Sample records for scientific knowledge scientific

  1. Pre-Service Science Teachers in Xinjiang "Scientific Inquiry" - Pedagogical Content Knowledge Research

    ERIC Educational Resources Information Center

    Li, Yufeng; Xiong, Jianwen

    2012-01-01

    Scientific inquiry is one of the science curriculum content, "Scientific inquiry" - Pedagogical Content Knowledge is the face of scientific inquiry and teachers - of course pedagogical content knowledge and scientific inquiry a teaching practice with more direct expertise. Pre-service teacher training phase of acquisition of knowledge is…

  2. Nature of Science, Scientific Inquiry, and Socio-Scientific Issues Arising from Genetics: A Pathway to Developing a Scientifically Literate Citizenry

    NASA Astrophysics Data System (ADS)

    Lederman, Norman G.; Antink, Allison; Bartos, Stephen

    2014-02-01

    The primary focus of this article is to illustrate how teachers can use contemporary socio-scientific issues to teach students about nature of scientific knowledge as well as address the science subject matter embedded in the issues. The article provides an initial discussion about the various aspects of nature of scientific knowledge that are addressed. It is important to remember that the aspects of nature of scientific knowledge are not considered to be a comprehensive list, but rather a set of important ideas for adolescent students to learn about scientific knowledge. These ideas have been advocated as important for secondary students by numerous reform documents internationally. Then, several examples are used to illustrate how genetically based socio-scientific issues can be used by teachers to improve students' understandings of the discussed aspects of nature of scientific knowledge.

  3. Effects of Scaffolds and Scientific Reasoning Ability on Web-Based Scientific Inquiry

    ERIC Educational Resources Information Center

    Wu, Hui-Ling; Weng, Hsiao-Lan; She, Hsiao-Ching

    2016-01-01

    This study examined how background knowledge, scientific reasoning ability, and various scaffolding forms influenced students' science knowledge and scientific inquiry achievements. The students participated in an online scientific inquiry program involving such activities as generating scientific questions and drawing evidence-based conclusions,…

  4. Epistemology and Science Education: A Study of Epistemological Views of Teachers

    ERIC Educational Resources Information Center

    Apostolou, Alexandros; Koulaidis, Vasilis

    2010-01-01

    The aim of this paper is to study the epistemological views of science teachers for the following epistemological issues: scientific method, demarcation of scientific knowledge, change of scientific knowledge and the status of scientific knowledge. Teachers' views for each one of these epistemological questions were investigated during…

  5. Community Intelligence in Knowledge Curation: An Application to Managing Scientific Nomenclature

    PubMed Central

    Zou, Dong; Li, Ang; Liu, Guocheng; Chen, Fei; Wu, Jiayan; Xiao, Jingfa; Wang, Xumin; Yu, Jun; Zhang, Zhang

    2013-01-01

    Harnessing community intelligence in knowledge curation bears significant promise in dealing with communication and education in the flood of scientific knowledge. As knowledge is accumulated at ever-faster rates, scientific nomenclature, a particular kind of knowledge, is concurrently generated in all kinds of fields. Since nomenclature is a system of terms used to name things in a particular discipline, accurate translation of scientific nomenclature in different languages is of critical importance, not only for communications and collaborations with English-speaking people, but also for knowledge dissemination among people in the non-English-speaking world, particularly young students and researchers. However, it lacks of accuracy and standardization when translating scientific nomenclature from English to other languages, especially for those languages that do not belong to the same language family as English. To address this issue, here we propose for the first time the application of community intelligence in scientific nomenclature management, namely, harnessing collective intelligence for translation of scientific nomenclature from English to other languages. As community intelligence applied to knowledge curation is primarily aided by wiki and Chinese is the native language for about one-fifth of the world’s population, we put the proposed application into practice, by developing a wiki-based English-to-Chinese Scientific Nomenclature Dictionary (ESND; http://esnd.big.ac.cn). ESND is a wiki-based, publicly editable and open-content platform, exploiting the whole power of the scientific community in collectively and collaboratively managing scientific nomenclature. Based on community curation, ESND is capable of achieving accurate, standard, and comprehensive scientific nomenclature, demonstrating a valuable application of community intelligence in knowledge curation. PMID:23451119

  6. Community intelligence in knowledge curation: an application to managing scientific nomenclature.

    PubMed

    Dai, Lin; Xu, Chao; Tian, Ming; Sang, Jian; Zou, Dong; Li, Ang; Liu, Guocheng; Chen, Fei; Wu, Jiayan; Xiao, Jingfa; Wang, Xumin; Yu, Jun; Zhang, Zhang

    2013-01-01

    Harnessing community intelligence in knowledge curation bears significant promise in dealing with communication and education in the flood of scientific knowledge. As knowledge is accumulated at ever-faster rates, scientific nomenclature, a particular kind of knowledge, is concurrently generated in all kinds of fields. Since nomenclature is a system of terms used to name things in a particular discipline, accurate translation of scientific nomenclature in different languages is of critical importance, not only for communications and collaborations with English-speaking people, but also for knowledge dissemination among people in the non-English-speaking world, particularly young students and researchers. However, it lacks of accuracy and standardization when translating scientific nomenclature from English to other languages, especially for those languages that do not belong to the same language family as English. To address this issue, here we propose for the first time the application of community intelligence in scientific nomenclature management, namely, harnessing collective intelligence for translation of scientific nomenclature from English to other languages. As community intelligence applied to knowledge curation is primarily aided by wiki and Chinese is the native language for about one-fifth of the world's population, we put the proposed application into practice, by developing a wiki-based English-to-Chinese Scientific Nomenclature Dictionary (ESND; http://esnd.big.ac.cn). ESND is a wiki-based, publicly editable and open-content platform, exploiting the whole power of the scientific community in collectively and collaboratively managing scientific nomenclature. Based on community curation, ESND is capable of achieving accurate, standard, and comprehensive scientific nomenclature, demonstrating a valuable application of community intelligence in knowledge curation.

  7. Coordinating Scientific Argumentation and the Next Generation Science Standards through Argument Driven Inquiry

    ERIC Educational Resources Information Center

    Grooms, Jonathon; Enderle, Patrick; Sampson, Victor

    2015-01-01

    Scientific argumentation is an essential activity for the development and refinement of scientific knowledge. Additionally, fostering argumentation related to scientific concepts can help students engage in a variety of essential scientific practices and enhance their science content knowledge. With the increasing prevalence and emphasis on…

  8. Relationship between scientific knowledge and fortune-telling.

    PubMed

    Shein, Paichi Pat; Li, Yuh-Yuh; Huang, Tai-Chu

    2014-10-01

    This study takes on a relational and situated perspective to understand the relationship between scientific knowledge and fortune-telling. Measures included socio-demographic characteristics, knowledge of scientific facts and methods, and fortune-telling beliefs and practices. A sample of 1863 adults was drawn from a population of Taiwanese citizens using the method of probability proportional to size. The findings showed that knowledge of scientific methods was negatively associated with fortune-telling beliefs. However, knowledge of scientific facts was, by and large, positively associated with engagement in fortune-telling practices, a phenomenon known as cognitive polyphasia. This study does not imply that science communication or education have no effect on promoting scientific knowledge; rather, it hopes to encourage researchers and practitioners to use a culturally sensitive lens to rethink the role of science in society and its relationship with other forms of knowledge and belief. © The Author(s) 2014.

  9. Nature of Science, Scientific Inquiry, and Socio-Scientific Issues Arising from Genetics: A Pathway to Developing a Scientifically Literate Citizenry

    ERIC Educational Resources Information Center

    Lederman, Norman G.; Antink, Allison; Bartos, Stephen

    2014-01-01

    The primary focus of this article is to illustrate how teachers can use contemporary socio-scientific issues to teach students about nature of scientific knowledge as well as address the science subject matter embedded in the issues. The article provides an initial discussion about the various aspects of nature of scientific knowledge that are…

  10. Investigating the role of content knowledge, argumentation, and situational features to support genetics literacy

    NASA Astrophysics Data System (ADS)

    Shea, Nicole Anne

    Science curriculum is often used as a means to train students as future scientists with less emphasis placed on preparing students to reason about issues they may encounter in their daily lives (Feinstein, Allen, & Jenkins, 2013; Roth & Barton, 2004). The general public is required to think scientifically to some degree throughout their life and often across a variety of issues. From an empirical standpoint, we do not have a robust understanding of what scientific knowledge the public finds useful for reasoning about socio-scientific issues in their everyday lives (Feinstein, 2011). We also know very little about how the situational features of an issue influences reasoning strategy (i.e., the use of knowledge to generate arguments). Rapid advances in science - particularly in genetics - increasingly challenge the public to reason about socio-scientific issues. This raises questions about the public's ability to participate knowledgeably in socio-scientific debates, and to provide informed consent for a variety of novel scientific procedures. This dissertation aims to answer the questions: How do individuals use their genetic content knowledge to reason about authentic issues they may encounter in their daily lives? Individuals' scientific knowledge is a critical aspect of scientific literacy, but what scientific literacy looks like in practice as individuals use their content knowledge to reason about issues comprised of different situational features is still unclear. The purpose of this dissertation is to explore what knowledge is actually used by individuals to generate and support arguments about a variety of socio-scientific issues, and how the features of those issues influences reasoning strategy. Three studies were conducted to answer questions reflecting this purpose. Findings from this dissertation provide important insights into what scientific literacy looks like in practice.

  11. The Relations between Scientific Epistemological Beliefs and Goal Orientations of Pre-Service Teachers

    ERIC Educational Resources Information Center

    Kaya, Gamze Inan

    2017-01-01

    The purpose of this study was to investigate the relations between pre-service teachers' scientific epistemological beliefs and goal orientations in 2X2 framework. Scientific epistemological beliefs are domain-specific views of people about nature and acquisition of scientific knowledge, how scientific knowledge is produced, how reliable and valid…

  12. Knowledge as an Aspect of Scientific Competence for Citizenship: Results of a Delphi Study in Spain

    ERIC Educational Resources Information Center

    España-Ramos, Enrique; González-García, Francisco José; Blanco-López, Ángel; Franco-Mariscal, Antonio Joaquín

    2016-01-01

    This article focuses on scientific knowledge as one aspect of the scientific competencies that citizens should ideally possess. The analysis is based on a Delphi study we conducted with Spanish experts from different science-related fields. The results showed that although the experts proposed several examples of scientific knowledge, the degree…

  13. Mapping the Sloan Digital Sky Survey's Global Impact

    NASA Astrophysics Data System (ADS)

    Chen, Chaomei; Zhang, Jian; Vogeley, Michael S.

    2009-07-01

    The scientific capacity of a country is essential in todayâ's increasingly globalized science and technology ecosystem. Scientific capacity has four increasingly advanced levels of capabilities: absorbing, applying, creating, and retaining scientific knowledge. Moving to a advanced level requires additional skills and training. For example, it requires more specialized skills to apply scientific knowledge than to absorb knowledge. Similarly, making new discoveries requires more knowledge than applying existing procedures. Research has shown the importance of addressing specific, local problems while tapping into globally available expertise and resources. Accessing scientific knowledge is the first step towards absorbing knowledge. Low-income countries have increased their access to scientific literature on the Internet, but to what extent has this access led to more advanced levels of scientific capacity? Interdisciplinary and international collaboration may hold the key to creating and retaining knowledge. For example, creative ideas tend to be associated with inspirations originated from a diverse range of perspectives On the other hand, not all collaborations are productive. Assessing global science and technology needs to address both successes and failures and reasons behind them.

  14. Continuous Enhancement of Science Teachers' Knowledge and Skills through Scientific Lecturing.

    PubMed

    Azevedo, Maria-Manuel; Duarte, Sofia

    2018-01-01

    Due to their importance in transmitting knowledge, teachers can play a crucial role in students' scientific literacy acquisition and motivation to respond to ongoing and future economic and societal challenges. However, to conduct this task effectively, teachers need to continuously improve their knowledge, and for that, a periodic update is mandatory for actualization of scientific knowledge and skills. This work is based on the outcomes of an educational study implemented with science teachers from Portuguese Basic and Secondary schools. We evaluated the effectiveness of a training activity consisting of lectures covering environmental and health sciences conducted by scientists/academic teachers. The outcomes of this educational study were evaluated using a survey with several questions about environmental and health scientific topics. Responses to the survey were analyzed before and after the implementation of the scientific lectures. Our results showed that Basic and Secondary schools teachers' knowledge was greatly improved after the lectures. The teachers under training felt that these scientific lectures have positively impacted their current knowledge and awareness on several up-to-date scientific topics, as well as their teaching methods. This study emphasizes the importance of continuing teacher education concerning knowledge and awareness about health and environmental education.

  15. Framing of scientific knowledge as a new category of health care research.

    PubMed

    Salvador-Carulla, Luis; Fernandez, Ana; Madden, Rosamond; Lukersmith, Sue; Colagiuri, Ruth; Torkfar, Ghazal; Sturmberg, Joachim

    2014-12-01

    The new area of health system research requires a revision of the taxonomy of scientific knowledge that may facilitate a better understanding and representation of complex health phenomena in research discovery, corroboration and implementation. A position paper by an expert group following and iterative approach. 'Scientific evidence' should be differentiated from 'elicited knowledge' of experts and users, and this latter typology should be described beyond the traditional qualitative framework. Within this context 'framing of scientific knowledge' (FSK) is defined as a group of studies of prior expert knowledge specifically aimed at generating formal scientific frames. To be distinguished from other unstructured frames, FSK must be explicit, standardized, based on the available evidence, agreed by a group of experts and subdued to the principles of commensurability, transparency for corroboration and transferability that characterize scientific research. A preliminary typology of scientific framing studies is presented. This typology includes, among others, health declarations, position papers, expert-based clinical guides, conceptual maps, classifications, expert-driven health atlases and expert-driven studies of costs and burden of illness. This grouping of expert-based studies constitutes a different kind of scientific knowledge and should be clearly differentiated from 'evidence' gathered from experimental and observational studies in health system research. © 2014 John Wiley & Sons, Ltd.

  16. Analysis of theoretical knowledge and the practice of science among Brazilian otorhinolaryngologists.

    PubMed

    Mendonça, Vitor Rosa Ramos de; Alcântara, Thiago; Andrade, Nilvano; Andrade, Bruno Bezerril; Barral-Netto, Manoel; Boaventura, Viviane

    2013-08-01

    Physicians from all medical specialties are required to understand the principles of science and to interpret medical literature. Yet, the levels of theoretical and practical knowledge held by Brazilian otorhinolaryngologists has not been evaluated to date. To assess the background and level of scientific knowledge of Brazilian otorhinolaryngologists. Participants of two national ENT meetings were invited to answer a questionnaire to assess scientific practice and knowledge. This study included 73 medical doctors (52% otorhinolaryngologists and 38% residents) aged between 18 and 65 years. About two-thirds have been involved in some form of scientific activity during undergraduate education and/or reported to have written at least one scientific paper. Physicians who took part in research projects felt better prepared to interpret scientific papers and carry out research projects (p = 0.0103 and p = 0.0240, respectively). Respondents who claimed to have participated in research or to have written papers had higher scores on theoretical scientific concepts (p = 0.0101 and p = 0.0103, respectively). However, the overall rate of right answers on questions regarding scientific knowledge was 46.1%. Therefore, a deficiency was observed in the scientific education of Brazilian otorhinolaryngologists. Such deficiency may be mitigated through participation in research.

  17. Critical appraisal of scientific articles: part 1 of a series on evaluation of scientific publications.

    PubMed

    du Prel, Jean-Baptist; Röhrig, Bernd; Blettner, Maria

    2009-02-01

    In the era of evidence-based medicine, one of the most important skills a physician needs is the ability to analyze scientific literature critically. This is necessary to keep medical knowledge up to date and to ensure optimal patient care. The aim of this paper is to present an accessible introduction into critical appraisal of scientific articles. Using a selection of international literature, the reader is introduced to the principles of critical reading of scientific articles in medicine. For the sake of conciseness, detailed description of statistical methods is omitted. Widely accepted principles for critically appraising scientific articles are outlined. Basic knowledge of study design, structuring of an article, the role of different sections, of statistical presentations as well as sources of error and limitation are presented. The reader does not require extensive methodological knowledge. As far as necessary for critical appraisal of scientific articles, differences in research areas like epidemiology, clinical, and basic research are outlined. Further useful references are presented. Basic methodological knowledge is required to select and interpret scientific articles correctly.

  18. "Trees Live on Soil and Sunshine!"--Coexistence of Scientific and Alternative Conception of Tree Assimilation.

    PubMed

    Thorn, Christine Johanna; Bissinger, Kerstin; Thorn, Simon; Bogner, Franz Xaver

    2016-01-01

    Successful learning is the integration of new knowledge into existing schemes, leading to an integrated and correct scientific conception. By contrast, the co-existence of scientific and alternative conceptions may indicate a fragmented knowledge profile. Every learner is unique and thus carries an individual set of preconceptions before classroom engagement due to prior experiences. Hence, instructors and teachers have to consider the heterogeneous knowledge profiles of their class when teaching. However, determinants of fragmented knowledge profiles are not well understood yet, which may hamper a development of adapted teaching schemes. We used a questionnaire-based approach to assess conceptual knowledge of tree assimilation and wood synthesis surveying 885 students of four educational levels: 6th graders, 10th graders, natural science freshmen and other academic studies freshmen. We analysed the influence of learner's characteristics such as educational level, age and sex on the coexistence of scientific and alternative conceptions. Within all subsamples well-known alternative conceptions regarding tree assimilation and wood synthesis coexisted with correct scientific ones. For example, students describe trees to be living on "soil and sunshine", representing scientific knowledge of photosynthesis mingled with an alternative conception of trees eating like animals. Fragmented knowledge profiles occurred in all subsamples, but our models showed that improved education and age foster knowledge integration. Sex had almost no influence on the existing scientific conceptions and evolution of knowledge integration. Consequently, complex biological issues such as tree assimilation and wood synthesis need specific support e.g. through repeated learning units in class- and seminar-rooms in order to help especially young students to handle and overcome common alternative conceptions and appropriately integrate scientific conceptions into their knowledge profile.

  19. “Trees Live on Soil and Sunshine!”- Coexistence of Scientific and Alternative Conception of Tree Assimilation

    PubMed Central

    Thorn, Simon; Bogner, Franz Xaver

    2016-01-01

    Successful learning is the integration of new knowledge into existing schemes, leading to an integrated and correct scientific conception. By contrast, the co-existence of scientific and alternative conceptions may indicate a fragmented knowledge profile. Every learner is unique and thus carries an individual set of preconceptions before classroom engagement due to prior experiences. Hence, instructors and teachers have to consider the heterogeneous knowledge profiles of their class when teaching. However, determinants of fragmented knowledge profiles are not well understood yet, which may hamper a development of adapted teaching schemes. We used a questionnaire-based approach to assess conceptual knowledge of tree assimilation and wood synthesis surveying 885 students of four educational levels: 6th graders, 10th graders, natural science freshmen and other academic studies freshmen. We analysed the influence of learner’s characteristics such as educational level, age and sex on the coexistence of scientific and alternative conceptions. Within all subsamples well-known alternative conceptions regarding tree assimilation and wood synthesis coexisted with correct scientific ones. For example, students describe trees to be living on “soil and sunshine”, representing scientific knowledge of photosynthesis mingled with an alternative conception of trees eating like animals. Fragmented knowledge profiles occurred in all subsamples, but our models showed that improved education and age foster knowledge integration. Sex had almost no influence on the existing scientific conceptions and evolution of knowledge integration. Consequently, complex biological issues such as tree assimilation and wood synthesis need specific support e.g. through repeated learning units in class- and seminar-rooms in order to help especially young students to handle and overcome common alternative conceptions and appropriately integrate scientific conceptions into their knowledge profile. PMID:26807974

  20. Artificial muscles' enrichment text: Chemical Literacy Profile of pre-service teachers

    NASA Astrophysics Data System (ADS)

    Hernani, Ulum, Luthfi Lulul; Mudzakir, Ahmad

    2017-08-01

    This research aims to determine the profile of chemical literacy abilities of pre-service teachers based on scientific attitudes and scientific competencies in PISA 2015 through individualized learning by using an artificial muscle context based-enrichment book. This research uses descriptive method, involving 20 of the 90 randomly selected population. This research uses a multiple-choice questions instrument. The result of this research are : 1) in the attitude aspects of interest in science and technology, valuing scientific approaches to inquiry, and environmental awareness, the results obtained respectively for 90%, 80%, and 30%. 2) for scientific competence of apply appropriate scientific knowledge, identify models and representations, make appropriate predictions, and explain the potential implications of scientific knowledge for society, the results obtained respectively for 30%, 50%, 60%, and 55%. 3) For scientific competence of identify the question explored in a given scientific study and distinguish questions that could be investigated scientifically, the results obtained respectively for 30 % and 50%. 4) For scientific competence of transform data from one representation to another and draw appropriate conclusions, the results obtained respectively for 60% and 45%. Based on the results, which need to be developed in pre-service chemistry teachers are environmental awareness, apply appropriate scientific knowledge, identify the question explored in a given scientific study, and draw appropriate conclusions.

  1. Students' Reasoning Processes in Making Decisions about an Authentic, Local Socio-Scientific Issue: Bat Conservation

    ERIC Educational Resources Information Center

    Lee, Yeung Chung; Grace, Marcus

    2010-01-01

    Education for scientific literacy entails the development of scientific knowledge and the ability to apply this knowledge and value judgments to decisions about real-life issues. This paper reports an attempt to involve secondary level biology students in making decisions about an authentic socio-scientific issue--that of bat conservation--through…

  2. Novice Explanations of Hurricane Formation Offer Insights into Scientific Literacy and the Development of Expert-Like Conceptions

    ERIC Educational Resources Information Center

    Arthurs, Leilani A.; Van Den Broeke, Matthew S.

    2016-01-01

    The ability to explain scientific phenomena is a key feature of scientific literacy, and engaging students' prior knowledge, especially their alternate conceptions, is an effective strategy for enhancing scientific literacy and developing expertise. The gap in knowledge about the alternate conceptions that novices have about many of Earth's…

  3. Bridging Research and Environmental Regulatory Processes: The Role of Knowledge Brokers

    PubMed Central

    Pennell, Kelly G.; Thompson, Marcella; Rice, James W.; Senier, Laura; Brown, Phil; Suuberg, Eric

    2013-01-01

    Federal funding agencies increasingly require research investigators to ensure that federally-sponsored research demonstrates broader societal impact. Specifically, the National Institutes of Environmental Health Sciences (NIEHS) Superfund Research Program (SRP) requires research centers to include research translation and community engagement cores to achieve broader impacts, with special emphasis on improving environmental health policies through better scientific understanding. This paper draws on theoretical insights from the social sciences to show how incorporating knowledge brokers in research centers can facilitate translation of scientific expertise to influence regulatory processes and thus promote public health. Knowledge brokers connect academic researchers with decision-makers, to facilitate the translation of research findings into policies and programs. In this article, we describe the stages of the regulatory process and highlight the role of the knowledge broker and scientific expert at each stage. We illustrate the cooperation of knowledge brokers, scientific experts and policymakers using a case from the Brown University (Brown) SRP. We show how the Brown SRP incorporated knowledge brokers to engage scientific experts with regulatory officials around the emerging public health problem of vapor intrusion. In the Brown SRP, the knowledge broker brought regulatory officials into the research process, to help scientific experts understand the critical nature of this emerging public health threat, and helped scientific experts develop a research agenda that would inform the development of timely measures to protect public health. Our experience shows that knowledge brokers can enhance the impact of environmental research on public health by connecting policy decision-makers with scientific experts at critical points throughout the regulatory process. PMID:24083557

  4. More than Anecdotes: Fishers' Ecological Knowledge Can Fill Gaps for Ecosystem Modeling.

    PubMed

    Bevilacqua, Ana Helena V; Carvalho, Adriana R; Angelini, Ronaldo; Christensen, Villy

    2016-01-01

    Ecosystem modeling applied to fisheries remains hampered by a lack of local information. Fishers' knowledge could fill this gap, improving participation in and the management of fisheries. The same fishing area was modeled using two approaches: based on fishers' knowledge and based on scientific information. For the former, the data was collected by interviews through the Delphi methodology, and for the latter, the data was gathered from the literature. Agreement between the attributes generated by the fishers' knowledge model and scientific model is discussed and explored, aiming to improve data availability, the ecosystem model, and fisheries management. The ecosystem attributes produced from the fishers' knowledge model were consistent with the ecosystem attributes produced by the scientific model, and elaborated using only the scientific data from literature. This study provides evidence that fishers' knowledge may suitably complement scientific data, and may improve the modeling tools for the research and management of fisheries.

  5. Scientific progress: Knowledge versus understanding.

    PubMed

    Dellsén, Finnur

    2016-04-01

    What is scientific progress? On Alexander Bird's epistemic account of scientific progress, an episode in science is progressive precisely when there is more scientific knowledge at the end of the episode than at the beginning. Using Bird's epistemic account as a foil, this paper develops an alternative understanding-based account on which an episode in science is progressive precisely when scientists grasp how to correctly explain or predict more aspects of the world at the end of the episode than at the beginning. This account is shown to be superior to the epistemic account by examining cases in which knowledge and understanding come apart. In these cases, it is argued that scientific progress matches increases in scientific understanding rather than accumulations of knowledge. In addition, considerations having to do with minimalist idealizations, pragmatic virtues, and epistemic value all favor this understanding-based account over its epistemic counterpart. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Scientific Knowledge, Popularisation, and the Use of Metaphors: Modern Genetics in Popular Science Magazines

    ERIC Educational Resources Information Center

    Pramling, Niklas; Saljo, Roger

    2007-01-01

    The article reports an empirical study of how authors in popular science magazines attempt to render scientific knowledge intelligible to wide audiences. In bridging the two domains of "popular" and "scientific" knowledge, respectively, metaphor becomes central. We ask the empirical question of what metaphors are used when communicating about…

  7. The Acquisition of Scientific Knowledge via Critical Thinking: A Philosophical Approach to Science Education

    ERIC Educational Resources Information Center

    Talavera, Isidoro

    2016-01-01

    There is a gap between the facts learned in a science course and the higher-cognitive skills of analysis and evaluation necessary for students to secure scientific knowledge and scientific habits of mind. Teaching science is not just about how we do science (i.e., focusing on just "accumulating undigested facts and scientific definitions and…

  8. The Nature of Scientific Revolutions from the Vantage Point of Chaos Theory: Toward a Formal Model of Scientific Change

    ERIC Educational Resources Information Center

    Perla, Rocco J.; Carifio, James

    2005-01-01

    In sharp contrast to the early positivist view of the nature of science and scientific knowledge, Kuhn argues that the scientific enterprise involves states of continuous, gradual development punctuated by comparatively rare instances of turmoil and change, which ultimately brings about a new stability and a qualitatively changed knowledge base.…

  9. Endangered Mangroves in Segara Anakan, Indonesia: Effective and Failed Problem-Solving Policy Advice.

    PubMed

    Dharmawan, Budi; Böcher, Michael; Krott, Max

    2017-09-01

    The success of scientific knowledge transfer depends on if the decision maker can transform the scientific advice into a policy that can be accepted by all involved actors. We use a science-policy interactions model called research-integration-utilization to observe the process of scientific knowledge transfer in the case of endangered mangroves in Segara Anakan, Indonesia. Scientific knowledge is produced within the scientific system (research), science-based solutions to problems are practically utilized by political actors (utilization), and important links between research and utilization must be made (integration). We looked for empirical evidence to test hypotheses about the research-integration-utilization model based on document analysis and expert interviews. Our study finds that the failures in knowledge transfer are caused by the inappropriate use of scientific findings. The district government is expected by presidential decree to only used scientifically sound recommendations as a prerequisite for designing the regulation. However, the district government prefers to implement their own solutions because they believe that they understand the solutions better than the researcher. In the process of integration, the researcher cannot be involved, since the selection of scientific recommendations here fully depends on the interests of the district government as the powerful ally.

  10. Endangered Mangroves in Segara Anakan, Indonesia: Effective and Failed Problem-Solving Policy Advice

    NASA Astrophysics Data System (ADS)

    Dharmawan, Budi; Böcher, Michael; Krott, Max

    2017-09-01

    The success of scientific knowledge transfer depends on if the decision maker can transform the scientific advice into a policy that can be accepted by all involved actors. We use a science-policy interactions model called research-integration-utilization to observe the process of scientific knowledge transfer in the case of endangered mangroves in Segara Anakan, Indonesia. Scientific knowledge is produced within the scientific system (research), science-based solutions to problems are practically utilized by political actors (utilization), and important links between research and utilization must be made (integration). We looked for empirical evidence to test hypotheses about the research-integration-utilization model based on document analysis and expert interviews. Our study finds that the failures in knowledge transfer are caused by the inappropriate use of scientific findings. The district government is expected by presidential decree to only used scientifically sound recommendations as a prerequisite for designing the regulation. However, the district government prefers to implement their own solutions because they believe that they understand the solutions better than the researcher. In the process of integration, the researcher cannot be involved, since the selection of scientific recommendations here fully depends on the interests of the district government as the powerful ally.

  11. Literature-Based Scientific Learning: A Collaboration Model

    ERIC Educational Resources Information Center

    Elrod, Susan L.; Somerville, Mary M.

    2007-01-01

    Amidst exponential growth of knowledge, student insights into the knowledge creation practices of the scientific community can be furthered by science faculty collaborations with university librarians. The Literature-Based Scientific Learning model advances undergraduates' disciplinary mastery and information literacy through experience with…

  12. Transforming "Ecosystem" from a Scientific Concept into a Teachable Topic: Philosophy and History of Ecology Informs Science Textbook Analysis

    ERIC Educational Resources Information Center

    Schizas, Dimitrios; Papatheodorou, Efimia; Stamou, George

    2018-01-01

    This study conducts a textbook analysis in the frame of the following working hypothesis: The transformation of scientific knowledge into school knowledge is expected to reproduce the problems encountered with the scientific knowledge itself or generate additional problems, which may both induce misconceptions in textbook users. Specifically, we…

  13. Ninth Grade Students' Understanding of The Nature of Scientific Knowledge

    ERIC Educational Resources Information Center

    Kilic, Kerem; Sungur, Semra; Cakiroglu, Jale; Tekkaya, Ceren

    2005-01-01

    The purpose of this study was to investigate the 9th-grade students' understandings of the nature of scientific knowledge. The study also aimed to investigate the differences in students' understanding of the nature of scientific knowledge by gender, and school types. A total of 575 ninth grade students from four different school types (General…

  14. Enhancing endorsement of scientific inquiry increases support for pro-environment policies.

    PubMed

    Drummond, Aaron; Palmer, Matthew A; Sauer, James D

    2016-09-01

    Pro-environment policies require public support and engagement, but in countries such as the USA, public support for pro-environment policies remains low. Increasing public scientific literacy is unlikely to solve this, because increased scientific literacy does not guarantee increased acceptance of critical environmental issues (e.g. that climate change is occurring). We distinguish between scientific literacy (basic scientific knowledge) and endorsement of scientific inquiry (perceiving science as a valuable way of accumulating knowledge), and examine the relationship between people's endorsement of scientific inquiry and their support for pro-environment policy. Analysis of a large, publicly available dataset shows that support for pro-environment policies is more strongly related to endorsement of scientific inquiry than to scientific literacy among adolescents. An experiment demonstrates that a brief intervention can increase support for pro-environment policies via increased endorsement of scientific inquiry among adults. Public education about the merits of scientific inquiry may facilitate increased support for pro-environment policies.

  15. Enhancing endorsement of scientific inquiry increases support for pro-environment policies

    PubMed Central

    Palmer, Matthew A.; Sauer, James D.

    2016-01-01

    Pro-environment policies require public support and engagement, but in countries such as the USA, public support for pro-environment policies remains low. Increasing public scientific literacy is unlikely to solve this, because increased scientific literacy does not guarantee increased acceptance of critical environmental issues (e.g. that climate change is occurring). We distinguish between scientific literacy (basic scientific knowledge) and endorsement of scientific inquiry (perceiving science as a valuable way of accumulating knowledge), and examine the relationship between people's endorsement of scientific inquiry and their support for pro-environment policy. Analysis of a large, publicly available dataset shows that support for pro-environment policies is more strongly related to endorsement of scientific inquiry than to scientific literacy among adolescents. An experiment demonstrates that a brief intervention can increase support for pro-environment policies via increased endorsement of scientific inquiry among adults. Public education about the merits of scientific inquiry may facilitate increased support for pro-environment policies. PMID:27703700

  16. More than Anecdotes: Fishers’ Ecological Knowledge Can Fill Gaps for Ecosystem Modeling

    PubMed Central

    Bevilacqua, Ana Helena V.; Carvalho, Adriana R.; Angelini, Ronaldo; Christensen, Villy

    2016-01-01

    Background Ecosystem modeling applied to fisheries remains hampered by a lack of local information. Fishers’ knowledge could fill this gap, improving participation in and the management of fisheries. Methodology The same fishing area was modeled using two approaches: based on fishers’ knowledge and based on scientific information. For the former, the data was collected by interviews through the Delphi methodology, and for the latter, the data was gathered from the literature. Agreement between the attributes generated by the fishers’ knowledge model and scientific model is discussed and explored, aiming to improve data availability, the ecosystem model, and fisheries management. Principal Findings The ecosystem attributes produced from the fishers’ knowledge model were consistent with the ecosystem attributes produced by the scientific model, and elaborated using only the scientific data from literature. Conclusions/Significance This study provides evidence that fishers’ knowledge may suitably complement scientific data, and may improve the modeling tools for the research and management of fisheries. PMID:27196131

  17. Exploring the Changes in Students' Understanding of the Scientific Method Using Word Associations

    NASA Astrophysics Data System (ADS)

    Gulacar, Ozcan; Sinan, Olcay; Bowman, Charles R.; Yildirim, Yetkin

    2015-10-01

    A study is presented that explores how students' knowledge structures, as related to the scientific method, compare at different student ages. A word association test comprised of ten total stimulus words, among them experiment, science fair, and hypothesis, is used to probe the students' knowledge structures. Students from grades four, five, and eight, as well as first-year college students were tested to reveal their knowledge structures relating to the scientific method. Younger students were found to have a naïve view of the science process with little understanding of how science relates to the real world. However, students' conceptions about the scientific process appear to be malleable, with science fairs a potentially strong influencer. The strength of associations between words is observed to change from grade to grade, with younger students placing science fair near the center of their knowledge structure regarding the scientific method, whereas older students conceptualize the scientific method around experiment.

  18. Power and knowledge in psychiatry and the troubling case of Dr Osheroff.

    PubMed

    Robertson, Michael

    2005-12-01

    To consider the state of knowledge in psychiatry with reference to the 'Osheroff debate' about the treatment of depression. A review of the key philosophical issues regarding the nature of knowledge applied to the Osheroff case. There is an apparent dichotomy between knowledge derived from a reductionist scientific method, as manifest in evidence-based medicine, and that of a narrative form of knowledge derived from clinical experience. The Focauldian notion of knowledge/power and knowledge as discourse suggests that scientific knowledge dominates over narrative knowledge in psychiatry. The implication of this applied to the Osheroff case is the potential annihilation of all forms of knowledge other than science. Knowledge in psychiatry is a pluralist, rather than singularly scientific enterprise. In the Osheroff case, the potential for scientific knowledge to abolish other forms of knowledge posed a serious threat of weakening the profession. In the light of the current debate about best practice, there is a need for reconsideration of the implications of Osheroff.

  19. Social justice pedagogies and scientific knowledge: Remaking citizenship in the non-science classroom

    NASA Astrophysics Data System (ADS)

    Lehr, Jane L.

    This dissertation contributes to efforts to rethink the meanings of democracy, scientific literacy, and non-scientist citizenship in the United States. Beginning with questions that emerged from action research and exploring the socio-political forces that shape educational practices, it shows why non-science educators who teach for social justice must first recognize formal science education as a primary site of training for (future) non-scientist citizens and then prepare to intervene in the dominant model of scientifically literate citizenship offered by formal science education. This model of citizenship defines (and limits) appropriate behavior for non-scientist citizens as acquiescing to the authority of science and the state by actively demarcating science from non-science, experts from non-experts, and the rational from the irrational. To question scientific authority is to be scientifically illiterate. This vision of 'acquiescent democracy' seeks to end challenges to the authority of science and the state by ensuring that scientific knowledge is privileged in all personal and public decision-making practices, producing a situation in which it becomes natural for non-scientist citizens to enroll scientific knowledge to naturalize oppression within our schools and society. It suggests that feminist and equity-oriented science educators, by themselves, are unable or unwilling to challenge certain assumptions in the dominant model of scientifically literate citizenship. Therefore, it is the responsibility of non-science educators who teach for social justice to articulate oppositional models of non-scientist citizenship and democracy in their classrooms and to challenge the naturalized authority of scientific knowledge in all aspects of our lives. It demonstrates how research in the field of Science & Technology Studies can serve as one resource in our efforts to intervene in the dominant model of scientifically literate citizenship and to support a model of democracy that encourages the critical engagement of and opposition to scientific knowledge and the state.

  20. Implicit Learning in Science: Activating and Suppressing Scientific Intuitions to Enhance Conceptual Change

    NASA Astrophysics Data System (ADS)

    Wang, Jeremy Yi-Ming

    This dissertation examines the thesis that implicit learning plays a role in learning about scientific phenomena, and subsequently, in conceptual change. Decades of research in learning science demonstrate that a primary challenge of science education is overcoming prior, naive knowledge of natural phenomena in order to gain scientific understanding. Until recently, a key assumption of this research has been that to develop scientific understanding, learners must abandon their prior scientific intuitions and replace them with scientific concepts. However, a growing body of research shows that scientific intuitions persist, even among science experts. This suggests that naive intuitions are suppressed, not supplanted, as learners gain scientific understanding. The current study examines two potential roles of implicit learning processes in the development of scientific knowledge. First, implicit learning is a source of cognitive structures that impede science learning. Second, tasks that engage implicit learning processes can be employed to activate and suppress prior intuitions, enhancing the likelihood that scientific concepts are adopted and applied. This second proposal is tested in two experiments that measure training-induced changes in intuitive and conceptual knowledge related to sinking and floating objects in water. In Experiment 1, an implicit learning task was developed to examine whether implicit learning can induce changes in performance on near and far transfer tasks. The results of this experiment provide evidence that implicit learning tasks activate and suppress scientific intuitions. Experiment 2 examined the effects of combining implicit learning with traditional, direct instruction to enhance explicit learning of science concepts. This experiment demonstrates that sequencing implicit learning task before and after direct instruction has different effects on intuitive and conceptual knowledge. Together, these results suggest a novel approach for enhancing learning for conceptual change in science education.

  1. Concept Formation in Scientific Knowledge Discovery from a Constructivist View

    NASA Astrophysics Data System (ADS)

    Peng, Wei; Gero, John S.

    The central goal of scientific knowledge discovery is to learn cause-effect relationships among natural phenomena presented as variables and the consequences their interactions. Scientific knowledge is normally expressed as scientific taxonomies and qualitative and quantitative laws [1]. This type of knowledge represents intrinsic regularities of the observed phenomena that can be used to explain and predict behaviors of the phenomena. It is a generalization that is abstracted and externalized from a set of contexts and applicable to a broader scope. Scientific knowledge is a type of third-person knowledge, i.e., knowledge that independent of a specific enquirer. Artificial intelligence approaches, particularly data mining algorithms that are used to identify meaningful patterns from large data sets, are approaches that aim to facilitate the knowledge discovery process [2]. A broad spectrum of algorithms has been developed in addressing classification, associative learning, and clustering problems. However, their linkages to people who use them have not been adequately explored. Issues in relation to supporting the interpretation of the patterns, the application of prior knowledge to the data mining process and addressing user interactions remain challenges for building knowledge discovery tools [3]. As a consequence, scientists rely on their experience to formulate problems, evaluate hypotheses, reason about untraceable factors and derive new problems. This type of knowledge which they have developed during their career is called “first-person” knowledge. The formation of scientific knowledge (third-person knowledge) is highly influenced by the enquirer’s first-person knowledge construct, which is a result of his or her interactions with the environment. There have been attempts to craft automatic knowledge discovery tools but these systems are limited in their capabilities to handle the dynamics of personal experience. There are now trends in developing approaches to assist scientists applying their expertise to model formation, simulation, and prediction in various domains [4], [5]. On the other hand, first-person knowledge becomes third-person theory only if it proves general by evidence and is acknowledged by a scientific community. Researchers start to focus on building interactive cooperation platforms [1] to accommodate different views into the knowledge discovery process. There are some fundamental questions in relation to scientific knowledge development. What aremajor components for knowledge construction and how do people construct their knowledge? How is this personal construct assimilated and accommodated into a scientific paradigm? How can one design a computational system to facilitate these processes? This chapter does not attempt to answer all these questions but serves as a basis to foster thinking along this line. A brief literature review about how people develop their knowledge is carried out through a constructivist view. A hydrological modeling scenario is presented to elucidate the approach.

  2. Concept Formation in Scientific Knowledge Discovery from a Constructivist View

    NASA Astrophysics Data System (ADS)

    Peng, Wei; Gero, John S.

    The central goal of scientific knowledge discovery is to learn cause-effect relationships among natural phenomena presented as variables and the consequences their interactions. Scientific knowledge is normally expressed as scientific taxonomies and qualitative and quantitative laws [1]. This type of knowledge represents intrinsic regularities of the observed phenomena that can be used to explain and predict behaviors of the phenomena. It is a generalization that is abstracted and externalized from a set of contexts and applicable to a broader scope. Scientific knowledge is a type of third-person knowledge, i.e., knowledge that independent of a specific enquirer. Artificial intelligence approaches, particularly data mining algorithms that are used to identify meaningful patterns from large data sets, are approaches that aim to facilitate the knowledge discovery process [2]. A broad spectrum of algorithms has been developed in addressing classification, associative learning, and clustering problems. However, their linkages to people who use them have not been adequately explored. Issues in relation to supporting the interpretation of the patterns, the application of prior knowledge to the data mining process and addressing user interactions remain challenges for building knowledge discovery tools [3]. As a consequence, scientists rely on their experience to formulate problems, evaluate hypotheses, reason about untraceable factors and derive new problems. This type of knowledge which they have developed during their career is called "first-person" knowledge. The formation of scientific knowledge (third-person knowledge) is highly influenced by the enquirer's first-person knowledge construct, which is a result of his or her interactions with the environment. There have been attempts to craft automatic knowledge discovery tools but these systems are limited in their capabilities to handle the dynamics of personal experience. There are now trends in developing approaches to assist scientists applying their expertise to model formation, simulation, and prediction in various domains [4], [5]. On the other hand, first-person knowledge becomes third-person theory only if it proves general by evidence and is acknowledged by a scientific community. Researchers start to focus on building interactive cooperation platforms [1] to accommodate different views into the knowledge discovery process. There are some fundamental questions in relation to scientific knowledge development. What aremajor components for knowledge construction and how do people construct their knowledge? How is this personal construct assimilated and accommodated into a scientific paradigm? How can one design a computational system to facilitate these processes? This chapter does not attempt to answer all these questions but serves as a basis to foster thinking along this line. A brief literature review about how people develop their knowledge is carried out through a constructivist view. A hydrological modeling scenario is presented to elucidate the approach.

  3. Opposing ends of the spectrum: Exploring trust in scientific and religious authorities.

    PubMed

    Cacciatore, Michael A; Browning, Nick; Scheufele, Dietram A; Brossard, Dominique; Xenos, Michael A; Corley, Elizabeth A

    2018-01-01

    Given the ethical questions that surround emerging science, this study is interested in studying public trust in scientific and religious authorities for information about the risks and benefits of science. Using data from a nationally representative survey of American adults, we employ regression analysis to better understand the relationships between several variables-including values, knowledge, and media attention-and trust in religious organizations and scientific institutions. We found that Evangelical Christians are generally more trusting of religious authority figures to tell the truth about the risks and benefits of science and technology, and only slightly less likely than non-Evangelicals to trust scientific authorities for the same information. We also found that many Evangelicals use mediated information and science knowledge differently than non-Evangelicals, with both increased knowledge and attention to scientific media having positive impacts on trust in scientific authorities among the latter, but not the former group.

  4. 7 CFR 3400.21 - Scientific peer review for research activities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Scientific peer review for research activities. 3400... § 3400.21 Scientific peer review for research activities. Scientific peer review is an evaluation of a... with the scientific knowledge and technical skills to conduct the proposed research work. Peer...

  5. Scientific knowledge and modern prospecting

    USGS Publications Warehouse

    Neuerburg, G.J.

    1985-01-01

    Modern prospecting is the systematic search for specified and generally ill-exposed components of the Earth's crust known as ore. This prospecting depends entirely on reliable, or scientific knowledge for guidance and for recognition of the search objects. Improvement in prospecting results from additions and refinements to scientific knowledge. Scientific knowledge is an ordered distillation of observations too numerous and too complex in themselves for easy understanding and for effective management. The ordering of these observations is accomplished by an evolutionary hierarchy of abstractions. These abstractions employ simplified descriptions consisting of characterization by selected properties, sampling to represent much larger parts of a phenomenon, generalized mappings of patterns of geometrical and numerical relations among properties, and explanation (theory) of these patterns as functional relations among the selected properties. Each abstraction is predicated on the mode of abstraction anticipated for the next higher level, so that research is a deductive process in which the highest level, theory, is indispensible for the growth and refinement of scientific knowledge, and therefore of prospecting methodology. ?? 1985 Springer-Verlag.

  6. Outward bound: women translators and scientific travel writing, 1780-1800.

    PubMed

    Martin, Alison E

    2016-04-01

    As the Enlightenment drew to a close, translation had gradually acquired an increasingly important role in the international circulation and transmission of scientific knowledge. Yet comparatively little attention has been paid to the translators responsible for making such accounts accessible in other languages, some of whom were women. In this article I explore how European women cast themselves as intellectually enquiring, knowledgeable and authoritative figures in their translations. Focusing specifically on the genre of scientific travel writing, I investigate the narrative strategies deployed by women translators to mark their involvement in the process of scientific knowledge-making. These strategies ranged from rhetorical near-invisibility, driven by women's modest marginalization of their own public engagement in science, to the active advertisement of themselves as intellectually curious consumers of scientific knowledge. A detailed study of Elizabeth Helme's translation of the French ornithologist François le Vaillant's Voyage dans l'intérieur de l'Afrique [Voyage into the Interior of Africa] (1790) allows me to explore how her reworking of the original text for an Anglophone reading public enabled her to engage cautiously - or sometimes more openly - with questions regarding how scientific knowledge was constructed, for whom and with which aims in mind.

  7. Promoting elementary students' epistemology of science through computer-supported knowledge-building discourse and epistemic reflection

    NASA Astrophysics Data System (ADS)

    Lin, Feng; Chan, Carol K. K.

    2018-04-01

    This study examined the role of computer-supported knowledge-building discourse and epistemic reflection in promoting elementary-school students' scientific epistemology and science learning. The participants were 39 Grade 5 students who were collectively pursuing ideas and inquiry for knowledge advance using Knowledge Forum (KF) while studying a unit on electricity; they also reflected on the epistemic nature of their discourse. A comparison class of 22 students, taught by the same teacher, studied the same unit using the school's established scientific investigation method. We hypothesised that engaging students in idea-driven and theory-building discourse, as well as scaffolding them to reflect on the epistemic nature of their discourse, would help them understand their own scientific collaborative discourse as a theory-building process, and therefore understand scientific inquiry as an idea-driven and theory-building process. As hypothesised, we found that students engaged in knowledge-building discourse and reflection outperformed comparison students in scientific epistemology and science learning, and that students' understanding of collaborative discourse predicted their post-test scientific epistemology and science learning. To further understand the epistemic change process among knowledge-building students, we analysed their KF discourse to understand whether and how their epistemic practice had changed after epistemic reflection. The implications on ways of promoting epistemic change are discussed.

  8. Undergraduate honors students' images of science: Nature of scientific work and scientific knowledge

    NASA Astrophysics Data System (ADS)

    Wallace, Michael L.

    This exploratory study assessed the influence of an implicit, inquiry-oriented nature of science (NOS) instructional approach undertaken in an interdisciplinary college science course on undergraduate honor students' (UHS) understanding of the aspects of NOS for scientific work and scientific knowledge. In this study, the nature of scientific work concentrated upon the delineation of science from pseudoscience and the value scientists place on reproducibility. The nature of scientific knowledge concentrated upon how UHS view scientific theories and how they believe scientists utilize scientific theories in their research. The 39 UHS who participated in the study were non-science majors enrolled in a Honors College sponsored interdisciplinary science course where the instructors took an implicit NOS instructional approach. An open-ended assessment instrument, the UFO Scenario, was designed for the course and used to assess UHS' images of science at the beginning and end of the semester. The mixed-design study employed both qualitative and quantitative techniques to analyze the open-ended responses. The qualitative techniques of open and axial coding were utilized to find recurring themes within UHS' responses. McNemar's chi-square test for two dependent samples was used to identify whether any statistically significant changes occurred within responses from the beginning to the end of the semester. At the start of the study, the majority of UHS held mixed NOS views, but were able to accurately define what a scientific theory is and explicate how scientists utilize theories within scientific research. Postinstruction assessment indicated that UHS did not make significant gains in their understanding of the nature of scientific work or scientific knowledge and their overall images of science remained static. The results of the present study found implicit NOS instruction even with an extensive inquiry-oriented component was an ineffective approach for modifying UHS' images of science towards a more informed view of NOS.

  9. Effects of Students' Prior Knowledge on Scientific Reasoning in Density.

    ERIC Educational Resources Information Center

    Yang, Il-Ho; Kwon, Yong-Ju; Kim, Young-Shin; Jang, Myoung-Duk; Jeong, Jin-Woo; Park, Kuk-Tae

    2002-01-01

    Investigates the effects of students' prior knowledge on the scientific reasoning processes of performing the task of controlling variables with computer simulation and identifies a number of problems that students encounter in scientific discovery. Involves (n=27) 5th grade students and (n=33) 7th grade students. Indicates that students' prior…

  10. The Construction of a Reasoned Explanation of a Health Phenomenon: An Analysis of Competencies Mobilized

    ERIC Educational Resources Information Center

    Faria, Cláudia; Freire, Sofia; Baptista, Mónica; Galvão, Cecília

    2014-01-01

    Mobilizing scientific knowledge for understanding the natural world and for critically appraise socio-scientific situations and make decisions are key competencies for today's' society. Therefore, it is essential to understand how students at the end of compulsory schooling use scientific knowledge for understanding the surrounding world. The…

  11. Epistemological Trade-Offs: Accounting for Context When Evaluating Epistemological Sophistication of Student Engagement in Scientific Practices

    ERIC Educational Resources Information Center

    Berland, Leema; Crucet, Kathleen

    2016-01-01

    Science education has long seen an emphasis on supporting students' epistemological understandings of how scientific knowledge is constructed and evaluated with the expectation that these understandings will support the students' own construction and evaluation of scientific knowledge. However, research has shown that this connection does not…

  12. Research and Teaching: Undergraduate Students' Scientifically Informed Decision Making about Socio-Hydrological Issues

    ERIC Educational Resources Information Center

    Sabel, Jaime L.; Vo, Tina; Alred, Ashley; Dauer, Jenny M.; Forbes, Cory T.

    2017-01-01

    Although knowledge of disciplinary concepts and epistemic understanding of science are foundations of scientific literacy, students must learn to apply their knowledge to real-world situations. To engage effectively with contemporary water-related challenges with scientific and social dimensions, students need to understand the properties of water…

  13. [Scientific reductionism and social control of mind. Part II].

    PubMed

    Viniegra Velázquez, Leonardo

    In the second part of this essay, the progressive subordination of scientific endeavor and knowledge of business and profit is pointed out. For instance, the way facts are prioritized over concepts and ideas in scientific knowledge can translate into technological innovation, central to enterprise competitiveness and key to social mechanisms of control (military, cybernetic, ideological). Overcoming the scientific reductionism approach indicates recognizing the need to define progress in another way, one that infuses scientific knowledge with real liberating and inquisitive power. Power is essential in the search for a more collaborative, inclusive and pluralistic society where respect for human dignity and care for the ecosystem that we live in are prioritized. Copyright © 2014 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  14. Media-Savvy Scientific Literacy: Developing Critical Evaluation Skills by Investigating Scientific Claims

    ERIC Educational Resources Information Center

    Brickman, Peggy; Gormally, Cara; Francom, Greg; Jardeleza, Sarah E.; Schutte, Virginia G. W.; Jordan, Carly; Kanizay, Lisa

    2012-01-01

    Students must learn content knowledge and develop scientific literacy skills to evaluate and use scientific information in real-world situations. Recognizing the accessibility of scientific information to the average citizen, we developed an instructional approach to help students learn how to judge the quality of claims. We describe a…

  15. Development of an Empirically Based Learning Performances Framework for Third-Grade Students' Model-Based Explanations about Plant Processes

    ERIC Educational Resources Information Center

    Zangori, Laura; Forbes, Cory T.

