The system must be able to: perform a user application model, process the jobs with the aim of creating many parallel jobs to distribute on the computational nodes. Finally, the system must be aware of the computational resources available, their status and must be able to monitor the execution of parallel jobs. These operative requirements lead to design a middleware to be specialized using user application modules. It included a graphical user interface in order to access to a node search system, a load balancing system and a transfer optimizer to reduce communication costs. Results A middleware solution prototype and the performance evaluation of it in terms of the speed-up factor is shown. It was written in JAVA on Globus Toolkit 4 to build the grid infrastructure based on GNU/Linux computer grid nodes. A test was carried out and the results are shown for the named entity recognition search of symptoms and pathologies. The search was applied to a collection of 5,000 scientific documents taken from PubMed. Conclusion In this paper we discuss the development of a grid application based on a middleware solution. It has been tested on a knowledge discovery in text process to extract new and useful information about symptoms and pathologies from a large collection of unstructured scientific documents. As an example a computation of Knowledge Discovery in Database was applied on the output produced by the KDT user module to extract new knowledge about symptom and pathology bio-entities. PMID:19534749
A bioinformatics knowledge discovery in text application for grid computing.
Castellano, Marcello; Mastronardi, Giuseppe; Bellotti, Roberto; Tarricone, Gianfranco
2009-06-16
A fundamental activity in biomedical research is Knowledge Discovery which has the ability to search through large amounts of biomedical information such as documents and data. High performance computational infrastructures, such as Grid technologies, are emerging as a possible infrastructure to tackle the intensive use of Information and Communication resources in life science. The goal of this work was to develop a software middleware solution in order to exploit the many knowledge discovery applications on scalable and distributed computing systems to achieve intensive use of ICT resources. The development of a grid application for Knowledge Discovery in Text using a middleware solution based methodology is presented. The system must be able to: perform a user application model, process the jobs with the aim of creating many parallel jobs to distribute on the computational nodes. Finally, the system must be aware of the computational resources available, their status and must be able to monitor the execution of parallel jobs. These operative requirements lead to design a middleware to be specialized using user application modules. It included a graphical user interface in order to access to a node search system, a load balancing system and a transfer optimizer to reduce communication costs. A middleware solution prototype and the performance evaluation of it in terms of the speed-up factor is shown. It was written in JAVA on Globus Toolkit 4 to build the grid infrastructure based on GNU/Linux computer grid nodes. A test was carried out and the results are shown for the named entity recognition search of symptoms and pathologies. The search was applied to a collection of 5,000 scientific documents taken from PubMed. In this paper we discuss the development of a grid application based on a middleware solution. It has been tested on a knowledge discovery in text process to extract new and useful information about symptoms and pathologies from a large collection of unstructured scientific documents. As an example a computation of Knowledge Discovery in Database was applied on the output produced by the KDT user module to extract new knowledge about symptom and pathology bio-entities.
Virtual Observatories, Data Mining, and Astroinformatics
NASA Astrophysics Data System (ADS)
Borne, Kirk
The historical, current, and future trends in knowledge discovery from data in astronomy are presented here. The story begins with a brief history of data gathering and data organization. A description of the development ofnew information science technologies for astronomical discovery is then presented. Among these are e-Science and the virtual observatory, with its data discovery, access, display, and integration protocols; astroinformatics and data mining for exploratory data analysis, information extraction, and knowledge discovery from distributed data collections; new sky surveys' databases, including rich multivariate observational parameter sets for large numbers of objects; and the emerging discipline of data-oriented astronomical research, called astroinformatics. Astroinformatics is described as the fourth paradigm of astronomical research, following the three traditional research methodologies: observation, theory, and computation/modeling. Astroinformatics research areas include machine learning, data mining, visualization, statistics, semantic science, and scientific data management.Each of these areas is now an active research discipline, with significantscience-enabling applications in astronomy. Research challenges and sample research scenarios are presented in these areas, in addition to sample algorithms for data-oriented research. These information science technologies enable scientific knowledge discovery from the increasingly large and complex data collections in astronomy. The education and training of the modern astronomy student must consequently include skill development in these areas, whose practitioners have traditionally been limited to applied mathematicians, computer scientists, and statisticians. Modern astronomical researchers must cross these traditional discipline boundaries, thereby borrowing the best of breed methodologies from multiple disciplines. In the era of large sky surveys and numerous large telescopes, the potential for astronomical discovery is equally large, and so the data-oriented research methods, algorithms, and techniques that are presented here will enable the greatest discovery potential from the ever-growing data and information resources in astronomy.
ERIC Educational Resources Information Center
Yu, Pulan
2012-01-01
Classification, clustering and association mining are major tasks of data mining and have been widely used for knowledge discovery. Associative classification mining, the combination of both association rule mining and classification, has emerged as an indispensable way to support decision making and scientific research. In particular, it offers a…
Scientific Knowledge Discovery in Complex Semantic Networks of Geophysical Systems
NASA Astrophysics Data System (ADS)
Fox, P.
2012-04-01
The vast majority of explorations of the Earth's systems are limited in their ability to effectively explore the most important (often most difficult) problems because they are forced to interconnect at the data-element, or syntactic, level rather than at a higher scientific, or semantic, level. Recent successes in the application of complex network theory and algorithms to climate data, raise expectations that more general graph-based approaches offer the opportunity for new discoveries. In the past ~ 5 years in the natural sciences there has substantial progress in providing both specialists and non-specialists the ability to describe in machine readable form, geophysical quantities and relations among them in meaningful and natural ways, effectively breaking the prior syntax barrier. The corresponding open-world semantics and reasoning provide higher-level interconnections. That is, semantics provided around the data structures, using semantically-equipped tools, and semantically aware interfaces between science application components allowing for discovery at the knowledge level. More recently, formal semantic approaches to continuous and aggregate physical processes are beginning to show promise and are soon likely to be ready to apply to geoscientific systems. To illustrate these opportunities, this presentation presents two application examples featuring domain vocabulary (ontology) and property relations (named and typed edges in the graphs). First, a climate knowledge discovery pilot encoding and exploration of CMIP5 catalog information with the eventual goal to encode and explore CMIP5 data. Second, a multi-stakeholder knowledge network for integrated assessments in marine ecosystems, where the data is highly inter-disciplinary.
Framing of scientific knowledge as a new category of health care research.
Salvador-Carulla, Luis; Fernandez, Ana; Madden, Rosamond; Lukersmith, Sue; Colagiuri, Ruth; Torkfar, Ghazal; Sturmberg, Joachim
2014-12-01
The new area of health system research requires a revision of the taxonomy of scientific knowledge that may facilitate a better understanding and representation of complex health phenomena in research discovery, corroboration and implementation. A position paper by an expert group following and iterative approach. 'Scientific evidence' should be differentiated from 'elicited knowledge' of experts and users, and this latter typology should be described beyond the traditional qualitative framework. Within this context 'framing of scientific knowledge' (FSK) is defined as a group of studies of prior expert knowledge specifically aimed at generating formal scientific frames. To be distinguished from other unstructured frames, FSK must be explicit, standardized, based on the available evidence, agreed by a group of experts and subdued to the principles of commensurability, transparency for corroboration and transferability that characterize scientific research. A preliminary typology of scientific framing studies is presented. This typology includes, among others, health declarations, position papers, expert-based clinical guides, conceptual maps, classifications, expert-driven health atlases and expert-driven studies of costs and burden of illness. This grouping of expert-based studies constitutes a different kind of scientific knowledge and should be clearly differentiated from 'evidence' gathered from experimental and observational studies in health system research. © 2014 John Wiley & Sons, Ltd.
Helping Students Write about Science without Plagiarizing
ERIC Educational Resources Information Center
Wheeler-Toppen, Jodi
2006-01-01
Writing is an integral part of science. The growth of scientific knowledge depends on scientists' ability to record their thoughts and discoveries for future scientists to build on. Everyday literacy is the basis of scientific literacy. In addition, writing about science helps students learn science. In order to transfer science concepts from what…
QuarkNet: Benefits for Teachers, Their Students and Physicists
NASA Astrophysics Data System (ADS)
Bardeen, Marjorie
2017-01-01
The QuarkNet Collaboration has forged nontraditional relationships among particle physicists, high school teachers and their students. QuarkNet centers are located at 50 + universities and labs across the U.S. and Puerto Rico. We provide professional development for teachers and create opportunities for teachers and students to engage in particle physics data investigations and join research teams. Students develop scientific knowledge and habits of mind by working alongside scientists to make sense of the world using authentic experimental data. Our program is based a classroom vision where teaching strategies emulate closely the way scientists build knowledge through inquiry. We look at how student engagement in research and masterclasses develops an understanding about the process of scientific discovery and science using current scientific data. We also look at ways and to what extent teachers provide scientific discovery and science practices for students and how QuarkNet contributes to the professionalism of participating teachers. Also, we describe success factors that enhance local center programs and describe important benefits of the program that flow to university faculty. Funded by the National Science Foundation and the US Department of Energy.
Systematic identification of latent disease-gene associations from PubMed articles.
Zhang, Yuji; Shen, Feichen; Mojarad, Majid Rastegar; Li, Dingcheng; Liu, Sijia; Tao, Cui; Yu, Yue; Liu, Hongfang
2018-01-01
Recent scientific advances have accumulated a tremendous amount of biomedical knowledge providing novel insights into the relationship between molecular and cellular processes and diseases. Literature mining is one of the commonly used methods to retrieve and extract information from scientific publications for understanding these associations. However, due to large data volume and complicated associations with noises, the interpretability of such association data for semantic knowledge discovery is challenging. In this study, we describe an integrative computational framework aiming to expedite the discovery of latent disease mechanisms by dissecting 146,245 disease-gene associations from over 25 million of PubMed indexed articles. We take advantage of both Latent Dirichlet Allocation (LDA) modeling and network-based analysis for their capabilities of detecting latent associations and reducing noises for large volume data respectively. Our results demonstrate that (1) the LDA-based modeling is able to group similar diseases into disease topics; (2) the disease-specific association networks follow the scale-free network property; (3) certain subnetwork patterns were enriched in the disease-specific association networks; and (4) genes were enriched in topic-specific biological processes. Our approach offers promising opportunities for latent disease-gene knowledge discovery in biomedical research.
Systematic identification of latent disease-gene associations from PubMed articles
Mojarad, Majid Rastegar; Li, Dingcheng; Liu, Sijia; Tao, Cui; Yu, Yue; Liu, Hongfang
2018-01-01
Recent scientific advances have accumulated a tremendous amount of biomedical knowledge providing novel insights into the relationship between molecular and cellular processes and diseases. Literature mining is one of the commonly used methods to retrieve and extract information from scientific publications for understanding these associations. However, due to large data volume and complicated associations with noises, the interpretability of such association data for semantic knowledge discovery is challenging. In this study, we describe an integrative computational framework aiming to expedite the discovery of latent disease mechanisms by dissecting 146,245 disease-gene associations from over 25 million of PubMed indexed articles. We take advantage of both Latent Dirichlet Allocation (LDA) modeling and network-based analysis for their capabilities of detecting latent associations and reducing noises for large volume data respectively. Our results demonstrate that (1) the LDA-based modeling is able to group similar diseases into disease topics; (2) the disease-specific association networks follow the scale-free network property; (3) certain subnetwork patterns were enriched in the disease-specific association networks; and (4) genes were enriched in topic-specific biological processes. Our approach offers promising opportunities for latent disease-gene knowledge discovery in biomedical research. PMID:29373609
75 FR 14608 - Statement of Organization, Functions, and Delegations of Authority
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-26
... situations; (5) helps to develop and encourage innovation throughout the spectrum from scientific discovery... transparency and accountability of CDC extramural research programs; (5) provides oversight of knowledge...
Knowledge Discovery and Data Mining in Iran's Climatic Researches
NASA Astrophysics Data System (ADS)
Karimi, Mostafa
2013-04-01
Advances in measurement technology and data collection is the database gets larger. Large databases require powerful tools for analysis data. Iterative process of acquiring knowledge from information obtained from data processing is done in various forms in all scientific fields. However, when the data volume large, and many of the problems the Traditional methods cannot respond. in the recent years, use of databases in various scientific fields, especially atmospheric databases in climatology expanded. in addition, increases in the amount of data generated by the climate models is a challenge for analysis of it for extraction of hidden pattern and knowledge. The approach to this problem has been made in recent years uses the process of knowledge discovery and data mining techniques with the use of the concepts of machine learning, artificial intelligence and expert (professional) systems is overall performance. Data manning is analytically process for manning in massive volume data. The ultimate goal of data mining is access to information and finally knowledge. climatology is a part of science that uses variety and massive volume data. Goal of the climate data manning is Achieve to information from variety and massive atmospheric and non-atmospheric data. in fact, Knowledge Discovery performs these activities in a logical and predetermined and almost automatic process. The goal of this research is study of uses knowledge Discovery and data mining technique in Iranian climate research. For Achieve This goal, study content (descriptive) analysis and classify base method and issue. The result shown that in climatic research of Iran most clustering, k-means and wards applied and in terms of issues precipitation and atmospheric circulation patterns most introduced. Although several studies in geography and climate issues with statistical techniques such as clustering and pattern extraction is done, Due to the nature of statistics and data mining, but cannot say for internal climate studies in data mining and knowledge discovery techniques are used. However, it is necessary to use the KDD Approach and DM techniques in the climatic studies, specific interpreter of climate modeling result.
[Patents and scientific research: an ethical-legal approach].
Darío Bergel, Salvador
2014-01-01
This article aims to review the relationship between patents and scientific research from an ethical point of view. The recent developments in the law of industrial property led in many cases to patent discoveries, contributions of basic science, and laws of nature. This trend, which denies the central principles of the discipline, creates disturbances in scientific activity, which requires the free movement of knowledge in order to develop their potentialities.
Knowledge Discovery in Literature Data Bases
NASA Astrophysics Data System (ADS)
Albrecht, Rudolf; Merkl, Dieter
The concept of knowledge discovery as defined through ``establishing previously unknown and unsuspected relations of features in a data base'' is, cum grano salis, relatively easy to implement for data bases containing numerical data. Increasingly we find at our disposal data bases containing scientific literature. Computer assisted detection of unknown relations of features in such data bases would be extremely valuable and would lead to new scientific insights. However, the current representation of scientific knowledge in such data bases is not conducive to computer processing. Any correlation of features still has to be done by the human reader, a process which is plagued by ineffectiveness and incompleteness. On the other hand we note that considerable progress is being made in an area where reading all available material is totally prohibitive: the World Wide Web. Robots and Web crawlers mine the Web continuously and construct data bases which allow the identification of pages of interest in near real time. An obvious step is to categorize and classify the documents in the text data base. This can be used to identify papers worth reading, or which are of unexpected cross-relevance. We show the results of first experiments using unsupervised classification based on neural networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruebel, Oliver
2009-11-20
Knowledge discovery from large and complex collections of today's scientific datasets is a challenging task. With the ability to measure and simulate more processes at increasingly finer spatial and temporal scales, the increasing number of data dimensions and data objects is presenting tremendous challenges for data analysis and effective data exploration methods and tools. Researchers are overwhelmed with data and standard tools are often insufficient to enable effective data analysis and knowledge discovery. The main objective of this thesis is to provide important new capabilities to accelerate scientific knowledge discovery form large, complex, and multivariate scientific data. The research coveredmore » in this thesis addresses these scientific challenges using a combination of scientific visualization, information visualization, automated data analysis, and other enabling technologies, such as efficient data management. The effectiveness of the proposed analysis methods is demonstrated via applications in two distinct scientific research fields, namely developmental biology and high-energy physics.Advances in microscopy, image analysis, and embryo registration enable for the first time measurement of gene expression at cellular resolution for entire organisms. Analysis of high-dimensional spatial gene expression datasets is a challenging task. By integrating data clustering and visualization, analysis of complex, time-varying, spatial gene expression patterns and their formation becomes possible. The analysis framework MATLAB and the visualization have been integrated, making advanced analysis tools accessible to biologist and enabling bioinformatic researchers to directly integrate their analysis with the visualization. Laser wakefield particle accelerators (LWFAs) promise to be a new compact source of high-energy particles and radiation, with wide applications ranging from medicine to physics. To gain insight into the complex physical processes of particle acceleration, physicists model LWFAs computationally. The datasets produced by LWFA simulations are (i) extremely large, (ii) of varying spatial and temporal resolution, (iii) heterogeneous, and (iv) high-dimensional, making analysis and knowledge discovery from complex LWFA simulation data a challenging task. To address these challenges this thesis describes the integration of the visualization system VisIt and the state-of-the-art index/query system FastBit, enabling interactive visual exploration of extremely large three-dimensional particle datasets. Researchers are especially interested in beams of high-energy particles formed during the course of a simulation. This thesis describes novel methods for automatic detection and analysis of particle beams enabling a more accurate and efficient data analysis process. By integrating these automated analysis methods with visualization, this research enables more accurate, efficient, and effective analysis of LWFA simulation data than previously possible.« less
Ethical, legal, and social issues in the translation of genomics into health care.
Badzek, Laurie; Henaghan, Mark; Turner, Martha; Monsen, Rita
2013-03-01
The rapid continuous feed of new information from scientific discoveries related to the human genome makes translation and incorporation of information into the clinical setting difficult and creates ethical, legal, and social challenges for providers. This article overviews some of the legal and ethical foundations that guide our response to current complex issues in health care associated with the impact of scientific discoveries related to the human genome. Overlapping ethical, legal, and social implications impact nurses and other healthcare professionals as they seek to identify and translate into practice important information related to new genomic scientific knowledge. Ethical and legal foundations such as professional codes, human dignity, and human rights provide the framework for understanding highly complex genomic issues. Ethical, legal, and social concerns of the health provider in the translation of genomic knowledge into practice including minimizing harms, maximizing benefits, transparency, confidentiality, and informed consent are described. Additionally, nursing professional competencies related to ethical, legal, and social issues in the translation of genomics into health care are discussed. Ethical, legal, and social considerations in new genomic discovery necessitate that healthcare professionals have knowledge and competence to respond to complex genomic issues and provide appropriate information and care to patients, families, and communities. Understanding the ethical, legal, and social issues in the translation of genomic information into practice is essential to provide patients, families, and communities with competent, safe, effective health care. © 2013 Sigma Theta Tau International.
iBiology: communicating the process of science
Goodwin, Sarah S.
2014-01-01
The Internet hosts an abundance of science video resources aimed at communicating scientific knowledge, including webinars, massive open online courses, and TED talks. Although these videos are efficient at disseminating information for diverse types of users, they often do not demonstrate the process of doing science, the excitement of scientific discovery, or how new scientific knowledge is developed. iBiology (www.ibiology.org), a project that creates open-access science videos about biology research and science-related topics, seeks to fill this need by producing videos by science leaders that make their ideas, stories, and experiences available to anyone with an Internet connection. PMID:25080124
Salvador-Carulla, L; Lukersmith, S; Sullivan, W
2017-04-01
Guideline methods to develop recommendations dedicate most effort around organising discovery and corroboration knowledge following the evidence-based medicine (EBM) framework. Guidelines typically use a single dimension of information, and generally discard contextual evidence and formal expert knowledge and consumer's experiences in the process. In recognition of the limitations of guidelines in complex cases, complex interventions and systems research, there has been significant effort to develop new tools, guides, resources and structures to use alongside EBM methods of guideline development. In addition to these advances, a new framework based on the philosophy of science is required. Guidelines should be defined as implementation decision support tools for improving the decision-making process in real-world practice and not only as a procedure to optimise the knowledge base of scientific discovery and corroboration. A shift from the model of the EBM pyramid of corroboration of evidence to the use of broader multi-domain perspective graphically depicted as 'Greek temple' could be considered. This model takes into account the different stages of scientific knowledge (discovery, corroboration and implementation), the sources of knowledge relevant to guideline development (experimental, observational, contextual, expert-based and experiential); their underlying inference mechanisms (deduction, induction, abduction, means-end inferences) and a more precise definition of evidence and related terms. The applicability of this broader approach is presented for the development of the Canadian Consensus Guidelines for the Primary Care of People with Developmental Disabilities.
Early patterns of commercial activity in graphene
NASA Astrophysics Data System (ADS)
Shapira, Philip; Youtie, Jan; Arora, Sanjay
2012-03-01
Graphene, a novel nanomaterial consisting of a single layer of carbon atoms, has attracted significant attention due to its distinctive properties, including great strength, electrical and thermal conductivity, lightness, and potential benefits for diverse applications. The commercialization of scientific discoveries such as graphene is inherently uncertain, with the lag time between the scientific development of a new technology and its adoption by corporate actors revealing the extent to which firms are able to absorb knowledge and engage in learning to implement applications based on the new technology. From this perspective, we test for the existence of three different corporate learning and activity patterns: (1) a linear process where patenting follows scientific discovery; (2) a double-boom phenomenon where corporate (patenting) activity is first concentrated in technological improvements and then followed by a period of technology productization; and (3) a concurrent model where scientific discovery in publications occurs in parallel with patenting. By analyzing corporate publication and patent activity across country and application lines, we find that, while graphene as a whole is experiencing concurrent scientific development and patenting growth, country- and application-specific trends offer some evidence of the linear and double-boom models.
Ethnophytotechnology: Harnessing the Power of Ethnobotany with Biotechnology.
de la Parra, John; Quave, Cassandra L
2017-09-01
Ethnobotany (the scientific study of traditional plant knowledge) has aided the discovery of important medicines. However, as single-molecule drugs or synergistic mixtures, these remedies have faced obstacles in production and analysis. Now, advances in bioreactor technology, metabolic engineering, and analytical instrumentation are improving the production, manipulation, and scientific understanding of such remedies. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojick, D E; Warnick, W L; Carroll, B C
With the United States federal government spending billions annually for research and development, ways to increase the productivity of that research can have a significant return on investment. The process by which science knowledge is spread is called diffusion. It is therefore important to better understand and measure the benefits of this diffusion of knowledge. In particular, it is important to understand whether advances in Internet searching can speed up the diffusion of scientific knowledge and accelerate scientific progress despite the fact that the vast majority of scientific information resources continue to be held in deep web databases that manymore » search engines cannot fully access. To address the complexity of the search issue, the term global discovery is used for the act of searching across heterogeneous environments and distant communities. This article discusses these issues and describes research being conducted by the Office of Scientific and Technical Information (OSTI).« less
The Assessment of Self-Directed Learning Readiness in Medical Education
ERIC Educational Resources Information Center
Monroe, Katherine Swint
2014-01-01
The rapid pace of scientific discovery has catalyzed the need for medical students to be able to find and assess new information. The knowledge required for physicians' skillful practice will change of the course of their careers, and, to keep up, they must be able to recognized their deficiencies, search for new knowledge, and critically evaluate…
Using a Historical Lens to Envision the Next Generation of Genomic Translation Research.
McBride, Colleen M; Abrams, Leah R; Koehly, Laura M
2015-01-01
The past 20 years have witnessed successive and exponential advances in genomic discovery and technology, with a broad scientific imperative pushing for continual advancements. The most consistent critique of these advances is that they have vastly outpaced translation of new knowledge into improvements in public health and medicine. We employ a historical and epistemological analysis to characterize how prevailing scientific meta-narratives have shaped the pace and priorities of research applying genomics to health promotion. We use four 'pivotal events' - the genetic characterization of Down syndrome, the launch of the Human Genome Research Project, the discovery of BRCA1, and the emergence of direct-to- consumer genetic testing - to illustrate how these scientific meta-narratives have inhibited genomic translation research. The notion that discovery should precede translation research has over-focused translation research on the latest genetic testing platform. The idea that genetic-related research has an exceptional potential for public harm has encouraged research on worst case scenarios. The perceived competition between genetics and social determinants of health has discouraged a unified research agenda to move genomic translation forward. We make a case for creating new scientific meta-narratives in which discovery and translation research agendas are envisioned as an interdependent enterprise. © 2015 S. Karger AG, Basel.
2013-01-01
Background Professionals in the biomedical domain are confronted with an increasing mass of data. Developing methods to assist professional end users in the field of Knowledge Discovery to identify, extract, visualize and understand useful information from these huge amounts of data is a huge challenge. However, there are so many diverse methods and methodologies available, that for biomedical researchers who are inexperienced in the use of even relatively popular knowledge discovery methods, it can be very difficult to select the most appropriate method for their particular research problem. Results A web application, called KNODWAT (KNOwledge Discovery With Advanced Techniques) has been developed, using Java on Spring framework 3.1. and following a user-centered approach. The software runs on Java 1.6 and above and requires a web server such as Apache Tomcat and a database server such as the MySQL Server. For frontend functionality and styling, Twitter Bootstrap was used as well as jQuery for interactive user interface operations. Conclusions The framework presented is user-centric, highly extensible and flexible. Since it enables methods for testing using existing data to assess suitability and performance, it is especially suitable for inexperienced biomedical researchers, new to the field of knowledge discovery and data mining. For testing purposes two algorithms, CART and C4.5 were implemented using the WEKA data mining framework. PMID:23763826
Holzinger, Andreas; Zupan, Mario
2013-06-13
Professionals in the biomedical domain are confronted with an increasing mass of data. Developing methods to assist professional end users in the field of Knowledge Discovery to identify, extract, visualize and understand useful information from these huge amounts of data is a huge challenge. However, there are so many diverse methods and methodologies available, that for biomedical researchers who are inexperienced in the use of even relatively popular knowledge discovery methods, it can be very difficult to select the most appropriate method for their particular research problem. A web application, called KNODWAT (KNOwledge Discovery With Advanced Techniques) has been developed, using Java on Spring framework 3.1. and following a user-centered approach. The software runs on Java 1.6 and above and requires a web server such as Apache Tomcat and a database server such as the MySQL Server. For frontend functionality and styling, Twitter Bootstrap was used as well as jQuery for interactive user interface operations. The framework presented is user-centric, highly extensible and flexible. Since it enables methods for testing using existing data to assess suitability and performance, it is especially suitable for inexperienced biomedical researchers, new to the field of knowledge discovery and data mining. For testing purposes two algorithms, CART and C4.5 were implemented using the WEKA data mining framework.
Distributed data mining on grids: services, tools, and applications.
Cannataro, Mario; Congiusta, Antonio; Pugliese, Andrea; Talia, Domenico; Trunfio, Paolo
2004-12-01
Data mining algorithms are widely used today for the analysis of large corporate and scientific datasets stored in databases and data archives. Industry, science, and commerce fields often need to analyze very large datasets maintained over geographically distributed sites by using the computational power of distributed and parallel systems. The grid can play a significant role in providing an effective computational support for distributed knowledge discovery applications. For the development of data mining applications on grids we designed a system called Knowledge Grid. This paper describes the Knowledge Grid framework and presents the toolset provided by the Knowledge Grid for implementing distributed knowledge discovery. The paper discusses how to design and implement data mining applications by using the Knowledge Grid tools starting from searching grid resources, composing software and data components, and executing the resulting data mining process on a grid. Some performance results are also discussed.
Research to knowledge: promoting the training of physician-scientists in the biology of pregnancy.
Sadovsky, Yoel; Caughey, Aaron B; DiVito, Michelle; D'Alton, Mary E; Murtha, Amy P
2018-01-01
Common disorders of pregnancy, such as preeclampsia, preterm birth, and fetal growth abnormalities, continue to challenge perinatal biologists seeking insights into disease pathogenesis that will result in better diagnosis, therapy, and disease prevention. These challenges have recently been intensified with discoveries that associate gestational diseases with long-term maternal and neonatal outcomes. Whereas modern high-throughput investigative tools enable scientists and clinicians to noninvasively probe the maternal-fetal genome, epigenome, and other analytes, their implications for clinical medicine remain uncertain. Bridging these knowledge gaps depends on strengthening the existing pool of scientists with expertise in basic, translational, and clinical tools to address pertinent questions in the biology of pregnancy. Although PhD researchers are critical in this quest, physician-scientists would facilitate the inquiry by bringing together clinical challenges and investigative tools, promoting a culture of intellectual curiosity among clinical providers, and helping transform discoveries into relevant knowledge and clinical solutions. Uncertainties related to future administration of health care, federal support for research, attrition of physician-scientists, and an inadequate supply of new scholars may jeopardize our ability to address these challenges. New initiatives are necessary to attract current scholars and future generations of researchers seeking expertise in the scientific method and to support them, through mentorship and guidance, in pursuing a career that combines scientific investigation with clinical medicine. These efforts will promote breadth and depth of inquiry into the biology of pregnancy and enhance the pace of translation of scientific discoveries into better medicine and disease prevention. Copyright © 2017 Elsevier Inc. All rights reserved.
Conceptual Tools for Understanding Nature - Proceedings of the 3rd International Symposium
NASA Astrophysics Data System (ADS)
Costa, G.; Calucci, M.
1997-04-01
The Table of Contents for the full book PDF is as follows: * Foreword * Some Limits of Science and Scientists * Three Limits of Scientific Knowledge * On Features and Meaning of Scientific Knowledge * How Science Approaches the World: Risky Truths versus Misleading Certitudes * On Discovery and Justification * Thought Experiments: A Philosophical Analysis * Causality: Epistemological Questions and Cognitive Answers * Scientific Inquiry via Rational Hypothesis Revision * Probabilistic Epistemology * The Transferable Belief Model for Uncertainty Representation * Chemistry and Complexity * The Difficult Epistemology of Medicine * Epidemiology, Causality and Medical Anthropology * Conceptual Tools for Transdisciplinary Unified Theory * Evolution and Learning in Economic Organizations * The Possible Role of Symmetry in Physics and Cosmology * Observational Cosmology and/or other Imaginable Models of the Universe
ERIC Educational Resources Information Center
Crawley, Edward F.; Greenwald, Suzanne B.
2006-01-01
The sustainability of a competitive, national economy depends largely on the ability of companies to deliver innovative knowledge-intensive goods and services to the market. These are the ultimate outputs of a scientific knowledge system. Ideas flow from the critical, identifiable phases of (a) the discovery, (b) the development, (c) the…
Joint the Center for Applied Scientific Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamblin, Todd; Bremer, Timo; Van Essen, Brian
The Center for Applied Scientific Computing serves as Livermore Lab’s window to the broader computer science, computational physics, applied mathematics, and data science research communities. In collaboration with academic, industrial, and other government laboratory partners, we conduct world-class scientific research and development on problems critical to national security. CASC applies the power of high-performance computing and the efficiency of modern computational methods to the realms of stockpile stewardship, cyber and energy security, and knowledge discovery for intelligence applications.
The emergence of translational epidemiology: from scientific discovery to population health impact.
Khoury, Muin J; Gwinn, Marta; Ioannidis, John P A
2010-09-01
Recent emphasis on translational research (TR) is highlighting the role of epidemiology in translating scientific discoveries into population health impact. The authors present applications of epidemiology in TR through 4 phases designated T1-T4, illustrated by examples from human genomics. In T1, epidemiology explores the role of a basic scientific discovery (e.g., a disease risk factor or biomarker) in developing a "candidate application" for use in practice (e.g., a test used to guide interventions). In T2, epidemiology can help to evaluate the efficacy of a candidate application by using observational studies and randomized controlled trials. In T3, epidemiology can help to assess facilitators and barriers for uptake and implementation of candidate applications in practice. In T4, epidemiology can help to assess the impact of using candidate applications on population health outcomes. Epidemiology also has a leading role in knowledge synthesis, especially using quantitative methods (e.g., meta-analysis). To explore the emergence of TR in epidemiology, the authors compared articles published in selected issues of the Journal in 1999 and 2009. The proportion of articles identified as translational doubled from 16% (11/69) in 1999 to 33% (22/66) in 2009 (P = 0.02). Epidemiology is increasingly recognized as an important component of TR. By quantifying and integrating knowledge across disciplines, epidemiology provides crucial methods and tools for TR.
The Emergence of Translational Epidemiology: From Scientific Discovery to Population Health Impact
Khoury, Muin J.; Gwinn, Marta; Ioannidis, John P. A.
2010-01-01
Recent emphasis on translational research (TR) is highlighting the role of epidemiology in translating scientific discoveries into population health impact. The authors present applications of epidemiology in TR through 4 phases designated T1–T4, illustrated by examples from human genomics. In T1, epidemiology explores the role of a basic scientific discovery (e.g., a disease risk factor or biomarker) in developing a “candidate application” for use in practice (e.g., a test used to guide interventions). In T2, epidemiology can help to evaluate the efficacy of a candidate application by using observational studies and randomized controlled trials. In T3, epidemiology can help to assess facilitators and barriers for uptake and implementation of candidate applications in practice. In T4, epidemiology can help to assess the impact of using candidate applications on population health outcomes. Epidemiology also has a leading role in knowledge synthesis, especially using quantitative methods (e.g., meta-analysis). To explore the emergence of TR in epidemiology, the authors compared articles published in selected issues of the Journal in 1999 and 2009. The proportion of articles identified as translational doubled from 16% (11/69) in 1999 to 33% (22/66) in 2009 (P = 0.02). Epidemiology is increasingly recognized as an important component of TR. By quantifying and integrating knowledge across disciplines, epidemiology provides crucial methods and tools for TR. PMID:20688899
The Adam and Eve Robot Scientists for the Automated Discovery of Scientific Knowledge
NASA Astrophysics Data System (ADS)
King, Ross
A Robot Scientist is a physically implemented robotic system that applies techniques from artificial intelligence to execute cycles of automated scientific experimentation. A Robot Scientist can automatically execute cycles of hypothesis formation, selection of efficient experiments to discriminate between hypotheses, execution of experiments using laboratory automation equipment, and analysis of results. The motivation for developing Robot Scientists is to better understand science, and to make scientific research more efficient. The Robot Scientist `Adam' was the first machine to autonomously discover scientific knowledge: both form and experimentally confirm novel hypotheses. Adam worked in the domain of yeast functional genomics. The Robot Scientist `Eve' was originally developed to automate early-stage drug development, with specific application to neglected tropical disease such as malaria, African sleeping sickness, etc. We are now adapting Eve to work with on cancer. We are also teaching Eve to autonomously extract information from the scientific literature.
Science education as an exercise in foreign affairs
NASA Astrophysics Data System (ADS)
Cobern, William W.
1995-07-01
In Kuhnian terms, science education has been a process of inducting students into the reigning paradigms of science. In 1985, Duschl noted that science education had not kept pace with developments in the history and philosophy of science. The claim of certainty for scientific knowledge which science educators grounded in positivist philosophy was rendered untenable years ago and it turns out that social and cultural factors surrounding discovery may be at least as important as the justification of knowledge. Capitalizing on these new developments, Duschl, Hamilton, and Grandy (1990) wrote a compelling argument for the need to have a joint research effort in science education involving the philosophy and history of science along with cognitive psychology. However, the issue of discovery compels the research community go one step further. If the science education community has been guilty of neglecting historical and philosophical issues in science, let it not now be guilty of ignoring sociological issues in science. A collaborative view ought also to include the sociological study of cultural milieu in which scientific ideas arise. In other words, an external sociological perspective on science. The logic of discovery from a sociological point of view implies that conceptual change can also be viewed from a sociological perspective.
Khoury, Muin J.; McBride, Colleen M.; Schully, Sheri D.; Ioannidis, John P. A.; Feero, W. Gregory; Janssens, A. Cecile J. W.; Gwinn, Marta; Simons-Morton, Denise G.; Bernhardt, Jay M.; Cargill, Michele; Chanock, Stephen J.; Church, George M.; Coates, Ralph J.; Collins, Francis S.; Croyle, Robert T.; Davis, Barry R.; Downing, Gregory J.; DuRoss, Amy; Friedman, Susan; Gail, Mitchell H.; Ginsburg, Geoffrey S.; Green, Robert C.; Greene, Mark H.; Greenland, Philip; Gulcher, Jeffrey R.; Hsu, Andro; Hudson, Kathy L.; Kardia, Sharon L. R.; Kimmel, Paul L.; Lauer, Michael S.; Miller, Amy M.; Offit, Kenneth; Ransohoff, David F.; Roberts, J. Scott; Rasooly, Rebekah S.; Stefansson, Kari; Terry, Sharon F.; Teutsch, Steven M.; Trepanier, Angela; Wanke, Kay L.; Witte, John S.; Xu, Jianfeng
2010-01-01
The increasing availability of personal genomic tests has led to discussions about the validity and utility of such tests and the balance of benefits and harms. A multidisciplinary workshop was convened by the National Institutes of Health and the Centers for Disease Control and Prevention to review the scientific foundation for using personal genomics in risk assessment and disease prevention and to develop recommendations for targeted research. The clinical validity and utility of personal genomics is a moving target with rapidly developing discoveries but little translation research to close the gap between discoveries and health impact. Workshop participants made recommendations in five domains: (1) developing and applying scientific standards for assessing personal genomic tests; (2) developing and applying a multidisciplinary research agenda, including observational studies and clinical trials to fill knowledge gaps in clinical validity and utility; (3) enhancing credible knowledge synthesis and information dissemination to clinicians and consumers; (4) linking scientific findings to evidence-based recommendations for use of personal genomics; and (5) assessing how the concept of personal utility can affect health benefits, costs, and risks by developing appropriate metrics for evaluation. To fulfill the promise of personal genomics, a rigorous multidisciplinary research agenda is needed. PMID:19617843
The effect of grapefruit juice on drug disposition
USDA-ARS?s Scientific Manuscript database
Since their initial discovery in 1989, grapefruit juice-drug interactions have received extensive interest from the scientific, medical, regulatory, and lay communities. Although knowledge regarding the effects of grapefruit juice on drug disposition continues to expand, the list of drugs studied in...
University Technology Transfer Factors as Predictors of Entrepreneurial Orientation
ERIC Educational Resources Information Center
Kirkman, Dorothy M.
2011-01-01
University technology transfer is a collaborative effort between academia and industry involving knowledge sharing and learning. Working closely with their university partners affords biotechnology firms the opportunity to successfully develop licensed inventions and gain access to novel scientific and technological discoveries. These factors may…
Empirical study using network of semantically related associations in bridging the knowledge gap.
Abedi, Vida; Yeasin, Mohammed; Zand, Ramin
2014-11-27
The data overload has created a new set of challenges in finding meaningful and relevant information with minimal cognitive effort. However designing robust and scalable knowledge discovery systems remains a challenge. Recent innovations in the (biological) literature mining tools have opened new avenues to understand the confluence of various diseases, genes, risk factors as well as biological processes in bridging the gaps between the massive amounts of scientific data and harvesting useful knowledge. In this paper, we highlight some of the findings using a text analytics tool, called ARIANA--Adaptive Robust and Integrative Analysis for finding Novel Associations. Empirical study using ARIANA reveals knowledge discovery instances that illustrate the efficacy of such tool. For example, ARIANA can capture the connection between the drug hexamethonium and pulmonary inflammation and fibrosis that caused the tragic death of a healthy volunteer in a 2001 John Hopkins asthma study, even though the abstract of the study was not part of the semantic model. An integrated system, such as ARIANA, could assist the human expert in exploratory literature search by bringing forward hidden associations, promoting data reuse and knowledge discovery as well as stimulating interdisciplinary projects by connecting information across the disciplines.
Scientific Knowledge and Technology, Animal Experimentation, and Pharmaceutical Development.
Kinter, Lewis B; DeGeorge, Joseph J
2016-12-01
Human discovery of pharmacologically active substances is arguably the oldest of the biomedical sciences with origins >3500 years ago. Since ancient times, four major transformations have dramatically impacted pharmaceutical development, each driven by advances in scientific knowledge, technology, and/or regulation: (1) anesthesia, analgesia, and antisepsis; (2) medicinal chemistry; (3) regulatory toxicology; and (4) targeted drug discovery. Animal experimentation in pharmaceutical development is a modern phenomenon dating from the 20th century and enabling several of the four transformations. While each transformation resulted in more effective and/or safer pharmaceuticals, overall attrition, cycle time, cost, numbers of animals used, and low probability of success for new products remain concerns, and pharmaceutical development remains a very high risk business proposition. In this manuscript we review pharmaceutical development since ancient times, describe its coevolution with animal experimentation, and attempt to predict the characteristics of future transformations. © The Author 2016. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Communicating the Science from NASA's Astrophysics Missions
NASA Astrophysics Data System (ADS)
Hasan, Hashima; Smith, Denise A.
2015-01-01
Communicating science from NASA's Astrophysics missions has multiple objectives, which leads to a multi-faceted approach. While a timely dissemination of knowledge to the scientific community follows the time-honored process of publication in peer reviewed journals, NASA delivers newsworthy research result to the public through news releases, its websites and social media. Knowledge in greater depth is infused into the educational system by the creation of educational material and teacher workshops that engage students and educators in cutting-edge NASA Astrophysics discoveries. Yet another avenue for the general public to learn about the science and technology through NASA missions is through exhibits at museums, science centers, libraries and other public venues. Examples of the variety of ways NASA conveys the excitement of its scientific discoveries to students, educators and the general public will be discussed in this talk. A brief overview of NASA's participation in the International Year of Light will also be given, as well as of the celebration of the twenty-fifth year of the launch of the Hubble Space Telescope.
2011-01-01
Embracing comparative biology, natural history encompasses those sciences that discover, decipher and classify unique (idiographic) details of landscapes, and extinct and extant biodiversity. Intrinsic to these multifarious roles in expanding and consolidating research and knowledge, natural history endows keystone support to the veracity of law-like (nomothetic) generalizations in science. What science knows about the natural world is governed by an inherent function of idiographic discovery; characteristic of natural history, this relationship is exemplified wherever an idiographic discovery overturns established wisdom. This nature of natural history explicates why inventories are of such epistemological importance. Unfortunately, a Denigration of Natural History weakens contemporary science from within. It expresses in the prevalent, pervasive failure to appreciate this pivotal role of idiographic research: a widespread disrespect for how natural history undergirds scientific knowledge. Symptoms of this Denigration of Natural History present in negative impacts on scientific research and knowledge. One symptom is the failure to appreciate and support the inventory and monitoring of biodiversity. Another resides in failures of scientiometrics to quantify how taxonomic publications sustain and improve knowledge. Their relevance in contemporary science characteristically persists and grows; so the temporal eminence of these idiographic publications extends over decades. This is because they propagate a succession of derived scientific statements, findings and/or conclusions - inherently shorter-lived, nomothetic publications. Widespread neglect of natural science collections is equally pernicious, allied with disregard for epistemological functions of specimens, whose preservation maintains the veracity of knowledge. Last, but not least, the decline in taxonomic expertise weakens research capacity; there are insufficient skills to study organismal diversity in all of its intricacies. Beyond weakening research capacities and outputs across comparative biology, this Denigration of Natural History impacts on the integrity of knowledge itself, undermining progress and pedagogy throughout science. Unprecedented advances in knowledge are set to follow on consummate inventories of biodiversity, including the protists. These opportunities challenge us to survey biodiversity representatively—detailing the natural history of species. Research strategies cannot continue to ignore arguments for such an unprecedented investment in idiographic natural history. Idiographic shortcuts to general (nomothetic) insights simply do not exist. The biodiversity sciences face a stark choice. No matter how charismatic its portrayed species, an incomplete ‘Brochure of Life’ cannot match the scientific integrity of the ‘Encyclopedia of Life’. PMID:21472034
Integrated Bio-Entity Network: A System for Biological Knowledge Discovery
Bell, Lindsey; Chowdhary, Rajesh; Liu, Jun S.; Niu, Xufeng; Zhang, Jinfeng
2011-01-01
A significant part of our biological knowledge is centered on relationships between biological entities (bio-entities) such as proteins, genes, small molecules, pathways, gene ontology (GO) terms and diseases. Accumulated at an increasing speed, the information on bio-entity relationships is archived in different forms at scattered places. Most of such information is buried in scientific literature as unstructured text. Organizing heterogeneous information in a structured form not only facilitates study of biological systems using integrative approaches, but also allows discovery of new knowledge in an automatic and systematic way. In this study, we performed a large scale integration of bio-entity relationship information from both databases containing manually annotated, structured information and automatic information extraction of unstructured text in scientific literature. The relationship information we integrated in this study includes protein–protein interactions, protein/gene regulations, protein–small molecule interactions, protein–GO relationships, protein–pathway relationships, and pathway–disease relationships. The relationship information is organized in a graph data structure, named integrated bio-entity network (IBN), where the vertices are the bio-entities and edges represent their relationships. Under this framework, graph theoretic algorithms can be designed to perform various knowledge discovery tasks. We designed breadth-first search with pruning (BFSP) and most probable path (MPP) algorithms to automatically generate hypotheses—the indirect relationships with high probabilities in the network. We show that IBN can be used to generate plausible hypotheses, which not only help to better understand the complex interactions in biological systems, but also provide guidance for experimental designs. PMID:21738677
Polar Domain Discovery with Sparkler
NASA Astrophysics Data System (ADS)
Duerr, R.; Khalsa, S. J. S.; Mattmann, C. A.; Ottilingam, N. K.; Singh, K.; Lopez, L. A.
2017-12-01
The scientific web is vast and ever growing. It encompasses millions of textual, scientific and multimedia documents describing research in a multitude of scientific streams. Most of these documents are hidden behind forms which require user action to retrieve and thus can't be directly accessed by content crawlers. These documents are hosted on web servers across the world, most often on outdated hardware and network infrastructure. Hence it is difficult and time-consuming to aggregate documents from the scientific web, especially those relevant to a specific domain. Thus generating meaningful domain-specific insights is currently difficult. We present an automated discovery system (Figure 1) using Sparkler, an open-source, extensible, horizontally scalable crawler which facilitates high throughput and focused crawling of documents pertinent to a particular domain such as information about polar regions. With this set of highly domain relevant documents, we show that it is possible to answer analytical questions about that domain. Our domain discovery algorithm leverages prior domain knowledge to reach out to commercial/scientific search engines to generate seed URLs. Subject matter experts then annotate these seed URLs manually on a scale from highly relevant to irrelevant. We leverage this annotated dataset to train a machine learning model which predicts the `domain relevance' of a given document. We extend Sparkler with this model to focus crawling on documents relevant to that domain. Sparkler avoids disruption of service by 1) partitioning URLs by hostname such that every node gets a different host to crawl and by 2) inserting delays between subsequent requests. With an NSF-funded supercomputer Wrangler, we scaled our domain discovery pipeline to crawl about 200k polar specific documents from the scientific web, within a day.
Quantifying the Ease of Scientific Discovery
Arbesman, Samuel
2012-01-01
It has long been known that scientific output proceeds on an exponential increase, or more properly, a logistic growth curve. The interplay between effort and discovery is clear, and the nature of the functional form has been thought to be due to many changes in the scientific process over time. Here I show a quantitative method for examining the ease of scientific progress, another necessary component in understanding scientific discovery. Using examples from three different scientific disciplines – mammalian species, chemical elements, and minor planets – I find the ease of discovery to conform to an exponential decay. In addition, I show how the pace of scientific discovery can be best understood as the outcome of both scientific output and ease of discovery. A quantitative study of the ease of scientific discovery in the aggregate, such as done here, has the potential to provide a great deal of insight into both the nature of future discoveries and the technical processes behind discoveries in science. PMID:22328796
Quantifying the Ease of Scientific Discovery.
Arbesman, Samuel
2011-02-01
It has long been known that scientific output proceeds on an exponential increase, or more properly, a logistic growth curve. The interplay between effort and discovery is clear, and the nature of the functional form has been thought to be due to many changes in the scientific process over time. Here I show a quantitative method for examining the ease of scientific progress, another necessary component in understanding scientific discovery. Using examples from three different scientific disciplines - mammalian species, chemical elements, and minor planets - I find the ease of discovery to conform to an exponential decay. In addition, I show how the pace of scientific discovery can be best understood as the outcome of both scientific output and ease of discovery. A quantitative study of the ease of scientific discovery in the aggregate, such as done here, has the potential to provide a great deal of insight into both the nature of future discoveries and the technical processes behind discoveries in science.
New Initiatives for Electronic Scholarly Publishing: Academic Information Sources on the Internet
2003-04-01
organizations/countries to participate in the development of the global knowledge base. The paper will outline the strategic factors that impact on -the...society proceedings, and the successful creation of more specialised journals, reflecting the fragmentation of knowledge into more specialised...Guedon (2001) - establishing "priority" over a particular scientific discovery or advance, and of "packing" current communication into an indexed and
Human Exploration and Development of Space: Strategic Plan
NASA Technical Reports Server (NTRS)
Branscome, Darrell (Editor); Allen, Marc (Editor); Bihner, William (Editor); Craig, Mark (Editor); Crouch, Matthew (Editor); Crouch, Roger (Editor); Flaherty, Chris (Editor); Haynes, Norman (Editor); Horowitz, Steven (Editor)
2000-01-01
The five goals of the Human Exploration and Development of Space include: 1) Explore the Space Frontier; 2) Expand Scientific Knowledge; 3) Enable Humans to Live and Work Permanently in Space; 4) Enable the Commercial Development of Space; and 5) Share the Experience and Benefits of Discovery.
Understanding University Technology Transfer
ERIC Educational Resources Information Center
Association of American Universities, 2011
2011-01-01
Federal government agencies provide about $33 billion a year to universities to conduct scientific research. That continuing investment expands human knowledge and helps educate the next generation of science and technology leaders. New discoveries from university research also form the basis for many new products and processes that benefit the…
Historical milestones and discoveries that shaped the toxicology sciences.
Hayes, Antoinette N; Gilbert, Steven G
2009-01-01
Knowledge of the toxic and healing properties of plants, animals, and minerals has shaped civilization for millennia. The foundations of modern toxicology are built upon the significant milestones and discoveries of serendipity and crude experimentation. Throughout the ages, toxicological science has provided information that has shaped and guided society. This chapter examines the development of the discipline of toxicology and its influence on civilization by highlighting significant milestones and discoveries related to toxicology. The examples shed light on the beginnings of toxicology, as well as examine lessons learned and re-learned. This chapter also examines how toxicology and the toxicologist have interacted with other scientific and cultural disciplines, including religion, politics, and the government. Toxicology has evolved to a true scientific discipline with its own dedicated scientists, educational institutes, sub-disciplines, professional societies, and journals. It now stands as its own entity while traversing such fields as chemistry, physiology, pharmacology, and molecular biology. We invite you to join us on a path of discovery and to offer our suggestions as to what are the most significant milestones and discoveries in toxicology. Additional information is available on the history section of Toxipedia (www.toxipedia.org).
Making Science Whole Again: The Role of Academia
NASA Astrophysics Data System (ADS)
Lubchenco, J.
2006-12-01
Science in the 21st Century has become increasingly fragmented, not in the usual sense of disciplinary divisions, but with increased specialization in the discovery, teaching, public communication and application aspects of new knowledge. As in the infamous `telephone game', messages passed along through multiple parties, risk distortion. More insidiously, without active and effective checks and balances along the way, information can be and is being deliberately distorted, completely altered, or used selectively. Science, of course, is not the only basis for decision-making; values, politics, economics and other factors should also be considered. Nonetheless, a key role of science is to inform decision-making (not to drive it exclusively). The importance of citizens and leaders having access to accurate scientific information and knowledge is so essential to human well-being that new mechanisms must be found to ensure the integrity of scientific information. Among the multiple changes that are needed to achieve this goal, many of which will be explored in this session, one pertains specifically to the academic scientific community. That change entails growing and supporting stellar scientists who participate directly in discovery AND public communication of knowledge. More scientists whose primary jobs are research and teaching could and should also be actively involved in sharing new knowledge with non-scientists. The public expects this to happen but academia gives it lip service at best. Having more scientists who can communicate scientific knowledge that is understandable, relevant, useable, current and credible to non-technical audiences is a key (though far from the only) factor in protecting the integrity of science. The Aldo Leopold Leadership Program now based at Stanford University's Woods Institute for the Environment is a program that trains tenured, academic environmental scientists to communicate effectively with politicians, business people, the media, and multiple other interested parties. An examination of the program will provide insight into the feasibility and challenges of adopting the model more widely.
High Performance Visualization using Query-Driven Visualizationand Analytics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bethel, E. Wes; Campbell, Scott; Dart, Eli
2006-06-15
Query-driven visualization and analytics is a unique approach for high-performance visualization that offers new capabilities for knowledge discovery and hypothesis testing. The new capabilities akin to finding needles in haystacks are the result of combining technologies from the fields of scientific visualization and scientific data management. This approach is crucial for rapid data analysis and visualization in the petascale regime. This article describes how query-driven visualization is applied to a hero-sized network traffic analysis problem.
A Drupal-Based Collaborative Framework for Science Workflows
NASA Astrophysics Data System (ADS)
Pinheiro da Silva, P.; Gandara, A.
2010-12-01
Cyber-infrastructure is built from utilizing technical infrastructure to support organizational practices and social norms to provide support for scientific teams working together or dependent on each other to conduct scientific research. Such cyber-infrastructure enables the sharing of information and data so that scientists can leverage knowledge and expertise through automation. Scientific workflow systems have been used to build automated scientific systems used by scientists to conduct scientific research and, as a result, create artifacts in support of scientific discoveries. These complex systems are often developed by teams of scientists who are located in different places, e.g., scientists working in distinct buildings, and sometimes in different time zones, e.g., scientist working in distinct national laboratories. The sharing of these specifications is currently supported by the use of version control systems such as CVS or Subversion. Discussions about the design, improvement, and testing of these specifications, however, often happen elsewhere, e.g., through the exchange of email messages and IM chatting. Carrying on a discussion about these specifications is challenging because comments and specifications are not necessarily connected. For instance, the person reading a comment about a given workflow specification may not be able to see the workflow and even if the person can see the workflow, the person may not specifically know to which part of the workflow a given comments applies to. In this paper, we discuss the design, implementation and use of CI-Server, a Drupal-based infrastructure, to support the collaboration of both local and distributed teams of scientists using scientific workflows. CI-Server has three primary goals: to enable information sharing by providing tools that scientists can use within their scientific research to process data, publish and share artifacts; to build community by providing tools that support discussions between scientists about artifacts used or created through scientific processes; and to leverage the knowledge collected within the artifacts and scientific collaborations to support scientific discoveries.
