Sample records for scientific method students

  1. Exploring the Changes in Students' Understanding of the Scientific Method Using Word Associations

    NASA Astrophysics Data System (ADS)

    Gulacar, Ozcan; Sinan, Olcay; Bowman, Charles R.; Yildirim, Yetkin

    2015-10-01

    A study is presented that explores how students' knowledge structures, as related to the scientific method, compare at different student ages. A word association test comprised of ten total stimulus words, among them experiment, science fair, and hypothesis, is used to probe the students' knowledge structures. Students from grades four, five, and eight, as well as first-year college students were tested to reveal their knowledge structures relating to the scientific method. Younger students were found to have a naïve view of the science process with little understanding of how science relates to the real world. However, students' conceptions about the scientific process appear to be malleable, with science fairs a potentially strong influencer. The strength of associations between words is observed to change from grade to grade, with younger students placing science fair near the center of their knowledge structure regarding the scientific method, whereas older students conceptualize the scientific method around experiment.

  2. Study of the comprehension of the scientific method by members of a university health research laboratory.

    PubMed

    Burlamaque-Neto, A C; Santos, G R; Lisbôa, L M; Goldim, J R; Machado, C L B; Matte, U; Giugliani, R

    2012-02-01

    In Brazil, scientific research is carried out mainly at universities, where professors coordinate research projects with the active participation of undergraduate and graduate students. However, there is no formal program for the teaching/learning of the scientific method. The objective of the present study was to evaluate the comprehension of the scientific method by students of health sciences who participate in scientific projects in an academic research laboratory. An observational descriptive cross-sectional study was conducted using Edgar Morin complexity as theoretical reference. In a semi-structured interview, students were asked to solve an abstract logical puzzle - TanGram. The collected data were analyzed using the hermeneutic-dialectic analysis method proposed by Minayo and discussed in terms of the theoretical reference of complexity. The students' concept of the scientific method is limited to participation in projects, stressing the execution of practical procedures as opposed to scientific thinking. The solving of the TanGram puzzle revealed that the students had difficulties in understanding questions and activities focused on subjects and their processes. Objective answers, even when dealing with personal issues, were also reflected on the students' opinions about the characteristics of a successful researcher. Students' difficulties concerning these issues may affect their scientific performance and result in poorly designed experiments. This is a preliminary study that should be extended to other centers of scientific research.

  3. Study of the comprehension of the scientific method by members of a university health research laboratory

    PubMed Central

    Burlamaque-Neto, A.C.; Santos, G.R.; Lisbôa, L.M.; Goldim, J.R.; Machado, C.L.B.; Matte, U.; Giugliani, R.

    2012-01-01

    In Brazil, scientific research is carried out mainly at universities, where professors coordinate research projects with the active participation of undergraduate and graduate students. However, there is no formal program for the teaching/learning of the scientific method. The objective of the present study was to evaluate the comprehension of the scientific method by students of health sciences who participate in scientific projects in an academic research laboratory. An observational descriptive cross-sectional study was conducted using Edgar Morin complexity as theoretical reference. In a semi-structured interview, students were asked to solve an abstract logical puzzle - TanGram. The collected data were analyzed using the hermeneutic-dialectic analysis method proposed by Minayo and discussed in terms of the theoretical reference of complexity. The students' concept of the scientific method is limited to participation in projects, stressing the execution of practical procedures as opposed to scientific thinking. The solving of the TanGram puzzle revealed that the students had difficulties in understanding questions and activities focused on subjects and their processes. Objective answers, even when dealing with personal issues, were also reflected on the students' opinions about the characteristics of a successful researcher. Students' difficulties concerning these issues may affect their scientific performance and result in poorly designed experiments. This is a preliminary study that should be extended to other centers of scientific research. PMID:22249427

  4. The Scientific Method and Scientific Inquiry: Tensions in Teaching and Learning

    ERIC Educational Resources Information Center

    Tang, Xiaowei; Coffey, Janet E.; Elby, Andy; Levin, Daniel M.

    2010-01-01

    Typically, the scientific method in science classrooms takes the form of discrete, ordered steps meant to guide students' inquiry. In this paper, we examine how focusing on the scientific method as discrete steps affects students' inquiry and teachers' perceptions thereof. To do so, we study a ninth-grade environmental science class in which…

  5. Where do Students Go Wrong in Applying the Scientific Method?

    NASA Astrophysics Data System (ADS)

    Rubbo, Louis; Moore, Christopher

    2015-04-01

    Non-science majors completing a liberal arts degree are frequently required to take a science course. Ideally with the completion of a required science course, liberal arts students should demonstrate an improved capability in the application of the scientific method. In previous work we have demonstrated that this is possible if explicit instruction is spent on the development of scientific reasoning skills. However, even with explicit instruction, students still struggle to apply the scientific process. Counter to our expectations, the difficulty is not isolated to a single issue such as stating a testable hypothesis, designing an experiment, or arriving at a supported conclusion. Instead students appear to struggle with every step in the process. This talk summarizes our work looking at and identifying where students struggle in the application of the scientific method. This material is based upon work supported by the National Science Foundation under Grant No. 1244801.

  6. Exploring the Changes in Students' Understanding of the Scientific Method Using Word Associations

    ERIC Educational Resources Information Center

    Gulacar, Ozcan; Sinan, Olcay; Bowman, Charles R.; Yildirim, Yetkin

    2015-01-01

    A study is presented that explores how students' knowledge structures, as related to the scientific method, compare at different student ages. A word association test comprised of ten total stimulus words, among them "experiment," "science fair," and "hypothesis," is used to probe the students' knowledge structures.…

  7. Impact of Including Authentic Inquiry Experiences in Methods Courses for Pre-Service Secondary Teachers

    NASA Astrophysics Data System (ADS)

    Slater, T. F.; Elfring, L.; Novodvorsky, I.; Talanquer, V.; Quintenz, J.

    2007-12-01

    Science education reform documents universally call for students to have authentic and meaningful experiences using real data in the context of their science education. The underlying philosophical position is that students analyzing data can have experiences that mimic actual research. In short, research experiences that reflect the scientific spirit of inquiry potentially can: prepare students to address real world complex problems; develop students' ability to use scientific methods; prepare students to critically evaluate the validity of data or evidence and of the consequent interpretations or conclusions; teach quantitative skills, technical methods, and scientific concepts; increase verbal, written, and graphical communication skills; and train students in the values and ethics of working with scientific data. However, it is unclear what the broader pre-service teacher preparation community is doing in preparing future teachers to promote, manage, and successful facilitate their own students in conducting authentic scientific inquiry. Surveys of undergraduates in secondary science education programs suggests that students have had almost no experiences themselves in conducting open scientific inquiry where they develop researchable questions, design strategies to pursue evidence, and communicate data-based conclusions. In response, the College of Science Teacher Preparation Program at the University of Arizona requires all students enrolled in its various science teaching methods courses to complete an open inquiry research project and defend their findings at a specially designed inquiry science mini-conference at the end of the term. End-of-term surveys show that students enjoy their research experience and believe that this experience enhances their ability to facilitate their own future students in conducting open inquiry.

  8. Scientific Process Flowchart Assessment (SPFA): A Method for Evaluating Changes in Understanding and Visualization of the Scientific Process in a Multidisciplinary Student Population

    ERIC Educational Resources Information Center

    Wilson, Kristy J.; Rigakos, Bessie

    2016-01-01

    The scientific process is nonlinear, unpredictable, and ongoing. Assessing the nature of science is difficult with methods that rely on Likert-scale or multiple-choice questions. This study evaluated conceptions about the scientific process using student-created visual representations that we term "flowcharts." The methodology,…

  9. Teaching Scientific Reasoning to Liberal Arts Students

    NASA Astrophysics Data System (ADS)

    Rubbo, Louis

    2014-03-01

    University courses in conceptual physics and astronomy typically serve as the terminal science experience for the liberal arts student. Within this population significant content knowledge gains can be achieved by utilizing research verified pedagogical methods. However, from the standpoint of the Univeristy, students are expected to complete these courses not necessarily for the content knowledge but instead for the development of scientific reasoning skills. Results from physics education studies indicate that unless scientific reasoning instruction is made explicit students do not progress in their reasoning abilities. How do we complement the successful content based pedagogical methods with instruction that explicitly focuses on the development of scientific reasoning skills? This talk will explore methodologies that actively engages the non-science students with the explicit intent of fostering their scientific reasoning abilities.

  10. Effects of Inquiry-Based Agriscience Instruction on Student Scientific Reasoning

    ERIC Educational Resources Information Center

    Thoron, Andrew C.; Myers, Brian E.

    2012-01-01

    The purpose of this study was to determine the effect of inquiry-based agriscience instruction on student scientific reasoning. Scientific reasoning is defined as the use of the scientific method, inductive, and deductive reasoning to develop and test hypothesis. Developing scientific reasoning skills can provide learners with a connection to the…

  11. Profile of Scientific Ability of Chemistry Education Students in Basic Physics Course

    NASA Astrophysics Data System (ADS)

    Suastika, K. G.; Sudyana, I. N.; Lasiani, L.; Pebriyanto, Y.; Kurniawati, N.

    2017-09-01

    The weakness of scientific ability of students in college has been being a concern in this case, especially in terms of laboratory activities to support Laboratory Based Education. Scientific ability is a basic ability that must be dominated by students in basic physics lecturing process as a part of scientific method. This research aims to explore the indicators emergence of the scientific ability of students in Chemistry Education of Study Program, Faculty of Teaching and Education University of Palangka Raya through Inquiry Based Learning in basic physics courses. This research is a quantitative research by using descriptive method (descriptive-quantitative). Students are divided into three categories of group those are excellent group, low group, and heterogeneous group. The result shows that the excellent group and low group have same case that were occured decreasing in the percentage of achievement of scientific ability, while in heterogeneous group was increased. The differentiation of these results are caused by enthusiastic level of students in every group that can be seen in tables of scientific ability achievement aspects. By the results of this research, hoping in the future can be a references for further research about innovative learning strategies and models that can improve scientific ability and scientific reasoning especially for science teacher candidates.

  12. Faculty Forum: HOMER as an Acronym for the Scientific Method

    ERIC Educational Resources Information Center

    Lakin, Jessica L.; Giesler, R. Brian; Morris, Kathryn A.; Vosmik, Jordan R.

    2007-01-01

    Mnemonic strategies, such as acronyms, effectively increase student retention of course material. We present an acronym based on a popular television character to help students remember the basic steps in the scientific method. Our empirical evaluation of the acronym revealed that students found it to be enjoyable, useful, and worthy of use in…

  13. A quarter-long exercise that introduces general education students to neurophysiology and scientific writing.

    PubMed

    Krilowicz, B I; Henter, H; Kamhi-Stein, L

    1997-06-01

    Providing large numbers of general education students with an introduction to science is a challenge. To meet this challenge, a quarter-long neurophysiology project was developed for use in an introductory biology course. The primary goals of this multistep project were to introduce students to the scientific method, scientific writing, on-line scientific bibliographic databases, and the scientific literature, while improving their academic literacy skills. Students began by collecting data on their own circadian rhythms in autonomic, motor, and cognitive function, reliably demonstrating the predicted circadian changes in heart rate, eye-hand coordination, and adding speed. Students wrote a journal-style article using pooled class data. Students were prepared to write the paper by several methods that were designed to improve academic language skills, including a library training exercise, "modeling" of the writing assignment, and drafting of subsections of the paper. This multistep neurophysiology project represents a significant commitment of time by both students and instructors, but produces a valuable finished product and ideally gives introductory students a positive first experience with science.

  14. Using Rubrics as a Scientific Writing Instructional Method in Early Stage Undergraduate Neuroscience Study.

    PubMed

    Clabough, Erin B D; Clabough, Seth W

    2016-01-01

    Scientific writing is an important communication and learning tool in neuroscience, yet it is a skill not adequately cultivated in introductory undergraduate science courses. Proficient, confident scientific writers are produced by providing specific knowledge about the writing process, combined with a clear student understanding about how to think about writing (also known as metacognition). We developed a rubric for evaluating scientific papers and assessed different methods of using the rubric in inquiry-based introductory biology classrooms. Students were either 1) given the rubric alone, 2) given the rubric, but also required to visit a biology subject tutor for paper assistance, or 3) asked to self-grade paper components using the rubric. Students who were required to use a peer tutor had more negative attitudes towards scientific writing, while students who used the rubric alone reported more confidence in their science writing skills by the conclusion of the semester. Overall, students rated the use of an example paper or grading rubric as the most effective ways of teaching scientific writing, while rating peer review as ineffective. Our paper describes a concrete, simple method of infusing scientific writing into inquiry-based science classes, and provides clear avenues to enhance communication and scientific writing skills in entry-level classes through the use of a rubric or example paper, with the goal of producing students capable of performing at a higher level in upper level neuroscience classes and independent research.

  15. Using Rubrics as a Scientific Writing Instructional Method in Early Stage Undergraduate Neuroscience Study

    PubMed Central

    Clabough, Erin B.D.; Clabough, Seth W.

    2016-01-01

    Scientific writing is an important communication and learning tool in neuroscience, yet it is a skill not adequately cultivated in introductory undergraduate science courses. Proficient, confident scientific writers are produced by providing specific knowledge about the writing process, combined with a clear student understanding about how to think about writing (also known as metacognition). We developed a rubric for evaluating scientific papers and assessed different methods of using the rubric in inquiry-based introductory biology classrooms. Students were either 1) given the rubric alone, 2) given the rubric, but also required to visit a biology subject tutor for paper assistance, or 3) asked to self-grade paper components using the rubric. Students who were required to use a peer tutor had more negative attitudes towards scientific writing, while students who used the rubric alone reported more confidence in their science writing skills by the conclusion of the semester. Overall, students rated the use of an example paper or grading rubric as the most effective ways of teaching scientific writing, while rating peer review as ineffective. Our paper describes a concrete, simple method of infusing scientific writing into inquiry-based science classes, and provides clear avenues to enhance communication and scientific writing skills in entry-level classes through the use of a rubric or example paper, with the goal of producing students capable of performing at a higher level in upper level neuroscience classes and independent research. PMID:27980476

  16. Influence of Three Different Methods of Teaching Physics on the Gain in Students' Development of Reasoning

    ERIC Educational Resources Information Center

    Marusic, Mirko; Slisko, Josip

    2012-01-01

    The Lawson Classroom Test of Scientific Reasoning (LCTSR) was used to gauge the relative effectiveness of three different methods of pedagogy, "Reading, Presenting, and Questioning" (RPQ), "Experimenting and Discussion" (ED), and "Traditional Methods" (TM), on increasing students' level of scientific thinking. The…

  17. Normal Science and the Paranormal: The Effect of a Scientific Method Course on Students' Beliefs.

    ERIC Educational Resources Information Center

    Morier, Dean; Keeports, David

    1994-01-01

    A study investigated the effects of an interdisciplinary course on the scientific method on the attitudes of 34 college students toward the paranormal. Results indicated that the course substantially reduced belief in the paranormal, relative to a control group. Student beliefs in their own paranormal powers, however, did not change. (Author/MSE)

  18. Adventures in supercomputing: Scientific exploration in an era of change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gentry, E.; Helland, B.; Summers, B.

    1997-11-01

    Students deserve the opportunity to explore the world of science surrounding them. Therefore it is important that scientific exploration and investigation be a part of each student`s educational career. The Department of Energy`s Adventures in Superconducting (AiS) takes students beyond mere scientific literacy to a rich embodiment of scientific exploration. AiS provides today`s science and math students with a greater opportunity to investigate science problems, propose solutions, explore different methods of solving the problem, organize their work into a technical paper, and present their results. Students learn at different rates in different ways. Science classes with students having varying learningmore » styles and levels of achievement have always been a challenge for teachers. The AiS {open_quotes}hands-on, minds-on{close_quotes} project-based method of teaching science meets the challenge of this diversity heads on! AiS uses the development of student chosen projects as the means of achieving a lifelong enthusiasm for scientific proficiency. One goal of AiS is to emulate the research that takes place in the everyday environment of scientists. Students work in teams and often collaborate with students nationwide. With the help of mentors from the academic and scientific community, students pose a problem in science, investigate possible solutions, design a mathematical and computational model for the problem, exercise the model to achieve results, and evaluate the implications of the results. The students then have the opportunity to present the project to their peers, teachers, and scientists. Using this inquiry-based technique, students learn more than science skills, they learn to reason and think -- going well beyond the National Science Education Standard. The teacher becomes a resource person actively working together with the students in their quest for scientific knowledge.« less

  19. Using the Power Balance Wristband to Improve Students' Research-Design Skills

    ERIC Educational Resources Information Center

    Lawson, Timothy J.; Blackhart, Ginette C.; Gialopsos, Brooke M.

    2016-01-01

    We describe an exercise involving the power balance wristband (PBW) designed to enhance students' ability to design scientific tests. An instructor demonstrated that the PBW improved a student's balance, strength, and flexibility and invited students to design and conduct a brief scientific test of the PBW. Research methods students who…

  20. Hot Salsa: A Laboratory Exercise Exploring the Scientific Method.

    ERIC Educational Resources Information Center

    Levri, Edward P.; Levri, Maureen A.

    2003-01-01

    Presents a laboratory exercise on spicy food and body temperature that introduces the scientific method to introductory biology students. Suggests that when students perform their own experiments which they have developed, it helps with their understanding of and confidence in doing science. (Author/SOE)

  1. Using HeLa Cell Stress Response to Introduce First Year Students to the Scientific Method, Laboratory Techniques, Primary Literature, and Scientific Writing

    ERIC Educational Resources Information Center

    Resendes, Karen K.

    2015-01-01

    Incorporating scientific literacy into inquiry driven research is one of the most effective mechanisms for developing an undergraduate student's strength in writing. Additionally, discovery-based laboratories help develop students who approach science as critical thinkers. Thus, a three-week laboratory module for an introductory cell and molecular…

  2. Development of Lesson Plans and Student Worksheets Based Socio-Scientific Issues on Pollution Environmental Topic

    NASA Astrophysics Data System (ADS)

    Rahayu, S.; Meyliana, M.; Arlingga, A.; Reny, R.; Siahaan, P.; Hernani, H.

    2017-09-01

    The aim of this study is to develop lesson plans and student worksheets based socio-scientific issues on pollution environmental topic for seventh-grade junior high school students. Environmental pollution topic split into several subtopics namely air pollution, water pollution and soil pollution. The composing of lesson plans were developed based on socio-scientific issues with five stages, namely (1) Motivate; (2) Challenge; (3) Collect scientific evidence; (4) Analyse the evidence; (5) Build knowledge and make connections; and (6) Use evidence. While student worksheets contain articles on socio-scientific issues, practice, and there are a few questions to determine students’ reasoning. The method that is used in this research is research and development (R & D method). Development model used in this study is a model of Plomp that consists of four stages, namely: (1) Initial Research; (2) Design; (3) Realization or Construction; (4) Testing, evaluation and revision; (5) Implementation, while the research was limited to the fourth stage. Lesson plans and student worksheets based on socio-scientific issues was validated through an expert validation. The result showed that lesson plans and student worksheets based socio-scientific issues on pollution theme have a very decent and be able to apply in science classroom.

  3. Scaffolded Instruction Improves Student Understanding of the Scientific Method & Experimental Design

    ERIC Educational Resources Information Center

    D'Costa, Allison R.; Schlueter, Mark A.

    2013-01-01

    Implementation of a guided-inquiry lab in introductory biology classes, along with scaffolded instruction, improved students' understanding of the scientific method, their ability to design an experiment, and their identification of experimental variables. Pre- and postassessments from experimental versus control sections over three semesters…

  4. The Scientific Method - Critical and Creative Thinking

    NASA Astrophysics Data System (ADS)

    Cotton, John; Scarlise, Randall

    2011-10-01

    The ``scientific method'' is not just for scientists! Combined with critical thinking, the scientific method can enable students to distinguish credible sources of information from nonsense and become intelligent consumers of information. Professors John Cotton and Randall Scalise illustrate these principles using a series of examples and demonstrations that is enlightening, educational, and entertaining. This lecture/demonstration features highlights from their course (whose unofficial title is ``debunking pseudoscience'' ) which enables students to detect pseudoscience in its many guises: paranormal phenomena, free-energy devices, alternative medicine, and many others.