    2016-01-01

    To develop scientific literacy, elementary students should engage in knowledge building of core concepts through scientific practice (Duschl, Schweingruber, & Schouse, 2007). A core scientific practice is engagement in scientific modeling to build conceptual understanding about discipline-specific concepts. Yet scientific modeling remains…

  16. Examining elementary teachers' knowledge and instruction of scientific explanations for fostering children's explanations in science

    NASA Astrophysics Data System (ADS)

    Wiebke, Heidi Lynn

    This study employed an embedded mixed methods multi-case study design (Creswell, 2014) with six early childhood (grades K-2) teachers to examine a) what changes occurred to their subject matter knowledge (SMK) and pedagogical content knowledge (PCK) for teaching scientific explanations while participating in a professional development program, b) how they planned for and implemented scientific explanation instruction within a teacher developed unit on properties of matter, and c) what affordances their instruction of scientific explanations had on fostering their students' abilities to generate explanations in science. Several quantitative and qualitative measures were collected and analyzed in accordance to this studies conceptual framework, which consisted of ten instructional practices teachers should consider assimilating or accommodating into their knowledge base (i.e., SMK & PCK) for teaching scientific explanations. Results of this study indicate there was little to no positive change in the teachers' substantive and syntactic SMK. However, all six teachers did make significant changes to all five components of their PCK for teaching explanations in science. While planning for scientific explanation instruction, all six teachers' contributed some ideas for how to incorporate seven of the ten instructional practices for scientific explanations within the properties of matter unit they co-developed. When enacting the unit, the six teachers' employed seven to nine of the instructional practices to varying levels of effectiveness, as measured by researcher developed rubrics. Given the six teachers' scientific explanation instruction, many students did show improvement in their ability to formulate a scientific explanation, particularly their ability to provide multiple pieces of evidence. Implications for professional developers, teacher educators, researchers, policy makers, and elementary teachers regarding how to prepare teachers for and support students' construction of scientific explanations are discussed.

  17. Gene regulation knowledge commons: community action takes care of DNA binding transcription factors

    PubMed Central

    Tripathi, Sushil; Vercruysse, Steven; Chawla, Konika; Christie, Karen R.; Blake, Judith A.; Huntley, Rachael P.; Orchard, Sandra; Hermjakob, Henning; Thommesen, Liv; Lægreid, Astrid; Kuiper, Martin

    2016-01-01

    A large gap remains between the amount of knowledge in scientific literature and the fraction that gets curated into standardized databases, despite many curation initiatives. Yet the availability of comprehensive knowledge in databases is crucial for exploiting existing background knowledge, both for designing follow-up experiments and for interpreting new experimental data. Structured resources also underpin the computational integration and modeling of regulatory pathways, which further aids our understanding of regulatory dynamics. We argue how cooperation between the scientific community and professional curators can increase the capacity of capturing precise knowledge from literature. We demonstrate this with a project in which we mobilize biological domain experts who curate large amounts of DNA binding transcription factors, and show that they, although new to the field of curation, can make valuable contributions by harvesting reported knowledge from scientific papers. Such community curation can enhance the scientific epistemic process. Database URL: http://www.tfcheckpoint.org PMID:27270715

  18. Determining the Alignment between What Teachers Are Expected to Teach, What They Know, and How They Assess Scientific Literacy

    ERIC Educational Resources Information Center

    Pitot, Lisa Noel

    2014-01-01

    Science education reform efforts have highlighted the need for a scientifically literate citizen, capable of using their scientific knowledge and skills for reasoning, argumentation, and decision-making. Yet little is known about secondary science teachers' understandings of these reform efforts, specifically their knowledge, skills, and abilities…

  19. Scientific Evidence as Content Knowledge: A Replication Study with English and Turkish Pre-Service Primary Teachers

    ERIC Educational Resources Information Center

    Roberts, Ros; Sahin-Pekmez, Esin

    2012-01-01

    Pre-service teachers around the world need to develop their content knowledge of scientific evidence to meet the requirements of recent school curriculum developments which prepare pupils to be scientifically literate. This research reports a replication study in Turkey of an intervention originally carried out with pre-service primary teachers in…

  20. A Fresh Look at Spanish Scientific Publishing in the Framework of International Standards

    ERIC Educational Resources Information Center

    Kindelan, Paz

    2009-01-01

    Research has become a key element in the knowledge-based society with its role of producing and disseminating results. In this context, scientific publishing becomes the means by which research activity and knowledge production are circulated to the scientific community and society at large. However, there are factors influencing the system of…

  1. Teachers' Pedagogical Content Knowledge of Scientific Argumentation: The Impact of Professional Development on K-12 Teachers

    ERIC Educational Resources Information Center

    McNeill, Katherine L.; Knight, Amanda M.

    2013-01-01

    One of the hallmarks of science and science education is the production of new knowledge about the natural world through objective argument and critique. Teachers' understanding of scientific argumentation impacts how they incorporate this important scientific practice into science classrooms. This study examined how three professional…

  2. Balancing the Pros and Cons of GMOs: Socio-Scientific Argumentation in Pre-Service Teacher Education

    ERIC Educational Resources Information Center

    Cinici, Ayhan

    2016-01-01

    This study investigates the role of the discursive process in the act of scientific knowledge building. Specifically, it links scientific knowledge building to risk perception of Genetically Modified Organisms (GMOs). To this end, this study designed and implemented a three-stage argumentation programme giving pre-service teachers (PSTs) the…

  3. Teaching Physics at Preschool Level for Mexican Students in Order to Achieve the National Scientific Standards

    ERIC Educational Resources Information Center

    Ramírez Díaz, Mario H.; Nieto Betance, Gabriela; García Trujillo, Luís Antonio; Chávez-Campos, David A.

    2015-01-01

    In its program of studies for preschool level, the Secretary of Public Education of Mexico promoted development of four standards of science: Scientific knowledge, applications of scientific knowledge and technology, skills associated to science, and attitudes associated to science. However, to develop this skills and reach out the standards there…

  4. Korean Secondary Students' Perception of Scientific Literacy as Global Citizens: Using Global Scientific Literacy Questionnaire

    ERIC Educational Resources Information Center

    Mun, Kongju; Shin, Namsoo; Lee, Hyunju; Kim, Sung-Won; Choi, Kyunghee; Choi, Sung-Youn; Krajcik, Joseph S.

    2015-01-01

    We re-conceptualized the meaning of scientific literacy and developed an instrument, which we call the Global Scientific Literacy Questionnaire (GSLQ) based on a new conceptual framework for scientific literacy in the twenty-first century. We identified five dimensions, each with key elements. The five dimensions are (1) content knowledge (core…

  5. The influence of the history of science course on pre-service science teachers' understanding of the nature of science concepts

    NASA Astrophysics Data System (ADS)

    Akcay, Behiye

    The purpose of this study was to investigate the influence of a history of science course on pre-service science teachers' understanding of the nature of science concepts. Subjects in the study were divided in two groups: (1) students who enrolled in only in the history of science course, (2) students who enrolled both the meaning of science and the history of science courses. An interpretative-descriptive approach and constant comparative analysis were used to identify similarities and differences among pre-service teachers' views about nature of scientific knowledge prior to and after the history of science course. The results of this study indicate that explicitly addressing certain aspects of the nature of science is effective in promoting adequate understanding of the nature of science for pre-service science teachers. Moreover, the results indicate that a student's prior experience with the history of science helps to improve their understanding of the history and nature of science. The history of science course helped pre-service teachers to develop the following views which are parallel with these advocated in both the Benchmarks (AAAS, 1993) and the National Science Education Standards (NRC, 1996) concerning the nature of scientific knowledge: (1) Scientific knowledge is empirically based and an ongoing process of experimentation, investigation, and observation. (2) Science is a human endeavor. (3) People from different cultures, races, genders, and nationality contribute to science. (4) Scientific knowledge is not based on myths, personal beliefs, and religious values. (5) Science background and prior knowledge have important roles for scientific investigations. (6) Scientific theories and laws represent different kinds of knowledge. (7) Science is affected by political, social, and cultural values. (8) Creativity and imagination are used during all stages of scientific investigations. (9) Theories change because of new evidence and new views of existing data as well as advances in technology. (10) Theories have significant roles in generating future research questions. (11) Adequate understanding of differences between observations and inferences develop from considering the history of science. (12) There is no single universal step-by-step scientific method. (13) Learning about the nature of scientific knowledge helps students to become scientifically literate.

  6. Scaffolding Student Learning in the Discipline-Specific Knowledge through Contemporary Science Practices: Developing High-School Students' Epidemiologic Reasoning through Data Analysis

    NASA Astrophysics Data System (ADS)

    Oura, Hiroki

    Science is a disciplined practice about knowing puzzling observations and unknown phenomena. Scientific knowledge of the product is applied to develop technological artifacts and solve complex problems in society. Scientific practices are undeniably relevant to our economy, civic activity, and personal lives, and thus public education should help children acquire scientific knowledge and recognize the values in relation to their own lives and civil society. Likewise, developing scientific thinking skills is valuable not only for becoming a scientist, but also for becoming a citizen who is able to critically evaluate everyday information, select and apply only the trustworthy, and make wise judgments in their personal and cultural goals as well as for obtaining jobs that require complex problem solving and creative working in the current knowledge-based economy and rapid-changing world. To develop students' scientific thinking, science instruction should focus not only on scientific knowledge and inquiry processes, but also on its epistemological aspects including the forms of causal explanations and methodological choices along with epistemic aims and values under the social circumstances in focal practices. In this perspective, disciplinary knowledge involves heterogeneous elements including material, cognitive, social, and cultural ones and the formation differs across practices. Without developing such discipline-specific knowledge, students cannot enough deeply engage in scientific "practices" and understand the true values of scientific enterprises. In this interest, this dissertation explores instructional approaches to make student engagement in scientific investigations more authentic or disciplinary. The present dissertation work is comprised of three research questions as stand-alone studies written for separate publication. All of the studies discuss different theoretical aspects related to disciplinary engagement in epidemiologic inquiry and student development in epidemiologic reasoning. The first chapter reviews literature on epistemological instruction and explores theoretical frameworks for epistemically-guided instruction. The second chapter explores methodological strategies to elicit students' disciplinary understanding and demonstrates an approach with a case study in which students engaged in a curriculum unit for an epidemiologic investigation. The last chapter directs the focus into scientific reasoning and demonstrates how the curriculum unit and its scaffolds helped students develop epidemiologic reasoning with a focus on population-based reasoning.

  7. The dual-use problem, scientific isolationism and the division of moral labour.

    PubMed

    Douglas, Thomas

    2014-01-01

    The dual-use problem is an ethical quandary sometimes faced by scientists and others in a position to influence the creation or dissemination of scientific knowledge. It arises when (i) an agent is considering whether to pursue some project likely to result in the creation or dissemination of scientific knowledge, (ii) that knowledge could be used in both morally desirable and morally undesirable ways, and (iii) the risk of undesirable use is sufficiently high that it is not clear that the agent may permissibly pursue the project or policy. Agents said to be faced with dual-use problems have frequently responded by appealing to a view that I call scientific isolationism. This is, roughly, the view that scientific decisions may be made without morally appraising the likely uses of the scientific knowledge whose production or dissemination is at stake. I consider whether scientific isolationism can be justified in a form that would indeed provide a way out of dual-use problems. I first argue for a presumption against a strong form of isolationism, and then examine four arguments that might be thought to override this presumption. The most promising of these arguments appeals to the idea of a division of moral labour, but I argue that even this argument can sustain at most a highly attenuated form of scientific isolationism and that this variant of isolationism has little practical import for discussions of the dual-use problem.

  8. WWW: The Scientific Method

    ERIC Educational Resources Information Center

    Blystone, Robert V.; Blodgett, Kevin

    2006-01-01

    The scientific method is the principal methodology by which biological knowledge is gained and disseminated. As fundamental as the scientific method may be, its historical development is poorly understood, its definition is variable, and its deployment is uneven. Scientific progress may occur without the strictures imposed by the formal…

  9. Interplay between Content Knowledge and Scientific Argumentation

    ERIC Educational Resources Information Center

    Hakyolu, Hanife; Ogan-Bekiroglu, Feral

    2016-01-01

    This research study aimed to analyze the relationship between content knowledge and argumentation by examining students' prior subject matter knowledge and their production of arguments as well as by comparing students' arguments with their knowledge-in-use during scientific argumentation sessions. A correlational research design was carried out…

  10. Exposure to science, perspectives on science and religion, and religious commitment in young adulthood.

    PubMed

    Uecker, Jeremy E; Longest, Kyle C

    2017-07-01

    Social scientists know very little about the consequences of exposure to scientific knowledge and holding different perspectives on science and religion for individuals' religious lives. Drawing on secularization and post-secular theories, we develop and test several hypotheses about the relationships among exposure to scientific knowledge, perspectives on religion and science, and religious commitment using panel data from the National Study of Youth and Religion. Our findings indicate that religious faith is strongest among young adults who: (1) accommodate scientific knowledge into their religious perspective, or (2) reject scientific knowledge that directly contradicts their religious beliefs about the origins of the world. Young adults are also more likely to have lower religious commitment when they view science and religion as independent institutions, lending support to secularization ideas about how social differentiation secularizes individuals. We further find that mere exposure to scientific knowledge, in terms of majoring in biology or acknowledging conflict between the teachings of religion and science, is usually not sufficient to undermine religious commitment. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Transgenes and transgressions: scientific dissent as heterogeneous practice.

    PubMed

    Delborne, Jason A

    2008-08-01

    Although scholars in science and technology studies have explored many dynamics and consequences of scientific controversy, no coherent theory of scientific dissent has emerged. This paper proposes the elements of such a framework, based on understanding scientific dissent as a set of heterogeneous practices. I use the controversy over the presence of transgenic DNA in Mexican maize in the early 2000s to point to a processual model of scientific dissent. 'Contrarian science' includes knowledge claims that challenge the dominant scientific trajectory, but need not necessarily lead to dissent. 'Impedance' represents efforts to undermine the credibility of contrarian science (or contrarian scientists) and may originate within or outside of the scientific community. In the face of impedance, contrarian scientists may become dissenters. The actions of the scientist at the center of the case study, Professor Ignacio Chapela of the University of California, Berkeley, demonstrate particular practices of scientific dissent, ranging from 'agonistic engagement' to 'dissident science'. These practices speak not only to functional strategies of winning scientific debate, but also to attempts to reconfigure relations among scientists, publics, institutions, and politics that order knowledge production.

  12. Principled Practical Knowledge: Not a Bridge but a Ladder

    ERIC Educational Resources Information Center

    Bereiter, Carl

    2014-01-01

    The much-lamented gap between theory and practice in education cannot be filled by practical knowledge alone or by explanatory knowledge alone. Principled practical knowledge (PPK) is a type of knowledge that has characteristics of both practical know-how and scientific theory. Like basic scientific theory, PPK meets standards of explanatory…

  13. The Relationship between Scientific Knowledge and Behaviour: An HIV/AIDS Case

    ERIC Educational Resources Information Center

    Mnguni, Lindelani; Abrie, Mia; Ebersohn, Liesel

    2016-01-01

    Debates on the role of scientific knowledge to affect behaviour are continuing. The theory of planned behaviour suggests that behaviour is influenced by attitudes, subjective norms and perceived behavioural control and not by knowledge. However, a large body of knowledge argues that increased HIV/AIDS-related knowledge leads to the adoption of…

  14. Protecting Traditional Knowledge Related to Biological Resources: Is Scientific Research Going to Become More Bureaucratized?

    PubMed Central

    Reddy, Prashant; Lakshmikumaran, Malathi

    2015-01-01

    For the past several decades, there has been a world debate on the need for protecting traditional knowledge. A global treaty appears to be a distant reality. Of more immediate concern are the steps taken by the global community to protect access to biological resources in the name of protecting traditional knowledge. The Indian experience with implementing the Convention on Biological Diversity has created substantial legal uncertainty in collaborative scientific research between Indians and foreigners apart from bureaucratizing the entire process of scientific research, especially with regard to filing of applications for intellectual property rights. The issue therefore is whether the world needs to better balance the needs of the scientific community with the rights of those who have access to traditional knowledge. PMID:26101205

  15. Toward a Durable Prevalence of Scientific Conceptions: Tracking the Effects of Two Interfering Misconceptions about Buoyancy from Preschoolers to Science Teachers

    ERIC Educational Resources Information Center

    Potvin, Patrice; Cyr, Guillaume

    2017-01-01

    While the majority of published research on conceptual change has focused on how misconceptions can be abandoned or modified, some recent research findings support the hypothesis that acquired scientific knowledge does not necessarily erase or alter initial non-scientific knowledge but rather coexists with it. In keeping with this…

  16. Private Science and Public Knowledge: The Committee for the Scientific Investigation of the Claims of the Paranormal and its Use of the Literature.

    ERIC Educational Resources Information Center

    Pinch, T. J.; Collins, H. M.

    1984-01-01

    Shows the part played by formal/informal literatures in the social construction of scientific knowledge, analyzing the work of the "Committee for the Scientific Investigation of the Claims of the Paranormal" (which critically investigates fringe-sciences). Indicates that popular literature can deconstruct facts while scientific…

  17. Rethinking the Ethics of Scientific Knowledge: A Case Study of Teaching the Environment in Science Classrooms

    ERIC Educational Resources Information Center

    Kim, Mijung; Roth, Wolff-Michael

    2008-01-01

    In this paper we argue that scientific literacy ought to be rethought in that it involves ethics as its core element. Considering the fact that science education has addressed ethical dilemmas of Science, Technology, Society and Environment (STSE) issues, it is worthwhile to question what the ethics of scientific knowledge mean in terms of their…

  18. Commentary: Considerations in Pedagogy and Assessment in the Use of Computers to Promote Learning about Scientific Models

    ERIC Educational Resources Information Center

    Adams, Stephen T.

    2004-01-01

    Although one role of computers in science education is to help students learn specific science concepts, computers are especially intriguing as a vehicle for fostering the development of epistemological knowledge about the nature of scientific knowledge--what it means to "know" in a scientific sense (diSessa, 1985). In this vein, the…

  19. Is It Believable When It's Scientific? How Scientific Discourse Style Influences Laypeople's Resolution of Conflicts

    ERIC Educational Resources Information Center

    Bromme, Rainer; Scharrer, Lisa; Stadtler, Marc; Hömberg, Johanna; Torspecken, Ronja

    2015-01-01

    Scientific texts are a genre in which adherence to specific discourse conventions allows for conclusions on the scientific integrity of the information and thus on its validity. This study examines whether genre-typical features of scientific discourse influence how laypeople handle conflicting science-based knowledge claims. In two experiments…

  20. [The treatment of scientific knowledge in the framework of CITES].

    PubMed

    Lanfranchi, Marie-Pierre

    2014-03-01

    Access to scientific knowledge in the context of CITES is a crucial issue. The effectiveness of the text is indeed largely based on adequate scientific knowledge of CITES species. This is a major challenge: more than 30,000 species and 178 member states are involved. The issue of expertise, however, is not really addressed by the Convention. The question was left to the consideration of the COP. Therefore, the COP has created two ad hoc scientific committees: the Plants Committee and the Animals Committee, conferring upon them an ambitious mandate. The article addresses some important issues at stake which are linked to institutional questions, as well as the mixed record after twenty-five years of practice.

  1. Core competencies for scientific editors of biomedical journals: consensus statement.

    PubMed

    Moher, David; Galipeau, James; Alam, Sabina; Barbour, Virginia; Bartolomeos, Kidist; Baskin, Patricia; Bell-Syer, Sally; Cobey, Kelly D; Chan, Leighton; Clark, Jocalyn; Deeks, Jonathan; Flanagin, Annette; Garner, Paul; Glenny, Anne-Marie; Groves, Trish; Gurusamy, Kurinchi; Habibzadeh, Farrokh; Jewell-Thomas, Stefanie; Kelsall, Diane; Lapeña, José Florencio; MacLehose, Harriet; Marusic, Ana; McKenzie, Joanne E; Shah, Jay; Shamseer, Larissa; Straus, Sharon; Tugwell, Peter; Wager, Elizabeth; Winker, Margaret; Zhaori, Getu

    2017-09-11

    Scientific editors are responsible for deciding which articles to publish in their journals. However, we have not found documentation of their required knowledge, skills, and characteristics, or the existence of any formal core competencies for this role. We describe the development of a minimum set of core competencies for scientific editors of biomedical journals. The 14 key core competencies are divided into three major areas, and each competency has a list of associated elements or descriptions of more specific knowledge, skills, and characteristics that contribute to its fulfillment. We believe that these core competencies are a baseline of the knowledge, skills, and characteristics needed to perform competently the duties of a scientific editor at a biomedical journal.

  2. A Game of Thrones: Organising and Legitimising Knowledge through PISA Research

    ERIC Educational Resources Information Center

    Mølstad, Christina E.; Pettersson, Daniel; Forsberg, Eva

    2017-01-01

    This study investigates knowledge structures and scientific communication using bibliometric methods to explore scientific knowledge production and dissemination. The aim is to develop knowledge about this growing field by investigating studies using international large-scale assessment (ILSA) data, with a specific focus on those using Programme…

  3. 48 CFR 35.002 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to encourage the best sources from the scientific and industrial community to become involved in the... programs is to advance scientific and technical knowledge and apply that knowledge to the extent necessary...

  4. Scientific Communication and the Nature of Science

    ERIC Educational Resources Information Center

    Nielsen, Kristian H.

    2013-01-01

    Communication is an important part of scientific practice and, arguably, may be seen as constitutive to scientific knowledge. Yet, often scientific communication gets cursory treatment in science studies as well as in science education. In Nature of Science (NOS), for example, communication is rarely mentioned explicitly, even though, as will be…

  5. Evolution and Natural Selection: Learning by Playing and Reflecting

    ERIC Educational Resources Information Center

    Herrero, David; del Castillo, Héctor; Monjelat, Natalia; García-Varela, Ana Belén; Checa, Mirian; Gómez, Patricia

    2014-01-01

    Scientific literacy is more than the simple reproduction of traditional school science knowledge and requires a set of skills, among them identifying scientific issues, explaining phenomena scientifically and using scientific evidence. Several studies have indicated that playing computer games in the classroom can support the development of…

  6. Scientific Literacy in Food Education: Gardening and Cooking in School

    NASA Astrophysics Data System (ADS)

    Strohl, Carrie A.

    Recent attention to socio-scientific issues such as sustainable agriculture, environmental responsibility and nutritional health has spurred a resurgence of public interest in gardening and cooking. Seen as contexts for fostering scientific literacy---the knowledge domains, methodological approaches, habits of mind and discourse practices that reflect one's understanding of the role of science in society, gardening and cooking are under-examined fields in science education, in part, because they are under-utilized pedagogies in school settings. Although learning gardens were used historically to foster many aspects of scientific literacy (e.g., cognitive knowledge, norms and methods of science, attitudes toward science and discourse of science), analysis of contemporary studies suggests that science learning in gardens focuses mainly on science knowledge alone. Using multiple conceptions of scientific literacy, I analyzed qualitative data to demonstrate how exploration, talk and text fostered scientific literacy in a school garden. Exploration prompted students to engage in scientific practices such as making observations and constructing explanations from evidence. Talk and text provided background knowledge and accurate information about agricultural, environmental and nutritional topics under study. Using a similar qualitative approach, I present a case study of a third grade teacher who explicitly taught food literacy through culinary arts instruction. Drawing on numerous contextual resources, this teacher created a classroom community of food practice through hands-on cooking lessons, guest chef demonstrations, and school-wide tasting events. As a result, she promoted six different types of knowledge (conceptual, procedural, dispositional, sensory, social, and communal) through leveraging contextual resources. This case study highlights how food literacy is largely contingent on often-overlooked mediators of food literacy: the relationships between participants, the activity, and the type of knowledge invoked. Scientific literacy in food education continues to be a topic of interest in the fields of public health and of sustainable agriculture, as well as to proponents of the local food movement. This dissertation begins to map a more cohesive and comprehensive approach to gardening and cooking implementation and research in school settings.

  7. Blending Problem Based Learning and History of Science Approaches to Enhance Views about Scientific Inquiry: New Wine in an Old Bottle

    ERIC Educational Resources Information Center

    Dogan, Nihal

    2017-01-01

    In 2016, the Program for International Student Assessment (PISA) showed that approximately 44.4% of students in Turkey obtained very low grades when their scientific knowledge was evaluated. In addition, the vast majority of students were shown to have no knowledge of basic scientific terms or concepts. Science teachers play a significant role in…

  8. The Acquisition of Scientific Knowledge: The Influence of Methods of Questioning and Analysis on the Interpretation of Children's Conceptions of the Earth

    ERIC Educational Resources Information Center

    Frede, Valerie; Nobes, Gavin; Frappart, Soren; Panagiotaki, Georgia; Troadec, Bertrand; Martin, Alan

    2011-01-01

    Studies of children's knowledge of the Earth have led to very different conclusions: some appear to show that children construct their own, non-scientific "theories" (mental models) of the flat, hollow or dual Earth. Others indicate that many young children have some understanding of the spherical (scientific) Earth, and that their…

  9. Nature of Science and Science Content Learning: The Relation between Students' Nature of Science Understanding and Their Learning about the Concept of Energy

    ERIC Educational Resources Information Center

    Michel, Hanno; Neumann, Irene

    2016-01-01

    Besides viewing knowledge about the nature of science (NOS) as important for its own value with respect to scientific literacy, an adequate understanding of NOS is expected to improve science content learning by fostering the ability to interrelate scientific concepts and, thus, coherently acquire scientific content knowledge. However, there is a…

  10. Protecting Traditional Knowledge Related to Biological Resources: Is Scientific Research Going to Become More Bureaucratized?

    PubMed

    Reddy, Prashant; Lakshmikumaran, Malathi

    2015-06-22

    For the past several decades, there has been a world debate on the need for protecting traditional knowledge. A global treaty appears to be a distant reality. Of more immediate concern are the steps taken by the global community to protect access to biological resources in the name of protecting traditional knowledge. The Indian experience with implementing the Convention on Biological Diversity has created substantial legal uncertainty in collaborative scientific research between Indians and foreigners apart from bureaucratizing the entire process of scientific research, especially with regard to filing of applications for intellectual property rights. The issue therefore is whether the world needs to better balance the needs of the scientific community with the rights of those who have access to traditional knowledge. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  11. [Theses on hepatitis at the Faculdade de Medicina of the Universidade Federal do Rio de Janeiro, 1837-2000].

    PubMed

    Gaze, Rosangela; Carvalho, Diana Maul de; Tura, Luiz Fernando Rangel; Martins, Carolina Passos Telles Taveira; Lobato, Vanessa Maria Tavares

    2012-06-01

    An inventory of the theses on hepatitis of the Faculdade de Medicina of the Universidade Federal do Rio de Janeiro between 1837 and 2000 is presented. The analysis indicates the potential and limits for discussion of the evolutionary framework of scientific knowledge on these health problems in Brazil. The theories are also discussed in light of their scientific reference points and the technological and social changes that influenced them. The landmarks in medical education and knowledge about hepatitis are identified and categorized, considering that the theses reveal at the very least the state of the art on the subject. The study makes it possible to explore the foundations upon which the scientific knowledge on hepatitis were built and indicate possibilities for research in the reconstruction of scientific knowledge of other health problems.

  12. Genetics problem solving and worldview

    NASA Astrophysics Data System (ADS)

    Dale, Esther

    The research goal was to determine whether worldview relates to traditional and real-world genetics problem solving. Traditionally, scientific literacy emphasized content knowledge alone because it was sufficient to solve traditional problems. The contemporary definition of scientific literacy is, "The knowledge and understanding of scientific concepts and processes required for personal decision-making, participation in civic and cultural affairs and economic productivity" (NRC, 1996). An expanded definition of scientific literacy is needed to solve socioscientific issues (SSI), complex social issues with conceptual, procedural, or technological associations with science. Teaching content knowledge alone assumes that students will find the scientific explanation of a phenomenon to be superior to a non-science explanation. Formal science and everyday ways of thinking about science are two different cultures (Palmer, 1999). Students address this rift with cognitive apartheid, the boxing away of science knowledge from other types of knowledge (Jedege & Aikenhead, 1999). By addressing worldview, cognitive apartheid may decrease and scientific literacy may increase. Introductory biology students at the University of Minnesota during fall semester 2005 completed a written questionnaire-including a genetics content-knowledge test, four genetic dilemmas, the Worldview Assessment Instrument (WAI) and some items about demographics and religiosity. Six students responded to the interview protocol. Based on statistical analysis and interview data, this study concluded the following: (1) Worldview, in the form of metaphysics, relates to solving traditional genetic dilemmas. (2) Worldview, in the form of agency, relates to solving traditional genetics problems. (3) Thus, worldview must be addressed in curriculum, instruction, and assessment.

  13. Mapping Changes in Science Teachers' Content Knowledge: Concept Maps and Authentic Professional Development

    ERIC Educational Resources Information Center

    Greene, Barbara A.; Lubin, Ian A.; Slater, Janis L.; Walden, Susan E.

    2013-01-01

    Two studies were conducted to examine content knowledge changes following 2 weeks of professional development that included scientific research with university scientists. Engaging teachers in scientific research is considered to be an effective way of encouraging knowledge of both inquiry pedagogy and content knowledge. We used concept maps with…

  14. On the Epistemological Crisis in Genomics

    PubMed Central

    Dougherty, Edward R

    2008-01-01

    There is an epistemological crisis in genomics. At issue is what constitutes scientific knowledge in genomic science, or systems biology in general. Does this crisis require a new perspective on knowledge heretofore absent from science or is it merely a matter of interpreting new scientific developments in an existing epistemological framework? This paper discusses the manner in which the experimental method, as developed and understood over recent centuries, leads naturally to a scientific epistemology grounded in an experimental-mathematical duality. It places genomics into this epistemological framework and examines the current situation in genomics. Meaning and the constitution of scientific knowledge are key concerns for genomics, and the nature of the epistemological crisis in genomics depends on how these are understood. PMID:19440447

  15. The coexistence of alternative and scientific conceptions in physics

    NASA Astrophysics Data System (ADS)

    Ozdemir, Omer F.

    The purpose of this study was to inquire about the simultaneous coexistence of alternative and scientific conceptions in the domain of physics. This study was particularly motivated by several arguments put forward in opposition to the Conceptual Change Model. In the simplest form, these arguments state that people construct different domains of knowledge and different modes of perception in different situations. Therefore, holding different conceptualizations is unavoidable and expecting a replacement in an individual's conceptual structure is not plausible in terms of instructional practices. The following research questions were generated to inquire about this argument: (1) Do individuals keep their alternative conceptions after they have acquired scientific conceptions? (2) Assuming that individuals who acquired scientific conceptions also have alternative conceptions, how are these different conceptions nested in their conceptual structure? (3) What kind of knowledge, skills, and reasoning are necessary to transfer scientific principles instead of alternative ones in the construction of a valid model? Analysis of the data collected from the non-physics group indicated that the nature of alternative conceptions is framed by two types of reasoning: reasoning by mental simulation and semiformal reasoning. Analysis of the data collected from the physics group revealed that mental images or scenes feeding reasoning by mental simulation had not disappeared after the acquisition of scientific conceptions. The analysis of data also provided enough evidence to conclude that alternative principles feeding semiformal reasoning have not necessarily disappeared after the acquisition of scientific conceptions. However, in regard to semiformal reasoning, compartmentalization was not as clear as the case demonstrated in reasoning by mental simulation; instead semiformal and scientific reasoning are intertwined in a way that the components of semiformal reasoning can easily take their place among the components of scientific reasoning. In spite of the fact that the coexistence of multiple conceptions might obstruct the transfer of scientific conceptions in problem-solving situations, several factors stimulating the use of scientific conceptions were noticed explicitly. These factors were categorized as follows: (a) the level of individuals' domain specific knowledge in the corresponding field, (b) the level of individuals' knowledge about the process of science (how science generates its knowledge claims), (c) the level of individuals' awareness of different types of reasoning and conceptions, and (d) the context in which the problem is situated. (Abstract shortened by UMI.)

  16. Implementing Science-Technology-Society Approaches in Middle School Science Teaching

    ERIC Educational Resources Information Center

    Akcay, Hakan; Yager, Robert E.

    2010-01-01

    The National Science Education Standards emphasize a goal that students should achieve scientific literacy, which is defined as the knowledge and understanding of scientific concepts needed in daily living. Scientific literacy enables people to not only use scientific principles and processes in making personal decisions but also to participate in…

  17. Proportional Reasoning: An Essential Component of Scientific Understanding

    ERIC Educational Resources Information Center

    Hilton, Annette; Hilton, Geoff

    2016-01-01

    In many scientific contexts, students need to be able to use mathematical knowledge in order to engage in scientific reasoning and problem-solving, and their understanding of scientific concepts relies heavily on their ability to understand and use mathematics in often new or unfamiliar contexts. Not only do science students need high levels of…

  18. The Nature of Students' Chemical Reasoning Employed in Scientific Argumentation in Physical Chemistry

    ERIC Educational Resources Information Center

    Moon, A.; Stanford, C.; Cole, R.; Towns, M.

    2016-01-01

    Recent science education reform efforts have emphasized scientific practices in addition to scientific knowledge. Less work has been done at the tertiary level to consider students' engagement in scientific practices. In this work, we consider physical chemistry students' engagement in argumentation and construction of causal explanations.…

  19. SCIENTIFIC AUTHORSHIP, PART I: A WINDOW INOT SCIENTIFIC FRAUD SCIENTIFIC AUTHORSHIP, PART II: HISTORY, REOCCURRING ISSUES, PRACTICES, AND GUIDELINES (SEE COMMENTS)

    EPA Science Inventory

    Scientific Authorship: History, Reoccurring Issues, Practices, and Guidelines
    Introduction
    Often, the most challenging aspect of being a scientist is dealing with the intricacies of publishing one's research and knowledge. One must do much more than just accurately record...

  20. Science Teachers' Conceptions of Nature of Science: The Case of Bangladesh

    ERIC Educational Resources Information Center

    Sarkar, Md. Mahbub Alam; Gomes, Jui Judith

    2010-01-01

    This study explored Bangladeshi science teachers' conceptions of nature of science (NOS) with a particular focus on the nature of (a) scientific knowledge, (b) scientific inquiry and (c) scientific enterprise. The tentative, inferential, subjective and creative NOS, in addition to the myths of the scientific method and experimentation, the nature…

  1. Eliciting Taiwanese high school students' scientific ontological and epistemic beliefs

    NASA Astrophysics Data System (ADS)

    Lin, Tzung-Jin; Tsai, Chin-Chung

    2017-11-01

    This study employed the interview method to clarify the underlying dimensions of and relationships between students' scientific ontological and epistemic beliefs. Forty Taiwanese high school students were invited to participate in this study. Through content analysis of the participants' interview responses two ontological dimensions including 'status of nature' and 'structure of nature' were identified and found to be associated with each other. The two epistemic dimensions 'knowledge' and 'knowing' aligned with past literature were also categorised. Besides five pattern variations in terms of the aforementioned four dimensions were recognised based on the students' philosophical stances on their scientific ontological and epistemic beliefs. According to the Chi-square test results both dimensions of scientific ontological beliefs were significantly related to the two dimensions of scientific epistemic beliefs respectively. In general the students who endorsed a more sophisticated ontological stance regarding the status and structure of nature tended to express a more mature epistemic stance toward scientific knowledge and ways of knowing. The results suggest that the maturation of students' scientific epistemic beliefs may serve as a precursor and the fundamental step in promoting the sophistication of students' scientific ontological beliefs.

  2. [Health-related scientific and technological capabilities and university-industry research collaboration].

    PubMed

    Britto, Jorge; Vargas, Marco Antônio; Gadelha, Carlos Augusto Grabois; Costa, Laís Silveira

    2012-12-01

    To examine recent developments in health-related scientific capabilities, the impact of lines of incentives on reducing regional scientific imbalances, and university-industry research collaboration in Brazil. Data were obtained from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brazilian National Council for Scientific and Technological Development) databases for the years 2000 to 2010. There were assessed indicators of resource mobilization, research network structuring, and knowledge transfer between science and industry initiatives. Based on the regional distribution map of health-related scientific and technological capabilities there were identified patterns of scientific capabilities and science-industry collaboration. There was relative spatial deconcentration of health research groups and more than 6% of them worked in six areas of knowledge areas: medicine, collective health, dentistry, veterinary medicine, ecology and physical education. Lines of incentives that were adopted from 2000 to 2009 contributed to reducing regional scientific imbalances and improving preexisting capabilities or, alternatively, encouraging spatial decentralization of these capabilities. Health-related scientific and technological capabilities remain highly spatially concentrated in Brazil and incentive policies have contributed to reduce to some extent these imbalances.

  3. Science literacy and academic identity formulation

    NASA Astrophysics Data System (ADS)

    Reveles, John M.; Cordova, Ralph; Kelly, Gregory J.

    2004-12-01

    The purpose of this article is to report findings from an ethnographic study that focused on the co-development of science literacy and academic identity formulation within a third-grade classroom. Our theoretical framework draws from sociocultural theory and studies of scientific literacy. Through analysis of classroom discourse, we identified opportunities afforded students to learn specific scientific knowledge and practices during a series of science investigations. The results of this study suggest that the collective practice of the scientific conversations and activities that took place within this classroom enabled students to engage in the construction of communal science knowledge through multiple textual forms. By examining the ways in which students contributed to the construction of scientific understanding, and then by examining their performances within and across events, we present evidence of the co-development of students' academic identities and scientific literacy. Students' communication and participation in science during the investigations enabled them to learn the structure of the discipline by identifying and engaging in scientific activities. The intersection of academic identities with the development of scientific literacy provides a basis for considering specific ways to achieve scientific literacy for all students.

  4. From Comparison Between Scientists to Gaining Cultural Scientific Knowledge. Leonardo and Galileo

    NASA Astrophysics Data System (ADS)

    Galili, Igal

    2016-03-01

    Physics textbooks often present items of disciplinary knowledge in a sequential order of topics of the theory under instruction. Such presentation is usually univocal, that is, isolated from alternative claims and contributions regarding the subject matter in the pertinent scientific discourse. We argue that comparing and contrasting the contributions of scientists addressing similar or the same subject could not only enrich the picture of scientific enterprise, but also possess a special appealing power promoting genuine understanding of the concept considered. This approach draws on the historical tradition from Plutarch in distant past and Koyré in the recent history and philosophy of science. It gains a new support in the discipline-culture structuring of the physics curriculum, seeking cultural content knowledge (CCK) of the subject matter. Here, we address two prominent individuals of Italian Renaissance, Leonardo and Galileo, in their dealing with issues relevant for introductory science courses. Although both figures addressed similar subjects of scientific content, their products were essentially different. Considering this difference is educationally valuable, illustrating the meaning of what students presently learn in the content knowledge of mechanics, optics and astronomy, as well as the nature of science and scientific knowledge.

  5. Scientific literacy for decisionmaking and the social construction of scientific knowledge

    NASA Astrophysics Data System (ADS)

    Bingle, Wade H.; Gaskell, P. James

    Citizens are often required to make decisions about socioscientific issues in a climate characterized by conflict within both the scientific community and the larger society. Central to the process of decisionmaking is a critical examination of the relevant scientific knowledge involved. Individuals capable of performing this task can be considered scientifically literate in a decisionmaking sense. In this article we explore two ways of critically examining scientific knowledge in the context of a current socioscientific dispute: NASA's Galileo Mission to Jupiter. The two approaches we outline, termed the positivist and social constructivist positions, are examined in terms of their inherent views concerning the nature of scientific knowledge, in particular their use of constitutive and contextual values when evaluating knowledge claims. Because the social constructivist position acknowledges the importance of contextual values, it provides citizens with accessible standards for evaluating scientific knowledge claims. The positivist position, on the other hand, relies on constitutive values which we show are normally inaccessible to ordinary citizens. The positivist position, however, is most closely associated with the predominant social issues approach to science-technology-society (STS) education. Implications little consensus about which statements are fact (i.e., will remain stable when challenged) and which opinion, (i.e., will be modified when challenged). All knowledge is potentially unreliable when one is dealing with a socioscientific dispute.The adoption of a social constructivist view of scientific knowledge and its inherent way of evaluating knowledge claims clearly has implications for future approaches to STS education. Although one approach might be to offer a course in the history, philosophy, and sociology of science, this would not be useful without reference to the way in which such knowledge can help students to understand the context of a conflict within the society of scientists and the larger society. As Rosenthal (1989) argues, a synthesis is needed in which social issues are seen as a vehicle for studying the social studies of science and the social issues are seen as a way of making sense of social aspects of science. However, this way of teaching STS may be difficult to implement. In British Columbia, for example, science teachers have resisted efforts to include the social context of science within a traditional university-oriented physics course (Gaskell, 1992) and to teach a grade 11 social issues oriented sicence and technology course (Gaskell, 1989). This may be because the current social issues approach is most compatible with traditional science content as it is now taught: it simply shows the relevance of textbook knowledge (ready-made science) to contemporary probles. The shift to the approach suggested above will require a more drastic reorganization of the curriculum, one that may be resisted by the current stakeholders in science education (Duschl, 1988; Gaskell, 1989).

  6. Research Prototype: Automated Analysis of Scientific and Engineering Semantics

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E. M.; Follen, Greg (Technical Monitor)

    2001-01-01

    Physical and mathematical formulae and concepts are fundamental elements of scientific and engineering software. These classical equations and methods are time tested, universally accepted, and relatively unambiguous. The existence of this classical ontology suggests an ideal problem for automated comprehension. This problem is further motivated by the pervasive use of scientific code and high code development costs. To investigate code comprehension in this classical knowledge domain, a research prototype has been developed. The prototype incorporates scientific domain knowledge to recognize code properties (including units, physical, and mathematical quantity). Also, the procedure implements programming language semantics to propagate these properties through the code. This prototype's ability to elucidate code and detect errors will be demonstrated with state of the art scientific codes.

  7. Students’ scientific production: a proposal to encourage it.

    PubMed

    Corrales-Reyes, Ibraín Enrique; Dorta-Contreras, Alberto Juan

    2018-01-31

    The scientific production of medical students in Latin America, is poor and below their potential. The reason for this is the low theoretical and practical knowledge of scientific writing, a low margin for new knowledge generation, a heavy academic and clinical load, and the expected profile of the medical school graduate. In the present short communication, we propose teaching courses in research methodology, scientific writing in English and Spanish, a personalized search for students and mentors with research aptitudes. Also, we propose academic and material stimuli for publishing, rewards for the best papers made by students and the development and support of scientific student journals. Other proposals are the requirement to publish a paper for graduation, and sharing the most outstanding experiences.

  8. On the Tacit Aspects of Science Pedagogy in Higher Education.

    PubMed

    Sitaraman, Ramakrishnan

    2017-01-01

    In this article, we examine the concept of tacit knowledge and its implications for science education. We suggest that the history of scientific ideas and the personal nature of learning imply that higher education in scientific fields, wherein the generation of new knowledge, insights and understanding is paramount, would greatly benefit by acknowledging the irreducible role of the non-formal and the incidental in scientific innovation and advances.

  9. "An Experiment Is When You Try It and See if It Works": A Study of Junior High School Students' Understanding of the Construction of Scientific Knowledge.

    ERIC Educational Resources Information Center

    Carey, Susan; And Others

    Developing a constructivist view of scientific inquiry and knowledge is considered to be important to the training of future scientists, as well as to the understanding of scientific information by all citizens. The research reported targets the junior high school grades. Curricular materials that introduce seventh graders to the constructivist…

  10. Is risk analysis scientific?

    PubMed

    Hansson, Sven Ove; Aven, Terje

    2014-07-01

    This article discusses to what extent risk analysis is scientific in view of a set of commonly used definitions and criteria. We consider scientific knowledge to be characterized by its subject matter, its success in developing the best available knowledge in its fields of study, and the epistemic norms and values that guide scientific investigations. We proceed to assess the field of risk analysis according to these criteria. For this purpose, we use a model for risk analysis in which science is used as a base for decision making on risks, which covers the five elements evidence, knowledge base, broad risk evaluation, managerial review and judgment, and the decision; and that relates these elements to the domains experts and decisionmakers, and to the domains fact-based or value-based. We conclude that risk analysis is a scientific field of study, when understood as consisting primarily of (i) knowledge about risk-related phenomena, processes, events, etc., and (ii) concepts, theories, frameworks, approaches, principles, methods and models to understand, assess, characterize, communicate, and manage risk, in general and for specific applications (the instrumental part). © 2014 Society for Risk Analysis.

  11. Adjudicating non-knowledge in the Omnibus Autism Proceedings.

    PubMed

    Decoteau, Claire Laurier; Underman, Kelly

    2015-08-01

    After 5600 families of children diagnosed with autism filed claims with the National Vaccine Injury Compensation Program in the United States, the court selected 'test' cases consolidated into the Omnibus Autism Proceedings, held from 2007 to 2008, to examine claims that vaccines caused the development of autism. The court found all of the causation theories presented to be untenable and did not award damages to any parents. We analyze the Omnibus Autism Proceedings as a struggle within the scientific field between the scientific orthodoxy of the respondents and the heterodox position taken by the plaintiffs, suggesting that the ruling in these cases helped to shore up hegemony on autism causation. Drawing on the literature on non-knowledge, we suggest that only the respondents had enough scientific capital to strategically direct non-knowledge toward genetic research, thereby foreclosing the possibility of environmental causation of autism. The plaintiffs, who promote a non-standard ontology of autism, suggest that the science on autism remains undone and should not be circumscribed. In analyzing the Omnibus Autism Proceedings with field theory, we highlight the way in which scientific consensus-building and the setting of research agendas are the result of struggle, and we show that the strategic deployment of non-knowledge becomes a major stake in battles for scientific legitimacy and the settling of scientific controversies.

  12. The contamination of scientific literature: looking for an antidote

    NASA Astrophysics Data System (ADS)

    Liotta, Marcello

    2017-04-01

    Science may have very strong implications for society. The knowledge of the processes occurring around the society represents a good opportunity to take responsible decisions. This is particularly true in the field of geosciences. Earthquakes, volcanic eruptions, landslides, climate changes and many other natural phenomena still need to be further investigated. The role of the scientific community is to increase the knowledge. Each member can share his own ideas and data thus allowing the entire scientific community to receive a precious contribution. The latter one often derives from research activities, which are expensive in terms of consumed time and resources. Nowadays the sharing of scientific results occurs through the publication on scientific journals. The reading of available scientific literature thus represents a unique opportunity to define the state of the art on a specific topic and to address research activities towards something new. When published results are obtained through a rigorous scientific process, they constitute a solid background where each member can add his ideas and evidences. Differently, published results may be affected by scientific misconduct; they constitute a labyrinth where the scientists lose their time in the attempt of truly understanding the natural processes. The normal scientific dialectic should unmask such results, thus avoiding literature contamination and making the scientific framework more stimulating. The scientific community should look for the best practice to reduce the risk of literature contamination.

  13. Interplay of Secondary Pre-Service Teacher Content Knowledge (CK), Pedagogical Content Knowledge (PCK) and Attitudes Regarding Scientific Inquiry Teaching within Teacher Training

    ERIC Educational Resources Information Center

    Smit, Robbert; Weitzel, Holger; Blank, Robert; Rietz, Florian; Tardent, Josiane; Robin, Nicolas

    2017-01-01

    Background: Beginning teachers encounter several constraints with respect to scientific inquiry. Depending on their prior beliefs, knowledge and understanding, these constraints affect their teaching of inquiry. Purpose: To investigate quantitatively the longitudinal relationship between pre-service teachers' knowledge and attitudes on scientific…

  14. On the Limitations of Biological Knowledge

    PubMed Central

    Dougherty, Edward R; Shmulevich, Ilya

    2012-01-01

    Scientific knowledge is grounded in a particular epistemology and, owing to the requirements of that epistemology, possesses limitations. Some limitations are intrinsic, in the sense that they depend inherently on the nature of scientific knowledge; others are contingent, depending on the present state of knowledge, including technology. Understanding limitations facilitates scientific research because one can then recognize when one is confronted by a limitation, as opposed to simply being unable to solve a problem within the existing bounds of possibility. In the hope that the role of limiting factors can be brought more clearly into focus and discussed, we consider several sources of limitation as they apply to biological knowledge: mathematical complexity, experimental constraints, validation, knowledge discovery, and human intellectual capacity. PMID:23633917

  15. The role of the media in the science-policy nexus. Some critical reflections based on an analysis of the Belgian drug policy debate (1996-2003).

    PubMed

    Tieberghien, Julie

    2014-03-01

    Drug policy is one of the most polarised subjects of public debate and media coverage, which frequently tend to be dramatic and event-centred. Although the role of the media in directing the drug discourse is widely acknowledged, limited research has been conducted in examining the particular role of the media in the science-policy nexus. We sought to determine how the (mis)representation of scientific knowledge in the media may, or may not, have an impact on the contribution of scientific knowledge to the drug-policy making process. Using a case study of the Belgian drug-policy debates between 1996 and 2003, we conducted a discourse analysis of specially selected 1067 newspaper articles and 164 policy documents. Our analysis focused on: textual elements that feature intra-discourse differences, how players and scientific knowledge are represented in the text, the arguments used and claims made, and the various types of research utilisation. Media discourse strongly influenced the public's and policy makers' understanding as well as the content of the Belgian drug policy debate between 1996 and 2003. As a major source of scientific knowledge, media coverage supported the 'enlightenment' role of scientific knowledge in the policy-making process by broadening and even determining frames of reference. However, as the presentation of scientific knowledge in the media was often inaccurate or distorted due to the lack of contextual information or statistical misinformation, the media may also support the selective utilisation of scientific knowledge. Many challenges as well as opportunities lie ahead for researchers who want to influence the policy-making process since most research fails to go beyond academic publications. Although media is a valuable linking mechanism between science and policy, by no means does it provide scientists with a guarantee of a more 'evidence-based' drug policy. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Creativity, Scientific Practice, and Knowledge Production

    ERIC Educational Resources Information Center

    Fryer, Marilyn

    2010-01-01

    In this interesting article, Hisham Ghassib (2010) describes the transformation of science from its craft status in a pre-modern era to the major knowledge industry it is today. He then compares the production of scientific knowledge with industrial production, but makes the important distinction between the process of developing scientific…

  17. A Brief Comment on the Surge of Modern Scientific Knowledge

    ERIC Educational Resources Information Center

    Freeman, Joan

    2010-01-01

    This article presents the author's response to Hisham B. Ghassib's article entitled "Where Does Creativity Fit into a Productivist Industrial Model of Knowledge Production?" Ghassib (2010) presents three intriguing and novel ideas which are worth anyone's attention. Firstly, that the constantly increasing amount of scientific knowledge can be…

  18. Comparison of Scientific Research Projects of Education Faculties

    ERIC Educational Resources Information Center

    Altunay, Esen; Tonbul, Yilmaz

    2015-01-01

    Many studies indicate that knowledge and knowledge production are the main predictors of social development, welfare and the ability to face the future with confidence. It could be argued that knowledge production is mainly carried out by universities. This study compares 1266 scientific research projects (SRPs) completed by faculties of education…

  19. Knowledge gain and behavioral change in citizen-science programs.

    PubMed

    Jordan, Rebecca C; Gray, Steven A; Howe, David V; Brooks, Wesley R; Ehrenfeld, Joan G

    2011-12-01

    Citizen-science programs are often touted as useful for advancing conservation literacy, scientific knowledge, and increasing scientific-reasoning skills among the public. Guidelines for collaboration among scientists and the public are lacking and the extent to which these citizen-science initiatives change behavior is relatively unstudied. Over two years, we studied 82 participants in a three-day program that included education about non-native invasive plants and collection of data on the occurrence of those plants. Volunteers were given background knowledge about invasive plant ecology and trained on a specific protocol for collecting invasive plant data. They then collected data and later gathered as a group to analyze data and discuss responsible environmental behavior with respect to invasive plants. We tested whether participants without experience in plant identification and with little knowledge of invasive plants increased their knowledge of invasive species ecology, participation increased knowledge of scientific methods, and participation affected behavior. Knowledge of invasive plants increased on average 24%, but participation was insufficient to increase understanding of how scientific research is conducted. Participants reported increased ability to recognize invasive plants and increased awareness of effects of invasive plants on the environment, but this translated into little change in behavior regarding invasive plants. Potential conflicts between scientific goals, educational goals, and the motivation of participants must be considered during program design. ©2011 Society for Conservation Biology.