Epistemic Gameplay and Discovery in Computational Model-Based Inquiry Activities
ERIC Educational Resources Information Center
Wilkerson, Michelle Hoda; Shareff, Rebecca; Laina, Vasiliki; Gravel, Brian
2018-01-01
In computational modeling activities, learners are expected to discover the inner workings of scientific and mathematical systems: First elaborating their understandings of a given system through constructing a computer model, then "debugging" that knowledge by testing and refining the model. While such activities have been shown to…
ERIC Educational Resources Information Center
Saeeaw, Supachai; Tangkiengsirisin, Supong
2014-01-01
Abstract is of a pivotal genre in scientific communication, assisting not only highly selective readers with judgment of the pertinent articles but also researchers in disseminating new knowledge and intellectual discoveries. Difficult yet challenging, however, is the task of writing effective abstracts particularly among non-English speaking…
Using JournalMap to improve ecological knowledge discovery and visualization
USDA-ARS?s Scientific Manuscript database
Background/Question/Methods Most of the ecological research conducted around the world is tied to specific places, however, that location information is locked up in the text and figures of scientific articles in myriad forms that are not easily searchable. While access to ecological literature ha...
Six Myths about Spatial Thinking
ERIC Educational Resources Information Center
Newcombe, Nora S.; Stieff, Mike
2012-01-01
Visualizations are an increasingly important part of scientific education and discovery. However, users often do not gain knowledge from them in a complete or efficient way. This article aims to direct research on visualizations in science education in productive directions by reviewing the evidence for widespread assumptions that learning styles,…
A 100-year review: Carbohydrates - characterization, digestion, and utilization
USDA-ARS?s Scientific Manuscript database
Our knowledge of the role of carbohydrates in dairy cattle nutrition has advanced substantially during the 100 years in which the Journal of Dairy Science has been published. In this review, we traced the history of scientific investigation and discovery from crude fiber, nitrogen-free extract, and ...
Text mining patents for biomedical knowledge.
Rodriguez-Esteban, Raul; Bundschus, Markus
2016-06-01
Biomedical text mining of scientific knowledge bases, such as Medline, has received much attention in recent years. Given that text mining is able to automatically extract biomedical facts that revolve around entities such as genes, proteins, and drugs, from unstructured text sources, it is seen as a major enabler to foster biomedical research and drug discovery. In contrast to the biomedical literature, research into the mining of biomedical patents has not reached the same level of maturity. Here, we review existing work and highlight the associated technical challenges that emerge from automatically extracting facts from patents. We conclude by outlining potential future directions in this domain that could help drive biomedical research and drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Solving the Antibiotic Crisis.
Wright, Gerard D
2015-02-13
Antibiotics are essential for both treating and preventing infectious diseases. Paradoxically, despite their importance as pillars of modern medicine, we are in danger of losing antibiotics because of the evolution and dissemination of resistance mechanisms throughout all pathogenic microbes. This fact, coupled with an inability to bring new drugs to market at a pace that matches resistance, has resulted in a crisis of global proportion. Solving this crisis requires the actions of many stakeholders, but chemists, chemical biologists, and microbiologists must drive the scientific innovation that is required to maintain our antibiotic arsenal. This innovation requires (1) a deep understanding of the evolution and reservoirs of resistance; (2) full knowledge of the molecular mechanisms of antibiotic action and resistance; (3) the discovery of chemical and genetic probes of antibiotic action and resistance; (4) the integration of systems biology into antibiotic discovery; and (5) the discovery of new antimicrobial chemical matter. Addressing these pressing scientific gaps will ensure that we can meet the antibiotic crisis with creativity and purpose.
Site Environmental Report for 2010, Volumes 1 & 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baskin, David; Bauters, Tim; Borglin, Ned
2011-09-01
LBNL is a multiprogram scientific facility operated by the UC for the DOE. LBNL’s research is directed toward the physical, biological, environmental, and computational sciences, in order to deliver scientific knowledge and discoveries pertinent to DOE’s missions. This annual Site Environmental Report covers activities conducted in CY 2010. The format and content of this report satisfy the requirements of DOE Order 231.1A, Environment, Safety, and Health Reporting,1 and the operating contract between UC and DOE
Song, Min
2016-01-01
In biomedicine, scientific literature is a valuable source for knowledge discovery. Mining knowledge from textual data has become an ever important task as the volume of scientific literature is growing unprecedentedly. In this paper, we propose a framework for examining a certain disease based on existing information provided by scientific literature. Disease-related entities that include diseases, drugs, and genes are systematically extracted and analyzed using a three-level network-based approach. A paper-entity network and an entity co-occurrence network (macro-level) are explored and used to construct six entity specific networks (meso-level). Important diseases, drugs, and genes as well as salient entity relations (micro-level) are identified from these networks. Results obtained from the literature-based literature mining can serve to assist clinical applications. PMID:27195695
A Framework for Information Retrieval and Knowledge Discovery from Online Healthcare Forums
ERIC Educational Resources Information Center
Sampathkumar, Hariprasad
2016-01-01
Information used to assist biomedical and clinical research has largely comprised of data available in published sources like scientific papers and journals, or in clinical sources like patient health records, lab reports and discharge summaries. Information from such sources, though extensive and organized, is often not readily available due to…
Basic Scientific and Engineering Research at U.S. Universities. AAU Data & Policy Brief. No. 1
ERIC Educational Resources Information Center
Association of American Universities, 2015
2015-01-01
"Discovery," wrote William Press in a 2013 article in "Science," "leads to technology and invention, which lead to new products, jobs, and industries." Basic, curiosity-driven research continually expands the boundaries of knowledge across fields, providing insights that enrich lives. Such research helps drive the…
The Science of Learning Meets the Art of Teaching
ERIC Educational Resources Information Center
Park, Beverley
2006-01-01
Through the discoveries of neuroscience, educators have moved beyond the intuitive knowledge of how and when learning occurs to a demonstrated scientific understanding of the learning process itself. These new understandings have a two-fold appeal to educators: they allow them to design better, research-based teaching practices, and they help them…
Database systems for knowledge-based discovery.
Jagarlapudi, Sarma A R P; Kishan, K V Radha
2009-01-01
Several database systems have been developed to provide valuable information from the bench chemist to biologist, medical practitioner to pharmaceutical scientist in a structured format. The advent of information technology and computational power enhanced the ability to access large volumes of data in the form of a database where one could do compilation, searching, archiving, analysis, and finally knowledge derivation. Although, data are of variable types the tools used for database creation, searching and retrieval are similar. GVK BIO has been developing databases from publicly available scientific literature in specific areas like medicinal chemistry, clinical research, and mechanism-based toxicity so that the structured databases containing vast data could be used in several areas of research. These databases were classified as reference centric or compound centric depending on the way the database systems were designed. Integration of these databases with knowledge derivation tools would enhance the value of these systems toward better drug design and discovery.
What Does Galileo's Discovery of Jupiter's Moons Tell Us about the Process of Scientific Discovery?
ERIC Educational Resources Information Center
Lawson, Anton E.
2002-01-01
Given that hypothetico-deductive reasoning has played a role in other important scientific discoveries, asks the question whether it plays a role in all important scientific discoveries. Explores and rejects as viable alternatives possible alternative scientific methods such as Baconian induction and combinatorial analysis. Discusses the…
Optical methods in nano-biotechnology
NASA Astrophysics Data System (ADS)
Bruno, Luigi; Gentile, Francesco
2016-01-01
A scientific theory is not a mathematical paradigm. It is a framework that explains natural facts and may predict future observations. A scientific theory may be modified, improved, or rejected. Science is less a collection of theories and more the process that brings either to deny some hypothesis, maintain or accept somehow universal beliefs (or disbeliefs), and create new models that may improve or replace precedent theories. This process cannot be entrusted to common sense, personal experiences or anecdotes (many precepts in physics are indeed counterintuitive), but on a rigorous design, observation and rational to statistical analysis of new experiments. Scientific results are always provisional: scientists rarely proclaim an absolute truth or absolute certainty. Uncertainty is inevitable at the frontiers of knowledge. Notably, this is the definition of the scientific method and what we have written in the above echoes the opinion Marcia McNutt who is the Editor of Science 'Science is a method for deciding whether what we choose to believe has a basis in the laws of nature or not'. A new discovery, a new theory that explains that discovery and the scientific method itself need observations, verifications and are susceptible of falsification.
Board on Research Data and Information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sztein, A. Ester; Boright, John
2015-08-14
The Board on Research Data and Information (BRDI) has planned and undertaken numerous activities regarding data citation, attribution, management, policy, publishing, centers, access, curation, sharing, and infrastructure; and international collaboration and cooperation. Some of these activities resulted in National Research Council reports (For Attribution: Developing Data Attribution and Citation Practices and Standards (2012), The Case for International Scientific Data Sharing: A Focus on Developing Countries (2012), and The Future of Scientific Knowledge Discovery in Open Networked Environments (2012); and a peer-reviewed paper (Out of Cite, Out of Mind: The Current State of Practice, Policy, and Technology for the Citation ofmore » Data, 2013). BRDI held symposia, workshops and sessions in the U.S. and abroad on diverse topics such as global scientific data infrastructures, discovery of data online, privacy in a big data world, and data citation principles, among other timely data-related subjects. In addition, BRDI effects the representation of the United States before the International Council for Science’s International Committee on Data for Science and Technology (CODATA).« less
Reproducibility of results in preclinical studies: a perspective from the bone field.
Manolagas, Stavros C; Kronenberg, Henry M
2014-10-01
The biomedical research enterprise-and the public support for it-is predicated on the belief that discoveries and the conclusions drawn from them can be trusted to build a body of knowledge which will be used to improve human health. As in all other areas of scientific inquiry, knowledge and understanding grow by layering new discoveries upon earlier ones. The process self-corrects and distills knowledge by discarding false ideas and unsubstantiated claims. Although self-correction is inexorable in the long-term, in recent years biomedical scientists and the public alike have become alarmed and deeply troubled by the fact that many published results cannot be reproduced. The chorus of concern reached a high pitch with a recent commentary from the NIH Director, Francis S. Collins, and Principal Deputy Director, Lawrence A. Tabak, and their announcement of specific plans to enhance reproducibility of preclinical research that relies on animal models. In this invited perspective, we highlight the magnitude of the problem across biomedical fields and address the relevance of these concerns to the field of bone and mineral metabolism. We also suggest how our specialty journals, our scientific organizations, and our community of bone and mineral researchers can help to overcome this troubling trend. © 2014 American Society for Bone and Mineral Research.
Priority of discovery in the life sciences
Vale, Ronald D; Hyman, Anthony A
2016-01-01
The job of a scientist is to make a discovery and then communicate this new knowledge to others. For a scientist to be successful, he or she needs to be able to claim credit or priority for discoveries throughout their career. However, despite being fundamental to the reward system of science, the principles for establishing the "priority of discovery" are rarely discussed. Here we break down priority into two steps: disclosure, in which the discovery is released to the world-wide community; and validation, in which other scientists assess the accuracy, quality and importance of the work. Currently, in biology, disclosure and an initial validation are combined in a journal publication. Here, we discuss the advantages of separating these steps into disclosure via a preprint, and validation via a combination of peer review at a journal and additional evaluation by the wider scientific community. PMID:27310529
Semantic Data Integration and Knowledge Management to Represent Biological Network Associations.
Losko, Sascha; Heumann, Klaus
2017-01-01
The vast quantities of information generated by academic and industrial research groups are reflected in a rapidly growing body of scientific literature and exponentially expanding resources of formalized data, including experimental data, originating from a multitude of "-omics" platforms, phenotype information, and clinical data. For bioinformatics, the challenge remains to structure this information so that scientists can identify relevant information, to integrate this information as specific "knowledge bases," and to formalize this knowledge across multiple scientific domains to facilitate hypothesis generation and validation. Here we report on progress made in building a generic knowledge management environment capable of representing and mining both explicit and implicit knowledge and, thus, generating new knowledge. Risk management in drug discovery and clinical research is used as a typical example to illustrate this approach. In this chapter we introduce techniques and concepts (such as ontologies, semantic objects, typed relationships, contexts, graphs, and information layers) that are used to represent complex biomedical networks. The BioXM™ Knowledge Management Environment is used as an example to demonstrate how a domain such as oncology is represented and how this representation is utilized for research.
Bernard, Guillaume; Pathmanathan, Jananan S; Lannes, Romain; Lopez, Philippe; Bapteste, Eric
2018-01-01
Abstract Microbes are the oldest and most widespread, phylogenetically and metabolically diverse life forms on Earth. However, they have been discovered only 334 years ago, and their diversity started to become seriously investigated even later. For these reasons, microbial studies that unveil novel microbial lineages and processes affecting or involving microbes deeply (and repeatedly) transform knowledge in biology. Considering the quantitative prevalence of taxonomically and functionally unassigned sequences in environmental genomics data sets, and that of uncultured microbes on the planet, we propose that unraveling the microbial dark matter should be identified as a central priority for biologists. Based on former empirical findings of microbial studies, we sketch a logic of discovery with the potential to further highlight the microbial unknowns. PMID:29420719
When fragments link: a bibliometric perspective on the development of fragment-based drug discovery.
Romasanta, Angelo K S; van der Sijde, Peter; Hellsten, Iina; Hubbard, Roderick E; Keseru, Gyorgy M; van Muijlwijk-Koezen, Jacqueline; de Esch, Iwan J P
2018-05-05
Fragment-based drug discovery (FBDD) is a highly interdisciplinary field, rich in ideas integrated from pharmaceutical sciences, chemistry, biology, and physics, among others. To enrich our understanding of the development of the field, we used bibliometric techniques to analyze 3642 publications in FBDD, complementing accounts by key practitioners. Mapping its core papers, we found the transfer of knowledge from academia to industry. Co-authorship analysis showed that university-industry collaboration has grown over time. Moreover, we show how ideas from other scientific disciplines have been integrated into the FBDD paradigm. Keyword analysis showed that the field is organized into four interconnected practices: library design, fragment screening, computational methods, and optimization. This study highlights the importance of interactions among various individuals and institutions from diverse disciplines in newly emerging scientific fields. Copyright © 2018. Published by Elsevier Ltd.
iBiology: communicating the process of science.
Goodwin, Sarah S
2014-08-01
The Internet hosts an abundance of science video resources aimed at communicating scientific knowledge, including webinars, massive open online courses, and TED talks. Although these videos are efficient at disseminating information for diverse types of users, they often do not demonstrate the process of doing science, the excitement of scientific discovery, or how new scientific knowledge is developed. iBiology (www.ibiology.org), a project that creates open-access science videos about biology research and science-related topics, seeks to fill this need by producing videos by science leaders that make their ideas, stories, and experiences available to anyone with an Internet connection. © 2014 Goodwin. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Marshall Space Flight Center Research and Technology Report 2016
NASA Technical Reports Server (NTRS)
Tinker, M. L.; Abney, M. B. (Compiler); Reynolds, D. W. (Compiler); Morris, H. C. (Compiler)
2017-01-01
Marshall Space Flight Center is essential to human space exploration and our work is a catalyst for ongoing technological development. As we address the challenges facing human deep space exploration, we advance new technologies and applications here on Earth, expand scientific knowledge and discovery, create new economic opportunities, and continue to lead global space exploration.
ERIC Educational Resources Information Center
Kohlhauf, Lucia; Rutke, Ulrike; Neuhaus, Birgit
2011-01-01
Many epoch-making biological discoveries (e.g. Darwinian Theory) were based upon observations. Nevertheless, observation is often regarded as "just looking" rather than a basic scientific skill. As observation is one of the main research methods in biological sciences, it must be considered as an independent research method and systematic practice…
ERIC Educational Resources Information Center
National Academies Press, 2013
2013-01-01
Spurred on by new discoveries and rapid technological advances, the capacity for life science research is expanding across the globe-and with it comes concerns about the unintended impacts of research on the physical and biological environment, human well-being, or the deliberate misuse of knowledge, tools, and techniques to cause harm. This…
Can science be a business? Lessons from biotech.
Pisano, Gary P
2006-10-01
In 1976, Genentech, the first biotechnology company, was founded by a young venture capitalist and a university professor to exploit recombinant DNA technology. Thirty years and more than 300 billion dollars in investments later, only a handful of biotech firms have matched Genentech's success or even shown a profit. No avalanche of new drugs has hit the market, and the long-awaited breakthrough in R&D productivity has yet to materialize. This disappointing performance raises a question: Can organizations motivated by the need to make profits and please shareholders successfully conduct basic scientific research as a core activity? The question has largely been ignored, despite intense debate over whether business's invasion of basic science-long the domain of universities and nonprofit research institutions- is limiting access to discoveries, thereby slowing advances in science. Biotech has not lived up to its promise, says the author, because its anatomy, which has worked well in other high-tech sectors, can't handle the fundamental challenges facing drug R&D: profound, persistent uncertainty and high risks rooted in the limited knowledge of human biology; the need for the diverse disciplines involved in drug discovery to work together in an integrated fashion; and barriers to learning, including tacit knowledge and murky intellectual property rights, which can slow the pace of scientific advance. A more suitable anatomy would include increased vertical integration; a smaller number of closer, longer collaborations; an emphasis by universities on sharing rather than patenting scientific discoveries; more cross-disciplinary academic research; and more federal and private funding for translational research, which bridges basic and applied science. With such modifications, science can be a business.
Literature Mining for the Discovery of Hidden Connections between Drugs, Genes and Diseases
Frijters, Raoul; van Vugt, Marianne; Smeets, Ruben; van Schaik, René; de Vlieg, Jacob; Alkema, Wynand
2010-01-01
The scientific literature represents a rich source for retrieval of knowledge on associations between biomedical concepts such as genes, diseases and cellular processes. A commonly used method to establish relationships between biomedical concepts from literature is co-occurrence. Apart from its use in knowledge retrieval, the co-occurrence method is also well-suited to discover new, hidden relationships between biomedical concepts following a simple ABC-principle, in which A and C have no direct relationship, but are connected via shared B-intermediates. In this paper we describe CoPub Discovery, a tool that mines the literature for new relationships between biomedical concepts. Statistical analysis using ROC curves showed that CoPub Discovery performed well over a wide range of settings and keyword thesauri. We subsequently used CoPub Discovery to search for new relationships between genes, drugs, pathways and diseases. Several of the newly found relationships were validated using independent literature sources. In addition, new predicted relationships between compounds and cell proliferation were validated and confirmed experimentally in an in vitro cell proliferation assay. The results show that CoPub Discovery is able to identify novel associations between genes, drugs, pathways and diseases that have a high probability of being biologically valid. This makes CoPub Discovery a useful tool to unravel the mechanisms behind disease, to find novel drug targets, or to find novel applications for existing drugs. PMID:20885778
Vascular knowledge in medieval times was the turning point for the humanistic trend.
Ducasse, E; Speziale, F; Baste, J C; Midy, D
2006-06-01
Knowledge of the history of our surgical specialty may broaden our viewpoint for everyday practice. We illustrate the scientific progress made in medieval times relevant to the vascular system and blood circulation, progress made despite prevailing religious and philosophical dogma. We located all articles concerning vascular knowledge and historical reviews in databases such as MEDLINE, EMBASE and the database of abstracts of reviews (DARE). We also explored the database of the register from the French National Library, the French Medical Inter-University (BIUM), the Italian National Library and the French and Italian Libraries in the Vatican. All data were collected and analysed in chronological order. Medieval vascular knowledge was inherited from Greek via Byzantine and Arabic writings, the first controversies against the recognized vascular schema emanating from an Arabian physician in the 13th century. Dissection was forbidden and clerical rules instilled a fear of blood. Major contributions to scientific progress in the vascular field in medieval times came from Ibn-al-Nafis and Harvey. Vascular specialists today may feel proud to recall that once religious dogma declined in early medieval times, vascular anatomic and physiological discoveries led the way to scientific progress.
Sonuga-Barke, Edmund J S
2014-12-01
Historians of science continue to debate the importance of individual inspiration and personal creativity as fuel in the engine of scientific progress. While true that, in general, scientific knowledge advances cautiously by careful experimentation, painstaking observation and the gradual accumulation of evidence occasionally a field of enquiry can be revolutionised by a single, perhaps simple, yet inspired and profound insight. Such breakthroughs are most likely to occur when an individual moves outside the intellectual tramlines that normally constrain scientific thinking, leaving them able to look at old evidence in new and original ways. The reception of such original insights by the research community varies considerably, of course. Some insights may be 'too original'--a step too far in what is normally an incremental journey of discovery. Some ideas, enthusiastically accepted initially, may burn out before making any real impression. Other ideas revolutionize a field--producing a cascade of hypotheses and lines of enquiry that lead to new discoveries which permanently change the scientific landscape. The issue of scientific creativity was very much in my mind when reading through the papers slated to appear in the current journal number. One article in particular, by Pannekoeke and colleagues on intrinsic brain organisation in depressed adolescents, initiated a chain of thought that led me to my focus for this editorial. A development that provides perhaps the most compelling recent example of the transformative power of individual inspiration in the field of cognitive neuroscience--a development which is also beginning to have profound implications for models of childhood mental disorders. © 2014 Association for Child and Adolescent Mental Health.
Metallic iron for safe drinking water provision: Considering a lost knowledge.
Mwakabona, Hezron T; Ndé-Tchoupé, Arnaud Igor; Njau, Karoli N; Noubactep, Chicgoua; Wydra, Kerstin D
2017-06-15
Around year 1890, the technology of using metallic iron (Fe 0 ) for safe drinking water provision was already established in Europe. The science and technology to manufacture suitable Fe 0 materials were known and further developed in this period. Scientists had then developed skills to (i) explore the suitability of individual Fe 0 materials (e.g. iron filling, sponge iron) for selected applications, and (ii) establish treatment processes for households and water treatment plants. The recent (1990) discovery of Fe 0 as reactive agent for environmental remediation and water treatment has not yet considered this ancient knowledge. In the present work, some key aspects of the ancient knowledge are presented together with some contemporised interpretations, in an attempt to demonstrate the scientific truth contained therein. It appears that the ancient knowledge is an independent validation of the scientific concept that in water treatment (Fe 0 /H 2 O system) Fe 0 materials are generators of contaminant collectors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Learning from the Mars Rover Mission: Scientific Discovery, Learning and Memory
NASA Technical Reports Server (NTRS)
Linde, Charlotte
2005-01-01
Purpose: Knowledge management for space exploration is part of a multi-generational effort. Each mission builds on knowledge from prior missions, and learning is the first step in knowledge production. This paper uses the Mars Exploration Rover mission as a site to explore this process. Approach: Observational study and analysis of the work of the MER science and engineering team during rover operations, to investigate how learning occurs, how it is recorded, and how these representations might be made available for subsequent missions. Findings: Learning occurred in many areas: planning science strategy, using instrumen?s within the constraints of the martian environment, the Deep Space Network, and the mission requirements; using software tools effectively; and running two teams on Mars time for three months. This learning is preserved in many ways. Primarily it resides in individual s memories. It is also encoded in stories, procedures, programming sequences, published reports, and lessons learned databases. Research implications: Shows the earliest stages of knowledge creation in a scientific mission, and demonstrates that knowledge management must begin with an understanding of knowledge creation. Practical implications: Shows that studying learning and knowledge creation suggests proactive ways to capture and use knowledge across multiple missions and generations. Value: This paper provides a unique analysis of the learning process of a scientific space mission, relevant for knowledge management researchers and designers, as well as demonstrating in detail how new learning occurs in a learning organization.
Tunnel vision information: a paradox of ethics, economics, politics and science.
Bilton, D; Stephens, D; Gorman, F
1998-09-01
Improvement in vision with spinal manipulation was first observed in the early 1970s. Reports of the phenomenon appeared in the 1980s in the popular press and at scientific meetings, but it was not until the mid-1990s that general discussion of the potential value of this knowledge occurred. Considering the far-reaching implications of the possible ability to improve brain function by spinal manipulation, the delay in consideration and implementation of this concept is a paradox in general terms and a total mystery in the case of the chiropractic profession. To provide explanations for the delay in scientific assessment of the discovery that vision improves, in appropriate patients, when the spine is manipulated and to discuss the implications of this finding. This discovery is now called the "tunnel vision information." A schema of pathological hierarchy is depicted in which the level of intervention of spinal manipulation outranks other forms of treatment. The significance of this precedence is portrayed. Possible reasons for the failure to address this hierarchy in light of the tunnel vision information are discussed with reference to established protocols, medical politics, the presentation of the data, the failure of scientific editorship and the illogical aspects of the illness itself. In the future, the delay from the initial observation of the tunnel vision discovery to its free discussion in scientific literature may seem incongruous, particularly if the health benefits which it augurs are realized.
The Montessori Method and the Kindergarten. Bulletin, 1914, No. 28. Whole Number 602
ERIC Educational Resources Information Center
Harrison, Elizabeth
1914-01-01
Recently an earnest, brilliant, and learned Italian woman, Dr. Maria Montessori, has become famous, probably beyond her desire, for her contribution to the knowledge of little children and for the embodiment of her own and the discoveries of others in what she likes to call "a method of a new science of education." Her scientific investigations as…
AGU honors 79 geophysicists during 2011 awards cycle
NASA Astrophysics Data System (ADS)
Paredes, Beth
2012-02-01
At the 2011 Fall Meeting, AGU honored 79 esteemed geophysicists for their landmark achievements and transformational discoveries, highlighting those who have pioneered new frontiers of scientific knowledge with dedication, commitment, and leadership. Sixty individuals widely recognized as experts in their fields of research were honored as the 2011 class of AGU Fellows. These scientists, who share a lifelong commitment to understanding how the world works and are dedicated to making it a better place, were nominated by their colleagues for spurring major paradigm shifts and innovating breakthrough discoveries in Earth and space sciences. Six Union awardees received recognition for their vision and leadership, for furthering education in the Earth and space sciences, and for outstanding and sustained achievements in science journalism. In addition, AGU presented its inaugural Climate Communication Prize, for outstanding contributions to scientific literacy and public awareness about the urgent problem of climate change.
Horii, Ikuo
2016-01-01
Pharmaceutical (drug) safety assessment covers a diverse science-field in the drug discovery and development including the post-approval and post-marketing phases in order to evaluate safety and risk management. The principle in toxicological science is to be placed on both of pure and applied sciences that are derived from past/present scientific knowledge and coming new science and technology. In general, adverse drug reactions are presented as "biological responses to foreign substances." This is the basic concept of thinking about the manifestation of adverse drug reactions. Whether or not toxic expressions are extensions of the pharmacological effect, adverse drug reactions as seen from molecular targets are captured in the category of "on-target" or "off-target", and are normally expressed as a biological defense reaction. Accordingly, reactions induced by pharmaceuticals can be broadly said to be defensive reactions. Recent molecular biological conception is in line with the new, remarkable scientific and technological developments in the medical and pharmaceutical areas, and the viewpoints in the field of toxicology have shown that they are approaching toward the same direction as well. This paper refers to the basic concept of pharmaceutical toxicology, the differences for safety assessment in each stage of drug discovery and development, regulatory submission, and the concept of scientific considerations for risk assessment and management from the viewpoint of "how can multidisciplinary toxicology contribute to innovative drug discovery and development?" And also realistic translational research from preclinical to clinical application is required to have a significant risk management in post market by utilizing whole scientific data derived from basic and applied scientific research works. In addition, the significance for employing the systems toxicology based on AOP (Adverse Outcome Pathway) analysis is introduced, and coming challenges on precision medicine are to be addressed for the new aspect of efficacy and safety evaluation.
Entitymetrics: Measuring the Impact of Entities
Ding, Ying; Song, Min; Han, Jia; Yu, Qi; Yan, Erjia; Lin, Lili; Chambers, Tamy
2013-01-01
This paper proposes entitymetrics to measure the impact of knowledge units. Entitymetrics highlight the importance of entities embedded in scientific literature for further knowledge discovery. In this paper, we use Metformin, a drug for diabetes, as an example to form an entity-entity citation network based on literature related to Metformin. We then calculate the network features and compare the centrality ranks of biological entities with results from Comparative Toxicogenomics Database (CTD). The comparison demonstrates the usefulness of entitymetrics to detect most of the outstanding interactions manually curated in CTD. PMID:24009660
Automated discovery systems and the inductivist controversy
NASA Astrophysics Data System (ADS)
Giza, Piotr
2017-09-01
The paper explores possible influences that some developments in the field of branches of AI, called automated discovery and machine learning systems, might have upon some aspects of the old debate between Francis Bacon's inductivism and Karl Popper's falsificationism. Donald Gillies facetiously calls this controversy 'the duel of two English knights', and claims, after some analysis of historical cases of discovery, that Baconian induction had been used in science very rarely, or not at all, although he argues that the situation has changed with the advent of machine learning systems. (Some clarification of terms machine learning and automated discovery is required here. The key idea of machine learning is that, given data with associated outcomes, software can be trained to make those associations in future cases which typically amounts to inducing some rules from individual cases classified by the experts. Automated discovery (also called machine discovery) deals with uncovering new knowledge that is valuable for human beings, and its key idea is that discovery is like other intellectual tasks and that the general idea of heuristic search in problem spaces applies also to discovery tasks. However, since machine learning systems discover (very low-level) regularities in data, throughout this paper I use the generic term automated discovery for both kinds of systems. I will elaborate on this later on). Gillies's line of argument can be generalised: thanks to automated discovery systems, philosophers of science have at their disposal a new tool for empirically testing their philosophical hypotheses. Accordingly, in the paper, I will address the question, which of the two philosophical conceptions of scientific method is better vindicated in view of the successes and failures of systems developed within three major research programmes in the field: machine learning systems in the Turing tradition, normative theory of scientific discovery formulated by Herbert Simon's group and the programme called HHNT, proposed by J. Holland, K. Holyoak, R. Nisbett and P. Thagard.
NASA Astrophysics Data System (ADS)
Zeng, Carl J.; Qi, Eric P.; Li, Simon S.; Stanley, H. Eugene; Ye, Fred Y.
2017-12-01
A publication that reports a breakthrough discovery in a particular scientific field is referred to as a ;black swan;, and the most highly-cited papers previously published in the same field ;white swans;. Important scientific progress occurs when ;white swans; meet a ;black swan;, and the citation patterns of the ;white swans; change. This metaphor combines scientific discoveries and scientometric data and suggests that breakthrough scientific discoveries are either ;black swans; or ;grey-black swans;.
Mitchell, Wayne; Breen, Colin; Entzeroth, Michael
2008-03-01
The Experimental Therapeutics Center (ETC) has been established at Biopolis to advance translational research by bridging the gap between discovery science and commercialization. We describe the Electronic Research Habitat at ETC, a comprehensive hardware and software infrastructure designed to effectively manage terabyte data flows and storage, increase back office efficiency, enhance the scientific work experience, and satisfy rigorous regulatory and legal requirements. Our habitat design is secure, scalable and robust, and it strives to embody the core values of the knowledge-based workplace, thus contributing to the strategic goal of building a "knowledge economy" in the context of Singapore's on-going biotechnology initiative.
Conceptualization of an R&D Based Learning-to-Innovate Model for Science Education
NASA Astrophysics Data System (ADS)
Lai, Oiki Sylvia
The purpose of this research was to conceptualize an R & D based learning-to-innovate (LTI) model. The problem to be addressed was the lack of a theoretical L TI model, which would inform science pedagogy. The absorptive capacity (ACAP) lens was adopted to untangle the R & D LTI phenomenon into four learning processes: problem-solving via knowledge acquisition, incremental improvement via knowledge participation, scientific discovery via knowledge creation, and product design via knowledge productivity. The four knowledge factors were the latent factors and each factor had seven manifest elements as measured variables. The key objectives of the non experimental quantitative survey were to measure the relative importance of the identified elements and to explore the underlining structure of the variables. A questionnaire had been prepared, and was administered to more than 155 R & D professionals from four sectors - business, academic, government, and nonprofit. The results showed that every identified element was important to the R & D professionals, in terms of improving the related type of innovation. The most important elements were highlighted to serve as building blocks for elaboration. In search for patterns of the data matrix, exploratory factor analysis (EF A) was performed. Principal component analysis was the first phase of EF A to extract factors; while maximum likelihood estimation (MLE) was used to estimate the model. EF A yielded the finding of two aspects in each kind of knowledge. Logical names were assigned to represent the nature of the subsets: problem and knowledge under knowledge acquisition, planning and participation under knowledge participation, exploration and discovery under knowledge creation, and construction and invention under knowledge productivity. These two constructs, within each kind of knowledge, added structure to the vague R & D based LTI model. The research questions and hypotheses testing were addressed using correlation analysis. The alternative hypotheses that there were positive relationships between knowledge factors and their corresponding types of innovation were accepted. In-depth study of each process is recommended in both research and application. Experimental tests are needed, in order to ultimately present the LTI model to enhance the scientific knowledge absorptive capacity of the learners to facilitate their innovation performance.
Scientific Cooperation Between the U.S. and the Republic of South Africa Funds 7 Cancer-Specific Pro
The NIH has recently awarded its first round of grants in a parallel U.S.-South Africa funding opportunity. Initiatives funded through this program will advance biomedical research for tuberculosis and HIV/AIDS in not only the US and South Africa, but will contribute to the global wealth of knowledge of these diseases. The scope of this initiative includes HIV/AIDS co-morbidities, and resulting malignancies. This opportunity was further targeted at expanding basic, translational, behavioral and applied research that will stimulate scientific discovery, and engage U.S. and South African researcher collaboration.
Create your own science planning tool in 3 days with SOA
NASA Technical Reports Server (NTRS)
Streiffert, Barbara A.; Polanskey, Carol A.; O'Reilly, Taifun
2003-01-01
Scientific discovery and advancement of knowledge has been, and continues to be, the goal for space missions at Jet Propulsion Laboratory. Scientist must plan their observation/experiments to get the maximum data return in order to make those discoveries. However, each mission has different science objectives, a different spacecraft and different instrument payloads, as well as, different routes to different destinations with different spacecraft restrictions and characteristics. In the current reduced cost environment, manageable cost for mission planning software is a must. Science Opportunity Analyzer (SOA), a planning tool for scientists and mission planners, utilizes a simple approach to reduce cost and promote reusability.
Making the Introductory Meteorology Class Relevant in a Minority Serving Community College
NASA Astrophysics Data System (ADS)
Marchese, P. J.; Tremberger, G.; Bluestone, C.
2008-12-01
Queensborough Community College (QCC), a constituent campus of the City University of New York (CUNY), has modified the introductory Meteorology Class lecture and lab to include active learning activities and discovery based learning. The modules were developed at QCC and other 4 year colleges and designed to introduce basic physical concepts important in meteorology. The modules consisted of either interactive lecture demonstrations or discovery-based activities. The discovery based activities are intended to have students become familiar with scientific investigation. Students engage in formulating hypotheses, developing and carrying out experiments, and analyzing scientific data. These activities differ from traditional lab experiments in that they avoid "cookbook" procedures and emphasize having the students learn about physical concepts by applying the scientific method. During the interactive lecture demonstrations the instructor describes an experiment/phenomenon that is to be demonstrated in class. Students discuss the phenomenon based on their experiences and make a prediction about the outcome. The class then runs the experiment, makes observations, and compares the expected results to the actual outcome. As a result of these activities students in the introductory Meteorology class scored higher in exams questions measuring conceptual understanding, as well as factual knowledge. Lower scoring students demonstrated the greatest benefit, while the better students had little (or no) changes. All students also had higher self-efficacy scores after the intervention, compared to an unmodified class.
Scientific workflows as productivity tools for drug discovery.
Shon, John; Ohkawa, Hitomi; Hammer, Juergen
2008-05-01
Large pharmaceutical companies annually invest tens to hundreds of millions of US dollars in research informatics to support their early drug discovery processes. Traditionally, most of these investments are designed to increase the efficiency of drug discovery. The introduction of do-it-yourself scientific workflow platforms has enabled research informatics organizations to shift their efforts toward scientific innovation, ultimately resulting in a possible increase in return on their investments. Unlike the handling of most scientific data and application integration approaches, researchers apply scientific workflows to in silico experimentation and exploration, leading to scientific discoveries that lie beyond automation and integration. This review highlights some key requirements for scientific workflow environments in the pharmaceutical industry that are necessary for increasing research productivity. Examples of the application of scientific workflows in research and a summary of recent platform advances are also provided.
Rosenman's "Serendipity and Scientific Discovery" Revisited: Toward Defining Types of Chance Events.
ERIC Educational Resources Information Center
Diaz de Chumaceiro, Cora L.; Yaber O., Guillermo E.
1994-01-01
The role of serendipity or "chance in all its forms" in scientific discovery is considered. The need to differentiate between purely accidental events and Rothenberg's "articulations of error" when discussing scientific discoveries is stressed. Examples of articulations of errors are noted, including Fleming (penicillin),…
The role of collaborative ontology development in the knowledge negotiation process
NASA Astrophysics Data System (ADS)
Rivera, Norma
Interdisciplinary research (IDR) collaboration can be defined as the process of integrating experts' knowledge, perspectives, and resources to advance scientific discovery. The flourishing of more complex research problems, together with the growth of scientific and technical knowledge has resulted in the need for researchers from diverse fields to provide different expertise and points of view to tackle these problems. These collaborations, however, introduce a new set of "culture" barriers as participating experts are trained to communicate in discipline-specific languages, theories, and research practices. We propose that building a common knowledge base for research using ontology development techniques can provide a starting point for interdisciplinary knowledge exchange, negotiation, and integration. The goal of this work is to extend ontology development techniques to support the knowledge negotiation process in IDR groups. Towards this goal, this work presents a methodology that extends previous work in collaborative ontology development and integrates learning strategies and tools to enhance interdisciplinary research practices. We evaluate the effectiveness of applying such methodology in three different scenarios that cover educational and research settings. The results of this evaluation confirm that integrating learning strategies can, in fact, be advantageous to overall collaborative practices in IDR groups.
Providing Effective Professional Development for Teachers through the Lunar Workshops for Educators
NASA Astrophysics Data System (ADS)
Canipe, Marti; Buxner, Sanlyn; Jones, Andrea; Hsu, Brooke; Shaner, Andy; Bleacher, Lora
2014-11-01
In order to integrate current scientific discoveries in the classroom, K-12 teachers benefit from professional development and support. The Lunar Workshops for Educators is a series of weeklong workshops for grade 6-9 science teachers focused on lunar science and exploration, sponsored by the Lunar Reconnaissance Orbiter (LRO) and conducted by the LRO Education and Public Outreach (E/PO) Team. The Lunar Workshops for Educators, have provided this professional development for teachers for the last five years. Program evaluation includes pre- and post- content tests and surveys related to classroom practice, daily surveys, and follow-up surveys conducted during the academic year following the summer workshops to assess how the knowledge and skills learned at the workshop are being used in the classroom. The evaluation of the workshop shows that the participants increased their overall knowledge of lunar science and exploration. Additionally, they gained knowledge about student misconceptions related to the Moon and ways to address those misconceptions. The workshops impacted the ways teachers taught about the Moon by providing them with resources to teach about the Moon and increased confidence in teaching about these topics. Participants reported ways that the workshop impacted their teaching practices beyond teaching about the Moon, encouraging them to include more inquiry and other teaching techniques demonstrated in the workshops in their science classes. Overall, the program evaluation has shown the Lunar Workshops for Educators are effective at increasing teachers’ knowledge about the Moon and use of inquiry-based teaching into their classrooms. Additionally, the program supports participant teachers in integrating current scientific discoveries into their classrooms.
Knitting the Threads of Silk through Time: Behçet's Disease—Past, Present, and Future
Stack, Austin G.; Fraser, Alexander D.
2017-01-01
Behçet's disease (BD) is a chronic relapsing vasculitis that affects vessels of all types and sizes with a broad spectrum of phenotypic heterogeneity and complex immunopathogenesis. Efforts by the scientific community to resolve the unmet needs of BD and gaps in our knowledge have been hampered by considerable challenges that primarily relate to the rare nature of the disease in many parts of the world and its heterogeneity. Controversies remain in many aspects of the disease including the diagnostic criteria, immunopathogenesis and biomarker discovery, geographical variation, and therapeutic considerations. In this review, we highlight recent advances in our scientific understanding of BD, shed new insights into diagnostic and treatment strategies, and discuss residual gaps in our knowledge that will serve as the basis for current and future research. PMID:29081805
Lightman, Bernard
2016-01-01
Focusing on the editors, journalists and authors who worked on the new ‘popular science’ periodicals and books from the 1860s to the 1880s, this piece will discuss how they conceived of their readers as co-participants in the creation of knowledge. The transformation of nineteenth-century publishing opened up opportunities for making science more accessible to a new polity of middle and working class readers. Editors, journalists and authors responded to the communications revolution, and the larger developments that accompanied it, by defining the exemplary scientist in opposition to the emerging conception of the professional scientist, by rejecting the notion that the laboratory was the sole legitimate site of scientific discovery and by experimenting with new ways of communicating scientific knowledge to their audience.
Science to Policy: Many Roads to Travel (Invited)
NASA Astrophysics Data System (ADS)
Eriksson, S. C.; McCaughey, J.
2013-12-01
Transferring scientific discoveries to policies and their implementation is not a narrow, one-way road. The complexities of policy-making are not normally within the purview of either scientists or science educators and communicators. Politics, bureaucracy, economics, culture, religion, and local knowledge are a few areas that help determine how policies are made. These factors are compounded by differences in cultures among scientists, educators/communicators, and governments. To complicate this further, bodies of knowledge which could be brought to bear upon improved policies and implementation lie within different disciplines, e.g. natural sciences, disaster risk reduction, development, psychology, social science, communications, education and more. In a scientific research institution, we have found many potential paths to help transfer knowledge back and forth between scientists and decision-makers. Some of these paths are short with an end in sight. Others are longer, and the destination can't be seen. Some of these paths include a) education and discussion with various government agencies, b) educating students who will return to various agencies and educational institutions in their home countries, c) sharing scientific knowledge with research colleagues, d) consulting, e) working with NGOs, and media, f) working with colleagues in other fields, e.g. development, risk, regional consortia. Recognizing and transferring knowledge among different disciplines, learning the needs of various players, finding the most productive paths, and thinking about varying time frames are important in prioritizing the transference of science into action.
Citizen Science Initiatives: Engaging the Public and Demystifying Science
Van Vliet, Kim; Moore, Claybourne
2016-01-01
The Internet and smart phone technologies have opened up new avenues for collaboration among scientists around the world. These technologies have also expanded citizen science opportunities and public participation in scientific research (PPSR). Here we discuss citizen science, what it is, who does it, and the variety of projects and methods used to increase scientific knowledge and scientific literacy. We describe a number of different types of citizen-science projects. These greatly increase the number of people involved, helping to speed the pace of data analysis and allowing science to advance more rapidly. As a result of the numerous advantages of citizen-science projects, these opportunities are likely to expand in the future and increase the rate of novel discoveries. PMID:27047582
Citizen Science Initiatives: Engaging the Public and Demystifying Science.
Van Vliet, Kim; Moore, Claybourne
2016-03-01
The Internet and smart phone technologies have opened up new avenues for collaboration among scientists around the world. These technologies have also expanded citizen science opportunities and public participation in scientific research (PPSR). Here we discuss citizen science, what it is, who does it, and the variety of projects and methods used to increase scientific knowledge and scientific literacy. We describe a number of different types of citizen-science projects. These greatly increase the number of people involved, helping to speed the pace of data analysis and allowing science to advance more rapidly. As a result of the numerous advantages of citizen-science projects, these opportunities are likely to expand in the future and increase the rate of novel discoveries.
NASA Astrophysics Data System (ADS)
Martin, Sara F.
2015-04-01
The first section of this memoir queries my formative years. Indirectly I address the question, did my childhood and early years make a difference in my choice of career? Why and how did I begin my journey to becoming a scientist? Did I choose the field of solar astronomy or did circumstances dictate it for me? In the second section, I travel through my work environments and experiences, talking about interactions and aspects of being a scientist that do not appear in our research papers. What parts of my research were happenstances and what parts did I plan? What does it feel like to be on scientific quests? Using examples in my journey, I also turn to questions that have intrigued me throughout my sojourn as a solar astronomer. How do scientific discoveries come about? What factors lead to little discoveries? And what factors lead to major exciting discoveries? Are there timely questions we do not think to ask? How can small, seemingly scattered pieces of knowledge suddenly coalesce into a deeper understanding - what is called the "Aha!" experience - the times when our mental light switches on, and with child-like wonder we behold a "big picture"?
The Discovery of Insulin: A Case Study of Scientific Methodology
ERIC Educational Resources Information Center
Stansfield, William D.
2012-01-01
The nature of scientific research sometimes involves a trial-and-error procedure. Popular reviews of successful results from this approach often sanitize the story by omitting unsuccessful trials, thus painting the rosy impression that research simply follows a direct route from hypothesis to experiment to scientific discovery. The discovery of…
The Place of Crowdfunding in the Discovery of Scientific and Social Value of Medical Research.
Del Savio, Lorenzo
2017-06-01
Crowdfunding is increasingly common in medical research. Some critics are concerned that by adopting crowdfunding, some researchers may sidestep the established systems of review of the social and scientific value of studies (e.g. impact on disease burden, issues of justice), especially mechanisms of expert-based review. I argue firstly that such concerns are based on a misleading picture of how research value is assessed and secondly that crowdfunding may turn out to be an useful complement of extant funding systems. I start with the idea that medical knowledge is a structured and intermediate public good and explain from this perspective that funding systems as a whole, rather than any of their parts (such as expert-based reviews) ought to be considered devices for the discovery of the social and scientific value of research. If so, we should not be concerned with whether crowdfunding bypasses expert reviews, but with whether it may constitute an improvement of extant funding systems. In the second part, I speculate that crowdfunding may ameliorate, albeit limitedly, some recalcitrant failures of funding systems, such as the sponsorship of research on neglected diseases, and smooth funding adaptations for scientific transitions. If, after trial, such hypotheses turn out to be true, crowdfunding ought to be promoted. © 2017 John Wiley & Sons Ltd.
The Parallelism between Scientists' and Students' Resistance to New Scientific Ideas.
ERIC Educational Resources Information Center
Campanario, Juan Miguel
2002-01-01
Compares resistance by scientists to new ideas in scientific discovery with students' resistance to conceptual change in scientific learning. Studies the resistance by students to abandoning their misconceptions concerning scientific topics and the resistance by scientists to scientific discovery. (Contains 64 references.) (Author/YDS)
Cushman, Gregory T
2011-01-01
The belief that human land use is capable of causing large-scale climatic change lies at the root of modern conservation thought and policy. The origins and popularization of this belief were deeply politicized. Alexander von Humboldt's treatment of the Lake Valencia basin in Venezuela and the desert coast of Peru as natural laboratories for observing the interaction between geophysical and cultural forces was central to this discovery, as was Humboldt's belief that European colonialism was especially destructive to the land. Humboldt's overt cultivation of disciples was critical to building the prestige of this discovery and popularizing the Humboldtian scientific program, which depended fundamentally on local observers, but willfully marginalized chorographic knowledge systems. In creating new, global forms of environmental understanding, Humboldtian science also generated new forms of ignorance.
Energy-Water Nexus Knowledge Discovery Framework, Experts’ Meeting Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhaduri, Budhendra L.; Simon, AJ; Allen, Melissa R.
Energy and water generation and delivery systems are inherently interconnected. With worldwide demandfor energy growing, the energy sector is experiencing increasing competition for water. With increasingpopulation and changing environmental, socioeconomic, and demographic scenarios, new technology andinvestment decisions must be made for optimized and sustainable energy-water resource management. These decisions require novel scientific insights into the complex interdependencies of energy-water infrastructures across multiple space and time scales.
European Scientific Notes. Volume 38, Number 4.
1984-04-01
R.L. Carovillano 218 The Seventh European Regional Astronomy meeting dealt with almost every area of astronomy; coverage included solar ...in the 25- to found in areas as diverse as electro- 35-m range at the Comitato Nazionale optics and pharmacology. Energia Nucleare laboratory in...physics research has led to knowledge gained in one area (or param- many discoveries in the solar system and eter domain) to another area that lacks to
Cancer biology and implications for practice.
Rieger, Paula Trahan
2006-08-01
The media seem to announce a new scientific discovery related to cancer daily. Oncology nurses are challenged to keep up with the explosion of new knowledge and to understand how it ultimately relates to the care of patients with cancer. A framework for classifying new knowledge can be useful as nurses seek to understand the biology of cancer and its related implications for practice. To understand the molecular roots of cancer, healthcare practitioners specializing in cancer care require insight into genes, their messages, and the proteins produced from those messages, as well as the new tools of molecular biology.
Paraneoplastic neurological syndromes
Leypoldt, F; Wandinger, K-P
2014-01-01
Paraneoplastic neurological syndromes are immune-mediated erroneous attacks on the central or peripheral nervous systems, or both, directed originally against the tumour itself. They have been known for more than 40 years, but recently the discovery of new subgroups of paraneoplastic encephalitis syndromes with a remarkably good response to immune therapy has ignited new clinical and scientific interest. Knowledge of these subgroups and their associated autoantibodies is important in therapeutic decision-making. However, the abundance of new autoantibodies and syndromes can be confusing. This review paper summarizes current knowledge and new developments in the field of paraneoplastic neurological syndromes, their classification, pathophysiology and treatment. PMID:23937626
ERIC Educational Resources Information Center
Hulshof, Casper D.; de Jong, Ton
2006-01-01
Students encounter many obstacles during scientific discovery learning with computer-based simulations. It is hypothesized that an effective type of support, that does not interfere with the scientific discovery learning process, should be delivered on a "just-in-time" base. This study explores the effect of facilitating access to…
Building Cognition: The Construction of Computational Representations for Scientific Discovery
ERIC Educational Resources Information Center
Chandrasekharan, Sanjay; Nersessian, Nancy J.
2015-01-01
Novel computational representations, such as simulation models of complex systems and video games for scientific discovery (Foldit, EteRNA etc.), are dramatically changing the way discoveries emerge in science and engineering. The cognitive roles played by such computational representations in discovery are not well understood. We present a…
ERIC Educational Resources Information Center
Robinson, William R.
2000-01-01
Describes a review of research that addresses the effectiveness of simulations in promoting scientific discovery learning and the problems that learners may encounter when using discovery learning. (WRM)
Scientific Training in the Era of Big Data: A New Pedagogy for Graduate Education.
Aikat, Jay; Carsey, Thomas M; Fecho, Karamarie; Jeffay, Kevin; Krishnamurthy, Ashok; Mucha, Peter J; Rajasekar, Arcot; Ahalt, Stanley C
2017-03-01
The era of "big data" has radically altered the way scientific research is conducted and new knowledge is discovered. Indeed, the scientific method is rapidly being complemented and even replaced in some fields by data-driven approaches to knowledge discovery. This paradigm shift is sometimes referred to as the "fourth paradigm" of data-intensive and data-enabled scientific discovery. Interdisciplinary research with a hard emphasis on translational outcomes is becoming the norm in all large-scale scientific endeavors. Yet, graduate education remains largely focused on individual achievement within a single scientific domain, with little training in team-based, interdisciplinary data-oriented approaches designed to translate scientific data into new solutions to today's critical challenges. In this article, we propose a new pedagogy for graduate education: data-centered learning for the domain-data scientist. Our approach is based on four tenets: (1) Graduate training must incorporate interdisciplinary training that couples the domain sciences with data science. (2) Graduate training must prepare students for work in data-enabled research teams. (3) Graduate training must include education in teaming and leadership skills for the data scientist. (4) Graduate training must provide experiential training through academic/industry practicums and internships. We emphasize that this approach is distinct from today's graduate training, which offers training in either data science or a domain science (e.g., biology, sociology, political science, economics, and medicine), but does not integrate the two within a single curriculum designed to prepare the next generation of domain-data scientists. We are in the process of implementing the proposed pedagogy through the development of a new graduate curriculum based on the above four tenets, and we describe herein our strategy, progress, and lessons learned. While our pedagogy was developed in the context of graduate education, the general approach of data-centered learning can and should be applied to students and professionals at any stage of their education, including at the K-12, undergraduate, graduate, and professional levels. We believe that the time is right to embed data-centered learning within our educational system and, thus, generate the talent required to fully harness the potential of big data.
Was Muller's 1946 Nobel Prize research for radiation-induced gene mutations peer-reviewed?
Calabrese, Edward J
2018-06-06
This historical analysis indicates that it is highly unlikely that the Nobel Prize winning research of Hermann J. Muller was peer-reviewed. The published paper of Muller lacked a research methods section, cited no references, and failed to acknowledge and discuss the work of Gager and Blakeslee (PNAS 13:75-79, 1927) that claimed to have induced gene mutation via ionizing radiation six months prior to Muller's non-data Science paper (Muller, Science 66(1699):84-87, 1927a). Despite being well acclimated into the scientific world of peer-review, Muller choose to avoid the peer-review process on his most significant publication. It appears that Muller's actions were strongly influenced by his desire to claim primacy for the discovery of gene mutation. The actions of Muller have important ethical lessons and implications today, when self-interest trumps one's obligations to society and the scientific culture that supports the quest for new knowledge and discovery.