  5. The Effect of the 5E Instructional Model Enriched with Cooperative Learning and Animations on Seventh-Grade Students' Academic Achievement and Scientific Attitudes

    ERIC Educational Resources Information Center

    Dasdemir, Ikramettin

    2016-01-01

    The aim of this research is to determine the effect of the different teaching methods, on seventh-grade students' academic achievement and scientific attitudes. The research was carried out using quasi-experimental methods. The research sample consisted of 84 seventh grade students studying in three different classes. One of these classes an…

  6. Eliciting Taiwanese high school students' scientific ontological and epistemic beliefs

    NASA Astrophysics Data System (ADS)

    Lin, Tzung-Jin; Tsai, Chin-Chung

    2017-11-01

    This study employed the interview method to clarify the underlying dimensions of and relationships between students' scientific ontological and epistemic beliefs. Forty Taiwanese high school students were invited to participate in this study. Through content analysis of the participants' interview responses two ontological dimensions including 'status of nature' and 'structure of nature' were identified and found to be associated with each other. The two epistemic dimensions 'knowledge' and 'knowing' aligned with past literature were also categorised. Besides five pattern variations in terms of the aforementioned four dimensions were recognised based on the students' philosophical stances on their scientific ontological and epistemic beliefs. According to the Chi-square test results both dimensions of scientific ontological beliefs were significantly related to the two dimensions of scientific epistemic beliefs respectively. In general the students who endorsed a more sophisticated ontological stance regarding the status and structure of nature tended to express a more mature epistemic stance toward scientific knowledge and ways of knowing. The results suggest that the maturation of students' scientific epistemic beliefs may serve as a precursor and the fundamental step in promoting the sophistication of students' scientific ontological beliefs.

  7. Empirical Evidence or Intuition? An Activity Involving the Scientific Method

    ERIC Educational Resources Information Center

    Overway, Ken

    2007-01-01

    Students need to have basic understanding of scientific method during their introductory science classes and for this purpose an activity was devised which involved a game based on famous Monty Hall game problem. This particular activity allowed students to banish or confirm their intuition based on empirical evidence.

  8. Psychometric Properties of the Scientific Inquiry Scale

    ERIC Educational Resources Information Center

    Ossa-Cornejo, Carlos; Díaz-Mujica, Alejandro; Aedo-Saravia, Jaime; Merino-Escobar, Jose M.; Bustos-Navarrete, Claudio

    2017-01-01

    Introduction: There are a few methods to study inquiry's abilities in Chile, despite its importance in science education. This study analyzes the psychometric properties of a Scientific Inquiry Scale in pedagogy students of two Chilean universities. Method: The study uses an instrumental design with 325 students from 3 pedagogy majors. As a…

  9. Assessing Student Scientific Expression Using Media: The Media-Enhanced Science Presentation Rubric (MESPR)

    ERIC Educational Resources Information Center

    Mott, Michael S.; Chessin, Debby A.; Sumrall, William J.; Rutherford, Angela S.; Moore, Virginia J.

    2011-01-01

    The current study evaluated an assessment designed to dually promote student understanding of the experimental method and student ability to include digital and visual qualities in their presentations of scientific experiment results. The rubric, the Media-Enhanced Science Presentation Rubric (MESPR) focuses teacher-student dialogue along the…

  10. Scientific reasoning profile of junior secondary school students on the concept of static fluid

    NASA Astrophysics Data System (ADS)

    Mariana, N.; Siahaan, P.; Utari, S.

    2018-05-01

    Scientific reasoning is one of the most important ability. This study aims to determine the profile of scientific reasoning of junior high school students about the concept of static fluid. This research uses a descriptive method with a quantitative approach to get an idea about the scientific reasoning of One Roof Junior Secondary School Student Kotabaru Reteh in Riau. The technique of collecting data is done by test of scientific reasoning. Scientific reasoning capability refers to Furtak’s EBR (Evidence Based Reasoning) scientific reasoning indicator that contains the components of claims, data, evidence, and rules. The result obtained on each element of scientific reasoning is 35% claim, 23% data, 21% evidence and 17% rule. The conclusions of this research that scientific reasoning of Satu Atap Junior Secondary School student Kotabaru Reteh, Riau Province still in the low category.

  11. A Personalized Study Method for Learning University Physics

    ERIC Educational Resources Information Center

    Aravind, Vasudeva Rao; Croyle, Kevin

    2017-01-01

    Students learn scientific concepts and mathematical calculations relating to scientific principles by repetition and reinforcement. Teachers and instructors cannot practically spend the long time required during tutorials to patiently teach students the calculations. Usually, teachers assign homework to provide practice to students, hoping that…

  12. Scaffolding Argumentation about Water Quality: A Mixed-Method Study in a Rural Middle School

    ERIC Educational Resources Information Center

    Belland, Brian R.; Gu, Jiangyue; Armbrust, Sara; Cook, Brant

    2015-01-01

    A common way for students to develop scientific argumentation abilities is through argumentation about socioscientific issues, defined as scientific problems with social, ethical, and moral aspects. Computer-based scaffolding can support students in this process. In this mixed method study, we examined the use and impact of computer based…

  13. A Method for Understanding Their Method: Discovering Scientific Inquiry through Biographies of Famous Scientists

    ERIC Educational Resources Information Center

    Fairweather, Elizabeth; Fairweather, Thomas

    2010-01-01

    Mendel and his peas. Goodall and her chimpanzees. Bentley and his snowflakes. Pasteur and his sheep. Not only do these stories intrigue students, but they also demonstrate the trials and tribulations associated with scientific inquiry. Using scientists' biographies piques student interest while providing an added dimension to their understanding…

  14. Using the Scientific Method to Motivate Biology Students to Study Precalculus

    ERIC Educational Resources Information Center

    Fulton, James P.; Sabatino, Linda

    2008-01-01

    During the last two years we have developed a precalculus course customized around biology by using the scientific method as a framework to engage and motivate biology students. Historically, the precalculus and calculus courses required for the Suffolk County Community College biology curriculum were designed using examples from the physical…

  15. Group Projects as a Method of Promoting Student Scientific Communication and Collaboration in a Public Health Microbiology Course

    ERIC Educational Resources Information Center

    Walton, Kristen L. W.; Baker, Jason C.

    2009-01-01

    Communication of scientific and medical information and collaborative work are important skills for students pursuing careers in health professions and other biomedical sciences. In addition, group work and active learning can increase student engagement and analytical skills. Students in our public health microbiology class were required to work…

  16. Methods of Scientific Research: Teaching Scientific Creativity at Scale

    NASA Astrophysics Data System (ADS)

    Robbins, Dennis; Ford, K. E. Saavik

    2016-01-01

    We present a scaling-up plan for AstroComNYC's Methods of Scientific Research (MSR), a course designed to improve undergraduate students' understanding of science practices. The course format and goals, notably the open-ended, hands-on, investigative nature of the curriculum are reviewed. We discuss how the course's interactive pedagogical techniques empower students to learn creativity within the context of experimental design and control of variables thinking. To date the course has been offered to a limited numbers of students in specific programs. The goals of broadly implementing MSR is to reach more students and early in their education—with the specific purpose of supporting and improving retention of students pursuing STEM careers. However, we also discuss challenges in preserving the effectiveness of the teaching and learning experience at scale.

  17. Eliciting Taiwanese High School Students' Scientific Ontological and Epistemic Beliefs

    ERIC Educational Resources Information Center

    Lin, Tzung-Jin; Tsai, Chin-Chung

    2017-01-01

    This study employed the interview method to clarify the underlying dimensions of and relationships between students' scientific ontological and epistemic beliefs. Forty Taiwanese high school students were invited to participate in this study. Through content analysis of the participants' interview responses two ontological dimensions including…

  18. Developing a Test of Scientific Literacy Skills (TOSLS): measuring undergraduates' evaluation of scientific information and arguments.

    PubMed

    Gormally, Cara; Brickman, Peggy; Lutz, Mary

    2012-01-01

    Life sciences faculty agree that developing scientific literacy is an integral part of undergraduate education and report that they teach these skills. However, few measures of scientific literacy are available to assess students' proficiency in using scientific literacy skills to solve scenarios in and beyond the undergraduate biology classroom. In this paper, we describe the development, validation, and testing of the Test of Scientific Literacy Skills (TOSLS) in five general education biology classes at three undergraduate institutions. The test measures skills related to major aspects of scientific literacy: recognizing and analyzing the use of methods of inquiry that lead to scientific knowledge and the ability to organize, analyze, and interpret quantitative data and scientific information. Measures of validity included correspondence between items and scientific literacy goals of the National Research Council and Project 2061, findings from a survey of biology faculty, expert biology educator reviews, student interviews, and statistical analyses. Classroom testing contexts varied both in terms of student demographics and pedagogical approaches. We propose that biology instructors can use the TOSLS to evaluate their students' proficiencies in using scientific literacy skills and to document the impacts of curricular reform on students' scientific literacy.

  19. Bridging Scientific Reasoning and Conceptual Change through Adaptive Web-Based Learning

    ERIC Educational Resources Information Center

    She, Hsiao-Ching; Liao, Ya-Wen

    2010-01-01

    This study reports an adaptive digital learning project, Scientific Concept Construction and Reconstruction (SCCR), and examines its effects on 108 8th grade students' scientific reasoning and conceptual change through mixed methods. A one-group pre-, post-, and retention quasi-experimental design was used in the study. All students received tests…

  20. Scientific Process Flowchart Assessment (SPFA): A Method for Evaluating Changes in Understanding and Visualization of the Scientific Process in a Multidisciplinary Student Population

    PubMed Central

    Wilson, Kristy J.; Rigakos, Bessie

    2016-01-01

    The scientific process is nonlinear, unpredictable, and ongoing. Assessing the nature of science is difficult with methods that rely on Likert-scale or multiple-choice questions. This study evaluated conceptions about the scientific process using student-created visual representations that we term “flowcharts.” The methodology, Scientific Process Flowchart Assessment (SPFA), consisted of a prompt and rubric that was designed to assess students’ understanding of the scientific process. Forty flowcharts representing a multidisciplinary group without intervention and 26 flowcharts representing pre- and postinstruction were evaluated over five dimensions: connections, experimental design, reasons for doing science, nature of science, and interconnectivity. Pre to post flowcharts showed a statistically significant improvement in the number of items and ratings for the dimensions. Comparison of the terms used and connections between terms on student flowcharts revealed an enhanced and more nuanced understanding of the scientific process, especially in the areas of application to society and communication within the scientific community. We propose that SPFA can be used in a variety of circumstances, including in the determination of what curricula or interventions would be useful in a course or program, in the assessment of curriculum, or in the evaluation of students performing research projects. PMID:27856551

  1. An Easy & Fun Way to Teach about How Science "Works": Popularizing Haack's Crossword-Puzzle Analogy

    ERIC Educational Resources Information Center

    Pavlova, Iglika V.; Lewis, Kayla C.

    2013-01-01

    Science is a complex process, and we must not teach our students overly simplified versions of "the" scientific method. We propose that students can uncover the complex realities of scientific thinking by exploring the similarities and differences between solving the familiar crossword puzzles and scientific "puzzles."…

  2. Developing information fluency in introductory biology students in the context of an investigative laboratory.

    PubMed

    Lindquester, Gary J; Burks, Romi L; Jaslow, Carolyn R

    2005-01-01

    Students of biology must learn the scientific method for generating information in the field. Concurrently, they should learn how information is reported and accessed. We developed a progressive set of exercises for the undergraduate introductory biology laboratory that combine these objectives. Pre- and postassessments of approximately 100 students suggest that increases occurred, some statistically significant, in the number of students using various library-related resources, in the numbers and confidence level of students using various technologies, and in the numbers and confidence levels of students involved in various activities related to the scientific method. Following this course, students should be better prepared for more advanced and independent study.

  3. Developing Information Fluency in Introductory Biology Students in the Context of an Investigative Laboratory

    PubMed Central

    2005-01-01

    Students of biology must learn the scientific method for generating information in the field. Concurrently, they should learn how information is reported and accessed. We developed a progressive set of exercises for the undergraduate introductory biology laboratory that combine these objectives. Pre- and postassessments of approximately 100 students suggest that increases occurred, some statistically significant, in the number of students using various library-related resources, in the numbers and confidence level of students using various technologies, and in the numbers and confidence levels of students involved in various activities related to the scientific method. Following this course, students should be better prepared for more advanced and independent study. PMID:15746979

  4. How the Television Show "Mythbusters" Communicates the Scientific Method

    ERIC Educational Resources Information Center

    Zavrel, Erik; Sharpsteen, Eric

    2016-01-01

    The importance of understanding and internalizing the scientific method can hardly be exaggerated. Unfortunately, it is all too common for high school--and even university--students to graduate with only a partial or oversimplified understanding of what the scientific method is and how to actually employ it. Help in remedying this situation may…

  5. Design and integration of a problem-based biofabrication course into an undergraduate biomedical engineering curriculum.

    PubMed

    Raman, Ritu; Mitchell, Marlon; Perez-Pinera, Pablo; Bashir, Rashid; DeStefano, Lizanne

    2016-01-01

    The rapidly evolving discipline of biological and biomedical engineering requires adaptive instructional approaches that teach students to target and solve multi-pronged and ill-structured problems at the cutting edge of scientific research. Here we present a modular approach to designing a lab-based course in the emerging field of biofabrication and biological design, leading to a final capstone design project that requires students to formulate and test a hypothesis using the scientific method. Students were assessed on a range of metrics designed to evaluate the format of the course, the efficacy of the format for teaching new topics and concepts, and the depth of the contribution this course made to students training for biological engineering careers. The evaluation showed that the problem-based format of the course was well suited to teaching students how to use the scientific method to investigate and uncover the fundamental biological design rules that govern the field of biofabrication. We show that this approach is an efficient and effective method of translating emergent scientific principles from the lab bench to the classroom and training the next generation of biological and biomedical engineers for careers as researchers and industry practicians.

  6. Science Camps for Introducing Nature of Scientific Inquiry Through Student Inquiries in Nature: Two Applications with Retention Study

    NASA Astrophysics Data System (ADS)

    Leblebicioglu, G.; Abik, N. M.; Capkinoglu, E.; Metin, D.; Dogan, E. Eroglu; Cetin, P. S.; Schwartz, R.

    2017-08-01

    Scientific inquiry is widely accepted as a method of science teaching. Understanding its characteristics, called Nature of Scientific Inquiry (NOSI), is also necessary for a whole conception of scientific inquiry. In this study NOSI aspects were taught explicitly through student inquiries in nature in two summer science camps. Students conducted four inquiries through their questions about surrounding soil, water, plants, and animals under the guidance of university science educators. At the end of each investigation, students presented their inquiry. NOSI aspects were made explicit by one of the science educators in the context of the investigations. Effectiveness of the science camp program and its retention were determined by applying Views of Scientific Inquiry (VOSI-S) (Schwartz et al. 2008) questionnaire as pre-, post-, and retention test after two months. The patterns in the data were similar. The science camp program was effective in developing three of six NOSI aspects which were questions guide scientific research, multiple methods of research, and difference between data and evidence. Students' learning of these aspects was retained. Discussion about these and the other three aspects is included in the paper. Implications of differences between school and out-of-school science experiences are also discussed.

  7. The Effectiveness of Scientific Inquiry With/Without Integration of Scientific Reasoning

    ERIC Educational Resources Information Center

    Chen, Chun-Ting; She, Hsiao-Ching

    2015-01-01

    This study examines the difference in effectiveness between two scientific inquiry programs-one with an emphasis on scientific reasoning and one without a scientific reasoning component-on students' scientific concepts, scientific concept-dependent reasoning, and scientific inquiry. A mixed-method approach was used in which 115 grade 5…

  8. Problem Based Learning and the scientific process

    NASA Astrophysics Data System (ADS)

    Schuchardt, Daniel Shaner

    This research project was developed to inspire students to constructively use problem based learning and the scientific process to learn middle school science content. The student population in this study consisted of male and female seventh grade students. Students were presented with authentic problems that are connected to physical and chemical properties of matter. The intent of the study was to have students use the scientific process of looking at existing knowledge, generating learning issues or questions about the problems, and then developing a course of action to research and design experiments to model resolutions to the authentic problems. It was expected that students would improve their ability to actively engage with others in a problem solving process to achieve a deeper understanding of Michigan's 7th Grade Level Content Expectations, the Next Generation Science Standards, and a scientific process. Problem based learning was statistically effective in students' learning of the scientific process. Students statistically showed improvement on pre to posttest scores. The teaching method of Problem Based Learning was effective for seventh grade science students at Dowagiac Middle School.

  9. Cell-Phone Use and Cancer: A Case Study Exploring the Scientific Method

    ERIC Educational Resources Information Center

    Colon Parrilla, Wilma V.

    2007-01-01

    Designed for an introductory nonmajors biology course, this case study presents students with a series of short news stories describing a scientific study of cell-phone use and its health effects. Students read the news stories and then the scientific paper they are based on, comparing the information presented by the news media to the information…

  10. Examining Elementary Students' Development of Oral and Written Argumentation Practices through Argument-Based Inquiry

    ERIC Educational Resources Information Center

    Chen, Ying-Chih; Hand, Brian; Park, Soonhye

    2016-01-01

    Argumentation, and the production of scientific arguments are critical elements of inquiry that are necessary for helping students become scientifically literate through engaging them in constructing and critiquing ideas. This case study employed a mixed methods research design to examine the development in 5th grade students' practices of oral…

  11. Applying Argumentation Analysis To Assess the Quality of University Oceanography Students' Scientific Writing.

    ERIC Educational Resources Information Center

    Takao, Allison Y.; Prothero, William A.; Kelly, Gregory J.

    2002-01-01

    Presents the methods and results of an assessment of students' scientific writing. Studies an introductory oceanography course in a large public university that used an interactive CD-ROM, "Our Dynamic Planet". Analyzes the quality of students' written arguments by using a grading rubric and an argumentation analysis model. Includes 18…

  12. Influence Based Learning Program Scientific Learning Approach to Science Students Generic Skills

    ERIC Educational Resources Information Center

    Wahyuni, Ida; Amdani, Khairul

    2016-01-01

    This study aims to determine the influence of scientific approach based learning program (P2BPS) against generic science skills of students. The method used in this research is "quasi experiment" with "two-group pretest posttest" design.The population in this study were all students who take courses in general physics II at the…

  13. Mutation-Based Learning to Improve Student Autonomy and Scientific Inquiry Skills in a Large Genetics Laboratory Course

    ERIC Educational Resources Information Center

    Wu, Jinlu

    2013-01-01

    Laboratory education can play a vital role in developing a learner's autonomy and scientific inquiry skills. In an innovative, mutation-based learning (MBL) approach, students were instructed to redesign a teacher-designed standard experimental protocol by a "mutation" method in a molecular genetics laboratory course. Students could…

  14. A Journey of Surprises: Rivers Reveal Their Secrets to Idaho Students Researching Water Quality through Rigorous Scientific Inquiry.

    ERIC Educational Resources Information Center

    Boss, Suzie

    2002-01-01

    Idaho secondary students learn the scientific method through outdoor environmental projects related to water quality monitoring. A program trains teachers to design project-based learning and provides extensive followup support. Five-day summer workshops immerse teachers in the types of projects they will orchestrate with their own students.…

  15. Using the First-Year English Class to Develop Scientific Thinking Skills

    NASA Astrophysics Data System (ADS)

    McNamara, B. J.; Burnham, C.; Green, S.; Ball, E.; Schryer, A.