  20. Developing an Instrument of Scientific Literacy Assessment on the Cycle Theme

    ERIC Educational Resources Information Center

    Rusilowati, Ani; Kurniawati, Lina; Nugroho, Sunyoto E.; Widiyatmoko, Arif

    2016-01-01

    The purpose of this study is to develop scientific literacy evaluation instrument that tested its validity, reliability, and characteristics to measure the skill of student's scientific literacy used four scientific literacy, categories as follow:science as a body of knowledge (category A), science as a way of thinking (category B), science as a…

  1. Development and Application of Learning Materials to Help Students Understand Ten Statements Describing the Nature of Scientific Observation

    ERIC Educational Resources Information Center

    Kim, Sangsoo; Park, Jongwon

    2018-01-01

    Observing scientific events or objects is a complex process that occurs through the interaction between the observer's knowledge or expectations, the surrounding context, physiological features of the human senses, scientific inquiry processes, and the use of observational instruments. Scientific observation has various features specific to this…

  2. The Crossroads between Biology and Mathematics: The Scientific Method as the Basics of Scientific Literacy

    ERIC Educational Resources Information Center

    Karsai, Istvan; Kampis, George

    2010-01-01

    Biology is changing and becoming more quantitative. Research is creating new challenges that need to be addressed in education as well. New educational initiatives focus on combining laboratory procedures with mathematical skills, yet it seems that most curricula center on a single relationship between scientific knowledge and scientific method:…

  3. On the Tacit Aspects of Science Pedagogy in Higher Education

    PubMed Central

    Sitaraman, Ramakrishnan

    2017-01-01

    In this article, we examine the concept of tacit knowledge and its implications for science education. We suggest that the history of scientific ideas and the personal nature of learning imply that higher education in scientific fields, wherein the generation of new knowledge, insights and understanding is paramount, would greatly benefit by acknowledging the irreducible role of the non-formal and the incidental in scientific innovation and advances. PMID:28515702

  4. Science in the everyday world: Why perspectives from the history of science matter.

    PubMed

    Pandora, Katherine; Rader, Karen A

    2008-06-01

    The history of science is more than the history of scientists. This essay argues that various modem "publics" should be counted as belonging within an enlarged vision of who constitutes the "scientific community"--and describes how the history of science could be important for understanding their experiences. It gives three examples of how natural knowledge-making happens in vernacular contexts: Victorian Britain's publishing experiments in "popular science" as effective literary strategies for communicating to lay and specialist readers; twentieth-century American science museums as important and contested sites for conveying both scientific ideas and ideas about scientific practice; and contemporary mass-mediated images of the "ideal" scientist as providing counternarratives to received professional scientific norms. Finally, it suggests how humanistic knowledge might help both scientists and historians grapple more effectively with contemporary challenges presented by science in public spheres. By studying the making and elaboration of scientific knowledge within popular culture, historians of science can provide substantively grounded insights into the relations between the public and professionals.

  5. Teaching Scientific Reasoning to Liberal Arts Students

    NASA Astrophysics Data System (ADS)

    Rubbo, Louis

    2014-03-01

    University courses in conceptual physics and astronomy typically serve as the terminal science experience for the liberal arts student. Within this population significant content knowledge gains can be achieved by utilizing research verified pedagogical methods. However, from the standpoint of the Univeristy, students are expected to complete these courses not necessarily for the content knowledge but instead for the development of scientific reasoning skills. Results from physics education studies indicate that unless scientific reasoning instruction is made explicit students do not progress in their reasoning abilities. How do we complement the successful content based pedagogical methods with instruction that explicitly focuses on the development of scientific reasoning skills? This talk will explore methodologies that actively engages the non-science students with the explicit intent of fostering their scientific reasoning abilities.

  6. Does Anyone Really Know Anything? An Exploration of Constructivist Meaning and Identity in the Tension between Scientific and Religious Knowledge

    ERIC Educational Resources Information Center

    Starr, Lisa J.

    2010-01-01

    In this paper I discuss the tension created by religion and science in one student's understanding of knowledge and truth by exploring two questions: "How do individuals accommodate their religious beliefs with their understanding of science?" and "How does religious knowledge interact with scientific knowledge to construct meaning?" A…

  7. Preparation for College General Chemistry: More than Just a Matter of Content Knowledge Acquisition

    ERIC Educational Resources Information Center

    Cracolice, Mark S.; Busby, Brittany D.

    2015-01-01

    This study investigates the potential of five factors that may be predictive of success in college general chemistry courses: prior knowledge of common alternate conceptions, intelligence, scientific reasoning ability, proportional reasoning ability, and attitude toward chemistry. We found that both prior knowledge and scientific reasoning ability…

  8. The Cultural Interface of Islander and Scientific Knowledge

    ERIC Educational Resources Information Center

    Nakata, Martin

    2010-01-01

    The interface between Indigenous knowledge systems and Western scientific knowledge systems is a contested space where the difficult dialogue between us and them is often reduced to a position of taking sides. Storytelling is however a very familiar tradition in Indigenous families where we can and do translate expertly difficult concepts from one…

  9. Searching for Synergy: Integrating Traditional and Scientific Ecological Knowledge in Environmental Science Education

    ERIC Educational Resources Information Center

    Kimmerer, Robin Wall

    2012-01-01

    Scientific ecological knowledge (SEK) is a powerful discipline for diagnosing and analyzing environmental degradation, but has been far less successful in devising sustainable solutions which lie at the intersection of nature and culture. Traditional ecological knowledge (TEK) of indigenous and local peoples is rich in prescriptions for the…

  10. The Development of Scientific Knowledge of the Earth

    ERIC Educational Resources Information Center

    Nobes, Gavin; Martin, Alan E.; Panagiotaki, Georgia

    2005-01-01

    Investigation of children's knowledge of the Earth can reveal much about the origins, content and structure of scientific knowledge, and the processes of conceptual change and development. Vosniadou and Brewer (1992, claim that children construct coherent mental models of a flat, flattened, or hollow Earth based on a framework theory and intuitive…

  11. Oak Regeneration: A Knowledge Synthesis

    Treesearch

    H. Michael Rauscher; David L. Loftis; Charles E. McGee; Christopher V. Worth

    1997-01-01

    This scientific literature is represented by a hypertext software. To view this literature you must download and install the hypertext software.Abstract: The scientific literature concerning oak regeneration problems is lengthy, complex, paradoxical, and often perplexing. Despite a large scientific literature and numerous conference...

  12. What's the Alternative?

    ERIC Educational Resources Information Center

    Lombardi, Doug; Sibley, Bret; Carroll, Kristoffer

    2013-01-01

    Scientifically literate citizens need to understand how scientists evaluate competing explanations. Likewise, students must learn to critically evaluate the quality of scientific knowledge and weigh alternative explanations. Regrettably, high school graduates often are not critically evaluative about scientific topics. To help remedy that, this…

  13. Use, knowledge, and perception of the scientific contribution of Sci-Hub in medical students: Study in six countries in Latin America.

    PubMed

    Mejia, Christian R; Valladares-Garrido, Mario J; Miñan-Tapia, Armando; Serrano, Felipe T; Tobler-Gómez, Liz E; Pereda-Castro, William; Mendoza-Flores, Cynthia R; Mundaca-Manay, Maria Y; Valladares-Garrido, Danai

    2017-01-01

    Sci-Hub is a useful web portal for people working in science as it provides access to millions of free scientific articles. Satisfaction and usage should be explored in the Latino student population. The objective of this study was to evaluate the use, knowledge, and perception of the scientific contribution of Sci-Hub in medical students from Latin America. A multicenter, observational, analytical study was conducted in 6632 medical students from 6 countries in Latin America. We surveyed from a previously validated instrument, delving into knowledge, monthly average usage, satisfaction level, and perception of the scientific contributions provided by Sci-Hub. Frequencies and percentages are described, and generalized linear models were used to establish statistical associations. Only 19.2% of study participants knew of Sci-Hub and its function, while the median use was twice a month. 29.9% of Sci-Hub-aware participants claimed they always find the desired scientific information in their Sci-Hub search; 62.5% of participants affirmed that Sci-Hub contributes to scientific investigation; only 2.2% reported that Sci-Hub does not contribute to science. The majority of Latino students are not aware of Sci-Hub.

  14. The Two Nursing Disciplinary Scientific Revolutions: Florence Nightingale and Martha E. Rogers.

    PubMed

    Koffi, Kan; Fawcett, Jacqueline

    2016-07-01

    The purpose of this essay is to share Kan Koffi's ideas about scientific revolutions in the discipline of nursing. Koffi has proposed that the works of Florence Nightingale and Martha E. Rogers represent two scientific revolutions in nursing as a learned discipline. The outcome of these two scientific revolutions is a catalyst for critical disciplinary and paradigmatic debate about the universal conceptualization of nursing's distinctive professional and scientific knowledge. © The Author(s) 2016.

  15. Changes in Students' Views about Nature of Scientific Inquiry at a Science Camp

    ERIC Educational Resources Information Center

    Leblebicioglu, G.; Metin, D.; Capkinoglu, E.; Cetin, P. S.; Eroglu Dogan, E.; Schwartz, R.

    2017-01-01

    Although nature of science (NOS) and nature of scientific inquiry (NOSI) are related to each other, they are differentiated as NOS is being more related to the product of scientific inquiry (SI) which is scientific knowledge whereas NOSI is more related to the process of SI (Schwartz et al. 2008). Lederman et al. ("Journal of Research in…

  16. Relationships between Scientific Process Skills and Scientific Creativity: Mediating Role of Nature of Science Knowledge

    ERIC Educational Resources Information Center

    Ozdemir, Gokhan; Dikici, Ayhan

    2017-01-01

    The purpose of this study is to explore the strength of relationships between 7th grade students' Scientific Process Skills (SPS), Nature of Science (NOS) beliefs, and Scientific Creativity (SC) through Structural Equation Modeling (SEM). For this purpose, data were collected from 332 students of two public middle school students in Turkey. SPS,…

  17. Scientific Internationalism and the Weimar Physicists: The Ideology and Its Manipulation in Germany after World War I

    NASA Astrophysics Data System (ADS)

    Forman, Paul

    The following sections are included: * INTRODUCTION * THE IDEOLOGY OF SCIENTIFIC INTERNATIONALISM * THE UNIVERSALITY OF SCIENTIFIC KNOWLEDGE * SCIENCE AS A MACHT-ERSATZ * SCIENCE AS A POLITICAL INSTRUMENT - KULTURPOLITIK * THE ANTI-POLITICAL AND "MANDARIN" IDEOLOGIES * THE SUBORDINATION OF THE INTERESTS OF SCIENCE TO THE INTERESTS OF THE NATION * UNOFFICIAL INTERNATIONAL SCIENTIFIC RELATIONS-PRECONDITIONS FOR INTRANSIGENCE

  18. Teaching Nature of Scientific Inquiry in Chemistry: How Do German Chemistry Teachers Use Labwork to Teach NOSO?

    ERIC Educational Resources Information Center

    Strippel, C. G.; Sommer, K.

    2015-01-01

    Learning about scientific inquiry (SI) is an important aspect of scientific literacy and there is a solid international consensus of what should be learned about it. Learning about SI comprises both the doing of science (process) and knowledge about the nature of scientific inquiry (NOSI). German reform documents promote inquiry generally but do…

  19. Characterizing scientific production and consumption in Physics

    PubMed Central

    Zhang, Qian; Perra, Nicola; Gonçalves, Bruno; Ciulla, Fabio; Vespignani, Alessandro

    2013-01-01

    We analyze the entire publication database of the American Physical Society generating longitudinal (50 years) citation networks geolocalized at the level of single urban areas. We define the knowledge diffusion proxy, and scientific production ranking algorithms to capture the spatio-temporal dynamics of Physics knowledge worldwide. By using the knowledge diffusion proxy we identify the key cities in the production and consumption of knowledge in Physics as a function of time. The results from the scientific production ranking algorithm allow us to characterize the top cities for scholarly research in Physics. Although we focus on a single dataset concerning a specific field, the methodology presented here opens the path to comparative studies of the dynamics of knowledge across disciplines and research areas. PMID:23571320

  20. Popper's Fallibilism.

    ERIC Educational Resources Information Center

    Perkinson, Henry

    1978-01-01

    Describes the theories of Karl Popper regarding scientific knowledge and scientific methodology; tells how the Popper-Darwinian theory of growth of knowledge offers an alternative nonauthoritarian conception of the educational process, and thus an alternative conception of the functions of the teacher and the school. (GT)

  1. Scaffolding Middle School Students' Construction of Scientific Explanations: Comparing a cognitive versus a metacognitive evaluation approach

    NASA Astrophysics Data System (ADS)

    Wang, Chia-Yu

    2015-01-01

    This study investigated the effects of scaffolds as cognitive prompts and as metacognitive evaluation on seventh-grade students' growth of content knowledge and construction of scientific explanations in five inquiry-based biology activities. Students' scores on multiple-choice pretest and posttest and worksheets for five inquiry-based activities were analyzed. The results show that the students' content knowledge in all conditions significantly increased from the pretest to posttest. Incorporating cognitive prompts with the explanation scaffolds better facilitated knowledge integration and resulted in greater learning gains of content knowledge and better quality evidence and reasoning. The metacognitive evaluation instruction improved all explanation components, especially claims and reasoning. This metacognitive approach also significantly reduced students' over- or underestimation during peer-evaluation by refining their internal standards for the quality of scientific explanations. The ability to accurately evaluate the quality of explanations was strongly associated with better performance on explanation construction. The cognitive prompts and metacognitive evaluation instruction address different aspects of the challenges faced by the students, and show different effects on the enhancement of content knowledge and the quality of scientific explanations. Future directions and suggestions are provided for improving the design of the scaffolds to facilitate the construction of scientific explanations.

  2. Knowledge, attitudes, and barriers toward research: The perspectives of undergraduate medical and dental students

    PubMed Central

    Kyaw Soe, Htoo Htoo; Than, Nan Nitra; Lwin, Htay; Nu Htay, Mila Nu Nu; Phyu, Khine Lynn; Abas, Adinegara Lutfi

    2018-01-01

    CONTEXT: Scientific research not only promotes health and combats diseases of an individual, but also it can strengthen the effectiveness of health systems. Hence, understanding of scientific methods becomes a crucial component in the medical profession. AIMS: This study was conducted to assess the knowledge, attitudes, and barriers toward research among undergraduate medical and dental students. SETTINGS AND DESIGN: This cross-sectional study was conducted among 295 undergraduate Bachelor of Medicine and Bachelor of Surgery (MBBS) and Bachelor of Dental Surgery (BDS) students from a private medical college in Malaysia. MATERIALS AND METHODS: We purposively selected 360 students attending the 3rd, 4th, and 5th year in MBBS course and BDS course in September 2015. A total of 295 students who were willing to provide written informed consent were included in this study. We collected data using a validated, self-administered, structured questionnaire which included 20 questions about knowledge toward scientific research, 21 attitude items in regard to scientific research, a list of 10 barriers toward conducting medical research, and 5 questions of confidence to conduct the medical research. STATISTICAL ANALYSIS USED: Data were analyzed using descriptive statistics, independent t-test, ANOVA, and multiple linear regression. RESULTS: Among the students, 56.9% had moderate knowledge while the majority (83.3%) had moderate attitude toward scientific research. The majorly cited barriers were the lack of time (79.9%), lack of knowledge and skills (72.1%), lack of funding (72.0%) and facilities (63.6%), and lack of rewards (55.8%). There was a significant association between age, academic year, and knowledge of research as the older age group, and 4th- and 5th-year students had higher knowledge score. The students of higher attitude score had better-perceived barriers score toward research with regression coefficient 0.095 (95% confidence interval 0.032–0.159). CONCLUSIONS: Even though the students had the positive attitudes toward scientific research, a supportive and positive environment is needed to improve skills and knowledge of research and to overcome the barriers toward the conduct of scientific research. PMID:29629384

  3. Knowledge, attitudes, and barriers toward research: The perspectives of undergraduate medical and dental students.

    PubMed

    Kyaw Soe, Htoo Htoo; Than, Nan Nitra; Lwin, Htay; Nu Htay, Mila Nu Nu; Phyu, Khine Lynn; Abas, Adinegara Lutfi

    2018-01-01

    Scientific research not only promotes health and combats diseases of an individual, but also it can strengthen the effectiveness of health systems. Hence, understanding of scientific methods becomes a crucial component in the medical profession. This study was conducted to assess the knowledge, attitudes, and barriers toward research among undergraduate medical and dental students. This cross-sectional study was conducted among 295 undergraduate Bachelor of Medicine and Bachelor of Surgery (MBBS) and Bachelor of Dental Surgery (BDS) students from a private medical college in Malaysia. We purposively selected 360 students attending the 3 rd , 4 th , and 5 th year in MBBS course and BDS course in September 2015. A total of 295 students who were willing to provide written informed consent were included in this study. We collected data using a validated, self-administered, structured questionnaire which included 20 questions about knowledge toward scientific research, 21 attitude items in regard to scientific research, a list of 10 barriers toward conducting medical research, and 5 questions of confidence to conduct the medical research. Data were analyzed using descriptive statistics, independent t-test, ANOVA, and multiple linear regression. Among the students, 56.9% had moderate knowledge while the majority (83.3%) had moderate attitude toward scientific research. The majorly cited barriers were the lack of time (79.9%), lack of knowledge and skills (72.1%), lack of funding (72.0%) and facilities (63.6%), and lack of rewards (55.8%). There was a significant association between age, academic year, and knowledge of research as the older age group, and 4 th - and 5 th -year students had higher knowledge score. The students of higher attitude score had better-perceived barriers score toward research with regression coefficient 0.095 (95% confidence interval 0.032-0.159). Even though the students had the positive attitudes toward scientific research, a supportive and positive environment is needed to improve skills and knowledge of research and to overcome the barriers toward the conduct of scientific research.

  4. Diffusion and utilization of scientific and technological knowledge within state and local governments

    NASA Technical Reports Server (NTRS)

    Feller, I.; Flanary, P. E.

    1979-01-01

    The state-of-the-art is reviewed concerning current knowledge of processes by which technological innovation and scientific information are disseminated among state and local governments. The effectiveness of various mechanisms, strategies, and approaches by which federal agencies have sought to transfer technology to state, regional, and city governments are assessed. It is concluded that the existing relationships between the state and local governments, and the scientific communities are not adequate.

  5. A case study of evaluating informatics impact on diffusion of scientific knowledge.

    PubMed

    Katz, Susan B

    2008-11-06

    This case study poster uses a newly developed framework to evaluate an informatics effort in its public health context. The electronic clearance system being evaluated provides the potential for increasing the speed and quality of scientific diffusion of knowledge, and thus translation of research into practice. A graphical logic model and tabular results of the evaluation are presented. Public health history suggests potential benefits of more timely and coordinated diffusion of scientific information.

  6. Turning Crisis into Opportunity: Nature of Science and Scientific Inquiry as Illustrated in the Scientific Research on Severe Acute Respiratory Syndrome

    NASA Astrophysics Data System (ADS)

    Wong, Siu Ling; Kwan, Jenny; Hodson, Derek; Yung, Benny Hin Wai

    2009-01-01

    Interviews with key scientists who had conducted research on Severe Acute Respiratory Syndrome (SARS), together with analysis of media reports, documentaries and other literature published during and after the SARS epidemic, revealed many interesting aspects of the nature of science (NOS) and scientific inquiry in contemporary scientific research in the rapidly growing field of molecular biology. The story of SARS illustrates vividly some NOS features advocated in the school science curriculum, including the tentative nature of scientific knowledge, theory-laden observation and interpretation, multiplicity of approaches adopted in scientific inquiry, the inter-relationship between science and technology, and the nexus of science, politics, social and cultural practices. The story also provided some insights into a number of NOS features less emphasised in the school curriculum—for example, the need to combine and coordinate expertise in a number of scientific fields, the intense competition between research groups (suspended during the SARS crisis), the significance of affective issues relating to intellectual honesty and the courage to challenge authority, the pressure of funding issues on the conduct of research and the ‘peace of mind’ of researchers, These less emphasised elements provided empirical evidence that NOS knowledge, like scientific knowledge itself, changes over time. They reflected the need for teachers and curriculum planners to revisit and reconsider whether the features of NOS currently included in the school science curriculum are fully reflective of the practice of science in the 21st century. In this paper, we also report on how we made use of extracts from the news reports and documentaries on SARS, together with episodes from the scientists’ interviews, to develop a multimedia instructional package for explicitly teaching the prominent features of NOS and scientific inquiry identified in the SARS research.

  7. Towards AN Integrated Scientific and Social Case for Human Space Exploration

    NASA Astrophysics Data System (ADS)

    Crawford, I. A.

    2004-06-01

    I will argue that an ambitious programme of human space exploration, involving a return to the Moon, and eventually human missions to Mars, will add greatly to human knowledge. Gathering such knowledge is the primary aim of science, but science’s compartmentalisation into isolated academic disciplines tends to obscure the overall strength of the scientific case. Any consideration of the scientific arguments for human space exploration must therefore take a holistic view, and integrate the potential benefits over the entire spectrum of human knowledge. Moreover, science is only one thread in a much larger overall case for human space exploration. Other threads include economic, industrial, educational, geopolitical and cultural benefits. Any responsibly formulated public space policy must weigh all of these factors before deciding whether or not an investment in human space activities is scientifically and socially desirable.

  8. Cloning: What Do They Know? A Report on the General Knowledge of a Sample of Midwestern Citizens.

    ERIC Educational Resources Information Center

    Mascazine, John R.; Titterington, Lynda; Khalaf, Ali K.

    This study, part of a larger research project, explored the knowledge of the general population regarding cloning. It also sought to determine where people gather information on cloning. Such awareness of the general public's knowledge of important scientific topics and sources from which people retrieve information can help scientific and…

  9. Worlds of wonder: Sensation and the Victorian scientific performance.

    PubMed

    Morus, Iwan Rhys

    2010-12-01

    Performances of various kinds were central to the strategies adopted by Victorian natural philosophers to constitute their authority. Appealing to the senses of their audience through spectacular effects or ingenious demonstrations of skill was key to the success of these performances. If we want to understand the politics and practice of Victorian science-and science more generally-we need to pay particular attention to these sorts of performances. We need to understand the ingredients that went into them and the relationships between scientific performers and their publics. In particular, we need to investigate the self-conscious nature of Victorian scientific performances. Looking at science as performance provides us with a new set of tools for understanding the politics of knowledge, the relationship between producers and consumers of scientific knowledge, and the construction and constitution of scientific authority.

  10. When Scientific Knowledge, Daily Life Experience, Epistemological and Social Considerations Intersect: Students' Argumentation in Group Discussions on a Socio-Scientific Issue

    ERIC Educational Resources Information Center

    Albe, Virginie

    2008-01-01

    Socio-scientific issues in class have been proposed in an effort to democratise science in society. A micro-ethnographic approach has been used to explore how students elaborate arguments on a socio-scientific controversy in the context of small group discussions. Several processes of group argumentation have been identified. Students' arguments…

  11. Science, Technology, and National Security.

    ERIC Educational Resources Information Center

    DeSieno, Robert P.

    1997-01-01

    Describes a course that grafts discussion of scientific ideas onto students' natural enthusiasm for public policy issues. Includes a group of topics that afford substantive discussion of important scientific ideas. Helps students explore vivid connections between scientific knowledge and public policy, including building the atomic bomb and public…

  12. Teacher Students' Dilemmas When Teaching Science through Inquiry

    ERIC Educational Resources Information Center

    Krämer, Philipp; Nessler, Stefan H.; Schlüter, Kirsten

    2015-01-01

    Background: Inquiry-based science education (IBSE) is suitable to teach scientific contents as well as to foster scientific skills. Similar conclusions are drawn by studies with respect to scientific literacy, motivational aspects, vocabulary knowledge, conceptual understandings, critical thinking, and attitudes toward science. Nevertheless, IBSE…

  13. Predicting future discoveries from current scientific literature.

    PubMed

    Petrič, Ingrid; Cestnik, Bojan

    2014-01-01

    Knowledge discovery in biomedicine is a time-consuming process starting from the basic research, through preclinical testing, towards possible clinical applications. Crossing of conceptual boundaries is often needed for groundbreaking biomedical research that generates highly inventive discoveries. We demonstrate the ability of a creative literature mining method to advance valuable new discoveries based on rare ideas from existing literature. When emerging ideas from scientific literature are put together as fragments of knowledge in a systematic way, they may lead to original, sometimes surprising, research findings. If enough scientific evidence is already published for the association of such findings, they can be considered as scientific hypotheses. In this chapter, we describe a method for the computer-aided generation of such hypotheses based on the existing scientific literature. Our literature-based discovery of NF-kappaB with its possible connections to autism was recently approved by scientific community, which confirms the ability of our literature mining methodology to accelerate future discoveries based on rare ideas from existing literature.

  14. The Effects of Video Feedback Coaching for Teachers on Scientific Knowledge of Primary Students

    NASA Astrophysics Data System (ADS)

    van Vondel, Sabine; Steenbeek, Henderien; van Dijk, Marijn; van Geert, Paul

    2017-04-01

    The present study was aimed at investigating the effects of a video feedback coaching intervention for upper-grade primary school teachers on students' cognitive gains in scientific knowledge. This teaching intervention was designed with the use of inquiry-based learning principles for teachers, such as the empirical cycle and the posing of thought-provoking questions. The intervention was put into practice in 10 upper-grade classrooms. The trajectory comprised four lessons, complemented with two premeasures and two postmeasures. The control condition consisted of 11 upper-grade teachers and their students. The success of the intervention was tested using an established standardized achievement test and situated measures. In this way, by means of premeasure and postmeasure questionnaires and video data, an assessment could be made of the change in students' scientific knowledge before, during, and after the intervention. In this study, we primarily focused on the dynamics of students' real-time expressions of scientific knowledge in the classroom. Important indicators of the effect of the intervention were found. Through focusing on the number of explanations and predictions, a significant increase could be seen in the proportion of students' utterances displaying scientific understanding in the intervention condition. In addition, students in the intervention condition more often reasoned on higher complexity levels than students in the control condition. No effect was found for students' scientific knowledge as measured with a standardized achievement test. Implications for future studies are stressed, as well as the importance of enriching the evaluation of intervention studies by focusing on dynamics in the classroom.

  15. To ontologise or not to ontologise: An information model for a geospatial knowledge infrastructure

    NASA Astrophysics Data System (ADS)

    Stock, Kristin; Stojanovic, Tim; Reitsma, Femke; Ou, Yang; Bishr, Mohamed; Ortmann, Jens; Robertson, Anne

    2012-08-01

    A geospatial knowledge infrastructure consists of a set of interoperable components, including software, information, hardware, procedures and standards, that work together to support advanced discovery and creation of geoscientific resources, including publications, data sets and web services. The focus of the work presented is the development of such an infrastructure for resource discovery. Advanced resource discovery is intended to support scientists in finding resources that meet their needs, and focuses on representing the semantic details of the scientific resources, including the detailed aspects of the science that led to the resource being created. This paper describes an information model for a geospatial knowledge infrastructure that uses ontologies to represent these semantic details, including knowledge about domain concepts, the scientific elements of the resource (analysis methods, theories and scientific processes) and web services. This semantic information can be used to enable more intelligent search over scientific resources, and to support new ways to infer and visualise scientific knowledge. The work describes the requirements for semantic support of a knowledge infrastructure, and analyses the different options for information storage based on the twin goals of semantic richness and syntactic interoperability to allow communication between different infrastructures. Such interoperability is achieved by the use of open standards, and the architecture of the knowledge infrastructure adopts such standards, particularly from the geospatial community. The paper then describes an information model that uses a range of different types of ontologies, explaining those ontologies and their content. The information model was successfully implemented in a working geospatial knowledge infrastructure, but the evaluation identified some issues in creating the ontologies.

  16. 48 CFR 35.002 - General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... programs is to advance scientific and technical knowledge and apply that knowledge to the extent necessary... are directed toward objectives for which the work or methods cannot be precisely described in advance... to encourage the best sources from the scientific and industrial community to become involved in the...

  17. 48 CFR 35.002 - General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... programs is to advance scientific and technical knowledge and apply that knowledge to the extent necessary... are directed toward objectives for which the work or methods cannot be precisely described in advance... to encourage the best sources from the scientific and industrial community to become involved in the...

  18. 48 CFR 35.002 - General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... programs is to advance scientific and technical knowledge and apply that knowledge to the extent necessary... are directed toward objectives for which the work or methods cannot be precisely described in advance... to encourage the best sources from the scientific and industrial community to become involved in the...

  19. Measuring science or religion? A measurement analysis of the National Science Foundation sponsored science literacy scale 2006-2010.

    PubMed

    Roos, J Micah

    2014-10-01

    High scientific literacy is widely considered a public good. Methods of assessing public scientific knowledge or literacy are equally important. In an effort to measure lay scientific literacy in the United States, the National Science Foundation (NSF) science literacy scale has been a part of the last three waves of the General Social Survey. However, there has been debate over the validity of some survey items as indicators of science knowledge. While many researchers treat the NSF science scale as measuring a single dimension, previous work (Bann and Schwerin, 2004; Miller, 1998, 2004) suggests a bidimensional structure. This paper hypothesizes and tests a new measurement model for the NSF science knowledge scale and finds that two items about evolution and the big bang are more measures of a religious belief dimension termed "Young Earth Worldview" than they are measures of scientific knowledge. Results are replicated in seven samples. © The Author(s) 2013.

  20. Knowledge first, critique later: why it is a mistake for science education to encourage junior students to discuss, challenge and debate scientific knowledge.

    PubMed

    Charlton, Bruce G

    2010-02-01

    In UK educational circles it has long been regarded as a platitude that a good scientific education at school and undergraduate level should aim to teach critical thinking and encourage students to challenge mainstream science, debate scientific issues and express their personal opinions. However, I believe that this strategy is usually mistaken, and that such educational strategies probably do more harm than good. For most students, at most levels, for most of the time; science education should be focused on the inculcation of established knowledge. This is for the simple reason that critique is educationally-counterproductive and scientifically-worthless unless or until underpinned by adequate knowledge and competence. Instead, for the early years of science teaching, the basic assumption ought to be that the student is there to learn science; not to confront science. The basic attitude being taught should be one of humility before the science being studied.

  1. Bridging the Gap between Scientific Data Producers and Consumers: A Provenance Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephan, Eric G.; Pinheiro da Silva, Paulo; Kleese van Dam, Kerstin

    2013-06-03

    Despite the methodical and painstaking efforts made by scientists to record their scientific findings and protocols, a knowledge gap problem continues to persist today between producers of scientific results and consumers because technology is performing the exchange of data as opposed to scientists making direct contact. Provenance is a means to formalize how this knowledge is transferred. However, for it to be meaningful to scientists, the provenance research community needs continued contributions from the scientific community to extend and leverage provenance-based vocabularies and technology from the provenance community. Going forward the provenance community must also be vigilant to meet scalabilitymore » needs of data intensive science« less

  2. On the Growth of Scientific Knowledge: Yeast Biology as a Case Study

    PubMed Central

    He, Xionglei; Zhang, Jianzhi

    2009-01-01

    The tempo and mode of human knowledge expansion is an enduring yet poorly understood topic. Through a temporal network analysis of three decades of discoveries of protein interactions and genetic interactions in baker's yeast, we show that the growth of scientific knowledge is exponential over time and that important subjects tend to be studied earlier. However, expansions of different domains of knowledge are highly heterogeneous and episodic such that the temporal turnover of knowledge hubs is much greater than expected by chance. Familiar subjects are preferentially studied over new subjects, leading to a reduced pace of innovation. While research is increasingly done in teams, the number of discoveries per researcher is greater in smaller teams. These findings reveal collective human behaviors in scientific research and help design better strategies in future knowledge exploration. PMID:19300476

  3. On the growth of scientific knowledge: yeast biology as a case study.

    PubMed

    He, Xionglei; Zhang, Jianzhi

    2009-03-01

    The tempo and mode of human knowledge expansion is an enduring yet poorly understood topic. Through a temporal network analysis of three decades of discoveries of protein interactions and genetic interactions in baker's yeast, we show that the growth of scientific knowledge is exponential over time and that important subjects tend to be studied earlier. However, expansions of different domains of knowledge are highly heterogeneous and episodic such that the temporal turnover of knowledge hubs is much greater than expected by chance. Familiar subjects are preferentially studied over new subjects, leading to a reduced pace of innovation. While research is increasingly done in teams, the number of discoveries per researcher is greater in smaller teams. These findings reveal collective human behaviors in scientific research and help design better strategies in future knowledge exploration.

  4. On the Existence and Uniqueness of the Scientific Method.

    PubMed

    Wagensberg, Jorge

    2014-01-01

    The ultimate utility of science is widely agreed upon: the comprehension of reality. But there is much controversy about what scientific understanding actually means, and how we should proceed in order to gain new scientific understanding. Is there a method for acquiring new scientific knowledge? Is this method unique and universal? There has been no shortage of proposals, but neither has there been a shortage of skeptics about these proposals. This article proffers for discussion a potential scientific method that aspires to be unique and universal and is rooted in the recent and ancient history of scientific thinking. Curiously, conclusions can be inferred from this scientific method that also concern education and the transmission of science to others.

  5. Results of Studying Astronomy Students’ Science Literacy, Quantitative Literacy, and Information Literacy

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; Impey, Chris David; Follette, Katherine B.; Dokter, Erin F.; McCarthy, Don; Vezino, Beau; Formanek, Martin; Romine, James M.; Brock, Laci; Neiberding, Megan; Prather, Edward E.

    2017-01-01

    Introductory astronomy courses often serve as terminal science courses for non-science majors and present an opportunity to assess non future scientists’ attitudes towards science as well as basic scientific knowledge and scientific analysis skills that may remain unchanged after college. Through a series of studies, we have been able to evaluate students’ basic science knowledge, attitudes towards science, quantitative literacy, and informational literacy. In the Fall of 2015, we conducted a case study of a single class administering all relevant surveys to an undergraduate class of 20 students. We will present our analysis of trends of each of these studies as well as the comparison case study. In general we have found that students basic scientific knowledge has remained stable over the past quarter century. In all of our studies, there is a strong relationship between student attitudes and their science and quantitative knowledge and skills. Additionally, students’ information literacy is strongly connected to their attitudes and basic scientific knowledge. We are currently expanding these studies to include new audiences and will discuss the implications of our findings for instructors.

  6. Making sense scientific claims in advertising. A study of scientifically aware consumers.

    PubMed

    Dodds, Rachel E; Tseëlon, Efrat; Weitkamp, Emma L C

    2008-04-01

    Evidence that science is becoming increasingly embedded in culture comes from the proliferation of discourses of ethical consumption, sustainability, and environmental awareness. Al Gore's recent award, along with UN's Inter-governmental Panel on Climate Change (IPCC) of the Nobel peace prize-- provided a recent high profile linking of consumption and science. It is not clear to what extent the public at large engages in evaluating the scientific merits of the arguments about the link between human consumption and global environmental catastrophes. But on a local scale, we are routinely required to evaluate, scientific and pseudoscientific claims in advertising. Since advertising is used to sell products, the discourse of scientifically framed claims is being used to persuade consumers of the benefits of these products. In the case of functional foods and cosmetics, such statements are deployed to promote the health benefits and effectiveness of their products. This exploratory study examines the views of British consumers about the scientific and pseudoscientific claims made in advertisements for foods, with particular reference to functional foods, and cosmetics. The participants in the study all worked in scientific environments, though they were not all scientists. The study found that scientific arguments that were congruent with existing health knowledge tended to be accepted while pseudoscientific knowledge was regarded skeptically and concerns were raised over the accuracy and believability of the pseudoscientific claims. It appears that scientific awareness may play a part in consumers' ability to critically examine scientifically and pseudoscientifically based advertising claims.

  7. Constructing Scientific Arguments Using Evidence from Dynamic Computational Climate Models

    NASA Astrophysics Data System (ADS)

    Pallant, Amy; Lee, Hee-Sun

    2015-04-01

    Modeling and argumentation are two important scientific practices students need to develop throughout school years. In this paper, we investigated how middle and high school students ( N = 512) construct a scientific argument based on evidence from computational models with which they simulated climate change. We designed scientific argumentation tasks with three increasingly complex dynamic climate models. Each scientific argumentation task consisted of four parts: multiple-choice claim, openended explanation, five-point Likert scale uncertainty rating, and open-ended uncertainty rationale. We coded 1,294 scientific arguments in terms of a claim's consistency with current scientific consensus, whether explanations were model based or knowledge based and categorized the sources of uncertainty (personal vs. scientific). We used chi-square and ANOVA tests to identify significant patterns. Results indicate that (1) a majority of students incorporated models as evidence to support their claims, (2) most students used model output results shown on graphs to confirm their claim rather than to explain simulated molecular processes, (3) students' dependence on model results and their uncertainty rating diminished as the dynamic climate models became more and more complex, (4) some students' misconceptions interfered with observing and interpreting model results or simulated processes, and (5) students' uncertainty sources reflected more frequently on their assessment of personal knowledge or abilities related to the tasks than on their critical examination of scientific evidence resulting from models. These findings have implications for teaching and research related to the integration of scientific argumentation and modeling practices to address complex Earth systems.

  8. Roadblocks to Scientific Thinking in Educational Decision Making

    ERIC Educational Resources Information Center

    Yates, Gregory C. R.

    2008-01-01

    Principles of scientific data accumulation and evidence-based practices are vehicles of professional enhancement. In this article, the author argues that a scientific knowledge base exists descriptive of the relationship between teachers' activities and student learning. This database appears barely recognised however, for reasons including (a)…

  9. Use, knowledge, and perception of the scientific contribution of Sci-Hub in medical students: Study in six countries in Latin America

    PubMed Central

    Mejia, Christian R.; Valladares-Garrido, Mario J.; Miñan-Tapia, Armando; Serrano, Felipe T.; Tobler-Gómez, Liz E.; Pereda-Castro, William; Mendoza-Flores, Cynthia R.; Mundaca-Manay, Maria Y.; Valladares-Garrido, Danai

    2017-01-01

    Introduction Sci-Hub is a useful web portal for people working in science as it provides access to millions of free scientific articles. Satisfaction and usage should be explored in the Latino student population. The objective of this study was to evaluate the use, knowledge, and perception of the scientific contribution of Sci-Hub in medical students from Latin America. Methodology A multicenter, observational, analytical study was conducted in 6632 medical students from 6 countries in Latin America. We surveyed from a previously validated instrument, delving into knowledge, monthly average usage, satisfaction level, and perception of the scientific contributions provided by Sci-Hub. Frequencies and percentages are described, and generalized linear models were used to establish statistical associations. Results Only 19.2% of study participants knew of Sci-Hub and its function, while the median use was twice a month. 29.9% of Sci-Hub-aware participants claimed they always find the desired scientific information in their Sci-Hub search; 62.5% of participants affirmed that Sci-Hub contributes to scientific investigation; only 2.2% reported that Sci-Hub does not contribute to science. Conclusion The majority of Latino students are not aware of Sci-Hub. PMID:28982181

  10. The development of scientific literacy assessment to measure student’s scientific literacy skills in energy theme

    NASA Astrophysics Data System (ADS)

    Rusilowati, A.; Nugroho, S. E.; Susilowati, E. S. M.; Mustika, T.; Harfiyani, N.; Prabowo, H. T.

    2018-03-01

    The research were aimed to develop and find out of validity, reliability, characteristic of scientific literacy assessment, and find out of the profile of students’ scientific literacy skills in Energy themed. The research is conducted in 7th grade of Secondary School at Demak, Central of Java Indonesia. The research design used R&D (Research and Development). The results of the research showed that the scientific literacy assessment was valid and reliable with 0.68 value in the first try out and 0.73 value in the last try out. The characteristics of the scientific literacy assessment are the difficulty index and the discrimination power. The difficulty index and distinguishing are 56.25% easy, 31.25% medium, and 12.5% very difficult with good discrimination power. The proportion of category of scientific literacy as the body of knowledge, the science as a way of investigating, science as a way of thinking, and the interaction among science, environment, technology, and society was 37.5%:25%:18.75%:18.75%. The highest to the lowest profile of students’ scientific literacy skills at Secondary School Demak was 72% in the category of science as a way of thinking and the lowest was 59% in the category of science as the body of knowledge.

  11. Creators, Transmitters, and Users: Women's Scientific Excellence at the Semiperiphery of Europe

    ERIC Educational Resources Information Center

    Blagojevic, Marina

    2005-01-01

    This paper explores the field of interconnectedness among knowledge production, semiperiphery, gender, and "scientific excellence," which is largely an undertheorized and underresearched field of "absence of knowledge." It will be tackled with a combination of theoretical ideas, research findings, personal observations, and…

  12. Contemporary HIV/AIDS research: Insights from knowledge management theory.

    PubMed

    Callaghan, Chris William

    2017-12-01

    Knowledge management as a field is concerned with the management of knowledge, including the management of knowledge in research processes. Knowledge management theory has the potential to support research into problems such as HIV, antibiotic resistance and others, particularly in terms of aspects of scientific research related to the contribution of social science. To date, however, these challenges remain with us, and theoretical contributions that can complement natural science efforts to eradicate these problems are needed. This paper seeks to offer a theoretical contribution grounded in Kuhn's paradigm theory of innovation, and in the argument by Lakatos that scientific research can be fundamentally non-innovative, which suggests that social science aspects of knowledge creation may hold the key to more effective biomedical innovation. Given the consequences of ongoing and emerging global crises, and the failure of knowledge systems of scientific research to solve such problems outright, this paper provides a review of theory and literature arguing for a new paradigm in scientific research, based on the development of global systems to maximise research collaborations. A global systems approach effectively includes social science theory development as an important complement to the natural sciences research process. Arguably, information technology and social media technology have developed to the point at which solutions to knowledge aggregation challenges can enable solutions to knowledge problems on a scale hitherto unimaginable. Expert and non-expert crowdsourced inputs can enable problem-solving through exponentially increasing problem-solving inputs, using the 'crowd,' thereby increasing collaborations dramatically. It is argued that these developments herald a new era of participatory research, or a democratisation of research, which offers new hope for solving global social problems. This paper seeks to contribute to this end, and to the recognition of the important role of social theory in the scientific research process.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojick, D E; Warnick, W L; Carroll, B C

    With the United States federal government spending billions annually for research and development, ways to increase the productivity of that research can have a significant return on investment. The process by which science knowledge is spread is called diffusion. It is therefore important to better understand and measure the benefits of this diffusion of knowledge. In particular, it is important to understand whether advances in Internet searching can speed up the diffusion of scientific knowledge and accelerate scientific progress despite the fact that the vast majority of scientific information resources continue to be held in deep web databases that manymore » search engines cannot fully access. To address the complexity of the search issue, the term global discovery is used for the act of searching across heterogeneous environments and distant communities. This article discusses these issues and describes research being conducted by the Office of Scientific and Technical Information (OSTI).« less

  14. Contesting epistemic authority: Conspiracy theories on the boundaries of science.

    PubMed

    Harambam, Jaron; Aupers, Stef

    2015-05-01

    Conspiracy theories are immensely popular today, yet in the social sciences they are often dismissed as "irrational," "bad science," or "religious belief." In this study, we take a cultural sociological approach and argue that this persistent disqualification is a form of "boundary work" that obscures rather than clarifies how and why conspiracy theorists challenge the epistemic authority of science. Based on a qualitative study of the Dutch conspiracy milieu, we distinguish three critiques that are motivated by encounters with scientific experts in everyday life: the alleged dogmatism of modern science, the intimate relation of scientific knowledge production with vested interests, and the exclusion of lay knowledge by scientific experts forming a global "power elite." Given their critique that resonates with social scientific understandings of science, it is concluded that conspiracy theorists compete with (social) scientists in complex battles for epistemic authority in a broader field of knowledge contestation. © The Author(s) 2014.

  15. Scientific Research: How Many Paradigms?

    ERIC Educational Resources Information Center

    Strawn, George O.

    2012-01-01

    As Yogi Berra said, "Predictions are hard, especially about the future." In this article, the author offers a few forward-looking observations about the emerging impact of information technology on scientific research. Scientific research refers to a particular method for acquiring knowledge about natural phenomena. This method has two dimensions:…

  16. How to Write a Research Paper

    ERIC Educational Resources Information Center

    Borràs, Eulàlia

    2017-01-01

    Generally speaking, when one writes about their research they are making a contribution to the scientific community and disseminating the results of findings in scientific articles. This means that other researchers have access to the research produced and can examine the subjects raised in greater depth to advance scientific knowledge. This paper…

  17. Engineers' Non-Scientific Models in Technology Education

    ERIC Educational Resources Information Center

    Norstrom, Per

    2013-01-01

    Engineers commonly use rules, theories and models that lack scientific justification. Examples include rules of thumb based on experience, but also models based on obsolete science or folk theories. Centrifugal forces, heat and cold as substances, and sucking vacuum all belong to the latter group. These models contradict scientific knowledge, but…

  18. Design and Reflection Help Students Develop Scientific Abilities: Learning in Introductory Physics Laboratories

    ERIC Educational Resources Information Center

    Etkina, Eugenia; Karelina, Anna; Ruibal-Villasenor, Maria; Rosengrant, David; Jordan, Rebecca; Hmelo-Silver, Cindy E.

    2010-01-01

    Design activities, when embedded in an inquiry cycle and appropriately scaffolded and supplemented with reflection, can promote the development of the habits of mind (scientific abilities) that are an important part of scientific practice. Through the Investigative Science Learning Environment ("ISLE"), students construct physics knowledge by…

  19. A Dialogic Account of Sense-Making in Scientific Argumentation and Reasoning

    ERIC Educational Resources Information Center

    Ford, Michael J.

    2012-01-01

    This article identifies aspects of argumentation in scientific practice that are key for scientific sense-making and articulates how engagement in these aspects happens both inter-mentally (between people) and intra-mentally (an individual's reasoning). Institutionally, peer review exerts critique on new knowledge claims in science and is…

  20. The Benefits of Scientific Modeling

    ERIC Educational Resources Information Center

    Kenyon, Lisa; Schwarz, Christina; Hug, Barbara

    2008-01-01

    When students are engaged in scientific modeling, they are able to notice patterns and develop and revise representations that become useful models to predict and explain--making their own scientific knowledge stronger, helping them to think critically, and helping them know more about the nature of science. To illustrate, this article describes a…

  1. Students' satisfaction and perceived impact on knowledge, attitudes and skills after a 2-day course in scientific writing: a prospective longitudinal study in Spain.

    PubMed

    Fernández, Esteve; García, Ana M; Serés, Elisabet; Bosch, Fèlix

    2018-01-27

    This study aimed to determine students' satisfaction with a 2-day course on scientific writing in health sciences and to assess their perceptions of the long-term impact on their knowledge, attitudes and skills. 27 iterations of a 2-day course on writing and publishing scientific articles in health sciences. 741 students attending the 27 courses. Prospective longitudinal study. Immediately after each course, students completed a first questionnaire, rating their satisfaction with different aspects of the classroom sessions on a Likert scale (0-5). Approximately 2 years after the course, students completed a follow-up questionnaire, using a Likert scale (0-4) to rate their knowledge, skills and attitudes in relation to scientific writing before and after attending the course. 741 students (70% women) participated in the 27 iterations of the course; 568 (76.8%) completed the first questionnaire and 182 (24.6%) completed the follow-up questionnaire. The first questionnaire reflected high overall satisfaction (mean score, 4.6). In the second questionnaire, students reported that the course had improved their knowledge (mean improvement: 1.6; 95% CI 1.6 to 1.7), attitudes (mean improvement: 1.3; 95% CI 1.2 to 1.4) and skills (mean improvement: 1.4; 95% CI 1.3 to 1.4) related to writing and publishing scientific papers. Most respondents (n=145, 79.7%) had participated in drafting a scientific paper after the course; in this subgroup, all the specific writing skills assessed in the second questionnaire significantly improved. Students were satisfied with the format and the contents of the course, and those who responded to the follow-up survey considered that the course had improved their knowledge, attitudes and skills in relation to scientific writing and publishing. Courses are particularly important in countries without strong traditions in scientific publication. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. The Adam and Eve Robot Scientists for the Automated Discovery of Scientific Knowledge

    NASA Astrophysics Data System (ADS)

    King, Ross

    A Robot Scientist is a physically implemented robotic system that applies techniques from artificial intelligence to execute cycles of automated scientific experimentation. A Robot Scientist can automatically execute cycles of hypothesis formation, selection of efficient experiments to discriminate between hypotheses, execution of experiments using laboratory automation equipment, and analysis of results. The motivation for developing Robot Scientists is to better understand science, and to make scientific research more efficient. The Robot Scientist `Adam' was the first machine to autonomously discover scientific knowledge: both form and experimentally confirm novel hypotheses. Adam worked in the domain of yeast functional genomics. The Robot Scientist `Eve' was originally developed to automate early-stage drug development, with specific application to neglected tropical disease such as malaria, African sleeping sickness, etc. We are now adapting Eve to work with on cancer. We are also teaching Eve to autonomously extract information from the scientific literature.

  3. Patterns in Students' Argumentation Confronted with a Risk-focused Socio-scientific Issue

    NASA Astrophysics Data System (ADS)

    Kolstø, Stein Dankert

    2006-11-01

    This paper reports a qualitative study on students’ informal reasoning on a controversial socio-scientific issue. Twenty-two students from four science classes in Norway were interviewed about the local construction of new power lines and the possible increased risk of childhood leukaemia. The focus in the study is on what arguments the students employ when asked about their decision-making and the interplay between knowledge and personal values. Five different types of main arguments are identified: the relative risk argument, the precautionary argument, the uncertainty argument, the small risk argument, and the pros and cons argument. These arguments are presented through case studies, and crucial information and values are identified for each argument. The students made use of a range of both scientific and non-scientific knowledge. The findings are discussed in relation to possible consequences for teaching models aimed at increasing students’ ability to make thoughtful decisions on socio-scientific issues.

  4. Scientific papers for health informatics.

    PubMed

    Pereira, Samáris Ramiro; Duarte, Jacy Marcondes; Bandiera-Paiva, Paulo

    2013-01-01

    From the hypothesis that the development of scientific papers, mainly in interdisciplinary areas such as Health Informatics, may bring difficulties to the author, as had its communicative efficacy decreased or compromising their approval for publication; we aim to make considerations on the main items to good players making this kind of text. The scientific writing has peculiarities that must be taken into consideration when it writes: general characteristics, such as simplicity and objectivity, and characteristics of each area of knowledge, such as terminology, formatting and standardization. The research methodology adopted is bibliographical. The information was based on literature review and the authors' experience, teachers and assessors of scientific methodology in peer review publications in the area. As a result, we designed a checklist of items to be checked before submission of a paper to a scientific publication vehicle in order to contribute to the promotion of research, facilitating the publication and increase its capacity in this important area of knowledge.

  5. Joseph Henry's Conception of Scientific Knowledge

    NASA Astrophysics Data System (ADS)

    Theerman, Paul

    1997-04-01

    Joseph Henry, America's premier physicist and physics teacher in the mid-nineteenth century, had decided views of scientific knowledge. These were expressed in two ways. First of all, scientific knowledge led to moral betterment. Thus the study of science was a morally good thing. This was not only because it led to the contemplation of God's creation, which was a standard reason justifying the study of science dating from the Scientific Revolution and even earlier. More importantly, the study of science itself was a moral discipline, imparting to scientists the habits and virtues of truthfulness, respect for others, care and diligence, and the discernment of meaningful patterns from experience. The moral ideals of science were expressed most strongly in Henry's upholding the international "Republic of Science"; conversely, cheapening science was a sign of moral failure. Second, for Henry and his generation, science provided a path to sure truth, separate from falsehood of both the politics and the quackery that characterized mid-century public life. Henry promoted this in his championing of the Smithsonian Institution a scientific establishment, against the ideas of others who wanted to make it a literary establishment or a training school for teachers. For Henry, the Smithsonian's scientific reputation would be established by relying on careful peer review in its publications, and supporting established scientists to write authoritative popular works. The purpose of both these activities was to raise the profile of science in the United States and further establish science and the scientific method as a guide to public life.