MachineProse: an Ontological Framework for Scientific Assertions
Dinakarpandian, Deendayal; Lee, Yugyung; Vishwanath, Kartik; Lingambhotla, Rohini
2006-01-01
Objective: The idea of testing a hypothesis is central to the practice of biomedical research. However, the results of testing a hypothesis are published mainly in the form of prose articles. Encoding the results as scientific assertions that are both human and machine readable would greatly enhance the synergistic growth and dissemination of knowledge. Design: We have developed MachineProse (MP), an ontological framework for the concise specification of scientific assertions. MP is based on the idea of an assertion constituting a fundamental unit of knowledge. This is in contrast to current approaches that use discrete concept terms from domain ontologies for annotation and assertions are only inferred heuristically. Measurements: We use illustrative examples to highlight the advantages of MP over the use of the Medical Subject Headings (MeSH) system and keywords in indexing scientific articles. Results: We show how MP makes it possible to carry out semantic annotation of publications that is machine readable and allows for precise search capabilities. In addition, when used by itself, MP serves as a knowledge repository for emerging discoveries. A prototype for proof of concept has been developed that demonstrates the feasibility and novel benefits of MP. As part of the MP framework, we have created an ontology of relationship types with about 100 terms optimized for the representation of scientific assertions. Conclusion: MachineProse is a novel semantic framework that we believe may be used to summarize research findings, annotate biomedical publications, and support sophisticated searches. PMID:16357355
NASA Technical Reports Server (NTRS)
Levine, Joel S.; Croom, Mark A.; Wright, Henry S.; Killough, B. D.; Edwards, W. C.
2012-01-01
Obtaining critical measurements for eventual human Mars missions while expanding upon recent Mars scientific discoveries and deriving new scientific knowledge from a unique near surface vantage point is the focus of the Aerial Regional-scale Environmental Surveyor (ARES) exploration mission. The key element of ARES is an instrumented,rocket-powered, well-tested robotic airplane platform, that will fly between one to two kilometers above the surface while traversing hundreds of kilometers to collect and transmit previously unobtainable high spatial measurements relevant to the NASA Mars Exploration Program and the exploration of Mars by humans.
ERIC Educational Resources Information Center
Qin, Jian; Jurisica, Igor; Liddy, Elizabeth D.; Jansen, Bernard J; Spink, Amanda; Priss, Uta; Norton, Melanie J.
2000-01-01
These six articles discuss knowledge discovery in databases (KDD). Topics include data mining; knowledge management systems; applications of knowledge discovery; text and Web mining; text mining and information retrieval; user search patterns through Web log analysis; concept analysis; data collection; and data structure inconsistency. (LRW)
Conventionalism and Methodological Standards in Contending with Skepticism about Uncertainty
NASA Astrophysics Data System (ADS)
Brumble, K. C.
2012-12-01
What it means to measure and interpret confidence and uncertainty in a result is often particular to a specific scientific community and its methodology of verification. Additionally, methodology in the sciences varies greatly across disciplines and scientific communities. Understanding the accuracy of predictions of a particular science thus depends largely upon having an intimate working knowledge of the methods, standards, and conventions utilized and underpinning discoveries in that scientific field. Thus, valid criticism of scientific predictions and discoveries must be conducted by those who are literate in the field in question: they must have intimate working knowledge of the methods of the particular community and of the particular research under question. The interpretation and acceptance of uncertainty is one such shared, community-based convention. In the philosophy of science, this methodological and community-based way of understanding scientific work is referred to as conventionalism. By applying the conventionalism of historian and philosopher of science Thomas Kuhn to recent attacks upon methods of multi-proxy mean temperature reconstructions, I hope to illuminate how climate skeptics and their adherents fail to appreciate the need for community-based fluency in the methodological standards for understanding uncertainty shared by the wider climate science community. Further, I will flesh out a picture of climate science community standards of evidence and statistical argument following the work of philosopher of science Helen Longino. I will describe how failure to appreciate the conventions of professionalism and standards of evidence accepted in the climate science community results in the application of naïve falsification criteria. Appeal to naïve falsification in turn has allowed scientists outside the standards and conventions of the mainstream climate science community to consider themselves and to be judged by climate skeptics as valid critics of particular statistical reconstructions with naïve and misapplied methodological criticism. Examples will include the skeptical responses to multi-proxy mean temperature reconstructions and congressional hearings criticizing the work of Michael Mann et al.'s Hockey Stick.
The history of aerobic ammonia oxidizers: from the first discoveries to today.
Monteiro, Maria; Séneca, Joana; Magalhães, Catarina
2014-07-01
Nitrification, the oxidation of ammonia to nitrite and nitrate, has long been considered a central biological process in the global nitrogen cycle, with its first description dated 133 years ago. Until 2005, bacteria were considered the only organisms capable of nitrification. However, the recent discovery of a chemoautotrophic ammonia-oxidizing archaeon, Nitrosopumilus maritimus, changed our concept of the range of organisms involved in nitrification, highlighting the importance of ammonia-oxidizing archaea (AOA) as potential players in global biogeochemical nitrogen transformations. The uniqueness of these archaea justified the creation of a novel archaeal phylum, Thaumarchaeota. These recent discoveries increased the global scientific interest within the microbial ecology society and have triggered an analysis of the importance of bacterial vs archaeal ammonia oxidation in a wide range of natural ecosystems. In this mini review we provide a chronological perspective of the current knowledge on the ammonia oxidation pathway of nitrification, based on the main physiological, ecological and genomic discoveries.
Sigmund Freud (1856-1939) and Karl Köller (1857-1944) and the discovery of local anesthesia.
dos Reis, Almiro
2009-01-01
The understanding, occasionally recognized, that Sigmund Freud had the intuition to use cocaine as local anesthetic for surgical procedures, or even that he played any role in the discovery of local anesthesia is not true. The objective of Freud's studies were different, and based in irrefutable evidence, Karl Köller was the real inventor of local anesthesia. In face of those facts, proper knowledge of this historically important subject is due. This report refers to the long-known properties of cocaine. It also remembers personal data, and the professional and scientific activities of Sigmund Freud and Karl Köller. It presents Freud's researches on the pathophysiological effects of cocaine. It exposes the reasons for the harsh criticism of Freud's concepts. It describes the sudden, but conscious and justified, idea of Karl Köller to study scientifically the use of cocaine as a local anesthetic in animals and humans. It indicates how those pioneering studies, that culminated with the discovery of local anesthesia by Köller and two presentations in Vienna on the subject, were done. It also reports the first ophthalmologic surgery under local anesthesia. It shows the immediate dissemination throughout the world of the discovery that marked the beginning of regional blocks. It comments several documents corroborating the role of Köller in this discovery. And, finally, it mentions the numerous homages received by Köller in different areas of the world. COCLUSIONS: Regional block was introduced by Karl Köller in 1884, when he demonstrated the feasibility of performing painless ophthalmologic surgeries by using cocaine as a local anesthetic. Sigmund Freud studied cocaine extensively, but he did not have direct participation in this important discovery.
Combinatorial and high-throughput screening of materials libraries: review of state of the art.
Potyrailo, Radislav; Rajan, Krishna; Stoewe, Klaus; Takeuchi, Ichiro; Chisholm, Bret; Lam, Hubert
2011-11-14
Rational materials design based on prior knowledge is attractive because it promises to avoid time-consuming synthesis and testing of numerous materials candidates. However with the increase of complexity of materials, the scientific ability for the rational materials design becomes progressively limited. As a result of this complexity, combinatorial and high-throughput (CHT) experimentation in materials science has been recognized as a new scientific approach to generate new knowledge. This review demonstrates the broad applicability of CHT experimentation technologies in discovery and optimization of new materials. We discuss general principles of CHT materials screening, followed by the detailed discussion of high-throughput materials characterization approaches, advances in data analysis/mining, and new materials developments facilitated by CHT experimentation. We critically analyze results of materials development in the areas most impacted by the CHT approaches, such as catalysis, electronic and functional materials, polymer-based industrial coatings, sensing materials, and biomaterials.
Computational knowledge integration in biopharmaceutical research.
Ficenec, David; Osborne, Mark; Pradines, Joel; Richards, Dan; Felciano, Ramon; Cho, Raymond J; Chen, Richard O; Liefeld, Ted; Owen, James; Ruttenberg, Alan; Reich, Christian; Horvath, Joseph; Clark, Tim
2003-09-01
An initiative to increase biopharmaceutical research productivity by capturing, sharing and computationally integrating proprietary scientific discoveries with public knowledge is described. This initiative involves both organisational process change and multiple interoperating software systems. The software components rely on mutually supporting integration techniques. These include a richly structured ontology, statistical analysis of experimental data against stored conclusions, natural language processing of public literature, secure document repositories with lightweight metadata, web services integration, enterprise web portals and relational databases. This approach has already begun to increase scientific productivity in our enterprise by creating an organisational memory (OM) of internal research findings, accessible on the web. Through bringing together these components it has also been possible to construct a very large and expanding repository of biological pathway information linked to this repository of findings which is extremely useful in analysis of DNA microarray data. This repository, in turn, enables our research paradigm to be shifted towards more comprehensive systems-based understandings of drug action.
Fang, Ferric C.
2015-01-01
In contrast to many other human endeavors, science pays little attention to its history. Fundamental scientific discoveries are often considered to be timeless and independent of how they were made. Science and the history of science are regarded as independent academic disciplines. Although most scientists are aware of great discoveries in their fields and their association with the names of individual scientists, few know the detailed stories behind the discoveries. Indeed, the history of scientific discovery is sometimes recorded only in informal accounts that may be inaccurate or biased for self-serving reasons. Scientific papers are generally written in a formulaic style that bears no relationship to the actual process of discovery. Here we examine why scientists should care more about the history of science. A better understanding of history can illuminate social influences on the scientific process, allow scientists to learn from previous errors, and provide a greater appreciation for the importance of serendipity in scientific discovery. Moreover, history can help to assign credit where it is due and call attention to evolving ethical standards in science. History can make science better. PMID:26371119
Casadevall, Arturo; Fang, Ferric C
2015-12-01
In contrast to many other human endeavors, science pays little attention to its history. Fundamental scientific discoveries are often considered to be timeless and independent of how they were made. Science and the history of science are regarded as independent academic disciplines. Although most scientists are aware of great discoveries in their fields and their association with the names of individual scientists, few know the detailed stories behind the discoveries. Indeed, the history of scientific discovery is sometimes recorded only in informal accounts that may be inaccurate or biased for self-serving reasons. Scientific papers are generally written in a formulaic style that bears no relationship to the actual process of discovery. Here we examine why scientists should care more about the history of science. A better understanding of history can illuminate social influences on the scientific process, allow scientists to learn from previous errors, and provide a greater appreciation for the importance of serendipity in scientific discovery. Moreover, history can help to assign credit where it is due and call attention to evolving ethical standards in science. History can make science better. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Intellectual Issues in the History of Artificial Intelligence
1982-10-28
the history of science is in terms of important scientific events and discoveries, linked to and by the scientists who were responsible for them...knowledge (coupled, sometimes, with modest search). However, as is usual in the history of science , work on powerful Al programs never stopped; it only...for AL, perhaps, because the nature of mind seems i,* .othe quick. But the history of science reminds us easily 0enough that at various stages
Ahmed, Md Nasir; Kabidul Azam, Md Nur
2014-01-01
Schizophrenia is a subtle disorder of brain development and plasticity; it affects the most basic human processes of perception, emotion, and judgment. In Bangladesh the traditional medical practitioners of rural and remote areas characterized the schizophrenia as an insanity or a mental problem due to possession by ghosts or evil spirits and they have used various plant species' to treat such symptoms. The aim of the present study was to conduct an ethnomedicinal plant survey and documentation of the formulations of different plant parts used by the traditional medical practitioners of Rangamati district of Bangladesh for the treatment of schizophrenia like psychosis. It was observed that the traditional medical practitioners used a total of 15 plant species to make 14 formulations. The plants were divided into 13 families, used for treatment of schizophrenia and accompanying symptoms like hallucination, depression, oversleeping or insomnia, deterioration of personal hygiene, forgetfulness, and fear due to evil spirits like genies or ghost. A search of the relevant scientific literatures showed that a number of plants used by the medicinal practitioners have been scientifically validated in their uses and traditional medicinal knowledge has been a means towards the discovery of many modern medicines. Moreover, the antipsychotic drug reserpine, isolated from the dried root of Rauvolfia serpentina species, revolutionized the treatment of schizophrenia. So it is very much possible that formulations of the practitioner, when examined scientifically in their entireties, can form discovery of lead compounds which can be used as safe and effective antipsychotic drug to treat schizophrenia.
Studying Scientific Discovery by Computer Simulation.
1983-03-30
Mendel’s laws of inheritance, the law of Gay- Lussac for gaseous reactions, tile law of Dulong and Petit, the derivation of atomic weights by Avogadro...neceseary mid identify by block number) scientific discovery -ittri sic properties physical laws extensive terms data-driven heuristics intensive...terms theory-driven heuristics conservation laws 20. ABSTRACT (Continue on revere. side It necessary and identify by block number) Scientific discovery
Basic Inferences of Scientific Reasoning, Argumentation, and Discovery
ERIC Educational Resources Information Center
Lawson, Anton E.
2010-01-01
Helping students better understand how scientists reason and argue to draw scientific conclusions has long been viewed as a critical component of scientific literacy, thus remains a central goal of science instruction. However, differences of opinion persist regarding the nature of scientific reasoning, argumentation, and discovery. Accordingly,…
Stewardship of Integrity in Scientific Communication.
Albertine, Kurt H
2018-06-14
Integrity in the pursuit of discovery through application of the scientific method and reporting the results is an obligation for each of us as scientists. We cannot let the value of science be diminished because discovering knowledge is vital to understand ourselves and our impacts on the earth. We support the value of science by our stewardship of integrity in the conduct, training, reporting, and proposing of scientific investigation. The players who have these responsibilities are authors, reviewers, editors, and readers. Each role has to be played with vigilance for ethical behavior, including compliance with regulations for protections of study subjects, use of select agents and biohazards, regulations of use of stem cells, resource sharing, posting datasets to public repositories, etc. The positive take-home message is that the scientific community is taking steps in behavior to protect the integrity of science. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Stephen, Diggs; Lee, Allison
2014-05-01
The National Science Foundation's EarthCube initiative aims to create a community-driven data and knowledge management system that will allow for unprecedented data sharing across the geosciences. More than 2,500 participants through forums, work groups, EarthCube events, and virtual and in-person meetings have participated. The individuals that have engaged represent the core earth-system sciences of solid Earth, Atmosphere, Oceans, and Polar Sciences. EarthCube is a cornerstone of NSF's Cyberinfrastructure for the 21st Century (CIF21) initiative, whose chief objective is to develop a U.S. nationwide, sustainable, and community-based cyberinfrastructure for researchers and educators. Increasingly effective community-driven cyberinfrastructure allows global data discovery and knowledge management and achieves interoperability and data integration across scientific disciplines. There is growing convergence across scientific and technical communities on creating a networked, knowledge management system and scientific data cyberinfrastructure that integrates Earth system and human dimensions data in an open, transparent, and inclusive manner. EarthCube does not intend to replicate these efforts, but build upon them. An agile development process is underway for the development and governance of EarthCube. The agile approach was deliberately selected due to its iterative and incremental nature while promoting adaptive planning and rapid and flexible response. Such iterative deployment across a variety of EarthCube stakeholders encourages transparency, consensus, accountability, and inclusiveness.
NASA Astrophysics Data System (ADS)
Buxner, Sanlyn; Impey, Chris David; Formanek, Martin; Wenger, Matthew
2018-01-01
Introductory astronomy courses are exciting opportunities to engage non-major students in scientific issues, new discoveries, and scientific thinking. Many undergraduate students take these courses to complete their general education requirements. Many free-choice learners also take these courses, but for their own interest. We report on a study comparing the basic science knowledge, interest in science, and information literacy of undergraduate students and free choice learners enrolled in introductory astronomy courses run by the University of Arizona. Undergraduate students take both in-person and online courses for college credit. Free choice learners enroll in massive open online courses (MOOCs), through commercial platforms, that can earn them a certificate (although most do not take advantage of that opportunity). In general, we find that undergraduate students outperform the general public on basic science knowledge and that learners in our astronomy MOOCs outperform the undergraduate students in the study. Learners in the MOOC have higher interest in science in general. Overall, learners in both groups report getting information about science from online sources. Additionally, learners’ judgement of the reliability of different sources of information is weakly related to their basic science knowledge and more strongly related to how they describe what it means to study something scientifically. We discuss the implications of our findings for both undergraduate students and free-choice learners as well as instructors of these types of courses.
Early Detection of Cancer by Affinity Mass Spectrometry-Set Aside funds — EDRN Public Portal
A. RATIONALE The recent introduction of multiple reaction monitoring capabilities offers unprecedented capability to the research arsenal available to protein based biomarker discovery. Specific to the discovery process this technology offers an ability to monitor specific protein changes in concentration and/or post-translational modification. The ability to accurately confirm specific biomarkers in a sensitive and reproducible manner is critical to the confirmation and pre-validation process. We are proposing two collaborative studies that promise to develop Multiple Reaction Monitoring (MRM) work flows for the biomarker scientific community and specifically for EDRN. B. GOALS The overall goal for this proposal is the identification of protein biomarkers that can be associated with prostate cancer detection. The underlying goal is the application of a novel technological approach aided by MRM toward biomarker discovery. An additional goal will be the dissemination of knowledge gained from these studies EDRN wide.
The trajectory of scientific discovery: concept co-occurrence and converging semantic distance.
Cohen, Trevor; Schvaneveldt, Roger W
2010-01-01
The paradigm of literature-based knowledge discovery originated by Swanson involves finding meaningful associations between terms or concepts that have not occurred together in any previously published document. While several automated approaches have been applied to this problem, these generally evaluate the literature at a point in time, and do not evaluate the role of change over time in distributional statistics as an indicator of meaningful implicit associations. To address this issue, we develop and evaluate Symmetric Random Indexing (SRI), a novel variant of the Random Indexing (RI) approach that is able to measure implicit association over time. SRI is found to compare favorably to existing RI variants in the prediction of future direct co-occurrence. Summary statistics over several experiments suggest a trend of converging semantic distance prior to the co-occurrence of key terms for two seminal historical literature-based discoveries.
NASA Astrophysics Data System (ADS)
Giordano, J.
The advanced integrative scientific convergence (AISC) model represents a viable approach to neuroscience. Beyond simple multi-disciplinarity, the AISC model unifies constituent scientific and technological fields to foster innovation, invention and new ways of addressing seemingly intractable questions. In this way, AISC can yield novel methods and foster new trajectories of knowledge and discovery, and yield new epistemologies. As stand-alone disciplines, each and all of the constituent fields generate practical and ethical issues, and their convergence may establish a unique set of both potential benefits and problems. To effectively attend to these contingencies requires pragmatic assessment of the actual capabilities and limits of neurofocal AISC, and an openness to what new knowledge and scientific/technological achievements may be produced, and how such outcomes can affect humanity, the human condition, society and the global environment. It is proposed that a progressive neurobioethics may be needed to establish both a meta-ethical framework upon which to structure ethical decisions, and a system and method of ethics that is inclusive, convergent and innovative, and in thus aligned with and meaningful to use of an AISC model in neuroscience.
Hackathons as a means of accelerating scientific discoveries and knowledge transfer.
Ghouila, Amel; Siwo, Geoffrey Henry; Entfellner, Jean-Baka Domelevo; Panji, Sumir; Button-Simons, Katrina A; Davis, Sage Zenon; Fadlelmola, Faisal M; Ferdig, Michael T; Mulder, Nicola
2018-05-01
Scientific research plays a key role in the advancement of human knowledge and pursuit of solutions to important societal challenges. Typically, research occurs within specific institutions where data are generated and subsequently analyzed. Although collaborative science bringing together multiple institutions is now common, in such collaborations the analytical processing of the data is often performed by individual researchers within the team, with only limited internal oversight and critical analysis of the workflow prior to publication. Here, we show how hackathons can be a means of enhancing collaborative science by enabling peer review before results of analyses are published by cross-validating the design of studies or underlying data sets and by driving reproducibility of scientific analyses. Traditionally, in data analysis processes, data generators and bioinformaticians are divided and do not collaborate on analyzing the data. Hackathons are a good strategy to build bridges over the traditional divide and are potentially a great agile extension to the more structured collaborations between multiple investigators and institutions. © 2018 Ghouila et al.; Published by Cold Spring Harbor Laboratory Press.
Bio-TDS: bioscience query tool discovery system.
Gnimpieba, Etienne Z; VanDiermen, Menno S; Gustafson, Shayla M; Conn, Bill; Lushbough, Carol M
2017-01-04
Bioinformatics and computational biology play a critical role in bioscience and biomedical research. As researchers design their experimental projects, one major challenge is to find the most relevant bioinformatics toolkits that will lead to new knowledge discovery from their data. The Bio-TDS (Bioscience Query Tool Discovery Systems, http://biotds.org/) has been developed to assist researchers in retrieving the most applicable analytic tools by allowing them to formulate their questions as free text. The Bio-TDS is a flexible retrieval system that affords users from multiple bioscience domains (e.g. genomic, proteomic, bio-imaging) the ability to query over 12 000 analytic tool descriptions integrated from well-established, community repositories. One of the primary components of the Bio-TDS is the ontology and natural language processing workflow for annotation, curation, query processing, and evaluation. The Bio-TDS's scientific impact was evaluated using sample questions posed by researchers retrieved from Biostars, a site focusing on BIOLOGICAL DATA ANALYSIS: The Bio-TDS was compared to five similar bioscience analytic tool retrieval systems with the Bio-TDS outperforming the others in terms of relevance and completeness. The Bio-TDS offers researchers the capacity to associate their bioscience question with the most relevant computational toolsets required for the data analysis in their knowledge discovery process. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Bioethics in biomedicine in the context of a global higher education area
2010-01-01
The University is tasked with drawing together, transmitting and maintaining knowledge, while creating an area where the ethical "sense" required for working in the field of Biology and Biomedicine can be provided. Although scientific knowledge is present on an overwhelming scale in nature and, therefore, its discovery is unceasing, this does not mean that, as a human being, the researcher has no limitations. It is Bioethics that sets this limit. The successful spreading of knowledge, therefore, which is proclaimed with the creation of a Global Higher Education Area, should also pursue the establishment of the bioethical principles necessary for the credibility of science and its progress so that the society that it promotes and sustains becomes a reality. PMID:20540744
Ontology for Transforming Geo-Spatial Data for Discovery and Integration of Scientific Data
NASA Astrophysics Data System (ADS)
Nguyen, L.; Chee, T.; Minnis, P.
2013-12-01
Discovery and access to geo-spatial scientific data across heterogeneous repositories and multi-discipline datasets can present challenges for scientist. We propose to build a workflow for transforming geo-spatial datasets into semantic environment by using relationships to describe the resource using OWL Web Ontology, RDF, and a proposed geo-spatial vocabulary. We will present methods for transforming traditional scientific dataset, use of a semantic repository, and querying using SPARQL to integrate and access datasets. This unique repository will enable discovery of scientific data by geospatial bound or other criteria.
NASA Astrophysics Data System (ADS)
Berres, A.; Karthik, R.; Nugent, P.; Sorokine, A.; Myers, A.; Pang, H.
2017-12-01
Building an integrated data infrastructure that can meet the needs of a sustainable energy-water resource management requires a robust data management and geovisual analytics platform, capable of cross-domain scientific discovery and knowledge generation. Such a platform can facilitate the investigation of diverse complex research and policy questions for emerging priorities in Energy-Water Nexus (EWN) science areas. Using advanced data analytics, machine learning techniques, multi-dimensional statistical tools, and interactive geovisualization components, such a multi-layered federated platform is being developed, the Energy-Water Nexus Knowledge Discovery Framework (EWN-KDF). This platform utilizes several enterprise-grade software design concepts and standards such as extensible service-oriented architecture, open standard protocols, event-driven programming model, enterprise service bus, and adaptive user interfaces to provide a strategic value to the integrative computational and data infrastructure. EWN-KDF is built on the Compute and Data Environment for Science (CADES) environment in Oak Ridge National Laboratory (ORNL).
Antikythera Calculator advances modern science of 19 centuries
NASA Astrophysics Data System (ADS)
Pastore, Giovanni
2010-08-01
The Greek astronomic calculator, discovered in the depth of the sea in a naval wreckage of the 1st century B.C. in front of the island of Antikythera, is the most amazing among the archaeological discoveries of last century. The mechanism immediately appeared like a device out of its time. After years of study this devise is still provoking a discussion between scientists and archaeologists because of the complexity and the modernity of the scientific knowledge the work presupposes. Its epicyclical gearings show the high level of the scientific culture reached in that period of history. The knowledge of the planetary motion, necessary to the design of the epicyclic gearing of the Calculator of Antikythera, presumes that ancient Greek scientists knew the planetary motion of the celestial bodies and had already achieved the same results that have been attributed to scientists 19 centuries later. The scientific value of this gear mechanism is indisputable because the inventor of the Calculator of Antikythera had the knowledge that was "re-discovered" centuries later as the heliocentric theory proposed by Niccolò Copernicus in 1543 ( De revolutionibus orbium coelestium), the universal gravitation law formulated by Isaac Newton in 1687 ( Philosophiae Naturalis Principia Mathematica), and the kinematic study of the epicyclical gearings published by Robert Willis in 1841 ( Principles of mechanism).
Lam, Tram Kim; Chang, Christine Q.; Rogers, Scott D.; Khoury, Muin J.; Schully, Sheri D.
2015-01-01
Concurrently with a workshop sponsored by the National Cancer Institute, we identified key “drivers” for accelerating cancer epidemiology across the translational research continuum in the 21st century: emerging technologies, a multilevel approach, knowledge integration, and team science. To map the evolution of these “drivers” and translational phases (T0–T4) in the past decade, we analyzed cancer epidemiology grants funded by the National Cancer Institute and published literature for 2000, 2005, and 2010. For each year, we evaluated the aims of all new/competing grants and abstracts of randomly selected PubMed articles. Compared with grants based on a single institution, consortium-based grants were more likely to incorporate contemporary technologies (P = 0.012), engage in multilevel analyses (P = 0.010), and incorporate elements of knowledge integration (P = 0.036). Approximately 74% of analyzed grants and publications involved discovery (T0) or characterization (T1) research, suggesting a need for more translational (T2–T4) research. Our evaluation indicated limited research in 1) a multilevel approach that incorporates molecular, individual, social, and environmental determinants and 2) knowledge integration that evaluates the robustness of scientific evidence. Cancer epidemiology is at the cusp of a paradigm shift, and the field will need to accelerate the pace of translating scientific discoveries in order to impart population health benefits. While multi-institutional and technology-driven collaboration is happening, concerted efforts to incorporate other key elements are warranted for the discipline to meet future challenges. PMID:25767265
Active Storage with Analytics Capabilities and I/O Runtime System for Petascale Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, Alok
Computational scientists must understand results from experimental, observational and computational simulation generated data to gain insights and perform knowledge discovery. As systems approach the petascale range, problems that were unimaginable a few years ago are within reach. With the increasing volume and complexity of data produced by ultra-scale simulations and high-throughput experiments, understanding the science is largely hampered by the lack of comprehensive I/O, storage, acceleration of data manipulation, analysis, and mining tools. Scientists require techniques, tools and infrastructure to facilitate better understanding of their data, in particular the ability to effectively perform complex data analysis, statistical analysis and knowledgemore » discovery. The goal of this work is to enable more effective analysis of scientific datasets through the integration of enhancements in the I/O stack, from active storage support at the file system layer to MPI-IO and high-level I/O library layers. We propose to provide software components to accelerate data analytics, mining, I/O, and knowledge discovery for large-scale scientific applications, thereby increasing productivity of both scientists and the systems. Our approaches include 1) design the interfaces in high-level I/O libraries, such as parallel netCDF, for applications to activate data mining operations at the lower I/O layers; 2) Enhance MPI-IO runtime systems to incorporate the functionality developed as a part of the runtime system design; 3) Develop parallel data mining programs as part of runtime library for server-side file system in PVFS file system; and 4) Prototype an active storage cluster, which will utilize multicore CPUs, GPUs, and FPGAs to carry out the data mining workload.« less
Gathering and Exploring Scientific Knowledge in Pharmacovigilance
Lopes, Pedro; Nunes, Tiago; Campos, David; Furlong, Laura Ines; Bauer-Mehren, Anna; Sanz, Ferran; Carrascosa, Maria Carmen; Mestres, Jordi; Kors, Jan; Singh, Bharat; van Mulligen, Erik; Van der Lei, Johan; Diallo, Gayo; Avillach, Paul; Ahlberg, Ernst; Boyer, Scott; Diaz, Carlos; Oliveira, José Luís
2013-01-01
Pharmacovigilance plays a key role in the healthcare domain through the assessment, monitoring and discovery of interactions amongst drugs and their effects in the human organism. However, technological advances in this field have been slowing down over the last decade due to miscellaneous legal, ethical and methodological constraints. Pharmaceutical companies started to realize that collaborative and integrative approaches boost current drug research and development processes. Hence, new strategies are required to connect researchers, datasets, biomedical knowledge and analysis algorithms, allowing them to fully exploit the true value behind state-of-the-art pharmacovigilance efforts. This manuscript introduces a new platform directed towards pharmacovigilance knowledge providers. This system, based on a service-oriented architecture, adopts a plugin-based approach to solve fundamental pharmacovigilance software challenges. With the wealth of collected clinical and pharmaceutical data, it is now possible to connect knowledge providers’ analysis and exploration algorithms with real data. As a result, new strategies allow a faster identification of high-risk interactions between marketed drugs and adverse events, and enable the automated uncovering of scientific evidence behind them. With this architecture, the pharmacovigilance field has a new platform to coordinate large-scale drug evaluation efforts in a unique ecosystem, publicly available at http://bioinformatics.ua.pt/euadr/. PMID:24349421
Serendipity and Scientific Discovery.
ERIC Educational Resources Information Center
Rosenman, Martin F.
1988-01-01
The discovery of penicillin is cited in a discussion of the role of serendipity as it relates to scientific discovery. The importance of sagacity as a personality trait is noted. Successful researchers have questioning minds, are willing to view data from several perspectives, and recognize and appreciate the unexpected. (JW)
Living With Earthquakes in the Pacific Northwest: A Survivor's Guide, 2nd edition
NASA Astrophysics Data System (ADS)
Hutton, Kate
In 1995, Robert S.Yeats found himself teaching a core curriculum class at Oregon State University for undergraduate nonscience majors, linking recent discoveries on the earthquake hazard in the Pacific Northwest to societal response to those hazards. The notes for that course evolved into the first edition of this book, published in 1998. In 2001, he published a similar book, Living With Earthquakes in California: A Survivors Guide (Oregon State University Press).Recent earthquakes, such as the 2001 Nisqually Mw6.8, discoveries, and new techniques in paleoseismology plus changes in public policy decisions, quickly outdated the first Pacific Northwest edition. This is especially true with the Cascadia Subduction Zone and crustal faults, where our knowledge expands with every scientific meeting.
Basic statistics with Microsoft Excel: a review.
Divisi, Duilio; Di Leonardo, Gabriella; Zaccagna, Gino; Crisci, Roberto
2017-06-01
The scientific world is enriched daily with new knowledge, due to new technologies and continuous discoveries. The mathematical functions explain the statistical concepts particularly those of mean, median and mode along with those of frequency and frequency distribution associated to histograms and graphical representations, determining elaborative processes on the basis of the spreadsheet operations. The aim of the study is to highlight the mathematical basis of statistical models that regulate the operation of spreadsheets in Microsoft Excel.
Basic statistics with Microsoft Excel: a review
Di Leonardo, Gabriella; Zaccagna, Gino; Crisci, Roberto
2017-01-01
The scientific world is enriched daily with new knowledge, due to new technologies and continuous discoveries. The mathematical functions explain the statistical concepts particularly those of mean, median and mode along with those of frequency and frequency distribution associated to histograms and graphical representations, determining elaborative processes on the basis of the spreadsheet operations. The aim of the study is to highlight the mathematical basis of statistical models that regulate the operation of spreadsheets in Microsoft Excel. PMID:28740690
Epigenetics: An Emerging Framework for Advanced Practice Psychiatric Nursing.
DeSocio, Janiece E
2016-07-01
The aims of this paper are to synthesize and report research findings from neuroscience and epigenetics that contribute to an emerging explanatory framework for advanced practice psychiatric nursing. Discoveries in neuroscience and epigenetics reveal synergistic mechanisms that support the integration of psychotherapy, psychopharmacology, and psychoeducation in practice. Advanced practice psychiatric nurses will benefit from an expanded knowledge base in neuroscience and epigenetics that informs and explains the scientific rationale for our integrated practice. © 2015 Wiley Periodicals, Inc.
Data Sharing: Convert Challenges into Opportunities.
Figueiredo, Ana Sofia
2017-01-01
Initiatives for sharing research data are opportunities to increase the pace of knowledge discovery and scientific progress. The reuse of research data has the potential to avoid the duplication of data sets and to bring new views from multiple analysis of the same data set. For example, the study of genomic variations associated with cancer profits from the universal collection of such data and helps in selecting the most appropriate therapy for a specific patient. However, data sharing poses challenges to the scientific community. These challenges are of ethical, cultural, legal, financial, or technical nature. This article reviews the impact that data sharing has in science and society and presents guidelines to improve the efficient sharing of research data.
Data Sharing: Convert Challenges into Opportunities
Figueiredo, Ana Sofia
2017-01-01
Initiatives for sharing research data are opportunities to increase the pace of knowledge discovery and scientific progress. The reuse of research data has the potential to avoid the duplication of data sets and to bring new views from multiple analysis of the same data set. For example, the study of genomic variations associated with cancer profits from the universal collection of such data and helps in selecting the most appropriate therapy for a specific patient. However, data sharing poses challenges to the scientific community. These challenges are of ethical, cultural, legal, financial, or technical nature. This article reviews the impact that data sharing has in science and society and presents guidelines to improve the efficient sharing of research data. PMID:29270401
Requirement of scientific documentation for the development of Naturopathy.
Rastogi, Rajiv
2006-01-01
Past few decades have witnessed explosion of knowledge in almost every field. This has resulted not only in the advancement of the subjects in particular but also have influenced the growth of various allied subjects. The present paper explains about the advancement of science through efforts made in specific areas and also through discoveries in different allied fields having an indirect influence upon the subject in proper. In Naturopathy this seems that though nothing particular is added to the basic thoughts or fundamental principles of the subject yet the entire treatment understanding is revolutionised under the influence of scientific discoveries of past few decades. Advent of information technology has further added to the boom of knowledge and many times this seems impossible to utilize these informations for the good of human being because these are not logically arranged in our minds. In the above background, the author tries to define documentation stating that we have today ocean of information and knowledge about various things- living or dead, plants, animals or human beings; the geographical conditions or changing weather and environment. What required to be done is to extract the relevant knowledge and information required to enrich the subject. The author compares documentation with churning of milk to extract butter. Documentation, in fact, is churning of ocean of information to extract the specific, most appropriate, relevant and defined information and knowledge related to the particular subject . The paper besides discussing the definition of documentation, highlights the areas of Naturopathy requiring an urgent necessity to make proper documentations. Paper also discusses the present status of Naturopathy in India, proposes short-term and long-term goals to be achieved and plans the strategies for achieving them. The most important aspect of the paper is due understanding of the limitations of Naturopathy but a constant effort to improve the same with the growth made in various discipline of science so far.
Irizarry, Kristopher J L; Bryant, Doug; Kalish, Jordan; Eng, Curtis; Schmidt, Peggy L; Barrett, Gini; Barr, Margaret C
2016-01-01
Many endangered captive populations exhibit reduced genetic diversity resulting in health issues that impact reproductive fitness and quality of life. Numerous cost effective genomic sequencing and genotyping technologies provide unparalleled opportunity for incorporating genomics knowledge in management of endangered species. Genomic data, such as sequence data, transcriptome data, and genotyping data, provide critical information about a captive population that, when leveraged correctly, can be utilized to maximize population genetic variation while simultaneously reducing unintended introduction or propagation of undesirable phenotypes. Current approaches aimed at managing endangered captive populations utilize species survival plans (SSPs) that rely upon mean kinship estimates to maximize genetic diversity while simultaneously avoiding artificial selection in the breeding program. However, as genomic resources increase for each endangered species, the potential knowledge available for management also increases. Unlike model organisms in which considerable scientific resources are used to experimentally validate genotype-phenotype relationships, endangered species typically lack the necessary sample sizes and economic resources required for such studies. Even so, in the absence of experimentally verified genetic discoveries, genomics data still provides value. In fact, bioinformatics and comparative genomics approaches offer mechanisms for translating these raw genomics data sets into integrated knowledge that enable an informed approach to endangered species management.
Irizarry, Kristopher J. L.; Bryant, Doug; Kalish, Jordan; Eng, Curtis; Schmidt, Peggy L.; Barrett, Gini; Barr, Margaret C.
2016-01-01
Many endangered captive populations exhibit reduced genetic diversity resulting in health issues that impact reproductive fitness and quality of life. Numerous cost effective genomic sequencing and genotyping technologies provide unparalleled opportunity for incorporating genomics knowledge in management of endangered species. Genomic data, such as sequence data, transcriptome data, and genotyping data, provide critical information about a captive population that, when leveraged correctly, can be utilized to maximize population genetic variation while simultaneously reducing unintended introduction or propagation of undesirable phenotypes. Current approaches aimed at managing endangered captive populations utilize species survival plans (SSPs) that rely upon mean kinship estimates to maximize genetic diversity while simultaneously avoiding artificial selection in the breeding program. However, as genomic resources increase for each endangered species, the potential knowledge available for management also increases. Unlike model organisms in which considerable scientific resources are used to experimentally validate genotype-phenotype relationships, endangered species typically lack the necessary sample sizes and economic resources required for such studies. Even so, in the absence of experimentally verified genetic discoveries, genomics data still provides value. In fact, bioinformatics and comparative genomics approaches offer mechanisms for translating these raw genomics data sets into integrated knowledge that enable an informed approach to endangered species management. PMID:27376076
Ceríaco, Luis M P; Marques, Mariana P; Madeira, Natália C; Vila-Viçosa, Carlos M; Mendes, Paula
2011-09-05
Traditional Ecological Knowledge (TEK) and folklore are repositories of large amounts of information about the natural world. Ideas, perceptions and empirical data held by human communities regarding local species are important sources which enable new scientific discoveries to be made, as well as offering the potential to solve a number of conservation problems. We documented the gecko-related folklore and TEK of the people of southern Portugal, with the particular aim of understanding the main ideas relating to gecko biology and ecology. Our results suggest that local knowledge of gecko ecology and biology is both accurate and relevant. As a result of information provided by local inhabitants, knowledge of the current geographic distribution of Hemidactylus turcicus was expanded, with its presence reported in nine new locations. It was also discovered that locals still have some misconceptions of geckos as poisonous and carriers of dermatological diseases. The presence of these ideas has led the population to a fear of and aversion to geckos, resulting in direct persecution being one of the major conservation problems facing these animals. It is essential, from both a scientific and conservationist perspective, to understand the knowledge and perceptions that people have towards the animals, since, only then, may hitherto unrecognized pertinent information and conservation problems be detected and resolved.
2011-01-01
Traditional Ecological Knowledge (TEK) and folklore are repositories of large amounts of information about the natural world. Ideas, perceptions and empirical data held by human communities regarding local species are important sources which enable new scientific discoveries to be made, as well as offering the potential to solve a number of conservation problems. We documented the gecko-related folklore and TEK of the people of southern Portugal, with the particular aim of understanding the main ideas relating to gecko biology and ecology. Our results suggest that local knowledge of gecko ecology and biology is both accurate and relevant. As a result of information provided by local inhabitants, knowledge of the current geographic distribution of Hemidactylus turcicus was expanded, with its presence reported in nine new locations. It was also discovered that locals still have some misconceptions of geckos as poisonous and carriers of dermatological diseases. The presence of these ideas has led the population to a fear of and aversion to geckos, resulting in direct persecution being one of the major conservation problems facing these animals. It is essential, from both a scientific and conservationist perspective, to understand the knowledge and perceptions that people have towards the animals, since, only then, may hitherto unrecognized pertinent information and conservation problems be detected and resolved. PMID:21892925
Discovery stories in the science classroom
NASA Astrophysics Data System (ADS)
Arya, Diana Jaleh
School science has been criticized for its lack of emphasis on the tentative, dynamic nature of science as a process of learning more about our world. This criticism is the guiding force for this present body of work, which focuses on the question: what are the educational benefits for middle school students of reading texts that highlight the process of science in the form of a discovery narrative? This dissertation traces my journey through a review of theoretical perspectives of narrative, an analysis of first-hand accounts of scientific discovery, the complex process of developing age-appropriate, cohesive and engaging science texts for middle school students, and a comparison study (N=209) that seeks to determine the unique benefits of the scientific discovery narrative for the interest in and retained understanding of conceptual information presented in middle school science texts. A total of 209 middle school participants in nine different classrooms from two different schools participated in the experimental study. Each subject read two science texts that differed in topic (the qualities of and uses for radioactive elements and the use of telescopic technology to see planets in space) and genre (the discovery narrative and the "conceptually known exposition" comparison text). The differences between the SDN and CKE versions for each topic were equivalent in all possible ways (initial introduction, overall conceptual accuracy, elements of human interest, coherence and readability level), save for the unique components of the discovery narrative (i.e., love for their work, acknowledgement of the known, identification of the unknown and the explorative or experimental process to discovery). Participants generally chose the discovery narrative version as the more interesting of the two texts. Additional findings from the experimental study suggest that science texts in the form of SDNs elicit greater long-term retention of key conceptual information, especially when the readers have little prior knowledge of a given topic. Further, ethnic minority groups of lower socio-economic level (i.e., Latin and African-American origins) demonstrated an even greater benefit from the SDN texts, suggesting that a scientist's story of discovery can help to close the gap in academic performance in science.
Lemont B. Kier: a bibliometric exploration of his scientific production and its use.
Restrepo, Guillermo; Llanos, Eugenio J; Silva, Adriana E
2013-12-01
We thought an appropriate way to celebrate the seminal contribution of Kier is to explore his influence on science, looking for the impact of his research through the citation of his scientific production. From a bibliometric approach the impact of Kier's work is addressed as an individual within a community. Reviewing data from his curriculum vitae, as well as from the ISI Web of Knowledge (ISI), his role within the scientific community is established and the way his scientific results circulate is studied. His curriculum vitae is explored emphasising the approaches he used in his research activities and the social ties with other actors of the community. The circulation of Kier's publications in the ISI is studied as a means for spreading and installing his discourse within the community. The citation patterns found not only show the usage of Kier's scientific results, but also open the possibility to identify some characteristics of this discursive community, such as a common vocabulary and common research goals. The results show an interdisciplinary research work that consolidates a scientific community on the topic of drug discovery.
2017-12-08
Image released April 19, 2013. Astronomers have used NASA's Hubble Space Telescope to photograph the iconic Horsehead Nebula in a new, infrared light to mark the 23rd anniversary of the famous observatory's launch aboard the space shuttle Discovery on April 24, 1990. Looking like an apparition rising from whitecaps of interstellar foam, the iconic Horsehead Nebula has graced astronomy books ever since its discovery more than a century ago. The nebula is a favorite target for amateur and professional astronomers. It is shadowy in optical light. It appears transparent and ethereal when seen at infrared wavelengths. The rich tapestry of the Horsehead Nebula pops out against the backdrop of Milky Way stars and distant galaxies that easily are visible in infrared light. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) More on this image. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
A collection of micrographs: where science and art meet
Uskoković, Vuk
2013-01-01
Micrographs obtained using different instrumental techniques are presented with the purpose of demonstrating their artistic qualities. The quality of uniformity currently dominates the aesthetic assessment in scientific practice and is discussed in relation to the classical appreciation of the interplay between symmetry and asymmetry in arts. It is argued that scientific and artistic qualities have converged and inspired each other throughout millennia. With scientific discoveries and inventions enriching the world of communication, broadening the space for artistic creativity and making artistic products more accessible than ever, science inevitably influences artistic creativity. On the other hand, the importance of aesthetic principles in guiding scientific conduct has been appreciated by some of the most creative scientific minds. Science and arts can be thus considered as parallel rails of a single railroad track. Only when precisely coordinated is the passing of the train of human knowledge enabled. The presented micrographs, occupying the central part of this discourse, are displayed with the purpose of showing the rich aesthetic character of even the most ordinary scientific images. The inherent aesthetic nature of scientific imagery and the artistic nature of scientific conduct have thus been offered as the conclusion. PMID:24465169
Scientific Discoveries the Year I Was Born
ERIC Educational Resources Information Center
Cherif, Abour
2012-01-01
The author has successfully used a learning activity titled "The Year I Was Born" to motivate students to conduct historical research and present key scientific discoveries from their birth year. The activity promotes writing, helps students enhance their scientific literacy, and also improves their attitude toward the learning of science. As one…
Ecoacoustic Music for Geoscience: Sonic Physiographies and Sound Casting
NASA Astrophysics Data System (ADS)
Burtner, M.
2017-12-01
The author describes specific ecoacoustic applications in his original compositions, Sonic Physiography of a Time-Stretched Glacier (2015), Catalog of Roughness (2017), Sound Cast of Matanuska Glacier (2016) and Ecoacoustic Concerto (Eagle Rock) (2014). Ecoacoustic music uses technology to map systems from nature into music through techniques such as sonification, material amplification, and field recording. The author aspires for this music to be descriptive of the data (as one would expect from a visualization) and also to function as engaging and expressive music/sound art on its own. In this way, ecoacoustic music might provide a fitting accompaniment to a scientific presentation (such as music for a science video) while also offering an exemplary concert hall presentation for a dedicated listening public. The music can at once support the communication of scientific research, and help science make inroads into culture. The author discusses how music created using the data, sounds and methods derived from earth science can recast this research into a sonic art modality. Such music can amplify the communication and dissemination of scientific knowledge by broadening the diversity of methods and formats we use to bring excellent scientific research to the public. Music can also open the public's imagination to science, inspiring curiosity and emotional resonance. Hearing geoscience as music may help a non-scientist access scientific knowledge in new ways, and it can greatly expand the types of venues in which this work can appear. Anywhere music is played - concert halls, festivals, galleries, radio, etc - become a venue for scientific discovery.
Wasiewicz, Barbara
2016-01-01
The present article refers to the historical characterisation of Odo Bujwid's (1857-1942) research concerning the vaccine against rabies. The introduction refers to the treatment methods applied before Ludwik Pasteur's discovery. The following part refers to Odo Bujwid's own research including diagnostics, characterisation of the symptoms of disease, modification of the original Ludwik Pasteur's method and statistical information. The resume emphasizes that Odo Bujwid's scientific research was the introduction and generalisation the worldwide microbiology knowledge at the polish lands.
Novel drug discovery for Chagas disease.
Moraes, Carolina B; Franco, Caio H
2016-01-01
Chagas disease is a chronic infection associated with long-term morbidity. Increased funding and advocacy for drug discovery for neglected diseases have prompted the introduction of several important technological advances, and Chagas disease is among the neglected conditions that has mostly benefited from technological developments. A number of screening campaigns, and the development of new and improved in vitro and in vivo assays, has led to advances in the field of drug discovery. This review highlights the major advances in Chagas disease drug screening, and how these are being used not only to discover novel chemical entities and drug candidates, but also increase our knowledge about the disease and the parasite. Different methodologies used for compound screening and prioritization are discussed, as well as novel techniques for the investigation of these targets. The molecular mechanism of action is also discussed. Technological advances have been executed with scientific rigour for the development of new in vitro cell-based assays and in vivo animal models, to bring about novel and better drugs for Chagas disease, as well as to increase our understanding of what are the necessary properties for a compound to be successful in the clinic. The gained knowledge, combined with new exciting approaches toward target deconvolution, will help identifying new targets for Chagas disease chemotherapy in the future.
Discovery: Under the Microscope at Kennedy Space Center
NASA Technical Reports Server (NTRS)
Howard, Philip M.
2013-01-01
The National Aeronautics & Space Administration (NASA) is known for discovery, exploration, and advancement of knowledge. Since the days of Leeuwenhoek, microscopy has been at the forefront of discovery and knowledge. No truer is that statement than today at Kennedy Space Center (KSC), where microscopy plays a major role in contamination identification and is an integral part of failure analysis. Space exploration involves flight hardware undergoing rigorous "visually clean" inspections at every step of processing. The unknown contaminants that are discovered on these inspections can directly impact the mission by decreasing performance of sensors and scientific detectors on spacecraft and satellites, acting as micrometeorites, damaging critical sealing surfaces, and causing hazards to the crew of manned missions. This talk will discuss how microscopy has played a major role in all aspects of space port operations at KSC. Case studies will highlight years of analysis at the Materials Science Division including facility and payload contamination for the Navigation Signal Timing and Ranging Global Positioning Satellites (NA VST AR GPS) missions, quality control monitoring of monomethyl hydrazine fuel procurement for launch vehicle operations, Shuttle Solids Rocket Booster (SRB) foam processing failure analysis, and Space Shuttle Main Engine Cut-off (ECO) flight sensor anomaly analysis. What I hope to share with my fellow microscopists is some of the excitement of microscopy and how its discoveries has led to hardware processing, that has helped enable the successful launch of vehicles and space flight missions here at Kennedy Space Center.
The science of sharing and the sharing of science.
Milkman, Katherine L; Berger, Jonah
2014-09-16
Why do members of the public share some scientific findings and not others? What can scientists do to increase the chances that their findings will be shared widely among nonscientists? To address these questions, we integrate past research on the psychological drivers of interpersonal communication with a study examining the sharing of hundreds of recent scientific discoveries. Our findings offer insights into (i) how attributes of a discovery and the way it is described impact sharing, (ii) who generates discoveries that are likely to be shared, and (iii) which types of people are most likely to share scientific discoveries. The results described here, combined with a review of recent research on interpersonal communication, suggest how scientists can frame their work to increase its dissemination. They also provide insights about which audiences may be the best targets for the diffusion of scientific content.
Data Interpretation in the Digital Age
Leonelli, Sabina
2014-01-01
The consultation of internet databases and the related use of computer software to retrieve, visualise and model data have become key components of many areas of scientific research. This paper focuses on the relation of these developments to understanding the biology of organisms, and examines the conditions under which the evidential value of data posted online is assessed and interpreted by the researchers who access them, in ways that underpin and guide the use of those data to foster discovery. I consider the types of knowledge required to interpret data as evidence for claims about organisms, and in particular the relevance of knowledge acquired through physical interaction with actual organisms to assessing the evidential value of data found online. I conclude that familiarity with research in vivo is crucial to assessing the quality and significance of data visualised in silico; and that studying how biological data are disseminated, visualised, assessed and interpreted in the digital age provides a strong rationale for viewing scientific understanding as a social and distributed, rather than individual and localised, achievement. PMID:25729262
Spreading Culture on Quantum Entanglement and Consciousness
NASA Astrophysics Data System (ADS)
Nobili, G.; Teodorani, M.
The subject of "quantum entanglement" in general doesn't seem to be particularly considered in Europe in the form of popularizing books or of educational physics projects. These authors have started to spread out this kind of scientific culture in both forms, including popularizing seminars too. Concerning the entanglement phenomenon, recently, new thought experiments have been outlined, new laboratory results have come out in the form of real discoveries in quantum optics, new studies on "bio-entanglement" and 'global consciousness effects' have been carried out, and very sophisticated new ideas have been developed in the fields of quantum physics, biophysics, cosmology and epistemology. These authors intend to show their effort of diffusing widely this growing scientific knowledge. Beyond all this there is a long-term strategy aimed at inculcating new concepts in physics in order to trigger the interest of scholars at all levels, in that which is probably the most innovative and interdisciplinary subject of the human knowledge of this new millennium.
Wittkau-Horgby, A
2001-01-01
This paper deals with an old observation in respect to man's action--the problem of unintended consequences of human action. It presents the scientific approaches to this phenomenon in the 18th century and focusses then on the problem of unintended consequences of scientific discoveries. Using the prominent examples of Copernicus and Darwin the author shows that the actual outcomes and final effects of scientific discoveries must not necessarily be the originally intended ones. On the contrary, especially those results of scientific discoveries which have affected the sphere of world view (Weltanschauung) like the research works of Copernicus and Darwin were originally meant to be only scientific studies. The final results in respect to the world view were on Copernicus' side not even realized and on Darwin's side neither intended nor welcomed. The conclusion of this analysis is that due to the fact that both scientists did not have the intention to change the world view they can only partly be regarded to be responsible for the fundamental changes they finally caused.
Malfolded Protein Structure and Proteostasis in Lung Diseases
Balch, William E.; Sznajder, Jacob I.; Budinger, Scott; Finley, Daniel; Laposky, Aaron D.; Cuervo, Ana Maria; Benjamin, Ivor J.; Barreiro, Esther; Morimoto, Richard I.; Postow, Lisa; Weissman, Allan M.; Gail, Dorothy; Banks-Schlegel, Susan; Croxton, Thomas
2014-01-01
Recent discoveries indicate that disorders of protein folding and degradation play a particularly important role in the development of lung diseases and their associated complications. The overarching purpose of the National Heart, Lung, and Blood Institute workshop on “Malformed Protein Structure and Proteostasis in Lung Diseases” was to identify mechanistic and clinical research opportunities indicated by these recent discoveries in proteostasis science that will advance our molecular understanding of lung pathobiology and facilitate the development of new diagnostic and therapeutic strategies for the prevention and treatment of lung disease. The workshop's discussion focused on identifying gaps in scientific knowledge with respect to proteostasis and lung disease, discussing new research advances and opportunities in protein folding science, and highlighting novel technologies with potential therapeutic applications for diagnosis and treatment. PMID:24033344
NASA Astrophysics Data System (ADS)
Narock, T.; Arko, R. A.; Carbotte, S. M.; Chandler, C. L.; Cheatham, M.; Finin, T.; Hitzler, P.; Krisnadhi, A.; Raymond, L. M.; Shepherd, A.; Wiebe, P. H.