    2002-12-01

    This poster presents the preliminary results from an experimental approach to teaching first-year writing using the scientific method as an organizing theme. The approach presumes a close connection between the classical scientific method: observing, hypothesis forming, hypothesis testing, and generalizing from the results of the testing, and the writing process: inventing and prewriting, drafting, and revising. The project has four goals: 1. To introduce students to the relations between scientific method, academic inquiry, and the writing process; 2. To help students see that academic inquiry, the work of generating, testing, and validating knowledge and then applying that knowledge in real contexts, is actually a hybrid form of the scientific method; 3. To encourage students to connect the work they are doing in the writing classroom with the work they are doing in other classes so they can transfer the skills learned in one context to the other; and 4. To cause students who have previously been alienated by science and science teaching to reconsider their attitudes, and to see the powerful influence of science and scientific thinking in our world. In short, we are teaching science literacy in a humanities classroom. The materials we use include science-based reading and the kinds of writing typically required in science classes. The poster presents the basic premises of the project, samples of class materials, and preliminary results of a controlled pre- and post-test of student attitudes toward science and writing, analyzed especially according to gender and minority status. We also present insights by participating instructors including a female graduate teaching assistant who had been trained as a scientist and a male who had not.

  16. Using the Scientific Method to Engage Mathematical Modeling: An Investigation of pi

    ERIC Educational Resources Information Center

    Archer, Lester A. C.; Ng, Karen E.

    2016-01-01

    The purpose of this paper is to explain how to use the scientific method as the framework to introduce mathematical model. Two interdisciplinary activities, targeted for students in grade 6 or grade 7, are explained to show the application of the scientific method while building a mathematical model to investigate the relationship between the…

  17. Salt, time, and metaphor: examining norms in scientific culture

    NASA Astrophysics Data System (ADS)

    Brady, Anna G.

    2017-06-01

    As has been widely discussed, the National Research Council's (NRC) current policy in United States education advocates supporting students toward acquiring skills to engage in scientific practices. NRC policy also suggests that supporting students in the practices of science may require different approaches than what is required for supporting student engagement with scientific content. Further, acquiring skills in scientific practices is not limited to gaining proficiency in utilizing tools that support scientific inquiry: students must also understand how to interpret information generated from such tools. These tools of scientific practices are embedded within scientific culture, which from Sewell's perspective, is comprised of both practice and semiotic code (symbols and meanings). To become scientifically literate students must learn to utilize this code in practice. Author Germà Garcia-Belmonte identified one example of learning to utilize the semiotic code in scientific practice and considers challenges faced by undergraduate physics and engineering students within that context. Garcia-Belmonte observes students struggle to interpret symbols and meaning (the visual display generated) while engaging in practice (utilizing an oscilloscope) and posits that two, culturally bound, competing, linguistic metaphors of time may be the cause. Ultimately, however, the author does not explore beyond hypotheses. Although his theory may be correct, the paper serves as a reminder of the responsibility we have to students. As educators, it is useful and beneficial to make observations and develop theories surrounding why our students struggle. However, in addition to theorizing on why, for example, a particular scientific norm might present challenges for our students, we must remain mindful that challenges may not be uniform and may vary considerably according to students' culture(s). Engaging with students and soliciting specific information regarding the challenges they face allows us, as educators, to both examine whether students' reported challenges align or conflict with our own perceptions of those challenges, and subsequently devise and test methods toward supporting students in overcoming their challenges.

  18. Cholera and the Scientific Method.

    ERIC Educational Resources Information Center

    Cronin, Jim

    1993-01-01

    Describes an approach to teaching the scientific method where an outbreak of cholera within the school is simulated. Students act like epidemiologists in an attempt to track down the source of the contamination. (PR)

  19. Making Quantitative Genetics Relevant: Effectiveness of a Laboratory Investigation that Links Scientific Research, Commercial Applications, and Legal Issues

    ERIC Educational Resources Information Center

    Rutledge, Michael L.; Mathis, Philip M.; Seipelt, Rebecca L.

    2005-01-01

    As students apply their knowledge of scientific concepts and of science as a method of inquiry, learning becomes relevant. This laboratory exercise is designed to foster students' understanding of the genetics of quantitative traits and of the nature of science as a method of inquiry by engaging them in a real-world business scenario. During the…

  20. The microscopic world: A demonstration of electron microscopy for younger students

    NASA Technical Reports Server (NTRS)

    Horton, Linda L.

    1992-01-01

    The purpose is to excite students about the importance of scientific investigation and demonstrate why they should look at things in greater detail, extending beyond superficial examination. The topics covered include: microscopy, scanning electron microscopes, high magnification, and the scientific method.

  1. Promoting elementary students' epistemology of science through computer-supported knowledge-building discourse and epistemic reflection

    NASA Astrophysics Data System (ADS)

    Lin, Feng; Chan, Carol K. K.

    2018-04-01

    This study examined the role of computer-supported knowledge-building discourse and epistemic reflection in promoting elementary-school students' scientific epistemology and science learning. The participants were 39 Grade 5 students who were collectively pursuing ideas and inquiry for knowledge advance using Knowledge Forum (KF) while studying a unit on electricity; they also reflected on the epistemic nature of their discourse. A comparison class of 22 students, taught by the same teacher, studied the same unit using the school's established scientific investigation method. We hypothesised that engaging students in idea-driven and theory-building discourse, as well as scaffolding them to reflect on the epistemic nature of their discourse, would help them understand their own scientific collaborative discourse as a theory-building process, and therefore understand scientific inquiry as an idea-driven and theory-building process. As hypothesised, we found that students engaged in knowledge-building discourse and reflection outperformed comparison students in scientific epistemology and science learning, and that students' understanding of collaborative discourse predicted their post-test scientific epistemology and science learning. To further understand the epistemic change process among knowledge-building students, we analysed their KF discourse to understand whether and how their epistemic practice had changed after epistemic reflection. The implications on ways of promoting epistemic change are discussed.

  2. Edmund's Idea and Research Report on the General Pattern of the Scientific Method. A Challenge to America To Recognize and Teach the Basic Method by Which We Refine, Extend, and Apply Knowledge in All Fields. SM-14. Second Edition.

    ERIC Educational Resources Information Center

    Edmund, Norman W.

    This booklet introduces a new and general approach to the scientific method for everyone. Teaching the scientific method to all students allows them to develop their own talents and is necessary to prevent the loss of jobs. Many job areas that require scientific methodology are listed. Harmful results that may occur because of not teaching the…

  3. Reading, Writing, and Presenting Original Scientific Research: A Nine-Week Course in Scientific Communication for High School Students†

    PubMed Central

    Danka, Elizabeth S.; Malpede, Brian M.

    2015-01-01

    High school students are not often given opportunities to communicate scientific findings to their peers, the general public, and/or people in the scientific community, and therefore they do not develop scientific communication skills. We present a nine-week course that can be used to teach high school students, who may have no previous experience, how to read and write primary scientific articles and how to discuss scientific findings with a broad audience. Various forms of this course have been taught for the past 10 years as part of an intensive summer research program for rising high school seniors that is coordinated by the Young Scientist Program at Washington University in St. Louis. The format presented here includes assessments for efficacy through both rubric-based methods and student self-assessment surveys. PMID:26753027

  4. Perspectives of Using Internet on the Scientific Research among the Postgraduate Students at the University of Khartoum-Sudan

    ERIC Educational Resources Information Center

    Al Hassan, Esam Idress K.

    2015-01-01

    The purpose of this study was to identify the perspectives of using Internet on the scientific research among the Postgraduate Students at the University of Khartoum. The researcher used the descriptive analytical method, the population consisted of all Postgraduate students at the University of Khartoum (Master & Ph.D.), registered during the…

  5. Evaluation of Student Models on Current Socio-Scientific Topics Based on System Dynamics

    ERIC Educational Resources Information Center

    Nuhoglu, Hasret

    2014-01-01

    This study aims to 1) enable primary school students to develop models that will help them understand and analyze a system, through a learning process based on system dynamics approach, 2) examine and evaluate students' models related to socio-scientific issues using certain criteria. The research method used is a case study. The study sample…

  6. A Study on the Evaluation of Science Projects of Primary School Students Based on Scientific Criteria

    ERIC Educational Resources Information Center

    Gungor, Sema Nur; Ozer, Dilek Zeren; Ozkan, Muhlis

    2013-01-01

    This study re-evaluated 454 science projects that were prepared by primary school students between 2007 and 2011 within the scope of Science Projects Event for Primary School Students. Also, submitted to TUBITAK BIDEB Bursa regional science board by MNE regional work groups in accordance with scientific research methods and techniques, including…

  7. Edutourism Taka Bonerate National Park through Scientific Approach to Improve Student Learning Outcomes

    NASA Astrophysics Data System (ADS)

    Hayati, R. S.

    2017-02-01

    This research aim is develop the potential of Taka Bonerate National Park as learning resources through edutourism with scientific approach to improve student learning outcomes. Focus of student learning outcomes are students psychomotor abilities and comprehension on Biodiversity of Marine Biota, Corals Ecosystem, and Conservation topics. The edutourism development products are teacher manual, edutourism worksheet, material booklet, guide’s manual, and Taka Bonerate National Park governor manual. The method to develop edutourism products is ADDIE research and development model that consist of analysis, design, development and production, implementation, and evaluation step. The subjects in the implementation step were given a pretest and posttest and observation sheet to see the effect of edutourism Taka Bonerate National Park through scientific approach to student learning outcomes on Biodiversity of Marine Biota, Corals Ecosystem, and Conservation topics. The data were analyzed qualitative descriptively. The research result is edutourism Taka Bonerate National Park through scientific approach can improve students learning outcomes on Biodiversity of Marine Biota, Corals Ecosystem, and Conservation topics. Edutourism Taka Bonerate National Park can be an alternative of learning method on Biodiversity of Marine Biota, Corals Ecosystem, and Conservation topics.

  8. Mapping the level of scientific reasoning skills to instructional methodologies among Malaysian science-mathematics-engineering undergraduates

    NASA Astrophysics Data System (ADS)

    Tajudin, Nor'ain Mohd.; Saad, Noor Shah; Rahman, Nurulhuda Abd; Yahaya, Asmayati; Alimon, Hasimah; Dollah, Mohd. Uzi; Abd Karim, Mohd. Mustaman

    2012-05-01

    The objectives of this quantitative survey research were (1) to establish the level of scientific reasoning (SR) skills among science, mathematics and engineering (SME) undergraduates in Malaysian Institute of Higher Learning (IHL); (b) to identify the types of instructional methods in teaching SME at universities; and (c) to map instructional methods employed to the level of SR skills among the undergraduates. There were six universities according to zone involved in this study using the stratification random sampling technique. For each university, the faculties that involved were faculties which have degree students in science, mathematics and engineering programme. A total of 975 students were participated in this study. There were two instruments used in this study namely, the Lawson Scientific Reasoning Skills Test and the Lecturers' Teaching Style Survey. The descriptive statistics and the inferential statistics such as mean, t-test and Pearson correlation were used to analyze the data. Findings of the study showed that most students had concrete level of scientific reasoning skills where the overall mean was 3.23. The expert and delegator were dominant lecturers' teaching styles according to students' perception. In addition, there was no correlation between lecturers' teaching style and the level of scientific reasoning skills. Thus, this study cannot map the dominant lecturers' teaching style to the level of scientific reasoning skills of Science, Mathematics and Engineering undergraduates in Malaysian Public Institute of Higher Learning. Nevertheless, this study gave some indications that the expert and delegator teaching styles were not contributed to the development of students' scientific reasoning skills. This study can be used as a baseline for Science, Mathematics and Engineering undergraduates' level of scientific reasoning skills in Malaysian Public Institute of Higher Learning. Overall, this study also opens an endless source of other researchers to investigate more areas on scientific reasoning skills so that the potential instructional model can be developed to enhance students' level of scientific reasoning skills in Malaysian Public Institute of Higher Learning.

  9. Incorporating Primary Scientific Literature in Middle and High School Education.

    PubMed

    Fankhauser, Sarah C; Lijek, Rebeccah S

    2016-03-01

    Primary literature is the most reliable and direct source of scientific information, but most middle school and high school science is taught using secondary and tertiary sources. One reason for this is that primary science articles can be difficult to access and interpret for young students and for their teachers, who may lack exposure to this type of writing. The Journal of Emerging Investigators (JEI) was created to fill this gap and provide primary research articles that can be accessed and read by students and their teachers. JEI is a non-profit, online, open-access, peer-reviewed science journal dedicated to mentoring and publishing the scientific research of middle and high school students. JEI articles provide reliable scientific information that is written by students and therefore at a level that their peers can understand. For student-authors who publish in JEI, the review process and the interaction with scientists provide invaluable insight into the scientific process. Moreover, the resulting repository of free, student-written articles allows teachers to incorporate age-appropriate primary literature into the middle and high school science classroom. JEI articles can be used for teaching specific scientific content or for teaching the process of the scientific method itself. The critical thinking skills that students learn by engaging with the primary literature will be invaluable for the development of a scientifically-literate public.

  10. Incorporating Primary Scientific Literature in Middle and High School Education†

    PubMed Central

    Fankhauser, Sarah C.; Lijek, Rebeccah S.

    2016-01-01

    Primary literature is the most reliable and direct source of scientific information, but most middle school and high school science is taught using secondary and tertiary sources. One reason for this is that primary science articles can be difficult to access and interpret for young students and for their teachers, who may lack exposure to this type of writing. The Journal of Emerging Investigators (JEI) was created to fill this gap and provide primary research articles that can be accessed and read by students and their teachers. JEI is a non-profit, online, open-access, peer-reviewed science journal dedicated to mentoring and publishing the scientific research of middle and high school students. JEI articles provide reliable scientific information that is written by students and therefore at a level that their peers can understand. For student-authors who publish in JEI, the review process and the interaction with scientists provide invaluable insight into the scientific process. Moreover, the resulting repository of free, student-written articles allows teachers to incorporate age-appropriate primary literature into the middle and high school science classroom. JEI articles can be used for teaching specific scientific content or for teaching the process of the scientific method itself. The critical thinking skills that students learn by engaging with the primary literature will be invaluable for the development of a scientifically-literate public. PMID:27047607

  11. Profile of middle school students on scientific literacy achievements by using scientific literacy assessments (SLA)

    NASA Astrophysics Data System (ADS)

    Rachmatullah, Arif; Diana, Sariwulan; Rustaman, Nuryani Y.

    2016-02-01

    Along with the development of science and technology, the basic ability to read, write and count is not enough just to be able to survive in the modern era that surrounded by the products of science and technology. Scientific literacy is an ability that might be added as basic ability for human in the modern era. Recently, Fives et al. developed a new scientific literacy assessment for students, named as SLA (Scientific Literacy Assessment). A pilot study on the achievements of scientific literacy of middle school students in Sumedang using SLA was conducted to investigate the profile scientific literacy achievement of 223 middle school students in Sumedang, and compare the outcomes between genders (159 girls and 64 boys) and school accreditation (A and B) using a quantitative method with descriptive research-school survey. Based on the results, the average achievement of scientific literacy Sumedang middle school students is 45.21 and classified as the low category. The five components of scientific literacy, which is only one component in the medium category, namely science motivation and beliefs, and the four other components are in the low and very low category. Boys have higher scientific literacy, but the differences not statistically significant. Student's scientific literacy in an accredited school is higher than B, and the differences are statistically significant. Recommendation for further are: involve more research subjects, add more number of questions for each indicator, and conduct an independent research for each component.

  12. Information retrieval, critical appraisal and knowledge of evidence-based dentistry among Finnish dental students.

    PubMed

    Nieminen, P; Virtanen, J I

    2017-11-01

    One of the core skills of competent dentist is the ability to search and analyse high-quality evidence. Problems in understanding the basic aspects of knowledge-based information may impede its implementation into clinical practice. We examined how Finnish dental students acquire scientific information and how familiar they are with methods for evaluating scientific evidence related to clinical questions. All fifth-year dental students (n = 120) at the three universities in Finland received a self-administered questionnaire. The three most commonly used sources of information were colleagues, the commercial Health Gate Portal for dental practitioners and personal lecture notes. Although students rarely read scientific journals, they did find that they possess at least passable or even good skills in literature retrieval. Three questions related to the appraisal of evidence in dentistry revealed that students' knowledge of evidence-based dentistry was inadequate to critically evaluate clinical research findings. Most students seem to lack knowledge of key methodological evidence-based terms. The present curricula in dental schools fail to encourage the students to search and acquire knowledge wider than their patients themselves do. Universities have the responsibility to teach dentists various methods of critical appraisal to cope with scientific information. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. The Challenge of Evaluating Students' Scientific Literacy in a Writing-to-Learn Context

    NASA Astrophysics Data System (ADS)

    Tomas, Louisa; Ritchie, Stephen M.

    2015-02-01

    This paper reports on the challenge of evaluating students' scientific literacy in a writing-to-learn context, as illustrated by our experience with an online science-writing project. In this mixed methods study, year 9 students in a case study class (13-14 year olds, n = 26) authored a series of two `hybridised' short stories that merged scientific and narratives genres about the socioscientific issue of biosecurity. In seeking to measure the efficacy of the intervention, we sought evidence of students' conceptual understanding communicated through their stories. Finding a suitable instrument presented our first challenge. This led to the development of scoring matrices to evaluate students' derived sense of scientific literacy. Student interviews were also conducted to explore their understanding of concepts related to the biosecurity context. While the results of these analyses showed significant improvements in students' understanding arising from their participation in the writing tasks, the interviews highlighted a second challenge in evaluating students' scientific literacy: a disparity between their written and vocalised understandings. The majority of students expressed a deeper level of conceptual understanding during the interviews than they did in their stories. The interviews also revealed alternative conceptions and instances of superficial understanding that were not expressed in their writing. Aside from the methodological challenge of analysing stories quantitatively, these findings suggest that in a writing-to-learn context, evaluating students' scientific literacy can be difficult. An examination of these artefacts in combination with interviews about students' written work provided a more comprehensive evaluation of their developing scientific literacy. The implications of this study for our understanding of the derived sense of scientific literacy, as well as implications for classroom practice, are discussed.

  14. The Challenge of Evaluating Students' Scientific Literacy in a Writing-to-Learn Context

    ERIC Educational Resources Information Center

    Tomas, Louisa; Ritchie, Stephen M.

    2015-01-01

    This paper reports on the challenge of evaluating students' scientific literacy in a writing-to-learn context, as illustrated by our experience with an online science-writing project. In this mixed methods study, year 9 students in a case study class (13-14 year olds, n?=?26) authored a series of two "hybridised" short stories that…

  15. Influence of Culture and Gender on Secondary School Students' Scientific Creativity in Biology Education in Turkana County, Kenya

    ERIC Educational Resources Information Center

    Aruan, Susan A.; Okere, Mark I. O.; Wachanga, Samuel

    2016-01-01

    The purpose of this study was to establish the extent to which biology scientific creativity skills are influenced by the students' culture and gender in Turkana County. A mixed method research design was used. This involved cross sectional survey and ethnographic study. The target population comprised all form three students in sub county schools…

  16. Poster Development and Presentation to Improve Scientific Inquiry and Broaden Effective Scientific Communication Skills.

    PubMed

    Rauschenbach, Ines; Keddis, Ramaydalis; Davis, Diane

    2018-01-01

    We have redesigned a tried-and-true laboratory exercise into an inquiry-based team activity exploring microbial growth control, and implemented this activity as the basis for preparing a scientific poster in a large, multi-section laboratory course. Spanning most of the semester, this project culminates in a poster presentation of data generated from a student-designed experiment. Students use and apply the scientific method and improve written and verbal communication skills. The guided inquiry format of this exercise provides the opportunity for student collaboration through cooperative learning. For each learning objective, a percentage score was tabulated (learning objective score = points awarded/total possible points). A score of 80% was our benchmark for achieving each objective. At least 76% of the student groups participating in this project over two semesters achieved each learning goal. Student perceptions of the project were evaluated using a survey. Nearly 90% of participating students felt they had learned a great deal in the areas of formulating a hypothesis, experimental design, and collecting and analyzing data; 72% of students felt this project had improved their scientific writing skills. In a separate survey, 84% of students who responded felt that peer review was valuable in improving their final poster submission. We designed this inquiry-based poster project to improve student scientific communication skills. This exercise is appropriate for any microbiology laboratory course whose learning outcomes include the development of scientific inquiry and literacy.