  6. Issues in knowledge representation to support maintainability: A case study in scientific data preparation

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Kandt, R. Kirk; Roden, Joseph; Burleigh, Scott; King, Todd; Joy, Steve

    1992-01-01

    Scientific data preparation is the process of extracting usable scientific data from raw instrument data. This task involves noise detection (and subsequent noise classification and flagging or removal), extracting data from compressed forms, and construction of derivative or aggregate data (e.g. spectral densities or running averages). A software system called PIPE provides intelligent assistance to users developing scientific data preparation plans using a programming language called Master Plumber. PIPE provides this assistance capability by using a process description to create a dependency model of the scientific data preparation plan. This dependency model can then be used to verify syntactic and semantic constraints on processing steps to perform limited plan validation. PIPE also provides capabilities for using this model to assist in debugging faulty data preparation plans. In this case, the process model is used to focus the developer's attention upon those processing steps and data elements that were used in computing the faulty output values. Finally, the dependency model of a plan can be used to perform plan optimization and runtime estimation. These capabilities allow scientists to spend less time developing data preparation procedures and more time on scientific analysis tasks. Because the scientific data processing modules (called fittings) evolve to match scientists' needs, issues regarding maintainability are of prime importance in PIPE. This paper describes the PIPE system and describes how issues in maintainability affected the knowledge representation used in PIPE to capture knowledge about the behavior of fittings.

  7. Scientific Research: Commodities or Commons?

    NASA Astrophysics Data System (ADS)

    Vermeir, Koen

    2013-10-01

    Truth is for sale today, some critics claim. The increased commodification of science corrupts it, scientific fraud is rampant and the age-old trust in science is shattered. This cynical view, although gaining in prominence, does not explain very well the surprising motivation and integrity that is still central to the scientific life. Although scientific knowledge becomes more and more treated as a commodity or as a product that is for sale, a central part of academic scientific practice is still organized according to different principles. In this paper, I critically analyze alternative models for understanding the organization of knowledge, such as the idea of the scientific commons and the gift economy of science. After weighing the diverse positive and negative aspects of free market economies of science and gift economies of science, a commons structured as a gift economy seems best suited to preserve and take advantage of the specific character of scientific knowledge. Furthermore, commons and gift economies promote the rich social texture that is important for supporting central norms of science. Some of these basic norms might break down if the gift character of science is lost. To conclude, I consider the possibility and desirability of hybrid economies of academic science, which combine aspects of gift economies and free market economies. The aim of this paper is to gain a better understanding of these deeper structural challenges faced by science policy. Such theoretical reflections should eventually assist us in formulating new policy guidelines.

  8. Veritas filia temporis: The origins of the idea of scientific progress.

    PubMed

    Špelda, Daniel

    2016-10-01

    The article provides insight into the epistemological and anthropological aspect of the origination of the idea of scientific progress. It focuses on the relationship between individual's limited lifetime and the immensity of nature. The basic assumption is that the idea of scientific progress offers a solution of the epistemological problem stemming from the finding that there is no (teleological) coincidence between human cognitive abilities and the extent of nature. In order to facilitate the understanding of the origin of the idea of scientific progress, I propose distinction between the descriptive and prescriptive concepts of progress. While the descriptive notion of progress expresses the cumulative character of scientific knowledge and the superiority of the present over preceding generations, the prescriptive concept pertains to progressivist epistemology directing scientific research at the future development of knowledge. This article claims that the prevalent concept in Antiquity was the descriptive concept of scientific progress. The prescriptive notion had developed only in ancient astronomy. Early modern science was faced with similar issues as ancient astronomy - mainly the empirical finding related to the inexhaustible character of nature. Consequently to the introduction of the idea of progress, the progress of sciences became a purpose in itself - hence becoming infinite.

  9. Teaching animal science: education or indoctrination?

    PubMed

    Schillo, K K

    1997-04-01

    Traditional animal science curricula ignore sociological aspects of scientific research and therefore portray scientific knowledge as value-free. This view gives rise to a teaching method that involves imparting lists of scientific facts that are to be accepted by students without critical evaluation. This amounts to little more than indoctrination and misrepresents science as a system of knowledge. An alternative approach is based on the view that science is a creative human activity that reflects the values and biases of its practitioners. The goal of this approach is to teach students to think analytically and to make independent judgments about scientific claims. This requires a scientific literacy: an understanding of principal scientific theories, the nature of scientific research, and the relationship between science and society. To achieve this goal, a teacher must become less of an authority figure, whose role is to simply pass on information, and more of a facilitator, whose role is to promote questioning, exploration, and synthesis. This requires a learning community in which students feel comfortable taking risks and develop the courage to make and defend judgments. This teaching approach enhances the intellectual and ethical development of students, allowing them to serve themselves and society in responsible ways.

  10. Citizen Science

    EPA Pesticide Factsheets

    Citizen Science is a fast-growing field in which scientific investigations are conducted by volunteers, which have been successful in expanding scientific knowledge, raising environmental awareness, and leveraging change.

  11. Becoming Chemists through Game-Based Inquiry Learning: The Case of "Legends of Alkhimia"

    ERIC Educational Resources Information Center

    Chee, Yam San; Tan, Kim Chwee Daniel

    2012-01-01

    Traditional modes of chemistry education in schools focus on imparting chemistry knowledge to students via instruction. Consequently, students often acquire the mistaken understanding that scientific knowledge comprises a fixed body of "proven" facts. They fail to comprehend that the construction of scientific understanding is a human…

  12. Silviculture research: The intersection of science and art across generations

    Treesearch

    Theresa B. Jain

    2013-01-01

    A research silviculturist's work is firmly grounded in the scientific method to acquire knowledge on forest dynamics. They also integrate information from numerous sources to produce new knowledge not readily identified by single studies. Results and interpretation subsequently provide the scientific foundation for developing management decisions and strategies....

  13. An Evaluation of Text Mining Tools as Applied to Selected Scientific and Engineering Literature.

    ERIC Educational Resources Information Center

    Trybula, Walter J.; Wyllys, Ronald E.

    2000-01-01

    Addresses an approach to the discovery of scientific knowledge through an examination of data mining and text mining techniques. Presents the results of experiments that investigated knowledge acquisition from a selected set of technical documents by domain experts. (Contains 15 references.) (Author/LRW)

  14. Things You Should Not Believe in Science

    ERIC Educational Resources Information Center

    Taber, Keith S.

    2017-01-01

    This article considers the relationship between belief and learning science. It is argued that belief in science (as a process) needs to be distinguished from belief in particular scientific ideas and knowledge claims. Scientific knowledge is theoretical and provisional--something to be adopted for its utility, not as articles of faith. The…

  15. The California spotted owl: current state of knowledge

    Treesearch

    R.J. Gutiérrez; Patricia N. Manley; Peter A. Stine

    2017-01-01

    This conservation assessment represents a comprehensive review by scientists of the current scientific knowledge about the ecology, habitat use, population dynamics, and current threats to the viability of the California spotted owl (Strix occidentalis). It is based primarily on peer-reviewed published information with an emphasis on new scientific...

  16. Reprint 1987: Research Administration in a Time of Change

    ERIC Educational Resources Information Center

    Brandt, Edward N.

    2017-01-01

    The field of biomedical research has undergone several changes in recent years. These include increased funding, the rapid development in scientific knowledge which speeds up the obsolescence of equipment, facilities and knowledge and the growing complexity of scientific problems. Research administrators can take steps to address these changes…

  17. [Financing of the scientific publication and protection of the scientific knowledge].

    PubMed

    Oliveira Filho, Renato Santos de; Hochman, Bernardo; Nahas, Fabio Xerfan; Ferreira, Lydia Masako

    2005-01-01

    The main purpose of a study is its publication on a scientific journal. Research financing agencies are important institutions so that studies can be developed and published. The most important research financing agencies that are discussed in this article are: "Coordenação de Aperfeiçoamento de Pessoal de Nível Superior" (CAPES), "Conselho Nacional de Desenvolvimento Científico e Tecnológico" (CNPq) and "Fundação de Amparo à Pesquisa do Estado de São Paulo" (FAPESP). CAPES' activities can be grouped in four different strategy lines: a) it evaluates the stricto sensu, at the post-graduation level; b) it provides access and development of scientific research; c) it provides investment on the development of high qualified human resources in Brazil and abroad, and d) it promotes international scientific cooperation. Although CAPES does not support directly scientific publications, almost all actions of this agency contribute to the development of scientific research and publication. CNPq has two main purposes: financing researches and development of human resources. It provides the researchers with financial aid to scientific publication. The grants for editing were specifically created for supporting the national scientific and technical publications edited by Brazilians institutions or societies. CNPq can also support Congresses, Symposiums and similar short-term courses. The Plataforma Lattes is also a branch of CNPq on which the Curriculum Lattes is available. This site has the curriculum vitae of the scientific community and is of great value for researchers. FAPESP also finances journal publications, articles and books that bring up original results of studies made by researchers from the state of São Paulo. It finances, partially, the travel expenses of innovative papers authors in meetings within the country or abroad. Brazilian authors are increasing the number of international publications. Universities, research institutes, financing agencies and private companies are more and more concerned with knowledge property. Researchers must understand the need of knowledge property and the financing agencies have to consider the patents achieved as a criteria of evaluation of scientific production.

  18. Methodological Problems of Nanotechnoscience

    NASA Astrophysics Data System (ADS)

    Gorokhov, V. G.

    Recently, we have reported on the definitions of nanotechnology as a new type of NanoTechnoScience and on the nanotheory as a cluster of the different natural and engineering theories. Nanotechnology is not only a new type of scientific-engineering discipline, but it evolves also in a “nonclassical” way. Nanoontology or nano scientific world view has a function of the methodological orientation for the choice the theoretical means and methods toward a solution to the scientific and engineering problems. This allows to change from one explanation and scientific world view to another without any problems. Thus, nanotechnology is both a field of scientific knowledge and a sphere of engineering activity, in other words, NanoTechnoScience is similar to Systems Engineering as the analysis and design of large-scale, complex, man/machine systems but micro- and nanosystems. Nano systems engineering as well as Macro systems engineering includes not only systems design but also complex research. Design orientation has influence on the change of the priorities in the complex research and of the relation to the knowledge, not only to “the knowledge about something”, but also to the knowledge as the means of activity: from the beginning control and restructuring of matter at the nano-scale is a necessary element of nanoscience.

  19. Communication about scientific uncertainty in environmental nanoparticle research - a comparison of scientific literature and mass media

    NASA Astrophysics Data System (ADS)

    Heidmann, Ilona; Milde, Jutta

    2014-05-01

    The research about the fate and behavior of engineered nanoparticles in the environment is despite its wide applications still in the early stages. 'There is a high level of scientific uncertainty in nanoparticle research' is often stated in the scientific community. Knowledge about these uncertainties might be of interest to other scientists, experts and laymen. But how could these uncertainties be characterized and are they communicated within the scientific literature and the mass media? To answer these questions, the current state of scientific knowledge about scientific uncertainty through the example of environmental nanoparticle research was characterized and the communication of these uncertainties within the scientific literature is compared with its media coverage in the field of nanotechnologies. The scientific uncertainty within the field of environmental fate of nanoparticles is by method uncertainties and a general lack of data concerning the fate and effects of nanoparticles and their mechanisms in the environment, and by the uncertain transferability of results to the environmental system. In the scientific literature, scientific uncertainties, their sources, and consequences are mentioned with different foci and to a different extent. As expected, the authors in research papers focus on the certainty of specific results within their specific research question, whereas in review papers, the uncertainties due to a general lack of data are emphasized and the sources and consequences are discussed in a broader environmental context. In the mass media, nanotechnology is often framed as rather certain and positive aspects and benefits are emphasized. Although reporting about a new technology, only in one-third of the reports scientific uncertainties are mentioned. Scientific uncertainties are most often mentioned together with risk and they arise primarily from unknown harmful effects to human health. Environmental issues itself are seldom mentioned. Scientific uncertainties, sources, and consequences have been most widely discussed in the review papers. Research papers and mass media tend to emphasize more the certainty of their scientific results or the benefits of the nanotechnology applications. Neither the broad spectrum nor any specifications of uncertainties have been communicated. This indicates that there has been no effective dialogue over scientific uncertainty with the public so far.

  20. Scientific integrity memorandum

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-03-01

    U.S. President Barack Obama signed a presidential memorandum on 9 March to help restore scientific integrity in government decision making. The memorandum directs the White House Office of Science and Technology Policy to develop a strategy within 120 days that ensures that "the selection of scientists and technology professionals for science and technology positions in the executive branch is based on those individuals' scientific and technological knowledge, credentials, and experience; agencies make available to the public the scientific or technological findings or conclusions considered or relied upon in policy decisions; agencies use scientific and technological information that has been subject to well-established scientific processes such as peer review; and agencies have appropriate rules and procedures to ensure the integrity of the scientific process within the agency, including whistleblower protection."

  1. Communicating uncertainty: managing the inherent probabilistic character of hazard estimates

    NASA Astrophysics Data System (ADS)

    Albarello, Dario

    2013-04-01

    Science is much more fixing the limits of our knowledge about possible occurrences than the identification of any "truth". This is particularly true when scientific statements concern prediction of natural phenomena largely exceeding the laboratory scale as in the case of seismogenesis. In these cases, many scenarios about future occurrences result possible (plausible) and the contribution of scientific knowledge (based on the available knowledge about underlying processes or the phenomenological studies) mainly consists in attributing to each scenario a different level of likelihood (probability). In other terms, scientific predictions in the field of geosciences (hazard assessment) are inherently probabilistic. However, despite of this, many scientist (seismologists, etc.) in communicating their position in public debates tend to stress the " truth" of their statements against the fancy character of pseudo-scientific assertions: stronger is the opposition of science and pseudo-science, more hidden becomes the probabilistic character of scientific statements. The problem arises when this kind of "probabilistic" knowledge becomes the basis of any political action (e.g., to impose expensive form of risk reducing activities): in these cases the lack of any definitive "truth" requires a direct assumption of responsibility by the relevant decider (being the single citizen or the legitimate expression of a larger community) to choose among several possibilities (however characterized by different levels of likelihood). In many cases, this can be uncomfortable and strong is the attitude to delegate to the scientific counterpart the responsibility of these decisions. This "transfer" from the genuine political field to an improper scientific context is also facilitated by the lack of a diffuse culture of "probability" outside the scientific community (and in many cases inside also). This is partially the effect of the generalized adoption (by media and scientific communicators) of a view of probability (the "frequentist" view) that is useful in scientific practice but is very far from the common use of uncertain reasoning (that is nearer to the "epistemic" view). Considering probability a sort of physical measure inherent in the process under examination (like an acceleration value) instead of a degree of belief (rationally inferred) about any statement concerning future occurrences tends to hide the importance of a shared responsibility about relevant choices that involves scientists and citizens in the same extent.

  2. Development and Implementation of an Integrated Science Course for Elementary Eduation Majors

    NASA Astrophysics Data System (ADS)

    Gunter, Mickey E.; Gammon, Steven D.; Kearney, Robert J.; Waller, Brenda E.; Oliver, David J.

    1997-02-01

    Currently the scientific community is trying to increase the general populationapos;s knowledge of science. These efforts stem from the fact that the citizenry needs a better understanding of scientific knowledge to make informed decisions on many issues of current concern. The problem of scientific illiteracy begins in grade school and can be traced to inadequate exposure to science and scientific thinking during the preparation of K - 8 teachers. Typically preservice elementary teachers are required to take only one or two disconnected science courses to obtain their teaching certificates. Also, introductory science courses are often large and impersonal, with the result that while students pass the courses, they may learn very little and retain even less.

  3. How the Elderly Can Use Scientific Knowledge to Solve Problems While Designing Toys: A Retrospective Analysis of the Design of a Working UFO

    ERIC Educational Resources Information Center

    Chen, Mei-Yung; Hong, Jon-Chao; Hwang, Ming-Yueh; Wong, Wan-Tzu

    2013-01-01

    The venerable aphorism "an old dog cannot learn new tricks" implies that the elderly rarely learn anything new--in particular, scientific knowledge. On the basis of "learning by doing," the present study emphasized knowledge application (KA) as elderly subjects collaborated on the design of a toy flying saucer (UFO). Three…

  4. US Urban Elementary Teachers' Knowledge and Practices in Teaching Science to English Language Learners: Results from the First Year of a Professional Development Intervention

    ERIC Educational Resources Information Center

    Santau, Alexandra O.; Secada, Walter; Maerten-Rivera, Jaime; Cone, Neporcha; Lee, Okhee

    2010-01-01

    The study examined US elementary teachers' knowledge and practices in four key domains of science instruction with English language learning (ELL) students. The four domains included: (1) teachers' knowledge of science content, (2) teaching practices to promote scientific understanding, (3) teaching practices to promote scientific inquiry, and (4)…

  5. From the Horse's Mouth: What Scientists Say about Scientific Investigation and Scientific Knowledge

    ERIC Educational Resources Information Center

    Wong, Siu Ling; Hodson, Derek

    2009-01-01

    This study sought to identify prominent features of the nature of science (NOS) embedded in authentic scientific inquiry. Thirteen well-established scientists from different parts of the world, working in experimental or theoretical research, in both traditional fields such as astrophysics and rapidly growing research fields such as molecular…

  6. Integrating Scientific Argumentation to Improve Undergraduate Writing and Learning in a Global Environmental Change Course

    ERIC Educational Resources Information Center

    Koffman, Bess G.; Kreutz,Karl J.; Trenbath, Kim

    2017-01-01

    We present a strategy for using scientific argumentation in an early undergraduate laboratory course to teach disciplinary writing practices and to promote critical thinking, knowledge transformation, and understanding of the scientific method. The approach combines targeted writing instruction; data analysis and interpretation; formulation of a…

  7. Thai Pre-Service Science Teachers' Conceptions of the Nature of Science

    ERIC Educational Resources Information Center

    Buaraphan, Khajornsak; Sung-ong, Sunun

    2009-01-01

    The conceptions of the nature of science (NOS), particularly scientific knowledge, scientific method, scientists' work, and scientific enterprise, of 113 Thai pre-service science teachers were was captured by the Myths of Science Questionnaire (MOSQ) in the first semester of the 2008 academic year. The data was quantitatively and qualitatively…

  8. Thai In-Service Science Teachers' Conceptions of the Nature of Science

    ERIC Educational Resources Information Center

    Buaraphan, Khajornsak

    2009-01-01

    Understanding of the Nature of Science (NOS) serves as one of the desirable characteristics of science teachers. The current study attempted to explore 101 Thai in-service science teachers' conceptions of the NOS, particularly scientific knowledge, the scientific method, scientists' work, and scientific enterprise, by using the Myths of Science…

  9. [The representation of scientific research through a poster].

    PubMed

    Dupin, Cécile-Marie

    2013-12-01

    The poster is a medium of scientific communication. When presented in public, it optimises the value of an original research approach. The poster sessions are devoted to one-to-one exchanges with peers on the subject of the research. The poster can help to integrate scientific knowledge into the nursing decision-making process.

  10. Addressing the Dynamics of Science in Curricular Reform for Scientific Literacy: The Case of Genomics

    ERIC Educational Resources Information Center

    van Eijck, Michiel

    2010-01-01

    Science education reform must anticipate the scientific literacy required by the next generation of citizens. Particularly, this counts for rapidly emerging and evolving scientific disciplines such as genomics. Taking this discipline as a case, such anticipation is becoming increasingly problematic in today's knowledge societies in which the…

  11. Useful Research for Early Childhood Caregivers

    ERIC Educational Resources Information Center

    Schweinhart, Larry

    2008-01-01

    Scientific research is the systematic acquisition of knowledge by the scientific method. The scientific method begins with an idea, a hypothesis, about how things work. Next comes the systematic collection of evidence and the analysis of the evidence to see if it confirms or disconfirms the hypothesis. The more evidence there is that confirms a…

  12. Integrating Socio-Scientific Issues to Enhance the Bioethical Decision-Making Skills of High School Students

    ERIC Educational Resources Information Center

    Gutierez, Sally B.

    2015-01-01

    Scientific literacy has been focused on the construction of students' knowledge to use appropriate and meaningful concepts, critically think, and make balanced, well-informed decisions relevant to their lives. This study presents the effects of integrating socio-scientific issues to enhance the bioethical decision-making skills of biology…

  13. Engaging in Vocabulary Learning in Science: The Promise of Multimodal Instruction

    ERIC Educational Resources Information Center

    Townsend, Dianna; Brock, Cynthia; Morrison, Jennifer D.

    2018-01-01

    To a science 'outsider', science language often appears unnecessarily technical and dense. However, scientific language is typically used with the goal of being concise and precise, which allows those who regularly participate in scientific discourse communities to learn from each other and build upon existing scientific knowledge. One essential…

  14. The Effects of STEM PBL on Students' Mathematical and Scientific Vocabulary Knowledge

    ERIC Educational Resources Information Center

    Bilgin, Ali; Boedeker, Peter; Capraro, Robert M.; Capraro, Mary M.

    2015-01-01

    Vocabulary is at the surface level of language usage; thus, students need to develop mathematical and scientific vocabulary to be able to explicitly communicate their mathematical and scientific reasoning with others. The National Council of Teachers of Mathematics (NCTM) and the National Science Teachers Association (NSTA) have both created…

  15. Science Teacher Candidates' Perceptions about Roles and Nature of Scientific Models

    ERIC Educational Resources Information Center

    Yenilmez Turkoglu, Ayse; Oztekin, Ceren

    2016-01-01

    Background: Scientific models have important roles in science and science education. For scientists, they provide a means for generating new knowledge or function as an accessible summary of scientific studies. In science education, on the other hand, they are accessible representations of abstract concepts, and are also organizational frameworks…

  16. Logical Thinking Abilities among Form 4 Students in the Interior Division of Sabah, Malaysia

    ERIC Educational Resources Information Center

    Fah, Lay Yoon

    2009-01-01

    The science curriculum in Malaysia emphasizes the acquisition of scientific skills, thinking skills, and the inculcation of scientific attitudes and noble values. Besides that, the acquisition of scientific and technological knowledge and its application to the natural phenomena and students' daily experiences are also equally emphasized. The…

  17. Exploring the Changes in Students' Understanding of the Scientific Method Using Word Associations

    ERIC Educational Resources Information Center

    Gulacar, Ozcan; Sinan, Olcay; Bowman, Charles R.; Yildirim, Yetkin

    2015-01-01

    A study is presented that explores how students' knowledge structures, as related to the scientific method, compare at different student ages. A word association test comprised of ten total stimulus words, among them "experiment," "science fair," and "hypothesis," is used to probe the students' knowledge structures.…

  18. Bayesian Statistics in Educational Research: A Look at the Current State of Affairs

    ERIC Educational Resources Information Center

    König, Christoph; van de Schoot, Rens

    2018-01-01

    The ability of a scientific discipline to build cumulative knowledge depends on its predominant method of data analysis. A steady accumulation of knowledge requires approaches which allow researchers to consider results from comparable prior research. Bayesian statistics is especially relevant for establishing a cumulative scientific discipline,…

  19. Development of an Empirically Based Questionnaire to Investigate Young Students' Ideas about Nature of Science

    ERIC Educational Resources Information Center

    Chen, Sufen; Chang, Wen-Hua; Lieu, Sang-Chong; Kao, Huey-Lien; Huang, Mao-Tsai; Lin, Shu-Fen

    2013-01-01

    This study developed an empirically based questionnaire to monitor young learners' conceptions of nature of science (NOS). The questionnaire, entitled Students' Ideas about Nature of Science (SINOS), measured views on theory-ladenness, use of creativity and imagination, tentativeness of scientific knowledge, durability of scientific knowledge,…

  20. Measuring the Disparities between Biology Undergraduates' Perceptions and Their Actual Knowledge of Scientific Literature with Clickers

    ERIC Educational Resources Information Center

    Bandyopadhyay, Aditi

    2013-01-01

    This article demonstrates an innovative method used to determine the need for information literacy among science undergraduate students at Adelphi University. Using clickers technology, this study measured the disconnect between biology undergraduates' perceived and actual knowledge of scientific literature. The quantitative data collected in the…

  1. Resistances to Scientific Knowledge Production of Comparative Measurements of Dropout and Completion in European Higher Education

    ERIC Educational Resources Information Center

    Carlhed, Carina

    2017-01-01

    The article is a critical sociological analysis of current transnational practices on creating comparable measurements of dropout and completion in higher education and the consequences for the conditions of scientific knowledge production on the topic. The analysis revolves around questions of epistemological, methodological and symbolic types…

  2. ScienceDesk Project Overview

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Norvig, Peter (Technical Monitor)

    2000-01-01

    NASA's ScienceDesk Project at the Ames Research Center is responsible for scientific knowledge management which includes ensuring the capture, preservation, and traceability of scientific knowledge. Other responsibilities include: 1) Maintaining uniform information access which is achieved through intelligent indexing and visualization, 2) Collaborating both asynchronous and synchronous science teamwork, 3) Monitoring and controlling semi-autonomous remote experimentation.

  3. Lexical Cohesion and Specialized Knowledge in Science and Popular Science Texts.

    ERIC Educational Resources Information Center

    Myers, Greg

    1991-01-01

    Examines cohesion in the introductions to some scientific articles and compares the patterns to those from popularizations. Discusses a computational model of cohesion. Argues that readers of scientific articles must have a knowledge of lexical relations to see the implicit cohesion, whereas readers of popularizations must see the cohesive…

  4. From Comparison between Scientists to Gaining Cultural Scientific Knowledge: Leonardo and Galileo

    ERIC Educational Resources Information Center

    Galili, Igal

    2016-01-01

    Physics textbooks often present items of disciplinary knowledge in a sequential order of topics of the theory under instruction. Such presentation is usually univocal, that is, isolated from alternative claims and contributions regarding the subject matter in the pertinent scientific discourse. We argue that comparing and contrasting the…

  5. Contrasting Scientific Knowledge with Knowledge from the Lifeworld: The Dialogic Inclusion Contract

    ERIC Educational Resources Information Center

    Padros, Maria; Garcia, Rocio; de Mello, Roseli; Molina, Silvia

    2011-01-01

    The Dialogic Inclusion Contract (DIC) consists in an agreement between the scientific community and social agents to define successful actions aimed at overcoming social exclusion in highly underprivileged areas. Taking the case of a Spanish neighborhood that is generating important transformations, this article explores the process of defining…

  6. Undergraduates' Ability to Recognize Correlational and Causal Language before and after Explicit Instruction

    ERIC Educational Resources Information Center

    Mueller, Jon F.; Coon, Heather M.

    2013-01-01

    The ability to distinguish between correlational and causal claims is core knowledge for scientific literacy. News reports of scientific research prominently feature these claims. Thus, this knowledge has significant real-world application, and distinguishing among claims is critical to making sense of the reported research. We constructed an…

  7. The authority of complexity.

    PubMed

    Stehr, N; Grundmann, R

    2001-06-01

    The assertion about the unique 'complexity' or the peculiarly intricate character of social phenomena has, at least within sociology, a long, venerable and virtually uncontested tradition. At the turn of the last century, classical social theorists, for example, Georg Simmel and Emile Durkheim, made prominent and repeated reference to this attribute of the subject matter of sociology and the degree to which it complicates, even inhibits the develop and application of social scientific knowledge. Our paper explores the origins, the basis and the consequences of this assertion and asks in particular whether the classic complexity assertion still deserves to be invoked in analyses that ask about the production and the utilization of social scientific knowledge in modern society. We present John Maynard Keynes' economic theory and its practical applications as an illustration. We conclude that the practical value of social scientific knowledge is not dependent on a faithful, in the sense of complete, representation of social reality. Instead, social scientific knowledge that wants to optimize its practicality has to attend and attach itself to elements of social situations that can be altered or are actionable.

  8. Scientific Literacy and Student Attitudes: Perspectives from PISA 2006 science

    NASA Astrophysics Data System (ADS)

    Bybee, Rodger; McCrae, Barry

    2011-01-01

    International assessments provide important knowledge about science education and help inform decisions about policies, programmes, and practices in participating countries. In 2006, science was the primary domain for the Programme for International Student Assessment (PISA), supported by the Organisation for Economic Cooperation and Development (OECD) and conducted by the Australian Council for Educational Research (ACER). Compared to the school curriculum orientation of Trends in International Math and Science Study (TIMSS), PISA provides a perspective that emphasises the application of knowledge to science and technology-related life situations. The orientation of PISA includes both knowledge and attitudes as these contribute to students' competencies that are central to scientific literacy. In addition to students' knowledge and competencies, the 2006 PISA survey gathered data on students' interest in science, support for scientific enquiry, and responsibility towards resources and environments. The survey used both a non-contextualised student questionnaire and contextualised questions. The latter is an innovative approach which embedded attitudinal questions at the conclusion of about two-thirds of the test units. The results presented in this article make connections between students' attitudes and interests in science and scientific literacy.

  9. Translating Knowledge: The role of Shared Learning in Bridging the Science-Application Divide

    NASA Astrophysics Data System (ADS)

    Moench, M.

    2014-12-01

    As the organizers of this session state: "Understanding and managing our future relation with the Earth requires research and knowledge spanning diverse fields, and integrated, societally-relevant science that is geared toward solutions." In most cases, however, integration is weak and scientific outputs do not match decision maker requirements. As a result, while scientific results may be highly relevant to society that relevance is operationally far from clear. This paper explores the use of shared learning processes to bridge the gap between the evolving body of scientific information on climate change and its relevance for resilience planning in cities across Asia. Examples related to understanding uncertainty, the evolution of scientific knowledge from different sources, and data extraction and presentation are given using experiences generated over five years of work as part of the Rockefeller Foundation supported Asian Cities Climate Change Resilience Network and other programs. Results suggest that processes supporting effective translation of knowledge between different sources and different applications are essential for the identification of solutions that respond to the dynamics and uncertainties inherent in global change processes.

  10. Teaching to Learn and Learning to Teach

    NASA Astrophysics Data System (ADS)

    Bao, Lei

    2010-02-01

    In STEM education, widely accepted teaching goals include not only the development of solid content knowledge but also the development of general scientific reasoning abilities that will enable students to successfully handle open-ended real-world tasks in future careers and design their own experiments to solve scientific, engineering, and social problems. Traditionally, it is often expected that consistent and rigorous content learning will help develop students' general reasoning abilities; however, our research has shown that the content-rich style of STEM education made little impact on the development of students' scientific reasoning abilities. Therefore, how to train teachers who can help students develop both solid content knowledge and adequate scientific reasoning skills has become an important question for educators and researchers. Research has also suggested that inquiry based science instruction can promote scientific reasoning abilities and that the scientific reasoning skills of instructors can also significantly affect their ability to use inquiry methods effectively in science courses. In this talk, I will compare the features of the teacher preparation programs in China and USA and discuss the possible strength and weakness of the education systems and programs in the two countries. Understanding the different education settings and the outcome can help researchers in both countries to learn from each other's success and to avoid known problems. Examples of current research that may foster such knowledge development among researchers from both countries will be discussed. )

  11. Science ethics education part II: changes in attitude toward scientific fraud among medical researchers after a short course in science ethics.

    PubMed

    Vuckovic-Dekic, L; Gavrilovic, D; Kezic, I; Bogdanovic, G; Brkic, S

    2012-01-01

    To determine the impact of the short science ethics courses on the knowledge of basic principles of responsible conduct of research (RCR), and on the attitude toward scientific fraud among young biomedical researchers. A total of 361 attendees of the course on science ethics answered a specially designed anonymous multiple- choice questionnaire before and after a one-day course in science ethics. The educational course consisted of 10 lectures: 1) Good scientific practice - basic principles; 2) Publication ethics; 3) Scientific fraud - fabrication, falsification, plagiarism; 4) Conflict of interests; 5) Underpublishing; 6) Mentorship; 7) Authorship; 8) Coauthorship; 9) False authorship; 10) Good scientific practice - ethical codex of science. In comparison to their answers before the course, a significantly higher (p<0.001) number of students qualified their knowledge of science ethics as sufficient after the course was completed. That the wrongdoers deserve severe punishment for all types of scientific fraud, including false authorship, thought significantly (p<0.001) more attendees than before the course, while notably fewer attendees (p<0.001) would give or accept undeserved authorship Even a short course in science ethics had a great impact on the attendees, enlarging their knowledge of responsible conduct of research and changing their previous, somewhat opportunistic, behavior regarding the reluctance to react publicly and punish the wrongdoers.

  12. The use of a four-tier wave diagnostic instrument to measure the scientific literacy among students in SMA Negeri 2 Karanganyar

    NASA Astrophysics Data System (ADS)

    Krisdiana, A.; Aminah, N. S.; Nurosyid, F.

    2018-03-01

    This study aims to investigate the scientific literacy among 12th grade science students in SMA Negeri 2 Karanganyar. The instrument used is a four-tier wave diagnostic instrument. This instrument was originally used to diagnose students’ conceptions about nature and propagation of waves. This study using quantitative descriptive method. The diagnostic results based on dominant students’ answers show the lack of knowledge percentage of 14.3%-77.1%, alternative conceptions percentage 0%-60%, scientific conceptions percentage 0%-65.7%. Lack of knowledge indicated when there is doubt about at least one tier of the student’s answer. The results of the research shows that the students’ dominant scientific literacy is in the nominal literacy category with the percentage of 22.9% - 91.4%, the functional literacy with the percentage 2.86% - 28.6%, and the conceptual/procedural literacy category with the percentage 0% - 65.7%. Description level of nominal literacy in context of the current study is student have alternative conceptions and lack of knowledge. Student recognize the scientific terms, but is not capable to justify this term.

  13. Developing instruments concerning scientific epistemic beliefs and goal orientations in learning science: a validation study

    NASA Astrophysics Data System (ADS)

    Lin, Tzung-Jin; Tsai, Chin-Chung

    2017-11-01

    The purpose of this study was to develop and validate two survey instruments to evaluate high school students' scientific epistemic beliefs and goal orientations in learning science. The initial relationships between the sampled students' scientific epistemic beliefs and goal orientations in learning science were also investigated. A final valid sample of 600 volunteer Taiwanese high school students participated in this survey by responding to the Scientific Epistemic Beliefs Instrument (SEBI) and the Goal Orientations in Learning Science Instrument (GOLSI). Through both exploratory and confirmatory factor analyses, the SEBI and GOLSI were proven to be valid and reliable for assessing the participants' scientific epistemic beliefs and goal orientations in learning science. The path analysis results indicated that, by and large, the students with more sophisticated epistemic beliefs in various dimensions such as Development of Knowledge, Justification for Knowing, and Purpose of Knowing tended to adopt both Mastery-approach and Mastery-avoidance goals. Some interesting results were also found. For example, the students tended to set a learning goal to outperform others or merely demonstrate competence (Performance-approach) if they had more informed epistemic beliefs in the dimensions of Multiplicity of Knowledge, Uncertainty of Knowledge, and Purpose of Knowing.

  14. The Power of Storytelling: A Native Hawaiian Approach to Science Communication

    NASA Astrophysics Data System (ADS)

    Frank, K. L.

    2016-12-01

    Generational assimilation of observational data enabled Native Hawaiians to preserve a holistic understanding of the connectivity, structure and function - from mountain to sea - within their island ecosystems. Their intimate understandings of the geographic and temporal variability in winds, rains, and currents, and how these factors governed the extent and distribution of biodiversity were perpetuated through stories, songs and chants. Many of these oral histories - which conveyed information via anthropomorphized characters in entertaining and engaging plots - preserved the scientific integrity of traditional phenomenological observations and remain shockingly consistent with contemporary biogeochemical and geophysical observations. These indigenous methods of communicating scientific knowledge are clear models for contemporary best practices in geoscience communication. Storytelling is a tried and true mechanism that both engages and teaches diverse audiences of all ages, ethnicities and skill levels. Scientific storytelling - which can either be examinations of indigenous stories through scientific lenses, or generations of new stories based on scientific observation - enables multiple layers of meaning and levels of knowledge acquisition that bridge cultural and historical place-based knowledge with contemporary knowledge systems. Here, I will share my journey of optimizing the engagement of Native Hawaiian communities (students, land managers, stewards, practitioners, etc…) with my biogeochemical research on a Native Hawaiian coastal estuarine environment (Héeia Fishpond). I will speak about the importance and effectiveness of disseminating research in culturally accessible formats by framing research in the context of traditional knowledge to help elevate the perception of "science" in the Hawaiian community.

  15. What if Indigenous Knowledge Contradicts Accepted Scientific Findings?--The Hidden Agenda: Respect, Caring and Passion towards Aboriginal Research in the Context of Applying Western Academic Rules

    ERIC Educational Resources Information Center

    Witt, Norbert

    2007-01-01

    The statement in the title, what if Indigenous Knowledge contradicts accepted scientific findings (Fowler, 2000), is an expression of the dilemma people who research Indigenous Knowledge think they find themselves in when they are confronted with different interpretations of what it means to be human, or, as I may summarize it, with different…

  16. The Relationship of Science Knowledge, Attitude and Decision Making on Socio-Scientific Issues: The Case Study of Students' Debates on a Nuclear Power Plant in Korea

    ERIC Educational Resources Information Center

    Jho, Hunkoog; Yoon, Hye-Gyoung; Kim, Mijung

    2014-01-01

    The purpose of this study was to investigate the relationship of students' understanding of science knowledge, attitude and decision making on socio-scientific issues (SSI), especially on the issues of nuclear energy in Korea. SSI-focused instructions were developed to encourage students to understand and reflect on knowledge, attitude and…

  17. Secondary School Congress on Environment and Sustainable Development (CEMADS): an efficient tool to improve student knowledge on scientific research and communication.

    NASA Astrophysics Data System (ADS)

    Jarque, Pilar; García-Paz, Maria; Olivares, Conchi; Fernández-Boán, Isabel

    2013-04-01

    Secondary school students in Spain commonly show little knowledge on the way science is produced and diffused. To familiarize students with the scientific method and scientific communication, we have simulated a scientific congress on Earth Sciences at the secondary school level. Since 2002, the congress takes place yearly and it is attended by teachers and students from high schools of our hometown and beyond. Since its onset, the project follows several phases: (i) In the first phase (First Call), 14- to 18-year-old students are invited to register by means of brochures containing basic information on the congress (terms, conditions and main topics). (ii) Teachers from each participating school explain students the basis of scientific posters and oral presentations and encourage them to participate in the congress. (iii) Students prepare presentations describing the results of small scientific experiments carried out for this purpose and present them to the local organizing committee. (iv) The committee then reviews all presentations and select the best ones for public exposition. (v) In the final phase, the congress takes place. It includes registration, opening ceremony attended by educational authorities, plenary conference delivered by an outstanding local scientist, coffee break, oral presentations and closing ceremony. The project lasts for one day. It has been attended by an average of 250 students and teachers from 4 schools, and has been widely reported in the local media. Post-congress evaluation shows that the project is highly motivating for students and it improves student knowledge on scientific research and communication.

  18. Mismatches between 'scientific' and 'non-scientific' ways of knowing and their contributions to public understanding of science.

    PubMed

    Mikulak, Anna

    2011-06-01

    As differentiation within scientific disciplines increases, so does differentiation between the sciences and other ways of knowing. This distancing between 'scientific' and 'non-scientific' cultures reflects differences in what are considered valid and reliable approaches to acquiring knowledge and has played a major role in recent science-oriented controversies. Scientists' reluctance to actively engage in science communication, coupled with journalists' reliance on the norms of balance, conflict, and human interest in covering scientific issues, have combined to exacerbate public mistrust of science on issues like the measles-mumps-rubella (MMR) vaccine. The failure of effective communications between scientists and non-scientists has hindered the progress of both effective science and effective policy. In order to better bridge the gap between the 'scientific' and 'non-scientific' cultures, renewed efforts must be made to encourage substantive public engagement, with the ultimate goal of facilitating an open, democratic policy-making process.

  19. Modelling Scientific Argumentation in the Classroom : Teachers perception and practice

    NASA Astrophysics Data System (ADS)

    Probosari, R. M.; Sajidan; Suranto; Prayitno, B. A.; Widyastuti, F.

    2017-02-01

    The purposes of this study were to investigate teacher’s perception about scientific argumentation and how they practice it in their classroom. Thirty biology teachers in high school participated in this study and illustrated their perception of scientific argumentation through a questionnaire. This survey research was developed to measure teachers’ understanding of scientific argumentation, what they know about scientific argumentation, the differentiation between argument and reasoning, how they plan teaching strategies in order to make students’ scientific argumentation better and the obstacles in teaching scientific argumentation. The result conclude that generally, teachers modified various representation to accommodate student’s active participation, but most of them assume that argument and reasoning are similar. Less motivation, tools and limited science’s knowledge were considered as obstacles in teaching argumentation. The findings can be helpful to improving students’ abilities of doing scientific argumentation as a part of inquiry.

  20. Thai and Bangladeshi In-Service Science Teachers' Conceptions of Nature of Science: A Comparative Study

    ERIC Educational Resources Information Center

    Buaraphan, Khajornsak; Abedin Forhad, Ziaul

    2014-01-01

    Understanding of nature of science (NOS) serves as one of the desirable characteristics of science teachers. The current study explored 55 Thai and 110 Bangladeshi in-service secondary science teachers' conceptions of NOS regarding scientific knowledge, scientific method, scientists' work, and scientific enterprise, by using the Myths of Science…

  1. Examining Curriculum Related Progress Using a Context-Based Test Instrument--A Comparison of Estonian Grade 10 and 11 Students

    ERIC Educational Resources Information Center

    Soobard, R.; Rannikmae, M.

    2015-01-01

    This study was undertaken to investigate the progress in operational scientific literacy skills through demonstrating cognition associated with undertaking scientific processes. Scientific literacy is taken here to mean utilising science knowledge and skills, particularly with relevance to creative problem solving and making reasoned decisions in…

  2. Nutrition Labelling: Applying Biological Concepts and Reasoning to Socio-Scientific Issues

    ERIC Educational Resources Information Center

    Lee, Yeung Chung

    2016-01-01

    Nutrition labelling, which helps consumers to make informed choices, can be used as both a context and a vehicle for students to consolidate and apply their knowledge of food and nutrition to improve health. It also facilitates students' ability to negotiate socio-scientific issues from scientific and other perspectives. This article reports a…

  3. Lexical Errors in Second Language Scientific Writing: Some Conceptual Implications

    ERIC Educational Resources Information Center

    Carrió Pastor, María Luisa; Mestre-Mestre, Eva María

    2014-01-01

    Nowadays, scientific writers are required not only a thorough knowledge of their subject field, but also a sound command of English as a lingua franca. In this paper, the lexical errors produced in scientific texts written in English by non-native researchers are identified to propose a classification of the categories they contain. This study…

  4. Incorporating Scientific Argumentation into Inquiry-Based Activities with Online Personally Seeded Discussions

    ERIC Educational Resources Information Center

    Sampson, Victor; Clark, Douglas

    2007-01-01

    An explicit goal of the current reform movement in science education is to promote scientific literacy in the United States. One way to encourage scientific literacy is to help students develop a better understanding of science subject matter, that is, the declarative knowledge specifically associated with the physical, life, and earth sciences.…

  5. A Model for Enabling an Effective Outcome-Oriented Communication between the Scientific and Educational Communities

    ERIC Educational Resources Information Center

    Ledley, Tamara Shapiro; Taber, Michael R.; Lynds, Susan; Domenico, Ben; Dahlman, LuAnn

    2012-01-01

    Traditionally, there has been a large gap between the scientific and educational communities in terms of communication, which hinders the transfer of new scientific knowledge to teachers and students and the understanding of each other's needs and capabilities. In this paper, we describe a workshop model we have developed to facilitate…

  6. The Scientific Method through the Lens of Neuroscience; From Willis to Broad

    ERIC Educational Resources Information Center

    Burns, J. Lanier

    2009-01-01

    In an age of unprecedented scientific achievement, I argue that the neurosciences are poised to transform our perceptions about life on earth, and that collaboration is needed to exploit a vast body of knowledge for humanity's benefit. The scientific method distinguishes science from the humanities and religion. It has evolved into a professional,…

  7. "Model-Based Reasoning Is Not a Simple Thing": Investigating Enactment of Modeling in Five High School Biology Classrooms

    ERIC Educational Resources Information Center

    Gaytan, Candice Renee

    2017-01-01

    Modeling is an important scientific practice through which scientists generate, evaluate, and revise scientific knowledge, and it can be translated into science classrooms as a means for engaging students in authentic scientific practice. Much of the research investigating modeling in classrooms focuses on student learning, leaving a gap in…

  8. Computational Scientific Inquiry with Virtual Worlds and Agent-Based Models: New Ways of Doing Science to Learn Science

    ERIC Educational Resources Information Center

    Jacobson, Michael J.; Taylor, Charlotte E.; Richards, Deborah

    2016-01-01

    In this paper, we propose computational scientific inquiry (CSI) as an innovative model for learning important scientific knowledge and new practices for "doing" science. This approach involves the use of a "game-like" virtual world for students to experience virtual biological fieldwork in conjunction with using an agent-based…

  9. The Structure of Scientific Arguments by Secondary Science Teachers: Comparison of Experimental and Historical Science Topics

    ERIC Educational Resources Information Center

    Gray, Ron; Kang, Nam-Hwa

    2014-01-01

    Just as scientific knowledge is constructed using distinct modes of inquiry (e.g. experimental or historical), arguments constructed during science instruction may vary depending on the mode of inquiry underlying the topic. The purpose of this study was to examine whether and how secondary science teachers construct scientific arguments during…

  10. Scientific Opinion on Risk Assessment of Synthetic Biology.

    PubMed

    Epstein, Michelle M; Vermeire, Theo

    2016-08-01

    In 2013, three Scientific Committees of the European Commission (EC) drafted Scientific Opinions on synthetic biology that provide an operational definition and address risk assessment methodology, safety aspects, environmental risks, knowledge gaps, and research priorities. These Opinions contribute to the international discussions on the risk governance for synthetic biology developments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A Comparison of Bilingual Education and Generalist Teachers' Approaches to Scientific Biliteracy

    ERIC Educational Resources Information Center

    Garza, Esther

    2010-01-01

    The purpose of this study was to determine if educators were capitalizing on bilingual learners. use of their biliterate abilities to acquire scientific meaning and discourse that would formulate a scientific biliterate identity. Mixed methods were used to explore teachers. use of biliteracy and Funds of Knowledge (Moll, L., Amanti, C., Neff, D.,…

  12. How Close Student Teachers' Educational Philosophies and Their Scientific Thinking Processes in Science Education

    ERIC Educational Resources Information Center

    Yurumezoglu, Kemal; Oguz, Ayse

    2007-01-01

    For being guidance, science teachers should be framed by strong content knowledge to construct scientific thinking process as a scaffold. The aim of this research was to look at student teachers' scientific thinking processes. Then, the results compared with their educational philosophy. During the study, two different instruments were used. For…

  13. Instructional scientific humor in the secondary classroom

    NASA Astrophysics Data System (ADS)

    Wizner, Francine

    This study is an examination of the manner in which educators employ scientific content humor and how that humor is perceived by their students. Content humor is a useful strategy in drawing the attention of students and improving their receptivity toward scientific information. It is also a useful tool in combating the growing distractions of the electronic classroom. Previous studies have found that humor has a positive effect on knowledge, memory, and understanding. However, few studies have been conducted below the undergraduate level and mainly quantitative measures of student recall have been used to measure learning. This study employed multiple data sources to determine how two secondary biology teachers used humor in order to explain scientific concepts and how their students perceived their teachers' use of scientific instructional humor. Evidence of student humor reception was collected from four students in each of the two classes. All of the scientific instructional humor used in the studied classrooms was cognitive in nature, varying among factual, procedural, conceptual, and metacognitive knowledge. Teachers tended to use dialogic forms of humor. Their scientific humor reflected everyday experiences, presented queries, poked fun at authority, and asked students to search out new perspectives and perform thought experiments. Teachers were the primary actors in performing the humorous events. The events were sometimes physical exaggerations of words or drawings, and they occurred for the purpose of establishing rapport or having students make connections between scientific concepts and prior knowledge. Student perceptions were that teachers did employ humor toward instructional objectives that helped their learning. Helping students become critical thinkers is a trademark of science teachers. Science teachers who take the risk of adopting some attributes of comedians may earn the reward of imparting behaviors on their students like critical thinking skills, the ability to explore questions in a detached manner, and the ability to search out new perspectives. The results of this research may encourage additional study on how secondary science teachers use humor to explain scientific concepts and may also encourage science teachers to investigate novel ways that instructional humor can be used in their classrooms. Keywords: Scientific Humor, Instructional Humor, Secondary, Biology.

  14. Optimize scientific communication skills on work and energy concept with implementation of interactive conceptual instruction and multi representation approach

    NASA Astrophysics Data System (ADS)

    Patriot, E. A.; Suhandi, A.; Chandra, D. T.

    2018-05-01

    The ultimate goal of learning in the curriculum 2013 is that learning must improve and balance between soft skills and hard skills of learners. In addition to the knowledge aspect, one of the other skills to be trained in the learning process using a scientific approach is communication skills. This study aims to get an overview of the implementation of interactive conceptual instruction with multi representation to optimize the achievement of students’ scientific communication skills on work and energy concept. The scientific communication skills contains the sub-skills were searching the information, scientific writing, group discussion and knowledge presentation. This study was descriptive research with observation method. Subjects in this study were 35 students of class X in Senior High School at Sumedang. The results indicate an achievement of optimal scientific communication skills. The greatest achievement of KKI based on observation is at fourth meeting of KKI-3, which is a sub-skill of resume writing of 89%. Allmost students responded positively to the implication of interactive conceptual instruction with multi representation approach. It can be concluded that the implication of interactive conceptual instruction with multi representation approach can optimize the achievement of students’ scientific communication skill on work and energy concept.

  15. Climate Change, Capitalism, and Citizen Science: Developing a dialectical framework for examining volunteer participation in climate change research

    NASA Astrophysics Data System (ADS)

    Wixom, Joshua A.

    This dissertation discusses the complex social relations that link citizen science, scientific literacy, and the dissemination of information to the public. Scientific information is not produced in value-neutral settings by people removed from their social context. Instead, science is a social pursuit and the scientist's social context is embedded in the knowledge produced. Additionally, the dissemination of this information via numerous media outlets is filtered through institutional lenses and subject to journalistic norms. As a result, the general public must be able to recognize the inherent biases in this information. Yet, the rates of scientific literacy in the U.S. are quite low, which suggests that people may not be capable of fully understanding the biases present. Furthermore, people tend to seek out sources that reinforce their values and personal perspectives, thus reinforcing their own biases. Improving scientific literacy allows people to see past these biases and translate media narratives in order to comprehend the facts and evidence presented to them. Citizen science is both an epistemological tool used by scientists to collect and interpret scientific data and a means to improve the scientific literacy of participants. Citizen science programs have the ability to generate real knowledge and improve the critical thinking skills necessary for the general public to interpret scientific information.

  16. Students' abilities to critique scientific evidence when reading and writing scientific arguments

    NASA Astrophysics Data System (ADS)

    Knight, Amanda M.

    Scientific arguments are used to persuade others for explanations that make sense of the natural world. Over time, through the accumulation of evidence, one explanation for a scientific phenomenon tends to take precedence. In science education, arguments make students' thinking and reasoning visible while also supporting the development of their conceptual, procedural, and epistemic knowledge. As such, argumentation has become a goal within recent policy documents, including the Next Generation Science Standards, which, in turn, presents a need for comprehensive, effective, and scalable assessments. This dissertation used assessments that measure students' abilities to critique scientific evidence, which is measured in terms of the form of justification and the support of empirical evidence, when reading and writing scientific arguments. Cognitive interviews were then conducted with a subset of the students to explore the criteria they used to critique scientific evidence. Specifically, the research investigated what characteristics of scientific evidence the students preferred, how they critiqued both forms of justification and empirical evidence, and whether the four constructs represented four separate abilities. Findings suggest that students' prioritized the type of empirical evidence to the form of justification, and most often selected relevant-supporting justifications. When writing scientific arguments, most students constructed a justified claim, but struggled to justify their claims with empirical evidence. In comparison, when reading scientific arguments, students had trouble locating a justification when it was not empirical data. Additionally, it was more difficult for students to critique than identify or locate empirical evidence, and it was more difficult for students to identify than locate empirical evidence. Findings from the cognitive interviews suggest that students with more specific criteria tended to have more knowledge of the construct. Lastly, dimensional analyses suggest that these may not be four distinct constructs, which has important implications for curriculum development and instructional practice. Namely, teachers should attend to the critique of scientific evidence separately when reading and writing scientific arguments.