2014-12-01
A wide spectrum of maturing methods and tools, collectively characterized as the Semantic Web, is helping to vastly improve the dissemination of scientific research. Creating semantic integration requires input from both domain and cyberinfrastructure scientists. OceanLink, an NSF EarthCube Building Block, is demonstrating semantic technologies through the integration of geoscience data repositories, library holdings, conference abstracts, and funded research awards. Meeting project objectives involves applying semantic technologies to support data representation, discovery, sharing and integration. Our semantic cyberinfrastructure components include ontology design patterns, Linked Data collections, semantic provenance, and associated services to enhance data and knowledge discovery, interoperation, and integration. We discuss how these components are integrated, the continued automated and semi-automated creation of semantic metadata, and techniques we have developed to integrate ontologies, link resources, and preserve provenance and attribution.
Information visualisation for science and policy: engaging users and avoiding bias.
McInerny, Greg J; Chen, Min; Freeman, Robin; Gavaghan, David; Meyer, Miriah; Rowland, Francis; Spiegelhalter, David J; Stefaner, Moritz; Tessarolo, Geizi; Hortal, Joaquin
2014-03-01
Visualisations and graphics are fundamental to studying complex subject matter. However, beyond acknowledging this value, scientists and science-policy programmes rarely consider how visualisations can enable discovery, create engaging and robust reporting, or support online resources. Producing accessible and unbiased visualisations from complicated, uncertain data requires expertise and knowledge from science, policy, computing, and design. However, visualisation is rarely found in our scientific training, organisations, or collaborations. As new policy programmes develop [e.g., the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES)], we need information visualisation to permeate increasingly both the work of scientists and science policy. The alternative is increased potential for missed discoveries, miscommunications, and, at worst, creating a bias towards the research that is easiest to display. Copyright © 2014 Elsevier Ltd. All rights reserved.
Malfolded protein structure and proteostasis in lung diseases.
Balch, William E; Sznajder, Jacob I; Budinger, Scott; Finley, Daniel; Laposky, Aaron D; Cuervo, Ana Maria; Benjamin, Ivor J; Barreiro, Esther; Morimoto, Richard I; Postow, Lisa; Weissman, Allan M; Gail, Dorothy; Banks-Schlegel, Susan; Croxton, Thomas; Gan, Weiniu
2014-01-01
Recent discoveries indicate that disorders of protein folding and degradation play a particularly important role in the development of lung diseases and their associated complications. The overarching purpose of the National Heart, Lung, and Blood Institute workshop on "Malformed Protein Structure and Proteostasis in Lung Diseases" was to identify mechanistic and clinical research opportunities indicated by these recent discoveries in proteostasis science that will advance our molecular understanding of lung pathobiology and facilitate the development of new diagnostic and therapeutic strategies for the prevention and treatment of lung disease. The workshop's discussion focused on identifying gaps in scientific knowledge with respect to proteostasis and lung disease, discussing new research advances and opportunities in protein folding science, and highlighting novel technologies with potential therapeutic applications for diagnosis and treatment.
Biosignature Discovery for Substance Use Disorders Using Statistical Learning.
Baurley, James W; McMahan, Christopher S; Ervin, Carolyn M; Pardamean, Bens; Bergen, Andrew W
2018-02-01
There are limited biomarkers for substance use disorders (SUDs). Traditional statistical approaches are identifying simple biomarkers in large samples, but clinical use cases are still being established. High-throughput clinical, imaging, and 'omic' technologies are generating data from SUD studies and may lead to more sophisticated and clinically useful models. However, analytic strategies suited for high-dimensional data are not regularly used. We review strategies for identifying biomarkers and biosignatures from high-dimensional data types. Focusing on penalized regression and Bayesian approaches, we address how to leverage evidence from existing studies and knowledge bases, using nicotine metabolism as an example. We posit that big data and machine learning approaches will considerably advance SUD biomarker discovery. However, translation to clinical practice, will require integrated scientific efforts. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sonmez, Duygu
The 21st century has become the age of biology with the completion of the human genome project and other milestone discoveries. Recent progress has redefined what it means to be scientifically literate, which is the ultimate goal in science education. "What students should know?" "What needs to be taught?" These questions lead to reformulation of the science curriculum due to the changing nature of scientific knowledge. Molecular biology is increasingly emphasized in the science curriculum along with applications of the latest developments within our daily lives, such as medicine or legal matters. However, many schools and classrooms exclude the latest advances in molecular genetics from science curriculum and even teach biology as a non-laboratory science. Many science educators wonder what can be done to help every child gain meaningful experiences with molecular genetics. Limited content knowledge among teachers due to the changing nature of scientific knowledge, and the rapid discoveries in technology are known to be a part of the problem for teachers, especially for teachers who have been in the workforce for many years. A major aim of professional development is to help teachers cope with the advances in scientific knowledge and provide paths for teachers to continually improve their knowledge and skills. The expectation is that increased knowledge and skills among teachers will be reflected in student achievement. Professional development is typically offered in a variety of formats, from short-term, one-shot workshop approaches to long term courses. The effectiveness of short-term exposures, though, is in many cases is questionable. One of the issues appears to be the gap between the incidence of teachers' attendance at professional development programs and the incidence of implementation in participants' classrooms. This study focuses on this issue by exploring the relationship between teachers' professional development attendance and their implementation behavior. The goal is to understand what factors affect teachers' decision making to implement the new knowledge and skills in their classrooms. For this purpose, the study focuses on the effects of a DNA fingerprinting workshop, which has been developed and is regularly offered by a large Midwestern university in the United States for secondary science teachers and their students through cooperation between the university and a large Midwestern public school district. The workshop focuses on the biotechnology applications of genetics---specifically, use of DNA fingerprinting technology in different areas of social life---while forensic science is emphasized. Results indicate that the teachers' motivation to attend the DNA Fingerprinting professional development workshop was mainly influenced by two variables: (1) the need to improve content knowledge and skills, and (2) requirements associated with current educational policies. Level of content knowledge was also found to be a factor contributing to teachers' motivation to implement the workshop. Concerns related to student maturity and classroom management were also identified as factors influencing teachers' implementation behavior. Evidence that the DNA Fingerprinting workshop can be successfully implemented by classroom teachers was obtained. The DNA fingerprinting workshop was found to be a successful model for packaging professional development experiences for content intensive areas.
Future Sky Surveys: New Discovery Frontiers
NASA Astrophysics Data System (ADS)
Tyson, J. Anthony; Borne, Kirk D.
2012-03-01
Driven by the availability of new instrumentation, there has been an evolution in astronomical science toward comprehensive investigations of new phenomena. Major advances in our understanding of the Universe over the history of astronomy have often arisen from dramatic improvements in our capability to observe the sky to greater depth, in previously unexplored wavebands, with higher precision, or with improved spatial, spectral, or temporal resolution. Substantial progress in the important scientific problems of the next decade (determining the nature of dark energy and dark matter, studying the evolution of galaxies and the structure of our own Milky Way, opening up the time domain to discover faint variable objects, and mapping both the inner and outer Solar System) can be achieved through the application of advanced data mining methods and machine learning algorithms operating on the numerous large astronomical databases that will be generated from a variety of revolutionary future sky surveys. Over the next decade, astronomy will irrevocably enter the era of big surveys and of really big telescopes. New sky surveys (some of which will produce petabyte-scale data collections) will begin their operations, and one or more very large telescopes (ELTs = Extremely Large Telescopes) will enter the construction phase. These programs and facilities will generate a remarkable wealth of data of high complexity, endowed with enormous scientific knowledge discovery potential. New parameter spaces will be opened, in multiple wavelength domains as well as the time domain, across wide areas of the sky, and down to unprecedented faint source flux limits. The synergies of grand facilities, massive data collections, and advanced machine learning algorithms will come together to enable discoveries within most areas of astronomical science, including Solar System, exo-planets, star formation, stellar populations, stellar death, galaxy assembly, galaxy evolution, quasar evolution, and cosmology. Current and future sky surveys, comprising an alphabet soup of project names (e.g., Pan- STARRS, WISE, Kepler, DES, VST, VISTA, GAIA, EUCLID, SKA, LSST, and WFIRST; some of which are discussed in Chapters 17, 18, and 20),will contribute to the exponential explosion of complex data in astronomy. The scientific goals of these projects are as monumental as the programs themselves. The core scientific output of all of these will be their scientific data collection. Consequently, data mining and machine learning algorithms and specialists will become a common component of future astronomical research with these facilities. This synergistic combination and collaboration among multiple disciplines are essential in order to maximize the scientific discovery potential, the science output, the research efficiency, and the success of these projects.
Cunha, Leonardo Rodrigues; Cudischevitch, Cecília de Oliveira; Carneiro, Alan Brito; Macedo, Gustavo Bartholomeu; Lannes, Denise; Silva-Neto, Mário Alberto Cardoso da
2014-01-01
We evaluate a new approach to teaching the basic biochemistry mechanisms that regulate the biology of Triatominae, major vectors of Trypanosoma cruzi, the causative agent of Chagas disease. We have designed and used a comic book, "Carlos Chagas: 100 years after a hero's discovery" containing scientific information obtained by seven distinguished contemporary Brazilian researchers working with Triatominaes. Students (22) in the seventh grade of a public elementary school received the comic book. The study was then followed up by the use of Concept Maps elaborated by the students. Six Concept Maps elaborated by the students before the introduction of the comic book received an average score of 7. Scores rose to an average of 45 after the introduction of the comic book. This result suggests that a more attractive content can greatly improve the knowledge and conceptual understanding among students not previously exposed to insect biochemistry. In conclusion, this study illustrates an alternative to current strategies of teaching about the transmission of neglected diseases. It also promotes the diffusion of the scientific knowledge produced by Brazilian researchers that may stimulate students to choose a scientific career. © 2014 The International Union of Biochemistry and Molecular Biology.
What Does Galileo's Discovery of Jupiter's Moons Tell Us About the Process of Scientific Discovery?
NASA Astrophysics Data System (ADS)
Lawson, Anton E.
In 1610, Galileo Galilei discovered Jupiter''smoons with the aid of a new morepowerful telescope of his invention. Analysisof his report reveals that his discoveryinvolved the use of at least three cycles ofhypothetico-deductive reasoning. Galileofirst used hypothetico-deductive reasoning to generateand reject a fixed star hypothesis.He then generated and rejected an ad hocastronomers-made-a-mistake hypothesis.Finally, he generated, tested, and accepted a moonhypothesis. Galileo''s reasoningis modeled in terms of Piaget''s equilibration theory,Grossberg''s theory of neurologicalactivity, a neural network model proposed by Levine &Prueitt, and another proposedby Kosslyn & Koenig. Given that hypothetico-deductivereasoning has played a rolein other important scientific discoveries, thequestion is asked whether it plays a rolein all important scientific discoveries. In otherwords, is hypothetico-deductive reasoningthe essence of the scientific method? Possiblealternative scientific methods, such asBaconian induction and combinatorial analysis,are explored and rejected as viablealternatives. Educational implications of thishypothetico-deductive view of scienceare discussed.
[The Nobel Prize for nitric oxide. The unjust exclusion of Dr. Salvador Moncada].
de Berrazueta, J R
1999-04-01
The 1998 Nobel Prize in Physiology and Medicine has been awarded jointly to North-American scientists, Dr Robert F. Furchgott, Louis J. Ignarro and Ferid Murad, for their discoveries in relation to "nitric oxide as a signalling molecule in the cardiovascular system". This has raised an important polemic because of the exclusion the South-American scientist, now nationalized British, Dr. Salvador Moncada. This short historical review examines some of the fundamental contributions to the knowledge in this field. It shows the sequence of the discoveries and the communication of them to the scientific community by the rewarded scientists and by Dr. Moncada. It is based on some fundamental publications in order to better understand this story, which does not coincide with the writing in 1996 by the Lasker Prize Committee, and which in 1998 was re-written again by the Nobel Committee of the Swedish Academy. More than 90 universities, academies and societies have acknowledged Dr. Moncada up to now with priority in the discovery of the fact that nitric oxide is released by endothelial cells, and the revealing of its metabolic way. More than 20,000 citations of their fundamental papers endorse in the scientific community his primacy in this field. Even Robert Furchgott, author of the brilliant discovery of the endothelium derived relaxing factor, that opened this field to the science, declared about the award of the 1998 Nobel Prize: "I feel that the Nobel Prize Committee could have made an exception this year and chosen a fourth person, Salvador Moncada (to share the prize)".
Epidemics in the news: Health and hygiene in the press in periods of crisis.
de Almeida, Maria Antónia Pires
2013-10-01
How did scientific knowledge reach the public? Using the press and keeping in mind the population's limited access to written material, this paper establishes how the latest scientific news was divulged to unspecialised audiences. In times of sanitary crisis in Oporto, such as the cholera morbus epidemic of 1854-1856, the bubonic plague in 1899 and the 1918 influenza pandemic, newspapers were important sources to access the information and advice given to the public. A database of 6700 articles, medical reports and advertisements published in daily newspapers reveals the state of the art of medical science. It also reveals the importance given by health authorities and journalists to the publication of recent discoveries and adequate hygiene procedures to prevent the spread of the epidemics. This is a subject that contributes to the debates on the dissemination of science and on the place that Portugal occupied in the international scientific community.
Joining Forces: The Chemical Biology-Medicinal Chemistry Continuum.
Plowright, Alleyn T; Ottmann, Christian; Arkin, Michelle; Auberson, Yves P; Timmerman, Henk; Waldmann, Herbert
2017-09-21
The scientific advances being made across all disciplines are creating ever-increasing opportunities to enhance our knowledge of biological systems and how they relate to human disease. One of the central driving forces in discovering new medicines is medicinal chemistry, where the design and synthesis of novel compounds has led to multiple drugs. Chemical biology, sitting at the interface of many disciplines, has now emerged as a major contributor to the understanding of biological systems and is becoming an integral part of drug discovery. Bringing chemistry and biology much closer and blurring the boundaries between disciplines is creating new opportunities to probe and understand biology; both disciplines play key roles and need to join forces and work together effectively to synergize their impact. The power of chemical biology will then reach its full potential and drive innovation, leading to the discovery of transformative medicines to treat patients. Advances in cancer biology and drug discovery highlight this potential. Copyright © 2017 Elsevier Ltd. All rights reserved.
Diagramming Scientific Papers - A New Idea for Understanding/Teaching/Sharing Science
NASA Astrophysics Data System (ADS)
Saltus, R. W.; Fedi, M.
2014-12-01
How do we best communicate scientific results? As the number of scientists and scientific papers steadily increases, one of the greatest challenges is effective and efficient sharing of science. The official repository of scientific knowledge is the peer-reviewed journal archive. However, this primary knowledge can be difficult to access and understand by anyone but a relevant specialist. We propose some new ideas for diagramming the content and significance of scientific papers using a simple and intuitive graphical approach. We propose a visual mapping that highlights four fundamental aspects of most scientific papers: Data, Methods/Models, Results/Ideas, and Implications/Importance. Each of these aspects is illustrated within boxed fields which contain one or more labeled elements positioned to reflect novelty (aka originality) and impact relative to the vertical and horizontal axes. The relative position of the boxed fields themselves indicates the relative significance of data, methods, ideas, or implications to the paper. Optional lines between boxed elements indicate the flow and dependence of data/methods/ideas within the paper. As with any graphical depiction, you need to see it to best appreciate it -- this written abstract is only meant as an introduction to the idea.We anticipate that diagramming may prove useful in both communication of scientific ideas among scientists as well as in education and outreach. For example, professors could assign diagramming of papers as a way to help students organize their thoughts about the structure and impact of scientific articles. Students could compare and defend their diagrams as a way to facilitate discussion/debate. Authors could diagram their own work as a way to efficiently summarize the importance and significance of their work. We also imagine that (in the future) automatic diagramming might be used to help summarize or facilitate the discovery of archived work.
Modeling Human Disease Phenotype in Model Organisms: “It’s only a model!”
Marian, A.J.
2011-01-01
Preface A perspective by definition is a viewpoint. A viewpoint, like any other opinion, could be utterly erroneous. This Perspective is meant to be provocative but not to lessen the accomplishments of the scientific society as a whole or belittle any particular field of science or investigators. Scientific discoveries are typically incremental with various levels of increments. Often the significance of the discoveries remains unrecognized for many years if not decades, as was the case for the discovery of DNA by Friedrich Miescher in 1868 1. The significance of the discovery remained largely unrecognized for about 75 years, until simple and elegant experiments by Hershey and Chase showed that DNA and not protein, as was commonly perceived, was the genetic material 2. Our shortcomings in recognizing the significance of the scientific discoveries should not deter us from Cartesian skepticism, which was pioneered by the Persian philosopher Ghazali and popularized by Rene Descartes’ “I doubt, therefore I think, therefore I am.” An essential component of our academic society is the freedom to express viewpoints. Yet, personal opinions must not guide judgment on merits of the scientific discoveries and other peer-review matters. Science must be judged by the scientific standards of the time. It must not be judged by personal views. Scientific referees like all judges must be impartial and devoid of personal biases on rendering judgments. Accordingly, this viewpoint is simply that, a viewpoint. It is not indicative of author’s personal biases on any specific scientific discipline. The Perspective is aimed to raise doubts, as doubt is an incentive to truth. PMID:21817163
The science of sharing and the sharing of science
Milkman, Katherine L.; Berger, Jonah
2014-01-01
Why do members of the public share some scientific findings and not others? What can scientists do to increase the chances that their findings will be shared widely among nonscientists? To address these questions, we integrate past research on the psychological drivers of interpersonal communication with a study examining the sharing of hundreds of recent scientific discoveries. Our findings offer insights into (i) how attributes of a discovery and the way it is described impact sharing, (ii) who generates discoveries that are likely to be shared, and (iii) which types of people are most likely to share scientific discoveries. The results described here, combined with a review of recent research on interpersonal communication, suggest how scientists can frame their work to increase its dissemination. They also provide insights about which audiences may be the best targets for the diffusion of scientific content. PMID:25225360
PKDE4J: Entity and relation extraction for public knowledge discovery.
Song, Min; Kim, Won Chul; Lee, Dahee; Heo, Go Eun; Kang, Keun Young
2015-10-01
Due to an enormous number of scientific publications that cannot be handled manually, there is a rising interest in text-mining techniques for automated information extraction, especially in the biomedical field. Such techniques provide effective means of information search, knowledge discovery, and hypothesis generation. Most previous studies have primarily focused on the design and performance improvement of either named entity recognition or relation extraction. In this paper, we present PKDE4J, a comprehensive text-mining system that integrates dictionary-based entity extraction and rule-based relation extraction in a highly flexible and extensible framework. Starting with the Stanford CoreNLP, we developed the system to cope with multiple types of entities and relations. The system also has fairly good performance in terms of accuracy as well as the ability to configure text-processing components. We demonstrate its competitive performance by evaluating it on many corpora and found that it surpasses existing systems with average F-measures of 85% for entity extraction and 81% for relation extraction. Copyright © 2015 Elsevier Inc. All rights reserved.
Mosquito repellents: An insight into the chronological perspectives and novel discoveries.
Islam, Johirul; Zaman, Kamaruz; Duarah, Sanjukta; Raju, Pakalapati Srinivas; Chattopadhyay, Pronobesh
2017-03-01
Mosquito being the major medically important arthropod vector; requires utmost attention to reduce the sufferings and economic consequences of those living in the endemic regions. This is only possible by minimising the human-mosquito contact by an absolute preventing measure. However, unfortunately, such absolute measures are yet to be developed despite enormous efforts and huge investments worldwide. In the absence of vaccines for number of mosquito-borne diseases, repellents could be an attractive option for both military personal and civilians to minimise the risk of contacting different mosquito-borne diseases. However, to achieve this golden goal, the detailed knowledge of a particular repellent is must, including its mode of repellency and other relevant informations. Here, in the present article, an effort has been made to convey the best and latest information on repellents in order to enhance the knowledge of scientific community. The review offers an overview on mosquito repellents, the novel discoveries, and areas in need of attention such as novel repellent formulations and their future prospective. Copyright © 2016 Elsevier B.V. All rights reserved.
Rousseau, François; Labelle, Yves; Bussières, Johanne; Lindsay, Carmen
2011-01-01
The fragile X mental retardation (FXMR) syndrome is one of the most frequent causes of mental retardation. Affected individuals display a wide range of additional characteristic features including behavioural and physical phenotypes, and the extent to which individuals are affected is highly variable. For these reasons, elucidation of the pathophysiology of this disease has been an important challenge to the scientific community. 1991 marks the year of the discovery of both the FMR1 gene mutations involved in this disease, and of their dynamic nature. Although a mouse model for the disease has been available for 16 years and extensive research has been performed on the FMR1 protein (FMRP), we still understand little about how the disease develops, and no treatment has yet been shown to be effective. In this review, we summarise current knowledge on FXMR with an emphasis on the technical challenges of molecular diagnostics, on its prevalence and dynamics among populations, and on the potential of screening for FMR1 mutations. PMID:21912443
Rousseau, François; Labelle, Yves; Bussières, Johanne; Lindsay, Carmen
2011-08-01
The fragile X mental retardation (FXMR) syndrome is one of the most frequent causes of mental retardation. Affected individuals display a wide range of additional characteristic features including behavioural and physical phenotypes, and the extent to which individuals are affected is highly variable. For these reasons, elucidation of the pathophysiology of this disease has been an important challenge to the scientific community. 1991 marks the year of the discovery of both the FMR1 gene mutations involved in this disease, and of their dynamic nature. Although a mouse model for the disease has been available for 16 years and extensive research has been performed on the FMR1 protein (FMRP), we still understand little about how the disease develops, and no treatment has yet been shown to be effective. In this review, we summarise current knowledge on FXMR with an emphasis on the technical challenges of molecular diagnostics, on its prevalence and dynamics among populations, and on the potential of screening for FMR1 mutations.
Knowledge Discovery from Databases: An Introductory Review.
ERIC Educational Resources Information Center
Vickery, Brian
1997-01-01
Introduces new procedures being used to extract knowledge from databases and discusses rationales for developing knowledge discovery methods. Methods are described for such techniques as classification, clustering, and the detection of deviations from pre-established norms. Examines potential uses of knowledge discovery in the information field.…
Diamandopoulos, A A; Goudas, P C
2000-01-01
Nephrology is a newborn speciality compared to the other medical specialities. However, the study of the urinary tract's physiology and pathology had begun simultaneously with the birth of medicine. The scientific revolution of the renaissance and enlightenment eras caused an intense contestation of earlier theories and methods as if all knowledge had evolved suddenly from parthenogenesis after the dark (?) medieval years and human intellect suddenly exploded to huge intelligence quotients after the 15th century while before that humans were mentally deprived. Indeed most of the scientific knowledge did evolve impressively during renaissance and enlightenment years but not through parthenogenesis. Some observations, discoveries and inventions of this era were actually reobservations, rediscoveries and reinventions. Such an example is that of the experiments of Sanctorius Santorii of the 16th century AD and of Erasistratus of the 3rd century BC. Sanctorius and Erasistratus carried out an experiment with the same basic principles, similar methodology and proportional results with an almost 2000 years lag phase. With our paper we wish to give credit to earlier researchers of physiological and medical knowledge who, despite the lack of technological support, often concluded in extremely accurate observations. Copyright 2000 S. Karger AG, Basel
Toward an integrated knowledge environment to support modern oncology.
Blake, Patrick M; Decker, David A; Glennon, Timothy M; Liang, Yong Michael; Losko, Sascha; Navin, Nicholas; Suh, K Stephen
2011-01-01
Around the world, teams of researchers continue to develop a wide range of systems to capture, store, and analyze data including treatment, patient outcomes, tumor registries, next-generation sequencing, single-nucleotide polymorphism, copy number, gene expression, drug chemistry, drug safety, and toxicity. Scientists mine, curate, and manually annotate growing mountains of data to produce high-quality databases, while clinical information is aggregated in distant systems. Databases are currently scattered, and relationships between variables coded in disparate datasets are frequently invisible. The challenge is to evolve oncology informatics from a "systems" orientation of standalone platforms and silos into an "integrated knowledge environments" that will connect "knowable" research data with patient clinical information. The aim of this article is to review progress toward an integrated knowledge environment to support modern oncology with a focus on supporting scientific discovery and improving cancer care.
76 FR 4924 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-27
... Emphasis Panel; RFA Panel: Drug Discovery for the Nervous System. Date: February 17-18, 2011. Time: 8 a.m... Scientific Review Special Emphasis Panel; RFA Panel: Drug Discovery for the Nervous System. Date: February 18...
Ecology of Legionella: From Data to Knowledge with a Little Wisdom
Fliermans
1996-07-01
The respiratory diseases produced by the Legionella genus of bacteria are collectively called Legionellosis. Presently more than 34 species of Legionella have been identified, 20 of which have been isolated from both environmental and clinical sources. The diseases produced by Legionella include the pneumonic form, Legionnaires' disease, and the flu-like form, Pontiac fever. Because the vast majority of Legionellosis is caused by the L. pneumophila species, this bacterium is the thrust of the discussion.Legionella is a global bacterium. The relationship of the bacterium to its environment has told us many things about infectious diseases. Not until Legionellosis and the discovery of its etiologic agent, Legionella, has such a successful modern-day marriage been consummated between the agent and its environment. Nearly two decades have passed since the term Legionellosis found its way into the vocabulary of the scientific journals, the popular press, and courtroom proceedings. Too often the scientific development, engineering implementation, and societal acceptance are disconnected. The focus of scientific research sometimes does not reflect engineering or societal needs and thus contributes little to the solution of immediate and important problems. At other times, scientific knowledge that could contribute to solutions is overlooked because of poor communication between the problem holders, the scientific community, regulatory agencies, the problem makers, and the public. The scope of this paper provides insights on the ecological niche of Legionella, describes the organism's ecological relationships in the natural world, and provides wisdom for effective control of the bacterium for the industrial and user communities.
NASA Astrophysics Data System (ADS)
Camerlenghi, Angelo; Lofi, Johanna; Aloisi, Vanni; Flecker, Rachel
2017-04-01
The origin of the Mediterranean salt giant is linked to an extraordinary event in the geological history of the Mediterranean region, commonly referred to as the Messinian Salinity Crisis (MSC). After 45 years of intense yet disunited research efforts, the international scientific community at large faces a unique opportunity to access the deep and marginal basins Messinian depositional successions in the Mediterranean through scientific drilling, namely through the Integrated Ocean Discovery Program (IODP) and the International Continental Drilling Program (ICDP). Scientific activity to promote scientific drilling offshore and onshore is in progress under the broad umbrella of the Uncovering a Salt Giant' IODP Multi-Platform Drilling proposal, that has generated the Deep-Sea Records of the Messinian Salinity Crisis (DREAM) site-specific pre-proposal for riserless drilling on Messinian marginal basins and the related ICDP-IODP amphibious initiative Investigating Miocene Mediterranean- Atlantic gateway exchange (IMMAGE). Scientific networking has begun to establish a broad cross-disciplinary research community embracing geology, geophysics, geochemistry, microbiology, and paleoclimatology. Formal networking activities represent an opportunity for the scientific community to share objectives, data, expertise and tools with industry since there is considerable interest in oil and gas exploration, and consequent hazards, targeting the Mediterranean's deep salt deposits. With the acronym MEDSALT, we have established two networks working in close cooperation: (1) COST Action CA15103 Uncovering the Mediterranean salt giant (MEDSALT) (https://medsalt.eu/) is a 4-year long network established in May 2016 comprising scientific institutions from 28 states. This COST Action will provide an opportunity to develop further our knowledge of salt rock formation addressing four overarching scientific questions: a) What are the causes, timing and emplacement mechanisms of the Mediterranean salt giant? b) What are the factors responsible for and the socio-economic consequences of early salt deformation and fluid flow across and out of the halite layer? c) Do salt giants promote the development of a phylogenetically diverse and exceptionally active deep biosphere? d) What are the mechanisms underlying the spectacular vertical motions inside basins and their margins? (2) ANR Project 'Uncovering the Mediterranean Salt Giant' (MEDSALT) aims at establishing networking action to prepare an Integrated Ocean Discovery Program (IODP) full proposal to drill the Mediterranean Salt Giant with the R/V JOIDES Resolution. This 18-month long network consists of a core group of 22 scientists from 10 countries working in close cooperation with the brother COST Action MEDSALT. These inter-sectorial and multinational cooperation networks comprise a critical mass of both experienced and early-career researchers from Europe and beyond. The goal will be achieved through capacity building, researchers' mobility, skills development, knowledge exchange and scientific networking.
Being an expert witness in geomorphology
NASA Astrophysics Data System (ADS)
Keller, Edward A.
2015-02-01
Gathering your own data and coming to your own conclusion through scientific research and discovery is the most important principle to remember when being an expert witness in geomorphology. You can only be questioned in deposition and trial in your area of expertise. You are qualified as an expert by education, knowledge, and experience. You will have absolutely nothing to fear from cross-examination if you are prepared and confident about your work. Being an expert witness requires good communication skills. When you make a presentation, speak clearly and avoid jargon, especially when addressing a jury. Keep in mind that when you take on a case that may eventually go to court as a lawsuit, the entire process, with appeals and so forth, can take several years. Therefore, being an expert may become a long-term commitment of your time and energy. You may be hired by either side in a dispute, but your job is the same - determine the scientific basis of the case and explain your scientific reasoning to the lawyers, the judge, and the jury. Your work, including pre-trial investigations, often determines what the case will be based on. The use of science in the discovery part of an investigation is demonstrated from a California case involving the Ventura River, where building of a flood control levee restricted flow to a narrower channel, increasing unit stream power as well as potential for bank erosion and landsliding.
NASA Astrophysics Data System (ADS)
Dabiru, L.; O'Hara, C. G.; Shaw, D.; Katragadda, S.; Anderson, D.; Kim, S.; Shrestha, B.; Aanstoos, J.; Frisbie, T.; Policelli, F.; Keblawi, N.
2006-12-01
The Research Project Knowledge Base (RPKB) is currently being designed and will be implemented in a manner that is fully compatible and interoperable with enterprise architecture tools developed to support NASA's Applied Sciences Program. Through user needs assessment, collaboration with Stennis Space Center, Goddard Space Flight Center, and NASA's DEVELOP Staff personnel insight to information needs for the RPKB were gathered from across NASA scientific communities of practice. To enable efficient, consistent, standard, structured, and managed data entry and research results compilation a prototype RPKB has been designed and fully integrated with the existing NASA Earth Science Systems Components database. The RPKB will compile research project and keyword information of relevance to the six major science focus areas, 12 national applications, and the Global Change Master Directory (GCMD). The RPKB will include information about projects awarded from NASA research solicitations, project investigator information, research publications, NASA data products employed, and model or decision support tools used or developed as well as new data product information. The RPKB will be developed in a multi-tier architecture that will include a SQL Server relational database backend, middleware, and front end client interfaces for data entry. The purpose of this project is to intelligently harvest the results of research sponsored by the NASA Applied Sciences Program and related research program results. We present various approaches for a wide spectrum of knowledge discovery of research results, publications, projects, etc. from the NASA Systems Components database and global information systems and show how this is implemented in SQL Server database. The application of knowledge discovery is useful for intelligent query answering and multiple-layered database construction. Using advanced EA tools such as the Earth Science Architecture Tool (ESAT), RPKB will enable NASA and partner agencies to efficiently identify the significant results for new experiment directions and principle investigators to formulate experiment directions for new proposals.
The relation between prior knowledge and students' collaborative discovery learning processes
NASA Astrophysics Data System (ADS)
Gijlers, Hannie; de Jong, Ton
2005-03-01
In this study we investigate how prior knowledge influences knowledge development during collaborative discovery learning. Fifteen dyads of students (pre-university education, 15-16 years old) worked on a discovery learning task in the physics field of kinematics. The (face-to-face) communication between students was recorded and the interaction with the environment was logged. Based on students' individual judgments of the truth-value and testability of a series of domain-specific propositions, a detailed description of the knowledge configuration for each dyad was created before they entered the learning environment. Qualitative analyses of two dialogues illustrated that prior knowledge influences the discovery learning processes, and knowledge development in a pair of students. Assessments of student and dyad definitional (domain-specific) knowledge, generic (mathematical and graph) knowledge, and generic (discovery) skills were related to the students' dialogue in different discovery learning processes. Results show that a high level of definitional prior knowledge is positively related to the proportion of communication regarding the interpretation of results. Heterogeneity with respect to generic prior knowledge was positively related to the number of utterances made in the discovery process categories hypotheses generation and experimentation. Results of the qualitative analyses indicated that collaboration between extremely heterogeneous dyads is difficult when the high achiever is not willing to scaffold information and work in the low achiever's zone of proximal development.
Placental Proteomics: A Shortcut to Biological Insight
Robinson, John M.; Vandré, Dale D.; Ackerman, William E.
2012-01-01
Proteomics analysis of biological samples has the potential to identify novel protein expression patterns and/or changes in protein expression patterns in different developmental or disease states. An important component of successful proteomics research, at least in its present form, is to reduce the complexity of the sample if it is derived from cells or tissues. One method to simplify complex tissues is to focus on a specific, highly purified sub-proteome. Using this approach we have developed methods to prepare highly enriched fractions of the apical plasma membrane of the syncytiotrophoblast. Through proteomics analysis of this fraction we have identified over five hundred proteins several of which were previously not known to reside in the syncytiotrophoblast. Herein, we focus on two of these, dysferlin and myoferlin. These proteins, largely known from studies of skeletal muscle, may not have been found in the human placenta were it not for discovery-based proteomics analysis. This new knowledge, acquired through a discovery-driven approach, can now be applied for the generation of hypothesis-based experimentation. Thus discovery-based and hypothesis-based research are complimentary approaches that when coupled together can hasten scientific discoveries. PMID:19070895
Data Mining at NASA: From Theory to Applications
NASA Technical Reports Server (NTRS)
Srivastava, Ashok N.
2009-01-01
This slide presentation demonstrates the data mining/machine learning capabilities of NASA Ames and Intelligent Data Understanding (IDU) group. This will encompass the work done recently in the group by various group members. The IDU group develops novel algorithms to detect, classify, and predict events in large data streams for scientific and engineering systems. This presentation for Knowledge Discovery and Data Mining 2009 is to demonstrate the data mining/machine learning capabilities of NASA Ames and IDU group. This will encompass the work done re cently in the group by various group members.
NASA Astrophysics Data System (ADS)
Orr, Barron
2015-04-01
By any measure, our efforts to protect and restore the environment have failed to keep pace with environmental change, despite extraordinary scientific advances. Clearly there is a problem in knowledge transfer, which is often blamed on limited public awareness, misunderstanding or even apathy. Whether it's moving research to practice, informing policy, or educating the public on the environmental challenges of our time, our track record is poor. A major part of our failure lies in how scientists and practitioners understand (or misunderstand) and practice knowledge transfer. What actually drives knowledge acquisition and the motivation to gain knowledge, and what does this say about the methods used for knowledge transfer? Is the problem a supply issue (deficit of knowledge) or a demand issue (personal relevance)? The false assumptions that spin out of how we conceptualize knowledge acquisition lead to investment in knowledge transfer balanced heavily in "science communication" and "awareness raising" activities that tend to be unidirectional, top-down, and rarely linked to personal interests. Successful adaptation to environmental change requires a theoretical and practical understanding of coupled natural-human systems as well as advances in bridging knowledge systems and the science-society gap. To be effective, this means a "translational science" approach that promotes the capture and integration of scientific and local knowledge, addresses the influences of scale (biophysically, socially, institutionally), encourages mutual learning among all parties, and builds capacity as part of the process. The facilitation and translation of information and meanings among stakeholders can lead to the co-production of knowledge, more informed decision making, and in a very pragmatic way, more effective use of assessments and other products of scientific discovery. The purpose of this presentation is to shed light on what underlies the majority of investment in knowledge transfer, the false assumptions that result, and the ramifications for the methods employed the vast majority of the time by the scientific community. The case for public engagement and participatory approaches will be made, followed by a brief survey of the theories, methods and tools that make engagement possible and effective. Successful adaptation to environmental change requires a much stronger link between science and society. While science communication and awareness raising are necessary, they are much more effective when coupled with robust, formative, and participatory approaches to stakeholder engagement. This is necessary for successful land-based adaptation to environmental change.
Problems with Rhubarb: Accommodating Experience in Aristotelian Theories of Science.
Hessbrüggen-Walter, Stefan
2014-01-01
The paper examines controversies over the role of experience in the constitution of scientific knowledge in early modern Aristotelianism. While for Jacopo Zabarella, experience helps to confirm the results of demonstrative science, the Bologna Dominican Chrysostomo Javelli assumes that it also contributes to the discovery of new truths in what he calls 'beginning science'. Both thinkers use medical plants as a philosophical example. Javelli analyses the proposition 'rhubarb purges bile' as the conclusion of a yet unknown scientific proof. Zabarella uses instead hellebore, a plant that is found all over Europe, and defends the view that propositions about purgative powers of plants are based on their 'identity of substance', an identity that had become questionable with regard to rhubarb due to new empirical findings in the sixteenth century.
Nutritional Status Driving Infection by Trypanosoma cruzi: Lessons from Experimental Animals
Malafaia, Guilherme; Talvani, André
2011-01-01
This paper reviews the scientific knowledge about protein-energy and micronutrient malnutrition in the context of Chagas disease, especially in experimental models. The search of articles was conducted using the electronic databases of SciELO (Scientific Electronic Library Online), PubMed and MEDLINE published between 1960 and March 2010. It was possible to verify that nutritional deficiencies (protein-energy malnutrition and micronutrient malnutrition) exert a direct effect on the infection by T. cruzi. However, little is known about the immunological mechanisms involved in the relationship “nutritional deficiencies and infection by T. cruzi”. A hundred years after the discovery of Chagas disease many aspects of this illness still require clarification, including the effects of nutritional deficiencies on immune and pathological mechanisms of T. cruzi infection. PMID:21577255
... version of this page please turn JavaScript on. Technology Opens Doors to Scientific Discovery Past Issues / Spring 2016 Table of Contents Susannah Fox, chief technology officer of the U.S. Department of Health and ...
Scientific Discoveries: What Is Required for Lasting Impact.
Lømo, Terje
2016-01-01
I have been involved in two scientific discoveries of some impact. One is the discovery of long-term potentiation (LTP), the phenomenon that brief, high-frequency impulse activity at synapses in the brain can lead to long-lasting increases in their efficiency of transmission. This finding demonstrated that synapses are plastic, a property thought to be necessary for learning and memory. The other discovery is that nerve-evoked muscle impulse activity, rather than putative trophic factors, controls the properties of muscle fibers. Here I describe how these two discoveries were made, the unexpected difficulties of reproducing the first discovery, and the controversies that followed the second discovery. I discuss why the first discovery took many years to become generally recognized, whereas the second caused an immediate sensation and entered textbooks and major reviews but is now largely forgotten. In the long run, discovering a new phenomenon has greater impact than falsifying a popular hypothesis.
Information Fusion for Natural and Man-Made Disasters
2007-01-31
comprehensively large, and metaphysically accurate model of situations, through which specific tasks such as situation assessment, knowledge discovery , or the...significance” is always context specific. Event discovery is a very important element of the HLF process, which can lead to knowledge discovery about...expected, given the current state of knowledge . Examples of such behavior may include discovery of a new aggregate or situation, a specific pattern of
Gene Patents and Personalized Cancer Care: Impact of the Myriad Case on Clinical Oncology
Offit, Kenneth; Bradbury, Angela; Storm, Courtney; Merz, Jon F.; Noonan, Kevin E.; Spence, Rebecca
2013-01-01
Genomic discoveries have transformed the practice of oncology and cancer prevention. Diagnostic and therapeutic advances based on cancer genomics developed during a time when it was possible to patent genes. A case before the Supreme Court, Association for Molecular Pathology v Myriad Genetics, Inc seeks to overturn patents on isolated genes. Although the outcomes are uncertain, it is suggested here that the Supreme Court decision will have few immediate effects on oncology practice or research but may have more significant long-term impact. The Federal Circuit court has already rejected Myriad's broad diagnostic methods claims, and this is not affected by the Supreme Court decision. Isolated DNA patents were already becoming obsolete on scientific grounds, in an era when human DNA sequence is public knowledge and because modern methods of next-generation sequencing need not involve isolated DNA. The Association for Molecular Pathology v Myriad Supreme Court decision will have limited impact on new drug development, as new drug patents usually involve cellular methods. A nuanced Supreme Court decision acknowledging the scientific distinction between synthetic cDNA and genomic DNA will further mitigate any adverse impact. A Supreme Court decision to include or exclude all types of DNA from patent eligibility could impact future incentives for genomic discovery as well as the future delivery of medical care. Whatever the outcome of this important case, it is important that judicial and legislative actions in this area maximize genomic discovery while also ensuring patients' access to personalized cancer care. PMID:23766521
Discovery and development of new antibacterial drugs: learning from experience?
Jackson, Nicole; Czaplewski, Lloyd; Piddock, Laura J V
2018-06-01
Antibiotic (antibacterial) resistance is a serious global problem and the need for new treatments is urgent. The current antibiotic discovery model is not delivering new agents at a rate that is sufficient to combat present levels of antibiotic resistance. This has led to fears of the arrival of a 'post-antibiotic era'. Scientific difficulties, an unfavourable regulatory climate, multiple company mergers and the low financial returns associated with antibiotic drug development have led to the withdrawal of many pharmaceutical companies from the field. The regulatory climate has now begun to improve, but major scientific hurdles still impede the discovery and development of novel antibacterial agents. To facilitate discovery activities there must be increased understanding of the scientific problems experienced by pharmaceutical companies. This must be coupled with addressing the current antibiotic resistance crisis so that compounds and ultimately drugs are delivered to treat the most urgent clinical challenges. By understanding the causes of the failures and successes of the pharmaceutical industry's research history, duplication of discovery programmes will be reduced, increasing the productivity of the antibiotic drug discovery pipeline by academia and small companies. The most important scientific issues to address are getting molecules into the Gram-negative bacterial cell and avoiding their efflux. Hence screening programmes should focus their efforts on whole bacterial cells rather than cell-free systems. Despite falling out of favour with pharmaceutical companies, natural product research still holds promise for providing new molecules as a basis for discovery.
Towards Robot Scientists for autonomous scientific discovery
2010-01-01
We review the main components of autonomous scientific discovery, and how they lead to the concept of a Robot Scientist. This is a system which uses techniques from artificial intelligence to automate all aspects of the scientific discovery process: it generates hypotheses from a computer model of the domain, designs experiments to test these hypotheses, runs the physical experiments using robotic systems, analyses and interprets the resulting data, and repeats the cycle. We describe our two prototype Robot Scientists: Adam and Eve. Adam has recently proven the potential of such systems by identifying twelve genes responsible for catalysing specific reactions in the metabolic pathways of the yeast Saccharomyces cerevisiae. This work has been formally recorded in great detail using logic. We argue that the reporting of science needs to become fully formalised and that Robot Scientists can help achieve this. This will make scientific information more reproducible and reusable, and promote the integration of computers in scientific reasoning. We believe the greater automation of both the physical and intellectual aspects of scientific investigations to be essential to the future of science. Greater automation improves the accuracy and reliability of experiments, increases the pace of discovery and, in common with conventional laboratory automation, removes tedious and repetitive tasks from the human scientist. PMID:20119518
Towards Robot Scientists for autonomous scientific discovery.
Sparkes, Andrew; Aubrey, Wayne; Byrne, Emma; Clare, Amanda; Khan, Muhammed N; Liakata, Maria; Markham, Magdalena; Rowland, Jem; Soldatova, Larisa N; Whelan, Kenneth E; Young, Michael; King, Ross D
2010-01-04
We review the main components of autonomous scientific discovery, and how they lead to the concept of a Robot Scientist. This is a system which uses techniques from artificial intelligence to automate all aspects of the scientific discovery process: it generates hypotheses from a computer model of the domain, designs experiments to test these hypotheses, runs the physical experiments using robotic systems, analyses and interprets the resulting data, and repeats the cycle. We describe our two prototype Robot Scientists: Adam and Eve. Adam has recently proven the potential of such systems by identifying twelve genes responsible for catalysing specific reactions in the metabolic pathways of the yeast Saccharomyces cerevisiae. This work has been formally recorded in great detail using logic. We argue that the reporting of science needs to become fully formalised and that Robot Scientists can help achieve this. This will make scientific information more reproducible and reusable, and promote the integration of computers in scientific reasoning. We believe the greater automation of both the physical and intellectual aspects of scientific investigations to be essential to the future of science. Greater automation improves the accuracy and reliability of experiments, increases the pace of discovery and, in common with conventional laboratory automation, removes tedious and repetitive tasks from the human scientist.
Truth, proof and evidence: homeopathy and the medical paradigm.
Swayne, Jeremy
2008-04-01
The study and practice of medicine, in its most personal and intimate functions, its most sophisticated scientific and technological manifestations, and its philosophical and ethical ramifications, are central to our understanding of the human condition. Homeopathic medicine: its insights, the questions that it begs, and the scientific and philosophical challenges it presents, has a significant contribution to make to this process. To be actively and seriously engaged with homeopathy is an adventurous undertaking. It is to be engaged in exploring both human nature and the nature of the world we inhabit. And in that process we are also engaged in the pursuit of truth and the exploration of reality. This paper deals first with the layout of the playing field on which homeopathy has to compete to be taken seriously. It then discusses three concepts: reality, truth and knowledge, which are objectives for which we strive and principles that guide us in that striving. In the third part it introduces the concept of 'personal knowledge' as an essential ingredient of scientific discovery and the pursuit of truth. And finally it proposes that the homeopathic community in general, and the Faculty of Homeopathy in particular, must expand its vision with a definition of a new paradigm, the new model of healthcare and medical science to which the vision aspires.
Satellite image-based maps: Scientific inference or pretty pictures?
Ronald E. McRoberts
2011-01-01
The scientific method has been characterized as having two distinct components, Discovery and Justification. Discovery emphasizes ideas and creativity, focuses on conceiving hypotheses and constructing models, and is generally regarded as lacking a formal logic. Justification begins with the hypotheses and models and ends with a...
Building Cognition: The Construction of Computational Representations for Scientific Discovery.
Chandrasekharan, Sanjay; Nersessian, Nancy J
2015-11-01
Novel computational representations, such as simulation models of complex systems and video games for scientific discovery (Foldit, EteRNA etc.), are dramatically changing the way discoveries emerge in science and engineering. The cognitive roles played by such computational representations in discovery are not well understood. We present a theoretical analysis of the cognitive roles such representations play, based on an ethnographic study of the building of computational models in a systems biology laboratory. Specifically, we focus on a case of model-building by an engineer that led to a remarkable discovery in basic bioscience. Accounting for such discoveries requires a distributed cognition (DC) analysis, as DC focuses on the roles played by external representations in cognitive processes. However, DC analyses by and large have not examined scientific discovery, and they mostly focus on memory offloading, particularly how the use of existing external representations changes the nature of cognitive tasks. In contrast, we study discovery processes and argue that discoveries emerge from the processes of building the computational representation. The building process integrates manipulations in imagination and in the representation, creating a coupled cognitive system of model and modeler, where the model is incorporated into the modeler's imagination. This account extends DC significantly, and we present some of the theoretical and application implications of this extended account. Copyright © 2014 Cognitive Science Society, Inc.
Learning Physics-based Models in Hydrology under the Framework of Generative Adversarial Networks
NASA Astrophysics Data System (ADS)
Karpatne, A.; Kumar, V.
2017-12-01
Generative adversarial networks (GANs), that have been highly successful in a number of applications involving large volumes of labeled and unlabeled data such as computer vision, offer huge potential for modeling the dynamics of physical processes that have been traditionally studied using simulations of physics-based models. While conventional physics-based models use labeled samples of input/output variables for model calibration (estimating the right parametric forms of relationships between variables) or data assimilation (identifying the most likely sequence of system states in dynamical systems), there is a greater opportunity to explore the full power of machine learning (ML) methods (e.g, GANs) for studying physical processes currently suffering from large knowledge gaps, e.g. ground-water flow. However, success in this endeavor requires a principled way of combining the strengths of ML methods with physics-based numerical models that are founded on a wealth of scientific knowledge. This is especially important in scientific domains like hydrology where the number of data samples is small (relative to Internet-scale applications such as image recognition where machine learning methods has found great success), and the physical relationships are complex (high-dimensional) and non-stationary. We will present a series of methods for guiding the learning of GANs using physics-based models, e.g., by using the outputs of physics-based models as input data to the generator-learner framework, and by using physics-based models as generators trained using validation data in the adversarial learning framework. These methods are being developed under the broad paradigm of theory-guided data science that we are developing to integrate scientific knowledge with data science methods for accelerating scientific discovery.
Rho Chi lecture. Pharmaceutical sciences in the next millennium.
Triggle, D J
1999-02-01
Even a cursory survey of this article suggests that the pharmaceutical sciences are being rapidly transformed under the influence of both the new technologies and sciences and the economic imperatives. Of particular importance are scientific and technological advances that may greatly accelerate the critical process of discovery. The possibility of a drug discovery process built around the principles of directed diversity, self-reproduction, evolution, and self-targeting suggests a new paradigm of lead discovery, one based quite directly on the paradigms of molecular biology. Coupled with the principles of nanotechnology, we may contemplate miniature molecular machines containing directed drug factories, circulating the body and capable of self-targeting against defective cells and pathways -- the ultimate "drug delivery machine." However, science and technology are not the only factors that will transform the pharmaceutical sciences in the next century. The necessary reductions in the costs of drug discovery brought about by the rapidly increasing costs of the current drug discovery paradigms means that efforts to decrease the discovery phase and to make drug development part of drug discovery will become increasingly important. This is likely to involve increasing numbers of "alliances," as well as the creation of pharmaceutical research cells -- highly mobile and entrepreneurial groups within or outside of a pharmaceutical company that are formed to carry out specific discovery processes. Some of these will be in the biotechnology industry, but an increasing number will be in universities. The linear process from basic science to applied technology that has been the Western model since Vannevar Bush's Science: The Endless Frontier has probably never been particularly linear and, in any event, is likely to be rapidly supplanted by models where science, scientific development, and technology are more intimately linked. The pharmaceutical sciences have always been an example of use-directed basic research, but the relationships between the pharmaceutical industry, small and large, and the universities seems likely to become increasingly developed in the next century. This may serve as a significant catalyst for the continued transformation of universities into the "knowledge factories" of the 21st century. Regardless, we may expect to see major changes in the research organizational structure in the pharmaceutical sciences even as pharmaceutical companies enjoy record prosperity. And this is in anticipation of tough times to come.
National Institutes of Health addresses the science of diversity
Valantine, Hannah A.; Collins, Francis S.
2015-01-01
The US biomedical research workforce does not currently mirror the nation’s population demographically, despite numerous attempts to increase diversity. This imbalance is limiting the promise of our biomedical enterprise for building knowledge and improving the nation’s health. Beyond ensuring fairness in scientific workforce representation, recruiting and retaining a diverse set of minds and approaches is vital to harnessing the complete intellectual capital of the nation. The complexity inherent in diversifying the research workforce underscores the need for a rigorous scientific approach, consistent with the ways we address the challenges of science discovery and translation to human health. Herein, we identify four cross-cutting diversity challenges ripe for scientific exploration and opportunity: research evidence for diversity’s impact on the quality and outputs of science; evidence-based approaches to recruitment and training; individual and institutional barriers to workforce diversity; and a national strategy for eliminating barriers to career transition, with scientifically based approaches for scaling and dissemination. Evidence-based data for each of these challenges should provide an integrated, stepwise approach to programs that enhance diversity rapidly within the biomedical research workforce. PMID:26392553
The scientist's education and a civic conscience.
Donald, Kelling J; Kovac, Jeffrey
2013-09-01
A civic science curriculum is advocated. We discuss practical mechanisms for (and highlight the possible benefits of) addressing the relationship between scientific knowledge and civic responsibility coextensively with rigorous scientific content. As a strategy, we suggest an in-course treatment of well known (and relevant) historical and contemporary controversies among scientists over science policy or the use of sciences. The scientific content of the course is used to understand the controversy and to inform the debate while allowing students to see the role of scientists in shaping public perceptions of science and the value of scientific inquiry, discoveries and technology in society. The examples of the activism of Linus Pauling, Alfred Nobel and Joseph Rotblat as scientists and engaged citizens are cited. We discuss the role of science professors in informing the social conscience of students and consider ways in which a treatment of the function of science in society may find, coherently, a meaningful space in a science curriculum at the college level. Strategies for helping students to recognize early the crucial contributions that science can make in informing public policy and global governance are discussed.
National Institutes of Health addresses the science of diversity.
Valantine, Hannah A; Collins, Francis S
2015-10-06
The US biomedical research workforce does not currently mirror the nation's population demographically, despite numerous attempts to increase diversity. This imbalance is limiting the promise of our biomedical enterprise for building knowledge and improving the nation's health. Beyond ensuring fairness in scientific workforce representation, recruiting and retaining a diverse set of minds and approaches is vital to harnessing the complete intellectual capital of the nation. The complexity inherent in diversifying the research workforce underscores the need for a rigorous scientific approach, consistent with the ways we address the challenges of science discovery and translation to human health. Herein, we identify four cross-cutting diversity challenges ripe for scientific exploration and opportunity: research evidence for diversity's impact on the quality and outputs of science; evidence-based approaches to recruitment and training; individual and institutional barriers to workforce diversity; and a national strategy for eliminating barriers to career transition, with scientifically based approaches for scaling and dissemination. Evidence-based data for each of these challenges should provide an integrated, stepwise approach to programs that enhance diversity rapidly within the biomedical research workforce.