  17. Poster Development and Presentation to Improve Scientific Inquiry and Broaden Effective Scientific Communication Skills †

    PubMed Central

    Rauschenbach, Ines; Keddis, Ramaydalis; Davis, Diane

    2018-01-01

    We have redesigned a tried-and-true laboratory exercise into an inquiry-based team activity exploring microbial growth control, and implemented this activity as the basis for preparing a scientific poster in a large, multi-section laboratory course. Spanning most of the semester, this project culminates in a poster presentation of data generated from a student-designed experiment. Students use and apply the scientific method and improve written and verbal communication skills. The guided inquiry format of this exercise provides the opportunity for student collaboration through cooperative learning. For each learning objective, a percentage score was tabulated (learning objective score = points awarded/total possible points). A score of 80% was our benchmark for achieving each objective. At least 76% of the student groups participating in this project over two semesters achieved each learning goal. Student perceptions of the project were evaluated using a survey. Nearly 90% of participating students felt they had learned a great deal in the areas of formulating a hypothesis, experimental design, and collecting and analyzing data; 72% of students felt this project had improved their scientific writing skills. In a separate survey, 84% of students who responded felt that peer review was valuable in improving their final poster submission. We designed this inquiry-based poster project to improve student scientific communication skills. This exercise is appropriate for any microbiology laboratory course whose learning outcomes include the development of scientific inquiry and literacy. PMID:29904518

  18. The Effects of Emotive Reasoning on Secondary School Students' Decision-Making in the Context of Socioscientific Issues

    NASA Astrophysics Data System (ADS)

    Powell, Wardell A.

    The discrepancy between what students are being taught within K-12 science classrooms and what they experience in the real world has been well documented. This study sought to explore the ways a high school biology curriculum, which integrates socioscientific issues, impacts students' emotive reasoning and their ability to evaluate evidence, make informed decisions on contemporary scientific dilemmas, and integrate scientific content knowledge in their reasoning on SSI. Both quantitative and qualitative methods were used to examine differences within and between an SSI treatment group and a comparison group as well as individual differences among students' responses over a semester of high school biology. Results indicated students used emotions largely to evaluate evidence and make decisions on contentious scientific dilemmas. In addition, the results showed students used newly gained scientific content knowledge to make logical predictions on contentious scientific issues. Statistical significance was found between groups of students in regard to their interest in the use of embryonic stem cell treatments to restore rats' vision, as well as students' abilities to evaluate evidence. Theoretical implications regarding the use of SSI in the classroom are presented.

  19. Improving Scientific Research and Writing Skills through Peer Review and Empirical Group Learning †

    PubMed Central

    Senkevitch, Emilee; Smith, Ann C.; Marbach-Ad, Gili; Song, Wenxia

    2011-01-01

    Here we describe a semester-long, multipart activity called “Read and wRite to reveal the Research process” (R3) that was designed to teach students the elements of a scientific research paper. We implemented R3 in an advanced immunology course. In R3, we paralleled the activities of reading, discussion, and presentation of relevant immunology work from primary research papers with student writing, discussion, and presentation of their own lab findings. We used reading, discussing, and writing activities to introduce students to the rationale for basic components of a scientific research paper, the method of composing a scientific paper, and the applications of course content to scientific research. As a final part of R3, students worked collaboratively to construct a Group Research Paper that reported on a hypothesis-driven research project, followed by a peer review activity that mimicked the last stage of the scientific publishing process. Assessment of student learning revealed a statistically significant gain in student performance on writing in the style of a research paper from the start of the semester to the end of the semester. PMID:23653760

  20. Learning Experimental Design through Targeted Student-Centric Journal Club with Screencasting.

    PubMed

    Carter, Bradley S; Hamilton, David E; Thompson, Robert C

    2017-01-01

    Knowledge and application of experimental design principles are essential components of scientific methodology, and experience with these skills is fundamental for participating in scientific research. However, undergraduates often enter the research laboratory with little training in designing and interpreting their own experiments. In the context of a research university laboratory, we designed a journal club training exercise to address this need. Students were instructed on methods for interpreting scientific literature using a screencast, a digital recording of a slide presentation narrated by an instructor. Students subsequently examined a series of research publications with a focus on the experimental designs and data interpretation in a two-session group discussion journal club format. We have found this approach to be an efficient and productive method for engaging students in learning about principles of experimental design and further preparing them for success in laboratory research.

  1. Scientific Process Flowchart Assessment (SPFA): A Method for Evaluating Changes in Understanding and Visualization of the Scientific Process in a Multidisciplinary Student Population.

    PubMed

    Wilson, Kristy J; Rigakos, Bessie

    The scientific process is nonlinear, unpredictable, and ongoing. Assessing the nature of science is difficult with methods that rely on Likert-scale or multiple-choice questions. This study evaluated conceptions about the scientific process using student-created visual representations that we term "flowcharts." The methodology, Scientific Process Flowchart Assessment (SPFA), consisted of a prompt and rubric that was designed to assess students' understanding of the scientific process. Forty flowcharts representing a multidisciplinary group without intervention and 26 flowcharts representing pre- and postinstruction were evaluated over five dimensions: connections, experimental design, reasons for doing science, nature of science, and interconnectivity. Pre to post flowcharts showed a statistically significant improvement in the number of items and ratings for the dimensions. Comparison of the terms used and connections between terms on student flowcharts revealed an enhanced and more nuanced understanding of the scientific process, especially in the areas of application to society and communication within the scientific community. We propose that SPFA can be used in a variety of circumstances, including in the determination of what curricula or interventions would be useful in a course or program, in the assessment of curriculum, or in the evaluation of students performing research projects. © 2016 K. J. Wilson and B. Rigakos. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. Secondary School Congress on Environment and Sustainable Development (CEMADS): an efficient tool to improve student knowledge on scientific research and communication.

    NASA Astrophysics Data System (ADS)

    Jarque, Pilar; García-Paz, Maria; Olivares, Conchi; Fernández-Boán, Isabel

    2013-04-01

    Secondary school students in Spain commonly show little knowledge on the way science is produced and diffused. To familiarize students with the scientific method and scientific communication, we have simulated a scientific congress on Earth Sciences at the secondary school level. Since 2002, the congress takes place yearly and it is attended by teachers and students from high schools of our hometown and beyond. Since its onset, the project follows several phases: (i) In the first phase (First Call), 14- to 18-year-old students are invited to register by means of brochures containing basic information on the congress (terms, conditions and main topics). (ii) Teachers from each participating school explain students the basis of scientific posters and oral presentations and encourage them to participate in the congress. (iii) Students prepare presentations describing the results of small scientific experiments carried out for this purpose and present them to the local organizing committee. (iv) The committee then reviews all presentations and select the best ones for public exposition. (v) In the final phase, the congress takes place. It includes registration, opening ceremony attended by educational authorities, plenary conference delivered by an outstanding local scientist, coffee break, oral presentations and closing ceremony. The project lasts for one day. It has been attended by an average of 250 students and teachers from 4 schools, and has been widely reported in the local media. Post-congress evaluation shows that the project is highly motivating for students and it improves student knowledge on scientific research and communication.

  3. Methods and Strategies: Digital Notebooks for Digital Natives

    ERIC Educational Resources Information Center

    Miller, Bridget; Martin, Christie

    2016-01-01

    The idea of notebooking is not new in the science classroom. Since the mid-1970s, writing has been found to facilitate students' critical thinking and learning across a variety of content areas. For science educators, notebooks have become an essential tool for supporting students' scientific inquiry in and across concepts. Scientific notebooks…

  4. A Video-Based Measure of Preservice Teachers' Abilities to Predict Elementary Students' Scientific Reasoning

    ERIC Educational Resources Information Center

    Akerson, Valarie L.; Carter, Ingrid S.; Park Rogers, Meredith A.; Pongsanon, Khemmawadee

    2018-01-01

    In this mixed methods study, the researchers developed a video-based measure called a "Prediction Assessment" to determine preservice elementary teachers' abilities to predict students' scientific reasoning. The instrument is based on teachers' need to develop pedagogical content knowledge for teaching science. Developing a knowledge…

  5. Raising the Bar in Freshman Science Education: Student Lectures, Scientific Papers, and Independent Experiments

    ERIC Educational Resources Information Center

    Collins, Eva-Maria S.; Calhoun, Tessa R.

    2014-01-01

    This article presents the combination of three enhanced educational approaches for training future scientists. These methods incorporate skills generally not introduced in the freshman year: student-led blackboard introductions; the writing of scientific papers; and the design, execution, and presentation of an independent lab module. We tested…

  6. Scientific Inquiry Based Professional Development Models in Teacher Education

    ERIC Educational Resources Information Center

    Corlu, Mehmet Ali; Corlu, M. Sencer

    2012-01-01

    Scientific inquiry helps students develop critical thinking abilities and enables students to think and construct knowledge like a scientist. The study describes a method course implementation at a major public teachers college in Turkey. The main goal of the course was to improve research and teaching abilities of prospective physics teachers…

  7. Lakota Undergraduates as Partners in Aging Research in American Indian Communities

    ERIC Educational Resources Information Center

    Anagnopoulos, Cheryl

    2006-01-01

    Studies have established the beneficial role of engaging students in research at both the graduate and undergraduate level. Authentic research experiences serve as a tool for instruction where students are actively involved in the process of discovery, the scientific method, and advancing existing fields with scientific data. Further, students…

  8. Implementation and Evaluation of the Course Dossier Methodology

    ERIC Educational Resources Information Center

    Khanam, Wahidun N.; Kalman, Calvin S.

    2017-01-01

    It has been argued that for novice students to acquire a full understanding of scientific texts, they also need to pursue a recurrent construction of their comprehension of scientific concepts. The course dossier method has students examine concepts in multiple passes: (a) through reflective writing on text before it is considered in the…

  9. The Myth of "Scientific Method" in Contemporary Educational Research

    ERIC Educational Resources Information Center

    Rowbottom, Darrell Patrick; Aiston, Sarah Jane

    2006-01-01

    Whether educational research should employ the "scientific method" has been a recurring issue in its history. Hence, textbooks on research methods continue to perpetuate the idea that research students ought to choose between competing camps: "positivist" or "interpretivist". In reference to one of the most widely referred to educational research…

  10. Disconnections Between Teacher Expectations and Student Confidence in Bioethics

    NASA Astrophysics Data System (ADS)

    Hanegan, Nikki L.; Price, Laura; Peterson, Jeremy

    2008-09-01

    This study examines how student practice of scientific argumentation using socioscientific bioethics issues affects both teacher expectations of students’ general performance and student confidence in their own work. When teachers use bioethical issues in the classroom students can gain not only biology content knowledge but also important decision-making skills. Learning bioethics through scientific argumentation gives students opportunities to express their ideas, formulate educated opinions and value others’ viewpoints. Research has shown that science teachers’ expectations of student success and knowledge directly influence student achievement and confidence levels. Our study analyzes pre-course and post-course surveys completed by students enrolled in a university level bioethics course ( n = 111) and by faculty in the College of Biology and Agriculture faculty ( n = 34) based on their perceptions of student confidence. Additionally, student data were collected from classroom observations and interviews. Data analysis showed a disconnect between faculty and students perceptions of confidence for both knowledge and the use of science argumentation. Student reports of their confidence levels regarding various bioethical issues were higher than faculty reports. A further disconnect showed up between students’ preferred learning styles and the general faculty’s common teaching methods; students learned more by practicing scientific argumentation than listening to traditional lectures. Students who completed a bioethics course that included practice in scientific argumentation, significantly increased their confidence levels. This study suggests that professors’ expectations and teaching styles influence student confidence levels in both knowledge and scientific argumentation.

  11. Training Elementary Teachers to Prepare Students for High School Authentic Scientific Research

    NASA Astrophysics Data System (ADS)

    Danch, J. M.

    2017-12-01

    The Woodbridge Township New Jersey School District has a 4-year high school Science Research program that depends on the enrollment of students with the prerequisite skills to conduct authentic scientific research at the high school level. A multifaceted approach to training elementary teachers in the methods of scientific investigation, data collection and analysis and communication of results was undertaken in 2017. Teachers of predominately grades 4 and 5 participated in hands on workshops at a Summer Tech Academy, an EdCamp, a District Inservice Day and a series of in-class workshops for teachers and students together. Aspects of the instruction for each of these activities was facilitated by high school students currently enrolled in the High School Science Research Program. Much of the training activities centered around a "Learning With Students" model where teachers and their students simultaneously learn to perform inquiry activities and conduct scientific research fostering inquiry as it is meant to be: where participants produce original data are not merely working to obtain previously determined results.

  12. A Scientific Method Based upon Research Scientists' Conceptions of Scientific Inquiry.

    ERIC Educational Resources Information Center

    Reiff, Rebecca; Harwood, William S.; Phillipson, Teddie

    For students to develop a more realistic picture of how scientists practice science, there must be well-researched understanding of how scientists do science. A model for the process of scientific inquiry that more closely reflects actual scientific practices can provide a means of dispelling some of the myths about scientific inquiry. This paper…

  13. The article critique as a problem-based teaching method for medical students early in their training: a French example using anatomy.

    PubMed

    Havet, Eric; Duparc, Fabrice; Peltier, Johan; Tobenas-Dujardin, Anne-Claire; Fréger, Pierre

    2012-01-01

    In France, "article critique" became a particular teaching method in the second part of the medical curriculum. It approaches a reading exercise of scientific medical papers similar to that of journal club. It could be compared to reviewing a paper as performed by reviewers of a scientific journal. We studied the relevancy of that teaching method for the youngest medical students. Our questions were about the understanding and the analyzing ability of a scientific paper while students have just learned basic medical sciences as anatomy. We have included 54 "article critique" written by voluntary students in second and third years of medical cursus. All of the IMRaD structure items (introduction, materials and methods, results and discussion) were analyzed using a qualitative scale for understanding as for analyzing ability. For understanding, 89-96% was good or fair and for the analyzing ability, 93-100% was good or fair. The anatomical papers were better understood than therapeutic or paraclinical studies, but without statistical difference, except for the introduction chapter. Results for analyzing ability were various according to the subject of the papers. This teaching method could be compared to a self-learning method, but also to a problem-based learning method. For the youngest students, the lack of medical knowledge aroused the curiosity. Their enthusiasm to learn new medical subjects remained full. The authors would insist on the requirement of rigorous lessons about evidence-based medicine and IMRaD structure and on a necessary companionship of the students by the teachers.

  14. Enhancing Science Education Instruction: A Mixed-Methods Study on University and Middle School Collaborations

    NASA Astrophysics Data System (ADS)

    Owen-Stone, Deborah S.

    The purpose of this concurrent mixed methods study was to examine the collaborative relationship between scientists and science teachers and to incorporate and advocate scientific literacy based on past and current educational theories such as inquiry based teaching. The scope of this study included archived student standardized test scores, semi-structured interviews, and a Likert scale survey to include open-ended comments. The methodology was based on the guiding research question: To what extent and in what ways does the collaboration and inquiry methodology, with GTF and PT teams, serve toward contributing to a more comprehensive and nuanced understanding of this predicting relationship between student PASS scores, inquiry skills, and increased scientific literacy for GTF's, PT's, and students via an integrative mixed methods analysis? The data analysis considerations were derived from the qualitative data collected from the three GTF/PT teams by the use of recorded interviews and text answered survey comments. The quantitative data of archived student Palmetto Assessment of State Standards (PASS) scores on scientific literacy and inquiry tests and the Likert-scale portion of the survey were support data to the aforementioned qualitative data findings. Limitations of the study were (1) the population of only the GK-12 teachers and their students versus the inclusion of participants that did not experience the GK-12 Fellow partnerships within their classrooms, should they be considered as participants, (2) involved the researcher as a participant for two years of the program and objectivity remained through interpretation and well documented personal reflections and experiences to inform accuracy, and (3) cultural diversity contributed to the relationship formed between the research Fellow and science educator and communication and scientific language did form a barrier between the Fellow, educator, and student rapport within the classroom. This study's contribution benefits science education, scientists, university science education, and future collaborations. Key Terms: mixed methods, GK-12, scientific literacy, inquiry, collaboration.

  15. Knowledge, attitudes, and barriers toward research: The perspectives of undergraduate medical and dental students

    PubMed Central

    Kyaw Soe, Htoo Htoo; Than, Nan Nitra; Lwin, Htay; Nu Htay, Mila Nu Nu; Phyu, Khine Lynn; Abas, Adinegara Lutfi

    2018-01-01

    CONTEXT: Scientific research not only promotes health and combats diseases of an individual, but also it can strengthen the effectiveness of health systems. Hence, understanding of scientific methods becomes a crucial component in the medical profession. AIMS: This study was conducted to assess the knowledge, attitudes, and barriers toward research among undergraduate medical and dental students. SETTINGS AND DESIGN: This cross-sectional study was conducted among 295 undergraduate Bachelor of Medicine and Bachelor of Surgery (MBBS) and Bachelor of Dental Surgery (BDS) students from a private medical college in Malaysia. MATERIALS AND METHODS: We purposively selected 360 students attending the 3rd, 4th, and 5th year in MBBS course and BDS course in September 2015. A total of 295 students who were willing to provide written informed consent were included in this study. We collected data using a validated, self-administered, structured questionnaire which included 20 questions about knowledge toward scientific research, 21 attitude items in regard to scientific research, a list of 10 barriers toward conducting medical research, and 5 questions of confidence to conduct the medical research. STATISTICAL ANALYSIS USED: Data were analyzed using descriptive statistics, independent t-test, ANOVA, and multiple linear regression. RESULTS: Among the students, 56.9% had moderate knowledge while the majority (83.3%) had moderate attitude toward scientific research. The majorly cited barriers were the lack of time (79.9%), lack of knowledge and skills (72.1%), lack of funding (72.0%) and facilities (63.6%), and lack of rewards (55.8%). There was a significant association between age, academic year, and knowledge of research as the older age group, and 4th- and 5th-year students had higher knowledge score. The students of higher attitude score had better-perceived barriers score toward research with regression coefficient 0.095 (95% confidence interval 0.032–0.159). CONCLUSIONS: Even though the students had the positive attitudes toward scientific research, a supportive and positive environment is needed to improve skills and knowledge of research and to overcome the barriers toward the conduct of scientific research. PMID:29629384

  16. Place-Based Investigations and Authentic Inquiry

    ERIC Educational Resources Information Center

    Sarkar, Somnath; Frazier, Richard

    2008-01-01

    Although many science students perform hands-on activities as inquiry exercises, such activities sometimes remain disconnected in the student's mind and fail to nurture a deeper understanding of methods of science and the role these methods play in scientific inquiry. Students may be able to reiterate the steps of the standard "scientific…

  17. The Scientific Method in a Cup

    NASA Astrophysics Data System (ADS)

    Carroll, Bradley W.; More, M. B.

    2006-12-01

    This paper describes an inexpensive hands-on activity that invites students to investigate an intriguing mystery and so discover for themselves the essence of the scientific method. When a spoon is tapped against the bottom of a mug of freshly made hot chocolate, a tone of constantly rising pitch is heard. Students’ reactions to this “hot chocolate effect” illustrate how the scientific method may be constructed from the common sense and curiosity present in us all.

  18. Cross-Proportions: A Conceptual Method for Developing Quantitative Problem-Solving Skills

    ERIC Educational Resources Information Center

    Cook, Elzbieta; Cook, Stephen L.

    2005-01-01

    The cross-proportion method allows both the instructor and the student to easily determine where an error is made during problem solving. The C-P method supports a strong cognitive foundation upon which students can develop other diagnostic methods as they advance in chemistry and scientific careers.