  17. Teaching science vs. the apprentice model--do we really have the choice?

    PubMed

    Marckmann, G

    2001-01-01

    The debate about the appropriate methodology of medical education has been (and still is) dominated by the opposing poles of teaching science versus teaching practical skills. I will argue that this conflict between scientific education and practical training has its roots in the underlying, more systematic question about the conceptual foundation of medicine: how far or in what respects can medicine be considered to be a science? By analyzing the epistemological status of medicine I will show that the internal aim of medicine ("promoting health through the prevention and treatment of disease") differs from the internal aim of science ("the methodological and systematic acquisition of knowledge"). Therefore, medicine as a whole discipline should not be considered as a science. However, medicine can be conceptually and methodologically scientific in so much as it is based on scientific knowledge. There is evidence from cognitive science research that diagnostic reasoning not only relies on the application of scientific knowledge but also--especially in routine cases--on a process of pattern recognition, a reasoning strategy based on the memory of previously encountered patients. Hence, medical education must contain both: the imparting of scientific knowledge and the rich exposure to concrete cases during practical training. Hence, the question of teaching science vs. the apprentice model will not be "either-or" but rather "both--but in which proportion?"

  18. The Use of the Nature of Scientific Knowledge Scale as a Entrance Assessment in a Large, Online Citizen Science Project

    NASA Astrophysics Data System (ADS)

    Price, Aaron

    2010-01-01

    Citizen Sky is a new three-year, astronomical citizen science project launched in June, 2009 with funding from the National Science Foundation. This paper reports on early results of an assessment delivered to 1000 participants when they first joined the project. The goal of the assessment, based on the Nature of Scientific Knowledge Scale (NSKS), is to characterize their attitudes towards the nature of scientific knowledge. Our results are that the NSKS components of the assessment achieved high levels of reliability. Both reliability and overall scores fall within the range reported from other NSKS studies in the literature. Correlation analysis with other components of the assessment reveals some factors, such as age and understanding of scientific evidence, may be reflected in scores of subscales of NSKS items. Further work will be done using online discourse analysis and interviews. Overall, we find that the NSKS can be used as an entrance assessment for an online citizen science project.

  19. Colonizing nature: scientific knowledge, colonial power and the incorporation of India into the modern world-system.

    PubMed

    Baber, Z

    2001-03-01

    In this paper, the role of scientific knowledge, institutions and colonialism in mutually co-producing each other is analysed. Under the overarching rubric of colonial structures and imperatives, amateur scientists sought to deploy scientific expertise to expand the empire while at the same time seeking to take advantage of the opportunities to develop their careers as 'scientists'. The role of a complex interplay of structure and agency in the development of modern science, not just in India but in Britain too is analysed. The role of science and technology in the incorporation of South Asian into the modern world system, as well as the consequences of the emergent structures in understanding the trajectory of modern science in post-colonial India is examined. Overall, colonial rule did not simply diffuse modern science from the core to the periphery. Rather the colonial encounter led to the development of new forms of scientific knowledge and institutions both in the periphery and the core.

  20. Developing a Test of Scientific Literacy Skills (TOSLS): measuring undergraduates' evaluation of scientific information and arguments.

    PubMed

    Gormally, Cara; Brickman, Peggy; Lutz, Mary

    2012-01-01

    Life sciences faculty agree that developing scientific literacy is an integral part of undergraduate education and report that they teach these skills. However, few measures of scientific literacy are available to assess students' proficiency in using scientific literacy skills to solve scenarios in and beyond the undergraduate biology classroom. In this paper, we describe the development, validation, and testing of the Test of Scientific Literacy Skills (TOSLS) in five general education biology classes at three undergraduate institutions. The test measures skills related to major aspects of scientific literacy: recognizing and analyzing the use of methods of inquiry that lead to scientific knowledge and the ability to organize, analyze, and interpret quantitative data and scientific information. Measures of validity included correspondence between items and scientific literacy goals of the National Research Council and Project 2061, findings from a survey of biology faculty, expert biology educator reviews, student interviews, and statistical analyses. Classroom testing contexts varied both in terms of student demographics and pedagogical approaches. We propose that biology instructors can use the TOSLS to evaluate their students' proficiencies in using scientific literacy skills and to document the impacts of curricular reform on students' scientific literacy.

  1. Developing a Test of Scientific Literacy Skills (TOSLS): Measuring Undergraduates’ Evaluation of Scientific Information and Arguments

    PubMed Central

    Gormally, Cara; Brickman, Peggy; Lutz, Mary

    2012-01-01

    Life sciences faculty agree that developing scientific literacy is an integral part of undergraduate education and report that they teach these skills. However, few measures of scientific literacy are available to assess students’ proficiency in using scientific literacy skills to solve scenarios in and beyond the undergraduate biology classroom. In this paper, we describe the development, validation, and testing of the Test of Scientific Literacy Skills (TOSLS) in five general education biology classes at three undergraduate institutions. The test measures skills related to major aspects of scientific literacy: recognizing and analyzing the use of methods of inquiry that lead to scientific knowledge and the ability to organize, analyze, and interpret quantitative data and scientific information. Measures of validity included correspondence between items and scientific literacy goals of the National Research Council and Project 2061, findings from a survey of biology faculty, expert biology educator reviews, student interviews, and statistical analyses. Classroom testing contexts varied both in terms of student demographics and pedagogical approaches. We propose that biology instructors can use the TOSLS to evaluate their students’ proficiencies in using scientific literacy skills and to document the impacts of curricular reform on students’ scientific literacy. PMID:23222832

  2. Edmund's Idea and Research Report on the General Pattern of the Scientific Method. A Challenge to America To Recognize and Teach the Basic Method by Which We Refine, Extend, and Apply Knowledge in All Fields. SM-14. Second Edition.

    ERIC Educational Resources Information Center

    Edmund, Norman W.

    This booklet introduces a new and general approach to the scientific method for everyone. Teaching the scientific method to all students allows them to develop their own talents and is necessary to prevent the loss of jobs. Many job areas that require scientific methodology are listed. Harmful results that may occur because of not teaching the…

  3. [Exponential use of social media in medicine: example of the interest of Twitter(©) in urology].

    PubMed

    Rouprêt, M; Misraï, V

    2015-01-01

    Social media (#SoMe) has changed the face of modern medicine. Our purpose was to asses the potential interest of Twitter in the field of urology. A systematic review of the literature has been performed using PubMed without timeline restriction with the following keywords (MeSH): social media; Web 2.0; Twitter; Internet; network; urology; journal club; education. There were 3 categories of interest of Twitter in the field of urology: spread of scientific knowledge, scientific interaction during medical conferences and medical education and international medical debates. The unique spread of evidence-based-medecine through traditional scientific journals in paper version is over. Main scientific journals in urology and scientific societies are now using a Twitter account and became virtual. They use new bibliometrics available on #SoMe to estimate the social impact. Twitter allows for a better interactivity of doctors attending scientific conferences. Exponential use of Twitter is in the interest of speakers and leaders, audience and scientific societies. Lastly, medical academic education and continuing medical education can be achieved through #SoMe. Twitter became a lively virtual platform for scientific debates for complex oncological cases (dematerialized tumor board). Twitter is also a place for intense scientific discussion during virtual journal club without geographic or timeline restriction. Physicians need to respect the rules for a wise use of #SoMe in order not to break the Hippocratic Oath. There is a revolution around #SoMe and Twitter in the spread of scientific knowledge and academic teaching. International urologists are already committed in this evolution and France should also get involved. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Astronomy in the Russian Scientific-Educational Project: "KAZAN-GEONA-2010"

    NASA Astrophysics Data System (ADS)

    Gusev, A.; Kitiashvili, I.

    2006-08-01

    The European Union promotes the Sixth Framework Programme. One of the goals of the EU Programme is opening national research and training programs. A special role in the history of the Kazan University was played by the great mathematician Nikolai Lobachevsky - the founder of non-Euclidean geometry (1826). Historically, the thousand-year old city of Kazan and the two-hundred-year old Kazan University carry out the role of the scientific, organizational, and cultural educational center of the Volga region. For the continued successful development of educational and scientific-educational activity of the Russian Federation, the Republic Tatarstan, Kazan was offered the national project: the International Center of the Sciences and Internet Technologies "GeoNa" (Geometry of Nature - GeoNa - is wisdom, enthusiasm, pride, grandeur). This is a modern complex of conference halls including the Center for Internet Technologies, a 3D Planetarium - development of the Moon, PhysicsLand, an active museum of natural sciences, an oceanarium, and a training complex "Spheres of Knowledge". Center GeoNa promotes the direct and effective channel of cooperation with scientific centers around the world. GeoNa will host conferences, congresses, fundamental scientific research sessions of the Moon and planets, and scientific-educational actions: presentation of the international scientific programs on lunar research and modern lunar databases. A more intense program of exchange between scientific centers and organizations for a better knowledge and planning of their astronomical curricula and the introduction of the teaching of astronomy are proposed. Center GeoNa will enable scientists and teachers of the Russian universities with advanced achievements in science and information technologies to join together to establish scientific communications with foreign colleagues in the sphere of the high technology and educational projects with world scientific centers.

  5. [[Medicinal broths in the books by Nicolas Lemery, a reflection of scientific developments?

    PubMed

    Motte-Florac, Élisabeth

    2016-03-01

    From Ancient times, medicinal broths have been an integral part of the diet fed to patients and convalescents. At the end of 17th century, medical and pharmaceutical knowledge and practices were to enter a period of major upheavals. Although also hitherto discredited, chemical drugs became all the rage, work in chemistry boomed and broths benefited. Do the first editions of the works of Nicolas Lemery reflect the knowledge of his time ? Do last editions – revised, corrected, annotated and completed – really reflect transformations in scientific disciplines, technological developments, and scientific advances, particularly in chemistry?

  6. Science and Technology, Autonomous and More Interdependent Every Time

    NASA Astrophysics Data System (ADS)

    Santilli, Haydée

    2012-06-01

    In a School of Engineering scientific and technological knowledge live together. Science teachers usually try to understand the role that scientific disciplines have over the engineer training. In this paper are descript three historical case studies that could help teachers and students for better understanding the interdependence between science and technology, and the way in which both are related to society. The cases clearly show that both kind of knowledge, scientific and technological, are autonomous, and that their growths involve complex processes. On this way, learners could have an insight of both, the NOS and the NOT.

  7. Scientific Habits of Mind in Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Steinkuehler, Constance; Duncan, Sean

    2008-12-01

    In today's increasingly "flat" world of globalization (Friedman 2005), the need for a scientifically literate citizenry has grown more urgent. Yet, by some measures, we have done a poor job at fostering scientific habits of mind in schools. Recent research on informal games-based learning indicates that such technologies and the communities they evoke may be one viable alternative—not as a substitute for teachers and classrooms, but as an alternative to textbooks and science labs. This paper presents empirical evidence about the potential of games for fostering scientific habits of mind. In particular, we examine the scientific habits of mind and dispositions that characterize online discussion forums of the massively multiplayer online game World of Warcraft. Eighty-six percent of the forum discussions were posts engaged in "social knowledge construction" rather than social banter. Over half of the posts evidenced systems based reasoning, one in ten evidenced model-based reasoning, and 65% displayed an evaluative epistemology in which knowledge is treated as an open-ended process of evaluation and argument.

  8. The Effect of Verbal and Visuo-Spatial Abilities on the Development of Knowledge of the Earth

    NASA Astrophysics Data System (ADS)

    Kikas, Eve

    2006-09-01

    Difficulties in students’ understanding of the spherical model of the Earth have been shown in previous studies. One of the reasons for these difficulties lies in beliefs and preliminary knowledge that hinder the interpretation of the scientific knowledge, the other reason may lie in the low level of verbal and visuo-spatial abilities. The study aims to investigate the effect of verbal and visuo-spatial abilities, but also that of preliminary knowledge on the later development of the knowledge of the Earth in school. 176 schoolchildren (96 boys and 80 girls) from five schools were tested; the mean age of the children during the first interview was seven years and eight months. All students were interviewed twice in grades 1 and 2, before and after they had learnt the topic in school. Factual, scientific and synthetic knowledge was assessed. The facilitative effect of visuo-spatial and verbal abilities and preliminary factual and scientific knowledge on students’ knowledge of astronomy after having learnt the topic in school was shown. In contrast, the hindering effect of synthetic knowledge was not found.

  9. Architecture and Initial Development of a Digital Library Platform for Computable Knowledge Objects for Health.

    PubMed

    Flynn, Allen J; Bahulekar, Namita; Boisvert, Peter; Lagoze, Carl; Meng, George; Rampton, James; Friedman, Charles P

    2017-01-01

    Throughout the world, biomedical knowledge is routinely generated and shared through primary and secondary scientific publications. However, there is too much latency between publication of knowledge and its routine use in practice. To address this latency, what is actionable in scientific publications can be encoded to make it computable. We have created a purpose-built digital library platform to hold, manage, and share actionable, computable knowledge for health called the Knowledge Grid Library. Here we present it with its system architecture.

  10. Meta-Sticks: Having Children Consider the Source of Knowledge Promotes Scientific Thinking

    ERIC Educational Resources Information Center

    Kuhn, Mason

    2016-01-01

    Many elementary science teachers understand that the best way to enhance reasoning and thinking skills in their students is to have them engage in scientific negotiation. They know that teaching is not the simple transmission of information but a complex act that requires teachers to apply knowledge from multiple sources, including student…

  11. Modern Education in China. Bulletin, 1919, No. 44

    ERIC Educational Resources Information Center

    Edmunds, Charles K.

    1919-01-01

    The Chinese conception of life's values is so different from that of western peoples that they have failed to develop modern technique and scientific knowledge. Now that they have come to see the value of these, rapid and fundamental changes are taking place. When modern scientific knowledge is added to the skill which the Chinese already have in…

  12. THE IMPACT OF CHANGING SCIENTIFIC KNOWLEDGE ON SCIENCE EDUCATION IN THE UNITED STATES SINCE 1850.

    ERIC Educational Resources Information Center

    DEL GIORNO, BETTE JOYCE

    ANALYZED WAS THE IMPACT OF CHANGING SCIENTIFIC KNOWLEDGE ON SCIENCE EDUCATION IN THE UNITED STATES FROM 1850 THROUGH 1954. THE OBJECTIVES WERE TO IDENTIFY (1) MAJOR DEVELOPMENTS IN SCIENCE, (2) IMPORTANT EVENTS IN EDUCATION, (3) THE PHILOSOPHICAL AND PSYCHOLOGICAL CLIMATE, (4) THE SCIENCE CURRICULUM AND SUBJECT MATTER, AND (5) THE APPROACH TO…

  13. 76 FR 8735 - Release of Final Document Related to the Review of the Secondary National Ambient Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... ``criteria pollutants.'' The air quality criteria are to ``accurately reflect the latest scientific knowledge... criteria. The revised air quality criteria reflect advances in scientific knowledge on the effects of the... Related to the Review of the Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and...

  14. Enhancing Students' NOS Views and Science Knowledge Using Facebook-Based Scientific News

    ERIC Educational Resources Information Center

    Huang, Hsi-Yu; Wu, Hui-Ling; She, Hsiao-Ching; Lin, Yu-Ren

    2014-01-01

    This study investigated how the different discussion approaches in Facebook influenced students' scientific knowledge acquisition and the nature of science (NOS) views. Two eighth- and two ninth-grade classes in a Taiwanese junior high school participated in the study. In two of the classes students engaged in synchronous discussion, and in the…

  15. Developing the Ability to Recontextualise Cellular Respiration: An Explorative Study in Recontextualising Biological Concepts

    ERIC Educational Resources Information Center

    Wierdsma, Menno; Boersma, Kerst Th.; Knippels, Marie-Christine; van Oers, Bert

    2016-01-01

    In many science education practices, students are expected to develop an understanding of scientific knowledge without being allowed a view of the practices and cultures that have developed and use this knowledge. Therefore, students should be allowed to develop scientific concepts in relation to the contexts in which those concepts are used.…

  16. Fourth-Grade Emergent Bilingual Learners' Scientific Reasoning Complexity, Controlled Experiment Practices, and Content Knowledge When Discussing School, Home, and Play Contexts

    ERIC Educational Resources Information Center

    Buxton, Cory A.; Salinas, Ale; Mahotiere, Margarette; Lee, Okhee; Secada, Walter G.

    2015-01-01

    Background: In exploring how emergent bilingual learners' prior knowledge from home and play contexts might influence their scientific reasoning, this study drew upon two distinct research traditions: (a) experimental research from the developmental and cognitive psychology tradition, and (b) research on culturally and linguistically diverse…

  17. A Third Use of Sociology of Scientific Knowledge: A Lens for Studying Teacher Practice

    ERIC Educational Resources Information Center

    Meyer, Daniel Z.; Avery, Leanne M.

    2010-01-01

    Over the last two decades, science educators and science education researchers have grown increasingly interested in utilising insights from the sociology of scientific knowledge (SSK) to inform their work and research. To date, researchers in science education have focused on two applications: results of sociological studies of science have been…

  18. Targeting the Development of Content Knowledge and Scientific Reasoning: Reforming College-Level Chemistry for Nonscience Majors

    ERIC Educational Resources Information Center

    Carmel, Justin H.; Jessa, Yasmin; Yezierski, Ellen J.

    2015-01-01

    A liberal education curriculum requires discipline-specific courses that develop intellectual and practical skills. With this promise of development, it is crucial that instruction focuses on content knowledge as well as the thinking patterns associated with the content. In chemistry, scientific reasoning is one such skill that students should…

  19. The Effects of Video Feedback Coaching for Teachers on Scientific Knowledge of Primary Students

    ERIC Educational Resources Information Center

    van Vondel, Sabine; Steenbeek, Henderien; van Dijk, Marijn; van Geert, Paul

    2018-01-01

    The present study was aimed at investigating the effects of a video feedback coaching intervention for upper-grade primary school teachers on students' cognitive gains in scientific knowledge. This teaching intervention was designed with the use of inquiry-based learning principles for teachers, such as the empirical cycle and the posing of…

  20. Slow off the Mark: Elementary School Teachers and the Crisis in STEM Education

    ERIC Educational Resources Information Center

    Epstein, Diana; Miller, Raegen T.

    2011-01-01

    Prospective teachers can typically obtain a license to teach elementary school without taking a rigorous college-level STEM class such as calculus, statistics, or chemistry, and without demonstrating a solid grasp of mathematics knowledge, scientific knowledge, or the nature of scientific inquiry. This is not a recipe for ensuring students have…

  1. How Historical Experiments Can Improve Scientific Knowledge and Science Education: The Cases of Boiling Water and Electrochemistry

    ERIC Educational Resources Information Center

    Chang, Hasok

    2011-01-01

    I advance some novel arguments for the use of historical experiments in science education. After distinguishing three different types of historical experiments and their general purposes, I define "complementary experiments", which can recover lost scientific knowledge and extend what has been recovered. Complementary experiments can help science…

  2. The Seduction of Easiness: How Science Depictions Influence Laypeople's Reliance on Their Own Evaluation of Scientific Information

    ERIC Educational Resources Information Center

    Scharrer, Lisa; Bromme, Rainer; Britt, M. Anne; Stadtler, Marc

    2012-01-01

    The present research investigated whether laypeople are inclined to rely on their own evaluations of the acceptability of scientific claims despite their knowledge limitations. Specifically, we tested whether laypeople are more prone to discount their actual dependence on expert knowledge when they are presented with simplified science texts. In…

  3. Exploring Relationships among Belief in Genetic Determinism, Genetics Knowledge, and Social Factors

    ERIC Educational Resources Information Center

    Gericke, Niklas; Carver, Rebecca; Castéra, Jérémy; Evangelista, Neima Alice Menezes; Marre, Claire Coiffard; El-Hani, Charbel N.

    2017-01-01

    Genetic determinism can be described as the attribution of the formation of traits to genes, where genes are ascribed more causal power than what scientific consensus suggests. Belief in genetic determinism is an educational problem because it contradicts scientific knowledge, and is a societal problem because it has the potential to foster…

  4. Representations of the Nature of Scientific Knowledge in Turkish Biology Textbooks

    ERIC Educational Resources Information Center

    Irez, Serhat

    2016-01-01

    Considering the impact of textbooks on learning, this study set out to assess representations of the nature of scientific knowledge in Turkish 9th grade biology textbooks. To this end, the ten most commonly used 9th grade biology textbooks were analyzed. A qualitative research approach was utilized and the textbooks were analyzed using…

  5. The Concept and Role of Knowledge Worker and Workplace Fit in Learning Organisation

    ERIC Educational Resources Information Center

    Gaižauskiene, Laura; Tuncikiene, Živile

    2016-01-01

    The theoretical research was conducted in order to identify the phenomena of "fit", to see its roots and development as well as theoretical progress in the main scientific areas and identify its position in management scientific field. Two elements of the fit model are highlighted: knowledge workers and workplaces in a broad sense. The…

  6. Anomalies as a Catalyst for Middle School Students' Knowledge Construction and Scientific Reasoning during Science Inquiry.

    ERIC Educational Resources Information Center

    Echevarria, Marissa

    2003-01-01

    Knowledge construction and scientific reasoning were examined during a unit in genetics, in which anomalies were used as a catalyst for student learning. Students used genetics simulation software to develop hypotheses and run tests of fruit fly crosses to develop mental models of simple dominance trait transmission. Instruction was intended to…

  7. 5E Mobile Inquiry Learning Approach for Enhancing Learning Motivation and Scientific Inquiry Ability of University Students

    ERIC Educational Resources Information Center

    Cheng, Ping-Han; Yang, Ya-Ting Carolyn; Chang, Shih-Hui Gilbert; Kuo, Fan-Ray Revon

    2016-01-01

    In recent years, many universities have opened courses to increase students' knowledge in the field of nanotechnology. These have been shown to increase students' knowledge of nanotechnology, but beyond this, advanced and applied nanotechnology courses should also focus on learning motivation and scientific enquiry abilities to equip students to…

  8. Scientific literacy and academic identity: Creating a community of practice

    NASA Astrophysics Data System (ADS)

    Reveles, John Michael

    2005-07-01

    This one-year ethnographic study of a third grade classroom examined the construction of elementary school science. The research focused on the co-development of scientific literacy and academic identity. Unlike much research in science education that views literacy as merely supportive of science; this dissertation research considers how students learned both disciplinary knowledge in science as well as about themselves as learners through language use. The study documented and analyzed how students came to engage with scientific knowledge and the impact this engagement had upon their academic identities over time. Ethnographic and discourse analytic methods were employed to investigate three research questions: (a) How were the students in a third grade classroom afforded opportunities to acquire scientific literate practices through the spoken/written discourse and science activities? (b) In what ways did students develop and maintain academic identities taken-up over time as they discursively appropriated scientific literate practices via classroom discourse? and (c) How did students collectively and individually inscribe their academic identities and scientific knowledge into classroom artifacts across the school year? Through multiple forms of analyses, I identified how students' communication and participation in science investigations provided opportunities for them to learn specific scientific literate practices. The findings of this empirical research indicate that students' communication and participation in science influenced the ways they perceived themselves as active participants within the classroom community. More specifically, students were observed to appropriate particular discourse practices introduced by the teacher to frame scientific disciplinary knowledge and investigations. Thus, emerging academic identities and developing literate practices were documented via analysis of discursive (spoken, written, and enacted) classroom interactions. A unique feature of this research is that it investigated how students' identities changed through participation in inquiry-based science activities. At this point, the importance of communication in science has not been extensively studied from this perspective. Research to date has focused on either the social or cognitive aspects of interaction. This research contributes to the improvement in participation of underserved, underrepresented students in science, a major equity concern for the state and nation.

  9. Scientific Evidence and Potential Barriers in the Management of Brazilian Protected Areas.

    PubMed

    Giehl, Eduardo L H; Moretti, Marcela; Walsh, Jessica C; Batalha, Marco A; Cook, Carly N

    2017-01-01

    Protected areas are a crucial tool for halting the loss of biodiversity. Yet, the management of protected areas is under resourced, impacting the ability to achieve effective conservation actions. Effective management depends on the application of the best available knowledge, which can include both scientific evidence and the local knowledge of onsite managers. Despite the clear value of evidence-based conservation, there is still little known about how much scientific evidence is used to guide the management of protected areas. This knowledge gap is especially evident in developing countries, where resource limitations and language barriers may create additional challenges for the use of scientific evidence in management. To assess the extent to which scientific evidence is used to inform management decisions in a developing country, we surveyed Brazilian protected area managers about the information they use to support their management decisions. We targeted on-ground managers who are responsible for management decisions made at the local protected area level. We asked managers about the sources of evidence they use, how frequently they assess the different sources of evidence and the scientific content of the different sources of evidence. We also considered a range of factors that might explain the use of scientific evidence to guide the management of protected areas, such as the language spoken by managers, the accessibility of evidence sources and the characteristics of the managers and the protected areas they manage. The managers who responded to our questionnaire reported that they most frequently made decisions based on their personal experience, with scientific evidence being used relatively infrequently. While managers in our study tended to value scientific evidence less highly than other sources, most managers still considered science important for management decisions. Managers reported that the accessibility of scientific evidence is low relative to other types of evidence, with key barriers being the low levels of open access research and insufficient technical training to enable managers to interpret research findings. Based on our results, we suggest that managers in developing countries face all the same challenges as those in developed countries, along with additional language barriers that can prevent greater use of scientific evidence to support effective management of protected areas in Brazil.

  10. Scientific and Cultural Knowledge in Intercultural Science Education: Student Perceptions of Common Ground

    NASA Astrophysics Data System (ADS)

    Gondwe, Mzamose; Longnecker, Nancy

    2015-02-01

    There is no consensus in the science education research community on the meanings and representations of western science and indigenous knowledge or the relationships between them. How students interpret these relationships and their perceptions of any connections has rarely been studied. This study reports student perceptions of the meaning and relationship between scientific and cultural knowledge. Personal meaning maps adapted for small groups were conducted in seven culturally diverse schools, school years 7-9 (with students aged 12-15 years) ( n = 190), with six schools in Western Australia and one school in Malawi, Africa. Of the six Australian school groups, two comprised Australian Aboriginal students in an after-school homework programme and the other four schools had a multicultural mix of students. Students in this study identified connections between scientific and cultural knowledge and constructed connections from particular thematic areas—mainly factual content knowledge as opposed to ideas related to values, attitudes, beliefs and identity. Australian Aboriginal students made fewer connections between the two knowledge domains than Malawian students whose previous science teacher had made explicit connections in her science class. Examples from Aboriginal culture were the most dominant illustrations of cultural knowledge in Australian schools, even in school groups with students from other cultures. In light of our findings, we discuss the construction of common ground between scientific knowledge and cultural knowledge and the role of teachers as cultural brokers and travel agents. We conclude with recommendations on creating learning environments that embrace different cultural knowledges and that promote explicit and enquiring discussions of values, attitudes, beliefs and identity associated with both knowledge domains.

  11. Multitasking in academia: Effective combinations of research, education and public outreach illustrated by a volcanic ash warning system

    NASA Astrophysics Data System (ADS)

    Bye, B. L.; Plag, H.

    2011-12-01

    Science permeates our society. Its role and its perceived importance evolves with time. Scientists today are highly specialized, yet society demands they master a variety of skills requiring not only a number of different competencies but also a broad mindset. Scientists are subjected to a meritocracy in terms of having to produce scientific papers. Peer-reviewed scientific publications used to be sufficient to meet the various laws and regulations with respect to dissemination of scientific results. This has dramatically changed; both expressed directly through public voices (such as in the climate change discourses), but also by politicians and policy makers. In some countries research funding now comes with specific requirements concerning public outreach that go way beyond peer-reviewed publications and presentation at scientific conferences. Science policies encourage multidisciplinary cooperation and scientific questions themselves often cannot be answered without knowledge and information from several scientific areas. Scientists increasingly need to communicate knowledge and results in more general terms as well as educating future generations. A huge challenge lies in developing the knowledge, human capacity and mindset that will allow an individual academician to contribute to education, communicate across scientific fields and sectors in multidisciplinary cross sectoral cooperations and also reach out to the general public while succeeding within the scientific meritocracy. We demonstrate how research, education and communication within and outside academia can effectively be combined through a presentation of the International Airways Volcano Watch that encompasses an operational volcanic ash warning system for the aviation industry. This presentation will show the role of science throughout the information flow, from basic science to the pilots' decision-making. Furthermore, it will illustrate how one can connect specific scientific topics to societal issues such as security and economy. Skills, knowledge and mindset must be developed and nurtured through university curricula and reflected in career awards and other professional appreciations. By using concrete examples of geoscience in practice, such as the volcanic ash warning system, different aspects of science, it's role in society and economic impact is being communicated across sectors and taught simultaneously. The very same information is relevant and appropriate for society at large and thus time saving for academicians. It also serves as a recruiting strategy.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendell, Mark J.

    This report briefly summarizes, based on recent review articles and selected more recent research reports, current scientific knowledge on two topics: assessing unhealthy levels of indoor D/M in homes and remediating home dampness-related problems to protect health. Based on a comparison of current scientific knowledge to that required to support effective, evidence-based, health-protective policies on home D/M, gaps in knowledge are highlighted, prior questions and research questions specified, and necessary research activities and approaches recommended.

  13. Contemporary HIV/AIDS research: Insights from knowledge management theory

    PubMed Central

    Callaghan, Chris William

    2017-01-01

    Abstract Knowledge management as a field is concerned with the management of knowledge, including the management of knowledge in research processes. Knowledge management theory has the potential to support research into problems such as HIV, antibiotic resistance and others, particularly in terms of aspects of scientific research related to the contribution of social science. To date, however, these challenges remain with us, and theoretical contributions that can complement natural science efforts to eradicate these problems are needed. This paper seeks to offer a theoretical contribution grounded in Kuhn’s paradigm theory of innovation, and in the argument by Lakatos that scientific research can be fundamentally non-innovative, which suggests that social science aspects of knowledge creation may hold the key to more effective biomedical innovation. Given the consequences of ongoing and emerging global crises, and the failure of knowledge systems of scientific research to solve such problems outright, this paper provides a review of theory and literature arguing for a new paradigm in scientific research, based on the development of global systems to maximise research collaborations. A global systems approach effectively includes social science theory development as an important complement to the natural sciences research process. Arguably, information technology and social media technology have developed to the point at which solutions to knowledge aggregation challenges can enable solutions to knowledge problems on a scale hitherto unimaginable. Expert and non-expert crowdsourced inputs can enable problem-solving through exponentially increasing problem-solving inputs, using the ‘crowd,’ thereby increasing collaborations dramatically. It is argued that these developments herald a new era of participatory research, or a democratisation of research, which offers new hope for solving global social problems. This paper seeks to contribute to this end, and to the recognition of the important role of social theory in the scientific research process. PMID:28922967

  14. Knowledge and institutional requirements to promote land degradation neutrality in drylands - An analysis of the outcomes of the 3rd UNCCD scientific conference

    NASA Astrophysics Data System (ADS)

    Akhtar-Schuster, Mariam; Safriel, Uriel; Abraham, Elena; de Vente, Joris; Essahli, Wafa; Escadafal, Richard; Stringer, Lindsay

    2015-04-01

    Achieving land degradation neutrality (LDN) through sustainable land management (SLM) targets the maintenance or restoration of the productivity of land, and therefore has to include decision-makers, knowledge generators and knowledge holders at the different relevant geographic scales. In order to enhance the implementation of the Convention, the Conference of the Parties (COP) of the United Nations Convention to Combat Desertification therefore decided that each future session of its Committee on Science and Technology (CST) would be organized in a predominantly scientific and technical conference-style format. This contribution will outline the major outcomes of UNCCD's 3rd scientific conference that will be held in Cancún, Mexico, from 9 to 12 March 2015, on addressing desertification, land degradation and drought issues (DLDD) for poverty reduction and sustainable development. The conference follows an exceptional new round table conference format that will allow the various stakeholders to discuss scientific as well as the contribution of traditional knowledge and practices in combating land degradation. This format should provide two-way communication and enable deeper insight into the availability and contribution of all forms of knowledge for achieving LDN through the assessment of: • the vulnerability of lands to DLDD and climate change and the adaptive capacities of socio-ecosystems; • best examples of adapted, knowledge-based practices and technologies; • monitoring and assessment methods to evaluate the effectiveness of adaptation practices and technologies. The outcomes of UNCCD's 3rd scientific conference will serve as a basis for discussing: • contributions of science to diagnose the status of land; • research gaps that need to be addressed to achieve LDN for poverty reduction; • additional institutional requirements to optimally bridge knowledge generation, knowledge maintenance and knowledge implementation at the science-policy interface.

  15. The development of scientific reasoning in medical education: a psychological perspective.

    PubMed

    Barz, Daniela Luminita; Achimaş-Cadariu, Andrei

    2016-01-01

    Scientific reasoning has been studied from a variety of theoretical perspectives, which have tried to identify the underlying mechanisms responsible for the development of this particular cognitive process. Scientific reasoning has been defined as a problem-solving process that involves critical thinking in relation to content, procedural, and epistemic knowledge. The development of scientific reasoning in medical education was influenced by current paradigmatic trends, it could be traced along educational curriculum and followed cognitive processes. The purpose of the present review is to discuss the role of scientific reasoning in medical education and outline educational methods for its development. Current evidence suggests that medical education should foster a new ways of development of scientific reasoning, which include exploration of the complexity of scientific inquiry, and also take into consideration the heterogeneity of clinical cases found in practice.

  16. Scientific Media Education in the Classroom and Beyond: A Research Agenda for the Next Decade

    ERIC Educational Resources Information Center

    Reid, Grace; Norris, Stephen P.

    2016-01-01

    Scientific media education is the ability to draw on a knowledge of the media and science, in order to choose, understand, evaluate, and respond to representations of science across diverse media genres. We begin this manuscript by reviewing research that shows scientific media education is one of the most important content areas that could be…

  17. How Does Adding an Emphasis on Socioscientific Issues Influence Student Attitudes about Science, Its Relevance, and Their Interpretations of Sustainability?

    ERIC Educational Resources Information Center

    Pelch, Michael A.; McConnell, David A.

    2017-01-01

    A general consensus exists among the leaders of both developed and developing nations that their citizens should be scientifically literate. Therefore, it is important for educational systems to provide students with access to pertinent scientific knowledge, an appreciation for the scientific processes, and the ability to evaluate scientific…

  18. Using the Activity Model of Inquiry to Enhance General Chemistry Students' Understanding of Nature of Science

    ERIC Educational Resources Information Center

    Marchlewicz, Sara C.; Wink, Donald J.

    2011-01-01

    Nature of science refers to the processes of scientific activity and the social and cultural premises involved in the creation of scientific knowledge. Having an informed view of nature of science is important in the development of scientifically literate citizens. However, students often come to the classroom with misconceptions about nature of…

  19. Explicitly Targeting Pre-Service Teacher Scientific Reasoning Abilities and Understanding of Nature of Science through an Introductory Science Course

    ERIC Educational Resources Information Center

    Koenig, Kathleen; Schen, Melissa; Bao, Lei

    2012-01-01

    Development of a scientifically literate citizenry has become a national focus and highlights the need for K-12 students to develop a solid foundation of scientific reasoning abilities and an understanding of nature of science, along with appropriate content knowledge. This implies that teachers must also be competent in these areas; but…

  20. The Integration of HIV and AIDS as a Socio-Scientific Issue in the Life Sciences Curriculum

    ERIC Educational Resources Information Center

    Wolff, Eugenie; Mnguni, Lindelani

    2015-01-01

    The potential of science to transform lives has been highlighted by a number of scholars. This means that critical socio-scientific issues (SSIs) must be integrated into science curricula. Development of context-specific scientific knowledge and twenty-first-century learning skills in science education could be used to address SSIs such as…

  1. Oral Narratives: Reconceptualising the Turbulence between Indigenous Perspectives and Eurocentric Scientific Views

    ERIC Educational Resources Information Center

    Bechtel, R.

    2016-01-01

    Mitigating the borders that exist between scientific cultures can be a difficult task. The purpose of this paper is to look at the differences and similarities that occur in language use when two scientific cultures communicate in the same forum on a topic of mutual concern. The results provide an opportunity to share knowledge of an Indigenous…

  2. Making sense of policy choices: understanding the roles of value predispositions, mass media, and cognitive processing in public attitudes toward nanotechnology.

    PubMed

    Ho, Shirley S; Scheufele, Dietram A; Corley, Elizabeth A

    2010-10-01

    Using a nationally representative telephone survey of 1,015 adults in the United States, this study examines how value predispositions, communication variables, and perceptions of risks and benefits are associated with public support for federal funding of nanotechnology. Our findings show that highly religious individuals were less supportive of funding of nanotech than less religious individuals, whereas individuals who held a high deference for scientific authority were more supportive of funding of the emerging technology than those low in deference. Mass media use and elaborative processing of scientific news were positively associated with public support for funding, whereas factual scientific knowledge had no significant association with policy choices. The findings suggest that thinking about and reflecting upon scientific news promote better understanding of the scientific world and may provide a more sophisticated cognitive structure for the public to form opinions about nanotech than factual scientific knowledge. Finally, heuristic cues including trust in scientists and perceived risks and benefits of nanotech were found to be associated with public support for nanotech funding. We conclude with policy implications that will be useful for policymakers and science communication practitioners.

  3. Making sense of policy choices: understanding the roles of value predispositions, mass media, and cognitive processing in public attitudes toward nanotechnology

    NASA Astrophysics Data System (ADS)

    Ho, Shirley S.; Scheufele, Dietram A.; Corley, Elizabeth A.

    2010-10-01

    Using a nationally representative telephone survey of 1,015 adults in the United States, this study examines how value predispositions, communication variables, and perceptions of risks and benefits are associated with public support for federal funding of nanotechnology. Our findings show that highly religious individuals were less supportive of funding of nanotech than less religious individuals, whereas individuals who held a high deference for scientific authority were more supportive of funding of the emerging technology than those low in deference. Mass media use and elaborative processing of scientific news were positively associated with public support for funding, whereas factual scientific knowledge had no significant association with policy choices. The findings suggest that thinking about and reflecting upon scientific news promote better understanding of the scientific world and may provide a more sophisticated cognitive structure for the public to form opinions about nanotech than factual scientific knowledge. Finally, heuristic cues including trust in scientists and perceived risks and benefits of nanotech were found to be associated with public support for nanotech funding. We conclude with policy implications that will be useful for policymakers and science communication practitioners.

  4. Making sense of policy choices: understanding the roles of value predispositions, mass media, and cognitive processing in public attitudes toward nanotechnology

    PubMed Central

    Scheufele, Dietram A.; Corley, Elizabeth A.

    2010-01-01

    Using a nationally representative telephone survey of 1,015 adults in the United States, this study examines how value predispositions, communication variables, and perceptions of risks and benefits are associated with public support for federal funding of nanotechnology. Our findings show that highly religious individuals were less supportive of funding of nanotech than less religious individuals, whereas individuals who held a high deference for scientific authority were more supportive of funding of the emerging technology than those low in deference. Mass media use and elaborative processing of scientific news were positively associated with public support for funding, whereas factual scientific knowledge had no significant association with policy choices. The findings suggest that thinking about and reflecting upon scientific news promote better understanding of the scientific world and may provide a more sophisticated cognitive structure for the public to form opinions about nanotech than factual scientific knowledge. Finally, heuristic cues including trust in scientists and perceived risks and benefits of nanotech were found to be associated with public support for nanotech funding. We conclude with policy implications that will be useful for policymakers and science communication practitioners. PMID:21170125

  5. The effects of a socioscientific issues instructional model in secondary agricultural education on students' content knowledge, scientific reasoning ability, argumentation skills, and views of the nature of science

    NASA Astrophysics Data System (ADS)

    Shoulders, Catherine Woglom

    The purpose of this study was to determine the effects of a socioscientific issues-based instructional model on secondary agricultural education students' content knowledge, scientific reasoning ability, argumentation skills, and views of the nature of science. This study utilized a pre-experimental, single group pretest-posttest design to assess the impacts of a nine-week unit that incorporated a socioscientific issue into instruction on secondary agriculture students' agriscience content knowledge, scientific reasoning ability, argumentation skills, and views of the nature of science. The population for this study was Florida's secondary students enrolled in agricultural education. The accessible population was students enrolled in Agriscience Foundations classes in Florida. A convenience sample of Florida's Agriscience Foundations teachers attending a summer professional development or Chapter Officer Leadership Training session was taken. Paired-samples t tests were conducted to determine the impact the treatment had on students' agriscience content knowledge on distal and proximal assessments, as well as on students' scientific reasoning ability, argumentation skills related to number of argumentation justifications and quality of those justifications, and views of the nature of science. Paired-samples t tests were also conducted to determine whether the treatment yielded results with middle school or high school students. Statistical analysis found significant improvements in students' agriscience content knowledge, scientific reasoning ability, and argumentation skills. High school students' scores resulted in significant improvements in proximal content knowledge assessments and argumentation justification quality. Middle school students' scores resulted in significant improvements in proximal content knowledge assessments and scientific reasoning ability. No significant difference was found between students' views of the nature of science before and after the treatment. These findings indicate that socioscientific issues-based instruction can provide benefits for students in agricultural education. Teacher educators should work with teachers to maximize the learning that can occur through the various aspects of socioscientific issues-based instruction. Curriculum focusing on socioscientific issues-based instruction should be developed for specific courses in agricultural education. Finally, further investigation should be conducted to better understand how the aspects of socioscientific issues-based instruction can be altered to further enhance student learning.

  6. A knowledgebase system to enhance scientific discovery: Telemakus

    PubMed Central

    Fuller, Sherrilynne S; Revere, Debra; Bugni, Paul F; Martin, George M

    2004-01-01

    Background With the rapid expansion of scientific research, the ability to effectively find or integrate new domain knowledge in the sciences is proving increasingly difficult. Efforts to improve and speed up scientific discovery are being explored on a number of fronts. However, much of this work is based on traditional search and retrieval approaches and the bibliographic citation presentation format remains unchanged. Methods Case study. Results The Telemakus KnowledgeBase System provides flexible new tools for creating knowledgebases to facilitate retrieval and review of scientific research reports. In formalizing the representation of the research methods and results of scientific reports, Telemakus offers a potential strategy to enhance the scientific discovery process. While other research has demonstrated that aggregating and analyzing research findings across domains augments knowledge discovery, the Telemakus system is unique in combining document surrogates with interactive concept maps of linked relationships across groups of research reports. Conclusion Based on how scientists conduct research and read the literature, the Telemakus KnowledgeBase System brings together three innovations in analyzing, displaying and summarizing research reports across a domain: (1) research report schema, a document surrogate of extracted research methods and findings presented in a consistent and structured schema format which mimics the research process itself and provides a high-level surrogate to facilitate searching and rapid review of retrieved documents; (2) research findings, used to index the documents, allowing searchers to request, for example, research studies which have studied the relationship between neoplasms and vitamin E; and (3) visual exploration interface of linked relationships for interactive querying of research findings across the knowledgebase and graphical displays of what is known as well as, through gaps in the map, what is yet to be tested. The rationale and system architecture are described and plans for the future are discussed. PMID:15507158

  7. The Microcosm of Scientific Knowledge: Sceintists are Talking but Mostly to Each Other

    NASA Astrophysics Data System (ADS)

    Suleski, J.; Ibaraki, M.

    2005-12-01

    There is no question that scientists are communicating en masse. But with publication in journals as the main form of communication of research results, modern scientific communication methods are contributing to a major chasm of knowledge between the scientific community and the mainstream public. While publication in a scientific journal is an effective means to communicate results to the scientific community, it is an ineffective means to communicate to the general public that turns to mainstream news media to learn about scientific discoveries. With little effort made to communicate beyond the borders of journals, an alarmingly small number of papers ever are reported on in mainstream publications. During the target years of 1990-1992 and 1998-2000 there were over 5,300 accredited scientific journals in print. However, in those same years, less than 0.0005% of the papers published in those journals gained any attention from mainstream news media and mainstream audiences. This begs the question, that as scientists, is it sufficient to publish results in highly technical formats with only scientists as the intended audience? Or, has this trend lead to a great disparity between the knowledgeable elite and the general population? The recent catastrophe encountered in the United States Gulf Coast after Hurricane Katrina is a striking example of published scientific research failing to reach the general public. Hundreds of papers were published during the years 1980-2005 discussing the topic of the potential threat of hurricanes to the gulf coast, yet many citizens of the area were unaware of the severity of a possible storm and subsequent flooding. In the target years researched, none of the papers published on this topic was reported on in mainstream news media, severely restricting the audience. While the intended audiences of the papers went beyond the general public, information in the hands of the people who inhabit the area would have directly by action and indirectly by support for funding influenced the conditions they faced. At a time when a nation is scratching its head and wondering who to blame, it is acutely obvious that the scientific community must shoulder some responsibility for relying on traditional communication methods to convey research findings about the region. This research points to a clear need for scientists to make new efforts to communicate not just to a captive audience of fellow researchers, but to the mainstream decision-makers of the world. Since the majority of the public looks to mass media for scientific news, it is essential that the scientific community open channels of communication with news media and develop alternate forms of communication. As Albert Einstein astutely pointed out in 1954, ''It is just as important to make knowledge live and to keep it alive as to solve specific problems.''

  8. Teaching research methodology in medical schools: students' attitudes towards and knowledge about science.

    PubMed

    Hren, Darko; Lukić, Ivan Kresimir; Marusić, Ana; Vodopivec, Ivana; Vujaklija, Ana; Hrabak, Maja; Marusić, Matko

    2004-01-01

    To explore the relationship between teaching scientific methodology in Year 2 of the medical curriculum and student attitudes towards and knowledge about science and scientific methodology. Anonymous questionnaire survey developed for this purpose. Zagreb University School of Medicine, Croatia. A total of 932 students (response rate 58%) from all 6 years were invited to participate. Score on attitude scale with 45 Likert-type statements and score on knowledge test consisting of 8 multiple choice questions. The average attitude score for all students was 166 +/- 22 out of a maximum of 225, indicating a positive attitude towards science and scientific research. The students' average score on the knowledge test was 3.2 +/- 1.7 on 8 questions. Students who had finished Year 2 had the highest mean attitude (173 +/- 24) and knowledge (4.7 +/- 1.7) scores compared with other year groups (P < 0.001, anova and Tukey posthoc test). For students who had attended a mandatory Year 2 course on the principles of scientific research in medicine (Years 3 to 6), multiple linear regression analysis showed that knowledge test score (B = 3.4; SE = 0.4; 95% confidence interval 2.5-4.2; P < 0.001) and average grades (B = 7.6; SE = 1.5; 95% CI 4.6-10.6; P < 0.001) were significant predictors of attitude towards science, but not sex or failure to pass a year (B = - 0.6; SE = 1.7; 95% CI - 3.9-2.6; P = 0.707; and B = - 3.1; SE = 1.9; 95% CI - 6.8-5.7; P = 0.097, respectively). Medical students have generally positive attitudes towards science and scientific research in medicine. Attendance of a course on research methodology is related to a positive attitude towards science.

  9. Athens, GA Lab--Office of Research and Development

    EPA Pesticide Factsheets

    The EPA laboratory in Athens, GA is a recognized leader in advancing and implementing scientific knowledge, and providing scientific and technical support tailored to environmental concerns and issues in the Southeast U.S.

  10. The Younger Generation and the "Crisis of Science'

    ERIC Educational Resources Information Center

    Witkowski, Lech

    1975-01-01

    Proposes a positive alternative to currently fashionable anti-scientific attitudes, especially among young people living in highly industrialized countries. Illustrates ways in which scientific knowledge is viewed as a benefit to mankind. (MLH)

  11. The spiral of scientific culture and cultural well-being: Brazil and Ibero-America.

    PubMed

    Vogt, Carlos

    2012-01-01

    The set of factors, events and actions of mankind in the social processes dedicated to the production the dissemination, the teaching and the publication of scientific knowledge constitutes the conditions for the development of a particular type of culture, quite commonplace in the contemporary world, which may be called scientific culture. In this article, we intend to present the representation of the dynamics of this area of knowledge in the form of a spiral: The Spiral of Scientific Culture. Also, we introduce the term cultural well-being--the kind of comfort, other than the social well-being, which has to do with society's relationships with the technosciences, involving values and attitudes, habits and information, and presupposing an actively critical participation on the part of that society in the totality of these relationships.

  12. On the formalization and reuse of scientific research.

    PubMed

    King, Ross D; Liakata, Maria; Lu, Chuan; Oliver, Stephen G; Soldatova, Larisa N

    2011-10-07

    The reuse of scientific knowledge obtained from one investigation in another investigation is basic to the advance of science. Scientific investigations should therefore be recorded in ways that promote the reuse of the knowledge they generate. The use of logical formalisms to describe scientific knowledge has potential advantages in facilitating such reuse. Here, we propose a formal framework for using logical formalisms to promote reuse. We demonstrate the utility of this framework by using it in a worked example from biology: demonstrating cycles of investigation formalization [F] and reuse [R] to generate new knowledge. We first used logic to formally describe a Robot scientist investigation into yeast (Saccharomyces cerevisiae) functional genomics [f(1)]. With Robot scientists, unlike human scientists, the production of comprehensive metadata about their investigations is a natural by-product of the way they work. We then demonstrated how this formalism enabled the reuse of the research in investigating yeast phenotypes [r(1) = R(f(1))]. This investigation found that the removal of non-essential enzymes generally resulted in enhanced growth. The phenotype investigation was then formally described using the same logical formalism as the functional genomics investigation [f(2) = F(r(1))]. We then demonstrated how this formalism enabled the reuse of the phenotype investigation to investigate yeast systems-biology modelling [r(2) = R(f(2))]. This investigation found that yeast flux-balance analysis models fail to predict the observed changes in growth. Finally, the systems biology investigation was formalized for reuse in future investigations [f(3) = F(r(2))]. These cycles of reuse are a model for the general reuse of scientific knowledge.

  13. Recostructing the Physics Teaching Didactic based on Marzano’s Learning Dimension on Training the Scientific Literacies

    NASA Astrophysics Data System (ADS)

    Karim, S.; Prima, E. C.; Utari, S.; Saepuzaman, D.; Nugaha, M. G.

    2017-02-01

    Scientific literacy is currently considered as an important aspect supporting an useful citizenship ability for civilians inhabiting highly developed countries as well as developing countries. Consequently, certain countries recommended this scientific literacy to be applied at a national curricula. The PISA study showed the Indonesian scientific literacy level of 1, which means as just simple science phenomenon that could be exactly descibed by a student. This condition indicates that common science teachings do not optimally facillitate students to guide the scientific literacy. By proposing this research, the science didactic reconstruction will be offered in order to gain the students’ scientific literacy evaluated from the qualitative analysis of the action research and the students’ respons during learning science. The qualitative evaluation was developed based on the Marzano’s learning dimension about the scientific literacy. This research, involving 29 students as participants, analyzed the improved physics teaching didactic as described in the following sentences. The teaching reconstruction concerned a high attention to the development of the structural knowledge. The knowledge was acquired from a real phenomenon followed by giving the instructed questions as the second learning dimension. The third dimension of learning reconstruction aimed to provide the knowledge repetition on an appropriate science context. At the fourth dimension, the reconstruction should be improved in order to find the best treatment for the students. Hopefully, they can control the physical parameter and evaluate the result of their investigation related to the given science problems. It can be concluded that most of the students were interested in learning science. However, the productive learning didn’t accompany students to the Marzano’s second, third, and fourth learning dimensions.