Considerations on Geospatial Big Data
NASA Astrophysics Data System (ADS)
LIU, Zhen; GUO, Huadong; WANG, Changlin
2016-11-01
Geospatial data, as a significant portion of big data, has recently gained the full attention of researchers. However, few researchers focus on the evolution of geospatial data and its scientific research methodologies. When entering into the big data era, fully understanding the changing research paradigm associated with geospatial data will definitely benefit future research on big data. In this paper, we look deep into these issues by examining the components and features of geospatial big data, reviewing relevant scientific research methodologies, and examining the evolving pattern of geospatial data in the scope of the four ‘science paradigms’. This paper proposes that geospatial big data has significantly shifted the scientific research methodology from ‘hypothesis to data’ to ‘data to questions’ and it is important to explore the generality of growing geospatial data ‘from bottom to top’. Particularly, four research areas that mostly reflect data-driven geospatial research are proposed: spatial correlation, spatial analytics, spatial visualization, and scientific knowledge discovery. It is also pointed out that privacy and quality issues of geospatial data may require more attention in the future. Also, some challenges and thoughts are raised for future discussion.
Knowledge Discovery as an Aid to Organizational Creativity.
ERIC Educational Resources Information Center
Siau, Keng
2000-01-01
This article presents the concept of knowledge discovery, a process of searching for associations in large volumes of computer data, as an aid to creativity. It then discusses the various techniques in knowledge discovery. Mednick's associative theory of creative thought serves as the theoretical foundation for this research. (Contains…
2017-06-27
From - To) 05-27-2017 Final 17-03-2017 - 15-03-2018 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER FA2386-17-1-0102 Advances in Knowledge Discovery and...Springer; Switzerland. 14. ABSTRACT The Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) is a leading international conference...in the areas of knowledge discovery and data mining (KDD). We had three keynote speeches, delivered by Sang Cha from Seoul National University
Apprenticeships, Collaboration and Scientific Discovery in Academic Field Studies
ERIC Educational Resources Information Center
Madden, Derek Scott; Grayson, Diane J.; Madden, Erinn H.; Milewski, Antoni V.; Snyder, Cathy Ann
2012-01-01
Teachers may use apprenticeships and collaboration as instructional strategies that help students to make authentic scientific discoveries as they work as amateur researchers in academic field studies. This concept was examined with 643 students, ages 14-72, who became proficient at field research through cognitive apprenticeships with the…
The Search for Regularity: Four Aspects of Scientific Discovery.
1984-09-01
explore the processes of scientific discovery. Our goal is not to explain historical details, though the history of science is fascinating and we will...chemical laws, as well as other laws from the history of science Table 1. BACON’s method viewed as search through a data space. Initial state: the null...discovery, then a deeper answer to the above questions is required. For instance, we know from the history of science that empirical laws eventuay
Causality discovery technology
NASA Astrophysics Data System (ADS)
Chen, M.; Ertl, T.; Jirotka, M.; Trefethen, A.; Schmidt, A.; Coecke, B.; Bañares-Alcántara, R.
2012-11-01
Causality is the fabric of our dynamic world. We all make frequent attempts to reason causation relationships of everyday events (e.g., what was the cause of my headache, or what has upset Alice?). We attempt to manage causality all the time through planning and scheduling. The greatest scientific discoveries are usually about causality (e.g., Newton found the cause for an apple to fall, and Darwin discovered natural selection). Meanwhile, we continue to seek a comprehensive understanding about the causes of numerous complex phenomena, such as social divisions, economic crisis, global warming, home-grown terrorism, etc. Humans analyse and reason causality based on observation, experimentation and acquired a priori knowledge. Today's technologies enable us to make observations and carry out experiments in an unprecedented scale that has created data mountains everywhere. Whereas there are exciting opportunities to discover new causation relationships, there are also unparalleled challenges to benefit from such data mountains. In this article, we present a case for developing a new piece of ICT, called Causality Discovery Technology. We reason about the necessity, feasibility and potential impact of such a technology.
Rudbeck's complaint: a 17th-century Latin letter relating to basic immunology.
Ambrose, C T
2007-10-01
Basic immunology can be said to have its origin in the mid-17th-century with the discovery of the peripheral lymphatics. They completed the gross anatomical picture of the lymphatic system, which is the basis for much of the immune response. Their recognition almost simultaneously by two Scandinavian anatomists led to a protracted war of words over priority of discovery, pitting a young Swedish medical student (Olof Rudbeck) against an honored Danish anatomy professor (Thomas Bartholin). In a 752-word letter in Latin, Rudbeck charged Bartholin with pre-dating a key observation, thereby giving priority of discovery to the latter. The purpose of this paper is to provide an English translation of this accusatory letter. It is a notable document in basic immunology, for it cites much of the knowledge then current in the field. And by raising the issue of priority, the letter indirectly piqued the interest of the scientific community in the lymphatic system and hastened its study. Examining the system's various functions in health and disease led to this new discipline.
Reproducibility in science: improving the standard for basic and preclinical research.
Begley, C Glenn; Ioannidis, John P A
2015-01-02
Medical and scientific advances are predicated on new knowledge that is robust and reliable and that serves as a solid foundation on which further advances can be built. In biomedical research, we are in the midst of a revolution with the generation of new data and scientific publications at a previously unprecedented rate. However, unfortunately, there is compelling evidence that the majority of these discoveries will not stand the test of time. To a large extent, this reproducibility crisis in basic and preclinical research may be as a result of failure to adhere to good scientific practice and the desperation to publish or perish. This is a multifaceted, multistakeholder problem. No single party is solely responsible, and no single solution will suffice. Here we review the reproducibility problems in basic and preclinical biomedical research, highlight some of the complexities, and discuss potential solutions that may help improve research quality and reproducibility. © 2015 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
Demir, I.; Krajewski, W. F.
2013-12-01
As geoscientists are confronted with increasingly massive datasets from environmental observations to simulations, one of the biggest challenges is having the right tools to gain scientific insight from the data and communicate the understanding to stakeholders. Recent developments in web technologies make it easy to manage, visualize and share large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to interact with data, and modify the parameters to create custom views of the data to gain insight from simulations and environmental observations. This requires developing new data models and intelligent knowledge discovery techniques to explore and extract information from complex computational simulations or large data repositories. Scientific visualization will be an increasingly important component to build comprehensive environmental information platforms. This presentation provides an overview of the trends and challenges in the field of scientific visualization, and demonstrates information visualization and communication tools developed within the light of these challenges.
Impact of scientific and technological advances.
Dragan, I F; Dalessandri, D; Johnson, L A; Tucker, A; Walmsley, A D
2018-03-01
Advancements in research and technology are transforming our world. The dental profession is changing too, in the light of scientific discoveries that are advancing biological technology-from new biomaterials to unravelling the genetic make-up of the human being. As health professionals, we embrace a model of continuous quality improvement and lifelong learning. Our pedagogical approach to incorporating the plethora of scientific-technological advancements calls for us to shift our paradigm from emphasis on skill acquisition to knowledge application. The 2017 ADEE/ADEA workshop provided a forum to explore and discuss strategies to ensure faculty, students and, ultimately, patients are best positioned to exploit the opportunities that arise from integrating new technological advances and research outcomes. Participants discussed methods of incorporating the impact of new technologies and research findings into the education of our dental students. This report serves as a signpost of the way forward and how to promote incorporation of research and technology advances and lifelong learning into the dental education curriculum. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Things to come: postmodern digital knowledge management and medical informatics.
Matheson, N W
1995-01-01
The overarching informatics grand challenge facing society is the creation of knowledge management systems that can acquire, conserve, organize, retrieve, display, and distribute what is known today in a manner that informs and educates, facilitates the discovery and creation of new knowledge, and contributes to the health and welfare of the planet. At one time the private, national, and university libraries of the world collectively constituted the memory of society's intellectual history. In the future, these new digital knowledge management systems will constitute human memory in its entirety. The current model of multiple local collections of duplicated resources will give way to specialized sole-source servers. In this new environment all scholarly scientific knowledge should be public domain knowledge: managed by scientists, organized for the advancement of knowledge, and readily available to all. Over the next decade, the challenge for the field of medical informatics and for the libraries that serve as the continuous memory for the biomedical sciences will be to come together to form a new organization that will lead to the development of postmodern digital knowledge management systems for medicine. These systems will form a portion of the evolving world brain of the 21st century.
Getting the Word Out: New Approaches for Disseminating Public Health Science
Eyler, Amy A.; Harris, Jenine K.; Moore, Justin B.; Tabak, Rachel G.
2018-01-01
The gap between discovery of public health knowledge and application in practice settings and policy development is due in part to ineffective dissemination. This article describes (1) lessons related to dissemination from related disciplines (eg, communication, agriculture, social marketing, political science), (2) current practices among researchers, (3) key audience characteristics, (4) available tools for dissemination, and (5) measures of impact. Dissemination efforts need to take into account the message, source, audience, and channel. Practitioners and policy makers can be more effectively reached via news media, social media, issue or policy briefs, one-on-one meetings, and workshops and seminars. Numerous “upstream” and “midstream” indicators of impact include changes in public perception or awareness, greater use of evidence-based interventions, and changes in policy. By employing ideas outlined in this article, scientific discoveries are more likely to be applied in public health agencies and policy-making bodies. PMID:28885319
Markatos, Konstantinos; Androutsos, Georgios; Karamanou, Marianna; Tzagkarakis, Georgios; Kaseta, Maria; Mavrogenis, Andreas
2018-05-11
The purpose of this review is to summarize the life and work of Jean-Louis Petit, his inventions, his discoveries, and his impact on the evolution of surgery of his era. A thorough search of the literature was undertaken in PubMed and Google Scholar as well as in physical books in libraries to summarize current and classic literature on Petit. Jean-Louis Petit (1674-1750) was an eminent anatomist and surgeon of his era with an invaluable contribution to clinical knowledge, surgical technique, and instrumentation as well as innovative therapeutic modalities and basic scientific discoveries. Jean-Louis Petit was an innovative anatomist and surgeon as well as an excellent clinician of his era. He revolutionized the surgical technique of his era with a significant contribution to what would later become orthopaedic surgery.
The Microcosm of Scientific Knowledge: Sceintists are Talking but Mostly to Each Other
NASA Astrophysics Data System (ADS)
Suleski, J.; Ibaraki, M.
2005-12-01
There is no question that scientists are communicating en masse. But with publication in journals as the main form of communication of research results, modern scientific communication methods are contributing to a major chasm of knowledge between the scientific community and the mainstream public. While publication in a scientific journal is an effective means to communicate results to the scientific community, it is an ineffective means to communicate to the general public that turns to mainstream news media to learn about scientific discoveries. With little effort made to communicate beyond the borders of journals, an alarmingly small number of papers ever are reported on in mainstream publications. During the target years of 1990-1992 and 1998-2000 there were over 5,300 accredited scientific journals in print. However, in those same years, less than 0.0005% of the papers published in those journals gained any attention from mainstream news media and mainstream audiences. This begs the question, that as scientists, is it sufficient to publish results in highly technical formats with only scientists as the intended audience? Or, has this trend lead to a great disparity between the knowledgeable elite and the general population? The recent catastrophe encountered in the United States Gulf Coast after Hurricane Katrina is a striking example of published scientific research failing to reach the general public. Hundreds of papers were published during the years 1980-2005 discussing the topic of the potential threat of hurricanes to the gulf coast, yet many citizens of the area were unaware of the severity of a possible storm and subsequent flooding. In the target years researched, none of the papers published on this topic was reported on in mainstream news media, severely restricting the audience. While the intended audiences of the papers went beyond the general public, information in the hands of the people who inhabit the area would have directly by action and indirectly by support for funding influenced the conditions they faced. At a time when a nation is scratching its head and wondering who to blame, it is acutely obvious that the scientific community must shoulder some responsibility for relying on traditional communication methods to convey research findings about the region. This research points to a clear need for scientists to make new efforts to communicate not just to a captive audience of fellow researchers, but to the mainstream decision-makers of the world. Since the majority of the public looks to mass media for scientific news, it is essential that the scientific community open channels of communication with news media and develop alternate forms of communication. As Albert Einstein astutely pointed out in 1954, ''It is just as important to make knowledge live and to keep it alive as to solve specific problems.''
Accelerating scientific discovery : 2007 annual report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckman, P.; Dave, P.; Drugan, C.
2008-11-14
As a gateway for scientific discovery, the Argonne Leadership Computing Facility (ALCF) works hand in hand with the world's best computational scientists to advance research in a diverse span of scientific domains, ranging from chemistry, applied mathematics, and materials science to engineering physics and life sciences. Sponsored by the U.S. Department of Energy's (DOE) Office of Science, researchers are using the IBM Blue Gene/L supercomputer at the ALCF to study and explore key scientific problems that underlie important challenges facing our society. For instance, a research team at the University of California-San Diego/ SDSC is studying the molecular basis ofmore » Parkinson's disease. The researchers plan to use the knowledge they gain to discover new drugs to treat the disease and to identify risk factors for other diseases that are equally prevalent. Likewise, scientists from Pratt & Whitney are using the Blue Gene to understand the complex processes within aircraft engines. Expanding our understanding of jet engine combustors is the secret to improved fuel efficiency and reduced emissions. Lessons learned from the scientific simulations of jet engine combustors have already led Pratt & Whitney to newer designs with unprecedented reductions in emissions, noise, and cost of ownership. ALCF staff members provide in-depth expertise and assistance to those using the Blue Gene/L and optimizing user applications. Both the Catalyst and Applications Performance Engineering and Data Analytics (APEDA) teams support the users projects. In addition to working with scientists running experiments on the Blue Gene/L, we have become a nexus for the broader global community. In partnership with the Mathematics and Computer Science Division at Argonne National Laboratory, we have created an environment where the world's most challenging computational science problems can be addressed. Our expertise in high-end scientific computing enables us to provide guidance for applications that are transitioning to petascale as well as to produce software that facilitates their development, such as the MPICH library, which provides a portable and efficient implementation of the MPI standard--the prevalent programming model for large-scale scientific applications--and the PETSc toolkit that provides a programming paradigm that eases the development of many scientific applications on high-end computers.« less
Thakar, Sambhaji B; Ghorpade, Pradnya N; Kale, Manisha V; Sonawane, Kailas D
2015-01-01
Fern plants are known for their ethnomedicinal applications. Huge amount of fern medicinal plants information is scattered in the form of text. Hence, database development would be an appropriate endeavor to cope with the situation. So by looking at the importance of medicinally useful fern plants, we developed a web based database which contains information about several group of ferns, their medicinal uses, chemical constituents as well as protein/enzyme sequences isolated from different fern plants. Fern ethnomedicinal plant database is an all-embracing, content management web-based database system, used to retrieve collection of factual knowledge related to the ethnomedicinal fern species. Most of the protein/enzyme sequences have been extracted from NCBI Protein sequence database. The fern species, family name, identification, taxonomy ID from NCBI, geographical occurrence, trial for, plant parts used, ethnomedicinal importance, morphological characteristics, collected from various scientific literatures and journals available in the text form. NCBI's BLAST, InterPro, phylogeny, Clustal W web source has also been provided for the future comparative studies. So users can get information related to fern plants and their medicinal applications at one place. This Fern ethnomedicinal plant database includes information of 100 fern medicinal species. This web based database would be an advantageous to derive information specifically for computational drug discovery, botanists or botanical interested persons, pharmacologists, researchers, biochemists, plant biotechnologists, ayurvedic practitioners, doctors/pharmacists, traditional medicinal users, farmers, agricultural students and teachers from universities as well as colleges and finally fern plant lovers. This effort would be useful to provide essential knowledge for the users about the adventitious applications for drug discovery, applications, conservation of fern species around the world and finally to create social awareness.
BioTextQuest(+): a knowledge integration platform for literature mining and concept discovery.
Papanikolaou, Nikolas; Pavlopoulos, Georgios A; Pafilis, Evangelos; Theodosiou, Theodosios; Schneider, Reinhard; Satagopam, Venkata P; Ouzounis, Christos A; Eliopoulos, Aristides G; Promponas, Vasilis J; Iliopoulos, Ioannis
2014-11-15
The iterative process of finding relevant information in biomedical literature and performing bioinformatics analyses might result in an endless loop for an inexperienced user, considering the exponential growth of scientific corpora and the plethora of tools designed to mine PubMed(®) and related biological databases. Herein, we describe BioTextQuest(+), a web-based interactive knowledge exploration platform with significant advances to its predecessor (BioTextQuest), aiming to bridge processes such as bioentity recognition, functional annotation, document clustering and data integration towards literature mining and concept discovery. BioTextQuest(+) enables PubMed and OMIM querying, retrieval of abstracts related to a targeted request and optimal detection of genes, proteins, molecular functions, pathways and biological processes within the retrieved documents. The front-end interface facilitates the browsing of document clustering per subject, the analysis of term co-occurrence, the generation of tag clouds containing highly represented terms per cluster and at-a-glance popup windows with information about relevant genes and proteins. Moreover, to support experimental research, BioTextQuest(+) addresses integration of its primary functionality with biological repositories and software tools able to deliver further bioinformatics services. The Google-like interface extends beyond simple use by offering a range of advanced parameterization for expert users. We demonstrate the functionality of BioTextQuest(+) through several exemplary research scenarios including author disambiguation, functional term enrichment, knowledge acquisition and concept discovery linking major human diseases, such as obesity and ageing. The service is accessible at http://bioinformatics.med.uoc.gr/biotextquest. g.pavlopoulos@gmail.com or georgios.pavlopoulos@esat.kuleuven.be Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Good, Benjamin M; Loguercio, Salvatore; Griffith, Obi L; Nanis, Max; Wu, Chunlei; Su, Andrew I
2014-07-29
Molecular signatures for predicting breast cancer prognosis could greatly improve care through personalization of treatment. Computational analyses of genome-wide expression datasets have identified such signatures, but these signatures leave much to be desired in terms of accuracy, reproducibility, and biological interpretability. Methods that take advantage of structured prior knowledge (eg, protein interaction networks) show promise in helping to define better signatures, but most knowledge remains unstructured. Crowdsourcing via scientific discovery games is an emerging methodology that has the potential to tap into human intelligence at scales and in modes unheard of before. The main objective of this study was to test the hypothesis that knowledge linking expression patterns of specific genes to breast cancer outcomes could be captured from players of an open, Web-based game. We envisioned capturing knowledge both from the player's prior experience and from their ability to interpret text related to candidate genes presented to them in the context of the game. We developed and evaluated an online game called The Cure that captured information from players regarding genes for use as predictors of breast cancer survival. Information gathered from game play was aggregated using a voting approach, and used to create rankings of genes. The top genes from these rankings were evaluated using annotation enrichment analysis, comparison to prior predictor gene sets, and by using them to train and test machine learning systems for predicting 10 year survival. Between its launch in September 2012 and September 2013, The Cure attracted more than 1000 registered players, who collectively played nearly 10,000 games. Gene sets assembled through aggregation of the collected data showed significant enrichment for genes known to be related to key concepts such as cancer, disease progression, and recurrence. In terms of the predictive accuracy of models trained using this information, these gene sets provided comparable performance to gene sets generated using other methods, including those used in commercial tests. The Cure is available on the Internet. The principal contribution of this work is to show that crowdsourcing games can be developed as a means to address problems involving domain knowledge. While most prior work on scientific discovery games and crowdsourcing in general takes as a premise that contributors have little or no expertise, here we demonstrated a crowdsourcing system that succeeded in capturing expert knowledge.
Causal discovery in the geosciences-Using synthetic data to learn how to interpret results
NASA Astrophysics Data System (ADS)
Ebert-Uphoff, Imme; Deng, Yi
2017-02-01
Causal discovery algorithms based on probabilistic graphical models have recently emerged in geoscience applications for the identification and visualization of dynamical processes. The key idea is to learn the structure of a graphical model from observed spatio-temporal data, thus finding pathways of interactions in the observed physical system. Studying those pathways allows geoscientists to learn subtle details about the underlying dynamical mechanisms governing our planet. Initial studies using this approach on real-world atmospheric data have shown great potential for scientific discovery. However, in these initial studies no ground truth was available, so that the resulting graphs have been evaluated only by whether a domain expert thinks they seemed physically plausible. The lack of ground truth is a typical problem when using causal discovery in the geosciences. Furthermore, while most of the connections found by this method match domain knowledge, we encountered one type of connection for which no explanation was found. To address both of these issues we developed a simulation framework that generates synthetic data of typical atmospheric processes (advection and diffusion). Applying the causal discovery algorithm to the synthetic data allowed us (1) to develop a better understanding of how these physical processes appear in the resulting connectivity graphs, and thus how to better interpret such connectivity graphs when obtained from real-world data; (2) to solve the mystery of the previously unexplained connections.
Forget about data, deliver results
NASA Astrophysics Data System (ADS)
Walter, Roland
2015-12-01
High-energy astrophysics space missions have pioneered and demonstrated the power of legacy data sets for generating new discoveries, especially when analysed in ways original researchers could not have anticipated. The only way to ensure that the data of present observatories can be effectively used in the future is to allow users to perform on-the-fly data analysis to produce straightforwardly scientific results for any sky position, time and energy intervals without requiring mission specific software or detailed instrumental knowledge. Providing a straightforward interface to complex data and data analysis makes the data and the process of generating science results available to the public and higher education and promotes the visibility of the investment in science to the society. This is a fundamental step to transmit the values of science and to evolve towards a knowledge society.
The Relation between Prior Knowledge and Students' Collaborative Discovery Learning Processes
ERIC Educational Resources Information Center
Gijlers, Hannie; de Jong, Ton
2005-01-01
In this study we investigate how prior knowledge influences knowledge development during collaborative discovery learning. Fifteen dyads of students (pre-university education, 15-16 years old) worked on a discovery learning task in the physics field of kinematics. The (face-to-face) communication between students was recorded and the interaction…
Lau, Dennis H; Volders, Paul G A; Kohl, Peter; Prinzen, Frits W; Zaza, Antonio; Kääb, Stefan; Oto, Ali; Schotten, Ulrich
2015-05-01
Cardiac electrophysiology has evolved into an important subspecialty in cardiovascular medicine. This is in part due to the significant advances made in our understanding and treatment of heart rhythm disorders following more than a century of scientific discoveries and research. More recently, the rapid development of technology in cellular electrophysiology, molecular biology, genetics, computer modelling, and imaging have led to the exponential growth of knowledge in basic cardiac electrophysiology. The paradigm of evidence-based medicine has led to a more comprehensive decision-making process and most likely to improved outcomes in many patients. However, implementing relevant basic research knowledge in a system of evidence-based medicine appears to be challenging. Furthermore, the current economic climate and the restricted nature of research funding call for improved efficiency of translation from basic discoveries to healthcare delivery. Here, we aim to (i) appraise the broad challenges of translational research in cardiac electrophysiology, (ii) highlight the need for improved strategies in the training of translational electrophysiologists, and (iii) discuss steps towards building a favourable translational research environment and culture. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Transforming Epidemiology for 21st Century Medicine and Public Health
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khoury, Muin J; Lam, Tram Kim; Ioannidis, John
2013-01-01
n 2012, the National Cancer Institute (NCI) engaged the scientific community to provide a vision for cancer epidemiology in the 21st century. Eight overarching thematic recommendations, with proposed corresponding actions for consideration by funding agencies, professional societies, and the research community emerged from the collective intellectual discourse. The themes are (i) extending the reach of epidemiology beyond discovery and etiologic research to include multilevel analysis, intervention evaluation, implementation, and outcomes research; (ii) transforming the practice of epidemiology by moving toward more access and sharing of protocols, data, metadata, and specimens to foster collaboration, to ensure reproducibility and replication, and acceleratemore » translation; (iii) expanding cohort studies to collect exposure, clinical, and other information across the life course and examining multiple health-related endpoints; (iv) developing and validating reliable methods and technologies to quantify exposures and outcomes on a massive scale, and to assess concomitantly the role of multiple factors in complex diseases; (v) integrating big data science into the practice of epidemiology; (vi) expanding knowledge integration to drive research, policy, and practice; (vii) transforming training of 21st century epidemiologists to address interdisciplinary and translational research; and (viii) optimizing the use of resources and infrastructure for epidemiologic studies. These recommendations can transform cancer epidemiology and the field of epidemiology, in general, by enhancing transparency, interdisciplinary collaboration, and strategic applications of new technologies. They should lay a strong scientific foundation for accelerated translation of scientific discoveries into individual and population health benefits.« less
Transforming Epidemiology for 21st Century Medicine and Public Health
Khoury, Muin J.; Lam, Tram Kim; Ioannidis, John P.A.; Hartge, Patricia; Spitz, Margaret R.; Buring, Julie E.; Chanock, Stephen J.; Croyle, Robert T.; Goddard, Katrina A.; Ginsburg, Geoffrey S.; Herceg, Zdenko; Hiatt, Robert A.; Hoover, Robert N.; Hunter, David J.; Kramer, Barnet S.; Lauer, Michael S.; Meyerhardt, Jeffrey A.; Olopade, Olufunmilayo I.; Palmer, Julie R.; Sellers, Thomas A.; Seminara, Daniela; Ransohoff, David F.; Rebbeck, Timothy R.; Tourassi, Georgia; Winn, Deborah M.; Zauber, Ann; Schully, Sheri D.
2013-01-01
In 2012, the National Cancer Institute (NCI) engaged the scientific community to provide a vision for cancer epidemiology in the 21st century. Eight overarching thematic recommendations, with proposed corresponding actions for consideration by funding agencies, professional societies, and the research community emerged from the collective intellectual discourse. The themes are (i) extending the reach of epidemiology beyond discovery and etiologic research to include multilevel analysis, intervention evaluation, implementation, and outcomes research; (ii) transforming the practice of epidemiology by moving towards more access and sharing of protocols, data, metadata, and specimens to foster collaboration, to ensure reproducibility and replication, and accelerate translation; (iii) expanding cohort studies to collect exposure, clinical and other information across the life course and examining multiple health-related endpoints; (iv) developing and validating reliable methods and technologies to quantify exposures and outcomes on a massive scale, and to assess concomitantly the role of multiple factors in complex diseases; (v) integrating “big data” science into the practice of epidemiology; (vi) expanding knowledge integration to drive research, policy and practice; (vii) transforming training of 21st century epidemiologists to address interdisciplinary and translational research; and (viii) optimizing the use of resources and infrastructure for epidemiologic studies. These recommendations can transform cancer epidemiology and the field of epidemiology in general, by enhancing transparency, interdisciplinary collaboration, and strategic applications of new technologies. They should lay a strong scientific foundation for accelerated translation of scientific discoveries into individual and population health benefits. PMID:23462917
NASA Astrophysics Data System (ADS)
Mahootian, F.
2009-12-01
The rapid convergence of advancing sensor technology, computational power, and knowledge discovery techniques over the past decade has brought unprecedented volumes of astronomical data together with unprecedented capabilities of data assimilation and analysis. A key result is that a new, data-driven "observational-inductive'' framework for scientific inquiry is taking shape and proving viable. The anticipated rise in data flow and processing power will have profound effects, e.g., confirmations and disconfirmations of existing theoretical claims both for and against the big bang model. But beyond enabling new discoveries can new data-driven frameworks of scientific inquiry reshape the epistemic ideals of science? The history of physics offers a comparison. The Bohr-Einstein debate over the "completeness'' of quantum mechanics centered on a question of ideals: what counts as science? We briefly examine lessons from that episode and pose questions about their applicability to cosmology. If the history of 20th century physics is any indication, the abandonment of absolutes (e.g., space, time, simultaneity, continuity, determinacy) can produce fundamental changes in understanding. The classical ideal of science, operative in both physics and cosmology, descends from the European Enlightenment. This ideal has for over 200 years guided science to seek the ultimate order of nature, to pursue the absolute theory, the "theory of everything.'' But now that we have new models of scientific inquiry powered by new technologies and driven more by data than by theory, it is time, finally, to relinquish dreams of a "final'' theory.
Cretaceous Footprints Found on Goddard Campus
2012-08-20
About 110 million light years away, the bright, barred spiral galaxy NGC3259 was just forming stars in dark bands of dust and gas. On Earth, a plant-eating dinosaur left footprints in the Cretaceous mud of what would later become the grounds of NASA’s Goddard Space Flight Center in Greenbelt, Md. Local dinosaur hunter Ray Stanford speaks to local press and Goddard officials about this discovery. To read more go to: www.nasa.gov/centers/goddard/news/features/2012/nodosaur.... Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
The future of poultry science research: things I think I think.
Taylor, R L
2009-06-01
Much poultry research progress has occurred over the first century of the Poultry Science Association. During that time, specific problems have been solved and much basic biological knowledge has been gained. Scientific discovery has exceeded its integration into foundation concepts. Researchers need to be involved in the public's development of critical thinking skills to enable discernment of fact versus fiction. Academic, government, and private institutions need to hire the best people. Issues of insufficient research funding will be remedied by a combination of strategies rather than by a single cure. Scientific advocacy for poultry-related issues is critical to success. Two other keys to the future are funding for higher-risk projects, whose outcome is truly unknown, and specific allocations for new investigators. Diligent, ongoing efforts by poultry scientists will enable progress beyond the challenges.
NASA Astrophysics Data System (ADS)
Pinheiro da Silva, P.; CyberShARE Center of Excellence
2011-12-01
Scientists today face the challenge of rethinking the manner in which they document and make available their processes and data in an international cyber-infrastructure of shared resources. Some relevant examples of new scientific practices in the realm of computational and data extraction sciences include: large scale data discovery; data integration; data sharing across distinct scientific domains, systematic management of trust and uncertainty; and comprehensive support for explaining processes and results. This talk introduces CI-Miner - an innovative hands-on, open-source, community-driven methodology to integrate these new scientific practices. It has been developed in collaboration with scientists, with the purpose of capturing, storing and retrieving knowledge about scientific processes and their products, thereby further supporting a new generation of science techniques based on data exploration. CI-Miner uses semantic annotations in the form of W3C Ontology Web Language-based ontologies and Proof Markup Language (PML)-based provenance to represent knowledge. This methodology specializes in general-purpose ontologies, projected into workflow-driven ontologies(WDOs) and into semantic abstract workflows (SAWs). Provenance in PML is CI-Miner's integrative component, which allows scientists to retrieve and reason with the knowledge represented in these new semantic documents. It serves additionally as a platform to share such collected knowledge with the scientific community participating in the international cyber-infrastructure. The integrated semantic documents that are tailored for the use of human epistemic agents may also be utilized by machine epistemic agents, since the documents are based on W3C Resource Description Framework (RDF) notation. This talk is grounded upon interdisciplinary lessons learned through the use of CI-Miner in support of government-funded national and international cyber-infrastructure initiatives in the areas of geo-sciences (NSF-GEON and NSF-EarthScope), environmental sciences (CEON, NSF NEON, NSF-LTER and DOE-Ameri-Flux), and solar physics (VSTO and NSF-SPCDIS). The discussion on provenance is based on the use of PML in support of projects in collaboration with government organizations (DARPA, ARDA, NSF, DHS and DOE), research organizations (NCAR and PNNL), and industries (IBM and SRI International).
LaBonte, Michelle L
2014-09-01
Since its initial discovery in the 1940s, factor V has long been viewed as an important procoagulant protein in the coagulation cascade. However, in the later part of the 20th century, two different scientists proposed novel anticoagulant roles for factor V. Philip Majerus proposed the first anticoagulant function for factor V in 1983, yet ultimately it was not widely accepted by the broader scientific community. In contrast, Björn Dahlbäck proposed a different anticoagulant role for factor V in 1994. While this role was initially contested, it was ultimately accepted and integrated into the scientific framework. In this paper, I present a detailed historical account of these two anticoagulant discoveries and propose three key reasons why Dahlbäck's anticoagulant role for factor V was accepted whereas Majerus' proposed role was largely overlooked. Perhaps most importantly, Dahlbäck's proposed anticoagulant role was of great clinical interest because the discovery involved the study of an important subset of patients with thrombophilia. Soon after Dahlbäck's 1994 work, this patient population was shown to possess the factor V Leiden mutation. Also key in the ultimate acceptance of the second proposed anticoagulant role was the persistence of the scientist who made the discovery and the interest in and ability of others to replicate and reinforce this work. This analysis of two different yet similar discoveries sheds light on factors that play an important role in how new discoveries are incorporated into the existing scientific framework. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.
75 FR 57965 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-23
... Emphasis Panel; RFA Panel: Drug Discovery for the Nervous System. Date: October 14-15, 2010. Time: 8 a.m...: Center for Scientific Review Special Emphasis Panel; RFA Panel: Drug Discovery for the Nervous System... Review Special Emphasis Panel; Small Business: Visual Systems. Date: October 28, 2010. Time: 8 a.m. to 6...
ERIC Educational Resources Information Center
Zaikowski, Lori; Lichtman, Paul; Quarless, Duncan
2007-01-01
The scientific discovery process comes alive for 70 minority students each year at Uniondale High School in New York where students have won top awards for "in-house" projects. Uniondale High School is in a middle-income school district where over 95% of students are from minority groups. Founded in 2000, the Uniondale High School Research Program…
ERIC Educational Resources Information Center
Zhang, Jianwei; Chen, Qi; Sun, Yanquing; Reid, David J.
2004-01-01
Learning support studies involving simulation-based scientific discovery learning have tended to adopt an ad hoc strategies-oriented approach in which the support strategies are typically pre-specified according to learners' difficulties in particular activities. This article proposes a more integrated approach, a triple scheme for learning…
USDA-ARS?s Scientific Manuscript database
Scientific data integration and computational service discovery are challenges for the bioinformatic community. This process is made more difficult by the separate and independent construction of biological databases, which makes the exchange of scientific data between information resources difficu...
NASA Astrophysics Data System (ADS)
Lee, Hee-Sun; Pallant, Amy; Pryputniewicz, Sarah
2015-08-01
Teaching scientific argumentation has emerged as an important goal for K-12 science education. In scientific argumentation, students are actively involved in coordinating evidence with theory based on their understanding of the scientific content and thinking critically about the strengths and weaknesses of the cited evidence in the context of the investigation. We developed a one-week-long online curriculum module called "Is there life in space?" where students conduct a series of four model-based tasks to learn how scientists detect extrasolar planets through the “wobble” and transit methods. The simulation model allows students to manipulate various parameters of an imaginary star and planet system such as planet size, orbit size, planet-orbiting-plane angle, and sensitivity of telescope equipment, and to adjust the display settings for graphs illustrating the relative velocity and light intensity of the star. Students can use model-based evidence to formulate an argument on whether particular signals in the graphs guarantee the presence of a planet. Students' argumentation is facilitated by the four-part prompts consisting of multiple-choice claim, open-ended explanation, Likert-scale uncertainty rating, and open-ended uncertainty rationale. We analyzed 1,013 scientific arguments formulated by 302 high school student groups taught by 7 teachers. We coded these arguments in terms of the accuracy of their claim, the sophistication of explanation connecting evidence to the established knowledge base, the uncertainty rating, and the scientific validity of uncertainty. We found that (1) only 18% of the students' uncertainty rationale involved critical reflection on limitations inherent in data and concepts, (2) 35% of students' uncertainty rationale reflected their assessment of personal ability and knowledge, rather than scientific sources of uncertainty related to the evidence, and (3) the nature of task such as the use of noisy data or the framing of critiquing scientists' discovery encouraged students' articulation of scientific uncertainty sources in different ways.
Databases and Web Tools for Cancer Genomics Study
Yang, Yadong; Dong, Xunong; Xie, Bingbing; Ding, Nan; Chen, Juan; Li, Yongjun; Zhang, Qian; Qu, Hongzhu; Fang, Xiangdong
2015-01-01
Publicly-accessible resources have promoted the advance of scientific discovery. The era of genomics and big data has brought the need for collaboration and data sharing in order to make effective use of this new knowledge. Here, we describe the web resources for cancer genomics research and rate them on the basis of the diversity of cancer types, sample size, omics data comprehensiveness, and user experience. The resources reviewed include data repository and analysis tools; and we hope such introduction will promote the awareness and facilitate the usage of these resources in the cancer research community. PMID:25707591
Accounting for reciprocal host-microbiome interactions in experimental science.
Stappenbeck, Thaddeus S; Virgin, Herbert W
2016-06-09
Mammals are defined by their metagenome, a combination of host and microbiome genes. This knowledge presents opportunities to further basic biology with translation to human diseases. However, the now-documented influence of the metagenome on experimental results and the reproducibility of in vivo mammalian models present new challenges. Here we provide the scientific basis for calling on all investigators, editors and funding agencies to embrace changes that will enhance reproducible and interpretable experiments by accounting for metagenomic effects. Implementation of new reporting and experimental design principles will improve experimental work, speed discovery and translation, and properly use substantial investments in biomedical research.
Semantic e-Science in Space Physics - A Case Study
NASA Astrophysics Data System (ADS)
Narock, T.; Yoon, V.; Merka, J.; Szabo, A.
2009-05-01
Several search and retrieval systems for space physics data are currently under development in NASA's heliophysics data environment. We present a case study of two such systems, and describe our efforts in implementing an ontology to aid in data discovery. In doing so we highlight the various aspects of knowledge representation and show how they led to our ontology design, creation, and implementation. We discuss advantages that scientific reasoning allows, as well as difficulties encountered in current tools and standards. Finally, we present a space physics research project conducted with and without e-Science and contrast the two approaches.
Workflow based framework for life science informatics.
Tiwari, Abhishek; Sekhar, Arvind K T
2007-10-01
Workflow technology is a generic mechanism to integrate diverse types of available resources (databases, servers, software applications and different services) which facilitate knowledge exchange within traditionally divergent fields such as molecular biology, clinical research, computational science, physics, chemistry and statistics. Researchers can easily incorporate and access diverse, distributed tools and data to develop their own research protocols for scientific analysis. Application of workflow technology has been reported in areas like drug discovery, genomics, large-scale gene expression analysis, proteomics, and system biology. In this article, we have discussed the existing workflow systems and the trends in applications of workflow based systems.
Energy-Water Nexus Knowledge Discovery Framework
NASA Astrophysics Data System (ADS)
Bhaduri, B. L.; Foster, I.; Chandola, V.; Chen, B.; Sanyal, J.; Allen, M.; McManamay, R.
2017-12-01
As demand for energy grows, the energy sector is experiencing increasing competition for water. With increasing population and changing environmental, socioeconomic scenarios, new technology and investment decisions must be made for optimized and sustainable energy-water resource management. This requires novel scientific insights into the complex interdependencies of energy-water infrastructures across multiple space and time scales. An integrated data driven modeling, analysis, and visualization capability is needed to understand, design, and develop efficient local and regional practices for the energy-water infrastructure components that can be guided with strategic (federal) policy decisions to ensure national energy resilience. To meet this need of the energy-water nexus (EWN) community, an Energy-Water Knowledge Discovery Framework (EWN-KDF) is being proposed to accomplish two objectives: Development of a robust data management and geovisual analytics platform that provides access to disparate and distributed physiographic, critical infrastructure, and socioeconomic data, along with emergent ad-hoc sensor data to provide a powerful toolkit of analysis algorithms and compute resources to empower user-guided data analysis and inquiries; and Demonstration of knowledge generation with selected illustrative use cases for the implications of climate variability for coupled land-water-energy systems through the application of state-of-the art data integration, analysis, and synthesis. Oak Ridge National Laboratory (ORNL), in partnership with Argonne National Laboratory (ANL) and researchers affiliated with the Center for International Earth Science Information Partnership (CIESIN) at Columbia University and State University of New York-Buffalo (SUNY), propose to develop this Energy-Water Knowledge Discovery Framework to generate new, critical insights regarding the complex dynamics of the EWN and its interactions with climate variability and change. An overarching objective of this project is to integrate impacts, adaptation, and vulnerability (IAV) science with emerging data science to meet the data analysis needs of the U.S. Department of Energy and partner federal agencies with respect to the EWN.
NASA Astrophysics Data System (ADS)
Mulopo, Moses M.; Seymour Fowler, H.
This study examined the differential effectiveness of traditional and discovery methods of instruction for the teaching of science concepts, understandings about science, and scientific attitudes, to learners at the concrete and formal level of cognitive development. The dependent variables were achievement, understanding science, and scientific attitude; assessed through the use of the ACS Achievement Test (high school chemistry, Form 1979), the Test on Understanding Science (Form W), and the Test on Scientific Attitude, respectively. Mode of instruction and cognitive development were the independent variables. Subjects were 120 Form IV (11th grade) males enrolled in chemistry classes in Lusaka, Zambia. Sixty of these were concrete reasoners (mean age = 18.23) randomly selected from one of the two schools. The remaining 60 subjects were formal reasoners (mean age 18.06) randomly selected from a second boys' school. Each of these two groups was randomly split into two subgroups with 30 subjects. Traditional and discovery approaches were randomly assigned to the two subgroups of concrete reasoners and to the two subgroups of formal reasoners. Prior to instruction, the subjects were pretested using the ACS Achievement Test, the Test on Understanding Science, and the Test on Scientific Attitude. Subjects received instruction covering eight chemistry topics during approximately 10 weeks. Posttests followed using the same standard tests. Two-way analysis of covariance, with pretest scores serving as covariates was used and 0.05 level of significant was accepted. Tukey WSD technique was used as a follow-up test where applicable. It was found that (1) for the formal reasoners, the discovery group earned significantly higher understanding science scores than the traditional group. For the concrete reasoners mode of instruction did not make a difference; (2) overall, formal reasoners earned significantly higher achievement scores than concrete reasoners; (3) in general, subjects taught by the discovery approach earned significantly higher scientific attitude scores than those taught by the traditional approach. The traditional group outperformed the discovery group in achievement scores. It was concluded that the traditional approach might be an efficient instructional mode for the teaching of scientific facts and principles to high school students, while the discovery approach seemed to be more suitable for teaching scientific attitudes and for promoting understanding about science and scientists among formal operational learners.
Cohen, Trevor; Schvaneveldt, Roger; Widdows, Dominic
2010-04-01
The discovery of implicit connections between terms that do not occur together in any scientific document underlies the model of literature-based knowledge discovery first proposed by Swanson. Corpus-derived statistical models of semantic distance such as Latent Semantic Analysis (LSA) have been evaluated previously as methods for the discovery of such implicit connections. However, LSA in particular is dependent on a computationally demanding method of dimension reduction as a means to obtain meaningful indirect inference, limiting its ability to scale to large text corpora. In this paper, we evaluate the ability of Random Indexing (RI), a scalable distributional model of word associations, to draw meaningful implicit relationships between terms in general and biomedical language. Proponents of this method have achieved comparable performance to LSA on several cognitive tasks while using a simpler and less computationally demanding method of dimension reduction than LSA employs. In this paper, we demonstrate that the original implementation of RI is ineffective at inferring meaningful indirect connections, and evaluate Reflective Random Indexing (RRI), an iterative variant of the method that is better able to perform indirect inference. RRI is shown to lead to more clearly related indirect connections and to outperform existing RI implementations in the prediction of future direct co-occurrence in the MEDLINE corpus. 2009 Elsevier Inc. All rights reserved.
SemaTyP: a knowledge graph based literature mining method for drug discovery.
Sang, Shengtian; Yang, Zhihao; Wang, Lei; Liu, Xiaoxia; Lin, Hongfei; Wang, Jian
2018-05-30
Drug discovery is the process through which potential new medicines are identified. High-throughput screening and computer-aided drug discovery/design are the two main drug discovery methods for now, which have successfully discovered a series of drugs. However, development of new drugs is still an extremely time-consuming and expensive process. Biomedical literature contains important clues for the identification of potential treatments. It could support experts in biomedicine on their way towards new discoveries. Here, we propose a biomedical knowledge graph-based drug discovery method called SemaTyP, which discovers candidate drugs for diseases by mining published biomedical literature. We first construct a biomedical knowledge graph with the relations extracted from biomedical abstracts, then a logistic regression model is trained by learning the semantic types of paths of known drug therapies' existing in the biomedical knowledge graph, finally the learned model is used to discover drug therapies for new diseases. The experimental results show that our method could not only effectively discover new drug therapies for new diseases, but also could provide the potential mechanism of action of the candidate drugs. In this paper we propose a novel knowledge graph based literature mining method for drug discovery. It could be a supplementary method for current drug discovery methods.
THE GHOST IN OUR GENES: LEGAL AND ETHICAL IMPLICATIONS OF EPIGENETICS
Rothstein, Mark A.; Cai, Yu; Marchant, Gary E.
2011-01-01
Epigenetics is one of the most scientifically important, and legally and ethically significant, cutting-edge subjects of scientific discovery. Epigenetics link environmental and genetic influences on the traits and characteristics of an individual, and new discoveries reveal that a large range of environmental, dietary, behavioral, and medical experiences can significantly affect the future development and health of an individual and their offspring. This article describes and analyzes the ethical and legal implications of these new scientific findings. PMID:19459537
ERIC Educational Resources Information Center
Kunsting, Josef; Wirth, Joachim; Paas, Fred
2011-01-01
Using a computer-based scientific discovery learning environment on buoyancy in fluids we investigated the "effects of goal specificity" (nonspecific goals vs. specific goals) for two goal types (problem solving goals vs. learning goals) on "strategy use" and "instructional efficiency". Our empirical findings close an important research gap,…
Animal models of intellectual disability: towards a translational approach
Scorza, Carla A; Cavalheiro, Esper A.
2011-01-01
Intellectual disability is a prevalent form of cognitive impairment, affecting 2–3% of the general population. It is a daunting societal problem characterized by significant limitations both in intellectual functioning and in adaptive behavior as expressed in conceptual, social and practical adaptive skills. Intellectual disability is a clinically important disorder for which the etiology and pathogenesis are still poorly understood. Moreover, although tremendous progress has been made, pharmacological intervention is still currently non-existent and therapeutic strategies remain limited. Studies in humans have a very limited capacity to explain basic mechanisms of this condition. In this sense, animal models have been invaluable in intellectual disability investigation. Certainly, a great deal of the knowledge that has improved our understanding of several pathologies has derived from appropriate animal models. Moreover, to improve human health, scientific discoveries must be translated into practical applications. Translational research specifically aims at taking basic scientific discoveries and best practices to benefit the lives of people in our communities. In this context, the challenge that basic science research needs to meet is to make use of a comparative approach to benefit the most from what each animal model can tell us. Intellectual disability results from many different genetic and environmental insults. Taken together, the present review will describe several animal models of potential intellectual disability risk factors. PMID:21779723
Research and Discovery Science and the Future of Dental Education and Practice.
Polverini, Peter J; Krebsbach, Paul H
2017-09-01
Dental graduates of 2040 will face new and complex challenges. If they are to meet these challenges, dental schools must develop a research and discovery mission that will equip graduates with the new knowledge required to function in a modern health care environment. The dental practitioner of 2040 will place greater emphasis on risk assessment, disease prevention, and health maintenance; and the emerging discipline of precision medicine and systems biology will revolutionize disease diagnosis and reveal new targeted therapies. The dental graduate of 2040 will be expected to function effectively in a collaborative, learning health care system and to understand the impact of health care policy on local, national, and global communities. Emerging scientific fields such as big data analytics, stem cell biology, tissue engineering, and advanced biomimetics will impact dental practice. Despite all the warning signs indicating how the changing scientific and heath care landscape will dramatically alter dental education and dental practice, dental schools have yet to reconsider their research and educational priorities and clinical practice objectives. Until dental schools and the practicing community come to grips with these challenges, this persistent attitude of complacency will likely be at the dental profession's peril. This article was written as part of the project "Advancing Dental Education in the 21 st Century."
Drug promotion practices: A review.
Jacob, Nilan T
2018-01-18
Over the years, the pharmaceutical industry has been at the forefront of research and innovation in drug discovery and development. The process of drug discovery extending from preclinical studies to multicentric clinical trials and postmarketing phase is a costly affair running into billions of dollars. On the flip side, not all investigational molecules clear the trial phases and get approved, which puts pressure on the manufacturers to maximize the profit from approved drugs. It is in this key area that the practice of drug promotion plays its role. The World Health Organization defines drug promotion as "all informational and persuasive activities by manufacturers and distributors, the effect of which is to influence the prescription, supply, purchase or use of medicinal drugs". With its humble intent of creating awareness among healthcare professionals and updating their knowledge on recent advances in treatment options, drug promotion has been an important tool, but gradually it has evolved to embrace aggressive marketing strategies and sometimes unethical business and scientific practices where the need for profit-making eclipses commitment to patient care and scientific exploration. In this review, we discuss the evolution of drug promotion practices, the various types, its merits and demerits, the influence of drug promotion on physician prescribing behaviour, the role of regulatory bodies, unethical promotional practices and finally summarize with future directions. © 2018 The British Pharmacological Society.
A New Student Performance Analysing System Using Knowledge Discovery in Higher Educational Databases
ERIC Educational Resources Information Center
Guruler, Huseyin; Istanbullu, Ayhan; Karahasan, Mehmet
2010-01-01
Knowledge discovery is a wide ranged process including data mining, which is used to find out meaningful and useful patterns in large amounts of data. In order to explore the factors having impact on the success of university students, knowledge discovery software, called MUSKUP, has been developed and tested on student data. In this system a…
DOE R&D Accomplishments Database
2011-06-01
For the past two-and-a-half decades, the Office of Science at the U.S. Department of Energy has been at the forefront of scientific discovery. Over 100 important discoveries supported by the Office of Science are represented in this document.
Knowledge Discovery in Databases.
ERIC Educational Resources Information Center
Norton, M. Jay
1999-01-01
Knowledge discovery in databases (KDD) revolves around the investigation and creation of knowledge, processes, algorithms, and mechanisms for retrieving knowledge from data collections. The article is an introductory overview of KDD. The rationale and environment of its development and applications are discussed. Issues related to database design…
Justifying molecular images in cell biology textbooks: From constructions to primary data.
Serpente, Norberto
2016-02-01
For scientific claims to be reliable and productive they have to be justified. However, on the one hand little is known on what justification precisely means to scientists, and on the other the position held by philosophers of science on what it entails is rather limited; for justifications customarily refer to the written form (textual expressions) of scientific claims, leaving aside images, which, as many cases from the history of science show are relevant to this process. The fact that images can visually express scientific claims independently from text, plus their vast variety and origins, requires an assessment of the way they are currently justified and in turn used as sources to justify scientific claims in the case of particular scientific fields. Similarly, in view of the different nature of images, analysis is required to determine on what side of the philosophical distinction between data and phenomena these different kinds of images fall. This paper historicizes and documents a particular aspect of contemporary life sciences research: the use of the molecular image as vehicle of knowledge production in cell studies, a field that has undergone a significant shift in visual expressions from the early 1980s onwards. Focussing on textbooks as sources that have been overlooked in the historiography of contemporary biomedicine, the aim is to explore (1) whether the shift of cell studies, entailing a superseding of the optical image traditionally conceptualised as primary data, by the molecular image, corresponds with a shift of justificatory practices, and (2) to assess the role of the molecular image as primary data. This paper also explores the dual role of images as teaching resources and as resources for the construction of knowledge in cell studies especially in its relation to discovery and justification. Finally, this paper seeks to stimulate reflection on what kind of archival resources could benefit the work of present and future epistemic historians in particular those interested on the role of images as sources of training and knowledge production in scientific disciplines. Copyright © 2015 Elsevier Ltd. All rights reserved.
An explanation of resisted discoveries based on construal-level theory.
Fang, Hui
2015-02-01
New discoveries and theories are crucial for the development of science, but they are often initially resisted by the scientific community. This paper analyses resistance to scientific discoveries that supplement previous research results or conclusions with new phenomena, such as long chains in macromolecules, Alfvén waves, parity nonconservation in weak interactions and quasicrystals. Construal-level theory is used to explain that the probability of new discoveries may be underestimated because of psychological distance. Thus, the insufficiently examined scope of an accepted theory may lead to overstating the suitable scope and underestimating the probability of its undiscovered counter-examples. Therefore, psychological activity can result in people instinctively resisting new discoveries. Direct evidence can help people judge the validity of a hypothesis with rational thinking. The effects of authorities and textbooks on the resistance to discoveries are also discussed. From the results of our analysis, suggestions are provided to reduce resistance to real discoveries, which will benefit the development of science.
Fang, Ferric C.