  19. Assessment of Students' Scientific and Alternative Conceptions of Energy and Momentum Using Concentration Analysis

    ERIC Educational Resources Information Center

    Dega, Bekele Gashe; Govender, Nadaraj

    2016-01-01

    This study compares the scientific and alternative conceptions of energy and momentum of university first-year science students in Ethiopia and the US. Written data were collected using the Energy and Momentum Conceptual Survey developed by Singh and Rosengrant. The Concentration Analysis statistical method was used for analysing the Ethiopian…

  20. Teaching Anthropogenic Climate Change through Interdisciplinary Collaboration: Helping Students Think Critically about Science and Ethics in Dialogue

    ERIC Educational Resources Information Center

    Todd, Claire; O'Brien, Kevin J.

    2016-01-01

    Anthropogenic climate change is a complicated issue involving scientific data and analyses as well as political, economic, and ethical issues. In order to capture this complexity, we developed an interdisciplinary student and faculty collaboration by (1) offering introductory lectures on scientific and ethical methods to two classes, (2) assigning…

  1. An STS Approach to Organizing a Secondary Science Methods Course: Preliminary Findings.

    ERIC Educational Resources Information Center

    Dass, Pradeep M.

    The current agenda in science education calls for science instruction that enhances student understanding of the nature of scientific enterprise, enables students to critically analyze scientific information as well as apply it in real-life situations, and sets them on a path of lifelong learning in science. In order to prepare teachers who can…

  2. Science classroom inquiry (SCI) simulations: a novel method to scaffold science learning.

    PubMed

    Peffer, Melanie E; Beckler, Matthew L; Schunn, Christian; Renken, Maggie; Revak, Amanda

    2015-01-01

    Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.

  3. Mathematical Problem Solving Ability of Junior High School Students through Ang’s Framework for Mathematical Modelling Instruction

    NASA Astrophysics Data System (ADS)

    Fasni, N.; Turmudi, T.; Kusnandi, K.

    2017-09-01

    This research background of this research is the importance of student problem solving abilities. The purpose of this study is to find out whether there are differences in the ability to solve mathematical problems between students who have learned mathematics using Ang’s Framework for Mathematical Modelling Instruction (AFFMMI) and students who have learned using scientific approach (SA). The method used in this research is a quasi-experimental method with pretest-postest control group design. Data analysis of mathematical problem solving ability using Indepent Sample Test. The results showed that there was a difference in the ability to solve mathematical problems between students who received learning with Ang’s Framework for Mathematical Modelling Instruction and students who received learning with a scientific approach. AFFMMI focuses on mathematical modeling. This modeling allows students to solve problems. The use of AFFMMI is able to improve the solving ability.

  4. Teaching Cell Biology to Dental Students with a Project-Based Learning Approach.

    PubMed

    Costa-Silva, Daniela; Côrtes, Juliana A; Bachinski, Rober F; Spiegel, Carolina N; Alves, Gutemberg G

    2018-03-01

    Although the discipline of cell biology (CB) is part of the curricula of predoctoral dental schools, students often fail to recognize its practical relevance. The aim of this study was to assess the effectiveness of a practical-theoretical project-based course in closing the gaps among CB, scientific research, and dentistry for dental students. A project-based learning course was developed with nine sequential lessons to evaluate 108 undergraduate dental students enrolled in CB classes of a Brazilian school of dentistry during 2013-16. To highlight the relevance of in vitro studies in the preclinical evaluation of dental materials at the cellular level, the students were challenged to complete the process of drafting a protocol and performing a cytocompatibility assay for a bone substitute used in dentistry. Class activities included small group discussions, scientific database search and article presentations, protocol development, lab experimentation, and writing of a final scientific report. A control group of 31 students attended only one laboratory class on the same theme, and the final reports were compared between the two groups. The results showed that the project-based learning students had superior outcomes in acknowledging the relevance of in vitro methods during biocompatibility testing. Moreover, they produced scientifically sound reports with more content on methodological issues, the relationship with dentistry, and the scientific literature than the control group (p<0.05). The project-based learning students also recognized a higher relevance of scientific research and CB to dental practice. These results suggest that a project-based approach can help contextualize scientific research in dental curricula.

  5. Challenging traditional assumptions of high school science through the physics and Everyday Thinking Curriculum(TM)

    NASA Astrophysics Data System (ADS)

    Ross, Michael J.

    Science education in the U.S. has failed for over a century to bring the experience of scientific induction to classrooms, from elementary science to undergraduate courses. The achievement of American students on international comparisons of science proficiency is unacceptable, and the disparities between groups underrepresented in STEM and others are large and resistant to reform efforts. This study investigated the enactment of a physics curriculum designed upon the inductive method in a high school serving mostly students from groups underrepresented in science. The Physics and Everyday Thinking curriculum was designed to model the central practices of science and to provide opportunities for students to both extract general principles of physics and to develop scientific models from laboratory evidence. The findings of this study suggest that scientific induction is not only a process that is well within the capacity of high school students, but they enjoy it as well. Students that engaged in the central practices of science through the inductive method reported a new sense of agency and control in their learning. These findings suggest that modeling the pedagogy of the science classroom upon the epistemology of science can result in a mode of learning that can lead to positive identification with physics and the development of scientific literacy.

  6. Science Classroom Inquiry (SCI) Simulations: A Novel Method to Scaffold Science Learning

    PubMed Central

    Peffer, Melanie E.; Beckler, Matthew L.; Schunn, Christian; Renken, Maggie; Revak, Amanda

    2015-01-01

    Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students’ self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study. PMID:25786245

  7. The Formation of Students' Creative Independence at the English Language Classes

    ERIC Educational Resources Information Center

    Shangaraeva, Liya F.; Yarkhamova, Alfiya A.; Biktagirova, Zubayda A.; Agol, Dorice

    2016-01-01

    The article is devoted to the formation of students' creative independence. The aim of the article is to identify and test pedagogical conditions of formation students' creative independence studying the English language. The leading methods are analyses of scientific works and practice, empirical and experimental data, method of involved…

  8. Preparing Scientists to be Community Partners

    NASA Astrophysics Data System (ADS)

    Pandya, R. E.

    2012-12-01

    Many students, especially students from historically under-represented communities, leave science majors or avoid choosing them because scientific careers do not offer enough opportunity to contribute to their communities. Citizen science, or public participation in scientific research, may address these challenges. At its most collaborative, it means inviting communities to partner in every step of the scientific process from defining the research question to applying the results to community priorities. In addition to attracting and retaining students, this level of community engagement will help diversify science, ensure the use and usability of our science, help buttress public support of science, and encourage the application of scientific results to policy. It also offers opportunities to tackle scientific questions that can't be accomplished in other way and it is demonstrably effective at helping people learn scientific concepts and methods. In order to learn how to prepare scientists for this kind of intensive community collaboration, we examined several case studies, including a project on disease and public health in Africa and the professionally evaluated experience of two summer interns in Southern Louisiana. In these and other cases, we learned that scientific expertise in a discipline has to be accompanied by a reservoir of humility and respect for other ways of knowing, the ability to work collaboratively with a broad range of disciplines and people, patience and enough career stability to allow that patience, and a willingness to adapt research to a broader set of scientific and non-scientific priorities. To help students achieve this, we found that direct instruction in participatory methods, mentoring by community members and scientists with participatory experience, in-depth training on scientific ethics and communication, explicit articulation of the goal of working with communities, and ample opportunity for personal reflection were essential. There is much more to learn about preparing students for these collaborative approaches, and the principal goal of sharing these strategies is to spark a conversation about the ways we prepare scientists and the public to work together in an increasingly collaborative scientific enterprise.

  9. Teaching animal science: education or indoctrination?

    PubMed

    Schillo, K K

    1997-04-01

    Traditional animal science curricula ignore sociological aspects of scientific research and therefore portray scientific knowledge as value-free. This view gives rise to a teaching method that involves imparting lists of scientific facts that are to be accepted by students without critical evaluation. This amounts to little more than indoctrination and misrepresents science as a system of knowledge. An alternative approach is based on the view that science is a creative human activity that reflects the values and biases of its practitioners. The goal of this approach is to teach students to think analytically and to make independent judgments about scientific claims. This requires a scientific literacy: an understanding of principal scientific theories, the nature of scientific research, and the relationship between science and society. To achieve this goal, a teacher must become less of an authority figure, whose role is to simply pass on information, and more of a facilitator, whose role is to promote questioning, exploration, and synthesis. This requires a learning community in which students feel comfortable taking risks and develop the courage to make and defend judgments. This teaching approach enhances the intellectual and ethical development of students, allowing them to serve themselves and society in responsible ways.

  10. Analysis of students critical thinking skills in socio-scientific issues of biodiversity subject

    NASA Astrophysics Data System (ADS)

    Santika, A. R.; Purwianingsih, W.; Nuraeni, E.

    2018-05-01

    Critical thinking is a skills the which students should have in order to face 21st century demands. Critical thinking skills can help people in facing their daily problems, especially problems roommates relate to science. This research is aimed to analyze students critical thinking skills in socio-scientific issues of biodiversity subject. The method used in this research was descriptive method. The research subject is first-grade students’ in senior high school. The data collected by interview and open-ended question the which classified based on framework : (1) question at issue, (2) information (3) purpose (4) concepts (5) assumptions, (6) point of view, (7) interpretation and inference, and (8) implication and consequences, then it will be assessed by using rubrics. The result of the data showed students critical thinking skills in socio-scientific issues of biodiversity subject is in low and medium category. Therefore we need a learning activity that is able to develop student’s critical thinking skills, especially regarding issues of social science.

  11. Writing Stories to Enhance Scientific Literacy

    NASA Astrophysics Data System (ADS)

    Ritchie, Stephen M.; Tomas, Louisa; Tones, Megan

    2011-03-01

    In response to international concerns about scientific literacy and students' waning interest in school science, this study investigated the effects of a science-writing project about the socioscientific issue (SSI) of biosecurity on the development of students' scientific literacy. Students generated two BioStories each that merged scientific information with the narrative storylines in the project. The study was conducted in two phases. In the exploratory phase, a qualitative case study of a sixth-grade class involving classroom observations and interviews informed the design of the second, confirmatory phase of the study, which was conducted at a different school. This phase involved a mixed methods approach featuring a quasi-experimental design with two classes of Australian middle school students (i.e., sixth grade, 11 years of age, n = 55). The results support the argument that writing the sequence of stories helped the students become more familiar with biosecurity issues, develop a deeper understanding of related biological concepts, and improve their interest in science. On the basis of these findings, teachers should be encouraged to engage their students in the practice of writing about SSI in a way that integrates scientific information into narrative storylines. Extending the practice to older students and exploring additional issues related to writing about SSI are recommended for further research.

  12. Using the Psychic Blue Dot to Teach about Science (and Pseudoscience)

    ERIC Educational Resources Information Center

    Ashton, William A.

    2008-01-01

    A new teaching method is described for teaching research methods in an Introductory Psychology curriculum with the goals of making the section on research methods more interesting, providing an active learning environment for research methods and to allow students to examine scientifically the claims of pseudoscience. Student groups created and…

  13. Science Writing Heurisitc: A Writing-to-Learn Strategy and Its Effect on Student's Science Achievement, Science Self-Efficacy, and Scientific Epistemological View

    ERIC Educational Resources Information Center

    Caukin, Nancy S.

    2010-01-01

    The purpose of this mixed-methods study was to determine if employing the writing-to-learn strategy known as a "Science Writing Heuristic" would positively effect students' science achievement, science self-efficacy, and scientific epistemological view. The publications "Science for All American, Blueprints for Reform: Project…

  14. Soziale Welten von Schulern und Schulerinnen. Uber Populare, Padagogische und Szientifische Ethnographien (Social World of Male and Female Students -- On Popular, Pedagogical and Scientific Ethnographies).

    ERIC Educational Resources Information Center

    Zinnecker, Jurgen

    2000-01-01

    Provides a survey on projects, authors, topics, and methods in recent ethnographic studies carried out in Germany and elsewhere. Describes embedding scientific student ethnography into a field of discourse. Concludes with a prognosis relating to the future perspectives of this segment of educational research. (CMK)

  15. Science Education in Primary Schools: Is an Animation Worth a Thousand Pictures?

    NASA Astrophysics Data System (ADS)

    Barak, Miri; Dori, Yehudit J.

    2011-10-01

    Science teaching deals with abstract concepts and processes that very often cannot be seen or touched. The development of Java, Flash, and other web-based applications allow teachers and educators to present complex animations that attractively illustrate scientific phenomena. Our study evaluated the integration of web-based animated movies into primary schools science curriculum. Our goal was to examine teachers' methods for integrating animated movies and their views about the role of animations in enhancing young students' thinking skills. We also aimed at investigating the effect of animated movies on students' learning outcomes. Applying qualitative and quantitative tools, we conducted informal discussions with science teachers (N = 15) and administered pre- and post-questionnaires to 4th (N = 641) and 5th (N = 694) grade students who were divided into control and experimental groups. The experimental group students studied science while using animated movies and supplementary activities at least once a week. The control group students used only textbooks and still-pictures for learning science. Findings indicated that animated movies support the use of diverse teaching strategies and learning methods, and can promote various thinking skills among students. Findings also indicated that animations can enhance scientific curiosity, the acquisition of scientific language, and fostering scientific thinking. These encouraging results can be explained by the fact that the students made use of both visual-pictorial and auditory-verbal capabilities while exploring animated movies in diverse learning styles and teaching strategies.

  16. "Beyond the walls": A research study of eighth-grade students mentored in a hospital setting

    NASA Astrophysics Data System (ADS)

    Grattan, Aileen

    This research study was designed to evaluate twelve eighth-grade students participating in the fourth year of a mentoring program to determine what effect the mentoring experience would have on the students' sense of a scientific community, their understanding of scientific knowledge and process skills and attitudes toward science. The mentoring program was developed through a partnership established between the researcher, an eighth-grade science teacher at a junior high school, and an administrator of a local hospital, to provide educational opportunities for students mentored by medical professionals. The research design included qualitative and quantitative methods of analysis. The qualitative instruments were student journals and interviews. The quantitative instruments included the science subtest of the Stanford Nine Achievement Test, a Student Attitude Toward Science Survey (STATS), and a Hospital Questionnaire. The findings indicate that mentoring developed the students' understanding of a scientific community, revealed a wide range of attitudes and had a positive effect on the students' scientific knowledge and process skills. Finally, this research study has shown the benefits of mentoring as a model for teaching science in a community setting beyond the walls of the school.

  17. Scientific dishonesty—a nationwide survey of doctoral students in Norway

    PubMed Central

    2013-01-01

    Background The knowledge of scientific dishonesty is scarce and heterogeneous. Therefore this study investigates the experiences with and the attitudes towards various forms of scientific dishonesty among PhD-students at the medical faculties of all Norwegian universities. Method Anonymous questionnaire distributed to all post graduate students attending introductory PhD-courses at all medical faculties in Norway in 2010/2011. Descriptive statistics. Results 189 of 262 questionnaires were returned (72.1%). 65% of the respondents had not, during the last year, heard or read about researchers who committed scientific dishonesty. One respondent had experienced pressure to fabricate and to falsify data, and one had experienced pressure to plagiarize data. On average 60% of the respondents were uncertain whether their department had a written policy concerning scientific conduct. About 11% of the respondents had experienced unethical pressure concerning the order of authors during the last 12 months. 10% did not find it inappropriate to report experimental data without having conducted the experiment and 38% did not find it inappropriate to try a variety of different methods of analysis to find a statistically significant result. 13% agreed that it is acceptable to selectively omit contradictory results to expedite publication and 10% found it acceptable to falsify or fabricate data to expedite publication, if they were confident of their findings. 79% agreed that they would be willing to report misconduct to a responsible official. Conclusion Although there is less scientific dishonesty reported in Norway than in other countries, dishonesty is not unknown to doctoral students. Some forms of scientific misconduct are considered to be acceptable by a significant minority. There was little awareness of relevant policies for scientific conduct, but a high level of willingness to report misconduct. PMID:23289954

  18. Application of construal level and value-belief norm theories to undergraduate decision-making on a wildlife socio-scientific issue

    NASA Astrophysics Data System (ADS)

    Sutter, A. McKinzie; Dauer, Jenny M.; Forbes, Cory T.

    2018-06-01

    One aim of science education is to develop scientific literacy for decision-making in daily life. Socio-scientific issues (SSI) and structured decision-making frameworks can help students reach these objectives. This research uses value belief norm (VBN) theory and construal level theory (CLT) to explore students' use of personal values in their decision-making processes and the relationship between abstract and concrete problematization and their decision-making. Using mixed methods, we conclude that the level of abstraction with which students problematise a prairie dog agricultural production and ecosystem preservation issue has a significant relationship to the values students used in the decision-making process. However, neither abstraction of the problem statement nor students' surveyed value orientations were significantly related to students' final decisions. These results may help inform teachers' understanding of students and their use of a structured-decision making tool in a classroom, and aid researchers in understanding if these tools help students remain objective in their analyses of complex SSIs.

  19. A Partnership Approach to Improving Student Attitudes about Sharks and Scientists

    ERIC Educational Resources Information Center

    Duncan Seraphin, Kanesa

    2010-01-01

    This article describes the methods and impact of a student-teacher-scientist research partnership on student attitudes. The partnership objective was to teach students about the diverse roles of sharks in the marine environment while personally connecting students with scientific study. Students (N = 229) participated in lessons about shark…

  20. Methods of Science Investigation Part 2: Results of Implementation of a Curriculum Fostering Original Scientific Research

    NASA Astrophysics Data System (ADS)

    Danch, J. M.

    2008-12-01

    Originally designed to allow secondary students with special needs to participate in original scientific research, the Methods of Science Curriculum was piloted in 2008. Students participating included those with special needs, English language learners, and the general population. Students were incrementally graduated from traditional inquiry activities towards authentic student-generated research projects. Students were evaluated via class work grades, an in-school symposium and a pre/post test. 100 percent of participants successfully completed and presented their original research. The pre/post evaluation demonstrated improvement for 91 percent of participants. An unanticipated result was the performance and growth of English language learners, possibly because of the emphasis on the creative and active process of science rather than vocabulary. A teacher-training program is being developed for expansion of the curriculum to additional schools in 2009.

  1. Introducing Scientific Writing as Mandatory Topic in Bachelor Nursing Program - Experience of the University of Dubrovnik, Croatia.

    PubMed

    Zidarić, Mihaela; Vičić-Hudorović, Višnja; Hudorović, Narcis

    2016-06-01

    One of the methods that have been used to encourage student reflection skills is scientific writing. The purpose of this article is to discuss implementation of obligatory study topic with the main objective to increase the skills of scientific writing among students of Bachelor Nursing Curriculum and its relation to scientific publishing volume of Bachelor degree students from the University of Dubrovnik. By searching the local rank database called HRČAK, data were collected on publication volume of the Bachelor course students at the University of Dubrovnik from 2010 to 2014. Articles published in the Croatian medical journals in Croatian language were identified. Sixty-six students published 35 articles, alone or with co-authors. Two (6%) articles were written by a single author. Among co-authors from the nursing profession, those with associate degree in nursing (20%) predominated, followed by medical doctors and anthropologists (25%). The total number of authors was 95, and the share of papers published in Croatian language was 100%. The body of published articles increased from 2012 to 2013 by 14%, and then from 2013 to 2014 by 113%. For future investigations, closer insight into novel approaches is needed to encourage nursing students to increase their scientific productivity, especially in English language. In order to enhance international visibility of Croatian nursing authors, academic members of the Croatian scientific nursing community should find additional tools to upgrade scientific productivity of the Croatian nursing authors.