  14. Scientists in the making: An ethnographic investigation of scientific processes as literate practice in an elementary classroom

    NASA Astrophysics Data System (ADS)

    Crawford, Teresa Jo

    This study explored the issue of literacy in science by examining how the social and academic literate practices in an elementary classroom formed the basis for learning across the curriculum, with a specific focus on the disciplinary field of science. Through the study of classroom interaction, issues related to student knowledge and ability were addressed as they pertain to scientific literacy in the context of science education reform. The theoretical framework guiding this study was drawn from sociocultural studies of scientific communities and interactional ethnography in education. To investigate the literate practices of science in a school setting, data were collected over a two-year period with the same teacher in her third grade and then her fourth/fifth grade classroom. Data were collected through participant observation in the form of fieldnotes, video data, interviews, and various artifacts (e.g., writings, drawings, teaching protocols). Using ethnographic and sociolinguistic methods of analysis this work examined classroom members' discursive practices to illustrate the role that discourse plays in creating opportunities for engagement in, and access to, scientific knowledge. These analyses revealed that the discursive actions and practices among members of this classroom shaped a particular type of learning environment that was process-oriented and inquiry based. It was shown that this learning environment afforded opportunities for students to engage in the processes of science outside the official, planned curriculum, often leading to whole class scientific investigations and discussions. Additionally, within this classroom community students were able to draw on multiple discourses to display their knowledge of scientific concepts and practices. Overall, this study found that the literate practices of this classroom community, as they were socially constructed among members, contributed to opportunities for students to practice science and demonstrate scientific literacy.

  15. [An approach to a methodology of scientific research for assistant-students].

    PubMed

    Novak, Ivón T C; Bejarano, Paola Antón; Rodríguez, Fernando Marcos

    2007-01-01

    This work is presented from a "problematic" perspective in the attempt to establish a dialogic relationship between the educator and the student-subject, mediated by the object of knowledge. It is oriented to the integral education of the helping students departing from a closer approach to the scientific research. This work was carried out by a teacher and two hired students. This project was developed in relation with the profile required for the career of medicine in the Faculty of Medicine of the National University of Cordoba which--among other aspects- addresses the importance of "adopting a positive attitude towards research based on knowledge and the application of the scientific methodology" and towards "the development of a responsible self-learning and continuous improvements" (sic). Thus, this work tries to be aligned with this perspectives. I. Characterization of the scientific methodology. Search for bibliography and discussion of scientific works. II. Optimization of the methodology for the observation of leucocytes: blood samples donated by healthy people, non-coagulating with citrate or with EDTA (Blood reservoir of the UNC (National University of Cordoba) n = 20. a) Blood smear of full blood. b) centrifugation at 200g of plasma and aspirated leucocytes after erythro sedimentation and re suspension of the cell pellet and cyto-dispersion. Cytological and cyto-chemical techniques. I. Deeper knowledge about blood field was achieved. It generated an appropriate atmosphere to produce scientific questioning and the activities involved in the process were carried out responsibly. II. Better results were achieved using EDTA for the observation and analysis of leucocytes. It was possible to attain the objectives for an approach to a scientific research as well as for a contribution towards a responsible development in the continuous learning process.

  16. From "sit and listen" to "shake it out yourself": Helping urban middle school students to bridge personal knowledge to scientific knowledge through a collaborative environmental justice curriculum

    NASA Astrophysics Data System (ADS)

    Sadeh, Shamu Fenyvesi

    Science education and environmental education are not meeting the needs of marginalized communities such as urban, minority, and poor communities (Seller, 2001; U.S. Environmental Protection Agency [EPA], 1996). There exists an equity gap characterized by the racial and socioeconomic disparities in: levels of participation in scientific and environmental careers and environmental organizations (Lewis & James, 1995; Sheppard, 1995), access to appropriate environmental education programs (U.S. EPA, 1996), exposure to environmental toxins (Bullard, 1993), access to environmental amenities and legal protections (Bullard, 1993), and in grades and standardized test scores in K-12 science (Jencks & Phillips, 1998; Johnston & Viadero, 2000). Researchers point to the cultural divide between home and school culture as one of the reasons for the equity gap in science education (Barton, 2003; Delpit, 1995; Seiler, 2001). This study is designed to address the equity gap by helping students connect personal/cultural knowledge to scientific knowledge. A collaborative action research study was conducted in 8th-grade science classrooms of low-income African American and Latino students. The participating teacher and the researcher developed, enacted and evaluated a curriculum that elicited students' personal and cultural knowledge in the investigation of local community issues. Using qualitative methods, data were collected through student and teacher interviews, observation, and written documents. Data were analyzed to answer questions on student participation and learning, bridging between personal and scientific knowledge, and student empowerment. The most compelling themes from the data were described as parts of three stories: tensions between the empire of school and the small student nation, bridging between the two nations, and students gaining empowerment. This study found that the bridging the curriculum intended was successful in that many students brought personal knowledge to class and started to bring scientific knowledge into their personal worlds. Students translated between scientific language and their own language, displayed an understanding of community environmental health issues, and expressed a sense of empowerment as students and community members. Recommendations to science educators and researchers included: eliciting students' personal and cultural knowledge in the classroom, helping students to create new ways of participating in science, and engaging in collaborative research efforts.

  17. Information retrieval, critical appraisal and knowledge of evidence-based dentistry among Finnish dental students.

    PubMed

    Nieminen, P; Virtanen, J I

    2017-11-01

    One of the core skills of competent dentist is the ability to search and analyse high-quality evidence. Problems in understanding the basic aspects of knowledge-based information may impede its implementation into clinical practice. We examined how Finnish dental students acquire scientific information and how familiar they are with methods for evaluating scientific evidence related to clinical questions. All fifth-year dental students (n = 120) at the three universities in Finland received a self-administered questionnaire. The three most commonly used sources of information were colleagues, the commercial Health Gate Portal for dental practitioners and personal lecture notes. Although students rarely read scientific journals, they did find that they possess at least passable or even good skills in literature retrieval. Three questions related to the appraisal of evidence in dentistry revealed that students' knowledge of evidence-based dentistry was inadequate to critically evaluate clinical research findings. Most students seem to lack knowledge of key methodological evidence-based terms. The present curricula in dental schools fail to encourage the students to search and acquire knowledge wider than their patients themselves do. Universities have the responsibility to teach dentists various methods of critical appraisal to cope with scientific information. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. A Drupal-Based Collaborative Framework for Science Workflows

    NASA Astrophysics Data System (ADS)

    Pinheiro da Silva, P.; Gandara, A.

    2010-12-01

    Cyber-infrastructure is built from utilizing technical infrastructure to support organizational practices and social norms to provide support for scientific teams working together or dependent on each other to conduct scientific research. Such cyber-infrastructure enables the sharing of information and data so that scientists can leverage knowledge and expertise through automation. Scientific workflow systems have been used to build automated scientific systems used by scientists to conduct scientific research and, as a result, create artifacts in support of scientific discoveries. These complex systems are often developed by teams of scientists who are located in different places, e.g., scientists working in distinct buildings, and sometimes in different time zones, e.g., scientist working in distinct national laboratories. The sharing of these specifications is currently supported by the use of version control systems such as CVS or Subversion. Discussions about the design, improvement, and testing of these specifications, however, often happen elsewhere, e.g., through the exchange of email messages and IM chatting. Carrying on a discussion about these specifications is challenging because comments and specifications are not necessarily connected. For instance, the person reading a comment about a given workflow specification may not be able to see the workflow and even if the person can see the workflow, the person may not specifically know to which part of the workflow a given comments applies to. In this paper, we discuss the design, implementation and use of CI-Server, a Drupal-based infrastructure, to support the collaboration of both local and distributed teams of scientists using scientific workflows. CI-Server has three primary goals: to enable information sharing by providing tools that scientists can use within their scientific research to process data, publish and share artifacts; to build community by providing tools that support discussions between scientists about artifacts used or created through scientific processes; and to leverage the knowledge collected within the artifacts and scientific collaborations to support scientific discoveries.

  19. Theory in Practice: Why "Good Medicine" and "Scientific Medicine" Are Not Necessarily the Same Thing

    ERIC Educational Resources Information Center

    De Camargo, Kenneth, Jr.; Coeli, Claudia Medina

    2006-01-01

    The term "scientific medicine", ubiquitous in medical literature although poorly defined, can be traced to a number of assumptions, three of which are examined in this paper: that medicine is a form of knowledge-driven practice, where the established body of proven medical knowledge determines what doctors do; if what doctors do is either…

  20. The Influence of Anomalies on Knowledge Construction and Scientific Reasoning during Inquiry.

    ERIC Educational Resources Information Center

    Echevarria, Marissa

    The knowledge construction and scientific reasoning of two classes of seventh grade students (22 to 24 students in each class) were examined during a 3-week inquiry unit in genetics, in which anomalies were used as a catalyst for conceptual change. During the unit, students used genetics simulation software to mate fruit flies that varied on a…

  1. Using a Historical Controversy to Teach Critical Thinking, the Meaning of "Theory", and the Status of Scientific Knowledge

    ERIC Educational Resources Information Center

    Montgomery, Keith

    2009-01-01

    It is important that students understand the "open-ended" nature of scientific knowledge and the correct relationship between facts and theory. One way this can be taught is to examine a past controversy in which the interpretation of facts was contested. The controversy discussed here, with suggestions for teaching, is "Expanding…

  2. Provision and Preservation of Knowledge: A Department of Educational and Psychological Research as Laboratory for Analyzing Scientific Discourse.

    ERIC Educational Resources Information Center

    Bierschenk, Bernhard

    Two kinds of perspectives governing the provision and preservation of knowledge, a universal and an ecological perspective, are discussed in this paper. In the first case, scientific observations are represented through a semantic interpretation of facts. This is illustrated with a series of experiments on semantic feature perception in the recall…

  3. The Impact of Instructor Intention for Student Learning and Implementaton of Undergraduate Science Education Reform on Student Perception of the Learning Environment

    ERIC Educational Resources Information Center

    Steele, Erika M.

    2013-01-01

    The rapid advances in technology and scientific knowledge in modern society increases the need for a workforce with an understanding of technology and critical thinking skills College graduates are entering the working world without the critical thinking skills and ability to apply the scientific knowledge gained during their undergraduate…

  4. Four stages of a scientific discipline; four types of scientist.

    PubMed

    Shneider, Alexander M

    2009-05-01

    In this article I propose the classification of the evolutionary stages that a scientific discipline evolves through and the type of scientists that are the most productive at each stage. I believe that each scientific discipline evolves sequentially through four stages. Scientists at stage one introduce new objects and phenomena as subject matter for a new scientific discipline. To do this they have to introduce a new language adequately describing the subject matter. At stage two, scientists develop a toolbox of methods and techniques for the new discipline. Owing to this advancement in methodology, the spectrum of objects and phenomena that fall into the realm of the new science are further understood at this stage. Most of the specific knowledge is generated at the third stage, at which the highest number of original research publications is generated. The majority of third-stage investigation is based on the initial application of new research methods to objects and/or phenomena. The purpose of the fourth stage is to maintain and pass on scientific knowledge generated during the first three stages. Groundbreaking new discoveries are not made at this stage. However, new ways to present scientific information are generated, and crucial revisions are often made of the role of the discipline within the constantly evolving scientific environment. The very nature of each stage determines the optimal psychological type and modus operandi of the scientist operating within it. Thus, it is not only the talent and devotion of scientists that determines whether they are capable of contributing substantially but, rather, whether they have the 'right type' of talent for the chosen scientific discipline at that time. Understanding the four different evolutionary stages of a scientific discipline might be instrumental for many scientists in optimizing their career path, in addition to being useful in assembling scientific teams, precluding conflicts and maximizing productivity. The proposed model of scientific evolution might also be instrumental for society in organizing and managing the scientific process. No public policy aimed at stimulating the scientific process can be equally beneficial for all four stages. Attempts to apply the same criteria to scientists working on scientific disciplines at different stages of their scientific evolution would be stimulating for one and detrimental for another. In addition, researchers operating at a certain stage of scientific evolution might not possess the mindset adequate to evaluate and stimulate a discipline that is at a different evolutionary stage. This could be the reason for suboptimal implementation of otherwise well-conceived scientific policies.

  5. Elaboration and formalization of current scientific knowledge of risks and preventive measures illustrated by colorectal cancer.

    PubMed

    Giorgi, R; Gouvernet, J; Dufour, J; Degoulet, P; Laugier, R; Quilichini, F; Fieschi, M

    2001-01-01

    Present the method used to elaborate and formalize current scientific knowledge to provide physicians with tools available on the Internet, that enable them to evaluate individual patient risk, give personalized preventive recommendations or early screening measures. The approach suggested in this article is in line with medical procedures based on levels of evidence (Evidence-based Medicine). A cyclical process for developing recommendations allows us to quickly incorporate current scientific information. At each phase, the analysis is reevaluated by experts in the field collaborating on the project. The information is formalized through the use of levels of evidence and grades of recommendations. GLIF model is used to implement recommendations for clinical practice guidelines. The most current scientific evidence incorporated in a cyclical process includes several steps: critical analysis according to the Evidence-based Medicine method; identification of predictive factors; setting-up risk levels; identification of prevention measures; elaboration of personalized recommendation. The information technology implementation of the clinical practice guideline enables physicians to quickly obtain personalized information for their patients. Cases of colorectal prevention illustrate our approach. Integration of current scientific knowledge is an important process. The delay between the moment new information arrives and the moment the practitioner applies it, is thus reduced.

  6. [From popularization to participation: communicating science in the "knowledge society".

    PubMed

    Scalari, Antonio

    2017-01-01

    Vaccines are among the scientific topics that draw most interest in the public sphere. The discussion, however, can produce polarization, eventually becoming a controversy between "supporters of science" and "antiscience people". The aggressiveness of some anti-vaxxers, and their resistance to scientific evidence, can induce the belief that the confrontation is worthless, because many think that the top-down approach is the only one that can be used. The premise of this approach is that the gap of information is the main barrier between the scientific community and the society. However, from the '80s to date, studies have shown the fallacy of some assumptions of the so-called "deficit model", including the claim that the communication of science can be reduced only to dissemination and popularization of scientific facts. Studies and experiences, even in public health communications about vaccines, have highlighted the relevance of public engagement, social context, values systems, "lay knowledge" and the complexity of the relationship between science and society, fostering the emergence of new communication models. In the "knowledge society" we need effective communication to all, because people make use of scientific facts when they are involved in decisions on many public issues. Therefore, an evidence-based assessment of each communication approach and an evaluation of the effectiveness of methods in different contexts are required.

  7. The Curious Origins of the Scientific Referee

    NASA Astrophysics Data System (ADS)

    Csiszar, Alex

    Where did the figure of the scientific ``referee'' come from, and why? Beginning in the 1820s, in the midst of reform movements in English science and in English politics, a number of British scientific societies established formal systems for reading and reporting on manuscripts by special readers, who soon became known as referees. In this personage came to be juxtaposed elements of the legal expert, the trustworthy gentleman, the state bureaucrat, and even the anonymous literary reviewer. But when the scientific referee appeared on the scene of British science, it was not certain who he was, or what he was supposed to be for. The initial impetus for the Royal Society of London's referee system had been as much about generating publicity as making anonymous judgments. But gradually the referee report became shrouded in secrecy, and the referee was increasingly viewed as an agent for conferring rewards on authors in exchange for contributions to knowledge. The conception of the referee as primarily a gatekeeper of knowledge became dominant only later in the century, as scientific practitioners came to perceive the existence of a special set of texts called the scientific literature that could be marked off from other periodicals and which required protecting. The notion that some form of peer review - as it came to be known during the Cold War - was a sine qua non of legitimate scientific journals was an even later development.

  8. Outposts of science; the knowledge trade and the expansion of scientific community in post-Civil War America.

    PubMed

    Goldstein, Daniel

    2008-09-01

    By the second half of the nineteenth century, local and regional voluntary societies were among the most widespread, accessible, and familiar public scientific institutions in America. Collectively, they made up an institutional network that converted individuals' private interest in science into a public activity. They played an essential role in the dissemination of scientific information, the growth of a scientifically literate population, and the extension of public support for science in the decades after the Civil War. This essay delineates and maps the spread of these societies throughout the country, as well as the flow of scientific information both among societies and between a society and its regional hinterland. Using the Davenport [Iowa] Academy of Natural Sciences as an example, it demonstrates how local societies were embedded in a national scientific community and mediated between it and local scientific enthusiasts, to the benefit of both.

  9. Scientific media education in the classroom and beyond: a research agenda for the next decade

    NASA Astrophysics Data System (ADS)

    Reid, Grace; Norris, Stephen P.

    2016-03-01

    Scientific media education is the ability to draw on a knowledge of the media and science, in order to choose, understand, evaluate, and respond to representations of science across diverse media genres. We begin this manuscript by reviewing research that shows scientific media education is one of the most important content areas that could be taught in and out of the science classroom. We then set out to identify a research agenda that will help make scientific media education a key content area in both formal and informal science learning environments. In particular, we identified research avenues that will allow us to better understand: (1) limitations in current practices of scientific media education; (2) what scientific media education should look like in the future; and (3) ways we might overcome barriers to implementing a new and improved scientific media education.

  10. The Temporal Structure of Scientific Consensus Formation

    PubMed Central

    Shwed, Uri; Bearman, Peter S.

    2011-01-01

    This article engages with problems that are usually opaque: What trajectories do scientific debates assume, when does a scientific community consider a proposition to be a fact, and how can we know that? We develop a strategy for evaluating the state of scientific contestation on issues. The analysis builds from Latour’s black box imagery, which we observe in scientific citation networks. We show that as consensus forms, the importance of internal divisions to the overall network structure declines. We consider substantive cases that are now considered facts, such as the carcinogenicity of smoking and the non-carcinogenicity of coffee. We then employ the same analysis to currently contested cases: the suspected carcinogenicity of cellular phones, and the relationship between vaccines and autism. Extracting meaning from the internal structure of scientific knowledge carves a niche for renewed sociological commentary on science, revealing a typology of trajectories that scientific propositions may experience en route to consensus. PMID:21886269

  11. Communication and the Social Representation of Scientific Knowledge.

    ERIC Educational Resources Information Center

    Lievrouw, Leah A.

    1990-01-01

    Examines the process of disseminating scientific information to the public. Explores the particular steps and strategies that scientists use in taking research findings to a popular audience. Examines the popularization of cold-fusion research. (RS)

  12. 48 CFR 31.205-18 - Independent research and development and bid and proposal costs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... determine and exploit the potential of scientific discoveries or improvements in technology, materials... systematic use, under whatever name, of scientific and technical knowledge in the design, development, test...

  13. 48 CFR 31.205-18 - Independent research and development and bid and proposal costs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... determine and exploit the potential of scientific discoveries or improvements in technology, materials... systematic use, under whatever name, of scientific and technical knowledge in the design, development, test...

  14. 48 CFR 31.205-18 - Independent research and development and bid and proposal costs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... determine and exploit the potential of scientific discoveries or improvements in technology, materials... systematic use, under whatever name, of scientific and technical knowledge in the design, development, test...

  15. 48 CFR 31.205-18 - Independent research and development and bid and proposal costs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... determine and exploit the potential of scientific discoveries or improvements in technology, materials... systematic use, under whatever name, of scientific and technical knowledge in the design, development, test...

  16. Space Exploration as a Human Enterprise: The Scientific Interest

    ERIC Educational Resources Information Center

    Sagan, Carl

    1973-01-01

    Presents examples which illustrate the importance of space exploration in diverse aspects of scientific knowledge. Indicates that human beings are today not wise enough to anticipate the practical benefits of planetary studies. (CC)

  17. iBiology: communicating the process of science

    PubMed Central

    Goodwin, Sarah S.

    2014-01-01

    The Internet hosts an abundance of science video resources aimed at communicating scientific knowledge, including webinars, massive open online courses, and TED talks. Although these videos are efficient at disseminating information for diverse types of users, they often do not demonstrate the process of doing science, the excitement of scientific discovery, or how new scientific knowledge is developed. iBiology (www.ibiology.org), a project that creates open-access science videos about biology research and science-related topics, seeks to fill this need by producing videos by science leaders that make their ideas, stories, and experiences available to anyone with an Internet connection. PMID:25080124

  18. Secret Science: Exploring Cold War Greenland

    NASA Astrophysics Data System (ADS)

    Harper, K.

    2013-12-01

    During the early Cold War - from the immediate postwar period through the 1960s - the United States military carried out extensive scientific studies and pursued technological developments in Greenland. With few exceptions, most of these were classified - sometimes because new scientific knowledge was born classified, but mostly because the reasons behind the scientific explorations were. Meteorological and climatological, ionospheric, glaciological, seismological, and geological studies were among the geophysical undertakings carried out by military and civilian scientists--some in collaboration with the Danish government, and some carried out without their knowledge. This poster will present some of the results of the Exploring Greenland Project that is coming to a conclusion at Denmark's Aarhus University.

  19. Development of an Instrument to Assess Student Knowledge Necessary to Critically Evaluate Scientific Claims in the Popular Media

    ERIC Educational Resources Information Center

    Strimaitis, Anna M.; Schellinger, Jennifer; Jones, Anthony; Grooms, Jonathon; Sampson, Victor

    2014-01-01

    Students need to learn how to engage in several scientific practices in order to be considered proficient in science. Many of these practices are needed to evaluate scientific claims made in the popular media. Yet, there are few instruments available that science educators can use to assess whether students can apply what they know about…

  20. Stepping into the Unknown: Three Models for the Teaching and Learning of the Opening Sections of Scientific Articles

    ERIC Educational Resources Information Center

    Falk, Hedda; Yarden, Anat

    2011-01-01

    Different genres of scientific articles have begun to diffuse into science curricula. Among them, adapted primary literature (APL) retains the characteristics of scientific research articles, while adapting their contents to the knowledge level of students in the 11th to 12th grades. We present three models for the teaching and learning of the…

  1. Effects of the Scientific Argumentation Based Learning Process on Teaching the Unit of Cell Division and Inheritance to Eighth Grade Students

    ERIC Educational Resources Information Center

    Balci, Ceyda; Yenice, Nilgun

    2016-01-01

    The aim of this study is to analyse the effects of scientific argumentation based learning process on the eighth grade students' achievement in the unit of "cell division and inheritance". It also deals with the effects of this process on their comprehension about the nature of scientific knowledge, their willingness to take part in…

  2. How the Contents of a Bachelor's Degree Final Project of Engineering Evolve towards Innovative Scientific Knowledge: Keys to Success

    ERIC Educational Resources Information Center

    Núñez, Cristina; Guinea, Ana; Callau, Sara; Bengoa, Christophe; Basco, Josep; Gavaldà, Jordi

    2017-01-01

    The Bachelor's Degree Final Project (BDFP) of our school aims to develop a real constructive project, enhance cooperative teamwork and increase productivity of students. We present a real case study, related with engineering and scientific innovation results obtained by BDFP, which has led to an innovative scientific study presented at the 7th…

  3. The Role of the Goldstone Apple Valley Radio Telescope Project in Promoting Scientific Efficacy among Middle and High School Students.

    ERIC Educational Resources Information Center

    Ibe, Mary; Deutscher, Rebecca

    This study investigated the effects on student scientific efficacy after participation in the Goldstone Apple Valley Radio Telescope (GAVRT) project. In the GAVRT program, students use computers to record extremely faint radio waves collected by the telescope and analyze real data. Scientific efficacy is a type of self-knowledge a person uses to…

  4. Disconnections Between Teacher Expectations and Student Confidence in Bioethics

    NASA Astrophysics Data System (ADS)

    Hanegan, Nikki L.; Price, Laura; Peterson, Jeremy

    2008-09-01

    This study examines how student practice of scientific argumentation using socioscientific bioethics issues affects both teacher expectations of students’ general performance and student confidence in their own work. When teachers use bioethical issues in the classroom students can gain not only biology content knowledge but also important decision-making skills. Learning bioethics through scientific argumentation gives students opportunities to express their ideas, formulate educated opinions and value others’ viewpoints. Research has shown that science teachers’ expectations of student success and knowledge directly influence student achievement and confidence levels. Our study analyzes pre-course and post-course surveys completed by students enrolled in a university level bioethics course ( n = 111) and by faculty in the College of Biology and Agriculture faculty ( n = 34) based on their perceptions of student confidence. Additionally, student data were collected from classroom observations and interviews. Data analysis showed a disconnect between faculty and students perceptions of confidence for both knowledge and the use of science argumentation. Student reports of their confidence levels regarding various bioethical issues were higher than faculty reports. A further disconnect showed up between students’ preferred learning styles and the general faculty’s common teaching methods; students learned more by practicing scientific argumentation than listening to traditional lectures. Students who completed a bioethics course that included practice in scientific argumentation, significantly increased their confidence levels. This study suggests that professors’ expectations and teaching styles influence student confidence levels in both knowledge and scientific argumentation.

  5. Crossing Science-Policy-Societal Boundaries to Reduce Scientific and Institutional Uncertainty in Small-Scale Fisheries.

    PubMed

    Sutton, Abigail M; Rudd, Murray A

    2016-10-01

    The governance of small-scale fisheries (SSF) is challenging due to the uncertainty, complexity, and interconnectedness of social, political, ecological, and economical processes. Conventional SSF management has focused on a centralized and top-down approach. A major criticism of conventional management is the over-reliance on 'expert science' to guide decision-making and poor consideration of fishers' contextually rich knowledge. That is thought to exacerbate the already low governance potential of SSF. Integrating scientific knowledge with fishers' knowledge is increasingly popular and is often assumed to help reduce levels of biophysical and institutional uncertainties. Many projects aimed at encouraging knowledge integration have, however, been unsuccessful. Our objective in this research was to assess factors that influence knowledge integration and the uptake of integrated knowledge into policy-making. We report results from 54 semi-structured interviews with SSF researchers and practitioners from around the globe. Our analysis is framed in terms of scientific credibility, societal legitimacy, and policy saliency, and we discuss cases that have been partially or fully successful in reducing uncertainty via push-and-pull-oriented boundary crossing initiatives. Our findings suggest that two important factors affect the science-policy-societal boundary: a lack of consensus among stakeholders about what constitutes credible knowledge and institutional uncertainty resulting from shifting policies and leadership change. A lack of training for scientific leaders and an apparent 'shelf-life' for community organizations highlight the importance of ongoing institutional support for knowledge integration projects. Institutional support may be enhanced through such investments, such as capacity building and specialized platforms for knowledge integration.

  6. Crossing Science-Policy-Societal Boundaries to Reduce Scientific and Institutional Uncertainty in Small-Scale Fisheries

    NASA Astrophysics Data System (ADS)

    Sutton, Abigail M.; Rudd, Murray A.

    2016-10-01

    The governance of small-scale fisheries (SSF) is challenging due to the uncertainty, complexity, and interconnectedness of social, political, ecological, and economical processes. Conventional SSF management has focused on a centralized and top-down approach. A major criticism of conventional management is the over-reliance on `expert science' to guide decision-making and poor consideration of fishers' contextually rich knowledge. That is thought to exacerbate the already low governance potential of SSF. Integrating scientific knowledge with fishers' knowledge is increasingly popular and is often assumed to help reduce levels of biophysical and institutional uncertainties. Many projects aimed at encouraging knowledge integration have, however, been unsuccessful. Our objective in this research was to assess factors that influence knowledge integration and the uptake of integrated knowledge into policy-making. We report results from 54 semi-structured interviews with SSF researchers and practitioners from around the globe. Our analysis is framed in terms of scientific credibility, societal legitimacy, and policy saliency, and we discuss cases that have been partially or fully successful in reducing uncertainty via push-and-pull-oriented boundary crossing initiatives. Our findings suggest that two important factors affect the science-policy-societal boundary: a lack of consensus among stakeholders about what constitutes credible knowledge and institutional uncertainty resulting from shifting policies and leadership change. A lack of training for scientific leaders and an apparent `shelf-life' for community organizations highlight the importance of ongoing institutional support for knowledge integration projects. Institutional support may be enhanced through such investments, such as capacity building and specialized platforms for knowledge integration.

  7. Mythical thinking, scientific discourses and research dissemination.

    PubMed

    Hroar Klempe, Sven

    2011-06-01

    This article focuses on some principles for understanding. By taking Anna Mikulak's article "Mismatches between 'scientific' and 'non-scientific' ways of knowing and their contributions to public understanding of science" (IPBS 2011) as a point of departure, the idea of demarcation criteria for scientific and non-scientific discourses is addressed. Yet this is juxtaposed with mythical thinking, which is supposed to be the most salient trait of non-scientific discourses. The author demonstrates how the most widespread demarcation criterion, the criterion of verification, is self-contradictory, not only when it comes to logic, but also in the achievement of isolating natural sciences from other forms of knowledge. According to Aristotle induction is a rhetorical device and as far as scientific statements are based on inductive inferences, they are relying on humanities, which rhetoric is a part of. Yet induction also has an empirical component by being based on sense-impressions, which is not a part of the rhetoric, but the psychology. Also the myths are understood in a rhetorical (Lévi-Strauss) and a psychological (Cassirer) perspective. Thus it is argued that both scientific and non-scientific discourses can be mythical.

  8. [Problems of world outlook and methodology of science integration in biological studies].

    PubMed

    Khododova, Iu D

    1981-01-01

    Problems of worldoutlook and methodology of the natural-science knowledge are considered basing on the analysis of tendencies in the development of the membrane theory of cell processes and the use of principles of biological membrane functioning when solving some scientific and applied problems pertaining to different branches of chemistry and biology. The notion scientific knowledge integration is defined as interpenetration of approaches, methods and ideas of different branches of knowledge and enrichment on this basis of their content resulting in knowledge augmentation in each field taken separately. These processes are accompanied by appearance of new branches of knowledge - sciences "on junction" and their subsequent differentiations. The analysis of some gnoseological situations shows that integration of sciences contributes to coordination and some agreement of thinking styles of different specialists, puts forward keen personality of a scientist demanding, in particular, his high professional mobility. Problems of scientific activity organization are considered, which involve social sciences into the integration processes. The role of philosophy in the integration processes is emphasized.

  9. Modifiable futures: science fiction at the bench.

    PubMed

    Milburn, Colin

    2010-09-01

    Science fiction remains an alien dimension of the history of science. Historical and literary studies of science have become increasingly attentive to various "literary technologies" in scientific practice, the metaphorical features of scientific discourse, and the impact of popular science writing on the social development of scientific knowledge. But the function of science fiction and even literature as such in the history of scientific and technological innovation has often been obscured, misconstrued, or repudiated owing to conventional notions of authorship, influence, and the organic unity of texts. The better to address those close encounters where scientific practice makes use of speculative fiction, this essay proposes that we instead analyze such exchanges as processes of appropriation, remixing, and modification.

  10. Consumer Perception of Genetically Modified Organisms and Sources of Information123

    PubMed Central

    Wunderlich, Shahla; Gatto, Kelsey A

    2015-01-01

    Genetically modified organisms (GMOs) have been available for commercial purchase since the 1990s, allowing producers to increase crop yields through bioengineering that creates herbicide-resistant and insect-resistant varieties. However, consumer knowledge about GMOs has not increased at the same rate as the adoption of GMO crops. Consumers worldwide are displaying limited understanding, misconceptions, and even unfamiliarity with GMO food products. Many consumers report that they receive information about GMO food products from the media, Internet, and other news sources. These sources may be less reliable than scientific experts whom consumers trust more to present the facts. Although many in the United States support mandatory GMO labeling (similar to current European standards), consumer awareness of current GMO labeling is low. A distinction must also be made between GMO familiarity and scientific understanding, because those who are more familiar with it tend to be more resistant to bioengineering, whereas those with higher scientific knowledge scores tend to have less negative attitudes toward GMOs. This brings to question the relation between scientific literacy, sources of information, and overall consumer knowledge and perception of GMO foods. PMID:26567205

  11. Between physics and metaphysics: structure as a boundary concept.

    PubMed

    Tau, Ramiro

    2015-03-01

    The notion of structure is found to be used in a great number of theories, scientific research programs and world views. However, its uses and definitions are as diverse as the objects of the scientific disciplines where it can be found. Without trying to recreate the structuralist aspiration from the mid XX century, which believed to have found in this notion a common transdisciplinary language, I discuss a specific aspect of this concept that could be considered a constant in different perspectives. This aspect refers to the location of the notions of structure as boundaries in the different scientific theories. With this, I try to argue that the definition or presentation of a structure configures in itself the frontier for scientific knowledge, defining at the same time implied ontological assumptions. In order to discuss this hypothesis, and taking into consideration the double origin of contemporary notions of structure -the mathematical and linguistic line-, I revise several theoretical perspectives which made explicit the relation between structures and knowledge, and their relation with the real: the arguments on physical knowledge by Eddington, structural anthropology, structural linguistics, Lacanian psychoanalysis and Piaget's genetic psychology.

  12. The Influence of Positivism in the Nineteenth Century Astronomy in Argentina

    NASA Astrophysics Data System (ADS)

    Santilli, Haydée; Cornejo, Jorge Norberto

    2013-06-01

    In this paper we analyze the influence of positivism in Argentina astronomical culture in the nineteenth century. We did the analysis from two dimensions, scientific knowledge development and science teaching. Because Argentina was a very young country at that time, it was of singular importance, not only the development of scientific knowledge itself, but also the training of human resources for the transfer of such knowledge. In this regard, the influence of astronomy, in its role of modernizing discipline related to positivist ideal, was particularly noticeable in the training of teachers of primary schools. Domingo F. Sarmiento represents a turning point for the astronomy development in Argentina; his thought was strongly influenced by the Comtean positivism. Sarmiento believed that Copernican astronomy was one of the critical scientific disciplines to the formation of a "modern" citizen. Astronomy in Argentina was influenced by two epistemological streams: French and German positivism; however the first one was the most important. We shall show the relevant influence of the socio-historical context over the scientific development. We shall also see that science was a fundamental social actor in Argentina history.

  13. Associations Between Attitudes Towards Science and Children's Evaluation of Information About Socioscientific Issues

    NASA Astrophysics Data System (ADS)

    Xiao, Sihan; Sandoval, William A.

    2017-05-01

    Science educators are typically dismayed by the failure of students to use relevant scientific knowledge when reasoning about socioscientific issues. Except for the well-documented association between having more knowledge about a topic and a tendency to use that knowledge, the influences on students' evaluation of information in socioscientific issues are not well understood. This study presents an initial investigation into the associations between upper elementary students' attitudes towards science and their evaluation of information about a socioscientific issue. We surveyed the science attitudes of 49 sixth grade students and then asked them to evaluate information about a socioscientific issue (alternative energy use). Positive attitudes were associated with a more scientific approach to evaluating information in the task. When trying to make judgments, students with generally positive attitudes towards science were more likely to attend to scientific information than other sources. Scientific information, nonetheless, served a variety of socially oriented goals in students' evaluations. These findings warrant further research on the relationship between science attitudes and reasoning about socioscientific issues and support the argument for connecting school science more clearly with everyday concerns.

  14. Establishing the Norms of Scientific Argumentation in Classrooms.

    ERIC Educational Resources Information Center

    Driver, Rosalind; Newton, Paul; Osborne, Jonathan

    2000-01-01

    Develops the case for the inclusion and central role of argument in science education. Discusses the function and purpose of dialogical argument in the social construction of scientific knowledge and interpretation of empirical data. (Author/CCM)

  15. The Effect of Project-Based History and Nature of Science Practices on the Change of Nature of Scientific Knowledge

    ERIC Educational Resources Information Center

    Çibik, Ayse Sert

    2016-01-01

    The aim of this study is to compare the change of pre-service science teachers' views about the nature of scientific knowledge through Project-Based History and Nature of Science training and Conventional Method. The sample of the study consists of two groups of 3rd grade undergraduate students attending teacher preparation program of science…

  16. Influence of Gender and Knowledge on Secondary School Students' Scientific Creativity Skills in Nakuru District, Kenya

    ERIC Educational Resources Information Center

    Okere, Mark I. O.; Ndeke, Grace C. W.

    2012-01-01

    The purpose of this study was to investigate the influence of gender and knowledge on scientific creativity among form three biology students (third year in secondary school cycle) in Nakuru district in Kenya. The cross- sectional survey research was employed. A sample of eight schools with a total of 363 students was selected from the population…

  17. Science Teacher Educators' Engagement with Pedagogical Content Knowledge and Scientific Inquiry in Predominantly Paper-Based Distance Learning Programs

    ERIC Educational Resources Information Center

    Fraser, William J.

    2017-01-01

    This article focuses on the dilemmas science educators face when having to introduce Pedagogical Content Knowledge (PCK) to science student teachers in a predominantly paper-based distance learning environment. It draws on the premise that science education is bound by the Nature of Science (NOS), and by the Nature of Scientific Inquiry (NOSI).…

  18. Self-Enhancing and Self-Defeating Ego Goals in Mathematics Lessons: Relationships among Task and Avoidance Goals, Achievement, Self-Perceptions, Anxiety, and Motivation (A Scientific Educology)

    ERIC Educational Resources Information Center

    Skaalvik, Einar M.

    2002-01-01

    Educology is the fund of knowledge about the educational process, which obviously occurs within and outside of schools. Educology includes, at the least, the fund of knowledge about past education (historical educology), about current states of affairs in education (scientific educology), about effective practices within education (praxiological…

  19. Analysis of a Moodle-Based Training Program about the Pedagogical Content Knowledge of Evolution Theory and Natural Selection

    ERIC Educational Resources Information Center

    Stasinakis, Panagiotis K.; Kalogiannnakis, Michail

    2017-01-01

    In this study we aim to find out whether a training program for secondary school science teachers which was organized based on the model of Pedagogical Content Knowledge (PCK), could improve their individual PCK for a specific scientific issue. The Evolution Theory (ET) and the Natural Selection (NS) were chosen as the scientific issues of…

  20. Content Knowledge in Teaching, an Investigation into an Adequate "Milieu" for Teaching Dance: The Case of Indian Dance in France

    ERIC Educational Resources Information Center

    Monique, Loquet; Malini, Ranganathan

    2010-01-01

    Since the 1970s, scientific researchers have shown that the nature and practice of the knowledge being taught plays an important role in the organization of teaching. Teaching content, first in mathematics, then in physical education, has become the object of scientific research in didactics in France. This research questions the commonplace…

  1. Examining the Gap between Science and Public Opinion about Genetically Modified Food and Global Warming.

    PubMed

    McFadden, Brandon R

    2016-01-01

    There is great uncertainty due to challenges of escalating population growth and climate change. Public perception that diverges from the scientific community may decrease the effectiveness of scientific inquiry and innovation as tools to solve these challenges. The objective of this study was to identify the factors associated with the divergence of public opinion from scientific consensus regarding the safety of genetically modified (GM) foods and human involvement in global warming (GW). Results indicate that the effects of knowledge on public opinion are complex and non-uniform across types of knowledge (i.e., perceived and actual) or issues. Political affiliation affects agreement with science; Democrats were more likely to agree that GM food is safe and human actions cause GW. Respondents who had relatively higher cognitive function or held illusionary correlations about GM food or GW were more likely to have an opinion that differed from the scientific community.

  2. Examining the Gap between Science and Public Opinion about Genetically Modified Food and Global Warming

    PubMed Central

    McFadden, Brandon R.

    2016-01-01

    There is great uncertainty due to challenges of escalating population growth and climate change. Public perception that diverges from the scientific community may decrease the effectiveness of scientific inquiry and innovation as tools to solve these challenges. The objective of this study was to identify the factors associated with the divergence of public opinion from scientific consensus regarding the safety of genetically modified (GM) foods and human involvement in global warming (GW). Results indicate that the effects of knowledge on public opinion are complex and non-uniform across types of knowledge (i.e., perceived and actual) or issues. Political affiliation affects agreement with science; Democrats were more likely to agree that GM food is safe and human actions cause GW. Respondents who had relatively higher cognitive function or held illusionary correlations about GM food or GW were more likely to have an opinion that differed from the scientific community. PMID:27829008

  3. Knowledge of scientific misconduct in publication among medical students.

    PubMed

    Mubeen, Syed Muhammad; Ghayas, Rabia; Adil Rizvi, Syed Hasan; Khan, Sohaib Ahmed

    2017-01-01

    Publication is a central element in research dissemination and scientific misconduct in publication is relatively ignored in biomedical research. This study is to assess the knowledge of scientific misconduct in publication among private and public sector medical students. A questionnaire-based cross-sectional study was carried in four (two public and two private) medical colleges of Karachi in 2015. After ethical approval, data were collected through convenient sampling and analyzed in SPSS 16.0. Descriptive statistics was used to summarize the data and Chi-square test was used for cross tabulation with sex, type of medical colleges, and knowledge of scientific misconduct in publication. A total of 592 medical students participated with mean age of 22.2 ± 1.47 years. The majority (491, 79%) of medical students had heard about the word "publication ethics," higher among public sector students than from private sector (P < 0.001). Only 78 (13.2%) reported to had published original articles, and 64 (10.8%) and 53 (9%) medical students had heard of "ICMJE authorship criteria" and "COPE," respectively. Knowledge about fabrication of data and scientific misconduct in publication was found to be statistically significant (P < 0.05) among males than female students. Statistically significant differences were also observed between public and private medical students for knowledge regarding salami slicing, ghost author, fabrication, and photomanipulation (P < 0.001) and for plagiarism (P < 0.005). Participants from public sector colleges scored significantly better in all above variables than private medical colleges except knowledge about salami slicing in which participants from latter performed significantly better than public sector students. The study demonstrates deficiencies in knowledge regarding several aspects of publication ethics among medical students of both public and private medical colleges in Karachi. There is a need to increase the awareness of research and publication ethics among students during their academic years.

  4. The Effect of Active Learning Based Science Camp Activities on Primary School Students' Opinions towards Scientific Knowledge and Scientific Process Skills

    ERIC Educational Resources Information Center

    Aydede Yalçin, Meryem Nur

    2016-01-01

    It is important for people to be able to judge the nature while actually living in it to gain the scientific perspective which is an important skill nowadays. Within this importance, the general purpose of this study is to examine the effect of active learning based science camp activities on sixth, seventh and eighth grade students' opinions…

  5. Astrobiology for the 21st Century

    NASA Astrophysics Data System (ADS)

    Oliveira, C.

    2008-02-01

    We live in a scientific world. Science is all around us. We take scientific principles for granted every time we use a piece of technological apparatus, such as a car, a computer, or a cellphone. In today's world, citizens frequently have to make decisions that require them to have some basic scientific knowledge. To be a contributing citizen in a modern democracy, a person needs to understand the general principles of science.

  6. [Patents and scientific research: an ethical-legal approach].

    PubMed

    Darío Bergel, Salvador

    2014-01-01

    This article aims to review the relationship between patents and scientific research from an ethical point of view. The recent developments in the law of industrial property led in many cases to patent discoveries, contributions of basic science, and laws of nature. This trend, which denies the central principles of the discipline, creates disturbances in scientific activity, which requires the free movement of knowledge in order to develop their potentialities.

  7. Supporting Scientific Experimentation and Reasoning in Young Elementary School Students

    NASA Astrophysics Data System (ADS)

    Varma, Keisha

    2014-06-01

    Researchers from multiple perspectives have shown that young students can engage in the scientific reasoning involved in science experimentation. However, there is little research on how well these young students learn in inquiry-based learning environments that focus on using scientific experimentation strategies to learn new scientific information. This work investigates young children's science concept learning via inquiry-based instruction on the thermodynamics system in a developmentally appropriate, technology-supported learning environment. First- and third-grade students participate in three sets of guided experimentation activities that involve using handheld computers to measure change in temperature given different types of insulation materials. Findings from pre- and post-comparisons show that students at both grade levels are able to learn about the thermodynamics system through engaging in the guided experiment activities. The instruction groups outperformed the control groups on multiple measures of thermodynamics knowledge, and the older children outperform the younger children. Knowledge gains are discussed in the context of mental models of the thermodynamics system that include the individual concepts mentioned above and the relationships between them. This work suggests that young students can benefit from science instruction centered on experimentation activities. It shows the benefits of presenting complex scientific information authentic contexts and the importance of providing the necessary scaffolding for meaningful scientific inquiry and experimentation.

  8. Biomedical ontologies: toward scientific debate.

    PubMed

    Maojo, V; Crespo, J; García-Remesal, M; de la Iglesia, D; Perez-Rey, D; Kulikowski, C

    2011-01-01

    Biomedical ontologies have been very successful in structuring knowledge for many different applications, receiving widespread praise for their utility and potential. Yet, the role of computational ontologies in scientific research, as opposed to knowledge management applications, has not been extensively discussed. We aim to stimulate further discussion on the advantages and challenges presented by biomedical ontologies from a scientific perspective. We review various aspects of biomedical ontologies going beyond their practical successes, and focus on some key scientific questions in two ways. First, we analyze and discuss current approaches to improve biomedical ontologies that are based largely on classical, Aristotelian ontological models of reality. Second, we raise various open questions about biomedical ontologies that require further research, analyzing in more detail those related to visual reasoning and spatial ontologies. We outline significant scientific issues that biomedical ontologies should consider, beyond current efforts of building practical consensus between them. For spatial ontologies, we suggest an approach for building "morphospatial" taxonomies, as an example that could stimulate research on fundamental open issues for biomedical ontologies. Analysis of a large number of problems with biomedical ontologies suggests that the field is very much open to alternative interpretations of current work, and in need of scientific debate and discussion that can lead to new ideas and research directions.

  9. Balancing the pros and cons of GMOs: socio-scientific argumentation in pre-service teacher education

    NASA Astrophysics Data System (ADS)

    Cinici, Ayhan

    2016-07-01

    This study investigates the role of the discursive process in the act of scientific knowledge building. Specifically, it links scientific knowledge building to risk perception of Genetically Modified Organisms (GMOs). To this end, this study designed and implemented a three-stage argumentation programme giving pre-service teachers (PSTs) the opportunity to consider, discuss and construct shared decisions about GMOs. The study involved 101 third-year PSTs from two different classes, randomly divided into control and experimental groups. The study utilised both quantitative and qualitative methods. During the quantitative phase, researchers administered a pre- and post-intervention scale to measure both groups' risk perception of GMOs. During the qualitative phase, data were collected from the experimental group alone through individual and group reports and an open-ended questionnaire. T-test results showed a statistically significant difference between the experimental and control groups' risk perception of GMOs. Qualitative analysis also revealed differences, for example, in PSTs' weighing of the pros and cons of scientific research demonstrating positive results of GMOs. In addition, PSTs' acceptance of GMOs increased. Consequently, this study suggests that developing familiarity with scientific enterprise may play an effective role in adopting a scientific perspective as well as a more balanced risk perception of GMOs.

  10. Doing peer review and receiving feedback: impact on scientific literacy and writing skills.

    PubMed

    Geithner, Christina A; Pollastro, Alexandria N

    2016-03-01

    Doing peer review has been effectively implemented to help students develop critical reading and writing skills; however, its application in Human Physiology programs is limited. The purpose of the present study was to determine the impact of peer review on Human Physiology majors' perceptions of their scientific literacy and writing skills. Students enrolled in the Scientific Writing course completed multiple writing assignments, including three revisions after receiving peer and instructor feedback. Students self-assessed their knowledge, skills, and attitudes related to science and writing in pre- and postcourse surveys (n = 26 with complete data). Seven survey items related to scientific literacy and writing skills impacted by peer review were selected for analysis. Scores on these survey items were summed to form a composite self-rating score. Responses to two questions regarding the most useful learning activities were submitted to frequency analysis. Mean postcourse scores for individual survey items and composite self-rating scores were significantly higher than precourse means (P < 0.05). Peer review was the most frequently noted among 21 learning activities for increasing scientific literacy and in the top 5 for improving writing skills. In conclusion, peer review is an effective teaching/learning approach for improving undergraduate Human Physiology majors' knowledge, skills, and attitudes regarding science and scientific writing. Copyright © 2016 The American Physiological Society.

  11. University Education in the USSR.

    ERIC Educational Resources Information Center

    Smirnov, A. G.; Kleho, Yu. Ya.

    1989-01-01

    Universities in the USSR fulfill the role of leading educational, scientific, and cultural centers. Their main function is training researchers and teachers and conducting scientific research. They also offer courses enabling adults to enrich their knowledge of various fields of culture. (SK)

  12. Diffusion and utilization of scientific and technological knowledge within state and local governments: Executive summary

    NASA Technical Reports Server (NTRS)

    Feller, I.; Flanary, P. E.

    1979-01-01

    The requirements for technology transfer among the state and local governments are analyzed. Topics discussed include: information systems, federal funding, delivery channels, state executive programs, and state legislature requirements for scientific information.

  13. Is there a need for a code of ethics in science communication and Communicating Uncertainties on Climate Change?

    NASA Astrophysics Data System (ADS)

    Cegnar, T.; Benestad, R.; Billard, C.

    2010-09-01

    The EMS Media team recognises that: Scientific knowledge is valuable for society, but it also becomes fragile in a media-dominated society where the distortion of facts clouds the validity of the information. The use of scientific titles in communication normally brings expectations of high standards regarding the information content. Freedom of speech is fragile in the sense that it can be diluted by a high proportion of false information. The value of scientific and scholastic titles is degraded when they are used to give the impression of false validity. Science communication is powerful, and implies a certain responsibility and ethical standard. The scientific community operates with a more or less tacit ethics code in all areas touching the scientists' activities. Even though many scientific questions cannot be completely resolved, there is a set of established and unequivocal scientific practices, methods, and tests, on which our scientific knowledge rests. Scientists are assumed to master the scientific practices, methods, and tests. High standard in science-related communication and media exposure, openness, and honesty will increase the relevance of science, academies, and scientists in the society, in addition to benefiting the society itself. Science communication is important to maintain and enhance the general appreciation of science. The value of the role of science is likely to increase with a reduced distance between scientists and the society and a lower knowledge barrier. An awareness about the ethical aspects of science and science communication may aid scientists in making decisions about how and what to say. Scientists are often not trained in communication or ethics. A set of guide lines may lower the barrier for scientists concerned about tacit codes to come forward and talk to the media. Recommendations: The mass media should seek more insight into scientific knowledge, history, principles, and societies. Journalists and artists should be encouraged and receive support to attend the large scientific conferences organised by e.g the EMS, EGU, AMS, and the AGU. National meteorological societies can contribute by promoting the idea of media participation, e.g. through statements and letters of opinion to news papers, in TV and radio. They can point to media awards and best-practice examples (such as the Norwegian collaboration between the national broadcasting corporation and the meteorological service yr.no.) Tacit ethics codes and expectations from scientists should be spelled out. The role of scientists should be clear, and national academies and member organisations are encouraged to provide a clear list of expectations. Statements drawing on the authority of science should have a basis in well-established and unequivocal scientific practices, methods, and tests. This means, for instance, that analysis and statistics must conform to well-established robust methods, avoiding 'cherry picking' and the misrepresentation of data. The information should also - to the greatest possible degree - be based on open source and transparent methods and data.

  14. Rethinking Uncertainty: What Does the Public Need to Know?

    NASA Astrophysics Data System (ADS)

    Oreskes, N.

    2012-12-01

    The late Steven Schneider is often quoted as addressing the double-bind of science communication: that to be a good scientist one has to be cautious and acknowledge uncertainty, but to reach the media and the public one has to be bold, incautious, and even a bit dramatic. Here, I focus on a related but different double-bind: the double bind of responding to doubt. In our recent book, Merchants of Doubt, Erik M. Conway and I showed how doubt-mongers exploited scientific uncertainty as a political strategy to confuse the public and delay action on a range of environmental issues from the harms of tobacco to the reality of anthropogenic climate change. This strategy is effective because it appeals to lay people, journalists,' and even fellow scientists' sense of fair play—that it is right to hear "both sides" of an issue. Scientists are then caught in a double-bind: refusing to respond seems smug and elitist, but responding scientifically seems to confirm that there is in fact a scientific debate. Doubt-mongering is also hard to counter because our knowledge is, in fact, uncertain, so when we communicate in conventional scientific ways, acknowledging the uncertainties and limits in our understanding, we may end up reinforcing the uncertainty framework. The difficulty is exacerbated by the natural tendency of scientists to focus on novel and original results, rather than matters that are well established, lest we be accused of lacking originality or of taking credit for other's work. The net result is the impression among lay people that our knowledge is very likely to change and therefore a weak basis for making public policy decision. History of science, however, suggests a different picture: we know that a good deal of scientific knowledge has proved temporally robust and has provided a firm basis for effective public policy. Action on earlier environmental issues such as DDT and acid rain, guided by scientific knowledge, has worked to limit environmental damage and harms to public health. This suggests that when we communicate beyond our specialist communities, we would do well to stress the successful track record of environmental science. It also suggests that we should resist the temptation to talk about our latest research results—however exciting those may be—and focus instead on the large body of stable scientific knowledge, emphasizing that much of this knowledge is not all at new. As scientists, it is our impulse to focus on the novel and original—which almost by definition is rather uncertain—rather than the old and well established. Yet it is the well-established knowledge that is most important for the public to understand, for it is the well-established knowledge that provides us with our best basis for effective remedies.