2016-01-01
ABSTRACT On rare occasions in the history of science, remarkable discoveries transform human society and forever alter mankind’s view of the world. Examples of such discoveries include the heliocentric theory, Newtonian physics, the germ theory of disease, quantum theory, plate tectonics and the discovery that DNA carries genetic information. The science philosopher Thomas Kuhn famously described science as long periods of normality punctuated by times of crisis, when anomalous observations culminate in revolutionary changes that replace one paradigm with another. This essay examines several transformative discoveries in the light of Kuhn’s formulation. We find that each scientific revolution is unique, with disparate origins that may include puzzle solving, serendipity, inspiration, or a convergence of disparate observations. The causes of revolutionary science are varied and lack an obvious common structure. Moreover, it can be difficult to draw a clear distinction between so-called normal and revolutionary science. Revolutionary discoveries often emerge from basic science and are critically dependent on nonrevolutionary research. Revolutionary discoveries may be conceptual or technological in nature, lead to the creation of new fields, and have a lasting impact on many fields in addition to the field from which they emerge. In contrast to political revolutions, scientific revolutions do not necessarily require the destruction of the previous order. For humanity to continue to benefit from revolutionary discoveries, a broad palette of scientific inquiry with a particular emphasis on basic science should be supported. PMID:26933052
Casadevall, Arturo; Fang, Ferric C
2016-03-01
On rare occasions in the history of science, remarkable discoveries transform human society and forever alter mankind's view of the world. Examples of such discoveries include the heliocentric theory, Newtonian physics, the germ theory of disease, quantum theory, plate tectonics and the discovery that DNA carries genetic information. The science philosopher Thomas Kuhn famously described science as long periods of normality punctuated by times of crisis, when anomalous observations culminate in revolutionary changes that replace one paradigm with another. This essay examines several transformative discoveries in the light of Kuhn's formulation. We find that each scientific revolution is unique, with disparate origins that may include puzzle solving, serendipity, inspiration, or a convergence of disparate observations. The causes of revolutionary science are varied and lack an obvious common structure. Moreover, it can be difficult to draw a clear distinction between so-called normal and revolutionary science. Revolutionary discoveries often emerge from basic science and are critically dependent on nonrevolutionary research. Revolutionary discoveries may be conceptual or technological in nature, lead to the creation of new fields, and have a lasting impact on many fields in addition to the field from which they emerge. In contrast to political revolutions, scientific revolutions do not necessarily require the destruction of the previous order. For humanity to continue to benefit from revolutionary discoveries, a broad palette of scientific inquiry with a particular emphasis on basic science should be supported. Copyright © 2016 Casadevall and Fang.
From scientific discovery to cures: bright stars within a galaxy.
Williams, R Sanders; Lotia, Samad; Holloway, Alisha K; Pico, Alexander R
2015-09-24
We propose that data mining and network analysis utilizing public databases can identify and quantify relationships between scientific discoveries and major advances in medicine (cures). Further development of such approaches could help to increase public understanding and governmental support for life science research and could enhance decision making in the quest for cures. Copyright © 2015 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Arya, Diana J.; Maul, Andrew
2012-01-01
In an experimental study (N = 209), the authors compared the effects of exposure to typical middle-school written science content when presented in the context of the scientific discovery narrative and when presented in a more traditional nonnarrative format on 7th and 8th grade students in the United States. The development of texts was…
Neuropsychiatrie of biologische psychiatrie; een toekomstvisie in historisch perspectief.
Verhoeven, W M; Tuinier, S
1999-06-01
Neuropsychiatry or Biological Psychiatry There is an urgent need to reconsider the position of psychiatry within the neurosciences because of the exploding knowledge about the relationship between brain and behaviour and the delay in implementation of new findings due to the separation of neurology and psychiatry. Biological psychiatry and psychopharmacology originate from the discovery by chance of psycho-active compounds in the early fifties and have contributed to the scientification of psychiatry. The impact of biological psychiatry for the pathophysiology of psychiatric disorders, however, is limited as a result of its biased orientation on neurotransmitters and receptors. The neuropsychiatric paradigm integrates knowledge from several domains, such as functional neuroanatomy, genetics and endocrinology and opens new vistas for the involvement of neuronal circuits in the initiation and maintenance of behavioural disturbances. In addition, novel and more specific treatment modalities may emerge.
NSF's Perspective on Space Weather Research for Building Forecasting Capabilities
NASA Astrophysics Data System (ADS)
Bisi, M. M.; Pulkkinen, A. A.; Bisi, M. M.; Pulkkinen, A. A.; Webb, D. F.; Oughton, E. J.; Azeem, S. I.
2017-12-01
Space weather research at the National Science Foundation (NSF) is focused on scientific discovery and on deepening knowledge of the Sun-Geospace system. The process of maturation of knowledge base is a requirement for the development of improved space weather forecast models and for the accurate assessment of potential mitigation strategies. Progress in space weather forecasting requires advancing in-depth understanding of the underlying physical processes, developing better instrumentation and measurement techniques, and capturing the advancements in understanding in large-scale physics based models that span the entire chain of events from the Sun to the Earth. This presentation will provide an overview of current and planned programs pertaining to space weather research at NSF and discuss the recommendations of the Geospace Section portfolio review panel within the context of space weather forecasting capabilities.
Discovery in Science and in Teaching Science
ERIC Educational Resources Information Center
Kipnis, Nahum
2007-01-01
A proper presentation of scientific discoveries may allow science teachers to eliminate certain myths about the nature of science, which originate from an uncertainty among scholars about what constitutes a discovery. It is shown that a disagreement on this matter originates from a confusion of the act of discovery with response to it. It is…
Makers of Modern Science. Volume 9, Linus Pauling: Scientist and Advocate by David E. Newton
NASA Astrophysics Data System (ADS)
Kauffman, George B.; Kauffman, Laurie M.
1997-04-01
Facts on File: New York, 1994. 136 pp. Figs. and photos. 15.0 x 22.6 cm. $16.95 Makers of Modern Science, a series of biographies (available on standing order at a 20% discount), explores the lives and achievements of scientists who have made the greatest contributions to human knowledge during the 19th and 20th centuries. Each scientist's achievements, including underlying scientific principles, are discussed simply and clearly and are free of technical jargon. Drawing on primary sources such as diaries, memoirs, letters, and contemporary news stories, as well as secondary sources, each volume depicts the human drama of scientific work, the excitement and frustration of research, and the exhilaration and rewards of discovery. Each book, which includes black-and-white photographs, diagrams, an annotated bibliography, and a detailed index, contains a final chapter summarizing the legacy of the scientist's achievements.
2017-12-08
Dr. Robert Weems, emeritus paleontologist for the USGS verifies the recently discovered dinosaur track found on the NASA Goddard Space Flight Center campus. This imprint shows the right rear foot of a nodosaur - a low-slung, spiny leaf-eater - apparently moving in haste as the heel did not fully settle in the cretaceous mud, according to dinosaur tracker Ray Stanford. It was found recently on NASA's Goddard Space Flight Center campus and is being preserved for study. To read more about this discovery go to: 1.usa.gov/P9NYg7 Credit: NASA/GSFC/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2017-12-08
Dinosaur tracker Ray Stanford describes the cretaceous-era nodosaur track he found on the Goddard Space Flight Center campus with Dr. Robert Weems, emeritus paleontologist for the USGS who verified his discovery. This imprint shows the right rear foot of a nodosaur - a low-slung, spiny leaf-eater - apparently moving in haste as the heel did not fully settle in the cretaceous mud, according to dinosaur tracker Ray Stanford. It was found recently on NASA's Goddard Space Flight Center campus and is being preserved for study. To read more go to: 1.usa.gov/P9NYg7 Credit: NASA/GSFC/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2012-08-23
Dr. Robert Weems, emeritus paleontologist for the USGS verifies the recently discovered dinosaur track found on the NASA Goddard Space Flight Center campus. This imprint shows the right rear foot of a nodosaur - a low-slung, spiny leaf-eater - apparently moving in haste as the heel did not fully settle in the cretaceous mud, according to dinosaur tracker Ray Stanford. It was found recently on NASA's Goddard Space Flight Center campus and is being preserved for study. To read more about this discovery go to: 1.usa.gov/P9NYg7 Credit: NASA/GSFC/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2012-08-23
Dinosaur tracker Ray Stanford describes the cretaceous-era nodosaur track he found on the Goddard Space Flight Center campus this year. The imprint shows the right rear foot of a nodosaur - a low-slung, spiny leaf-eater - apparently moving in haste as the heel did not fully settle in the cretaceous mud, according to dinosaur tracker Ray Stanford. It was found recently on NASA's Goddard Space Flight Center campus and is being preserved for study. To read more about this discovery go to: 1.usa.gov/P9NYg7 Credit: NASA/GSFC/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Antimycobacterial Metabolites from Marine Invertebrates.
Daletos, Georgios; Ancheeva, Elena; Chaidir, Chaidir; Kalscheuer, Rainer; Proksch, Peter
2016-10-01
Marine organisms play an important role in natural product-based drug research due to accumulation of structurally unique and bioactive metabolites. The exploration of marine-derived compounds may significantly extend the scientific knowledge of potential scaffolds for antibiotic drug discovery. Development of novel antitubercular agents is especially significant as the emergence of drug-resistant Mycobacterium tuberculosis strains remains threateningly high. Marine invertebrates (i.e., sponges, corals, gorgonians) as a source of new chemical entities are the center of research for several scientific groups, and the wide spectrum of biological activities of marine-derived compounds encourages scientists to carry out investigations in the field of antibiotic research, including tuberculosis treatment. The present review covers published data on antitubercular natural products from marine invertebrates grouped according to their biogenetic origin. Studies on the structure-activity relationships of these important leads are highlighted as well. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Crisino, Rebecca M; Geist, Brian; Li, Jian
2012-09-01
The American Association of Pharmaceutical Scientists (AAPS) is an international forum for the exchange of knowledge among scientists to enhance their contributions to drug development. The annual National Biotechnology Conference, organized by the AAPS on 21-23 May 2012 in San Diego, CA, USA, brings together experts from various disciplines representing private industry, academia and governing institutions dedicated toward advancing the scientific and technological progress related to discovery, development and manufacture of medical biotechnology products. Over 300 scientific poster presentations and approximately 50 oral presentation and discussion sessions examined a breadth of topics pertaining to biotechnology drug development, such as the advancement of vaccines and biosimilars, emerging and innovative technologies, nonclinical and clinical bioanalysis, and regulatory updates. This conference report highlights the existing challenges with ligand-binding assays, emerging challenges, innovative integration of various technology platforms and applicable regulatory considerations as they relate to immunogenicity and pharmacokinetic bioanalytical assessments.
NASA Astrophysics Data System (ADS)
Kalogera, Vicky
2017-04-01
Scientific discovery is often perceived as associated with a single act of genius or a moment in time that changes one's thinking and scientific discourse. Most scientists know that this perception is almost always far from reality. Scientific discovery is reached through long, persistent effort from groups of people who are willing to take risks and are not afraid to fail. Equally important is that funders of scientific research appreciate the need for such persistent effort and do not look only for easily identifiable, short-term benefits. We may occasionally recognize historic 'moments', but these often occur because of the less famous but equally important advances that came before, often over decades of work.
Fox, Caroline S; Hall, Jennifer L; Arnett, Donna K; Ashley, Euan A; Delles, Christian; Engler, Mary B; Freeman, Mason W; Johnson, Julie A; Lanfear, David E; Liggett, Stephen B; Lusis, Aldons J; Loscalzo, Joseph; MacRae, Calum A; Musunuru, Kiran; Newby, L Kristin; O'Donnell, Christopher J; Rich, Stephen S; Terzic, Andre
2015-05-12
The field of genetics and genomics has advanced considerably with the achievement of recent milestones encompassing the identification of many loci for cardiovascular disease and variable drug responses. Despite this achievement, a gap exists in the understanding and advancement to meaningful translation that directly affects disease prevention and clinical care. The purpose of this scientific statement is to address the gap between genetic discoveries and their practical application to cardiovascular clinical care. In brief, this scientific statement assesses the current timeline for effective translation of basic discoveries to clinical advances, highlighting past successes. Current discoveries in the area of genetics and genomics are covered next, followed by future expectations, tools, and competencies for achieving the goal of improving clinical care. © 2015 American Heart Association, Inc.
The discovery of viruses: advancing science and medicine by challenging dogma.
Artenstein, Andrew W
2012-07-01
The discovery of viruses in the final years of the nineteenth century represented the culmination of two decades of work on tobacco mosaic disease by three botanical scientists. Eventually their discovery led to a paradigm shift in scientific thought, but it took more than 20 years to appreciate its implications because it was inconsistent with the prevailing dogma of the time-Koch's postulates. Although these 'rules' were actually conceived of as guidelines upon which to establish microbial causality and their implementation resulted in many new discoveries, they also had the unintended effect of limiting the interpretation of novel findings. However, by challenging existing dogma through rigorous scientific observation and sheer persistence, the investigators advanced medicine and heralded new areas of discovery. Copyright © 2012 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
A Knowledge Discovery framework for Planetary Defense
NASA Astrophysics Data System (ADS)
Jiang, Y.; Yang, C. P.; Li, Y.; Yu, M.; Bambacus, M.; Seery, B.; Barbee, B.
2016-12-01
Planetary Defense, a project funded by NASA Goddard and the NSF, is a multi-faceted effort focused on the mitigation of Near Earth Object (NEO) threats to our planet. Currently, there exists a dispersion of information concerning NEO's amongst different organizations and scientists, leading to a lack of a coherent system of information to be used for efficient NEO mitigation. In this paper, a planetary defense knowledge discovery engine is proposed to better assist the development and integration of a NEO responding system. Specifically, we have implemented an organized information framework by two means: 1) the development of a semantic knowledge base, which provides a structure for relevant information. It has been developed by the implementation of web crawling and natural language processing techniques, which allows us to collect and store the most relevant structured information on a regular basis. 2) the development of a knowledge discovery engine, which allows for the efficient retrieval of information from our knowledge base. The knowledge discovery engine has been built on the top of Elasticsearch, an open source full-text search engine, as well as cutting-edge machine learning ranking and recommendation algorithms. This proposed framework is expected to advance the knowledge discovery and innovation in planetary science domain.
XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Mid-year report FY17 Q2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth D.; Pugmire, David; Rogers, David
The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less
XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Year-end report FY17.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth D.; Pugmire, David; Rogers, David
The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less
XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem. Mid-year report FY16 Q2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth D.; Sewell, Christopher; Childs, Hank
The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less
XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Year-end report FY15 Q4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth D.; Sewell, Christopher; Childs, Hank
The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less
Translational Research 2.0: a framework for accelerating collaborative discovery.
Asakiewicz, Chris
2014-05-01
The world wide web has revolutionized the conduct of global, cross-disciplinary research. In the life sciences, interdisciplinary approaches to problem solving and collaboration are becoming increasingly important in facilitating knowledge discovery and integration. Web 2.0 technologies promise to have a profound impact - enabling reproducibility, aiding in discovery, and accelerating and transforming medical and healthcare research across the healthcare ecosystem. However, knowledge integration and discovery require a consistent foundation upon which to operate. A foundation should be capable of addressing some of the critical issues associated with how research is conducted within the ecosystem today and how it should be conducted for the future. This article will discuss a framework for enhancing collaborative knowledge discovery across the medical and healthcare research ecosystem. A framework that could serve as a foundation upon which ecosystem stakeholders can enhance the way data, information and knowledge is created, shared and used to accelerate the translation of knowledge from one area of the ecosystem to another.
Williams, Kevin; Bilsland, Elizabeth; Sparkes, Andrew; Aubrey, Wayne; Young, Michael; Soldatova, Larisa N; De Grave, Kurt; Ramon, Jan; de Clare, Michaela; Sirawaraporn, Worachart; Oliver, Stephen G; King, Ross D
2015-03-06
There is an urgent need to make drug discovery cheaper and faster. This will enable the development of treatments for diseases currently neglected for economic reasons, such as tropical and orphan diseases, and generally increase the supply of new drugs. Here, we report the Robot Scientist 'Eve' designed to make drug discovery more economical. A Robot Scientist is a laboratory automation system that uses artificial intelligence (AI) techniques to discover scientific knowledge through cycles of experimentation. Eve integrates and automates library-screening, hit-confirmation, and lead generation through cycles of quantitative structure activity relationship learning and testing. Using econometric modelling we demonstrate that the use of AI to select compounds economically outperforms standard drug screening. For further efficiency Eve uses a standardized form of assay to compute Boolean functions of compound properties. These assays can be quickly and cheaply engineered using synthetic biology, enabling more targets to be assayed for a given budget. Eve has repositioned several drugs against specific targets in parasites that cause tropical diseases. One validated discovery is that the anti-cancer compound TNP-470 is a potent inhibitor of dihydrofolate reductase from the malaria-causing parasite Plasmodium vivax.
Williams, Kevin; Bilsland, Elizabeth; Sparkes, Andrew; Aubrey, Wayne; Young, Michael; Soldatova, Larisa N.; De Grave, Kurt; Ramon, Jan; de Clare, Michaela; Sirawaraporn, Worachart; Oliver, Stephen G.; King, Ross D.
2015-01-01
There is an urgent need to make drug discovery cheaper and faster. This will enable the development of treatments for diseases currently neglected for economic reasons, such as tropical and orphan diseases, and generally increase the supply of new drugs. Here, we report the Robot Scientist ‘Eve’ designed to make drug discovery more economical. A Robot Scientist is a laboratory automation system that uses artificial intelligence (AI) techniques to discover scientific knowledge through cycles of experimentation. Eve integrates and automates library-screening, hit-confirmation, and lead generation through cycles of quantitative structure activity relationship learning and testing. Using econometric modelling we demonstrate that the use of AI to select compounds economically outperforms standard drug screening. For further efficiency Eve uses a standardized form of assay to compute Boolean functions of compound properties. These assays can be quickly and cheaply engineered using synthetic biology, enabling more targets to be assayed for a given budget. Eve has repositioned several drugs against specific targets in parasites that cause tropical diseases. One validated discovery is that the anti-cancer compound TNP-470 is a potent inhibitor of dihydrofolate reductase from the malaria-causing parasite Plasmodium vivax. PMID:25652463
77 FR 45345 - DOE/Advanced Scientific Computing Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-31
... Recompetition results for Scientific Discovery through Advanced Computing (SciDAC) applications Co-design Public... DEPARTMENT OF ENERGY DOE/Advanced Scientific Computing Advisory Committee AGENCY: Office of... the Advanced Scientific Computing Advisory Committee (ASCAC). The Federal Advisory Committee Act (Pub...
Adverse Drug Event Discovery Using Biomedical Literature: A Big Data Neural Network Adventure
Badger, Jonathan; LaRose, Eric; Shirzadi, Ehsan; Mahnke, Andrea; Mayer, John; Ye, Zhan; Page, David; Peissig, Peggy
2017-01-01
Background The study of adverse drug events (ADEs) is a tenured topic in medical literature. In recent years, increasing numbers of scientific articles and health-related social media posts have been generated and shared daily, albeit with very limited use for ADE study and with little known about the content with respect to ADEs. Objective The aim of this study was to develop a big data analytics strategy that mines the content of scientific articles and health-related Web-based social media to detect and identify ADEs. Methods We analyzed the following two data sources: (1) biomedical articles and (2) health-related social media blog posts. We developed an intelligent and scalable text mining solution on big data infrastructures composed of Apache Spark, natural language processing, and machine learning. This was combined with an Elasticsearch No-SQL distributed database to explore and visualize ADEs. Results The accuracy, precision, recall, and area under receiver operating characteristic of the system were 92.7%, 93.6%, 93.0%, and 0.905, respectively, and showed better results in comparison with traditional approaches in the literature. This work not only detected and classified ADE sentences from big data biomedical literature but also scientifically visualized ADE interactions. Conclusions To the best of our knowledge, this work is the first to investigate a big data machine learning strategy for ADE discovery on massive datasets downloaded from PubMed Central and social media. This contribution illustrates possible capacities in big data biomedical text analysis using advanced computational methods with real-time update from new data published on a daily basis. PMID:29222076
Multi-year Content Analysis of User Facility Related Publications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patton, Robert M; Stahl, Christopher G; Hines, Jayson
2013-01-01
Scientific user facilities provide resources and support that enable scientists to conduct experiments or simulations pertinent to their respective research. Consequently, it is critical to have an informed understanding of the impact and contributions that these facilities have on scientific discoveries. Leveraging insight into scientific publications that acknowledge the use of these facilities enables more informed decisions by facility management and sponsors in regard to policy, resource allocation, and influencing the direction of science as well as more effectively understand the impact of a scientific user facility. This work discusses preliminary results of mining scientific publications that utilized resources atmore » the Oak Ridge Leadership Computing Facility (OLCF) at Oak Ridge National Laboratory (ORNL). These results show promise in identifying and leveraging multi-year trends and providing a higher resolution view of the impact that a scientific user facility may have on scientific discoveries.« less
Ahmed, Wamiq M; Lenz, Dominik; Liu, Jia; Paul Robinson, J; Ghafoor, Arif
2008-03-01
High-throughput biological imaging uses automated imaging devices to collect a large number of microscopic images for analysis of biological systems and validation of scientific hypotheses. Efficient manipulation of these datasets for knowledge discovery requires high-performance computational resources, efficient storage, and automated tools for extracting and sharing such knowledge among different research sites. Newly emerging grid technologies provide powerful means for exploiting the full potential of these imaging techniques. Efficient utilization of grid resources requires the development of knowledge-based tools and services that combine domain knowledge with analysis algorithms. In this paper, we first investigate how grid infrastructure can facilitate high-throughput biological imaging research, and present an architecture for providing knowledge-based grid services for this field. We identify two levels of knowledge-based services. The first level provides tools for extracting spatiotemporal knowledge from image sets and the second level provides high-level knowledge management and reasoning services. We then present cellular imaging markup language, an extensible markup language-based language for modeling of biological images and representation of spatiotemporal knowledge. This scheme can be used for spatiotemporal event composition, matching, and automated knowledge extraction and representation for large biological imaging datasets. We demonstrate the expressive power of this formalism by means of different examples and extensive experimental results.
Foster, Kenneth R; Skufca, Joseph
2016-01-01
Is there a Cheshire Cat in science? One might believe so, given the many published scientific discoveries that cannot be independently reproduced. The ?replication crisis? in science has become a widely discussed issue among scientists and the lay media and even has its own entry in Wikipedia.
Storyboards and Science: Introducing the Planetary Data Storyboard
NASA Astrophysics Data System (ADS)
King, T. A.; Del Villar, A.; Alkhawaja, A.; Grayzeck, E. J.; Galica, C.; Odess, J.; Erickson, K. J.
2015-12-01
Every discovery has a story and storytelling is an ancient form of education. The stories of scientific discovery are often very formal and technical and not always very accessible. As in the past, today most scientific storytelling is done as in-person presentations in the form of slide shows or movies that unfold according to the design of its author. Things have changed. Using today's technologies telling stories can be a rich multi-media experience with a blending of text, animations, movies and infographics. Also, with presentations on the web the presentation can provide links to more details and the audience (reader) can jump to the linked information. Even so, the most common form of today's storytelling is as a narrative that starts with a page, a link to a single movie or a slide-show. We introduce a new promising form of scientific storytelling, the storyboard. With a storyboard a story is presented as a set of panels that contain representative images of an event and may have associated notes or instructions. The panels are arranged in a timeline that allow the audience to experience the discovery in the same way it occurred. A panel can also link to a more detailed source such as a publication, the data that was collected or items derived from the research (like movies or animations). Scientific storyboards can make science discovery more accessible to people by presenting events in an easy to follow layout. Scientific storyboards can also help to teach the scientific method, by following the experiences of a researcher as they investigate a phenomenon or try to understand a new set of observations. We illustrate the unique features of scientific storyboards with the Planetary Data Storyboard using data archived by the Planetary Data System.
ERIC Educational Resources Information Center
Weeber, Marc; Klein, Henny; de Jong-van den Berg, Lolkje T. W.; Vos, Rein
2001-01-01
Proposes a two-step model of discovery in which new scientific hypotheses can be generated and subsequently tested. Applying advanced natural language processing techniques to find biomedical concepts in text, the model is implemented in a versatile interactive discovery support tool. This tool is used to successfully simulate Don R. Swanson's…
Knowledge Discovery from Biomedical Ontologies in Cross Domains.
Shen, Feichen; Lee, Yugyung
2016-01-01
In recent years, there is an increasing demand for sharing and integration of medical data in biomedical research. In order to improve a health care system, it is required to support the integration of data by facilitating semantic interoperability systems and practices. Semantic interoperability is difficult to achieve in these systems as the conceptual models underlying datasets are not fully exploited. In this paper, we propose a semantic framework, called Medical Knowledge Discovery and Data Mining (MedKDD), that aims to build a topic hierarchy and serve the semantic interoperability between different ontologies. For the purpose, we fully focus on the discovery of semantic patterns about the association of relations in the heterogeneous information network representing different types of objects and relationships in multiple biological ontologies and the creation of a topic hierarchy through the analysis of the discovered patterns. These patterns are used to cluster heterogeneous information networks into a set of smaller topic graphs in a hierarchical manner and then to conduct cross domain knowledge discovery from the multiple biological ontologies. Thus, patterns made a greater contribution in the knowledge discovery across multiple ontologies. We have demonstrated the cross domain knowledge discovery in the MedKDD framework using a case study with 9 primary biological ontologies from Bio2RDF and compared it with the cross domain query processing approach, namely SLAP. We have confirmed the effectiveness of the MedKDD framework in knowledge discovery from multiple medical ontologies.
Knowledge Discovery from Biomedical Ontologies in Cross Domains
Shen, Feichen; Lee, Yugyung
2016-01-01
In recent years, there is an increasing demand for sharing and integration of medical data in biomedical research. In order to improve a health care system, it is required to support the integration of data by facilitating semantic interoperability systems and practices. Semantic interoperability is difficult to achieve in these systems as the conceptual models underlying datasets are not fully exploited. In this paper, we propose a semantic framework, called Medical Knowledge Discovery and Data Mining (MedKDD), that aims to build a topic hierarchy and serve the semantic interoperability between different ontologies. For the purpose, we fully focus on the discovery of semantic patterns about the association of relations in the heterogeneous information network representing different types of objects and relationships in multiple biological ontologies and the creation of a topic hierarchy through the analysis of the discovered patterns. These patterns are used to cluster heterogeneous information networks into a set of smaller topic graphs in a hierarchical manner and then to conduct cross domain knowledge discovery from the multiple biological ontologies. Thus, patterns made a greater contribution in the knowledge discovery across multiple ontologies. We have demonstrated the cross domain knowledge discovery in the MedKDD framework using a case study with 9 primary biological ontologies from Bio2RDF and compared it with the cross domain query processing approach, namely SLAP. We have confirmed the effectiveness of the MedKDD framework in knowledge discovery from multiple medical ontologies. PMID:27548262
Knowledge discovery with classification rules in a cardiovascular dataset.
Podgorelec, Vili; Kokol, Peter; Stiglic, Milojka Molan; Hericko, Marjan; Rozman, Ivan
2005-12-01
In this paper we study an evolutionary machine learning approach to data mining and knowledge discovery based on the induction of classification rules. A method for automatic rules induction called AREX using evolutionary induction of decision trees and automatic programming is introduced. The proposed algorithm is applied to a cardiovascular dataset consisting of different groups of attributes which should possibly reveal the presence of some specific cardiovascular problems in young patients. A case study is presented that shows the use of AREX for the classification of patients and for discovering possible new medical knowledge from the dataset. The defined knowledge discovery loop comprises a medical expert's assessment of induced rules to drive the evolution of rule sets towards more appropriate solutions. The final result is the discovery of a possible new medical knowledge in the field of pediatric cardiology.
Center for Center for Technology for Advanced Scientific Component Software (TASCS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostadin, Damevski
A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technologymore » for Advanced Scientific Component Software (TASCS)1 tackles these these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.« less
Progress in Biomedical Knowledge Discovery: A 25-year Retrospective
Sacchi, L.
2016-01-01
Summary Objectives We sought to explore, via a systematic review of the literature, the state of the art of knowledge discovery in biomedical databases as it existed in 1992, and then now, 25 years later, mainly focused on supervised learning. Methods We performed a rigorous systematic search of PubMed and latent Dirichlet allocation to identify themes in the literature and trends in the science of knowledge discovery in and between time periods and compare these trends. We restricted the result set using a bracket of five years previous, such that the 1992 result set was restricted to articles published between 1987 and 1992, and the 2015 set between 2011 and 2015. This was to reflect the current literature available at the time to researchers and others at the target dates of 1992 and 2015. The search term was framed as: Knowledge Discovery OR Data Mining OR Pattern Discovery OR Pattern Recognition, Automated. Results A total 538 and 18,172 documents were retrieved for 1992 and 2015, respectively. The number and type of data sources increased dramatically over the observation period, primarily due to the advent of electronic clinical systems. The period 1992-2015 saw the emergence of new areas of research in knowledge discovery, and the refinement and application of machine learning approaches that were nascent or unknown in 1992. Conclusions Over the 25 years of the observation period, we identified numerous developments that impacted the science of knowledge discovery, including the availability of new forms of data, new machine learning algorithms, and new application domains. Through a bibliometric analysis we examine the striking changes in the availability of highly heterogeneous data resources, the evolution of new algorithmic approaches to knowledge discovery, and we consider from legal, social, and political perspectives possible explanations of the growth of the field. Finally, we reflect on the achievements of the past 25 years to consider what the next 25 years will bring with regard to the availability of even more complex data and to the methods that could be, and are being now developed for the discovery of new knowledge in biomedical data. PMID:27488403
Progress in Biomedical Knowledge Discovery: A 25-year Retrospective.
Sacchi, L; Holmes, J H
2016-08-02
We sought to explore, via a systematic review of the literature, the state of the art of knowledge discovery in biomedical databases as it existed in 1992, and then now, 25 years later, mainly focused on supervised learning. We performed a rigorous systematic search of PubMed and latent Dirichlet allocation to identify themes in the literature and trends in the science of knowledge discovery in and between time periods and compare these trends. We restricted the result set using a bracket of five years previous, such that the 1992 result set was restricted to articles published between 1987 and 1992, and the 2015 set between 2011 and 2015. This was to reflect the current literature available at the time to researchers and others at the target dates of 1992 and 2015. The search term was framed as: Knowledge Discovery OR Data Mining OR Pattern Discovery OR Pattern Recognition, Automated. A total 538 and 18,172 documents were retrieved for 1992 and 2015, respectively. The number and type of data sources increased dramatically over the observation period, primarily due to the advent of electronic clinical systems. The period 1992- 2015 saw the emergence of new areas of research in knowledge discovery, and the refinement and application of machine learning approaches that were nascent or unknown in 1992. Over the 25 years of the observation period, we identified numerous developments that impacted the science of knowledge discovery, including the availability of new forms of data, new machine learning algorithms, and new application domains. Through a bibliometric analysis we examine the striking changes in the availability of highly heterogeneous data resources, the evolution of new algorithmic approaches to knowledge discovery, and we consider from legal, social, and political perspectives possible explanations of the growth of the field. Finally, we reflect on the achievements of the past 25 years to consider what the next 25 years will bring with regard to the availability of even more complex data and to the methods that could be, and are being now developed for the discovery of new knowledge in biomedical data.
Leaps in the Dark - The making of scientific reputations
NASA Astrophysics Data System (ADS)
Waller, John
2004-12-01
In Leaps in the Dark , John Waller presents another collection of revelations from the world of science. He considers experiments in which the scientists' awareness was not perhaps as keen as they might have claimed in retrospect; he investigates the jealousy and opposition that scientific ideas can provoke; he celebrates the scientists who were wrong, but for very good reasons; and he demonstrates how national interest can affect scientists and their theories. The result is an entertaining and highly readable re-examination of scientific discoveries and reputations from the Renaissance to the twentieth century. The tales in Leaps in the Dark range across a wide historical field, from a seventeenth-century witch-finder, Joseph Glanvill, to Sir Robert Watson-Watt, the self-proclaimed 'Father of radar'. Each story underscores the rich, fascinating complexity of scientific discovery. Writing in a clear and engaging style, and skilfully weaving history in with the science, John Waller brings these scientists to life, illustrating how their work and their discoveries influenced their careers and the wider world around them.
Kieburtz, Karl; Olanow, C Warren
2007-04-01
In the past decade, there has been an increasing emphasis on laboratory-based translational research. This has led to significant scientific advances in our understanding of disease mechanisms and in the development of novel approaches to therapy such as gene therapy, RNA interference, and stem cells. However, the translation of these remarkable scientific achievements into new and effective disease-modifying therapies has lagged behind these scientific accomplishments. We use the term "translational experimental therapeutics" to describe the pathway between the discovery of a basic disease mechanism or novel therapeutic approach and its translation into an effective treatment for patients with a specific disease. In this article, we review the components of this pathway, and discuss issues that might impede this process. Only by optimizing this pathway can we realize the full therapeutic potential of current scientific discoveries and translate the astounding advances that have been accomplished in the laboratory into effective treatments for our patients. Copyright (c) 2007 Mount Sinai School of Medicine.
Policy forum. Data, privacy, and the greater good.
Horvitz, Eric; Mulligan, Deirdre
2015-07-17
Large-scale aggregate analyses of anonymized data can yield valuable results and insights that address public health challenges and provide new avenues for scientific discovery. These methods can extend our knowledge and provide new tools for enhancing health and wellbeing. However, they raise questions about how to best address potential threats to privacy while reaping benefits for individuals and to society as a whole. The use of machine learning to make leaps across informational and social contexts to infer health conditions and risks from nonmedical data provides representative scenarios for reflections on directions with balancing innovation and regulation. Copyright © 2015, American Association for the Advancement of Science.
Endosperm: food for humankind and fodder for scientific discoveries.
Li, Jing; Berger, Frédéric
2012-07-01
The endosperm is an essential constituent of seeds in flowering plants. It originates from a fertilization event parallel to the fertilization that gives rise to the embryo. The endosperm nurtures embryo development and, in some species including cereals, stores the seed reserves and represents a major source of food for humankind. Endosperm biology is characterized by specific features, including idiosyncratic cellular controls of cell division and epigenetic controls associated with parental genomic imprinting. This review attempts a comprehensive summary of our current knowledge of endosperm development and highlights recent advances in this field. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
NASA Technical Reports Server (NTRS)
Centrella, Joan M.
2011-01-01
The Laser Interferometer Space Antenna (LISA) is a space-borne observatory that will open the low frequency (approx.0.1-100 mHz) gravitational wave window on the universe. LISA will observe a rich variety of gravitational wave sources, including mergers of massive black holes, captures of stellar black holes by massive black holes in the centers of galaxies, and compact Galactic binaries. These sources are generally long-lived, providing unprecedented opportunities for multi-messenger astronomy in the transient sky. This talk will present an overview of these scientific arenas, highlighting how LISA will enable stunning discoveries in origins, understanding the cosmic order, and the frontiers of knowledge.
Research Dilemmas with Behavioral Big Data.
Shmueli, Galit
2017-06-01
Behavioral big data (BBD) refers to very large and rich multidimensional data sets on human and social behaviors, actions, and interactions, which have become available to companies, governments, and researchers. A growing number of researchers in social science and management fields acquire and analyze BBD for the purpose of extracting knowledge and scientific discoveries. However, the relationships between the researcher, data, subjects, and research questions differ in the BBD context compared to traditional behavioral data. Behavioral researchers using BBD face not only methodological and technical challenges but also ethical and moral dilemmas. In this article, we discuss several dilemmas, challenges, and trade-offs related to acquiring and analyzing BBD for causal behavioral research.
[Historical stages of Hemolytic Uremic Syndrome in Argentina (1964-2009)].
Belardo, Marcela
2012-10-01
The aim is to present an historical time frame of Hemolytic Uremic Syndrome (HUS) in Argentina. From a public policy approach, the history of the disease is analyzed as an object of health policy and seeks to contribute in understanding the multiple dimensions of illness. As a medical and scientific issue, as a social problem and a matter of health policy, the article describes three phases ranging from its discovery up to the national program of HUS adopted in 2009. This article aims to provide an overview of developments in biomedical knowledge and the emergence of the issue in both social and political problem.
Global health and the global economic crisis.
Benatar, Solomon R; Gill, Stephen; Bakker, Isabella
2011-04-01
Although the resources and knowledge for achieving improved global health exist, a new, critical paradigm on health as an aspect of human development, human security, and human rights is needed. Such a shift is required to sufficiently modify and credibly reduce the present dominance of perverse market forces on global health. New scientific discoveries can make wide-ranging contributions to improved health; however, improved global health depends on achieving greater social justice, economic redistribution, and enhanced democratization of production, caring social institutions for essential health care, education, and other public goods. As with the quest for an HIV vaccine, the challenge of improved global health requires an ambitious multidisciplinary research program.
"Discoveries in Planetary Sciences": Slide Sets Highlighting New Advances for Astronomy Educators
NASA Astrophysics Data System (ADS)
Brain, D. A.; Schneider, N. M.; Beyer, R. A.
2010-12-01
Planetary science is a field that evolves rapidly, motivated by spacecraft mission results. Exciting new mission results are generally communicated rather quickly to the public in the form of press releases and news stories, but it can take several years for new advances to work their way into college textbooks. Yet it is important for students to have exposure to these new advances for a number of reasons. In some cases, new work renders older textbook knowledge incorrect or incomplete. In some cases, new discoveries make it possible to emphasize older textbook knowledge in a new way. In all cases, new advances provide exciting and accessible examples of the scientific process in action. To bridge the gap between textbooks and new advances in planetary sciences we have developed content on new discoveries for use by undergraduate instructors. Called 'Discoveries in Planetary Sciences', each new discovery is summarized in a 3-slide PowerPoint presentation. The first slide describes the discovery, the second slide discusses the underlying planetary science concepts, and the third presents the big picture implications of the discovery. A fourth slide includes links to associated press releases, images, and primary sources. This effort is generously sponsored by the Division for Planetary Sciences of the American Astronomical Society, and the slide sets are available at http://dps.aas.org/education/dpsdisc/. Sixteen slide sets have been released so far covering topics spanning all sub-disciplines of planetary science. Results from the following spacecraft missions have been highlighted: MESSENGER, the Spirit and Opportunity rovers, Cassini, LCROSS, EPOXI, Chandrayan, Mars Reconnaissance Orbiter, Mars Express, and Venus Express. Additionally, new results from Earth-orbiting and ground-based observing platforms and programs such as Hubble, Keck, IRTF, the Catalina Sky Survey, HARPS, MEarth, Spitzer, and amateur astronomers have been highlighted. 4-5 new slide sets are scheduled for release before December 2010. In this presentation we will discuss our motivation for this project, our implementation approach (from choosing topics to creating the slide sets, to getting them reviewed and released), and give examples of slide sets. We will present information in the form of web statistics on how many educators are using the slide sets, and which topics are most popular. We will also present feedback from educators who have used them in the classroom, and possible new directions for our activity.
Communication in Collaborative Discovery Learning
ERIC Educational Resources Information Center
Saab, Nadira; van Joolingen, Wouter R.; van Hout-Wolters, Bernadette H. A. M.
2005-01-01
Background: Constructivist approaches to learning focus on learning environments in which students have the opportunity to construct knowledge themselves, and negotiate this knowledge with others. "Discovery learning" and "collaborative learning" are examples of learning contexts that cater for knowledge construction processes. We introduce a…
Practice-Based Knowledge Discovery for Comparative Effectiveness Research: An Organizing Framework
Lucero, Robert J.; Bakken, Suzanne
2014-01-01
Electronic health information systems can increase the ability of health-care organizations to investigate the effects of clinical interventions. The authors present an organizing framework that integrates outcomes and informatics research paradigms to guide knowledge discovery in electronic clinical databases. They illustrate its application using the example of hospital acquired pressure ulcers (HAPU). The Knowledge Discovery through Informatics for Comparative Effectiveness Research (KDI-CER) framework was conceived as a heuristic to conceptualize study designs and address potential methodological limitations imposed by using a single research perspective. Advances in informatics research can play a complementary role in advancing the field of outcomes research including CER. The KDI-CER framework can be used to facilitate knowledge discovery from routinely collected electronic clinical data. PMID:25278645
Translational research: understanding the continuum from bench to bedside.
Drolet, Brian C; Lorenzi, Nancy M
2011-01-01
The process of translating basic scientific discoveries to clinical applications, and ultimately to public health improvements, has emerged as an important, but difficult, objective in biomedical research. The process is best described as a "translation continuum" because various resources and actions are involved in this progression of knowledge, which advances discoveries from the bench to the bedside. The current model of this continuum focuses primarily on translational research, which is merely one component of the overall translation process. This approach is ineffective. A revised model to address the entire continuum would provide a methodology to identify and describe all translational activities (eg, implementation, adoption translational research, etc) as well their place within the continuum. This manuscript reviews and synthesizes the literature to provide an overview of the current terminology and model for translation. A modification of the existing model is proposed to create a framework called the Biomedical Research Translation Continuum, which defines the translation process and describes the progression of knowledge from laboratory to health gains. This framework clarifies translation for readers who have not followed the evolving and complicated models currently described. Authors and researchers may use the continuum to understand and describe their research better as well as the translational activities within a conceptual framework. Additionally, the framework may increase the advancement of knowledge by refining discussions of translation and allowing more precise identification of barriers to progress. Copyright © 2011 Mosby, Inc. All rights reserved.
The Earth expansion theory and its transition from scientific hypothesis to pseudoscientific belief
NASA Astrophysics Data System (ADS)
Sudiro, P.
2014-06-01
During the first half of 20th century, the dominant global tectonics model based on Earth contraction had increasing problems accommodating new geological evidence, with the result that alternative geodynamic theories were investigated. Due to the level of scientific knowledge and the limited amount of data available in many scientific disciplines at the time, not only was contractionism considered a valid scientific theory but the debate also included expansionism, mobilism on a fixed-dimension planet, or various combinations of these geodynamic hypotheses. Geologists and physicists generally accepted that planets could change their dimensions, although the change of volume was generally believed to happen because of a contraction, not an expansion. Constant generation of new matter in the universe was a possibility accepted by science, as it was the variation in the cosmological constants. Continental drift, instead, was a more heterodox theory, requiring a larger effort from the geoscientists to be accepted. The new geological data collected in the following decades, an improved knowledge of the physical processes, the increased resolution and penetration of geophysical tools, and the sensitivity of measurements in physics decreased the uncertainty level in many fields of science. Theorists now had less freedom for speculation because their theories had to accommodate more data, and more limiting conditions to respect. This explains the rapid replacement of contracting Earth, expanding Earth, and continental drift theories by plate tectonics once the symmetrical oceanic magnetic striping was discovered, because none of the previous models could explain and incorporate the new oceanographic and geophysical data. Expansionism could survive after the introduction of plate tectonics because its proponents have increasingly detached their theory from reality by systematically rejecting or overlooking any contrary evidence, and selectively picking only the data that support expansion. Moreover, the proponents continue to suggest imaginative physical mechanisms to explain expansion, claiming that scientific knowledge is partial, and the many inconsistencies of their theory are just minor problems in the face of the plain evidence of expansion. According to the expansionists, scientists should just wait for some revolutionary discovery in fundamental physics that will explain all the unsolved mysteries of Earth expansion. The history of the expanding-Earth theory is an example of how falsified scientific hypotheses can survive their own failure, gradually shifting towards and beyond the limits of scientific investigation until they become merely pseudoscientific beliefs.
Building Knowledge Graphs for NASA's Earth Science Enterprise
NASA Astrophysics Data System (ADS)
Zhang, J.; Lee, T. J.; Ramachandran, R.; Shi, R.; Bao, Q.; Gatlin, P. N.; Weigel, A. M.; Maskey, M.; Miller, J. J.
2016-12-01
Inspired by Google Knowledge Graph, we have been building a prototype Knowledge Graph for Earth scientists, connecting information and data in NASA's Earth science enterprise. Our primary goal is to advance the state-of-the-art NASA knowledge extraction capability by going beyond traditional catalog search and linking different distributed information (such as data, publications, services, tools and people). This will enable a more efficient pathway to knowledge discovery. While Google Knowledge Graph provides impressive semantic-search and aggregation capabilities, it is limited to search topics for general public. We use the similar knowledge graph approach to semantically link information gathered from a wide variety of sources within the NASA Earth Science enterprise. Our prototype serves as a proof of concept on the viability of building an operational "knowledge base" system for NASA Earth science. Information is pulled from structured sources (such as NASA CMR catalog, GCMD, and Climate and Forecast Conventions) and unstructured sources (such as research papers). Leveraging modern techniques of machine learning, information retrieval, and deep learning, we provide an integrated data mining and information discovery environment to help Earth scientists to use the best data, tools, methodologies, and models available to answer a hypothesis. Our knowledge graph would be able to answer questions like: Which articles discuss topics investigating similar hypotheses? How have these methods been tested for accuracy? Which approaches have been highly cited within the scientific community? What variables were used for this method and what datasets were used to represent them? What processing was necessary to use this data? These questions then lead researchers and citizen scientists to investigate the sources where data can be found, available user guides, information on how the data was acquired, and available tools and models to use with this data. As a proof of concept, we focus on a well-defined domain - Hurricane Science linking research articles and their findings, data, people and tools/services. Modern information retrieval, natural language processing machine learning and deep learning techniques are applied to build the knowledge network.
Four stages of a scientific discipline; four types of scientist.
Shneider, Alexander M
2009-05-01
In this article I propose the classification of the evolutionary stages that a scientific discipline evolves through and the type of scientists that are the most productive at each stage. I believe that each scientific discipline evolves sequentially through four stages. Scientists at stage one introduce new objects and phenomena as subject matter for a new scientific discipline. To do this they have to introduce a new language adequately describing the subject matter. At stage two, scientists develop a toolbox of methods and techniques for the new discipline. Owing to this advancement in methodology, the spectrum of objects and phenomena that fall into the realm of the new science are further understood at this stage. Most of the specific knowledge is generated at the third stage, at which the highest number of original research publications is generated. The majority of third-stage investigation is based on the initial application of new research methods to objects and/or phenomena. The purpose of the fourth stage is to maintain and pass on scientific knowledge generated during the first three stages. Groundbreaking new discoveries are not made at this stage. However, new ways to present scientific information are generated, and crucial revisions are often made of the role of the discipline within the constantly evolving scientific environment. The very nature of each stage determines the optimal psychological type and modus operandi of the scientist operating within it. Thus, it is not only the talent and devotion of scientists that determines whether they are capable of contributing substantially but, rather, whether they have the 'right type' of talent for the chosen scientific discipline at that time. Understanding the four different evolutionary stages of a scientific discipline might be instrumental for many scientists in optimizing their career path, in addition to being useful in assembling scientific teams, precluding conflicts and maximizing productivity. The proposed model of scientific evolution might also be instrumental for society in organizing and managing the scientific process. No public policy aimed at stimulating the scientific process can be equally beneficial for all four stages. Attempts to apply the same criteria to scientists working on scientific disciplines at different stages of their scientific evolution would be stimulating for one and detrimental for another. In addition, researchers operating at a certain stage of scientific evolution might not possess the mindset adequate to evaluate and stimulate a discipline that is at a different evolutionary stage. This could be the reason for suboptimal implementation of otherwise well-conceived scientific policies.
Loguercio, Salvatore; Griffith, Obi L; Nanis, Max; Wu, Chunlei; Su, Andrew I
2014-01-01
Background Molecular signatures for predicting breast cancer prognosis could greatly improve care through personalization of treatment. Computational analyses of genome-wide expression datasets have identified such signatures, but these signatures leave much to be desired in terms of accuracy, reproducibility, and biological interpretability. Methods that take advantage of structured prior knowledge (eg, protein interaction networks) show promise in helping to define better signatures, but most knowledge remains unstructured. Crowdsourcing via scientific discovery games is an emerging methodology that has the potential to tap into human intelligence at scales and in modes unheard of before. Objective The main objective of this study was to test the hypothesis that knowledge linking expression patterns of specific genes to breast cancer outcomes could be captured from players of an open, Web-based game. We envisioned capturing knowledge both from the player’s prior experience and from their ability to interpret text related to candidate genes presented to them in the context of the game. Methods We developed and evaluated an online game called The Cure that captured information from players regarding genes for use as predictors of breast cancer survival. Information gathered from game play was aggregated using a voting approach, and used to create rankings of genes. The top genes from these rankings were evaluated using annotation enrichment analysis, comparison to prior predictor gene sets, and by using them to train and test machine learning systems for predicting 10 year survival. Results Between its launch in September 2012 and September 2013, The Cure attracted more than 1000 registered players, who collectively played nearly 10,000 games. Gene sets assembled through aggregation of the collected data showed significant enrichment for genes known to be related to key concepts such as cancer, disease progression, and recurrence. In terms of the predictive accuracy of models trained using this information, these gene sets provided comparable performance to gene sets generated using other methods, including those used in commercial tests. The Cure is available on the Internet. Conclusions The principal contribution of this work is to show that crowdsourcing games can be developed as a means to address problems involving domain knowledge. While most prior work on scientific discovery games and crowdsourcing in general takes as a premise that contributors have little or no expertise, here we demonstrated a crowdsourcing system that succeeded in capturing expert knowledge. PMID:25654473
Autonomy enables new science missions
NASA Astrophysics Data System (ADS)
Doyle, Richard J.; Gor, Victoria; Man, Guy K.; Stolorz, Paul E.; Chapman, Clark; Merline, William J.; Stern, Alan
1997-01-01
The challenge of space flight in NASA's future is to enable smaller, more frequent and intensive space exploration at much lower total cost without substantially decreasing mission reliability, capability, or the scientific return on investment. The most effective way to achieve this goal is to build intelligent capabilities into the spacecraft themselves. Our technological vision for meeting the challenge of returning quality science through limited communication bandwidth will actually put scientists in a more direct link with the spacecraft than they have enjoyed to date. Technologies such as pattern recognition and machine learning can place a part of the scientist's awareness onboard the spacecraft to prioritize downlink or to autonomously trigger time-critical follow-up observations-particularly important in flyby missions-without ground interaction. Onboard knowledge discovery methods can be used to include candidate discoveries in each downlink for scientists' scrutiny. Such capabilities will allow scientists to quickly reprioritize missions in a much more intimate and efficient manner than is possible today. Ultimately, new classes of exploration missions will be enabled.
Toledo, Jon B.; Van Deerlin, Vivianna M.; Lee, Edward B.; Suh, EunRan; Baek, Young; Robinson, John L.; Xie, Sharon X.; McBride, Jennifer; Wood, Elisabeth M.; Schuck, Theresa; Irwin, David J.; Gross, Rachel G.; Hurtig, Howard; McCluskey, Leo; Elman, Lauren; Karlawish, Jason; Schellenberg, Gerard; Chen-Plotkin, Alice; Wolk, David; Grossman, Murray; Arnold, Steven E.; Shaw, Leslie M.; Lee, Virginia M.-Y.; Trojanowski, John Q.
2014-01-01
Neurodegenerative diseases (NDs) are defined by the accumulation of abnormal protein deposits in the central nervous system (CNS), and only neuropathological examination enables a definitive diagnosis. Brain banks and their associated scientific programs have shaped the actual knowledge of NDs, identifying and characterizing the CNS deposits that define new diseases, formulating staging schemes, and establishing correlations between neuropathological changes and clinical features. However, brain banks have evolved to accommodate the banking of biofluids as well as DNA and RNA samples. Moreover, the value of biobanks is greatly enhanced if they link all the multidimensional clinical and laboratory information of each case, which is accomplished, optimally, using systematic and standardized operating procedures, and in the framework of multidisciplinary teams with the support of a flexible and user-friendly database system that facilitates the sharing of information of all the teams in the network. We describe a biobanking system that is a platform for discovery research at the Center for Neurodegenerative Disease Research at the University of Pennsylvania. PMID:23978324
Taking the Ethics of Einstein into the 21st Century
NASA Astrophysics Data System (ADS)
Neuenschwander, Dwight E.
2004-10-01
We are an inquisitive species. Our curiosity about the structure of matter led to the discovery of the nucleus. In the cultural and political environment of the times, how short were the steps from the innocence of discovery to the atomic bombings of Hiroshima and Nagasaki, and the Cold War that followed! If you had been a graduate student in 1942, invited to help build these nuclear weapons, what would you have done? If the choice of how to end World War II had been yours to make instead of President Truman's-invade Japan, or use the new atomic bomb-what would you have decided? The deeper issues did not go away in 1945. They continue to haunt all scientists today, from hydrogen bombs to general manipulation to environmental sustainability. How do intellectual questions about nature lead to potentially horrific applications of knowledge? What are our ethical responsibilities as physicists? What ethical principles should guide scientific research and its applications?
78 FR 61377 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-03
... . Name of Committee: Center for Scientific Review Special Emphasis Panel; Small Business: Drug Discovery... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Center for Scientific Review... personal privacy. Name of Committee: Center for Scientific Review Special Emphasis Panel; Members Conflicts...
76 FR 35225 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-16
... personal privacy. Name of Committee: Center for Scientific Review Special Emphasis Panel, Drug Discovery... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Center for Scientific Review... Drive, Bethesda, MD 20892. (Telephone Conference Call) Contact Person: Guangyong Ji, PhD, Scientific...
75 FR 61767 - Center For Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-06
...: Center for Scientific Review Special Emphasis Panel, Special: Signal Transduction and Drug Discovery in... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Center For Scientific Review... personal privacy. Name of Committee: Center for Scientific Review Special Emphasis Panel, Member Conflict...
1994-09-30
relational versus object oriented DBMS, knowledge discovery, data models, rnetadata, data filtering, clustering techniques, and synthetic data. A secondary...The first was the investigation of Al/ES Lapplications (knowledge discovery, data mining, and clustering ). Here CAST collabo.rated with Dr. Fred Petry...knowledge discovery system based on clustering techniques; implemented an on-line data browser to the DBMS; completed preliminary efforts to apply object
ERIC Educational Resources Information Center
Cacioppo, John T.; Semin, Gun R.; Berntson, Gary G.