  2. A model of "integrated scientific method" and its application for the analysis of instruction

    NASA Astrophysics Data System (ADS)

    Rusbult, Craig Francis

    A model of 'integrated scientific method' (ISM) was constructed as a framework for describing the process of science in terms of activities (formulating a research problem, and inventing and evaluating actions--such as selecting and inventing theories, evaluating theories, designing experiments, and doing experiments--intended to solve the problem) and evaluation criteria (empirical, conceptual, and cultural-personal). Instead of trying to define the scientific method, ISM is intended to serve as a flexible framework that--by varying the characteristics of its components, their integrated relationships, and their relative importance can be used to describe a variety of scientific methods, and a variety of perspectives about what constitutes an accurate portrayal of scientific methods. This framework is outlined visually and verbally, followed by an elaboration of the framework and my own views about science, and an evaluation of whether ISM can serve as a relatively neutral framework for describing a wide range of science practices and science interpretations. ISM was used to analyze an innovative, guided inquiry classroom (taught by Susan Johnson, using Genetics Construction Kit software) in which students do simulated scientific research by solving classical genetics problems that require effect-to-cause reasoning and theory revision. The immediate goal of analysis was to examine the 'science experiences' of students, to determine how the 'structure of instruction' provides opportunities for these experiences. Another goal was to test and improve the descriptive and analytical utility of ISM. In developing ISM, a major objective was to make ISM educationally useful. A concluding discussion includes controversies about "the nature of science" and how to teach it, how instruction can expand opportunities for student experience, and how goal-oriented intentional learning (using ISM might improve the learning, retention, and transfer of thinking skills. Potential educational applications of ISM could involve its use for instructional analysis or design, or for teaching students in the classroom; or ISM and IDM (a closely related, generalized 'integrated design method') could play valuable roles in a 'wide spiral' curriculum designed for the coordinated teaching of thinking skills, including creativity and critical thinking, across a wide range of subjects.

  3. Effect of levels of inquiry model of science teaching on scientific literacy domain attitudes

    NASA Astrophysics Data System (ADS)

    Achmad, Maulana; Suhandi, Andi

    2017-05-01

    The aim of this research was to obtain an overview of the increase scientific literacy attitudes domain in high school students as the effects of the Levels of Inquiry (LOI) model of science teaching. This research using a quasi-experimental methods and randomizedpretest-posttest control group design. The subject of this research was students of grade X in a senior high school in Purwakarta and it consists of two classes who were divided into experimental class (30 students) and control class (30 students). While experimental class was taught LOIand control class was taught Interactive Lecture Demonstration (ILD). Data were collected using an attitude scale scientific literacy test which is based on the Likert scale. Data were analyzed using normality test, homogeneity test, and t-test to the value of N-gain attitude of scientific literacy scale test. The result of percentage average N-gain experimental class and control are 49 and 31 that classified into medium improvement category. Based on the results of hypothesis testing on the N-gain value obtained by the Sig.(One-tailed) 0.000 < 0.050, it means that H1 was accepted. The results showed that scientific literacy domain attitude of students who got learning by LOI is higher than students who got learning by ILD. It can be concluded that the effect of LOI is better to improve scientific literacy domain attitudes significantly.

  4. Using a Concept Cartoon© Method to Address Elementary School Students' Ideas about Natural Phenomena

    ERIC Educational Resources Information Center

    Minárechová, Michaela

    2016-01-01

    This study investigated the identification and subsequent development or modification of students´ ideas about scientific phenomena by teaching by concept cartoons© method. We found out ideas of students of the fourth grade of primary school by conceptual tasks which were parts of quasi-experiment (pretest and posttest design). For triangulation…

  5. Convergent Inquiry in Science & Engineering: The Use of Atomic Force Microscopy in a Biology Class

    ERIC Educational Resources Information Center

    Lee, Il-Sun; Byeon, Jung-Ho; Kwon, Yong-Ju

    2013-01-01

    The purpose of this study was to design a teaching method suitable for science high school students using atomic force microscopy. During their scientific inquiry procedure, high school students observed a micro-nanostructure of a biological sample, which is unobservable via an optical microscope. The developed teaching method enhanced students'…

  6. Student Development of Information Literacy Skills during Problem-Based Organic Chemistry Laboratory Experiments

    ERIC Educational Resources Information Center

    Shultz, Ginger V.; Li, Ye

    2016-01-01

    Problem-based learning methods support student learning of content as well as scientific skills. In the course of problem-based learning, students seek outside information related to the problem, and therefore, information literacy skills are practiced when problem-based learning is used. This work describes a mixed-methods approach to investigate…

  7. Articulating uncertainty as part of scientific argumentation during model-based exoplanet detection tasks

    NASA Astrophysics Data System (ADS)

    Lee, Hee-Sun; Pallant, Amy; Pryputniewicz, Sarah

    2015-08-01

    Teaching scientific argumentation has emerged as an important goal for K-12 science education. In scientific argumentation, students are actively involved in coordinating evidence with theory based on their understanding of the scientific content and thinking critically about the strengths and weaknesses of the cited evidence in the context of the investigation. We developed a one-week-long online curriculum module called "Is there life in space?" where students conduct a series of four model-based tasks to learn how scientists detect extrasolar planets through the “wobble” and transit methods. The simulation model allows students to manipulate various parameters of an imaginary star and planet system such as planet size, orbit size, planet-orbiting-plane angle, and sensitivity of telescope equipment, and to adjust the display settings for graphs illustrating the relative velocity and light intensity of the star. Students can use model-based evidence to formulate an argument on whether particular signals in the graphs guarantee the presence of a planet. Students' argumentation is facilitated by the four-part prompts consisting of multiple-choice claim, open-ended explanation, Likert-scale uncertainty rating, and open-ended uncertainty rationale. We analyzed 1,013 scientific arguments formulated by 302 high school student groups taught by 7 teachers. We coded these arguments in terms of the accuracy of their claim, the sophistication of explanation connecting evidence to the established knowledge base, the uncertainty rating, and the scientific validity of uncertainty. We found that (1) only 18% of the students' uncertainty rationale involved critical reflection on limitations inherent in data and concepts, (2) 35% of students' uncertainty rationale reflected their assessment of personal ability and knowledge, rather than scientific sources of uncertainty related to the evidence, and (3) the nature of task such as the use of noisy data or the framing of critiquing scientists' discovery encouraged students' articulation of scientific uncertainty sources in different ways.

  8. The scientific learning approach using multimedia-based maze game to improve learning outcomes

    NASA Astrophysics Data System (ADS)

    Setiawan, Wawan; Hafitriani, Sarah; Prabawa, Harsa Wara

    2016-02-01

    The objective of curriculum 2013 is to improve the quality of education in Indonesia, which leads to improving the quality of learning. The scientific approach and supported empowerment media is one approach as massaged of curriculum 2013. This research aims to design a labyrinth game based multimedia and apply in the scientific learning approach. This study was conducted in one of the Vocational School in Subjects of Computer Network on 2 (two) classes of experimental and control. The method used Mix Method Research (MMR) which combines qualitative in multimedia design, and quantitative in the study of learning impact. The results of a survey showed that the general of vocational students like of network topology material (68%), like multimedia (74%), and in particular, like interactive multimedia games and flash (84%). Multimediabased maze game developed good eligibility based on media and material aspects of each value 840% and 82%. Student learning outcomes as a result of using a scientific approach to learning with a multimediabased labyrinth game increase with an average of gain index about (58%) and higher than conventional multimedia with index average gain of 0.41 (41%). Based on these results the scientific approach to learning by using multimediabased labyrinth game can improve the quality of learning and increase understanding of students. Multimedia of learning based labyrinth game, which developed, got a positive response from the students with a good qualification level (75%).

  9. Scientific Inquiry Competency Perception Scale (The Case of Kazak Post-Graduate Students) Reliability and Validity Study

    ERIC Educational Resources Information Center

    Gelisli, Yücel; Beisenbayeva, Lyazzat

    2017-01-01

    The purpose of the current study is to develop a reliable scale to be used to determine the scientific inquiry competency perception of post-graduate students engaged in post-graduate studies in the field of educational sciences and teacher education in Kazakhstan. The study employed the descriptive method. Within the context of the study, a scale…

  10. The Impact of Using Representation Modes within Writing to Learn Activities on the Scientific Process Skills of the Fifth Grade Students

    ERIC Educational Resources Information Center

    Memis, Esra Kabatas; Öz, Muhittin

    2017-01-01

    The purpose of this research is to determine the impact of using multimodal representation modes in the writing practices done by the fifth grade students on their scientific process skills. A combined research method which had both quantitative and qualitative characteristics was used in the research and the groups were chosen as control and…

  11. Scientific Skills as Core Competences in Medical Education: What do medical students think?

    NASA Astrophysics Data System (ADS)

    Ribeiro, Laura; Severo, Milton; Pereira, Margarida; Amélia Ferreira, Maria

    2015-08-01

    Background: Scientific excellence is one of the most fundamental underpinnings of medical education and its relevance is unquestionable. To be involved in research activities enhances students' critical thinking and problem-solving capacities, which are mandatory competences for new achievements in patient care and consequently to the improvement of clinical practice. Purposes: This work aimed to study the relevance given by Portuguese medical students to a core of scientific skills, and their judgment about their own ability to execute those skills. Methods: A cross-sectional study was conducted on students attending the first, fourth and sixth years of medical course in the same period. An assessment istrument, exploring the importance given by Portuguese medical students to scientific skills in high school, to clinical practice and to their own ability to execute them, was designed, adapted and applied specifically to this study. Results: Students' perceptions were associated with gender, academic year, previous participation in research activities, positive and negative attitudes toward science, research integration into the curriculum and motivation to undertake research. The viewpoint of medical students about the relevance of scientific skills overall, and the ability to execute them, was independently associated with motivation to be enrolled in research. Conclusions: These findings have meaningful implications in medical education regarding the inclusion of a structural research program in the medical curriculum. Students should be aware that clinical practice would greatly benefit from the enrollment in research activities. By developing a solid scientific literacy future physicians will be able to apply new knowledge in patient care.

  12. Teaching the Scientific Method Using Current News Articles

    ERIC Educational Resources Information Center

    Palmer, Laura K.; Mahan, Carolyn G.

    2013-01-01

    We describe a short (less than 50 minutes) activity using news articles from sources such as "Science Daily" to teach students the steps of the scientific method and the difference between primary and secondary literature sources. The flexibility in choosing news articles to examine allowed us to tailor the activity to the specific interests of…

  13. Getting into the Swing of Things: Using Pendulums to Learn the Scientific Method.

    ERIC Educational Resources Information Center

    Grambo, Gregory

    1996-01-01

    A middle school science teacher describes the learning and thinking processes of his class as they worked and played with pendulums and learned to build a swing that could tell time. The article illustrates how students can learn the value of the scientific method for problem solving. (DB)

  14. A Summary of Research in Science Education--1984.

    ERIC Educational Resources Information Center

    Lawson, Anton E.; And Others

    This review covers approximately 300 studies, including journal articles, dissertations, and papers presented at conferences. The studies are organized under these major headings: status surveys; scientific reasoning; elementary school science (student achievement, student conceptions/misconceptions, student curiosity/attitudes, teaching methods,…

  15. Brewing for Students: An Inquiry-Based Microbiology Lab †

    PubMed Central

    Sato, Brian K.; Alam, Usman; Dacanay, Samantha J.; Lee, Amanda K.; Shaffer, Justin F.

    2015-01-01

    In an effort to improve and assess student learning, there has been a push to increase the incorporation of discovery-driven modules and those that contain real-world relevance into laboratory curricula. To further this effort, we have developed, implemented, and assessed an undergraduate microbiology laboratory experiment that requires students to use the scientific method while brewing beer. The experiment allows students to brew their own beer and characterize it based on taste, alcohol content, calorie content, pH, and standard reference method. In addition, we assessed whether students were capable of achieving the module learning objectives through a pre-/posttest, student self-evaluation, exam-embedded questions, and an associated worksheet. These objectives included describing the role of the brewing ingredients and predicting how altering the ingredients would affect the characteristics of the beer, amongst others. By completing this experimental module, students accomplished the module objectives, had greater interest in brewing, and were more likely to view beer in scientific terms. Journal of Microbiology & Biology Education PMID:26753030

  16. Brewing for Students: An Inquiry-Based Microbiology Lab.

    PubMed

    Sato, Brian K; Alam, Usman; Dacanay, Samantha J; Lee, Amanda K; Shaffer, Justin F

    2015-12-01

    In an effort to improve and assess student learning, there has been a push to increase the incorporation of discovery-driven modules and those that contain real-world relevance into laboratory curricula. To further this effort, we have developed, implemented, and assessed an undergraduate microbiology laboratory experiment that requires students to use the scientific method while brewing beer. The experiment allows students to brew their own beer and characterize it based on taste, alcohol content, calorie content, pH, and standard reference method. In addition, we assessed whether students were capable of achieving the module learning objectives through a pre-/posttest, student self-evaluation, exam-embedded questions, and an associated worksheet. These objectives included describing the role of the brewing ingredients and predicting how altering the ingredients would affect the characteristics of the beer, amongst others. By completing this experimental module, students accomplished the module objectives, had greater interest in brewing, and were more likely to view beer in scientific terms. Journal of Microbiology & Biology Education.

  17. Scientific Ethics in Chemical Education

    NASA Astrophysics Data System (ADS)

    Kovac, Jeffrey

    1996-10-01

    Scientific ethics is a subset of professional ethics, the special rules of conduct adhered to by people engaged in those pursuits called professions. It is distinct from, but consistent with, both ordinary morality and moral theory. The codes of professional ethics derive from the two bargains that define a profession: the internal code of practice and the external bargain between the profession and society. While the informal code of professional conduct is well understood by working scientists, it is rarely explicitly included in the chemistry curriculum. Instead, we have relied on informal methods to teach students scientific ethics, a strategy that is haphazard at best. In this paper I argue that scientific ethics can and must be taught as part of the chemistry curriculum and that this is the best done through the case-study method. Many decisions made by working scientists have both a technical and an ethical component. Students need to learn how to make good decisions in professional ethics. The alternative is, at best, sloppy science and, at worst, scientific misconduct.

  18. Incorporating inquiry and the process of science into introductory astronomy labs at the George Washington University

    NASA Astrophysics Data System (ADS)

    Cobb, Bethany E.

    2018-01-01

    Since 2013, the Physics Department at GWU has used student-centered active learning in the introductory astronomy course “Introduction to the Cosmos.” Class time is spent in groups on questions, math problems, and hands-on activities, with multiple instructors circulating to answer questions and engage with the students. The students have responded positively to this active-learning. Unfortunately, in transitioning to active-learning there was no time to rewrite the labs. Very quickly, the contrast between the dynamic classroom and the traditional labs became apparent. The labs were almost uniformly “cookie-cutter” in that the procedure and analysis were specified step-by-step and there was just one right answer. Students rightly criticized the labs for lacking a clear purpose and including busy-work. Furthermore, this class fulfills the GWU scientific reasoning general education requirement and thus includes learning objectives related to understanding the scientific method, testing hypotheses with data, and considering uncertainty – but the traditional labs did not require these skills. I set out to rejuvenate the lab sequence by writing new inquiry labs based on both topic-specific and scientific reasoning learning objectives. While inquiry labs can be challenging for the students, as they require active thinking and creativity, these labs engage the students more thoroughly in the scientific process. In these new labs, whenever possible, I include real astronomical data and ask the students to use digital tools (SDSS SkyServer, SOHO archive) as if they are real astronomers. To allow students to easily plot, manipulate and analyze data, I built “smart” Excel files using formulas, dropdown menus and macros. The labs are now much more authentic and thought-provoking. Whenever possible, students independently develop questions, hypotheses, and procedures and the scientific method is “scaffolded” over the semester by providing more guidance in the early labs and more independence later on. Finally, in every lab, students must identify and reflect on sources of error. These labs are more challenging for the instructors to run and to grade, but they are much more satisfying when it comes to student learning.

  19. Arctic Connections, an Interactive CD-ROM Program for Middle School Science

    NASA Astrophysics Data System (ADS)

    Elias, S. A.

    2003-12-01

    In this project we developed an interactive CD-ROM program for middle school students, accompanied by an interactive web site. The project was sponsored by a grant from the NSF ESIE Instructional Materials Development program. One of the major goals of this project was to involve middle school students in inquiry-based science education, using topics that are of interest to students in Arctic communities. Native Alaskan students have traditionally done poorly in science at the secondary level, and few have gone on to major in the sciences in college or to pursue scientific careers. Part of the problem is a perceived dichotomy between science and traditional Native ways of knowing about the natural world. Hence some students reject the scientific method as being foreign to their native culture. Our goal was to help bridge this cultural barrier, and to demonstrate to native students that the scientific method is not antithetical to their traditional way of life. The program uses story modules that discuss both scientific and Native ways of understanding, through the use of action-adventure stories and brief learning modules. The aim was to show students the relevance of science to their daily lives, and to convince them that scientific methods are a vital tool in solving major problems in arctic communities. Each action-adventure story contains a series of problems that the program user must solve through interactive participation, in order for the story to progress. The interactive elements include answering quiz questions correctly, measuring pH by comparing litmus paper colors, measuring archaeological artifact dimensions, finding the location of fossil bones in a photograph, and correctly identifying photographs of whale species, arctic plants, and fish. The stories contain a mixture of live-action film sequences and voice-over sketch art story boards. The ten modules include such topics as arctic flora and fauna (including terrestrial and sea mammals), arctic solar phenomena, the archaeology and ice-age history of Alaska, water quality, sea ice, permafrost, and climatology. The topics are designed to show connections between the past, present, and future of the Arctic, highlighting problems that can be addressed by scientific inquiry. The accompanying teacher's guide contains a series of hands-on experiments and additional learning materials for each module. The scientific information contained in the modules was refereed by a team of experts who have also volunteered to respond to student questions via e-mail. During the last three years, the program has been field tested in middle schools in Barrow, Kotzebue, Fairbanks, and Anchorage, Alaska. These tests have brought many suggestions for improvements from both teachers and students. The program is in its final evaluation phase, and will be available to schools early in 2004.

  20. Evaluating Secondary Students' Scientific Reasoning in Genetics Using a Two-Tier Diagnostic Instrument

    NASA Astrophysics Data System (ADS)

    Tsui, Chi-Yan; Treagust, David

    2010-05-01

    While genetics has remained as one key topic in school science, it continues to be conceptually and linguistically difficult for students with the concomitant debates as to what should be taught in the age of biotechnology. This article documents the development and implementation of a two-tier multiple-choice instrument for diagnosing grades 10 and 12 students' understanding of genetics in terms of reasoning. The pretest and posttest forms of the diagnostic instrument were used alongside other methods in evaluating students' understanding of genetics in a case-based qualitative study on teaching and learning with multiple representations in three Western Australian secondary schools. Previous studies have shown that a two-tier diagnostic instrument is useful in probing students' understanding or misunderstanding of scientific concepts and ideas. The diagnostic instrument in this study was designed and then progressively refined, improved, and implemented to evaluate student understanding of genetics in three case schools. The final version of the instrument had Cronbach's alpha reliability of 0.75 and 0.64, respectively, for its pretest and the posttest forms when it was administered to a group of grade 12 students (n = 17). This two-tier diagnostic instrument complemented other qualitative data collection methods in this research in generating a more holistic picture of student conceptual learning of genetics in terms of scientific reasoning. Implications of the findings of this study using the diagnostic instrument are discussed.

  1. Collaborative Group Learning Approaches for Teaching Comparative Planetology

    NASA Astrophysics Data System (ADS)

    Slater, S. J.; Slater, T. F.