  15. When science becomes too easy: Science popularization inclines laypeople to underrate their dependence on experts.

    PubMed

    Scharrer, Lisa; Rupieper, Yvonne; Stadtler, Marc; Bromme, Rainer

    2017-11-01

    Science popularization fulfills the important task of making scientific knowledge understandable and accessible for the lay public. However, the simplification of information required to achieve this accessibility may lead to the risk of audiences relying overly strongly on their own epistemic capabilities when making judgments about scientific claims. Moreover, they may underestimate how the division of cognitive labor makes them dependent on experts. This article reports an empirical study demonstrating that this "easiness effect of science popularization" occurs when laypeople read authentic popularized science depictions. After reading popularized articles addressed to a lay audience, laypeople agreed more with the knowledge claims they contained and were more confident in their claim judgments than after reading articles addressed to expert audiences. Implications for communicating scientific knowledge to the general public are discussed.

  16. Public understanding of science and the perception of nanotechnology: the roles of interest in science, methodological knowledge, epistemological beliefs, and beliefs about science

    NASA Astrophysics Data System (ADS)

    Retzbach, Andrea; Marschall, Joachim; Rahnke, Marion; Otto, Lukas; Maier, Michaela

    2011-12-01

    In this article, we report data from an online questionnaire study with 587 respondents, representative for the adult U.S. population in terms of age, gender, and level of education. The aim of this study was to assess how interest in science and knowledge as well as beliefs about science are associated with risk and benefit perceptions of nanotechnology. The findings suggest that the U.S. public is still rather unfamiliar with nanotechnology. Those who have some knowledge mainly have gotten it from TV and the Internet. The content of current media reports is perceived as fairly positive. Knowledge of scientific methods is unrelated to benefit and risk perceptions, at least when other predictors are controlled. In contrast, positive beliefs about science (e.g., its impact on economy or health) and more sophisticated epistemological beliefs about the nature of scientific knowledge are moderately linked to more positive perceptions of nanotechnology. The only exception is the perception of scientific uncertainty: This is associated with less positive evaluations. Finally, higher engagement with science is associated with higher risk perceptions. These findings show that laypersons who are engaged with science and who are aware of the inherent uncertainty of scientific evidence might perceive nanotechnology in a somewhat more differentiated way, contrary to how it is portrayed in the media today.

  17. An approach to development of ontological knowledge base in the field of scientific and research activity in Russia

    NASA Astrophysics Data System (ADS)

    Murtazina, M. Sh; Avdeenko, T. V.

    2018-05-01

    The state of art and the progress in application of semantic technologies in the field of scientific and research activity have been analyzed. Even elementary empirical comparison has shown that the semantic search engines are superior in all respects to conventional search technologies. However, semantic information technologies are insufficiently used in the field of scientific and research activity in Russia. In present paper an approach to construction of ontological model of knowledge base is proposed. The ontological model is based on the upper-level ontology and the RDF mechanism for linking several domain ontologies. The ontological model is implemented in the Protégé environment.

  18. ForistomApp a Web application for scientific and technological information management of Forsitom foundation

    NASA Astrophysics Data System (ADS)

    Saavedra-Duarte, L. A.; Angarita-Jerardino, A.; Ruiz, P. A.; Dulce-Moreno, H. J.; Vera-Rivera, F. H.; V-Niño, E. D.

    2017-12-01

    Information and Communication Technologies (ICT) are essential in the transfer of knowledge, and the Web tools, as part of ICT, are important for institutions seeking greater visibility of the products developed by their researchers. For this reason, we implemented an application that allows the information management of the FORISTOM Foundation (Foundation of Researchers in Science and Technology of Materials). The application shows a detailed description, not only of all its members also of all the scientific production that they carry out, such as technological developments, research projects, articles, presentations, among others. This application can be implemented by other entities committed to the scientific dissemination and transfer of technology and knowledge.

  19. Conceptual Tools for Understanding Nature - Proceedings of the 3rd International Symposium

    NASA Astrophysics Data System (ADS)

    Costa, G.; Calucci, M.

    1997-04-01

    The Table of Contents for the full book PDF is as follows: * Foreword * Some Limits of Science and Scientists * Three Limits of Scientific Knowledge * On Features and Meaning of Scientific Knowledge * How Science Approaches the World: Risky Truths versus Misleading Certitudes * On Discovery and Justification * Thought Experiments: A Philosophical Analysis * Causality: Epistemological Questions and Cognitive Answers * Scientific Inquiry via Rational Hypothesis Revision * Probabilistic Epistemology * The Transferable Belief Model for Uncertainty Representation * Chemistry and Complexity * The Difficult Epistemology of Medicine * Epidemiology, Causality and Medical Anthropology * Conceptual Tools for Transdisciplinary Unified Theory * Evolution and Learning in Economic Organizations * The Possible Role of Symmetry in Physics and Cosmology * Observational Cosmology and/or other Imaginable Models of the Universe

  20. A day of immersive physiology experiments increases knowledge and excitement towards physiology and scientific careers in Native American students.

    PubMed

    Becker, Bryan K; Schiller, Alicia M; Zucker, Irving H; Eager, Eric A; Bronner, Liliana P; Godfrey, Maurice

    2017-03-01

    Underserved minority groups are disproportionately absent from the pursuit of careers in science, technology, engineering, and mathematics (STEM) fields. One such underserved population, Native Americans, are particularly underrepresented in STEM fields. Although recent advocacy and outreach designed toward increasing minority involvement in health care-related occupations have been mostly successful, little is known about the efficacy of outreach programs in increasing minority enthusiasm toward careers in traditional scientific professions. Furthermore, very little is known about outreach among Native American schools toward increasing involvement in STEM. We collaborated with tribal middle and high schools in South Dakota and Nebraska through a National Institutes of Health Science Education Partnership Award to hold a day-long physiology, activity-based event to increase both understanding of physiology and enthusiasm to scientific careers. We recruited volunteer biomedical scientists and trainees from the University of Nebraska Medical Center, Nebraska Wesleyan University, and University of South Dakota. To evaluate the effectiveness of the day of activities, 224 of the ~275-300 participating students completed both a pre- and postevent evaluation assessment. We observed increases in both students self-perceived knowledge of physiology and enthusiasm toward scientific career opportunities after the day of outreach activities. We conclude that activity-based learning opportunities in underserved populations are effective in increasing both knowledge of science and interest in scientific careers. Copyright © 2017 the American Physiological Society.

  1. Nursing's ways of knowing and dual process theories of cognition.

    PubMed

    Paley, John; Cheyne, Helen; Dalgleish, Len; Duncan, Edward A S; Niven, Catherine A

    2007-12-01

    This paper is a comparison of nursing's patterns of knowing with the systems identified by cognitive science, and evaluates claims about the equal-status relation between scientific and non-scientific knowledge. Ever since Carper's seminal paper in 1978, it has been taken for granted in the nursing literature that there are ways of knowing, or patterns of knowing, that are not scientific. This idea has recently been used to argue that the concept of evidence, typically associated with evidence-based practice, is inappropriately restricted because it is identified exclusively with scientific research. The paper reviews literature in psychology which appears to draw a comparable distinction between rule-based, analytical cognitive processes and other forms of cognitive processing which are unconscious, holistic and intuitive. There is a convincing parallel between the 'patterns of knowing' distinction in nursing and the 'cognitive processing' distinction in psychology. However, there is an important difference in the way the relation between different forms of knowing (or cognitive processing) is depicted. In nursing, it is argued that the different patterns of knowing have equal status and weight. In cognitive science, it is suggested that the rule-based, analytical form of cognition has a supervisory and corrective function with respect to the other forms. Scientific reasoning and evidence-based knowledge have epistemological priority over the other forms of nursing knowledge. The implications of this claim for healthcare practice are briefly indicated.

  2. Tensions Between Science and Intuition Across the Lifespan.

    PubMed

    Shtulman, Andrew; Harrington, Kelsey

    2016-01-01

    The scientific knowledge needed to engage with policy issues like climate change, vaccination, and stem cell research often conflicts with our intuitive theories of the world. How resilient are our intuitive theories in the face of contradictory scientific knowledge? Here, we present evidence that intuitive theories in 10 domains of knowledge-astronomy, evolution, fractions, genetics, germs, matter, mechanics, physiology, thermodynamics, and waves-persist more than four decades beyond the acquisition of a mutually exclusive scientific theory. Participants (104 younger adults, Mage  = 19.6, and 48 older adults, Mage  = 65.1) were asked to verify two types of scientific statements as quickly as possible: those that are consistent with intuition (e.g., "the moon revolves around the Earth") and those that involve the same conceptual relations but are inconsistent with intuition (e.g., "the Earth revolves around the sun"). Older adults were as accurate as younger adults at verifying both types of statements, but the lag in response times between intuition-consistent and intuition-inconsistent statements was significantly larger for older adults than for younger adults. This lag persisted even among professional scientists. Overall, these results suggest that the scientific literacy needed to engage with topics of global importance may be constrained by patterns of reasoning that emerge in childhood but persist long thereafter. Copyright © 2015 Cognitive Science Society, Inc.

  3. Knowledge, its Application, and Attitudes Associated with the Reading of Diverse Genres of Science Texts

    NASA Astrophysics Data System (ADS)

    Gonçalves Nigro, Rogerio; Frateschi Trivelato, Silvia

    2012-11-01

    The purpose of this article is to assess the knowledge, application of knowledge, and attitudes associated with the reading of different genres of expository science texts. We assigned approximately half of a sample consisting of 220 students 14-15 years of age, chosen at random, to read an excerpt from a popular scientific text, and the other half to read an excerpt from a textbook addressing the same topic. Readers took knowledge and application tests immediately after the reading and again 15 days later. Students also took knowledge and reading proficiency pre-tests, and attitude tests related to the selected texts. Overall, girls scored higher than boys and readers of the popular scientific text scored higher than their colleagues who read the textbook excerpt. We noted interaction between 'reader gender' and 'genre of the text read' in terms of long-term learning based on the reading. Attitude regarding the text read appears as an important factor in explaining behavior of boys who read the popular scientific text. Surprisingly, knowledge and application test scores were not statistically different among girls with different degrees of reading proficiency who read the textbook excerpt. In addition, on the application tests, among the boys who read the popular scientific text, good readers scored lower than their colleagues who read the textbook excerpt. In our opinion, this study can serve to show that 'reading in science education' is not a trivial matter and we feel that the subject merits more in-depth investigation.

  4. Does Attainment of Piaget's Formal Operational Level of Cognitive Development Predict Student Understanding of Scientific Models?

    ERIC Educational Resources Information Center

    Lahti, Richard Dennis, II.

    2012-01-01

    Knowledge of scientific models and their uses is a concept that has become a key benchmark in many of the science standards of the past 30 years, including the proposed Next Generation Science Standards. Knowledge of models is linked to other important nature of science concepts such as theory change which are also rising in prominence in newer…

  5. Students' Knowledge of Nuclear Science and Its Connection with Civic Scientific Literacy in Two European Contexts: The Case of Newspaper Articles

    ERIC Educational Resources Information Center

    Tsaparlis, Georgios; Hartzavalos, Sotiris; Nakiboglu, Canan

    2013-01-01

    Nuclear science has uses and applications that are relevant and crucial for world peace and sustainable development, so knowledge of its basic concepts and topics should constitute an integral part of civic scientific literacy. We have used two newspaper articles that deal with uses of nuclear science that are directly relevant to life, society,…

  6. Pre-Service Teachers' Opinions about the Course on Scientific Research Methods and the Levels of Knowledge and Skills They Gained in This Course

    ERIC Educational Resources Information Center

    Tosun, Cemal

    2014-01-01

    The purpose of this study was to ascertain whether the pre-service teachers taking the Scientific Research Methods course attained basic research knowledge and skills. In addition, the impact of the process, which is followed while implementing the course, on the students' anxiety and attitude during the course is examined. Moreover, the study…

  7. Examining the Learning Outcomes Included in the Turkish Science Curriculum in Terms of Science Process Skills: A Document Analysis with Standards-Based Assessment

    ERIC Educational Resources Information Center

    Duruk, Umit; Akgün, Abuzer; Dogan, Ceylan; Gülsuyu, Fatma

    2017-01-01

    Science process skills have provided a valuable chance for everyone to construct their own knowledge by means of scientific inquiry. If students are to understand what science is and how it actually works, then they should necessarily make use of their science process skills as well as scientific content knowledge compulsory to be learned in any…

  8. The Effects of a Socioscientific Issues Instructional Model in Secondary Agricultural Education on Students' Content Knowledge, Scientific Reasoning Ability, Argumentation Skills, and Views of the Nature of Science

    ERIC Educational Resources Information Center

    Shoulders, Catherine Woglom

    2012-01-01

    The purpose of this study was to determine the effects of a socioscientific issues-based instructional model on secondary agricultural education students' content knowledge, scientific reasoning ability, argumentation skills, and views of the nature of science. This study utilized a pre-experimental, single group pretest-posttest design to assess…

  9. High-End Climate Science: Development of Modeling and Related Computing Capabilities

    DTIC Science & Technology

    2000-12-01

    toward strengthening research on key scientific issues. The Program has supported research that has led to substantial increases in knowledge , improved...provides overall direction and executive oversight of the USGCRP. Within this framework, agencies manage and coordinate Federally supported scientific...critical for the U.S. Global Change Research Program. Such models can be used to look backward to test the consistency of our knowledge of Earth system

  10. The precautionary principle in fisheries management under climate change: How the international legal framework formulate it?

    NASA Astrophysics Data System (ADS)

    Latifah, E.; Imanullah, M. N.

    2018-03-01

    One of the objectives of fisheries management is to reach long-term sustainable benefits of the fish stocks while reducing the risk of severe or irreversible damage to the marine ecosystem. Achieving this objective needs, the good scientific knowledge and understanding on fisheries management including scientific data and information on the fish stock, fishing catch, distribution, migration, the proportion of mature fish, the mortality rate, reproduction as well as the knowledge on the impact of fishing on dependent and associated species and other species belonging to the same ecosystem, and further the impact of climate change and climate variability on the fish stocks and marine ecosystem. Lack of this scientific knowledge may lead to high levels of uncertainty. The precautionary principle is one of the basic environmental principles needed in overcoming this problem. An essence of this principle is that, in facing the serious risk as a result of the limited scientific knowledge or the absence of complete evidence of harm, it should not prevent the precautionary measures in minimizing risks and protecting the fish stocks and ecosystem. This study aims to examine how the precautionary principle in fisheries management be formulated into the international legal framework, especially under the climate change framework.

  11. Featured Article: Genotation: Actionable knowledge for the scientific reader

    PubMed Central

    Willis, Ethan; Sakauye, Mark; Jose, Rony; Chen, Hao; Davis, Robert L

    2016-01-01

    We present an article viewer application that allows a scientific reader to easily discover and share knowledge by linking genomics-related concepts to knowledge of disparate biomedical databases. High-throughput data streams generated by technical advancements have contributed to scientific knowledge discovery at an unprecedented rate. Biomedical Informaticists have created a diverse set of databases to store and retrieve the discovered knowledge. The diversity and abundance of such resources present biomedical researchers a challenge with knowledge discovery. These challenges highlight a need for a better informatics solution. We use a text mining algorithm, Genomine, to identify gene symbols from the text of a journal article. The identified symbols are supplemented with information from the GenoDB knowledgebase. Self-updating GenoDB contains information from NCBI Gene, Clinvar, Medgen, dbSNP, KEGG, PharmGKB, Uniprot, and Hugo Gene databases. The journal viewer is a web application accessible via a web browser. The features described herein are accessible on www.genotation.org. The Genomine algorithm identifies gene symbols with an accuracy shown by .65 F-Score. GenoDB currently contains information regarding 59,905 gene symbols, 5633 drug–gene relationships, 5981 gene–disease relationships, and 713 pathways. This application provides scientific readers with actionable knowledge related to concepts of a manuscript. The reader will be able to save and share supplements to be visualized in a graphical manner. This provides convenient access to details of complex biological phenomena, enabling biomedical researchers to generate novel hypothesis to further our knowledge in human health. This manuscript presents a novel application that integrates genomic, proteomic, and pharmacogenomic information to supplement content of a biomedical manuscript and enable readers to automatically discover actionable knowledge. PMID:26900164

  12. Featured Article: Genotation: Actionable knowledge for the scientific reader.

    PubMed

    Nagahawatte, Panduka; Willis, Ethan; Sakauye, Mark; Jose, Rony; Chen, Hao; Davis, Robert L

    2016-06-01

    We present an article viewer application that allows a scientific reader to easily discover and share knowledge by linking genomics-related concepts to knowledge of disparate biomedical databases. High-throughput data streams generated by technical advancements have contributed to scientific knowledge discovery at an unprecedented rate. Biomedical Informaticists have created a diverse set of databases to store and retrieve the discovered knowledge. The diversity and abundance of such resources present biomedical researchers a challenge with knowledge discovery. These challenges highlight a need for a better informatics solution. We use a text mining algorithm, Genomine, to identify gene symbols from the text of a journal article. The identified symbols are supplemented with information from the GenoDB knowledgebase. Self-updating GenoDB contains information from NCBI Gene, Clinvar, Medgen, dbSNP, KEGG, PharmGKB, Uniprot, and Hugo Gene databases. The journal viewer is a web application accessible via a web browser. The features described herein are accessible on www.genotation.org The Genomine algorithm identifies gene symbols with an accuracy shown by .65 F-Score. GenoDB currently contains information regarding 59,905 gene symbols, 5633 drug-gene relationships, 5981 gene-disease relationships, and 713 pathways. This application provides scientific readers with actionable knowledge related to concepts of a manuscript. The reader will be able to save and share supplements to be visualized in a graphical manner. This provides convenient access to details of complex biological phenomena, enabling biomedical researchers to generate novel hypothesis to further our knowledge in human health. This manuscript presents a novel application that integrates genomic, proteomic, and pharmacogenomic information to supplement content of a biomedical manuscript and enable readers to automatically discover actionable knowledge. © 2016 by the Society for Experimental Biology and Medicine.

  13. The Nazaré Wave: a trigger for learning

    NASA Astrophysics Data System (ADS)

    Carapuço, M. M.; Cunha, A.; Taborda, R.; Andrade, C.; Maurício, C.

    2016-02-01

    Ocean management faces relevant sustainability challenges. It is consensual that a wiser governance of the oceans can only be achieved by the involvement of all key-players. In this scope scientists, as knowledge generators, have a vital role in ocean governance. Scientists are therefore called to share their knowledge outside the scientific community. This effort, framed under the Responsible Research and Innovation approach, will contribute to a more informed society, which in turn will be able to make better decisions. However, communicating science is a challenging task as is often necessary to inspire the audience and assure their receptivity, which may not be tuned to scientific contents. The present work focuses on the importance of the use of communication triggers in scientific knowledge transfer in ocean sciences. In this work the Nazaré wave - the highest wave ever surfed - was used as the communication trigger as it is a very popular subject with the media and is given great media coverage. Results show that the use of this subject can be an excellent trigger for the transfer of scientific knowledge on basic wave dynamics to the students. Additionally to the theme itself, it was found that short scientific animation videos voiced-over by students performed very well as the communication channel. The scripts used were written by scientists and commented by the students, previously to recording, assuring that the adequate language was used, and that the essential principles and fundamental concepts of waves reach the audience. Results of using the Nazaré´ wave as a communication trigger have been extremely positive and resulted in a well-succeeded engagement platform.

  14. Impact of a Scientist-Teacher Collaborative Model on Students, Teachers, and Scientists

    NASA Astrophysics Data System (ADS)

    Shein, Paichi Pat; Tsai, Chun-Yen

    2015-09-01

    Collaborations between the K-12 teachers and higher education or professional scientists have become a widespread approach to science education reform. Educational funding and efforts have been invested to establish these cross-institutional collaborations in many countries. Since 2006, Taiwan initiated the High Scope Program, a high school science curriculum reform to promote scientific innovation and inquiry through an integration of advanced science and technology in high school science curricula through partnership between high school teachers and higher education scientists and science educators. This study, as part of this governmental effort, a scientist-teacher collaborative model (STCM) was constructed by 8 scientists and 4 teachers to drive an 18-week high school science curriculum reform on environmental education in a public high school. Partnerships between scientists and teachers offer opportunities to strengthen the elements of effective science teaching identified by Shulman and ultimately affect students' learning. Mixed methods research was used for this study. Qualitative methods of interviews were used to understand the impact on the teachers' and scientists' science teaching. A quasi-experimental design was used to understand the impact on students' scientific competency and scientific interest. The findings in this study suggest that the use of the STCM had a medium effect on students' scientific competency and a large effect on students' scientific individual and situational interests. In the interviews, the teachers indicated how the STCM allowed them to improve their content knowledge and pedagogical content knowledge (PCK), and the scientists indicated an increased knowledge of learners, knowledge of curriculum, and PCK.

  15. Foreword

    Treesearch

    H. Michael Rauscher; Richard E. Plant; Alan J. Thomson; Mark J. Twery

    2000-01-01

    This article includes the central themes of the keynote speakers for the scientific conference "The Application of Scientific Knowledge to Decisionmaking in Managing Forest Ecosystems." This International Union of Forestry Research Organizations (IUFRO) conference presented the latest developments concerning the entire range of topics dealing with ecosystem...

  16. CCR Careers | Center for Cancer Research

    Cancer.gov

    Be part of our mission to make breakthrough scientific discoveries to find cures and treatments for cancer. Our principal investigators lead teams of laboratory scientists, trainees, clinicians, and administrators to unlock scientific knowledge to advance the fight against cancer and HIV/AIDS.

  17. Cybernetics and Cybernation

    ERIC Educational Resources Information Center

    Hilton, Alice Mary

    1973-01-01

    The use of cybernetics is shown to be a tool for bringing together various scientific fields and the social sciences via logic. Topics are discussed with application to help science teachers employ scientific knowledge and technical tools to build a truly civilized world of abundance.'' (DF)

  18. Consistency of nature of science views across scientific and socio-scientific contexts

    NASA Astrophysics Data System (ADS)

    Khishfe, Rola

    2017-03-01

    The purpose of the investigation was to investigate the consistency of NOS views among high school students across different scientific and socio-scientific contexts. A total of 261 high school students from eight different schools in Lebanon participated in the investigation. The schools were selected based on different geographical areas in Lebanon and the principals' consent to participate in the study. The investigation used a qualitative design to compare the responses of students across different contexts/topics. All the participants completed a five-item open-ended questionnaire, which includes five topics addressing scientific and socio-scientific contexts. The items of the questionnaire addressed the empirical, tentative, and subjective aspects of NOS. Quantitative and qualitative analyses were conducted to answer the research questions. Results showed that participants' views of the emphasised NOS aspects were mostly inconsistent. Plus, there was variance in participants' views of NOS between scientific and socio-scientific issues. Discussion of the results related to differential developmental progression, contextual factors, social constructivist perspective, different domains of knowledge, and students' individual differences.

  19. Should Science be Taught in Early Childhood?

    NASA Astrophysics Data System (ADS)

    Eshach, Haim; Fried, Michael N.

    2005-09-01

    This essay considers the question of why we should teach science to K-2. After initial consideration of two traditional reasons for studying science, six assertions supporting the idea that even small children should be exposed to science are given. These are, in order: (1) Children naturally enjoy observing and thinking about nature. (2) Exposing students to science develops positive attitudes towards science. (3) Early exposure to scientific phenomena leads to better understanding of the scientific concepts studied later in a formal way. (4) The use of scientifically informed language at an early age influences the eventual development of scientific concepts. (5) Children can understand scientific concepts and reason scientifically. (6) Science is an efficient means for developing scientific thinking. Concrete illustrations of some of the ideas discussed in this essay, particularly, how language and prior knowledge may influence the development of scientific concepts, are then provided. The essay concludes by emphasizing that there is a window of opportunity that educators should exploit by presenting science as part of the curriculum in both kindergarten and the first years of primary school.

  20. Energy Exascale Earth System Model (E3SM) Project Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bader, D.

    The E3SM project will assert and maintain an international scientific leadership position in the development of Earth system and climate models at the leading edge of scientific knowledge and computational capabilities. With its collaborators, it will demonstrate its leadership by using these models to achieve the goal of designing, executing, and analyzing climate and Earth system simulations that address the most critical scientific questions for the nation and DOE.

  1. [G. Baglivi and scientific European community between rationalism and enlightenment].

    PubMed

    Toscano, A

    2000-01-01

    The Baglivi Correspondence, kept in the Waller Collection at the University Library of Uppsala, has been published in Italy for the first time in 1999. This Correspondence kept in Sweden provides new information about the scientific Italian culture between the second half of the seventeenth century and the beginning of the eighteenth. Moreover, it provides important knowledge on the diffusion the Baglivi's work in the scientific European context at that time.

  2. The role of innovative global institutions in linking knowledge and action.

    PubMed

    van Kerkhoff, Lorrae; Szlezák, Nicole A

    2016-04-26

    It is becoming increasingly recognized that our collective ability to tackle complex problems will require the development of new, adaptive, and innovative institutional arrangements that can deal with rapidly changing knowledge and have effective learning capabilities. In this paper, we applied a knowledge-systems perspective to examine how institutional innovations can affect the generation, sharing, and application of scientific and technical knowledge. We report on a case study that examined the effects that one large innovative organization, The Global Fund to Fight AIDS, Tuberculosis, and Malaria, is having on the knowledge dimensions of decision-making in global health. The case study shows that the organization created demand for new knowledge from a range of actors, but it did not incorporate strategies for meeting this demand into their own rules, incentives, or procedures. This made it difficult for some applicants to meet the organization's dual aims of scientific soundness and national ownership of projects. It also highlighted that scientific knowledge needed to be integrated with managerial and situational knowledge for success. More generally, the study illustrates that institutional change targeting implementation can also significantly affect the dynamics of knowledge creation (learning), access, distribution, and use. Recognizing how action-oriented institutions can affect these dynamics across their knowledge system can help institutional designers build more efficient and effective institutions for sustainable development.

  3. Modern Scientific Literacy: A Case Study of Multiliteracies and Scientific Practices in a Fifth Grade Classroom

    NASA Astrophysics Data System (ADS)

    Allison, Elizabeth; Goldston, M. Jenice

    2018-01-01

    This study investigates the convergence of multiliteracies and scientific practices in a fifth grade classroom. As students' lives become increasingly multimodal, diverse, and globalized, the traditional notions of literacy must be revisited (New London Group 1996). With the adoption of the Next Generation Science Standards (NGSS Lead States 2013a) in many states, either in their entirety or in adapted forms, it becomes useful to explore the interconnectedness multiliteracies and scientific practices and the resulting implications for scientific literacy. The case study included a fifth grade classroom, including the students and teacher. In order to create a rich description of the cases involved, data were collected and triangulated through teacher interviews, student interviews and focus groups, and classroom observations. Findings reveal that as science activities were enriched with multiliteracies and scientific practices, students were engaged in developing skills and knowledge central to being scientifically literate. Furthermore, this study establishes that characteristics of scientific literacy, by its intent and purpose, are a form of multiliteracies in elementary classrooms. Therefore, the teaching and learning of science and its practices for scientific literacy are in turn reinforcing the development of broader multiliteracies.

  4. Diagramming Scientific Papers - A New Idea for Understanding/Teaching/Sharing Science

    NASA Astrophysics Data System (ADS)

    Saltus, R. W.; Fedi, M.

    2014-12-01

    How do we best communicate scientific results? As the number of scientists and scientific papers steadily increases, one of the greatest challenges is effective and efficient sharing of science. The official repository of scientific knowledge is the peer-reviewed journal archive. However, this primary knowledge can be difficult to access and understand by anyone but a relevant specialist. We propose some new ideas for diagramming the content and significance of scientific papers using a simple and intuitive graphical approach. We propose a visual mapping that highlights four fundamental aspects of most scientific papers: Data, Methods/Models, Results/Ideas, and Implications/Importance. Each of these aspects is illustrated within boxed fields which contain one or more labeled elements positioned to reflect novelty (aka originality) and impact relative to the vertical and horizontal axes. The relative position of the boxed fields themselves indicates the relative significance of data, methods, ideas, or implications to the paper. Optional lines between boxed elements indicate the flow and dependence of data/methods/ideas within the paper. As with any graphical depiction, you need to see it to best appreciate it -- this written abstract is only meant as an introduction to the idea.We anticipate that diagramming may prove useful in both communication of scientific ideas among scientists as well as in education and outreach. For example, professors could assign diagramming of papers as a way to help students organize their thoughts about the structure and impact of scientific articles. Students could compare and defend their diagrams as a way to facilitate discussion/debate. Authors could diagram their own work as a way to efficiently summarize the importance and significance of their work. We also imagine that (in the future) automatic diagramming might be used to help summarize or facilitate the discovery of archived work.

  5. Social Uptake of Scientific Understanding of Seismic Hazard in Sumatra and Cascadia

    NASA Astrophysics Data System (ADS)

    Shannon, R.; McCloskey, J.; Guyer, C.; McDowell, S.; Steacy, S.

    2007-12-01

    The importance of science within hazard mitigation cannot be underestimated. Robust mitigation polices rely strongly on a sound understanding of the science underlying potential natural disasters and the transference of that knowledge from the scientific community to the general public via governments and policy makers. We aim to investigate how and why the public's knowledge, perceptions, response, adjustments and values towards science have changed throughout two decades of research conducted in areas along and adjacent to the Sumatran and Cascadia subduction zones. We will focus on two countries subject to the same potential hazard, but which encompass starkly contrasting political, economic, social and environmental settings. The transfer of scientific knowledge into the public/ social arena is a complex process, the success of which is reflected in a community's ability to withstand large scale devastating events. Although no one could have foreseen the magnitude of the 2004 Boxing Day tsunami, the social devastation generated underscored the stark absence of mitigation measures in the nations most heavily affected. It furthermore emphasized the need for the design and implementation of disaster preparedness measures. Survey of existing literature has already established timelines for major events and public policy changes in the case study areas. Clear evidence exists of the link between scientific knowledge and its subsequent translation into public policy, particularly in the Cascadia context. The initiation of the National Tsunami Hazard Mitigation Program following the Cape Mendocino earthquake in 1992 embodies this link. Despite a series of environmental disasters with recorded widespread fatalities dating back to the mid 1900s and a heightened impetus for scientific research into tsunami/ earthquake hazard following the 2004 Boxing Day tsunami, the translation of science into the public realm is not widely obvious in the Sumatran context. This research aims to further investigate how the enhanced understanding of earthquake and tsunami hazards is being used to direct hazard mitigation strategies and enables direct comparison with the scientific and public policy developments in Cascadia.

  6. Two Challenges to Communicating Climate Science

    NASA Astrophysics Data System (ADS)

    Oreskes, N.; Evans, J. H.; Feng, J.

    2011-12-01

    Climate scientists have been frustrated by the persistence of public opinion at odds with established scientific evidence about anthropogenic climate change. Traditionally, scientists have attributed the gap between scientific knowledge and public perception to scientific illiteracy, which could be remedied by a better and more abundant supply of well-communicated scientific information. Social scientific research, however, illustrates that this "deficit model" is insufficient to explain the current state of affairs: many individuals who reject the conclusions of climate scientists are highly educated, and some evidence suggests that, among certain demographics, more educated people are more likely than less educated ones to reject climate science. This talk explores two possible sources of resistance to, or outright rejection of, scientific conclusions about climate change: 1) the effects of long-standing organized efforts to challenge climate science and the credibility of climate scientists; 2) conservative Protestant religious beliefs concerning how factual claims about the earth are determined and how their significance is judged.

  7. Young Women in Science: Impact of a Three-Year Program on Knowledge of and Attitudes Toward Science

    NASA Astrophysics Data System (ADS)

    Schumacher, Mitzi M.; Johnson, Michelle Natasya; Floyd, Sondra R.; Reid, Caroline E.; Noland, Melody Powers; Leukefeld, Carl G.

    Addressing the factors that discourage high school girls from pursuing careers in science, this intervention targeted young women from rural Appalachia, urging them to pursue scientific careers in drug and alcohol research. This three-year program, for 49 young women entering ninth grade in 12 southeastern Kentucky counties, included a summer camp, Saturday Academies (educational seminars held in their communities), and mentoring by university faculty and community leaders. As hypothesized, findings from analyses of baseline and postsummer session data show a reduction in participants' anxiety regarding science. Participants' scientific knowledge also increased. In turn, their science knowledge scores correlated with their third summer posttest confidence in their ability to learn science and motivation for science as well as the belief that teachers can help. The success of such a program demonstrates that the gender gap in science, technology, engineering, and mathematics can be ameliorated. Participants' first steps toward successful scientific careers included improving their attitudes toward science as well as increasing their knowledge.

  8. Historical and social contexts for scientific writing and use of passive voice: Toward an undergraduate science literacy course

    NASA Astrophysics Data System (ADS)

    Ding, Dan Xiong

    The passive voice is a major stylistic feature of modern scientific discourse, but such a feature did not dominate scientific writing until the 1890s. It has its roots in the philosophical thoughts of experimental science of Francis Bacon and his followers such as Thomas Sprat and John Locke. In the early seventeenth century. Bacon called for a new science that emphasized collective knowledge of nature. Such a science was a cooperative and public enterprise in which scientists should work as a group to advance knowledge of nature. When science was moving gradually toward a public enterprise from the early seventeenth century, the passive voice gradually replaced the active voice in science writing as a dominant stylistic feature. The passive voice in scientific writing is thus historically and socially conditioned. Scientists take advantage of the linguistic functions of the passive voice to serve their rhetorical and pragmatic purposes such as presenting experiments as they are for others to reproduce and verify the results. It embodies two major conventions of scientific communities: (1) science is a public enterprise and (2) it is also a cooperative venture. Other conventions are related to these two: the collective authority of an scientific community is above the personal authority of any one individual scientist; science is not an infallible force, so any research result needs to be verified by a scientific community before it becomes knowledge; scientists use passive voice to approach their writing to make it appear as if it were objective; and science is a human profession. Therefore, we need to teach science students to use the passive voice, and more importantly, why and when to use it. We should emphasize writing practice to have students' see that they use passives rhetorically to present experimental processes, materials and methods.

  9. Exploring Challenges and Opportunities of Coproduction: USDA Climate Hub Efforts to Integrate Coproduction with Applied Research and Decision Support Tool Development in the Northwest

    NASA Astrophysics Data System (ADS)

    Roesch-McNally, G.; Prendeville, H. R.

    2017-12-01

    A lack of coproduction, the joint production of new technologies or knowledge among technical experts and other groups, is arguably one of the reasons why much scientific information and resulting decision support systems are not very usable. Increasingly, public agencies and academic institutions are emphasizing the importance of coproduction of scientific knowledge and decision support systems in order to facilitate greater engagement between the scientific community and key stakeholder groups. Coproduction has been embraced as a way for the scientific community to develop actionable scientific information that will assist end users in solving real-world problems. Increasing the level of engagement and stakeholder buy-in to the scientific process is increasingly necessary, particularly in the context of growing politicization of science and the scientific process. Coproduction can be an effective way to build trust and can build-on and integrate local and traditional knowledge. Employing coproduction strategies may enable the development of more relevant and useful information and decision support tools that address stakeholder challenges at relevant scales. The USDA Northwest Climate Hub has increasingly sought ways to integrate coproduction in the development of both applied research projects and the development of decision support systems. Integrating coproduction, however, within existing institutions is not always simple, given that coproduction is often more focused on process than products and products are, for better or worse, often the primary focus of applied research and tool development projects. The USDA Northwest Climate Hub sought to integrate coproduction into our FY2017 call for proposal process. As a result we have a set of proposals and fledgling projects that fall along the engagement continuum (see Figure 1- attached). We will share the challenges and opportunities that emerged from this purposeful integration of coproduction into the work that we prioritized for funding. This effort highlights strategies for how federal agencies might consider how and whether to codify coproduction tenets into their collaborations and agenda setting.

  10. A Research Agenda on Assessing and Remediating Home Dampness and Mold to Reduce Dampness-Related Health Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendell, Mark J.

    2015-06-01

    This report briefly summarizes, based on recent review articles and selected more recent research reports, current scientific knowledge on two topics: assessing unhealthy levels of indoor D/M in homes and remediating home dampness-related problems to protect health. Based on a comparison of current scientific knowledge to that required to support effective, evidence-based, health-protective policies on home D/M, gaps in knowledge are highlighted, prior questions and research questions specified, and necessary research activities and approaches recommended.

  11. 48 CFR 35.009 - Subcontracting research and development effort.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the best scientific and technological sources, it is important that the contractor not subcontract technical or scientific work without the contracting officer's advance knowledge. During the negotiation of a cost-reimbursement R&D contract, the contracting officer shall obtain complete information...

  12. 48 CFR 35.001 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... determine and exploit the potential of scientific discoveries or improvements in technology, materials... aim is the design, development, or testing of specific items or services to be considered for sale..., means the systematic use of scientific and technical knowledge in the design, development, testing, or...

  13. 48 CFR 35.001 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... determine and exploit the potential of scientific discoveries or improvements in technology, materials... aim is the design, development, or testing of specific items or services to be considered for sale..., means the systematic use of scientific and technical knowledge in the design, development, testing, or...

  14. 48 CFR 35.001 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... determine and exploit the potential of scientific discoveries or improvements in technology, materials... aim is the design, development, or testing of specific items or services to be considered for sale..., means the systematic use of scientific and technical knowledge in the design, development, testing, or...

  15. 48 CFR 35.001 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... determine and exploit the potential of scientific discoveries or improvements in technology, materials... aim is the design, development, or testing of specific items or services to be considered for sale..., means the systematic use of scientific and technical knowledge in the design, development, testing, or...

  16. What Junior High School Students Do, Can, and Should Know about the Nature of Science and Scientific Inquiry. Technical Report 88-2.

    ERIC Educational Resources Information Center

    Carey, Susan; And Others

    One goal of science educators is to help students to understand the nature of scientific knowledge and reasoning. Reported are ideas related to what junior high students do, can and should know about the nature of science and the use of technology in imparting such knowledge. The studies reported in this document are designed to probe junior high…

  17. Making knowledge: history, literature, and the poetics of science.

    PubMed

    Bono, James J

    2010-09-01

    As a field of study, literature and science has gradually expanded to encompass both the impact of science on literary culture and the literary-linguistic practices intrinsic to the production of scientific knowledge. Such transformations both reinforce and fundamentally recalibrate the detailed attention focused on scientific practice by historians of science since the 1980s. As a result, this essay and the Focus section it introduces suggest that history of science and literature and science are, in fact, interdependent fields. Attention to their convergences will yield better understanding of the performative dimensions of scientific practices and thence of science itself as a form of making of knowledge of things and events in the world of nature. Science as a form of making involves the convergence of things, material practices, and a panoply of meaningful artifacts-instruments of thought and action-that refuse any simple dichotomy between "text" and "action."

  18. Tall girls: the social shaping of a medical therapy.

    PubMed

    Lee, Joyce M; Howell, Joel D

    2006-10-01

    During the latter half of the 20th century, estrogen therapy was administered to prevent otherwise healthy girls with tall stature from becoming tall adults by inhibiting further linear growth. We explore how decisions to treat tall girls with estrogen were influenced by both scientific knowledge and sociologic norms. Estrogen therapy represented the logical application of scientific knowledge regarding the role of estrogen for closure of the growth plates, but it also reflected prevailing societal and political beliefs about what it meant to be a tall girl. We discuss the rise and fall in popularity of this therapy and suggest that insight into the present-day treatment of short stature can be gained by comparing the use of estrogen therapy for tall girls with the use of growth hormone therapy for short boys. We suggest that this case study illustrates how scientific knowledge is always created and applied within a particular social context.

  19. Influencing public policies: Two (very good) reasons to look toward scientific knowledge in public policy.

    PubMed

    Gagnon, François; Bellefleur, Olivier

    2014-07-11

    The healthy public policy movement rests on the belief that a range of public policies should be at least partly informed by evidence demonstrating the positive effects of these policies on population health, health inequalities and their determinants. In order to address certain difficulties that the movement faces, knowledge produced in various scientific disciplines regarding public policies may provide some valuable guidance. In this short commentary, we examine how knowledge from the scientific disciplines investigating public policies makes it possible to address two difficulties in the development of healthy public policies: 1) adequately anticipating the effects of public policies, and 2) assessing the political viability of the policies being promoted. Since urban traffic policies are of interest to most of the other contributors to this supplement, we use examples from this field to illustrate some of our points.

  20. Knowledge in motion: The cultural politics of modern science translations in Arabic.

    PubMed

    Elshakry, Marwa S

    2008-12-01

    This essay looks at the problem of the global circulation of modem scientific knowledge by looking at science translations in modern Arabic. In the commercial centers of the late Ottoman Empire, emerging transnational networks lay behind the development of new communities of knowledge, many of which sought to break with old linguistic and literary norms to redefine the basis of their authority. Far from acting as neutral purveyors of "universal truths," scientific translations thus served as key instruments in this ongoing process of sociopolitical and epistemological transformation and mediation. Fierce debates over translators' linguistic strategies and choices involved deliberations over the character of language and the nature of "science" itself. They were also crucially shaped by such geopolitical factors as the rise of European imperialism and anticolonial nationalism in the region. The essay concludes by arguing for the need for greater attention to the local factors involved in the translation of scientific concepts across borders.

  1. The Effects of Emotive Reasoning on Secondary School Students' Decision-Making in the Context of Socioscientific Issues

    NASA Astrophysics Data System (ADS)

    Powell, Wardell A.

    The discrepancy between what students are being taught within K-12 science classrooms and what they experience in the real world has been well documented. This study sought to explore the ways a high school biology curriculum, which integrates socioscientific issues, impacts students' emotive reasoning and their ability to evaluate evidence, make informed decisions on contemporary scientific dilemmas, and integrate scientific content knowledge in their reasoning on SSI. Both quantitative and qualitative methods were used to examine differences within and between an SSI treatment group and a comparison group as well as individual differences among students' responses over a semester of high school biology. Results indicated students used emotions largely to evaluate evidence and make decisions on contentious scientific dilemmas. In addition, the results showed students used newly gained scientific content knowledge to make logical predictions on contentious scientific issues. Statistical significance was found between groups of students in regard to their interest in the use of embryonic stem cell treatments to restore rats' vision, as well as students' abilities to evaluate evidence. Theoretical implications regarding the use of SSI in the classroom are presented.

  2. Chemistry teachers’ understanding of science process skills in relation of science process skills assessment in chemistry learning

    NASA Astrophysics Data System (ADS)

    Hikmah, N.; Yamtinah, S.; Ashadi; Indriyanti, N. Y.

    2018-05-01

    A Science process skill (SPS) is a fundamental scientific method to achieve good knowledge. SPS can be categorized into two levels: basic and integrated. Learning SPS helps children to grow as individuals who can access knowledge and know how to acquire it. The primary outcomes of the scientific process in learning are the application of scientific processes, scientific reasoning, accurate knowledge, problem-solving, and understanding of the relationship between science, technology, society, and everyday life’s events. Teachers’ understanding of SPS is central to the application of SPS in a learning process. Following this point, this study aims to investigate the high school chemistry teachers’ understanding of SPS pertains to their assessment of SPS in chemistry learning. The understanding of SPS is measured from the conceptual and operational aspects of SPS. This research uses qualitative analysis method, and the sample consists of eight chemistry teachers selected by random sampling. A semi-structured interview procedure is used to collect the data. The result of the analysis shows that teachers’ conceptual and operational understanding of SPS is weak. It affects the accuracy and appropriateness of the teacher’s selection of SPS assessment in chemistry learning.

  3. Writing for Science Literacy

    NASA Astrophysics Data System (ADS)

    Chamberlin, Shannon Marie

    Scientific literacy is the foundation on which both California's currently adopted science standards and the recommended new standards for science are based (CDE, 2000; NRC, 2011). The Writing for Science Literacy (WSL) curriculum focuses on a series of writing and discussion tasks aimed at increasing students' scientific literacy. These tasks are based on three teaching and learning constructs: thought and language, scaffolding, and meta-cognition. To this end, WSL is focused on incorporating several strategies from the Rhetorical Approach to Reading, Writing, Listening and Speaking to engage students in activities designed to increase their scientific literacy; their ability to both identify an author's claim and evidence and to develop their own arguments based on a claim and evidence. Students participated in scaffolded activities designed to strengthen their written and oral discourse, hone their rhetorical skills and improve their meta-cognition. These activities required students to participate in both writing and discussion tasks to create meaning and build their science content knowledge. Students who participated in the WSL curriculum increased their written and oral fluency and were able to accurately write an evidence-based conclusion all while increasing their conceptual knowledge. This finding implies that a discourse rich curriculum can lead to an increase in scientific knowledge.

  4. Consumer perception of genetically modified organisms and sources of information.

    PubMed

    Wunderlich, Shahla; Gatto, Kelsey A

    2015-11-01

    Genetically modified organisms (GMOs) have been available for commercial purchase since the 1990s, allowing producers to increase crop yields through bioengineering that creates herbicide-resistant and insect-resistant varieties. However, consumer knowledge about GMOs has not increased at the same rate as the adoption of GMO crops. Consumers worldwide are displaying limited understanding, misconceptions, and even unfamiliarity with GMO food products. Many consumers report that they receive information about GMO food products from the media, Internet, and other news sources. These sources may be less reliable than scientific experts whom consumers trust more to present the facts. Although many in the United States support mandatory GMO labeling (similar to current European standards), consumer awareness of current GMO labeling is low. A distinction must also be made between GMO familiarity and scientific understanding, because those who are more familiar with it tend to be more resistant to bioengineering, whereas those with higher scientific knowledge scores tend to have less negative attitudes toward GMOs. This brings to question the relation between scientific literacy, sources of information, and overall consumer knowledge and perception of GMO foods. © 2015 American Society for Nutrition.

  5. English Secondary Students' Thinking about the Status of Scientific Theories: Consistent, Comprehensive, Coherent and Extensively Evidenced Explanations of Aspects of the Natural World--Or Just "An Idea Someone Has"

    ERIC Educational Resources Information Center

    Taber, Keith S.; Billingsley, Berry; Riga, Fran; Newdick, Helen

    2015-01-01

    Teaching about the nature of science (NOS) is seen as a priority for science education in many national contexts. The present paper focuses on one central issue in learning about NOS: understanding the nature and status of scientific theories. A key challenge in teaching about NOS is to persuade students that scientific knowledge is generally…

  6. Data Democracy and Decision Making: Enhancing the Use and Value of Geospatial Data and Scientific Information

    NASA Astrophysics Data System (ADS)

    Shapiro, C. D.

    2014-12-01

    Data democracy is a concept that has great relevance to the use and value of geospatial data and scientific information. Data democracy describes a world in which data and information are widely and broadly accessible, understandable, and useable. The concept operationalizes the public good nature of scientific information and provides a framework for increasing benefits from its use. Data democracy encompasses efforts to increase accessibility to geospatial data and to expand participation in its collection, analysis, and application. These two pillars are analogous to demand and supply relationships. Improved accessibility, or demand, includes increased knowledge about geospatial data and low barriers to retrieval and use. Expanded participation, or supply, encompasses a broader community involved in developing geospatial data and scientific information. This pillar of data democracy is characterized by methods such as citizen science or crowd sourcing.A framework is developed for advancing the use of data democracy. This includes efforts to assess the societal benefits (economic and social) of scientific information. This knowledge is critical to continued monitoring of the effectiveness of data democracy implementation and of potential impact on the use and value of scientific information. The framework also includes an assessment of opportunities for advancing data democracy both on the supply and demand sides. These opportunities include relatively inexpensive efforts to reduce barriers to use as well as the identification of situations in which participation can be expanded in scientific efforts to enhance the breadth of involvement as well as expanding participation to non-traditional communities. This framework provides an initial perspective on ways to expand the "scientific community" of data users and providers. It also describes a way forward for enhancing the societal benefits from geospatial data and scientific information. As a result, data democracy not only provides benefits to a greater population, it enhances the value of science.

  7. Progress in The Semantic Analysis of Scientific Code

    NASA Technical Reports Server (NTRS)

    Stewart, Mark

    2000-01-01

    This paper concerns a procedure that analyzes aspects of the meaning or semantics of scientific and engineering code. This procedure involves taking a user's existing code, adding semantic declarations for some primitive variables, and parsing this annotated code using multiple, independent expert parsers. These semantic parsers encode domain knowledge and recognize formulae in different disciplines including physics, numerical methods, mathematics, and geometry. The parsers will automatically recognize and document some static, semantic concepts and help locate some program semantic errors. These techniques may apply to a wider range of scientific codes. If so, the techniques could reduce the time, risk, and effort required to develop and modify scientific codes.

  8. Educational interventions to advance children's scientific thinking.

    PubMed

    Klahr, David; Zimmerman, Corinne; Jirout, Jamie

    2011-08-19

    The goal of science education interventions is to nurture, enrich, and sustain children's natural and spontaneous interest in scientific knowledge and procedures. We present taxonomy for classifying different types of research on scientific thinking from the perspective of cognitive development and associated attempts to teach science. We summarize the literature on the early--unschooled--development of scientific thinking, and then focus on recent research on how best to teach science to children from preschool to middle school. We summarize some of the current disagreements in the field of science education and offer some suggestions on ways to continue to advance the science of science instruction.

  9. An Experiment in Scientific Program Understanding

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E. M.; Owen, Karl (Technical Monitor)

    2000-01-01

    This paper concerns a procedure that analyzes aspects of the meaning or semantics of scientific and engineering code. This procedure involves taking a user's existing code, adding semantic declarations for some primitive variables, and parsing this annotated code using multiple, independent expert parsers. These semantic parsers encode domain knowledge and recognize formulae in different disciplines including physics, numerical methods, mathematics, and geometry. The parsers will automatically recognize and document some static, semantic concepts and help locate some program semantic errors. Results are shown for three intensively studied codes and seven blind test cases; all test cases are state of the art scientific codes. These techniques may apply to a wider range of scientific codes. If so, the techniques could reduce the time, risk, and effort required to develop and modify scientific codes.

  10. [Issues of research in medicine].

    PubMed

    Topić, Elizabeta

    2006-01-01

    Research in medicine is liable to all rules and standards that apply to research in other natural sciences, since medicine as a science and service fully meets the general definition of science: it is a common, integrated, organized and systematized knowledge of mankind, whereby physician--being more or less aware of doing so-- in his daily activities applies scientific thinking and scientific methods. The procedure of problem solving in scientific work and in medical practice is characterized by many similarities as well as variation. In scientific research, the observation of some phenomenon that cannot be explained by the known facts and theories is followed by making a hypothesis, planning and carrying out experimental investigation resulting in some data. Interpretation of these data then provides evidence to confirm or reject the hypothesis. In medical practice, quite a similar procedure is followed; the initial examination of a patient, when his condition cannot be explained by the data thus obtained, is identical to the observation of a phenomenon which cannot be explained by the known facts; working diagnosis would correspond to making the hypothesis; and experimental investigation would compare to laboratory and other diagnostic studies. The working diagnosis is accepted or rejected depending on these results. Of course, there also are differences in the problem solving procedure between scientific research and daily medical practice. For example, in research a single hypothesis is posed, a single experiment with successive testing and/or repeats is performed, whereas in medical practice several hypotheses are made, multiple studies are concurrently performed to reject current hypotheses and to make new ones. Scientific investigation produces an abundance of systematic data, whereas in medical practice target data are being generated, yet not systematically. Definitive decision making also differs greatly, as in scientific research it only ensues from conclusive evidence, whereas in medical practice definitive decision is made and therapeutic procedures are performed even before reaching final evidence. The general strategy of work and research in medicine can be briefly described by four principles, i.e. good knowledge of one's own work; continuing upgrading of one's own work in collaboration with respective institutions (laboratories, university, and research institutes); implementation of standard, up-to-date and scientific methods most of the time; and publishing work results on a regular basis. This strategy ensures constant progress and treatment quality improvement while allowing due validation and evaluation of the work by the society. Scientific research is based on the pre-existing knowledge of the problem under study, and should be supervised, systematic and planned. Research produces data that may represent some new concepts, or such concepts are developed by further data processing. In research, scientific procedure includes a number of steps that have to be made to reach a new scientific result. This procedure includes (a) thinking about a scientific issue; (b) making a scientific hypothesis, i.e. the main objective of the study; (c) research ethics; (d) determination of sources and mode of data collection; (e) research performance; (f) collection and analysis of all research data; (g) interpretation of results and evidence; and (h) publications. The next section of this chapter brings an example of scientific research in the field of medicine, where the procedures carried out during the research are briefly described; other chapters of this supplement deal with statistical methodology used on processing the data obtained in the study, which is most frequently employed in scientific work in the field of medicine.