2004-01-01
Scientific realism holds that scientific theories are approximations of universal truths about reality, whereas scientific instrumentalism posits that scientific theories are intellectual structures that provide adequate predictions of what is observed and useful frameworks for answering questions and solving problems in a given domain. These…
New Trends in E-Science: Machine Learning and Knowledge Discovery in Databases
NASA Astrophysics Data System (ADS)
Brescia, Massimo
2012-11-01
Data mining, or Knowledge Discovery in Databases (KDD), while being the main methodology to extract the scientific information contained in Massive Data Sets (MDS), needs to tackle crucial problems since it has to orchestrate complex challenges posed by transparent access to different computing environments, scalability of algorithms, reusability of resources. To achieve a leap forward for the progress of e-science in the data avalanche era, the community needs to implement an infrastructure capable of performing data access, processing and mining in a distributed but integrated context. The increasing complexity of modern technologies carried out a huge production of data, whose related warehouse management and the need to optimize analysis and mining procedures lead to a change in concept on modern science. Classical data exploration, based on local user own data storage and limited computing infrastructures, is no more efficient in the case of MDS, worldwide spread over inhomogeneous data centres and requiring teraflop processing power. In this context modern experimental and observational science requires a good understanding of computer science, network infrastructures, Data Mining, etc. i.e. of all those techniques which fall into the domain of the so called e-science (recently assessed also by the Fourth Paradigm of Science). Such understanding is almost completely absent in the older generations of scientists and this reflects in the inadequacy of most academic and research programs. A paradigm shift is needed: statistical pattern recognition, object oriented programming, distributed computing, parallel programming need to become an essential part of scientific background. A possible practical solution is to provide the research community with easy-to understand, easy-to-use tools, based on the Web 2.0 technologies and Machine Learning methodology. Tools where almost all the complexity is hidden to the final user, but which are still flexible and able to produce efficient and reliable scientific results. All these considerations will be described in the detail in the chapter. Moreover, examples of modern applications offering to a wide variety of e-science communities a large spectrum of computational facilities to exploit the wealth of available massive data sets and powerful machine learning and statistical algorithms will be also introduced.
Girardi, Dominic; Küng, Josef; Kleiser, Raimund; Sonnberger, Michael; Csillag, Doris; Trenkler, Johannes; Holzinger, Andreas
2016-09-01
Established process models for knowledge discovery find the domain-expert in a customer-like and supervising role. In the field of biomedical research, it is necessary to move the domain-experts into the center of this process with far-reaching consequences for both their research output and the process itself. In this paper, we revise the established process models for knowledge discovery and propose a new process model for domain-expert-driven interactive knowledge discovery. Furthermore, we present a research infrastructure which is adapted to this new process model and demonstrate how the domain-expert can be deeply integrated even into the highly complex data-mining process and data-exploration tasks. We evaluated this approach in the medical domain for the case of cerebral aneurysms research.
2014-01-01
A one-day workshop on Burkitt lymphoma (BL) was held at the 9th African Organization for Research and Training in Cancer (AORTIC) conference in 2013 in Durban, South Africa. The workshop featured 15 plenary talks by delegates representing 13 institutions that either fund or implement research on BL targeting AORTIC delegates primarily interested in pediatric oncology. The main outcomes of the meeting were improved sharing of knowledge and experience about ongoing epidemiologic BL research, BL treatment in different settings, the role of cancer registries in cancer research, and opportunities for African scientists to publish in scientific journals. The idea of forming a consortium of BL to improve coordination, information sharing, accelerate discovery, dissemination, and translation of knowledge and to build capacity, while reducing redundant efforts was discussed. Here, we summarize the presentations and discussions from the workshop. PMID:25686906
Cook, Anthony L; Snow, Elizabeth T; Binns, Henrica; Cook, Peta S
2015-01-01
Inquiry-based learning (IBL) activities are complementary to the processes of laboratory discovery, as both are focused on producing new findings through research and inquiry. Here, we describe the results of student surveys taken pre- and postpractical to an IBL undergraduate practical on PCR. Our analysis focuses primarily student perceptions of knowledge acquisition and their ability to troubleshoot problems. The survey results demonstrate significant self-reported gains in knowledge related to DNA structure and PCR, and an increase in confidence with "troubleshooting problems during scientific experiments." We conclude that the IBL-based approach that combines PCR primer design with wet laboratory experimentation using student-designed primers, provides students a sense of confidence by imparting workplace and research skills that are integral to diverse forms and applications of laboratory practices. © 2015 The International Union of Biochemistry and Molecular Biology.
Cerna, Jana
2016-08-01
This article analyses the reception of knowledge about new world nature, and, more specifically, the reception of Iberian scientific knowledge of nature in the Americas, in the early modem Czech lands. It shows how the process of the reception of information about nature in the new world differed among the urban classes, intellectuals and the nobility; particular attention is paid to herbals, cosmographical works and travel reports. On the one hand, the study reveals that the efforts of Central European intellectuals to interpret new world nature were limited by the lack of necessary data and experience, which led to some misinterpretations and simplifications. On the other hand, it shows these Central European scholars to be fully-fledged members of an information network, whose works share many of the same characteristics as Iberian and, in general, early modem European science.
Good surgeon: A search for meaning.
Akopov, Andrey L; Artioukh, Dmitri Y
2017-01-01
The art and philosophy of surgery are not as often discussed as scientific discoveries and technological advances in the modern era of surgery. Although these are difficult to teach and pass on to the next generations of surgeons they are no less important for training good surgeons and maintaining their high standards. The authors of this review and opinion article tried to define what being a good surgeon really means and to look into the subject by analysing the essential conditions for being a good surgeon and the qualities that such a specialist should possess. In addition to a strong theoretic knowledge and practical skills and among the several described professional and personal characteristics, a good surgeon is expected to have common sense. It enables a surgeon to make a sound practical judgment independent of specialized medical knowledge and training. The possible ways of developing and/or enhancing common sense during surgical training and subsequent practice require separate analysis.
77 FR 59198 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-26
....gov . Name of Committee: Center for Scientific Review Special Emphasis Panel; Drug Discovery for the... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Center for Scientific Review... personal privacy. Name of Committee: Center for Scientific Review Special Emphasis Panel; Program Projects...
NASA's Hubble Celebrates 21st Anniversary with "Rose" of Galaxies
2017-12-08
NASA image release April 20, 2011 To see a video of this image go here: www.flickr.com/photos/gsfc/5637796622 To celebrate the 21st anniversary of the Hubble Space Telescope's deployment into space, astronomers at the Space Telescope Science Institute in Baltimore, Md., pointed Hubble's eye at an especially photogenic pair of interacting galaxies called Arp 273. The larger of the spiral galaxies, known as UGC 1810, has a disk that is distorted into a rose-like shape by the gravitational tidal pull of the companion galaxy below it, known as UGC 1813. This image is a composite of Hubble Wide Field Camera 3 data taken on December 17, 2010, with three separate filters that allow a broad range of wavelengths covering the ultraviolet, blue, and red portions of the spectrum. Hubble was launched April 24, 1990, aboard Discovery's STS-31 mission. Hubble discoveries revolutionized nearly all areas of current astronomical research from planetary science to cosmology. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) To read more about this image go here: www.nasa.gov/mission_pages/hubble/science/hubble-rose.html NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook
NASA Astrophysics Data System (ADS)
Schalk, Kelly A.
The purpose of this investigation was to measure specific ways a student interest SSI-based curricular and pedagogical affects undergraduates' ability informally reason. The delimited components of informal reasoning measured were undergraduates' Nature of Science conceptualizations and ability to evaluate scientific information. The socio-scientific issues (SSI) theoretical framework used in this case-study has been advocated as a means for improving students' functional scientific literacy. This investigation focused on the laboratory component of an undergraduate microbiology course in spring 2008. There were 26 participants. The instruments used in this study included: (1) Individual and Group research projects, (2) journals, (3) laboratory write-ups, (4) a laboratory quiz, (5) anonymous evaluations, and (6) a pre/post article exercise. All instruments yielded qualitative data, which were coded using the qualitative software NVivo7. Data analyses were subjected to instrumental triangulation, inter-rater reliability, and member-checking. It was determined that undergraduates' epistemological knowledge of scientific discovery, processes, and justification matured in response to the intervention. Specifically, students realized: (1) differences between facts, theories, and opinions; (2) testable questions are not definitively proven; (3) there is no stepwise scientific process; and (4) lack of data weakens a claim. It was determined that this knowledge influenced participants' beliefs and ability to informally reason. For instance, students exhibited more critical evaluations of scientific information. It was also found that undergraduates' prior opinions had changed over the semester. Further, the student interest aspect of this framework engaged learners by offering participants several opportunities to influentially examine microbiology issues that affected their life. The investigation provided empirically based insights into the ways undergraduates' interest and functional scientific literacy can be promoted. The investigation advanced what was known about using SSI-based frameworks to the post-secondary learner context. Outstanding questions remain for investigation. For example, is this type of student interest SSI-based intervention broadly applicable (i.e., in other science disciplines and grade levels)? And, what challenges would teachers in diverse contexts encounter when implementing a SSI-based theoretical framework?
Flagg, Jennifer L; Lane, Joseph P; Lockett, Michelle M
2013-02-15
Traditional government policies suggest that upstream investment in scientific research is necessary and sufficient to generate technological innovations. The expected downstream beneficial socio-economic impacts are presumed to occur through non-government market mechanisms. However, there is little quantitative evidence for such a direct and formulaic relationship between public investment at the input end and marketplace benefits at the impact end. Instead, the literature demonstrates that the technological innovation process involves a complex interaction between multiple sectors, methods, and stakeholders. The authors theorize that accomplishing the full process of technological innovation in a deliberate and systematic manner requires an operational-level model encompassing three underlying methods, each designed to generate knowledge outputs in different states: scientific research generates conceptual discoveries; engineering development generates prototype inventions; and industrial production generates commercial innovations. Given the critical roles of engineering and business, the entire innovation process should continuously consider the practical requirements and constraints of the commercial marketplace.The Need to Knowledge (NtK) Model encompasses the activities required to successfully generate innovations, along with associated strategies for effectively communicating knowledge outputs in all three states to the various stakeholders involved. It is intentionally grounded in evidence drawn from academic analysis to facilitate objective and quantitative scrutiny, and industry best practices to enable practical application. The Need to Knowledge (NtK) Model offers a practical, market-oriented approach that avoids the gaps, constraints and inefficiencies inherent in undirected activities and disconnected sectors. The NtK Model is a means to realizing increased returns on public investments in those science and technology programs expressly intended to generate beneficial socio-economic impacts.
2013-01-01
Background Traditional government policies suggest that upstream investment in scientific research is necessary and sufficient to generate technological innovations. The expected downstream beneficial socio-economic impacts are presumed to occur through non-government market mechanisms. However, there is little quantitative evidence for such a direct and formulaic relationship between public investment at the input end and marketplace benefits at the impact end. Instead, the literature demonstrates that the technological innovation process involves a complex interaction between multiple sectors, methods, and stakeholders. Discussion The authors theorize that accomplishing the full process of technological innovation in a deliberate and systematic manner requires an operational-level model encompassing three underlying methods, each designed to generate knowledge outputs in different states: scientific research generates conceptual discoveries; engineering development generates prototype inventions; and industrial production generates commercial innovations. Given the critical roles of engineering and business, the entire innovation process should continuously consider the practical requirements and constraints of the commercial marketplace. The Need to Knowledge (NtK) Model encompasses the activities required to successfully generate innovations, along with associated strategies for effectively communicating knowledge outputs in all three states to the various stakeholders involved. It is intentionally grounded in evidence drawn from academic analysis to facilitate objective and quantitative scrutiny, and industry best practices to enable practical application. Summary The Need to Knowledge (NtK) Model offers a practical, market-oriented approach that avoids the gaps, constraints and inefficiencies inherent in undirected activities and disconnected sectors. The NtK Model is a means to realizing increased returns on public investments in those science and technology programs expressly intended to generate beneficial socio-economic impacts. PMID:23414369
Electromagnetic Induction Rediscovered Using Original Texts
NASA Astrophysics Data System (ADS)
Barth Tu, Michael
Some of Faraday's diary-entries from 1831 have been used frequently as starting point to introduce the phenomenon of electromagnetic induction. This has been done on various levels of knowledge and to pupils of different ages during the last 5 years. I try to let my pupils witness, how Faraday made his discovery, but to show as well, that we cannot infer from his notes, how he arrived at his ideas proper. Reading the original notes (in English), my pupils were expected to take out of it, what Faraday did at his lab, what apparatus he used and what his observations were. Why he did what he did was point of discussion later on. Just here, I expected, that my pupils learn a lot about the properties of electricity, of taking conclusions from experiment, of scientific methodology etc. In addition, we repeated some of Faradays experiments with modern quipment, realizing always to common surprise that the effects observed are extremely faint ones. Depending on knowledge, age and motivation of the group, Lenz's Law was rediscovered in succession. Here I myself try to find out, why Faradays initial mistake as for the direction of the induced current is likely to be overlooked even by the informed modern reader (myself included!). This may become part of a story, why this mistake of Faraday has found serious attention by historians of science only very recently. My approach was connected with group work with English courses, with the reading of more papers by Faraday and two times even with a visit of the Royal Institution at London. In any case, I always tried to put my pupils into the state of knowledge Faraday had at the time of his discovery before this unit, to make the process of discovery as correct as possible. For this claim is somewhat artificial at first glance, it may be an interesting point of discussion.
Cultural aspects of the search for extraterrestrial intelligence
NASA Astrophysics Data System (ADS)
Billingham, J.
SETI is an acronym which stands for the Search for Extraterrestrial Intelligence. The NASA SETI High Resolution Microwave Survey Project is a new and comprehensive search for evidence of microwave signals from extraterrestrial civilizations. It will formally begin on October 12, 1992, and last to the end of the century. The discovery of another form of intelligent life would be an important milestone for our civilization. In addition to the new scientific knowledge that we might acquire on the chemistry, physiology, behavior and evolutionary history of extraterrestrial life forms, we may also learn of the cultural achievements of another civilization, or indeed of many other civilizations. It is likely that the society that we detect will be much in advance of our own, so that they may long ago have passed through the evolutionary stage we are at now. The implications of such a discovery would have important consequences for our own future. This paper presents an analysis of some of the important areas which will require study as we approach the beginning of the NASA search. There are significant questions about the ease or difficulty of incorporating the new knowledge into the belief structures of different religions. Sociological and educational changes over time may equal or exceed those of the Copernican revolution. The status of the other civilization relative to ours is a challenging question for international space law. There are institutional and international questions on who will represent Earth in any future interstellar communication endeavors that we may attempt. There may be challenges in how we absorb the knowledge of an advanced technology. In political science we may have much to learn from their history, and what influence it may have on our own future. Last but not least, there is the effect of the discovery on individual and group psychology. These are the cultural aspects of SETI. Each area warrants further study, and recommendations are made as to the mechanisms which could be used to undertake such studies.
New materials: Fountainhead for new technologies and new science
NASA Technical Reports Server (NTRS)
Rustum, Roy
1993-01-01
The role of materials as the benchmark technologies which give epochs of human history their names continues into the present. The discovery of new materials has nearly always been the source of new materials science, and frequently of new technologies. This paper analyzes the actual processes by which new materials are synthesized, i.e. whether driven by serendipitous observations, new knowledge is pulled by the market, or integrated into a technological thrust. This analysis focuses on modern ceramic materials discoveries, since World War 2 and uses 45 years experience in materials synthesis in the author's own laboratory as case studies. A dozen different families of materials or processes are involved: hydrothermal reactions; sol-gel processing; clays and zeolites; electroceramics; zero expansion ceramics; diamond films; and radioactive waste host phases. Nanocomposite concepts introduced by the author a decade ago offer an entire, large, new class of materials which will dominate synthesis for the next period. The future of materials research for the next 25 years cannot be extrapolated from the past 25 years. We are near the asymptote for materials utilization in most metals. Likewise we are approaching saturation in improvement of many useful properties. Justifying much further 'basic' R/D for incremental improvement in civilian-oriented industries will not be easy. In materials synthesis, the near-term future is sure to emphasize not new phases, but tailored micro- and nanocomposites for chemical, electrical, optical, and magnetic uses. Unexpected new discoveries such as the Lanxide process may offer rarer chances for step function advances. The new structure of knowledge management will rely less on local research than on integration of worldwide inputs. Better scientific and technological opportunities will lie in designing knowledge intensive materials to meet the new environmental and conservation goals, and the human needs of the very large numbers at the bottom of the socio-economic structures of the world.
NASA Astrophysics Data System (ADS)
Berkman, P. A.
2005-12-01
The World Data Center system emerged in 1957-58 with the International Geophysical Year (which was renamed from the 3rd International Polar Year) to preserve and provide access to scientific data collected from observational programs throughout the Earth system. Fast forward a half century ... access to diverse digital information has become effectively infinite and instantaneous with nearly 20,000 petabytes of information produced and stored on print, optical and magnetic media each year; microprocessor speeds that have increased 5 orders of magnitude since 1972; existence of the Internet; increasing global capacity to collect and transmit information via satellites; availability of powerful search engines; and proliferation of data warehouses like the World Data Centers. The problem is that we already have reached the threshold in our world information society when accessing more information does not equate with generating more knowledge. In 2007-08, the International Council of Science and World Meteorological Organization will convene the next International Polar Year to accelerate our understanding of how the polar regions respond to, amplify and drive changes elsewhere in the Earth system (http://www.ipy.org). Beyond Earth system science, strategies and tools for integrating digital information to discover meaningful relationships among the disparate data would have societal benefits from boardrooms to classrooms. In the same sense that human-launched satellites became a strategic focus that justified national investments in the International Geophysical Year, developing the next generation of knowledge discovery tools is an opportunity for the International Polar Year 2007-08 and its affiliated programs to contribute in an area that is critical to the future of our global community. Knowledge is the common wealth of humanity. H.E. Mr. Adama Samassekou President, World Summit on the Information Society
Learning by Viewing - Nobel Labs 360
NASA Technical Reports Server (NTRS)
Mather, John C.
2013-01-01
First of all, my thanks to the Nobel Lindau Foundation for their inspiration and leadership in sharing the excitement of scientific discovery with the public and with future scientists! I have had the pleasure of participating twice in the Lindau meetings, and recently worked with the Nobel Labs 360 project to show how we are building the world's greatest telescope yet, the James Webb Space Telescope (JWST). For the future, I see the greatest challenges for all the sciences in continued public outreach and inspiration. Outreach, so the public knows why we are doing what we are doing, and what difference it makes for them today and in the long-term future. Who knows what our destiny may be? It could be glorious, or not, depending on how we all behave. Inspiration, so that the most creative and inquisitive minds can pursue the scientific and engineering discoveries that are at the heart of so much of human prosperity, health, and progress. And, of course, national and local security depend on those discoveries too; scientists have been working with "the government" throughout recorded history. For the Lindau Nobel experiment, we have a truly abundant supply of knowledge and excitement, through the interactions of young scientists with the Nobelists, and through the lectures and the video recordings we can now share with the whole world across the Internet. But the challenge is always to draw attention! With 7 billion inhabitants on Earth, trying to earn a living and have some fun, there are plenty of competing opportunities and demands on us all. So what will draw attention to our efforts at Lindau? These days, word of mouth has become word of (computer) mouse, and ideas propagate as viruses ( or memes) across the Internet according to the interests of the participants. So our challenge is to find and match those interests, so that the efforts of our scientists, photographers, moviemakers, and writers are rewarded by our public. The world changes every day, so there is no one way to go, and everything is an experiment - sounds scientific, yes? I think our partnership with Volker Steger in the Nobel Labs 360 is one of the most interesting I have seen. Computer viewers can see our scientific habitats and begin to experience being there in person, panning a viewpoint up, down, and all around us, and seeing or hearing explanations of what we are doing.
Laboratory Replication of Scientific Discovery Processes
1989-04-30
age, was explicit about his philosophical assumptions. We have studied his views with care, especially the Epitome of Copernican Astronomy (1618-21...diameters by Copernicus .) It is sometimes argued that the real problem of scientific discovery is not to find laws in data but to define the problem and...from Brahe and Copernicus , His merit was that he converted the data to a form that revealed the geometry of the heavens and laid the foundation for
Spacelab program's scientific benefits to mankind
NASA Technical Reports Server (NTRS)
Graft, Harry G., Jr.; Marmann, Richard A.
1993-01-01
The paper describes the important scientific discoveries and accomplishments achieved by the Spacelab program during the ten years of its operation starting with the first flight in 1983, with emphasis on the discoveries and accomplishments in the fields of astronomy and astrophysics, atmospheric science, life sciences, microgravity science, plasma physics, and earth observations. The Spacelab systems performance and operations are discussed with particular attention given to the operations applicable to the Space Station era.
Knowledge Discovery in Textual Documentation: Qualitative and Quantitative Analyses.
ERIC Educational Resources Information Center
Loh, Stanley; De Oliveira, Jose Palazzo M.; Gastal, Fabio Leite
2001-01-01
Presents an application of knowledge discovery in texts (KDT) concerning medical records of a psychiatric hospital. The approach helps physicians to extract knowledge about patients and diseases that may be used for epidemiological studies, for training professionals, and to support physicians to diagnose and evaluate diseases. (Author/AEF)
Knowledge Integration in Cancer: Current Landscape and Future Prospects
Ioannidis, John P.A.; Schully, Sheri D.; Lam, Tram Kim; Khoury, Muin J.
2015-01-01
Knowledge integration includes knowledge management, synthesis, and translation processes. It aims to maximize the use of collected scientific information and accelerate translation of discoveries into individual and population health benefits. Accumulated evidence in cancer epidemiology constitutes a large share of the 2.7 million articles on cancer in PubMed. We examine the landscape of knowledge integration in cancer epidemiology. Past approaches have mostly used retrospective efforts of knowledge management and traditional systematic reviews and meta-analyses. Systematic searches identify 2,332 meta-analyses, about half of which are on genetics and epigenetics. Meta-analyses represent 1:89-1:1162 of published articles in various cancer subfields. Recently, there are more collaborative meta-analyses with individual-level data, including those with prospective collection of measurements [e.g., genotypes in genome-wide association studies (GWAS)]; this may help increase the reliability of inferences in the field. However, most meta-analyses are still done retrospectively with published information. There is also a flurry of candidate gene meta-analyses with spuriously prevalent "positive" results. Prospective design of large research agendas, registration of datasets, and public availability of data and analyses may improve our ability to identify knowledge gaps, maximize and accelerate translational progress or—at a minimum—recognize dead ends in a more timely fashion. PMID:23093546
Knowledge integration in cancer: current landscape and future prospects.
Ioannidis, John P A; Schully, Sheri D; Lam, Tram Kim; Khoury, Muin J
2013-01-01
Knowledge integration includes knowledge management, synthesis, and translation processes. It aims to maximize the use of collected scientific information and accelerate translation of discoveries into individual and population health benefits. Accumulated evidence in cancer epidemiology constitutes a large share of the 2.7 million articles on cancer in PubMed. We examine the landscape of knowledge integration in cancer epidemiology. Past approaches have mostly used retrospective efforts of knowledge management and traditional systematic reviews and meta-analyses. Systematic searches identify 2,332 meta-analyses, about half of which are on genetics and epigenetics. Meta-analyses represent 1:89-1:1162 of published articles in various cancer subfields. Recently, there are more collaborative meta-analyses with individual-level data, including those with prospective collection of measurements [e.g., genotypes in genome-wide association studies (GWAS)]; this may help increase the reliability of inferences in the field. However, most meta-analyses are still done retrospectively with published information. There is also a flurry of candidate gene meta-analyses with spuriously prevalent "positive" results. Prospective design of large research agendas, registration of datasets, and public availability of data and analyses may improve our ability to identify knowledge gaps, maximize and accelerate translational progress or-at a minimum-recognize dead ends in a more timely fashion.
Galileo, Cassini and Huygens : Spatial Probes, but also Men focused on Saturn's Rings
NASA Astrophysics Data System (ADS)
Déau, Estelle
2008-09-01
Galileo Galilei (1564-1642), Christiaan Huygens (1629-1675) and Jean-Dominique Cassini (1625-1712) are maybe the most important astronomers of the 17th century. Galileo discovered the 4 biggest satellites around Jupiter (Io, Ganymede, Europa and Callisto, known as the 'Galilean satellites'), Huygens discovered Titan, the biggest satellite of Saturn and Cassini discovered the zodiacal light and 4 satellites around Saturn (Iapetus, Rhea, Tethys and Dione). They brough fundamental ideas to the knowledge of the Saturn's rings: (i) Galileo found firstly a strange shape around the planet Saturn (known as the 6th and last planet of the Solar System), (ii) Cassini found other satellites than Titan around Saturn that implying more forthcoming satellites discoveries (until now !), and (iii) Huygens showed that the viewing geometry of an object can dramatically change its appearence. All these discoveries are linked to their personnality and their education. Galileo the autodidact loved discoveries (as the triple form of Saturn) but did not give enough attention to all of their physical implications. Huygens the mathematician did not discover but observed and theoretically confirmed simultaneously his discovery (as for the identification of the Saturn's ring). Cassini the brilliant astronomer interpreted his observations in order to make new discoveries (shadow of galiliean satellites on Jupiter, Cassini Division contradicts the vision of a single ring). At less than one year left to the International Year of Astronomy 2009 (AMA09 or IYA09) these three examples show how the education and the scientific carrer and methodology are intrinsically linked.
ERIC Educational Resources Information Center
Li, Yufeng; Xiong, Jianwen
2012-01-01
Scientific inquiry is one of the science curriculum content, "Scientific inquiry" - Pedagogical Content Knowledge is the face of scientific inquiry and teachers - of course pedagogical content knowledge and scientific inquiry a teaching practice with more direct expertise. Pre-service teacher training phase of acquisition of knowledge is…
A collaborative filtering-based approach to biomedical knowledge discovery.
Lever, Jake; Gakkhar, Sitanshu; Gottlieb, Michael; Rashnavadi, Tahereh; Lin, Santina; Siu, Celia; Smith, Maia; Jones, Martin R; Krzywinski, Martin; Jones, Steven J M; Wren, Jonathan
2018-02-15
The increase in publication rates makes it challenging for an individual researcher to stay abreast of all relevant research in order to find novel research hypotheses. Literature-based discovery methods make use of knowledge graphs built using text mining and can infer future associations between biomedical concepts that will likely occur in new publications. These predictions are a valuable resource for researchers to explore a research topic. Current methods for prediction are based on the local structure of the knowledge graph. A method that uses global knowledge from across the knowledge graph needs to be developed in order to make knowledge discovery a frequently used tool by researchers. We propose an approach based on the singular value decomposition (SVD) that is able to combine data from across the knowledge graph through a reduced representation. Using cooccurrence data extracted from published literature, we show that SVD performs better than the leading methods for scoring discoveries. We also show the diminishing predictive power of knowledge discovery as we compare our predictions with real associations that appear further into the future. Finally, we examine the strengths and weaknesses of the SVD approach against another well-performing system using several predicted associations. All code and results files for this analysis can be accessed at https://github.com/jakelever/knowledgediscovery. sjones@bcgsc.ca. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
NASA Astrophysics Data System (ADS)
Shepherd, Adam; Arko, Robert; Krisnadhi, Adila; Hitzler, Pascal; Janowicz, Krzysztof; Chandler, Cyndy; Narock, Tom; Cheatham, Michelle; Schildhauer, Mark; Jones, Matt; Raymond, Lisa; Mickle, Audrey; Finin, Tim; Fils, Doug; Carbotte, Suzanne; Lehnert, Kerstin
2015-04-01
Integrating datasets for new use cases is one of the common drivers for adopting semantic web technologies. Even though linked data principles enables this type of activity over time, the task of reconciling new ontological commitments for newer use cases can be daunting. This situation was faced by the Biological and Chemical Oceanography Data Management Office (BCO-DMO) as it sought to integrate its existing linked data with other data repositories to address newer scientific use cases as a partner in the GeoLink Project. To achieve a successful integration with other GeoLink partners, BCO-DMO's metadata would need to be described using the new ontologies developed by the GeoLink partners - a situation that could impact semantic inferencing, pre-existing software and external users of BCO-DMO's linked data. This presentation describes the process of how GeoLink is bridging the gap between local, pre-existing ontologies to achieve scientific metadata integration for all its partners through the use of ontology design patterns. GeoLink, an NSF EarthCube Building Block, brings together experts from the geosciences, computer science, and library science in an effort to improve discovery and reuse of data and knowledge. Its participating repositories include content from field expeditions, laboratory analyses, journal publications, conference presentations, theses/reports, and funding awards that span scientific studies from marine geology to marine ecology and biogeochemistry to paleoclimatology. GeoLink's outcomes include a set of reusable ontology design patterns (ODPs) that describe core geoscience concepts, a network of Linked Data published by participating repositories using those ODPs, and tools to facilitate discovery of related content in multiple repositories.
Adverse Drug Event Discovery Using Biomedical Literature: A Big Data Neural Network Adventure.
P Tafti, Ahmad; Badger, Jonathan; LaRose, Eric; Shirzadi, Ehsan; Mahnke, Andrea; Mayer, John; Ye, Zhan; Page, David; Peissig, Peggy
2017-12-08
The study of adverse drug events (ADEs) is a tenured topic in medical literature. In recent years, increasing numbers of scientific articles and health-related social media posts have been generated and shared daily, albeit with very limited use for ADE study and with little known about the content with respect to ADEs. The aim of this study was to develop a big data analytics strategy that mines the content of scientific articles and health-related Web-based social media to detect and identify ADEs. We analyzed the following two data sources: (1) biomedical articles and (2) health-related social media blog posts. We developed an intelligent and scalable text mining solution on big data infrastructures composed of Apache Spark, natural language processing, and machine learning. This was combined with an Elasticsearch No-SQL distributed database to explore and visualize ADEs. The accuracy, precision, recall, and area under receiver operating characteristic of the system were 92.7%, 93.6%, 93.0%, and 0.905, respectively, and showed better results in comparison with traditional approaches in the literature. This work not only detected and classified ADE sentences from big data biomedical literature but also scientifically visualized ADE interactions. To the best of our knowledge, this work is the first to investigate a big data machine learning strategy for ADE discovery on massive datasets downloaded from PubMed Central and social media. This contribution illustrates possible capacities in big data biomedical text analysis using advanced computational methods with real-time update from new data published on a daily basis. ©Ahmad P Tafti, Jonathan Badger, Eric LaRose, Ehsan Shirzadi, Andrea Mahnke, John Mayer, Zhan Ye, David Page, Peggy Peissig. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 08.12.2017.
Zucker, L G; Darby, M R
1996-11-12
The most productive ("star") bioscientists had intellectual human capital of extraordinary scientific and pecuniary value for some 10-15 years after Cohen and Boyer's 1973 founding discovery for biotechnology [Cohen, S., Chang, A., Boyer, H. & Helling, R. (1973) Proc. Natl. Acad. Sci. USA 70, 3240-3244]. This extraordinary value was due to the union of still scarce knowledge of the new research techniques and genius and vision to apply them in novel, valuable ways. As in other sciences, star bioscientists were very protective of their techniques, ideas, and discoveries in the early years of the revolution, tending to collaborate more within their own institution, which slowed diffusion to other scientists. Close, bench-level working ties between stars and firm scientists were needed to accomplish commercialization of the breakthroughs. Where and when star scientists were actively producing publications is a key predictor of where and when commercial firms began to use biotechnology. The extent of collaboration by a firm's scientists with stars is a powerful predictor of its success: for an average firm, 5 articles coauthored by an academic star and the firm's scientists result in about 5 more products in development, 3.5 more products on the market, and 860 more employees. Articles by stars collaborating with or employed by firms have significantly higher rates of citation than other articles by the same or other stars. The U.S. scientific and economic infrastructure has been particularly effective in fostering and commercializing the bioscientific revolution. These results let us see the process by which scientific breakthroughs become economic growth and consider implications for policy.
Data Mining Research with the LSST
NASA Astrophysics Data System (ADS)
Borne, Kirk D.; Strauss, M. A.; Tyson, J. A.
2007-12-01
The LSST catalog database will exceed 10 petabytes, comprising several hundred attributes for 5 billion galaxies, 10 billion stars, and over 1 billion variable sources (optical variables, transients, or moving objects), extracted from over 20,000 square degrees of deep imaging in 5 passbands with thorough time domain coverage: 1000 visits over the 10-year LSST survey lifetime. The opportunities are enormous for novel scientific discoveries within this rich time-domain ultra-deep multi-band survey database. Data Mining, Machine Learning, and Knowledge Discovery research opportunities with the LSST are now under study, with a potential for new collaborations to develop to contribute to these investigations. We will describe features of the LSST science database that are amenable to scientific data mining, object classification, outlier identification, anomaly detection, image quality assurance, and survey science validation. We also give some illustrative examples of current scientific data mining research in astronomy, and point out where new research is needed. In particular, the data mining research community will need to address several issues in the coming years as we prepare for the LSST data deluge. The data mining research agenda includes: scalability (at petabytes scales) of existing machine learning and data mining algorithms; development of grid-enabled parallel data mining algorithms; designing a robust system for brokering classifications from the LSST event pipeline (which may produce 10,000 or more event alerts per night); multi-resolution methods for exploration of petascale databases; visual data mining algorithms for visual exploration of the data; indexing of multi-attribute multi-dimensional astronomical databases (beyond RA-Dec spatial indexing) for rapid querying of petabyte databases; and more. Finally, we will identify opportunities for synergistic collaboration between the data mining research group and the LSST Data Management and Science Collaboration teams.
Exploring the Possibilities: Earth and Space Science Missions in the Context of Exploration
NASA Technical Reports Server (NTRS)
Pfarr, Barbara; Calabrese, Michael; Kirkpatrick, James; Malay, Jonathan T.
2006-01-01
According to Dr. Edward J. Weiler, Director of the Goddard Space Flight Center, "Exploration without science is tourism". At the American Astronautical Society's 43rd Annual Robert H. Goddard Memorial Symposium it was quite apparent to all that NASA's current Exploration Initiative is tightly coupled to multiple scientific initiatives: exploration will enable new science and science will enable exploration. NASA's Science Mission Directorate plans to develop priority science missions that deliver science that is vital, compelling and urgent. This paper will discuss the theme of the Goddard Memorial Symposium that science plays a key role in exploration. It will summarize the key scientific questions and some of the space and Earth science missions proposed to answer them, including the Mars and Lunar Exploration Programs, the Beyond Einstein and Navigator Programs, and the Earth-Sun System missions. It will also discuss some of the key technologies that will enable these missions, including the latest in instruments and sensors, large space optical system technologies and optical communications, and briefly discuss developments and achievements since the Symposium. Throughout history, humans have made the biggest scientific discoveries by visiting unknown territories; by going to the Moon and other planets and by seeking out habitable words, NASA is continuing humanity's quest for scientific knowledge.
NASA Astrophysics Data System (ADS)
Brassell, S. C.
2014-12-01
"Records of Global Climate Change" enables students to fulfill the science component of an undergraduate distribution requirement in "Critical Approaches" at IU Bloomington. The course draws students from all disciplines with varying levels of understanding of scientific approaches and often limited familiarity with climate issues. Its discussion sessions seek to foster scientific literacy via an alternating series of assignments focused on a combination of exercises that involve either examination and interpretation of on-line climate data or consideration and assessment of the scientific basis of new discoveries about climate change contained in recently published media articles. The final assignment linked to the discussion sessions requires students to review and summarize the topics discussed during the semester. Their answers provide direct evidence of newly acquired abilities to assimilate and evaluate scientific information on a range of topics related to climate change. In addition, student responses to an end-of-semester survey confirm that the vast majority considers that their knowledge and understanding of climate change was enhanced, and unsolicited comments note that the discussion sessions contributed greatly to this advancement. Many students remarked that the course's emphasis on examination of paleoclimate records helped their comprehension of the unprecedented nature of present-day climate trends. Others reported that their views on the significance of climate change had been transformed, and some commented that they now felt well equipped to engage in discussions about climate change because they were better informed about its scientific basis and facts.
Biological network extraction from scientific literature: state of the art and challenges.
Li, Chen; Liakata, Maria; Rebholz-Schuhmann, Dietrich
2014-09-01
Networks of molecular interactions explain complex biological processes, and all known information on molecular events is contained in a number of public repositories including the scientific literature. Metabolic and signalling pathways are often viewed separately, even though both types are composed of interactions involving proteins and other chemical entities. It is necessary to be able to combine data from all available resources to judge the functionality, complexity and completeness of any given network overall, but especially the full integration of relevant information from the scientific literature is still an ongoing and complex task. Currently, the text-mining research community is steadily moving towards processing the full body of the scientific literature by making use of rich linguistic features such as full text parsing, to extract biological interactions. The next step will be to combine these with information from scientific databases to support hypothesis generation for the discovery of new knowledge and the extension of biological networks. The generation of comprehensive networks requires technologies such as entity grounding, coordination resolution and co-reference resolution, which are not fully solved and are required to further improve the quality of results. Here, we analyse the state of the art for the extraction of network information from the scientific literature and the evaluation of extraction methods against reference corpora, discuss challenges involved and identify directions for future research. © The Author 2013. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Building Faculty Capacity through the Learning Sciences
ERIC Educational Resources Information Center
Moy, Elizabeth; O'Sullivan, Gerard; Terlecki, Melissa; Jernstedt, Christian
2014-01-01
Discoveries in the learning sciences (especially in neuroscience) have yielded a rich and growing body of knowledge about how students learn, yet this knowledge is only half of the story. The other half is "know how," i.e. the application of this knowledge. For faculty members, that means applying the discoveries of the learning sciences…
Villa, T G; Feijoo-Siota, L; Sánchez-Pérez, A
2018-06-27
The advancement of human knowledge has historically followed the pattern of one-step growth (the same pattern followed by microorganisms in laboratory culture conditions). In this way, each new important discovery opened the door to multiple secondary breakthroughs, eventually reaching a "plateau" when new findings emerged. Microbiology research has usually followed this pattern, but often the conclusions attained from experimentation/observation were either equivocal or altogether false, causing important delays in the advancement of this science. This mini-review deals with some of these documented scientific errors, but the aim is not to include every mistake, but to select those that are paramount to the advance of Microbiology.
NASA Technical Reports Server (NTRS)
Halstead, T. W.; Dutcher, F. R.
1987-01-01
Space may be, as some have called it, our last frontier. As such, it provides novel, even unique research opportunities. Plants are sure to figure significantly in these activities. The ability to manipulate the force of gravity from near zero to 1 g affords fresh opportunities to investigate gravity's physiological effects as well as a means of probing gravi- and phototropism, thigmo-morphogenesis, and other environmental effects in a state uncompromised by gravity. In this review we aim primarily to consider phenomenology, a goal that befits the state of our knowledge from space experiments. We intend to provide grist for future ground-based and space experiments and to reveal the potential for scientific discovery in this area.
[Economics, politics, and public health in Porfirian Mexico (1876-1910)].
Carrillo, Ana María
2002-01-01
The article examines the scientific, political, and economic elements that permitted the birth of modern public health in Mexico under the Porfirio Díaz administration (1876-1910). Firstly, a portion of Mexican physicians were open to the discoveries of microbiology, immunology, and epidemiology. Secondly, the State's growing concentration of power in public health matters ran parallel to its concentration of disciplinary political power and enabled this new knowledge to be placed at the service of collective health problem prevention. Lastly, both imperialism and the Porfirian elite needed to protect their business interests. The article evaluates public health achievements and limitations during the Porfirian period, abruptly interrupted by the revolution begun in 1910.
Open cyberGIS software for geospatial research and education in the big data era
NASA Astrophysics Data System (ADS)
Wang, Shaowen; Liu, Yan; Padmanabhan, Anand
CyberGIS represents an interdisciplinary field combining advanced cyberinfrastructure, geographic information science and systems (GIS), spatial analysis and modeling, and a number of geospatial domains to improve research productivity and enable scientific breakthroughs. It has emerged as new-generation GIS that enable unprecedented advances in data-driven knowledge discovery, visualization and visual analytics, and collaborative problem solving and decision-making. This paper describes three open software strategies-open access, source, and integration-to serve various research and education purposes of diverse geospatial communities. These strategies have been implemented in a leading-edge cyberGIS software environment through three corresponding software modalities: CyberGIS Gateway, Toolkit, and Middleware, and achieved broad and significant impacts.
Global Health and the Global Economic Crisis
Gill, Stephen; Bakker, Isabella
2011-01-01
Although the resources and knowledge for achieving improved global health exist, a new, critical paradigm on health as an aspect of human development, human security, and human rights is needed. Such a shift is required to sufficiently modify and credibly reduce the present dominance of perverse market forces on global health. New scientific discoveries can make wide-ranging contributions to improved health; however, improved global health depends on achieving greater social justice, economic redistribution, and enhanced democratization of production, caring social institutions for essential health care, education, and other public goods. As with the quest for an HIV vaccine, the challenge of improved global health requires an ambitious multidisciplinary research program. PMID:21330597
The discovery and measurements of a Higgs boson.
Gianotti, F; Virdee, T S
2015-01-13
In July 2012, the ATLAS and CMS collaborations at CERN's Large Hadron Collider announced the discovery of a Higgs-like boson, a new heavy particle at a mass more than 130 times the mass of a proton. Since then, further data have revealed its properties to be strikingly similar to those of the Standard Model Higgs boson, a particle expected from the mechanism introduced almost 50 years ago by six theoreticians including British physicists Peter Higgs from Edinburgh University and Tom Kibble from Imperial College London. The discovery is the culmination of a truly remarkable scientific journey and undoubtedly the most significant scientific discovery of the twenty-first century so far. Its experimental confirmation turned out to be a monumental task requiring the creation of an accelerator and experiments of unprecedented capability and complexity, designed to discern the signatures that correspond to the Higgs boson. Thousands of scientists and engineers, in each of the ATLAS and CMS teams, came together from all four corners of the world to make this massive discovery possible.
The AIDS and Cancer Specimen Resource: Role in HIV/AIDS scientific discovery
Ayers, Leona W; Silver, Sylvia; McGrath, Michael S; Orenstein, Jan M
2007-01-01
The AIDS Cancer and Specimen Resource (ACSR) supports scientific discovery in the area of HIV/AIDS-associated malignancies. The ACSR was established as a cooperative agreement between the NCI (Office of the Director, Division of Cancer Treatment and Diagnosis) and regional consortia, University of California, San Francisco (West Coast), George Washington University (East Coast) and Ohio State University (Mid-Region) to collect, preserve and disperse HIV-related tissues and biologic fluids and controls along with clinical data to qualified investigators. The available biological samples with clinical data and the application process are described on the ACSR web site. The ACSR tissue bank has more than 100,000 human HIV positive specimens that represent different processing (43), specimen (15), and anatomical site (50) types. The ACSR provides special biospecimen collections and prepares speciality items, e.g., tissue microarrays (TMA), DNA libraries. Requests have been greatest for Kaposi's sarcoma (32%) and non-Hodgkin's lymphoma (26%). Dispersed requests include 83% tissue (frozen and paraffin embedded), 18% plasma/serum and 9% other. ACSR also provides tissue microarrays of, e.g., Kaposi's sarcoma and non-Hodgkin's lymphoma, for biomarker assays and has developed collaborations with other groups that provide access to additional AIDS-related malignancy specimens. ACSR members and associates have completed 63 podium and poster presentations. Investigators have submitted 125 letters of intent requests. Discoveries using ACSR have been reported in 61 scientific publications in notable journals with an average impact factor of 7. The ACSR promotes the scientific exploration of the relationship between HIV/AIDS and malignancy by participation at national and international scientific meetings, contact with investigators who have productive research in this area and identifying, collecting, preserving, enhancing, and dispersing HIV/AIDS-related malignancy specimens to funded, approved researchers at no fee. Scientific discovery has been advanced by this unique biorepository. Investigators are encouraged to browse the ACSR Internet site for materials to enhance their own scientific initiatives. PMID:17335575
Tools for Observation: Art and the Scientific Process
NASA Astrophysics Data System (ADS)
Pettit, E. C.; Coryell-Martin, M.; Maisch, K.
2015-12-01
Art can support the scientific process during different phases of a scientific discovery. Art can help explain and extend the scientific concepts for the general public; in this way art is a powerful tool for communication. Art can aid the scientist in processing and interpreting the data towards an understanding of the concepts and processes; in this way art is powerful - if often subconscious - tool to inform the process of discovery. Less often acknowledged, art can help engage students and inspire scientists during the initial development of ideas, observations, and questions; in this way art is a powerful tool to develop scientific questions and hypotheses. When we use art as a tool for communication of scientific discoveries, it helps break down barriers and makes science concepts less intimidating and more accessible and understandable for the learner. Scientists themselves use artistic concepts and processes - directly or indirectly - to help deepen their understanding. Teachers are following suit by using art more to stimulate students' creative thinking and problem solving. We show the value of teaching students to use the artistic "way of seeing" to develop their skills in observation, questioning, and critical thinking. In this way, art can be a powerful tool to engage students (from elementary to graduate) in the beginning phase of a scientific discovery, which is catalyzed by inquiry and curiosity. Through qualitative assessment of the Girls on Ice program, we show that many of the specific techniques taught by art teachers are valuable for science students to develop their observation skills. In particular, the concepts of contour drawing, squinting, gesture drawing, inverted drawing, and others can provide valuable training for student scientists. These art techniques encourage students to let go of preconceptions and "see" the world (the "data") in new ways they help students focus on both large-scale patterns and small-scale details.
Russell, Mark C
2008-12-01
In this study, Barber's [(1961). Resistance by scientists to scientific discovery. Science, 134, 596-602] analysis of scientists' resistance to discoveries is examined in relation to an 18-year controversy between the dominant cognitive-behavioral paradigm or zeitgeist and its chief rival - eye movement desensitization and reprocessing (EMDR) in treating trauma-related disorders. Reasons for persistent opposition to training, utilization and research into an identified 'evidence-based treatment for post-traumatic stress disorder' (EBT-PTSD) within US military and veterans' agencies closely parallels Barber's description of resistance based upon socio-cultural factors and scientific bias versus genuine scientific skepticism. The implications of sustained resistance to EMDR for combat veterans and other trauma sufferers are discussed. A unified or super-ordinate goal is offered to reverse negative trends impacting current and future mental healthcare of military personnel, veterans and other trauma survivors, and to bridge the scientific impasse.
The center for causal discovery of biomedical knowledge from big data
Bahar, Ivet; Becich, Michael J; Benos, Panayiotis V; Berg, Jeremy; Espino, Jeremy U; Glymour, Clark; Jacobson, Rebecca Crowley; Kienholz, Michelle; Lee, Adrian V; Lu, Xinghua; Scheines, Richard
2015-01-01
The Big Data to Knowledge (BD2K) Center for Causal Discovery is developing and disseminating an integrated set of open source tools that support causal modeling and discovery of biomedical knowledge from large and complex biomedical datasets. The Center integrates teams of biomedical and data scientists focused on the refinement of existing and the development of new constraint-based and Bayesian algorithms based on causal Bayesian networks, the optimization of software for efficient operation in a supercomputing environment, and the testing of algorithms and software developed using real data from 3 representative driving biomedical projects: cancer driver mutations, lung disease, and the functional connectome of the human brain. Associated training activities provide both biomedical and data scientists with the knowledge and skills needed to apply and extend these tools. Collaborative activities with the BD2K Consortium further advance causal discovery tools and integrate tools and resources developed by other centers. PMID:26138794
Wang, Liwei; Liu, Hongfang; Chute, Christopher G; Zhu, Qian
2015-01-01
Pharmacogenomics (PGx) as an emerging field, is poised to change the way we practice medicine and deliver health care by customizing drug therapies on the basis of each patient's genetic makeup. A large volume of PGx data including information among drugs, genes, and single nucleotide polymorphisms (SNPs) has been accumulated. Normalized and integrated PGx information could facilitate revelation of hidden relationships among drug treatments, genomic variations, and phenotype traits to better support drug discovery and next generation of treatment. In this study, we generated a normalized and scientific evidence supported cancer based PGx network (CPN) by integrating cancer related PGx information from multiple well-known PGx resources including the Pharmacogenomics Knowledge Base (PharmGKB), the FDA PGx Biomarkers in Drug Labeling, and the Catalog of Published Genome-Wide Association Studies (GWAS). We successfully demonstrated the capability of the CPN for drug repurposing by conducting two case studies. The CPN established in this study offers comprehensive cancer based PGx information to support cancer orientated research, especially for drug repurposing.
NASA's Hubble Spots a Relic from a Shredded Galaxy
2017-12-08
February 17, 2012: Astronomers using NASA's Hubble Space Telescope may have found evidence for a cluster of young, blue stars encircling HLX-1, one of the first intermediate-mass black holes ever discovered. Astronomers believe the black hole may once have been at the core of a now-disintegrated dwarf galaxy. The discovery of the black hole and the possible star cluster has important implications for understanding the evolution of supermassive black holes and galaxies To read more go to: www.nasa.gov/mission_pages/hubble/science/shredded-relic.... Credit: NASA, ESA, and S. Farrell (Sydney Institute for Astronomy, University of Sydney) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Finding Your Scientific Voice - Theatre Techniques for Physicists
NASA Astrophysics Data System (ADS)
Dreyer-Lude, Melanie
Research talks can be dull. Scientists may be making important, ground-breaking discoveries, but their audience is often missing the message. Whether presenting a conference talk, pitching a congressman for funding, or participating in a job interview, scientists must learn how to tell their stories. Conducting research and talking about that research are separate skill sets. The curse of knowledge, too much information, or the inability to speak and move properly may all be standing in the way of turning a talk into a memorable event. Building on initiatives like those of the Alan Alda Center and Bruce Greenes theatrical productions, our workshop helps researchers connect performing skills to the reality of presenting complex research subjects. This talk reviews key aspects of the Finding Your Scientific Voice workshop. Using digital recordings of pre and post workshop presentations, we will demonstrate what is exceptional about our workshop process and how it uses theatrical tools like Great Beginnings, the Dramatic Arc, the Core Message and Strong Endings to transform a humdrum presentation into a dynamic speaking event.
The Effect of Rules and Discovery in the Retention and Retrieval of Braille Inkprint Letter Pairs.
ERIC Educational Resources Information Center
Nagengast, Daniel L.; And Others
The effects of rule knowledge were investigated using Braille inkprint pairs. Both recognition and recall were studied in three groups of subjects: rule knowledge, rule discovery, and no rule. Two hypotheses were tested: (1) that the group exposed to the rule would score better than would a discovery group and a control group; and (2) that all…
Knowledge-Based Topic Model for Unsupervised Object Discovery and Localization.
Niu, Zhenxing; Hua, Gang; Wang, Le; Gao, Xinbo
Unsupervised object discovery and localization is to discover some dominant object classes and localize all of object instances from a given image collection without any supervision. Previous work has attempted to tackle this problem with vanilla topic models, such as latent Dirichlet allocation (LDA). However, in those methods no prior knowledge for the given image collection is exploited to facilitate object discovery. On the other hand, the topic models used in those methods suffer from the topic coherence issue-some inferred topics do not have clear meaning, which limits the final performance of object discovery. In this paper, prior knowledge in terms of the so-called must-links are exploited from Web images on the Internet. Furthermore, a novel knowledge-based topic model, called LDA with mixture of Dirichlet trees, is proposed to incorporate the must-links into topic modeling for object discovery. In particular, to better deal with the polysemy phenomenon of visual words, the must-link is re-defined as that one must-link only constrains one or some topic(s) instead of all topics, which leads to significantly improved topic coherence. Moreover, the must-links are built and grouped with respect to specific object classes, thus the must-links in our approach are semantic-specific , which allows to more efficiently exploit discriminative prior knowledge from Web images. Extensive experiments validated the efficiency of our proposed approach on several data sets. It is shown that our method significantly improves topic coherence and outperforms the unsupervised methods for object discovery and localization. In addition, compared with discriminative methods, the naturally existing object classes in the given image collection can be subtly discovered, which makes our approach well suited for realistic applications of unsupervised object discovery.Unsupervised object discovery and localization is to discover some dominant object classes and localize all of object instances from a given image collection without any supervision. Previous work has attempted to tackle this problem with vanilla topic models, such as latent Dirichlet allocation (LDA). However, in those methods no prior knowledge for the given image collection is exploited to facilitate object discovery. On the other hand, the topic models used in those methods suffer from the topic coherence issue-some inferred topics do not have clear meaning, which limits the final performance of object discovery. In this paper, prior knowledge in terms of the so-called must-links are exploited from Web images on the Internet. Furthermore, a novel knowledge-based topic model, called LDA with mixture of Dirichlet trees, is proposed to incorporate the must-links into topic modeling for object discovery. In particular, to better deal with the polysemy phenomenon of visual words, the must-link is re-defined as that one must-link only constrains one or some topic(s) instead of all topics, which leads to significantly improved topic coherence. Moreover, the must-links are built and grouped with respect to specific object classes, thus the must-links in our approach are semantic-specific , which allows to more efficiently exploit discriminative prior knowledge from Web images. Extensive experiments validated the efficiency of our proposed approach on several data sets. It is shown that our method significantly improves topic coherence and outperforms the unsupervised methods for object discovery and localization. In addition, compared with discriminative methods, the naturally existing object classes in the given image collection can be subtly discovered, which makes our approach well suited for realistic applications of unsupervised object discovery.
78 FR 66022 - Center for Scientific Review; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-04
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Center for Scientific Review... unwarranted invasion of personal privacy. Name of Committee: Center for Scientific Review Special Emphasis Panel; Small Business: Biological Chemistry, Biophysics and Drug Discovery. Date: November 4, 2013. Time...
Child Predictors of Learning to Control Variables via Instruction or Self-Discovery
ERIC Educational Resources Information Center
Wagensveld, Barbara; Segers, Eliane; Kleemans, Tijs; Verhoeven, Ludo
2015-01-01
We examined the role child factors on the acquisition and transfer of learning the control of variables strategy (CVS) via instruction or self-discovery. Seventy-six fourth graders and 43 sixth graders were randomly assigned to a group receiving direct CVS instruction or a discovery learning group. Prior to the intervention, cognitive, scientific,…
The Post-Repeal Eclipse in Knowledge About The Harmful Effects of Alcohol
Katcher, Brian S.