    2013-12-01

    Modern science education reform documents propose that the teaching of contemporary students should focus on doing science, rather than simply memorizing science. Duschl, Schweingruber, and Shouse (2007) eloquently argue for four science proficiencies for students. Students should: (i) Know, use, and interpret scientific explanations of the natural world; (ii) Generate and evaluate scientific evidence and explanations; (iii) Understand the nature and development of scientific knowledge; and (iv) Participate productively in scientific practices and discourse. In response, scholars with the CAPER Center for Astronomy & Physics Education Research are creating and field-tested two separate instructional approaches. The first of these is a series of computer-mediated, inquiry learning experiences for non-science majoring undergraduates based upon an inquiry-oriented teaching approach framed by the notions of backwards faded-scaffolding as an overarching theme for instruction. Backwards faded-scaffolding is a strategy where the conventional and rigidly linear scientific method is turned on its head and students are first taught how to create conclusions based on evidence, then how experimental design creates evidence, and only at the end introduces students to the most challenging part of inquiry - inventing scientifically appropriate questions. Planetary science databases and virtual environments used by students to conduct scientific investigations include the NASA and JPL Solar System Simulator and Eyes on the Solar System as well as the USGS Moon and Mars Global GIS Viewers. The second of these is known widely as a Lecture-Tutorial approach. Lecture-Tutorials are self-contained, collaborative group activities. The materials are designed specifically to be easily integrated into the lecture course and directly address the needs of busy and heavily-loaded teaching faculty for effective, student-centered, classroom-ready materials that do not require a drastic course revision for implementation. Students are asked to reason about difficult concepts, while working in pairs, and to discuss their ideas openly. Extensive evaluation results consistently suggest that both the backwards faded-scaffolding and the Lecture-Tutorials approaches are successful at engaging students in self-directed scientific discourse as measured by the Views on Scientific Inquiry (VOSI) as well as increasing their knowledge of science as measured by the Test Of Atronomy STandards (TOAST).

  2. Impact of a Scientist-Teacher Collaborative Model on Students, Teachers, and Scientists

    NASA Astrophysics Data System (ADS)

    Shein, Paichi Pat; Tsai, Chun-Yen

    2015-09-01

    Collaborations between the K-12 teachers and higher education or professional scientists have become a widespread approach to science education reform. Educational funding and efforts have been invested to establish these cross-institutional collaborations in many countries. Since 2006, Taiwan initiated the High Scope Program, a high school science curriculum reform to promote scientific innovation and inquiry through an integration of advanced science and technology in high school science curricula through partnership between high school teachers and higher education scientists and science educators. This study, as part of this governmental effort, a scientist-teacher collaborative model (STCM) was constructed by 8 scientists and 4 teachers to drive an 18-week high school science curriculum reform on environmental education in a public high school. Partnerships between scientists and teachers offer opportunities to strengthen the elements of effective science teaching identified by Shulman and ultimately affect students' learning. Mixed methods research was used for this study. Qualitative methods of interviews were used to understand the impact on the teachers' and scientists' science teaching. A quasi-experimental design was used to understand the impact on students' scientific competency and scientific interest. The findings in this study suggest that the use of the STCM had a medium effect on students' scientific competency and a large effect on students' scientific individual and situational interests. In the interviews, the teachers indicated how the STCM allowed them to improve their content knowledge and pedagogical content knowledge (PCK), and the scientists indicated an increased knowledge of learners, knowledge of curriculum, and PCK.

  3. Differences in Student Reasoning about Belief-Relevant Arguments: A Mixed Methods Study

    ERIC Educational Resources Information Center

    McCrudden, Matthew T.; Barnes, Ashleigh

    2016-01-01

    This mixed methods study investigated high school students' evaluations of scientific arguments. Myside bias occurs when individuals evaluate belief-consistent information more favorably than belief-inconsistent information. In the quantitative phase, participants (n = 72 males) rated belief-consistent arguments more favorably than…

  4. Developing Wave Encyclopaedia based on Scientific Approach

    NASA Astrophysics Data System (ADS)

    Nurafifah, A.; Budi, A. S.; Siahaan, B. Z.

    2017-09-01

    Students have many difficulties in understanding to wave propagation. Such difficulties lead to misconceptions also in understanding sound, light, and electromagnetic wave. Meanwhile, students only use the text book as the learning resources. Whereas students need a more varied and interesting learning resources. This study aims to develop a wave encyclopaedia based on scientific approach as the learning resources that tested the feasibility and superiority. The method used is research by design. The steps are (1) analysing learner characteristic, (2) state objective, (3) select media and materials, (4) utilize materials, (5) requires learner participation, (6) evaluation and revision. The wave encyclopaedia is developed by applying the 5 components of a scientific approach that is, observing, questioning, experimenting, associating, and communicating. In this encyclopaedia also includes fun science activities and exciting recommended websites. The encyclopaedia has been validated by material experts, media experts, and learning experts. And then field trials are conducted to assess an impact on use. Overall the development of encyclopaedia based on scientific approach can enhance learning outcomes of students in high school.

  5. Leveraging Transcultural Enrollments to Enhance Application of the Scientific Method

    NASA Astrophysics Data System (ADS)

    Loudin, M.

    2013-12-01

    Continued growth of transcultural academic programs presents an opportunity for all of the students involved to improve utilization of the scientific method. Our own business success depends on how effectively we apply the scientific method, and so it is unsurprising that our hiring programs focus on three broad areas of capability among applicants which are strongly related to the scientific method. These are 1) ability to continually learn up-to-date earth science concepts, 2) ability to effectively and succinctly communicate in the English language, both oral and written, and 3) ability to employ behaviors that are advantageous with respect to the various phases of the scientific method. This third area is often the most difficult to develop, because neither so-called Western nor Eastern cultures encourage a suite of behaviors that are ideally suited. Generally, the acceptance of candidates into academic programs, together with subsequent high performance evidenced by grades, is a highly valid measure of continuous learning capability. Certainly, students for whom English is not a native language face additional challenges, but succinct and effective communication is an art which requires practice and development, regardless of native language. The ability to communicate in English is crucial, since it is today's lingua franca for both science and commerce globally. Therefore, we strongly support the use of frequent English written assignments and oral presentations as an integral part of all scientific academic programs. There is no question but that this poses additional work for faculty; nevertheless it is a key ingredient to the optimal development of students. No one culture has a monopoly with respect to behaviors that promote effective leveraging of the scientific method. For instance, the growing complexity of experimental protocols argues for a high degree of interdependent effort, which is more often associated with so-called Eastern than Western cultures. Conversely, the willingness to express new ideas regardless of one's status is a key to formation of new or disruptive hypotheses, and is more typically seen in Western than Eastern cultures. The opportunity posed by transcultural academic programs lies in: 1) participants learning which of their own preferred behaviors either promote or hinder excellence in scientific results, 2) observing and learning from others' behaviors, and 3) in learning to apply their individual strengths as part of a team. The term 'inclusion' provides a useful shorthand for how academic departments might approach the development of 'ideal' scientific behaviors in their students. An inclusive approach recognizes that a 'one size fits all' approach is not likely to succeed; different individuals have different preferred behaviors, which are not fully predicted by their home culture. It also implies the use of more group projects than many departments currently employ, in order to provide realistic learning laboratories for the students. An emphasis on behaviors can be an uncomfortable idea in 'hard science' circles, both in academia and in industry. However, as scientists we have a responsibility to develop our successors to deliver the best possible scientific results, and the growth of transcultural academic programs presents us an opportunity that we should not miss.

  6. Scientific literacy and academic identity: Creating a community of practice

    NASA Astrophysics Data System (ADS)

    Reveles, John Michael

    2005-07-01

    This one-year ethnographic study of a third grade classroom examined the construction of elementary school science. The research focused on the co-development of scientific literacy and academic identity. Unlike much research in science education that views literacy as merely supportive of science; this dissertation research considers how students learned both disciplinary knowledge in science as well as about themselves as learners through language use. The study documented and analyzed how students came to engage with scientific knowledge and the impact this engagement had upon their academic identities over time. Ethnographic and discourse analytic methods were employed to investigate three research questions: (a) How were the students in a third grade classroom afforded opportunities to acquire scientific literate practices through the spoken/written discourse and science activities? (b) In what ways did students develop and maintain academic identities taken-up over time as they discursively appropriated scientific literate practices via classroom discourse? and (c) How did students collectively and individually inscribe their academic identities and scientific knowledge into classroom artifacts across the school year? Through multiple forms of analyses, I identified how students' communication and participation in science investigations provided opportunities for them to learn specific scientific literate practices. The findings of this empirical research indicate that students' communication and participation in science influenced the ways they perceived themselves as active participants within the classroom community. More specifically, students were observed to appropriate particular discourse practices introduced by the teacher to frame scientific disciplinary knowledge and investigations. Thus, emerging academic identities and developing literate practices were documented via analysis of discursive (spoken, written, and enacted) classroom interactions. A unique feature of this research is that it investigated how students' identities changed through participation in inquiry-based science activities. At this point, the importance of communication in science has not been extensively studied from this perspective. Research to date has focused on either the social or cognitive aspects of interaction. This research contributes to the improvement in participation of underserved, underrepresented students in science, a major equity concern for the state and nation.

  7. The Impact of Science Fiction Film on Student Understanding of Science

    NASA Astrophysics Data System (ADS)

    Barnett, Michael; Wagner, Heather; Gatling, Anne; Anderson, Janice; Houle, Meredith; Kafka, Alan

    2006-04-01

    Researchers who have investigated the public understanding of science have argued that fictional cinema and television has proven to be particularly effective at blurring the distinction between fact and fiction. The rationale for this study lies in the notion that to teach science effectively, educators need to understand how popular culture influences their students' perception and understanding of science. Using naturalistic research methods in a diverse middle school we found that students who watched a popular science fiction film, The Core, had a number of misunderstandings of earth science concepts when compared to students who did not watch the movie. We found that a single viewing of a science fiction film can negatively impact student ideas regarding scientific phenomena. Specifically, we found that the film leveraged the scientific authority of the main character, coupled with scientifically correct explanations of some basic earth science, to create a series of plausible, albeit unscientific, ideas that made sense to students.

  8. Journal entries facilitating preprofessional scientific literacy and mutualistic symbiotic relationships

    NASA Astrophysics Data System (ADS)

    Vander Vliet, Valerie J.

    This study explored journal writing as an alternative assessment to promote the development of pre-professional scientific literacy and mutualistic symbiotic relationships between teaching and learning, instruction and assessment, and students and teachers. The larger context of this study is an action reaction project of the attempted transformation of a traditional first year undergraduate pre-professional biology class to sociocultural constructivist principles. The participants were commuter and residential, full and part-time students ranging in age from 18 to 27 and 18/21 were female. The backgrounds of the students varied considerably, ranging from low to upper middle income, including students of Black and Asian heritage. The setting was a medium-sized Midwestern university. The instructor has twenty years of experience teaching Biology at the college level. The data were analyzed using the constant comparative method and the development of grounded theory. The journal entries were analyzed as to their function and form in relationship to the development of multiple aspects of pre-professional scientific literacy. The perceptions of the students as to the significance of the use of journal entries were also determined through the analysis of their use of journal entries in their portfolios and statements in surveys and portfolios. The analysis revealed that journal entries promoted multiple aspects of pre-professional scientific literacy in both students and the instructor and facilitated the development of mutualistic symbiotic relationships between teaching and learning, instruction and assessment, and students and teachers. The function analysis revealed that the journal entries fulfilled the functions intended for the development of multiple aspects of pre-professional scientific literacy. The complexity of journal writing emerged from the form analysis, which revealed the multiple form elements inherent in journal entries. Students perceived journal entries to act as cognitive, affective, and social catalysts of pre-professional scientific literacy. This study has shown that journal entries facilitate the development of multiple aspects of scientific literacy and mutualistic symbiotic relationships between teaching and learning, instruction and assessment, and students and teachers.

  9. Developing Models to Convey Understanding Rather than Merely Knowledge of the Methods of Science.

    ERIC Educational Resources Information Center

    Pinet, Paul Raymond

    1989-01-01

    A teaching method in which students develop models of simple systems to learn critical thinking and scientific methodology is presented. Discussed are the stages of the development of a model and the possible outcomes of the use of model development for students. (CW)

  10. A comparison of bilingual education and generalist teachers' approaches to scientific biliteracy

    NASA Astrophysics Data System (ADS)

    Garza, Esther

    The purpose of this study was to determine if educators were capitalizing on bilingual learners' use of their biliterate abilities to acquire scientific meaning and discourse that would formulate a scientific biliterate identity. Mixed methods were used to explore teachers' use of biliteracy and Funds of Knowledge (Moll, L., Amanti, C., Neff, D., & Gonzalez, N., 1992; Gonzales, Moll, & Amanti, 2005) from the students' Latino heritage while conducting science inquiry. The research study explored four constructs that conceptualized scientific biliteracy. The four constructs include science literacy, science biliteracy, reading comprehension strategies and students' cultural backgrounds. There were 156 4th-5th grade bilingual and general education teachers in South Texas that were surveyed using the Teacher Scientific Biliteracy Inventory (TSBI) and five teachers' science lessons were observed. Qualitative findings revealed that a variety of scientific biliteracy instructional strategies were frequently used in both bilingual and general education classrooms. The language used to deliver this instruction varied. A General Linear Model revealed that classroom assignment, bilingual or general education, had a significant effect on a teacher's instructional approach to employ scientific biliteracy. A simple linear regression found that the TSBI accounted for 17% of the variance on 4th grade reading benchmarks. Mixed methods results indicated that teachers were utilizing scientific biliteracy strategies in English, Spanish and/or both languages. Household items and science experimentation at home were encouraged by teachers to incorporate the students' cultural backgrounds. Finally, science inquiry was conducted through a universal approach to science learning versus a multicultural approach to science learning.

  11. Using HeLa cell stress response to introduce first year students to the scientific method, laboratory techniques, primary literature, and scientific writing.

    PubMed

    Resendes, Karen K

    2015-01-01

    Incorporating scientific literacy into inquiry driven research is one of the most effective mechanisms for developing an undergraduate student's strength in writing. Additionally, discovery-based laboratories help develop students who approach science as critical thinkers. Thus, a three-week laboratory module for an introductory cell and molecular biology course that couples inquiry-based experimental design with extensive scientific writing was designed at Westminster College to expose first year students to these concepts early in their undergraduate career. In the module students used scientific literature to design and then implement an experiment on the effect of cellular stress on protein expression in HeLa cells. In parallel the students developed a research paper in the style of the undergraduate journal BIOS to report their results. HeLa cells were used to integrate the research experience with the Westminster College "Next Chapter" first year program, in which the students explored the historical relevance of HeLa cells from a sociological perspective through reading The Immortal Life of Henrietta Lacks by Rebecca Skloot. In this report I detail the design, delivery, student learning outcomes, and assessment of this module, and while this exercise was designed for an introductory course at a small primarily undergraduate institution, suggestions for modifications at larger universities or for upper division courses are included. Finally, based on student outcomes suggestions are provided for improving the module to enhance the link between teaching students skills in experimental design and execution with developing student skills in information literacy and writing. © 2015 The International Union of Biochemistry and Molecular Biology.

  12. Elementary GLOBE: Inquiring About the Earth System Through Elementary Student Investigations

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Hatheway, B.; Gardiner, L.; Gallagher, S.

    2006-12-01

    Elementary GLOBE was designed to introduce K-4 students to the study of Earth System Science (ESS). Elementary GLOBE forms an instructional unit comprised of five modules that address ESS and interrelated subjects including weather, hydrology, seasons, and soils. Each Elementary GLOBE module contains a science based storybook, classroom learning activities that complement the science content covered in each book, and teacher's notes. The storybooks explore a component of the Earth system and the associated classroom learning activities provide students with a meaningful introduction to technology, a basic understanding of the methods of inquiry, and connection to math and literacy skills. The science content in the books and activities serves as a springboard to GLOBE's scientific protocols. All Elementary GLOBE materials are freely downloadable (www.globe.gov/elementaryglobe) The use of science storybooks with elementary students has proven to be an effective practice in exposing students to science content while providing opportunities for students to improve their reading, writing, and oral communication skills. The Elementary GLOBE storybooks portray kids asking questions about the natural world, doing science investigations, and exploring the world around them. Through the storybook characters, scientific inquiry is modeled for young learners. The associated learning activities provide opportunities for students to practice science inquiry and investigation skills, including observation, recording, measuring, etc. Students also gain exposure and increase their comfort with different tools that scientists use. The learning activities give students experiences with asking questions, conducting scientific investigations, and scientific journaling. Elementary GLOBE fills an important niche in K-4 instruction. The international GLOBE Program brings together students, teachers, and scientists with the basic goals of increasing scientific understanding of the Earth, supporting improved student achievement in science and math, and enhancing environmental awareness. NASA provides the primary source of funding for GLOBE.

  13. Students' Environmental Competence Formation as a Pedagogical Problem

    ERIC Educational Resources Information Center

    Ponomarenko, Yelena V.; Yessaliev, Aidarbek A.; Kenzhebekova, Rabiga I.; Moldabek, Kulahmet; Larchekova, Liudmila A.; Dairbekov, Serik S.; Asambaeva, Lazzat

    2016-01-01

    Environmentally conscious and preparation of competent professionals' in higher education system in Kazakhstan is a priority. The need for more effective environmental competence formation for students actualizes the problem of development and scientific substantiation of the theoretical model of students' environmental competence, methods of…

  14. Using the Illogic of Creationism to Teach the Logic of Science.

    ERIC Educational Resources Information Center

    Wells, Neil Andrew

    1989-01-01

    Presented is a strategy which uses creationism and other pseudosciences as examples of non-scientific approaches to critical thinking to teach students the nature of science and the scientific method. Examples of the illogic of non-scientific approaches are given along with an explanation of how they can be used in teaching critical thinking to…

  15. Student cognition and motivation during the Classroom BirdWatch citizen science project

    NASA Astrophysics Data System (ADS)

    Tomasek, Terry Morton

    The purpose of this study was to examine and describe the ways various stakeholders (CBW project developer/coordinator, elementary and middle school teachers, and 5th through 8th grade students) envisioned, implemented and engaged in the citizen science project, eBird/Classroom BirdWatch. A multiple case study mixed-methods research design was used to examine student engagement in the cognitive processes associated with scientific inquiry as part of citizen science participation. Student engagement was described based on a sense of autonomy, competence, relatedness and intrinsic motivation. A goal of this study was to expand the taxonomy of differences between authentic scientific inquiry and simple inquiry to include those inquiry tasks associated with participation in citizen science by describing how students engaged in this type of science. This research study built upon the existing framework of cognitive processes associated with scientific inquiry described by Chinn and Malhotra (2002). This research provides a systematic analysis of the scientific processes and related reasoning tasks associated with the citizen science project eBird and the corresponding curriculum Classroom BirdWatch . Data consisted of responses to surveys, focus group interviews, document analysis and individual interviews. I suggest that citizen science could be an additional form of classroom-based science inquiry that can promote more authentic features of scientific inquiry and engage students in meaningful ways.

  16. Focusing on the Processes of Science Using Inquiry-oriented Astronomy Labs for Learning Astronomy

    NASA Astrophysics Data System (ADS)

    Speck, Angela; Ruzhitskaya, L.; Whittington, A.; Witzig, S.

    2010-01-01

    The U.S. National Science Education Standards provide guidelines for teaching science through inquiry, where students actively develop their understanding of science by combining scientific knowledge with reasoning and thinking skills. Inquiry activities include reading scientific literature, generating hypotheses, designing and carrying out investigations, interpreting data, and formulating conclusions. Inquiry-based instruction emphasizes questions, evidence, and explanation, the essential features of inquiry. We present two projects designed to develop learning materials for laboratory experiences in an undergraduate astronomy course. First, we engage students in inquiry-based learning by using "mini-journal” articles that follow the format of a scientific journal article, including a title, authors, abstract, introduction, methods, results, discussion and citations to peer-reviewed literature. The mini-journal provides a scaffold and serves as a springboard for students to develop and carry out their own follow-up investigation. They then present their findings in the form of their own mini-journal. This mini-journal format more directly reflects and encourages scientific practice. We use this technique in both introductory and upper level courses. The second project develops 3D virtual reality environments to help students interact with scientific constructs, and the use of collaborative learning tools to motivate student activity, deepen understanding and support knowledge building.