  11. Generate an Argument: An Instructional Model

    ERIC Educational Resources Information Center

    Sampson, Victor; Grooms, Jonathon

    2010-01-01

    The Generate an Argument instructional model was designed to engage students in scientific argumentation. By using this model, students develop complex reasoning and critical-thinking skills, understand the nature and development of scientific knowledge, and improve their communication skills (Duschl and Osborne 2002). This article describes the…

  12. A Global Perspective

    ERIC Educational Resources Information Center

    Brunvand, Stein; Bouwman, Jeffrey

    2018-01-01

    Citizen science projects have been found to increase scientific knowledge and awareness among the participants who engage in these collaborative efforts. Providing elementary students the opportunity to collect, share, and analyze data is an effective way to help them develop a deeper understanding of scientific concepts and gain competency in…

  13. Lighting the Way through Scientific Discourse

    ERIC Educational Resources Information Center

    Yang, Li-hsuan

    2008-01-01

    This article describes a thought-provoking lesson that compares various arrangements of lamp-battery circuits to help students develop the motivation and competence to participate in scientific discourse for knowledge construction. Through experimentation and discourse, students explore concepts about voltage, current, resistance, and Ohm's law.…

  14. Putting Ideas on Paper

    ERIC Educational Resources Information Center

    Allen, Jared; Rogers, Meredith Park

    2015-01-01

    Many students find it easier to express their ideas about science through talking rather than writing. However, writing in science promotes new learning, helps students consolidate and review their scientific ideas, and aids in reformulating and extending their scientific knowledge. These practices lead to formulating and defending scientific…

  15. Perceptions of Science Graduating Students on Their Learning Gains

    ERIC Educational Resources Information Center

    Varsavsky, Cristina; Matthews, Kelly E.; Hodgson, Yvonne

    2014-01-01

    In this study, the Science Student Skills Inventory was used to gain understanding of student perceptions about their science skills set developed throughout their programme (scientific content knowledge, communication, scientific writing, teamwork, quantitative skills, and ethical thinking). The study involved 400 responses from undergraduate…

  16. Invisible Light: a global infotainment community based on augmented reality technologies

    NASA Astrophysics Data System (ADS)

    Israel, Kai; Wozniak, Peter; Vauderwange, Oliver; Curticapean, Dan

    2015-10-01

    Theoretical details about optics and photonics are not common knowledge nowadays. Physicists are keen to scientifically explain `light,' which has a huge impact on our lives. It is necessary to examine it from multiple perspectives and to make the knowledge accessible to the public in an interdisciplinary, scientifically well-grounded and appealing medial way. To allow an information exchange on a global scale, our project "Invisible Light" establishes a worldwide accessible platform. Its contents will not be created by a single instance, but user-generated, with the help of the global community. The article describes the infotainment portal "Invisible Light," which stores scientific articles about light and photonics and makes them accessible worldwide. All articles are tagged with geo-coordinates, so they can be clearly identified and localized. A smartphone application is used for visualization, transmitting the information to users in real time by means of an augmented reality application. Scientific information is made accessible for a broad audience and in an attractive manner.

  17. Family medicine practice and research: survey of physicians' attitudes towards scientific research in a post-communist transition country.

    PubMed

    Rogulj, Zdenka Mrdesa; Baloevic, Elizabet; Dogas, Zoran; Kardum, Goran; Hren, Darko; Marusic, Ana; Marusic, Matko

    2007-01-01

    Although the paradigm of modern medicine is evidence-based practice, there is a lack of research output and interest in research in family medicine. We investigated attitudes towards scientific research among family medicine practitioners in a country in post-communist socioeconomic transition, and related it to their attitudes towards alternative medicine and clinical knowledge relevant for their practice. We surveyed 427 family medicine practitioners in Croatia about their attitudes towards scientific research (5-point rating scale, total score range 20-100) and alternative medicine (5-point rating scale, total score range 14-70). We also tested their knowledge on diagnosis and treatment of hypertension (10 questions) and diabetes (12 questions). The attitude towards scientific research was positive (score 79.0 +/- 7.2 out of maximum 100) and significantly more positive than that towards alternative medicine (score 45.0 +/- 9.9 out of maximum 70; t(425) = 19.06, P < 0.001). The respondents correctly answered about half the questions on hypertension and diabetes; knowledge on new diagnostic and treatment guidelines was better than their textbook knowledge. The attitude scores were not related to knowledge or research activity or the medical practice of the respondents. Family medicine practitioners in a transition country have a more positive attitude towards science than towards alternative medicine, despite the adverse situation in which they practice. To involve family medicine practitioners in research, interventions must be directed towards changes in behavior and practice and not only towards increasing positive attitudes.

  18. Neoliberalism and indigenous knowledge: Māori health research and the cultural politics of New Zealand's "National Science Challenges".

    PubMed

    Prussing, Erica; Newbury, Elizabeth

    2016-02-01

    In 2012-13 the Ministry of Business, Innovation and Employment (MBIE) in New Zealand rapidly implemented a major restructuring of national scientific research funding. The "National Science Challenges" (NSC) initiative aims to promote greater commercial applications of scientific knowledge, reflecting ongoing neoliberal reforms in New Zealand. Using the example of health research, we examine the NSC as a key moment in ongoing indigenous Māori advocacy against neoliberalization. NSC rhetoric and practice through 2013 moved to marginalize participation by Māori researchers, in part through constructing "Māori" and "science" as essentially separate arenas-yet at the same time appeared to recognize and value culturally distinctive forms of Māori knowledge. To contest this "neoliberal multiculturalism," Māori health researchers reasserted the validity of culturally distinctive knowledge, strategically appropriated NSC rhetoric, and marshalled political resources to protect Māori research infrastructure. By foregrounding scientific knowledge production as an arena of contestation over neoliberal values and priorities, and attending closely to how neoliberalizing tactics can include moves to acknowledge cultural diversity, this analysis poses new questions for social scientific study of global trends toward reconfiguring the production of knowledge about health. Study findings are drawn from textual analysis of MBIE documents about the NSC from 2012 to 2014, materials circulated by Māori researchers in the blogosphere in 2014, and ethnographic interviews conducted in 2013 with 17 Māori health researchers working at 7 sites that included university-based research centers, government agencies, and independent consultancies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Mapping the knowledge utilization field in nursing from 1945 to 2004: a bibliometric analysis.

    PubMed

    Scott, Shannon D; Profetto-McGrath, Joanne; Estabrooks, Carole A; Winther, Connie; Wallin, Lars; Lavis, John N

    2010-12-01

    The field of knowledge utilization has been hampered by several issues including: the synonymous use of multiple terms with little attempt at definition precision; an overexamination of knowledge utilization as product, rather than a process; and a lack of progress to cross disciplinary boundaries to advance knowledge development. In order to address the challenges and current knowledge gaps in the knowledge utilization field in nursing, a comprehensive picture of the current state of the field is required. Bibliometric analyses were used to map knowledge utilization literature in nursing as an international field of study, and to identify the structure of its scientific community. Analyses of bibliographic data for 433 articles from the period 1945-2004 demonstrated three trends: (1) there has been significant recent growth and interest in this field, (2) the structure of the scientific knowledge utilization community is evolving, and (3) the Web of Science does not index the majority of journals where this literature is published. In order to enhance the accessibility and profile of this literature, and nursing's scientific literature at large, we encourage the International Academy of Nursing Editors to work collaboratively to increase the number of journals indexed in the Web of Science. ©2010 Sigma Theta Tau International.

  20. Representation and Re-Presentation in Litigation Science

    PubMed Central

    Jasanoff, Sheila

    2008-01-01

    Federal appellate courts have devised several criteria to help judges distinguish between reliable and unreliable scientific evidence. The best known are the U.S. Supreme Court’s criteria offered in 1993 in Daubert v. Merrell Dow Pharmaceuticals, Inc. This article focuses on another criterion, offered by the Ninth Circuit Court of Appeals, that instructs judges to assign lower credibility to “litigation science” than to science generated before litigation. In this article I argue that the criterion-based approach to judicial screening of scientific evidence is deeply flawed. That approach buys into the faulty premise that there are external criteria, lying outside the legal process, by which judges can distinguish between good and bad science. It erroneously assumes that judges can ascertain the appropriate criteria and objectively apply them to challenged evidence before litigation unfolds, and before methodological disputes are sorted out during that process. Judicial screening does not take into account the dynamics of litigation itself, including gaming by the parties and framing by judges, as constitutive factors in the production and representation of knowledge. What is admitted through judicial screening, in other words, is not precisely what a jury would see anyway. Courts are sites of repeated re-representations of scientific knowledge. In sum, the screening approach fails to take account of the wealth of existing scholarship on the production and validation of scientific facts. An unreflective application of that approach thus puts courts at risk of relying upon a “junk science” of the nature of scientific knowledge. PMID:18197311

  1. MachineProse: an Ontological Framework for Scientific Assertions

    PubMed Central

    Dinakarpandian, Deendayal; Lee, Yugyung; Vishwanath, Kartik; Lingambhotla, Rohini

    2006-01-01

    Objective: The idea of testing a hypothesis is central to the practice of biomedical research. However, the results of testing a hypothesis are published mainly in the form of prose articles. Encoding the results as scientific assertions that are both human and machine readable would greatly enhance the synergistic growth and dissemination of knowledge. Design: We have developed MachineProse (MP), an ontological framework for the concise specification of scientific assertions. MP is based on the idea of an assertion constituting a fundamental unit of knowledge. This is in contrast to current approaches that use discrete concept terms from domain ontologies for annotation and assertions are only inferred heuristically. Measurements: We use illustrative examples to highlight the advantages of MP over the use of the Medical Subject Headings (MeSH) system and keywords in indexing scientific articles. Results: We show how MP makes it possible to carry out semantic annotation of publications that is machine readable and allows for precise search capabilities. In addition, when used by itself, MP serves as a knowledge repository for emerging discoveries. A prototype for proof of concept has been developed that demonstrates the feasibility and novel benefits of MP. As part of the MP framework, we have created an ontology of relationship types with about 100 terms optimized for the representation of scientific assertions. Conclusion: MachineProse is a novel semantic framework that we believe may be used to summarize research findings, annotate biomedical publications, and support sophisticated searches. PMID:16357355

  2. Representation and re-presentation in litigation science.

    PubMed

    Jasanoff, Sheila

    2008-01-01

    Federal appellate courts have devised several criteria to help judges distinguish between reliable and unreliable scientific evidence. The best known are the U.S. Supreme Court's criteria offered in 1993 in Daubert v. Merrell Dow Pharmaceuticals, Inc. This article focuses on another criterion, offered by the Ninth Circuit Court of Appeals, that instructs judges to assign lower credibility to "litigation science" than to science generated before litigation. In this article I argue that the criterion-based approach to judicial screening of scientific evidence is deeply flawed. That approach buys into the faulty premise that there are external criteria, lying outside the legal process, by which judges can distinguish between good and bad science. It erroneously assumes that judges can ascertain the appropriate criteria and objectively apply them to challenged evidence before litigation unfolds, and before methodological disputes are sorted out during that process. Judicial screening does not take into account the dynamics of litigation itself, including gaming by the parties and framing by judges, as constitutive factors in the production and representation of knowledge. What is admitted through judicial screening, in other words, is not precisely what a jury would see anyway. Courts are sites of repeated re-representations of scientific knowledge. In sum, the screening approach fails to take account of the wealth of existing scholarship on the production and validation of scientific facts. An unreflective application of that approach thus puts courts at risk of relying upon a "junk science" of the nature of scientific knowledge.

  3. The predictive state: Science, territory and the future of the Indian climate.

    PubMed

    Mahony, Martin

    2014-02-01

    Acts of scientific calculation have long been considered central to the formation of the modern nation state, yet the transnational spaces of knowledge generation and political action associated with climate change seem to challenge territorial modes of political order. This article explores the changing geographies of climate prediction through a study of the ways in which climate change is rendered knowable at the national scale in India. The recent controversy surrounding an erroneous prediction of melting Himalayan glaciers by the Intergovernmental Panel on Climate Change provides a window onto the complex and, at times, antagonistic relationship between the Panel and Indian political and scientific communities. The Indian reaction to the error, made public in 2009, drew upon a national history of contestation around climate change science and corresponded with the establishment of a scientific assessment network, the Indian Network for Climate Change Assessment, which has given the state a new platform on which to bring together knowledge about the future climate. I argue that the Indian Network for Climate Change Assessment is indicative of the growing use of regional climate models within longer traditions of national territorial knowledge-making, allowing a rescaling of climate change according to local norms and practices of linking scientific knowledge to political action. I illustrate the complex co-production of the epistemic and the normative in climate politics, but also seek to show how co-productionist understandings of science and politics can function as strategic resources in the ongoing negotiation of social order. In this case, scientific rationalities and modes of environmental governance contribute to the contested epistemic construction of territory and the evolving spatiality of the modern nation state under a changing climate.

  4. Nine Criteria for a Measure of Scientific Output

    PubMed Central

    Kreiman, Gabriel; Maunsell, John H. R.

    2011-01-01

    Scientific research produces new knowledge, technologies, and clinical treatments that can lead to enormous returns. Often, the path from basic research to new paradigms and direct impact on society takes time. Precise quantification of scientific output in the short-term is not an easy task but is critical for evaluating scientists, laboratories, departments, and institutions. While there have been attempts to quantifying scientific output, we argue that current methods are not ideal and suffer from solvable difficulties. Here we propose criteria that a metric should have to be considered a good index of scientific output. Specifically, we argue that such an index should be quantitative, based on robust data, rapidly updated and retrospective, presented with confidence intervals, normalized by number of contributors, career stage and discipline, impractical to manipulate, and focused on quality over quantity. Such an index should be validated through empirical testing. The purpose of quantitatively evaluating scientific output is not to replace careful, rigorous review by experts but rather to complement those efforts. Because it has the potential to greatly influence the efficiency of scientific research, we have a duty to reflect upon and implement novel and rigorous ways of evaluating scientific output. The criteria proposed here provide initial steps toward the systematic development and validation of a metric to evaluate scientific output. PMID:22102840

  5. Learning To Use Scientific Knowledge in Education and Practice Settings: An Evaluation of the Contribution of the Biological Behavioural and Social Sciences to Pre-Registration Nursing and Midwifery Programmes. Researching Professional Education. Research Reports Series Number 3.

    ERIC Educational Resources Information Center

    Eraut, Michael; And Others

    A research project evaluated the contribution of biological, behavioral, and social sciences to nursing and midwifery education programs in Britain. The study of scientific knowledge relevant to recently qualified nurses and midwives was confined to six topics: fluids, electrolytes, and renal systems; nutrition; acute pain; shock; stress; and…

  6. Big, Deep, and Smart Data in Scanning Probe Microscopy.

    PubMed

    Kalinin, Sergei V; Strelcov, Evgheni; Belianinov, Alex; Somnath, Suhas; Vasudevan, Rama K; Lingerfelt, Eric J; Archibald, Richard K; Chen, Chaomei; Proksch, Roger; Laanait, Nouamane; Jesse, Stephen

    2016-09-27

    Scanning probe microscopy (SPM) techniques have opened the door to nanoscience and nanotechnology by enabling imaging and manipulation of the structure and functionality of matter at nanometer and atomic scales. Here, we analyze the scientific discovery process in SPM by following the information flow from the tip-surface junction, to knowledge adoption by the wider scientific community. We further discuss the challenges and opportunities offered by merging SPM with advanced data mining, visual analytics, and knowledge discovery technologies.

  7. Uranus and Neptune

    NASA Technical Reports Server (NTRS)

    Bergstralh, J. T. (Editor)

    1984-01-01

    A scientific framework within which to plan the Voyager encounters with Uranus and Neptune was sought. Specific objectives were: (1) to assess the current state of knowledge of Uranus and Neptune, their magnetospheres, and their respective systems of satellites and rings (if any), (2) to identify important scientific issues that can be addressed effectively by Voyager, and (3) to provide an opportunity for Voyager investigators to interact with other scientists knowledgeable in the field of physical studies of the Uranian and Neptunian systems.

  8. Common Infrastructure for Neo Scientific and Planetary Defense Missions

    NASA Technical Reports Server (NTRS)

    Adams, Robert; Wilks, Rodney

    2009-01-01

    While defending the Earth against collisions with asteroids and comets has garnered increasing attention over the past few decades, our knowledge of the threats and methods of mitigation remain inadequate. There exists a considerable gap in knowledge regarding the size, composition, location, internal structure and formation of near earth asteroids and comets. Although estimates have been made, critical experiments have not yet been conducted on the effectiveness of various proposed mitigation techniques. Closing this knowledge gap is of interest to both the planetary defense and planetary science communities. Increased scientific knowledge of asteroid and comet composition and structure can confirm or advance current theories about the formation of the solar system. This proposal suggests a joint effort between these two communities to provide an economical architecture that supports multiple launches of characterization and mitigation payloads with minimal response time. The science community can use this architecture for characterization missions of opportunity when multiple scientific targets or targets of uncommon scientific value present themselves, while the planetary defense community would be able to fire characterization or mitigation payloads at targets that present a threat to the Earth. Both communities would benefit from testing potential mitigation techniques, which would reveal information on the internal structure of asteroids and comets. In return, the Earth would have the beginnings of a viable response system should an impact threat prove real in the near future.

  9. Toward a Pragmatist Epistemology: Arthur O. Lovejoy's and H. S. Jennings's Biophilosophical Responses to Neovitalism, 1909-1914.

    PubMed

    Russell, Doug

    2015-01-01

    The sustained interdisciplinary debate about neovitalism between two Johns Hopkins University colleagues, philosopher Arthur O. Lovejoy and experimental geneticist H. S. Jennings, in the period 1911-1914, was the basis for their theoretical reconceptualization of scientific knowledge as contingent and necessarily incomplete in its account of nature. Their response to Hans Driesch's neovitalist concept of entelechy, and his challenge to the continuity between biology and the inorganic sciences, resulted in a historically significant articulation of genetics and philosophy. This study traces the debate's shift of problem-focus away from neovitalism's threat to the unity of science - "organic autonomy," as Lovejoy put it - and toward the potential for development of a nonmechanististic, nonrationalist theory of scientific knowledge. The result was a new pragmatist epistemology, based on Lovejoy's and Jennings's critiques of the inadequacy of pragmatism's account of scientific knowledge. The first intellectual move, drawing on naturalism and pragmatism, was based on a reinterpretation of science as organized experience. The second, sparked by Henri Bergson's theory of creative evolution, and drawing together elements of Dewey's and James's pragmatisms, produced a new account of the contingency and necessary incompleteness of scientific knowledge. Prompted by the neovitalists' mix of a priori concepts and, in Driesch's case, and adherence to empiricism, Lovejoy's and Jennings's developing pragmatist epistemologies of science explored the interrelation between rationalism and empiricism.

  10. Upper Secondary Chemistry Students in a Pharmacochemistry Research Community

    NASA Astrophysics Data System (ADS)

    van Rens, Lisette; van Muijlwijk, Jacqueline; Beishuizen, Jos; van der Schee, Joop

    2013-04-01

    This study deals with the participation of 10 upper secondary chemistry students, aged 16-17, and their chemistry teacher in a pharmacochemistry research community on anti-allergy medicines at VU University, Amsterdam, The Netherlands. Participation of students in scientific research raises the question of how to bridge the gap between an upper secondary school inquiry practice and a scientific research practice. To bridge this gap, a design based on 6 principles derived from an educational model of a community of learners was proposed. The study first aimed at revealing whether the proposed principles were necessary according to the students, their teacher and three pharmacochemistry researchers for successful participation of the students in the research community. Second, the study examined whether the students' understanding of discipline-specific content knowledge, interest in scientific research and knowledge about the nature of science changed during the course of the study. Data were obtained from questionnaires, interviews and video tapes. The results indicated that according to the teacher all 6 principles were necessary to bridge the gap, whereas according to the students 1 principle and according to the pharmacochemistry researchers 2 principles were necessary but difficult to achieve. Furthermore, all students gained discipline-specific content knowledge. Their interest in scientific research exhibited a positive change and their knowledge about the nature of science increased. The implications for further research and practice are discussed.

  11. Using the SEE-SEP Model to Analyze Upper Secondary Students' Use of Supporting Reasons in Arguing Socioscientific Issues

    NASA Astrophysics Data System (ADS)

    Christenson, Nina; Chang Rundgren, Shu-Nu; Höglund, Hans-Olof

    2012-06-01

    To achieve the goal of scientific literacy, the skills of argumentation have been emphasized in science education during the past decades. But the extent to which students can apply scientific knowledge to their argumentation is still unclear. The purpose of this study was to analyse 80 Swedish upper secondary students' informal argumentation on four socioscientific issues (SSIs) to explore students' use of supporting reasons and to what extent students used scientific knowledge in their arguments. Eighty upper secondary students were asked to express their opinions on one SSI topic they chose through written reports. The four SSIs in this study include global warming, genetically modified organisms (GMO), nuclear power, and consumption. To analyse students' supporting reasons from a holistic view, we used the SEE-SEP model, which links the six subject areas of sociology/culture (So), environment (En), economy (Ec), science (Sc), ethics/morality (Et) and policy (Po) connecting with three aspects, knowledge, value and personal experience (KVP). The results showed that students used value to a greater extent (67%) than they did scientific knowledge (27%) for all four SSI topics. According to the SEE-SEP model, the distribution of supporting reasons generated by students differed among the SSI topics. Also, some alternative concepts were disclosed in students' arguments. The implications for research and education are discussed.

  12. So, why do we still have journals?

    NASA Astrophysics Data System (ADS)

    Hut, R.

    2014-12-01

    The academic article is a relic from a bygone age. Form and style have not changed much since the days of Einstein and Wegener, nor have the institutions that publish our academic knowledge. When I google-scholar an article, I do not care if it was published in nature, PNAS, or the annals of the cambodian society of herbologists. I care about the scientific knowledge contained in the article, that I would like to use in my own work. So: why do we have journals again? The journal-based system of scientific publication is cracking under its own weight. The publish or perish culture leads to an ever increasing number of articles, each containing less actual science, because spreading over multiple papers helps your career. Journal editors complain that the average number of scientists that they approach for reviewing has gone up because there is no incentive in being a reviewer, only in being reviewed. And finally: much research money is wasted because reviewers point out fundamental flaws in experiment setups after the fact. In this talk, I will present a new way of publishing scientific knowledge. A departure of the classic systems, my way aims to keep the thoroughness of the peer reviewed system, increase the effective use of funding and make more scientific knowledge publically available. Also, it abolishes the need for journals.

  13. OpenBiodiv-O: ontology of the OpenBiodiv knowledge management system.

    PubMed

    Senderov, Viktor; Simov, Kiril; Franz, Nico; Stoev, Pavel; Catapano, Terry; Agosti, Donat; Sautter, Guido; Morris, Robert A; Penev, Lyubomir

    2018-01-18

    The biodiversity domain, and in particular biological taxonomy, is moving in the direction of semantization of its research outputs. The present work introduces OpenBiodiv-O, the ontology that serves as the basis of the OpenBiodiv Knowledge Management System. Our intent is to provide an ontology that fills the gaps between ontologies for biodiversity resources, such as DarwinCore-based ontologies, and semantic publishing ontologies, such as the SPAR Ontologies. We bridge this gap by providing an ontology focusing on biological taxonomy. OpenBiodiv-O introduces classes, properties, and axioms in the domains of scholarly biodiversity publishing and biological taxonomy and aligns them with several important domain ontologies (FaBiO, DoCO, DwC, Darwin-SW, NOMEN, ENVO). By doing so, it bridges the ontological gap across scholarly biodiversity publishing and biological taxonomy and allows for the creation of a Linked Open Dataset (LOD) of biodiversity information (a biodiversity knowledge graph) and enables the creation of the OpenBiodiv Knowledge Management System. A key feature of the ontology is that it is an ontology of the scientific process of biological taxonomy and not of any particular state of knowledge. This feature allows it to express a multiplicity of scientific opinions. The resulting OpenBiodiv knowledge system may gain a high level of trust in the scientific community as it does not force a scientific opinion on its users (e.g. practicing taxonomists, library researchers, etc.), but rather provides the tools for experts to encode different views as science progresses. OpenBiodiv-O provides a conceptual model of the structure of a biodiversity publication and the development of related taxonomic concepts. It also serves as the basis for the OpenBiodiv Knowledge Management System.

  14. Citizen science in hydrology and water resources: opportunities for knowledge generation, ecosystem service management, and sustainable development

    NASA Astrophysics Data System (ADS)

    Buytaert, Wouter; Zulkafli, Zed; Grainger, Sam; Acosta, Luis; Bastiaensen, Johan; De Bièvre, Bert; Bhusal, Jagat; Chanie, Tilashwork; Clark, Julian; Dewulf, Art; Foggin, Marc; Hannah, David; Hergarten, Christian; Isaeva, Aiganysh; Karpouzoglou, Timos; Pandey, Bhopal; Paudel, Deepak; Sharma, Keshav; Steenhuis, Tammo; Tilahun, Seifu; Van Hecken, Gert; Zhumanova, Munavar

    2014-10-01

    The participation of the general public in the research design, data collection and interpretation process together with scientists is often referred to as citizen science. While citizen science itself has existed since the start of scientific practice, developments in sensing technology, data processing and visualisation, and communication of ideas and results, are creating a wide range of new opportunities for public participation in scientific research. This paper reviews the state of citizen science in a hydrological context and explores the potential of citizen science to complement more traditional ways of scientific data collection and knowledge generation for hydrological sciences and water resources management. Although hydrological data collection often involves advanced technology, the advent of robust, cheap and low-maintenance sensing equipment provides unprecedented opportunities for data collection in a citizen science context. These data have a significant potential to create new hydrological knowledge, especially in relation to the characterisation of process heterogeneity, remote regions, and human impacts on the water cycle. However, the nature and quality of data collected in citizen science experiments is potentially very different from those of traditional monitoring networks. This poses challenges in terms of their processing, interpretation, and use, especially with regard to assimilation of traditional knowledge, the quantification of uncertainties, and their role in decision support. It also requires care in designing citizen science projects such that the generated data complement optimally other available knowledge. Lastly, we reflect on the challenges and opportunities in the integration of hydrologically-oriented citizen science in water resources management, the role of scientific knowledge in the decision-making process, and the potential contestation to established community institutions posed by co-generation of new knowledge.

  15. The Rising Landscape: A Visual Exploration of Superstring Revolutions in Physics.

    ERIC Educational Resources Information Center

    Chen, Chaomei; Kuljis, Jasna

    2003-01-01

    Discussion of knowledge domain visualization focuses on practical issues concerning modeling and visualizing scientific revolutions. Studies growth patterns of specialties derived from citation and cocitation data on string theory in physics, using the general framework of Thomas Kuhn's structure of scientific revolutions. (Author/LRW)

  16. PTAL Database and Website: Developing a Novel Information System for the Scientific Exploitation of the Planetary Terrestrial Analogues Library

    NASA Astrophysics Data System (ADS)

    Veneranda, M.; Negro, J. I.; Medina, J.; Rull, F.; Lantz, C.; Poulet, F.; Cousin, A.; Dypvik, H.; Hellevang, H.; Werner, S. C.

    2018-04-01

    The PTAL website will store multispectral analysis of samples collected from several terrestrial analogue sites and pretend to become a cornerstone tool for the scientific community interested in deepening the knowledge on Mars geological processes.

  17. 75 FR 78607 - Changes in Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-16

    ... communities where modification of the Base (1% annual-chance) Flood Elevations (BFEs) is appropriate because of new scientific or technical data. New flood insurance premium rates will be calculated from the... knowledge of changed conditions or new scientific or technical data. The modifications are made pursuant to...

  18. How Do Primary School Students Acquire the Skill of Making Hypothesis

    ERIC Educational Resources Information Center

    Darus, Faridah Binti; Saat, Rohaida Mohd

    2014-01-01

    Science education in Malaysia emphasizes three components: namely knowledge, scientific skills which include science process skills and manipulative skills; scientific attitudes; and noble values. The science process skills are important in enhancing students' cognitive development and also to facilitate students' active participation during the…

  19. Encouraging Balanced Scientific Research through Formal Debate

    ERIC Educational Resources Information Center

    Yurgelun, Nancy

    2007-01-01

    The new Connecticut science standards include a "Science, Technology, and Society" (STS) standard for each grade level. This standard encourages students to explore how scientific knowledge affects the quality of their lives. By relating science concepts to real-world decision making, STS investigations give students a framework through…

  20. Scientific Skills and Processes in Curriculum Resources

    ERIC Educational Resources Information Center

    Kremer, Joe

    2017-01-01

    Increasingly, the science education community has recognized the need for curriculum resources that support student development of authentic scientific practices, rather than focusing exclusively on content knowledge. This paper proposes a tool for teachers and researchers to assess the degree to which certain curriculum resources and lessons…

  1. The Science Detectives.

    ERIC Educational Resources Information Center

    Search for Extraterrestrial Intelligence Inst., Mountain View, CA.

    The possibility of life on other planets holds enormous fascination for people of all ages. This interdisciplinary learning kit uses that theme to launch scientific learning in young students. Through a series of hands-on activities, it directs participants to solve an outer space mystery thereby acquiring and developing scientific knowledge and…

  2. Constructing Scientific Explanations: a System of Analysis for Students' Explanations

    NASA Astrophysics Data System (ADS)

    de Andrade, Vanessa; Freire, Sofia; Baptista, Mónica

    2017-08-01

    This article describes a system of analysis aimed at characterizing students' scientific explanations. Science education literature and reform documents have been highlighting the importance of scientific explanations for students' conceptual understanding and for their understanding of the nature of scientific knowledge. Nevertheless, and despite general agreement regarding the potential of having students construct their own explanations, a consensual notion of scientific explanation has still not been reached. As a result, within science education literature, there are several frameworks defining scientific explanations, with different foci as well as different notions of what accounts as a good explanation. Considering this, and based on a more ample project, we developed a system of analysis to characterize students' explanations. It was conceptualized and developed based on theories and models of scientific explanations, science education literature, and from examples of students' explanations collected by an open-ended questionnaire. With this paper, it is our goal to present the system of analysis, illustrating it with specific examples of students' collected explanations. In addition, we expect to point out its adequacy and utility for analyzing and characterizing students' scientific explanations as well as for tracing their progression.

  3. Women scientists' scientific and spiritual ways of knowing

    NASA Astrophysics Data System (ADS)

    Buffington, Angela Cunningham

    While science education aims for literacy regarding scientific knowledge and the work of scientists, the separation of scientific knowing from other knowing may misrepresent the knowing of scientists. The majority of science educators K-university are women. Many of these women are spiritual and integrate their scientific and spiritual ways of knowing. Understanding spiritual women of science would inform science education and serve to advance the scientific reason and spirituality debate. Using interviews and grounded theory, this study explores scientific and spiritual ways of knowing in six women of science who hold strong spiritual commitments and portray science to non-scientists. From various lived experiences, each woman comes to know through a Passive knowing of exposure and attendance, an Engaged knowing of choice, commitment and action, an Mindful/Inner knowing of prayer and meaning, a Relational knowing with others, and an Integrated lifeworld knowing where scientific knowing, spiritual knowing, and other ways of knowing are integrated. Consequences of separating ways of knowing are discussed, as are connections to current research, implications to science education, and ideas for future research. Understanding women scientists' scientific/ spiritual ways of knowing may aid science educators in linking academic science to the life-worlds of students.

  4. A collection of micrographs: where science and art meet

    PubMed Central

    Uskoković, Vuk

    2013-01-01

    Micrographs obtained using different instrumental techniques are presented with the purpose of demonstrating their artistic qualities. The quality of uniformity currently dominates the aesthetic assessment in scientific practice and is discussed in relation to the classical appreciation of the interplay between symmetry and asymmetry in arts. It is argued that scientific and artistic qualities have converged and inspired each other throughout millennia. With scientific discoveries and inventions enriching the world of communication, broadening the space for artistic creativity and making artistic products more accessible than ever, science inevitably influences artistic creativity. On the other hand, the importance of aesthetic principles in guiding scientific conduct has been appreciated by some of the most creative scientific minds. Science and arts can be thus considered as parallel rails of a single railroad track. Only when precisely coordinated is the passing of the train of human knowledge enabled. The presented micrographs, occupying the central part of this discourse, are displayed with the purpose of showing the rich aesthetic character of even the most ordinary scientific images. The inherent aesthetic nature of scientific imagery and the artistic nature of scientific conduct have thus been offered as the conclusion. PMID:24465169

  5. The effect of scaffolded strategies on content learning in a designed science cyberlearning environment

    NASA Astrophysics Data System (ADS)

    Kern, Cynthia Lee

    Scientific inscriptions---graphs, diagrams, and data---and argumentation are integral to generating and communicating scientific understanding. Scientific inscriptions and argumentation are also important to learning science. However, previous research has indicated that learners struggle to understand and learn science content represented in inscriptions. Furthermore, when learners engage in argumentation, learning science content becomes secondary to the learning of argumentation skills. This design-based research study is nested within the larger effort to inform the design and development of the 5-Featured Dynamic Inquiry Enterprise design framework (5-DIE) for cyberlearning environments and to advance theory associated with the difficulties learners have with scientific inscriptions and the consequences related to using argumentation to learn science content. In an attempt to engage participants in the process of learning science content with scientific inscriptions and argumentation, two learning strategies were embedded in a 5-DIE lessons. The two learning strategies evaluated in this study were (1) self-explanation prompts paired with a scientific inscription and (2) faded worked examples for the evaluation and development of scientific knowledge claims. The participants consisted of ninth and tenth grade students (age: 13-16 years; N=245) enrolled in one of three state-mandated biology courses taught by four different teachers. A three factor mixed model analysis of variance (ANOVA) with two between factors (self-explanation prompts and faded worked examples) and one within factor (pre, post, delayed post-test) was used to evaluate the effects of the learning strategies on the acquisition and retention of domain-specific content knowledge. Both between factors had two levels (with & without) and are described by the following experimental conditions: (1) control condition (general prompts), (2) self-explanation condition, (3) faded worked examples condition, and (4) combined condition with both self-explanation and faded worked examples. Acquisition and retention of content knowledge was assessed with a 17-item multiple-choice, researcher-developed content knowledge test. Results indicated that self-explanation prompts and faded worked examples learning strategies did not influence acquisition and retention of science content in a positive (i.e., learning) way. Based on the finding of this study, it may be concluded that the use of general prompts is as effective as self-explanation prompts and faded worked examples for scaffolding learner engagement with scientific inscriptions and argumentation. Furthermore, the finding indicated additional research is warranted evaluating the generalizability of scaffolds from college to pre-college populations.

  6. Garbage Patch Visualization Experiment

    NASA Image and Video Library

    2015-08-20

    Goddard visualizers show us how five garbage patches formed in the world's oceans using 35 years of data. Read more: 1.usa.gov/1Lnj7xV Credit: NASA's Scientific Visualization Studio NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Semantic networks based on titles of scientific papers

    NASA Astrophysics Data System (ADS)

    Pereira, H. B. B.; Fadigas, I. S.; Senna, V.; Moret, M. A.

    2011-03-01

    In this paper we study the topological structure of semantic networks based on titles of papers published in scientific journals. It discusses its properties and presents some reflections on how the use of social and complex network models can contribute to the diffusion of knowledge. The proposed method presented here is applied to scientific journals where the titles of papers are in English or in Portuguese. We show that the topology of studied semantic networks are small-world and scale-free.

  8. Joint the Center for Applied Scientific Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamblin, Todd; Bremer, Timo; Van Essen, Brian

    The Center for Applied Scientific Computing serves as Livermore Lab’s window to the broader computer science, computational physics, applied mathematics, and data science research communities. In collaboration with academic, industrial, and other government laboratory partners, we conduct world-class scientific research and development on problems critical to national security. CASC applies the power of high-performance computing and the efficiency of modern computational methods to the realms of stockpile stewardship, cyber and energy security, and knowledge discovery for intelligence applications.

  9. High-School Students' Epistemic Knowledge of Science and Its Relation to Learner Factors in Science Learning

    NASA Astrophysics Data System (ADS)

    Yang, Fang-Ying; Liu, Shiang-Yao; Hsu, Chung-Yuan; Chiou, Guo-Li; Wu, Hsin-Kai; Wu, Ying-Tien; Chen, Sufen; Liang, Jyh-Chong; Tsai, Meng-Jung; Lee, Silvia W.-Y.; Lee, Min-Hsien; Lin, Che-Li; Chu, Regina Juchun; Tsai, Chin-Chung

    2017-04-01

    The purpose of this study was to develop and validate an online contextualized test for assessing students' understanding of epistemic knowledge of science. In addition, how students' understanding of epistemic knowledge of science interacts with learner factors, including time spent on science learning, interest, self-efficacy, and gender, was also explored. The participants were 489 senior high school students (244 males and 245 females) from eight different schools in Taiwan. Based on the result of an extensive literature review, we first identified six factors of epistemic knowledge of science, such as status of scientific knowledge, the nature of scientific enterprise, measurement in science, and so on. An online test was then created for assessing students' understanding of the epistemic knowledge of science. Also, a learner-factor survey was developed by adopting previous PISA survey items to measure the abovementioned learner factors. The results of this study show that; (1) by factor analysis, the six factors of epistemic knowledge of science could be grouped into two dimensions which reflect the nature of scientific knowledge and knowing in science, respectively; (2) there was a gender difference in the participants' understanding of the epistemic knowledge of science; and (3) students' interest in science learning and the time spent on science learning were positively correlated to their understanding of the epistemic knowledge of science.

  10. Fleck and the social constitution of scientific objectivity.

    PubMed

    Fagan, Melinda B

    2009-12-01

    Ludwik Fleck's theory of thought-styles has been hailed as a pioneer of constructivist science studies and sociology of scientific knowledge. But this consensus ignores an important feature of Fleck's epistemology. At the core of his account is the ideal of 'objective truth, clarity, and accuracy'. I begin with Fleck's account of modern natural science, locating the ideal of scientific objectivity within his general social epistemology. I then draw on Fleck's view of scientific objectivity to improve upon reflexive accounts of the origin and development of the theory of thought-styles, and reply to objections that Fleck's epistemological stance is self-undermining or inconsistent. Explicating the role of scientific objectivity in Fleck's epistemology reveals his view to be an internally consistent alternative to recent social accounts of scientific objectivity by Harding, Daston and Galison. I use these contrasts to indicate the strengths and weaknesses of Fleck's innovative social epistemology, and propose modifications to address the latter. The result is a renewed version of Fleck's social epistemology, which reconciles commitment to scientific objectivity with integrated sociology, history and philosophy of science.

  11. Scientific Communication and the Nature of Science

    NASA Astrophysics Data System (ADS)

    Nielsen, Kristian H.

    2013-09-01

    Communication is an important part of scientific practice and, arguably, may be seen as constitutive to scientific knowledge. Yet, often scientific communication gets cursory treatment in science studies as well as in science education. In Nature of Science (NOS), for example, communication is rarely mentioned explicitly, even though, as will be argued in this paper, scientific communication could be treated as a central component of NOS. Like other forms of communication, scientific communication is socially and symbolically differentiated. Among other things, it encompasses technical language and grammar, lab communications, and peer reviews, all of which will be treated in this paper in an attempt to engage on an empirical and theoretical level with science as communication. Seeing science as a form of communicative action supplements the epistemological view of science that is standard to both NOS and the philosophy of science. Additions to the seven NOS aspects on Lederman's (Handbook of research on science education. Lawrence Erlbaum, Mahwah, pp. 831-879, 2007) list are put forward as well as preliminary thoughts on the inclusion of scientific communication into NOS instruction.

  12. Scientific Ethics: A New Approach.

    PubMed

    Menapace, Marcello

    2018-06-04

    Science is an activity of the human intellect and as such has ethical implications that should be reviewed and taken into account. Although science and ethics have conventionally been considered different, it is herewith proposed that they are essentially similar. The proposal set henceforth is to create a new ethics rooted in science: scientific ethics. Science has firm axiological foundations and searches for truth (as a value, axiology) and knowledge (epistemology). Hence, science cannot be value neutral. Looking at standard scientific principles, it is possible to construct a scientific ethic (that is, an ethical framework based on scientific methods and rules), which can be applied to all sciences. These intellectual standards include the search for truth (honesty and its derivatives), human dignity (and by reflection the dignity of all animals) and respect for life. Through these it is thence achievable to draft a foundation of a ethics based purely on science and applicable beyond the confines of science. A few applications of these will be presented. Scientific ethics can have vast applications in other fields even in non scientific ones.

  13. [Knowledge and power at a molecular level; biological psychiatry in a social context].

    PubMed

    Verhoeff, B

    2009-01-01

    How do we acquire our knowledge about psychiatric disorders and how did the current biologically way of thinking in psychiatry originate? With the help of the philosophy of Michel Foucault and Nikolas Rose this essay describes the conditions that made possible today's biological approach in psychiatry. It will become clear that research in the life sciences and the psychiatric knowledge arising from this research are shaped and formed in a complex network of social, economic, political and scientific forces. The biological approach to psychiatric disorders is the product of present-day relationships between scientific developments and commercial corporations.

  14. A "Sense of Place" in Public Participation in Scientific Research

    ERIC Educational Resources Information Center

    Haywood, Benjamin K.

    2014-01-01

    Public participation in scientific research (PPSR) within the natural sciences has been demonstrated as an effective strategy to expand cognitive knowledge and understanding of ecology, with implications regarding individual perspectives, attitudes, and behaviors about the environment and feelings about the personal relevance of science. Yet the…

  15. Does Higher Education Improve Student Scientific Reasoning Skills?

    ERIC Educational Resources Information Center

    Ding, Lin; Wei, Xin; Mollohan, Katherine

    2016-01-01

    An ultimate goal of higher education is to prepare our future workers with needed knowledge and skills. This includes cultivating students to become proficient reasoners who can utilize proper scientific reasoning to devise causal inferences from observations. Conventionally, students with more years of higher education are expected to have a…

  16. Building Bridges through Scientific Conferences.

    PubMed

    Zierath, Juleen R

    2016-11-17

    Getting together to exchange ideas, forge collaborations, and disseminate knowledge is a long-standing tradition of scientific communities. How conferences are serving the community, what their current challenges are, and what is in store for the future of conferences are the topics covered in this Commentary. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Performance Evaluation of an Online Argumentation Learning Assistance Agent

    ERIC Educational Resources Information Center

    Huang, Chenn-Jung; Wang, Yu-Wu; Huang, Tz-Hau; Chen, Ying-Chen; Chen, Heng-Ming; Chang, Shun-Chih

    2011-01-01

    Recent research indicated that students' ability to construct evidence-based explanations in classrooms through scientific inquiry is critical to successful science education. Structured argumentation support environments have been built and used in scientific discourse in the literature. To the best of our knowledge, no research work in the…

  18. The Large-Scale Structure of Scientific Method

    ERIC Educational Resources Information Center

    Kosso, Peter

    2009-01-01

    The standard textbook description of the nature of science describes the proposal, testing, and acceptance of a theoretical idea almost entirely in isolation from other theories. The resulting model of science is a kind of piecemeal empiricism that misses the important network structure of scientific knowledge. Only the large-scale description of…

  19. Contemporary Science and Worldview-Making

    ERIC Educational Resources Information Center

    Cordero, Alberto

    2009-01-01

    This paper discusses the impact of contemporary scientific knowledge on worldviews. The first three sections provide epistemological background for the arguments that follow. Sections 2 and 3 discuss the reliable part of science, specifically the characterization, scope and limits of the present scientific canon. Section 4 deals with the mode of…

  20. Scientific and Technical Information in Canada, Part II, Chapter 6: Libraries.

    ERIC Educational Resources Information Center

    Science Council of Canada, Ottawa (Ontario).

    The four types of libraries - special, academic, public, and school - collectively constitute a large part of the knowledge available in Canada. Consequently, a scientific and technical information network will be heavily dependent on these established library collections. Communications across the "type of library" boundaries is…

  1. Prions: Introducing a Complex Scientific Controversy to a Biology Classroom

    ERIC Educational Resources Information Center

    Zaitsev, Igor V.

    2009-01-01

    Thomas Kuhn, in "The Structure of Scientific Revolutions," posited that science does not progress by the steady accumulation of knowledge, but rather by a system of competition among paradigms. They vie for supremacy through greater parsimony, explanatory power, and popularity among the community of scientists (Kuhn, 1962). The current…

  2. Intelligent Tutoring Systems for Scientific Inquiry Skills.

    ERIC Educational Resources Information Center

    Shute, Valerie; Bonar, Jeffrey

    Described are the initial prototypes of several intelligent tutoring systems designed to build students' scientific inquiry skills. These inquiry skills are taught in the context of acquiring knowledge of principles from a microworld that models a specific domain. This paper discusses microworlds that have been implemented for microeconomics,…

  3. Towards a General Scientific Reasoning Engine.

    ERIC Educational Resources Information Center

    Carbonell, Jaime G.; And Others

    Expert reasoning in the natural sciences appears to make extensive use of a relatively small number of general principles and reasoning strategies, each associated with a larger number of more specific inference patterns. Using a dual declarative hierarchy to represent strategic and factual knowledge, a framework for a robust scientific reasoning…

  4. Metaphor, Multiplicative Meaning and the Semiotic Construction of Scientific Knowledge

    ERIC Educational Resources Information Center

    Liu, Yu; Owyong, Yuet See Monica

    2011-01-01

    Scientific discourse is characterized by multi-semiotic construction and the resultant semantic expansions. To date, there remains a lack of analytical methods to explicate the multiplicative nature of meaning. Drawing on the theories of systemic functional linguistics, this article examines the meaning-making processes across language and…

  5. Research Methodology: A Practitioner Approach

    ERIC Educational Resources Information Center

    Singh, Sukhpal; Chana, Inderveer; Singh, Maninder

    2015-01-01

    The ultimate goal of scientific research is publication so as to showcase the research outcomes. Scientists, starting as graduate students, are measured primarily not by their dexterity in laboratory manipulations, not by their innate knowledge of either broad or narrow scientific subjects, and certainly not by their wit or charm; they are…

  6. Putting Science Literacy on Display

    ERIC Educational Resources Information Center

    Hayman, Arlene; Hoppe, Carole; Deniz, Hasan

    2012-01-01

    Imagine a classroom where students are actively engaged in seeking scientific knowledge from books and computers. Think of a classroom in which students fervently write to create PowerPoint presentations about their scientific topic and then enthusiastically practice their speaking roles to serve as docents in a classroom museum setting. Visualize…

  7. Editorial: a scientifically rigorous and user-friendly Rangeland Ecology & Management

    USDA-ARS?s Scientific Manuscript database

    Rangeland Ecology and Management (REM) is the premier journal for communication of science-based knowledge and for fostering both innovation and rigor in our stewardship of the world’s rangelands. REM is critical to the mission of the Society for Range Management and has had increasing scientific im...

  8. Restoring forest ecosystems: the human dimension

    Treesearch

    Bruce R. Hull; Paul H. Gobster

    2000-01-01

    In the past two decades, ecological restoration has moved from an obscure and scientifically suspect craft to a widely practiced and respected profession with considerable scientific knowledge and refined on-the-ground practices. Concurrently, forest restoration has become a valued skill of forestry professionals and a popular goal for forest management. Politics and...

  9. Science and Technology, Autonomous and More Interdependent Every Time

    ERIC Educational Resources Information Center

    Santilli, Haydee

    2012-01-01

    In a School of Engineering scientific and technological knowledge live together. Science teachers usually try to understand the role that scientific disciplines have over the engineer training. In this paper are descript three historical case studies that could help teachers and students for better understanding the interdependence between science…

  10. Using JournalMap to improve discovery and visualization of rangeland scientific knowledge

    USDA-ARS?s Scientific Manuscript database

    Most of the ecological research conducted around the world is tied to specific places; however, that location information is locked up in the text and figures of scientific articles in myriad forms that are not easily searchable. While access to ecological literature has improved dramatically in the...

  11. Introduction, Chapter 1

    Treesearch

    L.H. Pardo; C.T. Driscoll; C.L. Goodale

    2011-01-01

    This publication provides a scientific synthesis of the current state of research and knowledge about the response of terrestrial and aquatic ecosystems to nitrogen (N) inputs (N deposition or N additions), and, where possible, identifi es critical loads for atmospheric N deposition. It also targets policy makers and resource managers who are seeking a scientific basis...

  12. Designing Project-Based Instruction to Foster Generative and Mechanistic Understandings in Genetics

    ERIC Educational Resources Information Center

    Duncan, Ravit Golan; Tseng, Katie Ann

    2011-01-01

    The acquisition of scientific knowledge is fraught with difficulties and challenges for the learner. The very nature of some scientific domains contributes to the learning difficulties students' experience. Phenomena in these domains are composed of multiple organization levels featuring complicated interactions within and across these levels.…

  13. Teaching Scientific Metaphors through Informational Text Read-Alouds

    ERIC Educational Resources Information Center

    Barnes, Erica M.; Oliveira, Alandeom W.

    2018-01-01

    Elementary students are expected to use various features of informational texts to build knowledge in the content areas. In science informational texts, scientific metaphors are commonly used to make sense of complex and invisible processes. Although elementary students may be familiar with literary metaphors as used in narratives, they may be…

  14. Using Science as Evidence in Public Policy

    ERIC Educational Resources Information Center

    Prewitt, Kenneth, Ed.; Schwandt, Thomas A., Ed.; Straf, Miron L., Ed.

    2012-01-01

    "Using Science as Evidence in Public Policy" encourages scientists to think differently about the use of scientific evidence in policy making. This report investigates why scientific evidence is important to policy making and argues that an extensive body of research on knowledge utilization has not led to any widely accepted explanation…

  15. IMG_4301

    NASA Image and Video Library

    2015-08-14

    NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Improving scientific knowledge

    Treesearch

    James M. Vose; David L. Peterson

    2012-01-01

    Scientific literature on the effects of climatic variability and change on forest ecosystems has increased significantly over the past decade, providing a foundation for establishing forest-climate relationships and projecting the effects of continued warming on a wide range of forest resources and ecosystem services. In addition, certainty about the nature of some of...

  17. The New Morbidity and the Prevention of Mental Retardation.

    ERIC Educational Resources Information Center

    Baumeister, Alfred A.

    1988-01-01

    Efforts to prevent mental retardation have been encumbered by lack of scientific and technical knowledge, vague understanding of incidence and prevalence, and scarcity of resources to implement effective public policies. Scientific and social progress toward prevention has pursued a wavelike, erratic course, driven primarily by prevailing social,…

  18. Archive, Access, and Supply of Scientifically Derived Data: A Data Model for Multi-Parameterized Querying Where Spectral Data Base Meets GIS-Based Mapping Archive

    NASA Astrophysics Data System (ADS)

    Nass, A.; D'Amore, M.; Helbert, J.

    2018-04-01

    An archiving structure and reference level of derived and already published data supports the scientific community significantly by a constant rise of knowledge and understanding based on recent discussions within Information Science and Management.

  19. Perception in the Invisible World of Physics.

    ERIC Educational Resources Information Center

    Novemsky, Lisa; Gautreau, Ronald

    Physics learning involves a change in the habitual perception of the everyday world. In order to describe the real world scientifically, an individual must develop perception and cognition capable of reconstructing the world from raw sensory data and incorporating acquired knowledge of the scientific community. The introductory physics student…

  20. SCIENTIFIC LITERACY IN THE SIXTIES.

    ERIC Educational Resources Information Center

    KOELSCHE, CHARLES L.; MORGAN, ASHLEY G.

    RESEARCH WAS CONDUCTED TO ESTABLISH THE DEGREE OF SCIENTIFIC KNOWLEDGE THAT IS REQUIRED TO UNDERSTAND SCIENCE ARTICLES IN CURRENT NEWSPAPERS AND MAGAZINES. ALL ARTICLES ABOUT SCIENCE OR REQUIRING SCIENCE FOR INTERPRETATION WERE COLLECTED FOR A 6-MONTH PERIOD FROM NINE MAGAZINES AND 22 NEWSPAPERS. TERMS WERE CATEGORIZED AND RELATED TO THE…

Top