2014-01-01
National Prohibition in the USA (1919 to 1933) was followed by an era in which medical scientists played an important role in minimizing the harmful effects of alcohol. Cirrhosis, cardiomyopathy, adverse fetal effects, and esophageal cancer are examples of alcohol-related health problems that were well known at the beginning of the 20th century but were dismissed during the late 1930’s and early 1940’s, only to be rediscovered during the 1960’s and afterwards. This eclipse in knowledge occurred because of skepticism about earlier claims that had been made in the name of scientific temperance and, most importantly, because of changing standards for medical evidence. The paradigm for disease causation that gave birth to modern medicine was based on microbiology and reinforced by hormone and nutrition discoveries. Most alcohol-related health problems are poorly explained by this paradigm. The more recent epidemiologic paradigm for noninfectious disease is more applicable to the health risks associated with heavy drinking. A transformation of knowledge about alcohol’s relationship to disease has occurred. PMID:8329965
Modelling Chemical Reasoning to Predict and Invent Reactions.
Segler, Marwin H S; Waller, Mark P
2017-05-02
The ability to reason beyond established knowledge allows organic chemists to solve synthetic problems and invent novel transformations. Herein, we propose a model that mimics chemical reasoning, and formalises reaction prediction as finding missing links in a knowledge graph. We have constructed a knowledge graph containing 14.4 million molecules and 8.2 million binary reactions, which represents the bulk of all chemical reactions ever published in the scientific literature. Our model outperforms a rule-based expert system in the reaction prediction task for 180 000 randomly selected binary reactions. The data-driven model generalises even beyond known reaction types, and is thus capable of effectively (re-)discovering novel transformations (even including transition metal-catalysed reactions). Our model enables computers to infer hypotheses about reactivity and reactions by only considering the intrinsic local structure of the graph and because each single reaction prediction is typically achieved in a sub-second time frame, the model can be used as a high-throughput generator of reaction hypotheses for reaction discovery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Mobarhan, Kamran S.
2007-06-01
Every year large sums of tax payers money are used to fund scientific research at various universities. The result is outstanding new discoveries which are published in scientific journals. However, more often than not, once the funding for these research programs end, the results of these new discoveries are buried deep within old issues of technical journals which are archived in university libraries and are consequently forgotten. Ideally, these scientific discoveries and technological advances generated at our academic institutions should lead to the creation of new jobs for our graduating students and emerging scientists and professionals. In this fashion the students who worked hard to produce these new discoveries and technological advances, can continue with their good work at companies that they helped launch and establish. This article explores some of the issues related to new business development activities at academic institutions. Included is a discussion of possible ways of helping graduating students create jobs for themselves, and for their fellow students, through creation of new companies which are based on the work that they did during their course of university studies.
The Search for an Effective Clinical Behavior Analysis: The Nonlinear Thinking of Israel Goldiamond
Layng, T.V Joe
2009-01-01
This paper has two purposes; the first is to reintroduce Goldiamond's constructional approach to clinical behavior analysis and to the field of behavior analysis as a whole, which, unfortunately, remains largely unaware of his nonlinear functional analysis and its implications. The approach is not simply a set of clinical techniques; instead it describes how basic, applied, and formal analyses may intersect to provide behavior-analytic solutions where the emphasis is on consequential selection. The paper takes the reader through a cumulative series of explorations, discoveries, and insights that hopefully brings the reader into contact with the power and comprehensiveness of Goldiamond's approach, and leads to an investigation of the original works cited. The second purpose is to provide the context of a life of scientific discovery that attempts to elucidate the variables and events that informed one of the most extraordinary scientific journeys in the history of behavior analysis, and expose the reader (especially young ones) to the exciting process of discovery followed by one of the field's most brilliant thinkers. One may perhaps consider this article a tribute to Goldiamond and his work, but the tribute is really to the process of scientific discovery over a professional lifetime. PMID:22478519
77 FR 37424 - Center For Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-21
... Special Emphasis Panel; Small Business Biological Chemistry, Biophyscis and Drug Discovery. Date: July 16...: Center for Scientific Review Special Emphasis Panel; Fellowship: Chemistry, Biochemistry, Biophysics, and...
Discovery Planetary Mission Operations Concepts
NASA Technical Reports Server (NTRS)
Coffin, R.
1994-01-01
The NASA Discovery Program of small planetary missions will provide opportunities to continue scientific exploration of the solar system in today's cost-constrained environment. Using a multidisciplinary team, JPL has developed plans to provide mission operations within the financial parameters established by the Discovery Program. This paper describes experiences and methods that show promise of allowing the Discovery Missions to operate within the program cost constraints while maintaining low mission risk, high data quality, and reponsive operations.
A Scientific Revolution: The Hubble and James Webb Space Telescopes
NASA Technical Reports Server (NTRS)
Gardner, Jonathan P.
2011-01-01
Astronomy is going through a scientific revolution, responding to a Rood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, Dr. Gardner will discuss some of the most important astronomical discoveries of the last 10 years, and the role that space telescopes have played in those discoveries. The next decade looks equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope.
Earth BioGenome Project: Sequencing life for the future of life.
Lewin, Harris A; Robinson, Gene E; Kress, W John; Baker, William J; Coddington, Jonathan; Crandall, Keith A; Durbin, Richard; Edwards, Scott V; Forest, Félix; Gilbert, M Thomas P; Goldstein, Melissa M; Grigoriev, Igor V; Hackett, Kevin J; Haussler, David; Jarvis, Erich D; Johnson, Warren E; Patrinos, Aristides; Richards, Stephen; Castilla-Rubio, Juan Carlos; van Sluys, Marie-Anne; Soltis, Pamela S; Xu, Xun; Yang, Huanming; Zhang, Guojie
2018-04-24
Increasing our understanding of Earth's biodiversity and responsibly stewarding its resources are among the most crucial scientific and social challenges of the new millennium. These challenges require fundamental new knowledge of the organization, evolution, functions, and interactions among millions of the planet's organisms. Herein, we present a perspective on the Earth BioGenome Project (EBP), a moonshot for biology that aims to sequence, catalog, and characterize the genomes of all of Earth's eukaryotic biodiversity over a period of 10 years. The outcomes of the EBP will inform a broad range of major issues facing humanity, such as the impact of climate change on biodiversity, the conservation of endangered species and ecosystems, and the preservation and enhancement of ecosystem services. We describe hurdles that the project faces, including data-sharing policies that ensure a permanent, freely available resource for future scientific discovery while respecting access and benefit sharing guidelines of the Nagoya Protocol. We also describe scientific and organizational challenges in executing such an ambitious project, and the structure proposed to achieve the project's goals. The far-reaching potential benefits of creating an open digital repository of genomic information for life on Earth can be realized only by a coordinated international effort.
2017-12-19
This is NASA's 2018 'To Do' list. The work we do, which will continue in 2018, helps the United States maintain its world leadership in space exploration and scientific discovery. Launches, discoveries and more exploration await in the year ahead.
Klahr, David; Nigam, Milena
2004-10-01
In a study with 112 third- and fourth-grade children, we measured the relative effectiveness of discovery learning and direct instruction at two points in the learning process: (a) during the initial acquisition of the basic cognitive objective (a procedure for designing and interpreting simple, unconfounded experiments) and (b) during the subsequent transfer and application of this basic skill to more diffuse and authentic reasoning associated with the evaluation of science-fair posters. We found not only that many more children learned from direct instruction than from discovery learning, but also that when asked to make broader, richer scientific judgments, the many children who learned about experimental design from direct instruction performed as well as those few children who discovered the method on their own. These results challenge predictions derived from the presumed superiority of discovery approaches in teaching young children basic procedures for early scientific investigations.
PCSK9: From Basic Science Discoveries to Clinical Trials.
Shapiro, Michael D; Tavori, Hagai; Fazio, Sergio
2018-05-11
Unknown 15 years ago, PCSK9 (proprotein convertase subtilisin/kexin type 9) is now common parlance among scientists and clinicians interested in prevention and treatment of atherosclerotic cardiovascular disease. What makes this story so special is not its recent discovery nor the fact that it uncovered previously unknown biology but rather that these important scientific insights have been translated into an effective medical therapy in record time. Indeed, the translation of this discovery to novel therapeutic serves as one of the best examples of how genetic insights can be leveraged into intelligent target drug discovery. The PCSK9 saga is unfolding quickly but is far from complete. Here, we review major scientific understandings as they relate to the role of PCSK9 in lipoprotein metabolism and atherosclerotic cardiovascular disease and the impact that therapies designed to inhibit its action are having in the clinical setting. © 2018 American Heart Association, Inc.
Anthelmintics: From discovery to resistance II (San Diego, 2016).
Martin, Richard J; Wolstenholme, Adrian J; Caffrey, Conor R
2016-12-01
The second scientific meeting in the series: "Anthelmintics: From Discovery to Resistance" was held in San Diego in February, 2016. The focus topics of the meeting, related to anthelmintic discovery and resistance, were novel technologies, bioinformatics, commercial interests, anthelmintic modes of action and anthelmintic resistance. Basic scientific, human and veterinary interests were addressed in oral and poster presentations. The delegates were from universities and industries in the US, Europe, Australia and New Zealand. The papers were a great representation of the field, and included the use of C. elegans for lead discovery, mechanisms of anthelmintic resistance, nematode neuropeptides, proteases, B. thuringiensis crystal protein, nicotinic receptors, emodepside, benzimidazoles, P-glycoproteins, natural products, microfluidic techniques and bioinformatics approaches. The NIH also presented NIAID-specific parasite genomic priorities and initiatives. From these papers we introduce below selected papers with a focus on anthelmintic drug screening and development. Copyright © 2016. Published by Elsevier Ltd.
77 FR 30540 - Center for Scientific Review Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-23
... Committee: Center for Scientific Review Special Emphasis Panel; Drug Discovery for the Nervous System...: Digestive, Kidney and Urological Systems Integrated Review Group; Kidney Molecular Biology and Genitourinary...
7 CFR 3400.20 - Grantee review prior to award.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the funded project has changed significantly, other scientific discoveries have affected the project... scientific peer review conducted in accordance with § 3400.21. For education and extension projects, such...
Pendulum Phenomena and the Assessment of Scientific Inquiry Capabilities
ERIC Educational Resources Information Center
Zachos, Paul
2004-01-01
Phenomena associated with the "pendulum" present numerous opportunities for assessing higher order human capabilities related to "scientific inquiry" and the "discovery" of natural law. This paper illustrates how systematic "assessment of scientific inquiry capabilities", using "pendulum" phenomena, can provide a useful tool for classroom teachers…
Ethnobotanical perspective of antimalarial plants: traditional knowledge based study.
Qayum, Abdul; Arya, Rakesh; Lynn, Andrew M
2016-02-04
Considering the demand of antimalarial plants it has become essential to find and locate them for their optimal extraction. The work aims to find plants with antimalarial activities which were used by the local people; to raise the value of traditional knowledge system (TKS) prevalent in the study region; to compile characteristics of local plants used in malaria treatment (referred as antimalarial plants) and to have its spatial distribution analysis to establish a concept of geographical health. Antimalarial plants are listed based on literature survey and field data collected during rainy season, from 85 respondents comprised of different ethnic groups. Ethno-medicinal utilities of plants was extracted; botanical name, family, local name, part used, folklore, geographical location and image of plants were recorded after cross validating with existing literatures. The interview was trifurcated in field, Vaidya/Hakims and house to house. Graphical analysis was done for major plants families, plant part used, response of people and patients and folklore. Mathematical analysis was done for interviewee's response, methods of plant identification and people's preferences of TKS through three plant indices. Fifty-one plants belonging to 27 families were reported with its geographical attributes. It is found plant root (31.75 %) is used mostly for malaria treatment and administration mode is decoction (41.2 %) mainly. The study area has dominance of plants of family Fabaceae (7), Asteraceae (4), Acanthaceae (4) and Amaranthaceae (4). Most popular plants found are Adhatoda vasica, Cassia fistula and Swertia chirata while % usage of TKS is 82.0 % for malaria cure. The research findings can be used by both scientific community and common rural people for bio-discovery of these natural resources sustainably. The former can extract the tables to obtain a suitable plant towards finding a suitable lead molecule in a drug discovery project; while the latter can meet their local demands of malaria, scientifically.
A unified framework for managing provenance information in translational research
2011-01-01
Background A critical aspect of the NIH Translational Research roadmap, which seeks to accelerate the delivery of "bench-side" discoveries to patient's "bedside," is the management of the provenance metadata that keeps track of the origin and history of data resources as they traverse the path from the bench to the bedside and back. A comprehensive provenance framework is essential for researchers to verify the quality of data, reproduce scientific results published in peer-reviewed literature, validate scientific process, and associate trust value with data and results. Traditional approaches to provenance management have focused on only partial sections of the translational research life cycle and they do not incorporate "domain semantics", which is essential to support domain-specific querying and analysis by scientists. Results We identify a common set of challenges in managing provenance information across the pre-publication and post-publication phases of data in the translational research lifecycle. We define the semantic provenance framework (SPF), underpinned by the Provenir upper-level provenance ontology, to address these challenges in the four stages of provenance metadata: (a) Provenance collection - during data generation (b) Provenance representation - to support interoperability, reasoning, and incorporate domain semantics (c) Provenance storage and propagation - to allow efficient storage and seamless propagation of provenance as the data is transferred across applications (d) Provenance query - to support queries with increasing complexity over large data size and also support knowledge discovery applications We apply the SPF to two exemplar translational research projects, namely the Semantic Problem Solving Environment for Trypanosoma cruzi (T.cruzi SPSE) and the Biomedical Knowledge Repository (BKR) project, to demonstrate its effectiveness. Conclusions The SPF provides a unified framework to effectively manage provenance of translational research data during pre and post-publication phases. This framework is underpinned by an upper-level provenance ontology called Provenir that is extended to create domain-specific provenance ontologies to facilitate provenance interoperability, seamless propagation of provenance, automated querying, and analysis. PMID:22126369
Knowledge Discovery and Data Mining: An Overview
NASA Technical Reports Server (NTRS)
Fayyad, U.
1995-01-01
The process of knowledge discovery and data mining is the process of information extraction from very large databases. Its importance is described along with several techniques and considerations for selecting the most appropriate technique for extracting information from a particular data set.
12 CFR 263.53 - Discovery depositions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 12 Banks and Banking 4 2014-01-01 2014-01-01 false Discovery depositions. 263.53 Section 263.53... Discovery depositions. (a) In general. In addition to the discovery permitted in subpart A of this part, limited discovery by means of depositions shall be allowed for individuals with knowledge of facts...
12 CFR 263.53 - Discovery depositions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 12 Banks and Banking 4 2012-01-01 2012-01-01 false Discovery depositions. 263.53 Section 263.53... Discovery depositions. (a) In general. In addition to the discovery permitted in subpart A of this part, limited discovery by means of depositions shall be allowed for individuals with knowledge of facts...
[Insert Your Science Here] Week: Creating science-driven public awareness campaigns
NASA Astrophysics Data System (ADS)
Mattson, Barbara; Mitchell, Sara; McElvery, Raleigh; Reddy, Francis; Wiessinger, Scott; Skelly, Clare; Saravia, Claire; Straughn, Amber N.; Washington, Dewayne
2018-01-01
NASA Goddard’s in-house Astrophysics Communications Team is responsible for facilitating the production of traditional and social media products to provide understanding and inspiration about NASA’s astrophysics missions and discoveries. Our team is largely driven by the scientific news cycle of launches, mission milestones, anniversaries, and discoveries, which can leave a number of topics behind, waiting for a discovery to be highlighted. These overlooked topics include compelling stories about ongoing research, underlying science, and science not tied to a specific mission. In looking for a way to boost coverage of these unsung topics, we struck upon an idea of creating “theme weeks” which bring together the broader scientific community around a topic, object, or scientific concept. This poster will present the first two of our Goddard-led theme weeks: Pulsar Week and Dark Energy Week. We will describe the efforts involved, our metrics, and the benefits and challenges we encountered. We will also suggest a template for doing this for your own science based on our successes.
Origins of magnetospheric physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Allen, J.A.
1983-01-01
The history of the scientific investigation of the earth magnetosphere during the period 1946-1960 is reviewed, with a focus on satellite missions leading to the discovery of the inner and outer radiation belts. Chapters are devoted to ground-based studies of the earth magnetic field through the 1930s, the first U.S. rocket flights carrying scientific instruments, the rockoon flights from the polar regions (1952-1957), U.S. planning for scientific use of artificial satellites (1956), the launch of Sputnik I (1957), the discovery of the inner belt by Explorers I and III (1958), the Argus high-altitude atomic-explosion tests (1958), the confirmation of themore » inner belt and discovery of the outer belt by Explorer IV and Pioneers I-V, related studies by Sputniks II and III and Luniks I-III, and the observational and theoretical advances of 1959-1961. Photographs, drawings, diagrams, graphs, and copies of original notes and research proposals are provided. 227 references.« less
An integrative model for in-silico clinical-genomics discovery science.
Lussier, Yves A; Sarkar, Indra Nell; Cantor, Michael
2002-01-01
Human Genome discovery research has set the pace for Post-Genomic Discovery Research. While post-genomic fields focused at the molecular level are intensively pursued, little effort is being deployed in the later stages of molecular medicine discovery research, such as clinical-genomics. The objective of this study is to demonstrate the relevance and significance of integrating mainstream clinical informatics decision support systems to current bioinformatics genomic discovery science. This paper is a feasibility study of an original model enabling novel "in-silico" clinical-genomic discovery science and that demonstrates its feasibility. This model is designed to mediate queries among clinical and genomic knowledge bases with relevant bioinformatic analytic tools (e.g. gene clustering). Briefly, trait-disease-gene relationships were successfully illustrated using QMR, OMIM, SNOMED-RT, GeneCluster and TreeView. The analyses were visualized as two-dimensional dendrograms of clinical observations clustered around genes. To our knowledge, this is the first study using knowledge bases of clinical decision support systems for genomic discovery. Although this study is a proof of principle, it provides a framework for the development of clinical decision-support-system driven, high-throughput clinical-genomic technologies which could potentially unveil significant high-level functions of genes.
Early Cosmic Ray Research with Balloons
NASA Astrophysics Data System (ADS)
Walter, Michael
2013-06-01
The discovery of cosmic rays by Victor Hess during a balloon flight in 1912 at an altitude of 5350 m would not have been possible without the more than one hundred years development of scientific ballooning. The discovery of hot air and hydrogen balloons and their first flights in Europe is shortly described. Scientific ballooning was mainly connected with activities of meteorologists. It was also the geologist and meteorologist Franz Linke, who probably observed first indications of a penetrating radiation whose intensity seemed to increase with the altitude. Karl Bergwitz and Albert Gockel were the first physicists studying the penetrating radiation during balloon flights. The main part of the article deals with the discovery of the extraterrestrial radiation by V. Hess and the confirmation by Werner Kolhörster.
Future Translational Applications From the Contemporary Genomics Era
Fox, Caroline S.; Hall, Jennifer L.; Arnett, Donna K.; Ashley, Euan A.; Delles, Christian; Engler, Mary B.; Freeman, Mason W.; Johnson, Julie A.; Lanfear, David E.; Liggett, Stephen B.; Lusis, Aldons J.; Loscalzo, Joseph; MacRae, Calum A.; Musunuru, Kiran; Newby, L. Kristin; O’Donnell, Christopher J.; Rich, Stephen S.; Terzic, Andre
2016-01-01
The field of genetics and genomics has advanced considerably with the achievement of recent milestones encompassing the identification of many loci for cardiovascular disease and variable drug responses. Despite this achievement, a gap exists in the understanding and advancement to meaningful translation that directly affects disease prevention and clinical care. The purpose of this scientific statement is to address the gap between genetic discoveries and their practical application to cardiovascular clinical care. In brief, this scientific statement assesses the current timeline for effective translation of basic discoveries to clinical advances, highlighting past successes. Current discoveries in the area of genetics and genomics are covered next, followed by future expectations, tools, and competencies for achieving the goal of improving clinical care. PMID:25882488
NASA Astrophysics Data System (ADS)
Lederman, Norman G.; Antink, Allison; Bartos, Stephen
2014-02-01
The primary focus of this article is to illustrate how teachers can use contemporary socio-scientific issues to teach students about nature of scientific knowledge as well as address the science subject matter embedded in the issues. The article provides an initial discussion about the various aspects of nature of scientific knowledge that are addressed. It is important to remember that the aspects of nature of scientific knowledge are not considered to be a comprehensive list, but rather a set of important ideas for adolescent students to learn about scientific knowledge. These ideas have been advocated as important for secondary students by numerous reform documents internationally. Then, several examples are used to illustrate how genetically based socio-scientific issues can be used by teachers to improve students' understandings of the discussed aspects of nature of scientific knowledge.
7 CFR 3400.20 - Grantee review prior to award.
Code of Federal Regulations, 2014 CFR
2014-01-01
... significantly, other scientific discoveries have affected the project, or the need for the project has changed... in this subpart. For research projects, such review must be a scientific peer review conducted in...
7 CFR 3400.20 - Grantee review prior to award.
Code of Federal Regulations, 2012 CFR
2012-01-01
... significantly, other scientific discoveries have affected the project, or the need for the project has changed... in this subpart. For research projects, such review must be a scientific peer review conducted in...
7 CFR 3400.20 - Grantee review prior to award.
Code of Federal Regulations, 2013 CFR
2013-01-01
... significantly, other scientific discoveries have affected the project, or the need for the project has changed... in this subpart. For research projects, such review must be a scientific peer review conducted in...
7 CFR 3400.20 - Grantee review prior to award.
Code of Federal Regulations, 2011 CFR
2011-01-01
... significantly, other scientific discoveries have affected the project, or the need for the project has changed... in this subpart. For research projects, such review must be a scientific peer review conducted in...
What Constitutes Science and Scientific Evidence: Roles of Null Hypothesis Testing
ERIC Educational Resources Information Center
Chang, Mark
2017-01-01
We briefly discuss the philosophical basis of science, causality, and scientific evidence, by introducing the hidden but most fundamental principle of science: the similarity principle. The principle's use in scientific discovery is illustrated with Simpson's paradox and other examples. In discussing the value of null hypothesis statistical…
Lone Geniuses in Popular Science: The Devaluation of Scientific Consensus
ERIC Educational Resources Information Center
Charney, Davida
2003-01-01
Popular accounts of scientific discoveries diverge from scholarly accounts, stripping off hedges and promoting short-term social consequences. This case study illustrates how the "horse-race" framing of popular accounts devalues the collective sharing, challenging, and extending of scientific work. In her best-selling "Longitude," Dava Sobel…
Search Pathways: Modeling GeoData Search Behavior to Support Usable Application Development
NASA Astrophysics Data System (ADS)
Yarmey, L.; Rosati, A.; Tressel, S.
2014-12-01
Recent technical advances have enabled development of new scientific data discovery systems. Metadata brokering, linked data, and other mechanisms allow users to discover scientific data of interes across growing volumes of heterogeneous content. Matching this complex content with existing discovery technologies, people looking for scientific data are presented with an ever-growing array of features to sort, filter, subset, and scan through search returns to help them find what they are looking for. This paper examines the applicability of available technologies in connecting searchers with the data of interest. What metrics can be used to track success given shifting baselines of content and technology? How well do existing technologies map to steps in user search patterns? Taking a user-driven development approach, the team behind the Arctic Data Explorer interdisciplinary data discovery application invested heavily in usability testing and user search behavior analysis. Building on earlier library community search behavior work, models were developed to better define the diverse set of thought processes and steps users took to find data of interest, here called 'search pathways'. This research builds a deeper understanding of the user community that seeks to reuse scientific data. This approach ensures that development decisions are driven by clearly articulated user needs instead of ad hoc technology trends. Initial results from this research will be presented along with lessons learned for other discovery platform development and future directions for informatics research into search pathways.
NASA Astrophysics Data System (ADS)
Druckenmiller, M. L.; Wiggins, H. V.; Eicken, H.; Francis, J. A.; Huntington, H.; Scambos, T. A.
2015-12-01
The Study of Environmental Arctic Change (SEARCH), ongoing since the early-2000s, aims to develop scientific knowledge to help society understand and respond to the rapidly changing Arctic. Through collaboration with the research community, funding agencies, national and international science programs, and other stakeholders, SEARCH facilitates research activities across local-to-global scales, with increasing emphasis on addressing the information needs of policy and decision-makers. This talk will explore the program's history, spanning its earliest efforts to understand interrelated atmospheric, oceanic, and terrestrial changes in the Arctic to more recent objectives of providing stakeholder-relevant information, such as community-wide summaries of the expected arctic summer sea ice minimum or up-to-date information on sea ice conditions to Alaska Native walrus hunters in the Bering and Chukchi Seas. We will discuss SEARCH's recent shift toward a "Knowledge to Action" vision and implementation of focused Action Teams to: (1) improve understanding, advance prediction, and explore consequences of changing arctic sea ice; (2) document and understand how degradation of near-surface permafrost will affect arctic and global systems; and (3) improve predictions of future land-ice loss and impacts on sea level. Tracking and evaluating how scientific information from such research reaches stakeholders and informs decisions are critical for interactions that allow the research community to keep pace with an evolving landscape of arctic decision-makers. Examples will be given for the new directions these Action Teams are taking regarding science communication and approaches for research community collaboration to synthesize research findings and promote arctic science and interdisciplinary scientific discovery.
Impact of Network Activity Levels on the Performance of Passive Network Service Dependency Discovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, Thomas E.; Chikkagoudar, Satish; Arthur-Durett, Kristine M.
Network services often do not operate alone, but instead, depend on other services distributed throughout a network to correctly function. If a service fails, is disrupted, or degraded, it is likely to impair other services. The web of dependencies can be surprisingly complex---especially within a large enterprise network---and evolve with time. Acquiring, maintaining, and understanding dependency knowledge is critical for many network management and cyber defense activities. While automation can improve situation awareness for network operators and cyber practitioners, poor detection accuracy reduces their confidence and can complicate their roles. In this paper we rigorously study the effects of networkmore » activity levels on the detection accuracy of passive network-based service dependency discovery methods. The accuracy of all except for one method was inversely proportional to network activity levels. Our proposed cross correlation method was particularly robust to the influence of network activity. The proposed experimental treatment will further advance a more scientific evaluation of methods and provide the ability to determine their operational boundaries.« less
Veiga, Diogo F. T.; Dutta, Bhaskar; Balaźsi, Gábor
2011-01-01
The escalating amount of genome-scale data demands a pragmatic stance from the research community. How can we utilize this deluge of information to better understand biology, cure diseases, or engage cells in bioremediation or biomaterial production for various purposes? A research pipeline moving new sequence, expression and binding data towards practical end goals seems to be necessary. While most individual researchers are not motivated by such well-articulated pragmatic end goals, the scientific community has already self-organized itself to successfully convert genomic data into fundamentally new biological knowledge and practical applications. Here we review two important steps in this workflow: network inference and network response identification, applied to transcriptional regulatory networks. Among network inference methods, we concentrate on relevance networks due to their conceptual simplicity. We classify and discuss network response identification approaches as either data-centric or network-centric. Finally, we conclude with an outlook on what is still missing from these approaches and what may be ahead on the road to biological discovery. PMID:20174676
Stawicki, Stanislaw P; Stoltzfus, Jill C; Aggarwal, Praveen; Bhoi, Sanjeev; Bhatt, Shashi; Kalra, O P; Bhalla, Ashish; Hoey, Brian A; Galwankar, Sagar C; Paladino, Lorenzo; Papadimos, Thomas J
2014-07-01
Biomarker science brings great promise to clinical medicine. This is especially true in the era of technology miniaturization, rapid dissemination of knowledge, and point-of-care (POC) implementation of novel diagnostics. Despite this tremendous progress, the journey from a candidate biomarker to a scientifically validated biomarker continues to be an arduous one. In addition to substantial financial resources, biomarker research requires considerable expertise and a multidisciplinary approach. Investigational designs must also be taken into account, with the randomized controlled trial remaining the "gold standard". The authors present a condensed overview of biomarker science and associated investigational methods, followed by specific examples from clinical areas where biomarker development and/or implementation resulted in tangible enhancements in patient care. This manuscript also serves as a call to arms for the establishment of a truly global, well-coordinated infrastructure dedicated to biomarker research and development, with focus on delivery of the latest discoveries directly to the patient via point-of-care technology.
Risk factors for autism: translating genomic discoveries into diagnostics.
Scherer, Stephen W; Dawson, Geraldine
2011-07-01
Autism spectrum disorders (ASDs) are a group of conditions characterized by impairments in communication and reciprocal social interaction, and the presence of restricted and repetitive behaviors. The spectrum of autistic features is variable, with severity of symptoms ranging from mild to severe, sometimes with poor clinical outcomes. Twin and family studies indicate a strong genetic basis for ASD susceptibility. Recent progress in defining rare highly penetrant mutations and copy number variations as ASD risk factors has prompted early uptake of these research findings into clinical diagnostics, with microarrays becoming a 'standard of care' test for any ASD diagnostic work-up. The ever-changing landscape of the generation of genomic data coupled with the vast heterogeneity in cause and expression of ASDs (further influenced by issues of penetrance, variable expressivity, multigenic inheritance and ascertainment) creates complexity that demands careful consideration of how to apply this knowledge. Here, we discuss the scientific, ethical, policy and communication aspects of translating the new discoveries into clinical and diagnostic tools for promoting the well-being of individuals and families with ASDs.
“Drivers” of Translational Cancer Epidemiology in the 21st Century: Needs and Opportunities
Lam, Tram Kim; Spitz, Margaret; Schully, Sheri D.; Khoury, Muin J.
2012-01-01
Cancer epidemiology is at the cusp of a paradigm shift--propelled by an urgent need to accelerate the pace of translating scientific discoveries into healthcare and population health benefits. As part of a strategic planning process for cancer epidemiologic research, the Epidemiology and Genomics Research Program (EGRP) at the National Cancer Institute (NCI) is leading a “longitudinal” meeting with members of the research community to engage in an on-going dialogue to help shape and invigorate the field. Here, we review a translational framework influenced by “drivers” that we believe have begun guiding cancer epidemiology towards translation in the past few years and are most likely to drive the field further in the next decade. The drivers include: (1) collaboration and team science; (2) technology; (3) multi-level analyses and interventions; and (4) knowledge integration from basic, clinical and population sciences. Using the global prevention of cervical cancer as an example of a public health endeavor to anchor the conversation, we discuss how these drivers can guide epidemiology from discovery to population health impact, along the translational research continuum. PMID:23322363
Active Learning in an Introductory Meteorology Class
NASA Astrophysics Data System (ADS)
Marchese, P. J.; Bluestone, C.
2007-12-01
Active learning modules were introduced to the primarily minority population in the introductory meteorology class at Queensborough Community College (QCC). These activities were developed at QCC and other 4 year colleges and designed to reinforce basic meteorological concepts. The modules consisted of either Interactive Lecture Demonstrations (ILD) or discovery-based activities. During the ILD the instructor would describe an experiment that would be demonstrated in class. Students would predict what the outcome would be and compare their expected results to the actual outcome of the experiment. In the discovery-based activities students would learn about physical concepts by performing basic experiments. These activities differed from the traditional lab in that it avoided "cookbook" procedures and emphasized having the students learn about the concept using the scientific method. As a result of these activities student scores measuring conceptual understanding, as well as factual knowledge, increased as compared to student scores in a more affluent community college. Students also had higher self- efficacy scores. Lower scoring students demonstrated the greatest benefit, while the better students had little (or no) changes.
ERIC Educational Resources Information Center
Benoit, Gerald
2002-01-01
Discusses data mining (DM) and knowledge discovery in databases (KDD), taking the view that KDD is the larger view of the entire process, with DM emphasizing the cleaning, warehousing, mining, and visualization of knowledge discovery in databases. Highlights include algorithms; users; the Internet; text mining; and information extraction.…
Gibert, Karina; García-Rudolph, Alejandro; Curcoll, Lluïsa; Soler, Dolors; Pla, Laura; Tormos, José María
2009-01-01
In this paper, an integral Knowledge Discovery Methodology, named Clustering based on rules by States, which incorporates artificial intelligence (AI) and statistical methods as well as interpretation-oriented tools, is used for extracting knowledge patterns about the evolution over time of the Quality of Life (QoL) of patients with Spinal Cord Injury. The methodology incorporates the interaction with experts as a crucial element with the clustering methodology to guarantee usefulness of the results. Four typical patterns are discovered by taking into account prior expert knowledge. Several hypotheses are elaborated about the reasons for psychological distress or decreases in QoL of patients over time. The knowledge discovery from data (KDD) approach turns out, once again, to be a suitable formal framework for handling multidimensional complexity of the health domains.
Virtual Observatory and Distributed Data Mining
NASA Astrophysics Data System (ADS)
Borne, Kirk D.
2012-03-01
New modes of discovery are enabled by the growth of data and computational resources (i.e., cyberinfrastructure) in the sciences. This cyberinfrastructure includes structured databases, virtual observatories (distributed data, as described in Section 20.2.1 of this chapter), high-performance computing (petascale machines), distributed computing (e.g., the Grid, the Cloud, and peer-to-peer networks), intelligent search and discovery tools, and innovative visualization environments. Data streams from experiments, sensors, and simulations are increasingly complex and growing in volume. This is true in most sciences, including astronomy, climate simulations, Earth observing systems, remote sensing data collections, and sensor networks. At the same time, we see an emerging confluence of new technologies and approaches to science, most clearly visible in the growing synergism of the four modes of scientific discovery: sensors-modeling-computing-data (Eastman et al. 2005). This has been driven by numerous developments, including the information explosion, development of large-array sensors, acceleration in high-performance computing (HPC) power, advances in algorithms, and efficient modeling techniques. Among these, the most extreme is the growth in new data. Specifically, the acquisition of data in all scientific disciplines is rapidly accelerating and causing a data glut (Bell et al. 2007). It has been estimated that data volumes double every year—for example, the NCSA (National Center for Supercomputing Applications) reported that their users cumulatively generated one petabyte of data over the first 19 years of NCSA operation, but they then generated their next one petabyte in the next year alone, and the data production has been growing by almost 100% each year after that (Butler 2008). The NCSA example is just one of many demonstrations of the exponential (annual data-doubling) growth in scientific data collections. In general, this putative data-doubling is an inevitable result of several compounding factors: the proliferation of data-generating devices, sensors, projects, and enterprises; the 18-month doubling of the digital capacity of these microprocessor-based sensors and devices (commonly referred to as "Moore’s law"); the move to digital for nearly all forms of information; the increase in human-generated data (both unstructured information on the web and structured data from experiments, models, and simulation); and the ever-expanding capability of higher density media to hold greater volumes of data (i.e., data production expands to fill the available storage space). These factors are consequently producing an exponential data growth rate, which will soon (if not already) become an insurmountable technical challenge even with the great advances in computation and algorithms. This technical challenge is compounded by the ever-increasing geographic dispersion of important data sources—the data collections are not stored uniformly at a single location, or with a single data model, or in uniform formats and modalities (e.g., images, databases, structured and unstructured files, and XML data sets)—the data are in fact large, distributed, heterogeneous, and complex. The greatest scientific research challenge with these massive distributed data collections is consequently extracting all of the rich information and knowledge content contained therein, thus requiring new approaches to scientific research. This emerging data-intensive and data-oriented approach to scientific research is sometimes called discovery informatics or X-informatics (where X can be any science, such as bio, geo, astro, chem, eco, or anything; Agresti 2003; Gray 2003; Borne 2010). This data-oriented approach to science is now recognized by some (e.g., Mahootian and Eastman 2009; Hey et al. 2009) as the fourth paradigm of research, following (historically) experiment/observation, modeling/analysis, and computational science.
76 FR 30371 - Center for Scientific Review; Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-25
... Panel; RFA Panel: Drug Discovery for the Nervous System. Date: June 16-17, 2011. Time: 8 a.m. to 10 a.m... Special Emphasis Panel; RFA Panel: Drug Discovery for the Nervous System. Date: June 17, 2011. Time: 10 a...
Women and the Elements: The Role of Women in Element and Fission Discoveries.
ERIC Educational Resources Information Center
Spradley, Joseph L.
1989-01-01
Describes the scientific work of several women, including Marie Curie, Lise Meitner, Ida Noddack, Irene Curie, Marguerite Perey, Chien-Shiung Wu, and Maria Mayer. Discusses the connections between their discoveries. Thirty-six references are listed. (YP)
Allchin's Shoehorn, or Why Science Is Hypothetico-Deductive.
ERIC Educational Resources Information Center
Lawson, Anton E.
2003-01-01
Criticizes Allchin's article about Lawson's analysis of Galileo's discovery of Jupiter's moons. Suggests that a careful analysis of the way humans spontaneously process information and reason supports a general hypothetico-deductive theory of human information processing, reasoning, and scientific discovery. (SOE)
Successful Undergraduate Research: Creating Win-Win-Win
NASA Astrophysics Data System (ADS)
Guswa, A. J.; Rhodes, A. L.
2003-12-01
Undergraduate involvement in research has the potential to advance science, enhance education, strengthen the research community, and raise general awareness of the importance and impact of scientific understanding. Rather than being competing objectives, these goals are synergistic. Effective research experiences are those that create win-win-win situations: benefits to the student, benefits to the project, and benefits to the scientific community. When structured appropriately, undergraduate research fits into a learner-centered paradigm that puts emphasis on student learning, rather than instructor teaching. Under such a paradigm the student and professor learn together, constructing knowledge by integrating information with critical-thinking and problem-solving skills, and use this knowledge to address issues in real-life contexts. Creating such a learning environment requires that the professor be vested in the outcome of the research, that the student take a meta-cognitive approach to the project and work at a level appropriate to her abilities, and that the student understand how her contribution fits into the project and the larger field. All of these factors lead to greater independence, confidence, and productivity on the part of the student. By providing undergraduates with these experiences, we introduce not only future scientists but also non-scientists to the excitement of discovery and the value of scientific research. Currently, we involve undergraduates in our research on the hydrology and geochemistry of a tropical montane cloud forest in Monteverde, Costa Rica. At the start of each student's involvement, we provide her with the big picture: our project goals, the relevant social issues, and the importance of watershed research. Each student then articulates her own educational and project objectives. Together, we choose tasks that match her skills and interests with our scholarly work. Specific activities range from literature review to experimental design to installation of field instrumentation to sampling and analysis of data. At the conclusion, each student produces a report on her work along with a written reflection on the value of her experience and how it affected her knowledge, values, and actions. In this learner-centered way, we look to create successful undergraduate research experiences that benefit the student, our project, and the broader scientific community.
Human Genome Project discoveries: Dialectics and rhetoric in the science of genetics
NASA Astrophysics Data System (ADS)
Robidoux, Charlotte A.
The Human Genome Project (HGP), a $437 million effort that began in 1990 to chart the chemical sequence of our three billion base pairs of DNA, was completed in 2003, marking the 50th anniversary that proved the definitive structure of the molecule. This study considered how dialectical and rhetorical arguments functioned in the science, political, and public forums over a 20-year period, from 1980 to 2000, to advance human genome research and to establish the official project. I argue that Aristotle's continuum of knowledge--which ranges from the probable on one end to certified or demonstrated knowledge on the other--provides useful distinctions for analyzing scientific reasoning. While contemporary scientific research seeks to discover certified knowledge, investigators generally employ the hypothetico-deductive or scientific method, which often yields probable rather than certain findings, making these dialectical in nature. Analysis of the discourse describing human genome research revealed the use of numerous rhetorical figures and topics. Persuasive and probable reasoning were necessary for scientists to characterize unknown genetic phenomena, to secure interest in and funding for large-scale human genome research, to solve scientific problems, to issue probable findings, to convince colleagues and government officials that the findings were sound and to disseminate information to the public. Both government and private venture scientists drew on these tools of reasoning to promote their methods of mapping and sequencing the genome. The debate over how to carry out sequencing was rooted in conflicting values. Scientists representing the academic tradition valued a more conservative method that would establish high quality results, and those supporting private industry valued an unconventional approach that would yield products and profits more quickly. Values in turn influenced political and public forum arguments. Agency representatives and investors sided with the approach that reflected values they supported. Fascinated with this controversy and the convincing comparisons, the media often endorsed Celera's work for its efficiency. The analysis of discourse from the science, political, and public forums revealed that value systems influenced the accuracy and quality of the arguments more than the type or number of figures used to describe the research to various audiences.
76 FR 65739 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-24
... Committee: Center for Scientific Review Special Emphasis Panel, Discovery, Design, and Development of... Assistance Program Nos. 93.306, Comparative Medicine; 93.333, Clinical Research, 93.306, 93.333, 93.337, 93...
76 FR 5597 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-01
... Special Emphasis Panel; Drug Discovery for the Nervous System. Date: February 25, 2011. Time: 1 p.m. to 4... Scientific Review Special Emphasis Panel; Small Business: Biomaterials, Delivery Systems, and Nanotechnology...
Delivering Data Packages for Discovery, Analysis, and Preservation
DOT National Transportation Integrated Search
2018-01-10
The United States Department of Transportation (USDOT) Plan to Increase Public Access to the Results of Federally-Funded Scientific Research (PA), requires, in part, that digitally formatted scientific data resulting from unclassified research sup...
42 CFR 426.405 - Authority of the ALJ.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Consult with scientific and clinical experts on his or her own motion concerning clinical or scientific... documentary discovery as permitted by this part. (15) Regulate the course of a hearing and the conduct of...
42 CFR 426.405 - Authority of the ALJ.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Consult with scientific and clinical experts on his or her own motion concerning clinical or scientific... documentary discovery as permitted by this part. (15) Regulate the course of a hearing and the conduct of...
Computer Animations as Astronomy Educational Tool: Immanuel Kant and the Island Universes Hypothesis
NASA Astrophysics Data System (ADS)
Mijic, M.; Park, D.; Zumaeta, J.; Simonian, V.; Levitin, S.; Sullivan, A.; Kang, E. Y. E.; Longson, T.
2008-11-01
Development of astronomy is based on well defined, watershed moments when an individual or a group of individuals make a discovery or a measurement that expand, and sometimes dramatically improve our knowledge of the Universe. The purpose of the Scientific Visualization project at Cal State Los Angeles is to bring these moments to life with the use of computer animations, the medium of the 21st century that appeals to the generations which grew up in Internet age. Our first story describes Immanuel Kant's remarkable the Island Universes hypothesis. Using elementary principles of then new Newtonian mechanics, Kant made bold and ultimately correct interpretation of the Milky Way and the objects that we now call galaxies.
Computer Animations as Astronomy Educational Tool: Immanuel Kant and The Island Universes Hypothesis
NASA Astrophysics Data System (ADS)
Mijic, Milan; Park, D.; Zumaeta, J.; Dong, H.; Simonian, V.; Levitin, S.; Sullivan, A.; Kang, E. Y. E.; Longson, T.; State LA SciVi Project, Cal
2008-05-01
Development of astronomy is based on well defined, watershed moments when an individual or a group of individuals make a discovery or a measurement that expand, and sometimes dramatically improve our knowledge of the Universe. The purpose of the Scientific Visualization project at Cal State LA is to bring these moments to life with the use of computer animations, the medium of the 21st century that appeals to the generations which grew up in Internet age. Our first story describes Immanuel Kant's remarkable the Island Universes hypothesis. Using elementary principles of then new Newtonian mechanics, Kant made bold and ultimately correct interpretation of the Milky Way and the objects that we now call galaxies
My name is Subhashini Jagu, and I am the Scientific Program Manager for the Cancer Target Discovery and Development (CTD2) Network at the Office of Cancer Genomics (OCG). In my new role, I help CTD2 work toward its mission, which is to develop new scientific approaches to accelerate the translation of genomic discoveries into new treatments. Collaborative efforts that bring together a variety of expertise and infrastructure are needed to understand and successfully treat cancer, a highly complex disease.
A Scientific Revolution: the Hubble and James Webb Space Telescopes
NASA Technical Reports Server (NTRS)
Gardner, Jonathan P.
2011-01-01
Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss some of the most important astronomical discoveries of the last 10 years, and the role that space telescopes have played in those discoveries. The next decade looks equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. I will describe how Hubble was upgraded and how and why we are building Webb.
A Scientific Revolution: The Hubble and James Webb Space Telescopes
NASA Technical Reports Server (NTRS)
Gardner, Jonathan
2011-01-01
Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss some of the most important astronomical discoveries of the last 10 years, and the role that space telescopes have played in those discoveries. The next decade looks equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. I will describe how Hubble was upgraded and how and why we are building Webb.
A Scientific Revolution: The Hubble and James Webb Space Telescopes
NASA Technical Reports Server (NTRS)
Gardner, Jonathan P.
2009-01-01
Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss the top 10 astronomical discoveries of the last 10 years, and the role that space telescopes have played in those discoveries. The next decade looks equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. I will describe how Hubble was upgraded and how and why we are building Webb.
A Scientific Revolution: the Hubble and James Webb Space Telescopes
NASA Technical Reports Server (NTRS)
Gardner, Jonathan P.
2012-01-01
Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss some of the most important astronomical discoveries of the last IO years, and the role that space telescopes have played in those discoveries. The next decade looks equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. I will describe how Hubble was upgraded and how and why we are building Webb.
NASA Technical Reports Server (NTRS)
Way, Michael Joseph
2013-01-01
Edwin Hubble is famous for a number of discoveries that are well known to amateur and professional astronomers, students and the general public. The origins of these discoveries are examined and it is demonstrated that, in each case, a great deal of supporting evidence was already in place. In some cases the discoveries had either already been made, or competing versions were not adopted for complex scientific and sociological reasons.
NASA Astrophysics Data System (ADS)
Hafner, Robert; Stewart, Jim
Past problem-solving research has provided a basis for helping students structure their knowledge and apply appropriate problem-solving strategies to solve problems for which their knowledge (or mental models) of scientific phenomena is adequate (model-using problem solving). This research examines how problem solving in the domain of Mendelian genetics proceeds in situations where solvers' mental models are insufficient to solve problems at hand (model-revising problem solving). Such situations require solvers to use existing models to recognize anomalous data and to revise those models to accommodate the data. The study was conducted in the context of 9-week high school genetics course and addressed: the heuristics charactenstic of successful model-revising problem solving: the nature of the model revisions, made by students as well as the nature of model development across problem types; and the basis upon which solvers decide that a revised model is sufficient (that t has both predictive and explanatory power).
Galileo as an intellectual heretic and why that matters
NASA Astrophysics Data System (ADS)
Palmieri, Paolo
2014-03-01
What was physics like before Galileo? Five centuries ago physics was taught in universities all over Europe as part of a broader field of knowledge known as natural philosophy. It was neither quantitative, nor experimental, but mostly an a-priori, logical type of inquiry about principles concerning notions such as space, time, and motion, from which deductions could be made about the natural world. Galileo changed all that. He claimed that inquiry about nature should be experimental, and that reasoning in natural philosophy should be mathematical. It was a bold enough move. But Galileo's intellectual heresy was the discovery that knowledge of the natural world could only be achieved by relaxing the requirement that principles be known with absolute certainty. He demonstrated that a new mathematical physics could be built upon principles based on experiment. Thus the new physics could be extended recklessly by starting from less than certain foundations. Galileo's startling insight was that scientific truth need not be localized but can be diffused throughout the structure of science.
The role of philosophy in the conceptual development of quantum physics
NASA Astrophysics Data System (ADS)
Diamond, Ethel
Making a distinction between the context of discovery and the context of justification, I examine the relationship between philosophy and the discovery of quantum physics. I do this by focusing on four of the most important contributors to quantum theory: Albert Einstein, Werner Heisenberg, Erwin Schrodinger and Niels Bohr. Looking to the period immediately preceding the era in which quantum physics was developed, I first explore the scientific writings of Hermann von Helmholtz, Ernst Mach, Heinrich Hertz and Ludwig Boltzmann. In doing so, I uncover the integral role classic philosophy played in the scientific investigations of nineteenth-century German and Austrian physicists. After establishing the cultural link between scientific writing and philosophic training at that time and place in history, I investigate the formative philosophic influences on Einstein, Heisenberg, Schrodinger and Bohr. By a close examination of some of their most important scientific papers, this dissertation reveals the way in which these early twentieth-century scientists continued an important nineteenth-century European tradition of integrating philosophic thought in their scientific creative thinking.
Introductory Biology Textbooks Under-Represent Scientific Process
Duncan, Dara B.; Lubman, Alexandra; Hoskins, Sally G.
2011-01-01
Attrition of undergraduates from Biology majors is a long-standing problem. Introductory courses that fail to engage students or spark their curiosity by emphasizing the open-ended and creative nature of biological investigation and discovery could contribute to student detachment from the field. Our hypothesis was that introductory biology books devote relatively few figures to illustration of the design and interpretation of experiments or field studies, thereby de-emphasizing the scientific process. To investigate this possibility, we examined figures in six Introductory Biology textbooks published in 2008. On average, multistep scientific investigations were presented in fewer than 5% of the hundreds of figures in each book. Devoting such a small percentage of figures to the processes by which discoveries are made discourages an emphasis on scientific thinking. We suggest that by increasing significantly the illustration of scientific investigations, textbooks could support undergraduates’ early interest in biology, stimulate the development of design and analytical skills, and inspire some students to participate in investigations of their own. PMID:23653758
Playing with Science: Using Interactive Games to Improve Public Engagement
NASA Astrophysics Data System (ADS)
Unger, M.; Besser, N.
2015-12-01
The challenge of communicating science in an accurate, concise, and engaging way has never been more important. While much focus has been put on how scientific information gets delivered, perhaps less value has been put on what the public can communicate back to science. Imparting scientific knowledge to the public in one direction, however successfully done, could be called "transmission." It's not until the public responds that you have "communication," or maybe a better word would be "conversation." The National Center for Atmospheric Research (NCAR) has been working on a project for use in its educational visitor center that not only attempts to engage the public with concise, accurate scientific information, but also to help the public respond, in order to create a communicative circuit. Using an interactive game platform, visitors can immerse themselves in a voyage of scientific discovery by choosing a character and building a story line based on multiple selections, a version of a "build your own adventure" experience. We are exploring ways to capture data from these interactions in order to inform additional program development based on areas of greatest interest to the public. The game could thus be used to update existing exhibits so they better reflect those areas of interest, making them more relevant and engaging to visitors, and expanding opportunities for dialogue between science centers and members of the public.
Reflections on my journey in biomedical research: the art, science, and politics of advocacy.
Slavkin, H C
2013-01-01
Scientific Discovery often reflects the art, science, and advocacy for biomedical research. Here the author reflects on selected highlights of discovery that contributed to several aspects of our understanding of craniofacial biology and craniofacial diseases and disorders.
Discovering Mendeleev's Model.
ERIC Educational Resources Information Center
Sterling, Donna
1996-01-01
Presents an activity that introduces the historical developments in science that led to the discovery of the periodic table and lets students experience scientific discovery firsthand. Enables students to learn about patterns among the elements and experience how scientists analyze data to discover patterns and build models. (JRH)
Resource Discovery within the Networked "Hybrid" Library.
ERIC Educational Resources Information Center
Leigh, Sally-Anne
This paper focuses on the development, adoption, and integration of resource discovery, knowledge management, and/or knowledge sharing interfaces such as interactive portals, and the use of the library's World Wide Web presence to increase the availability and usability of information services. The introduction addresses changes in library…
A biological compression model and its applications.
Cao, Minh Duc; Dix, Trevor I; Allison, Lloyd
2011-01-01
A biological compression model, expert model, is presented which is superior to existing compression algorithms in both compression performance and speed. The model is able to compress whole eukaryotic genomes. Most importantly, the model provides a framework for knowledge discovery from biological data. It can be used for repeat element discovery, sequence alignment and phylogenetic analysis. We demonstrate that the model can handle statistically biased sequences and distantly related sequences where conventional knowledge discovery tools often fail.
Evolution and Religion: Adaptation in Process?
ERIC Educational Resources Information Center
Binder, Michael; Crowther, Christopher
2014-01-01
There have been many revolutions in the past 500 years but none quite so sustained and "society changing" as the march of secularisation and the move from a theocentric perspective to a scientific world view. The age of scientific discovery has led to the scientific method--put simply, evidence that can be sustained by rigorous…
Reports from Other Journals: Nature
NASA Astrophysics Data System (ADS)
Heinhorst, Sabine; Cannon, Gordon
1997-05-01
The first Nature issue of the new year (January 2, 1997, pp 13-16) featured the annual commentary on anniversaries of scientific discoveries and inventions through the centuries, a brief tour de force in the history of science. This year's enlightening list includes, among other things, the discovery of the electron (1897) and of mountains on the moon (1647), and the first description of Herba inebrians, now commonly known as tobacco (1497). A new book reviewed in the January 16 issue (pp 215-216), The Scientific 100: A Ranking of the Most Influential Scientists, Past and Present, describes lives and scientific contributions of the 100 most important scientists, as perceived by author John Simmons. "Top-of-the-line" scientists include Isaac Newton (No. 1), Niels Bohr (3),
Data Mining Citizen Science Results
NASA Astrophysics Data System (ADS)
Borne, K. D.
2012-12-01
Scientific discovery from big data is enabled through multiple channels, including data mining (through the application of machine learning algorithms) and human computation (commonly implemented through citizen science tasks). We will describe the results of new data mining experiments on the results from citizen science activities. Discovering patterns, trends, and anomalies in data are among the powerful contributions of citizen science. Establishing scientific algorithms that can subsequently re-discover the same types of patterns, trends, and anomalies in automatic data processing pipelines will ultimately result from the transformation of those human algorithms into computer algorithms, which can then be applied to much larger data collections. Scientific discovery from big data is thus greatly amplified through the marriage of data mining with citizen science.