  17. Teaching a Biotechnology Unit in High School General Biology.

    ERIC Educational Resources Information Center

    Hays, Lana

    1994-01-01

    Describes a unit in biotechnology for average and below average high school students. Students developed productive team membership, used math and communication skills to solve problems, and used the scientific method to learn about biotechnology. Students separated DNA, transformed bacterial cells, interpreted DNA fingerprints, completed creative…

  18. Is it all in the game? Flow experience and scientific practices during an INPLACE mobile game

    NASA Astrophysics Data System (ADS)

    Bressler, Denise M.

    Mobile science learning games show promise for promoting scientific practices and high engagement. Researchers have quantified this engagement according to flow theory. Using an embedded mixed methods design, this study investigated whether an INPLACE mobile game promotes flow experience, scientific practices, and effective team collaboration. Students playing the game (n=59) were compared with students in a business-as-usual control activity (n=120). Using an open-ended instrument designed to measure scientific practices and a self-report flow survey, this study empirically assessed flow and learner's scientific practices. The game players had significantly higher levels of flow and scientific practices. Using a multiple case study approach, collaboration among game teams (n=3 teams) were qualitatively compared with control teams (n=3 teams). Game teams revealed not only higher levels of scientific practices but also higher levels of engaged responses and communal language. Control teams revealed lower levels of scientific practice along with higher levels of rejecting responses and command language. Implications for these findings are discussed.

  19. Science Education Using a Computer Model-Virtual Puget Sound

    NASA Astrophysics Data System (ADS)

    Fruland, R.; Winn, W.; Oppenheimer, P.; Stahr, F.; Sarason, C.

    2002-12-01

    We created an interactive learning environment based on an oceanographic computer model of Puget Sound-Virtual Puget Sound (VPS)-as an alternative to traditional teaching methods. Students immersed in this navigable 3-D virtual environment observed tidal movements and salinity changes, and performed tracer and buoyancy experiments. Scientific concepts were embedded in a goal-based scenario to locate a new sewage outfall in Puget Sound. Traditional science teaching methods focus on distilled representations of agreed-upon knowledge removed from real-world context and scientific debate. Our strategy leverages students' natural interest in their environment, provides meaningful context and engages students in scientific debate and knowledge creation. Results show that VPS provides a powerful learning environment, but highlights the need for research on how to most effectively represent concepts and organize interactions to support scientific inquiry and understanding. Research is also needed to ensure that new technologies and visualizations do not foster misconceptions, including the impression that the model represents reality rather than being a useful tool. In this presentation we review results from prior work with VPS and outline new work for a modeling partnership recently formed with funding from the National Ocean Partnership Program (NOPP).

  20. The use of a four-tier wave diagnostic instrument to measure the scientific literacy among students in SMA Negeri 2 Karanganyar

    NASA Astrophysics Data System (ADS)

    Krisdiana, A.; Aminah, N. S.; Nurosyid, F.

    2018-03-01

    This study aims to investigate the scientific literacy among 12th grade science students in SMA Negeri 2 Karanganyar. The instrument used is a four-tier wave diagnostic instrument. This instrument was originally used to diagnose students’ conceptions about nature and propagation of waves. This study using quantitative descriptive method. The diagnostic results based on dominant students’ answers show the lack of knowledge percentage of 14.3%-77.1%, alternative conceptions percentage 0%-60%, scientific conceptions percentage 0%-65.7%. Lack of knowledge indicated when there is doubt about at least one tier of the student’s answer. The results of the research shows that the students’ dominant scientific literacy is in the nominal literacy category with the percentage of 22.9% - 91.4%, the functional literacy with the percentage 2.86% - 28.6%, and the conceptual/procedural literacy category with the percentage 0% - 65.7%. Description level of nominal literacy in context of the current study is student have alternative conceptions and lack of knowledge. Student recognize the scientific terms, but is not capable to justify this term.

  1. Why I teach the controversy: using creationism to teach critical thinking

    PubMed Central

    Honey, P. Lynne

    2015-01-01

    Creationism and intelligent design are terms used to describe supernatural explanations for the origin of life, and the diversity of species on this planet. Many scientists have argued that the science classroom is no place for discussion of creationism. When I began teaching I did not teach creationism, as I focused instead on my areas of expertise. Over time it became clear that students had questions about creationism, and did not understand the difference between a scientific approach to knowledge and non-scientific approaches. This led me to wonder whether ignoring supernatural views allowed them to remain as viable “alternatives” to scientific hypotheses, in the minds of students. Also, a psychology class is an ideal place to discuss not only the scientific method but also the cognitive errors associated with non-science views. I began to explain creationism in my classes, and to model the scientific thought process that leads to a rejection of creationism. My approach is consistent with research that demonstrates that teaching content alone is insufficient for students to develop critical thinking and my admittedly anecdotal experience leads me to conclude that “teaching the controversy” has benefits for science students. PMID:26136700

  2. Model of Distant Learning Educational Methods for the Students with Disabilities

    ERIC Educational Resources Information Center

    Naumova, Tatyana A.; Vytovtova, Nadezhda I.; Mitiukov, Nicholas W.; Zulfugarzade, Teymur E.

    2017-01-01

    The present paper represents the results of the studies done at the Udmurt State University with assistance of the Russian Humanitarian Scientific Fund (project 14-16-18004). In the course of studies e-learning educational methods for the students with special educational needs were developed, approved and implemented in educational process.…

  3. An exploration for research-oriented teaching model in biology teaching.

    PubMed

    Xing, Wanjin; Mo, Morigen; Su, Huimin

    2014-07-01

    Training innovative talents, as one of the major aims for Chinese universities, needs to reform the traditional teaching methods. The research-oriented teaching method has been introduced and its connotation and significance for Chinese university teaching have been discussed for years. However, few practical teaching methods for routine class teaching were proposed. In this paper, a comprehensive and concrete research-oriented teaching model with contents of reference value and evaluation method for class teaching was proposed based on the current teacher-guiding teaching model in China. We proposed that the research-oriented teaching model should include at least seven aspects on: (1) telling the scientific history for the skills to find out scientific questions; (2) replaying the experiments for the skills to solve scientific problems; (3) analyzing experimental data for learning how to draw a conclusion; (4) designing virtual experiments for learning how to construct a proposal; (5) teaching the lesson as the detectives solve the crime for learning the logic in scientific exploration; (6) guiding students how to read and consult the relative references; (7) teaching students differently according to their aptitude and learning ability. In addition, we also discussed how to evaluate the effects of the research-oriented teaching model in examination.

  4. The implementation of integrated science teaching materials based socio-scientific issues to improve students scientific literacy for environmental pollution theme

    NASA Astrophysics Data System (ADS)

    Yenni, Rita; Hernani, Widodo, Ari

    2017-05-01

    The study aims to determine the increasing of students' science literacy skills on content aspects and competency of science by using Integrated Science teaching materials based Socio-scientific Issues (SSI) for environmental pollution theme. The method used in the study is quasi-experiment with nonequivalent pretest and posttest control group design. The students of experimental class used teaching materials based SSI, whereas the students of control class were still using the usual textbooks. The result of this study showed a significant difference between the value of N-gain of experimental class and control class, whichalso occurred in every indicator of content aspects and competency of science. This result indicates that using of Integrated Science teaching materials based SSI can improve content aspect and competency of science and can be used as teaching materials alternative in teaching of Integrated Science.

  5. Data-Driven Exercises for Chemistry: A New Digital Collection

    ERIC Educational Resources Information Center

    Grubbs, W. Tandy

    2007-01-01

    The analysis presents a new digital collection for various data-driven exercises that are used for teaching chemistry to the students. Such methods are expected to help the students to think in a more scientific manner.

  6. Global Climates--Past, Present, and Future. Activities for Integrated Science Education.

    ERIC Educational Resources Information Center

    Henderson, Sandra, Ed.; And Others

    Designed for integration into existing science curriculum for grades 8-10, this curriculum uses a current environmental issue, climate change, as a vehicle for teaching science education. Instructional goals include: (1) familiarize students with scientific methods; (2) help students understand the role of uncertainty; (3) encourage students to…

  7. Group Discussions in the Chemistry Classroom and the Problem-Solving Skills of Students.

    ERIC Educational Resources Information Center

    Fasching, James L.; Erickson, Bette LaSere

    1985-01-01

    Five years ago, an introductory chemistry course for chemists and chemical engineers was redesigned to stress the scientific method, problem-solving, and reasoning skills. Describes: (1) changes made in the course; (2) impacts on student achievement; and (3) student ratings of the course. (JN)

  8. 45 CFR 2522.700 - How does evaluation differ from performance measurement?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... progress, evaluation uses scientifically-based research methods to assess the effectiveness of programs by... the reading ability of students in a program over time to a similar group of students not... example, a performance measure for a literacy program may include the percentage of students receiving...

  9. The Conceptual Understanding of Sound by Students with Visual Impairments

    ERIC Educational Resources Information Center

    Wild, Tiffany A.; Hilson, Margilee P.; Hobson, Sally M.

    2013-01-01

    Introduction: The purpose of the study presented here was to understand and describe the misconceptions of students with visual impairments about sound and instructional techniques that may help them to develop a scientific understanding. Methods: Semistructured interview-centered pre-and posttests were used to identify the students' conceptual…

  10. Investigating the Nature of Third Grade Students' Experiences with Concept Maps to Support Learning of Science Concepts

    ERIC Educational Resources Information Center

    Merrill, Margaret L.

    2012-01-01

    To support and improve effective science teaching, educators need methods to reveal student understandings and misconceptions of science concepts and to offer all students an opportunity to reflect on their own knowledge construction and organization. Students can benefit by engaging in scientific activities in which they build personal…

  11. What do primary students know about science, scientists and how they do their work?

    NASA Astrophysics Data System (ADS)

    Bartels, Selina L.

    The teaching of scientific literacy is the primary goal of elementary science education. Scientific literacy is composed of the overall understanding of what science is and how scientific knowledge is developed. The purpose of this study was to see if elementary students' understandings of science, scientists and how scientists do their work changes from grade one to grade five of elementary school. Furthermore, the study attempts to determine whether there is a difference in scientific literacy between students taught using a textbook curriculum versus a kit-based curriculum. The study draws on a sample of 338 students from 18 different classrooms situated in six different schools in both urban and suburban areas of a large Midwestern city. Students' understandings of science, scientists and how they do their work was measured through a valid and reliable oral protocol entitled Young Children's Views of Science (YCVS) (Lederman, J., Bartels, Lederman, & Ganankkan, 2014). The YCVS assesses students' understandings of the aspects of scientific inquiry (SI) and the nature of science (NOS) that young elementary students are able to understand. These aspects are; science, scientists, multiple methods, observation/inference, begins with a question, empirical, subjectivity, tentativeness and creativity. The YCVS was administered orally for grade one students, and a paper-and-pencil version was given to grades three and five. Results indicated that there are very few gains in NOS and SI understandings between grades one and five in the schools included in this study. None of the schools in this study made significant gains for all of the nine aspects measured in this study. Examining curriculum's affect on NOS and SI understandings, understanding of only one aspect was significantly impacted by curriculum differences. Subjectivity understanding was impacted by kit-based instruction. Overall, students' understandings of science, scientists and how they do their work did not significantly change from grade one to grade five regardless of what type of curriculum they followed. This study shows that students' scientific literacy is not being developed throughout elementary school. Therefore, the teaching of scientific literacy in an explicit and reflective manner should be the focus of preservice elementary school education.

  12. Intentionally flawed manuscripts as means for teaching students to critically evaluate scientific papers.

    PubMed

    Ferenc, Jaroslav; Červenák, Filip; Birčák, Erik; Juríková, Katarína; Goffová, Ivana; Gorilák, Peter; Huraiová, Barbora; Plavá, Jana; Demecsová, Loriana; Ďuríková, Nikola; Galisová, Veronika; Gazdarica, Matej; Puškár, Marek; Nagy, Tibor; Nagyová, Soňa; Mentelová, Lucia; Slaninová, Miroslava; Ševčovicová, Andrea; Tomáška, Ľubomír

    2018-01-01

    As future scientists, university students need to learn how to avoid making errors in their own manuscripts, as well as how to identify flaws in papers published by their peers. Here we describe a novel approach on how to promote students' ability to critically evaluate scientific articles. The exercise is based on instructing teams of students to write intentionally flawed manuscripts describing the results of simple experiments. The teams are supervised by instructors advising the students during manuscript writing, choosing the 'appropriate' errors, monitoring the identification of errors made by the other team and evaluating the strength of their arguments in support of the identified errors. We have compared the effectiveness of the method with a journal club-type seminar. Based on the results of our assessment we propose that the described seminar may effectively complement the existing approaches to teach critical scientific thinking. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):22-30, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.

  13. Piltdown Man: Combining the Instruction of Scientific Ethics and Qualitative Analysis

    NASA Astrophysics Data System (ADS)

    Vincent, John B.

    1999-11-01

    In combination with lectures on scientific method and the problems of scientific misconduct in a freshman chemistry course at The University of Alabama, a laboratory experiment was developed to allow students to feel some of the sense of scientific discovery associated with the exposure of the Piltdown Man fraud. This is accomplished by modifying a commonly performed freshman chemistry laboratory experiment, qualitative analysis of group III metal ions. Pieces of chalk are treated with chromium, manganese, and iron to simulate the treatment used to forge the Piltdown "fossils"; students can use techniques in qualitative analysis schemes for the group III ions to determine whether the samples are "forgeries" and if so which metal ion(s) were used.

  14. The inquiry continuum: Science teaching practices and student performance on standardized tests

    NASA Astrophysics Data System (ADS)

    Jernnigan, Laura Jane

    Few research studies have been conducted related to inquiry-based scientific teaching methodologies and NCLB-required state testing. The purpose of this study was to examine the relationship between the strategies used by seventh-grade science teachers in Illinois and student scores on the Illinois Standards Achievement Test (ISAT) to aid in determining best practices/strategies for teaching middle school science. The literature review defines scientific inquiry by placing teaching strategies on a continuum of scientific inquiry methodologies from No Inquiry (Direct Instruction) through Authentic Inquiry. Five major divisions of scientific inquiry: structured inquiry, guided inquiry, learning cycle inquiry, open inquiry, and authentic inquiry, have been identified and described. These five divisions contain eight sub-categories: demonstrations; simple or hands-on activities; discovery learning; variations of learning cycles; problem-based, event-based, and project-based; and student inquiry, science partnerships, and Schwab's enquiry. Quantitative data were collected from pre- and posttests and surveys given to the participants: five seventh grade science teachers in four Academic Excellence Award and Spotlight Award schools and their 531 students. Findings revealed that teachers reported higher inquiry scores for themselves than for their students; the two greatest reported factors limiting teachers' use of inquiry were not enough time and concern about discipline and large class size. Although the correlation between total inquiry and mean difference of pre- and posttest scores was not statistically significant, the survey instrument indicated how often teachers used inquiry in their classes, not the type of inquiry used. Implications arose from the findings that increase the methodology debate between direction instruction and inquiry-based teaching strategies; teachers are very knowledgeable about the Illinois state standards, and various inquiry-based methods need to be stressed in undergraduate methods classes. While this study focused on the various types of scientific inquiry by creating a continuum of scientific inquiry methodologies, research using the continuum needs to be conducted to determine the various teaching styles of successful teachers.

  15. Verbal and social interaction patterns among elementary students during self-guided "I Wonder Projects"

    NASA Astrophysics Data System (ADS)

    Huziak, Tracy Lynn

    National standards for science teaching stress the use of inquiry teaching methods. One example of inquiry teaching is the I Wonder Project, which has been used in the Madison, WI Metropolitan School District for over ten years. The purpose of the I Wonder Project is to promote scientific discourse among elementary students through the publication of their research in a journal, similar in some ways to the scientific discourse within a community of scientists. This research study utilizes the I Wonder Project method to encourage student communication and self-guided project work. Approximately fifteen students ages 6--12 participated in a six-week self-guided inquiry project called I Wonder. Students worked as a cohort to learn science process skills and to build a scientific community. During this time, each student designed and carried out a self-guided inquiry project and wrote an article about their findings, which was presented on the last day of summer camp. A mixed method approach was used conduct this study. Participants were given a pretest and a posttest to determine the changes in scientific process skills as a result of participation in the project. The students were interviewed to determine their ideas about science and how those ideas changed over the time of participation in summer camp. Also the students were observed by the researchers, as well as audio- and video-taped to capture the verbal conversations and debates that take place as a result of discussion of ideas during the program. Students participated in this study as individuals and group members. Teacher and student interactions were noted to follow three main interaction styles: structured, guided and open-ended. These interactions work much like the inquiry levels described in the literature. Students also interacted with each other in three different ways: independently, dependently, and multifunctioning. Some students wished to work alone, while others preferred others to contribute to their work as well. Finally, there were five main types of science talk described by this study based on Gee's (1997) four types of science talk: design and debate, anomaly talk, everyday speculation talk, and explanation talk. What was also noted was an overwhelming amount of prior experience talk. Because students were given free choice in their topics of study, many chose to study topics that they had some interest or prior experience with. This led to a comparison of current findings to those they had already anticipated or expected. This study shows that self-guided inquiry projects require a range of interaction styles between students and also teachers. Many students need differing levels of support in order to be successful. In addition, it is important that students have an opportunity to select a topic of choice so that they have the opportunity to build on their scientific knowledge from their prior experiences.

  16. Patterns in Nature Forming Patterns in Minds: An Evaluation of an Introductory Physics Unit

    NASA Astrophysics Data System (ADS)

    Sheaffer, Christopher Ryan

    Educators are increasingly focused on the process over the content. In science especially, teachers want students to understand the nature of science and investigation. The emergence of scientific inquiry and engineering design teaching methods have led to the development of new teaching and evaluation methods that concentrate on steps in a process rather than facts in a topic. Research supports the notion that an explicit focus on the scientific process can lead to student science knowledge gains. In response to new research and standards many teachers have been developing teaching methods that seem to work well in their classrooms, but lack the time and resources to test them in other classroom environments. A high school Physics teacher (Bradford Hill) has developed a unit called Patterns in Nature (PIN) with objectives relating mathematical modeling to the scientific process. Designed for use in his large public school classroom, the unit was taken and used in a charter school with small classes. This study looks at specifically whether or not the PIN unit effectively teaches students how to graph the data they gather and fit an appropriate mathematical pattern, using that model to predict future measurements. Additionally, the study looks at the students' knowledge and views about the nature of science and the process of scientific investigation as it is affected by the PIN unit. Findings show that students are able to identify and apply patterns to data, but have difficulties explaining the meaning of the math. Students' show increases in their knowledge of the process of science, and the majority develop positive views about science in general. A major goal of this study is to place this unit in the cyclical process of Design-Based Research and allow for Pattern in Nature's continuous improvement, development and evaluation. Design-Based Research (DBR) is an approach that can be applied to the implementation and evaluation of classroom materials. This method incorporates the complexities of different contexts and changing treatments into the research methods and analysis. From the use of DBR teachers can understand more about how the designed materials affect the students. Others may be able to use the development and analysis of PIN study as a guide to look at similar aspects of science units developed elsewhere.

  17. Secondary students in professional laboratories: Discoveries about science learning in a community of practitioners

    NASA Astrophysics Data System (ADS)

    Song, Mary Elizabeth

    This study explores what educators may learn from the experiences of secondary students working in professional scientific laboratories. My investigation is guided by the methodology of phenomenological; I depend primarily on interviews conducted with students and professional researchers. This material is supported primarily by on-site observations, and by informal conversations between me and the study participants. My dissertation has three goals: (one) to use the work of secondary students in scientific research laboratories to consider how they know the discipline; (two) to distinguish the students' professional accomplishments from science learning at school; and, (three) to engage readers in a reflection about authority within the scientific community, and the possibility that by accomplishing research, students take their legitimate place among those who construct scientific knowledge. My methods and focus have allowed me to capture qualities of the student narratives that support the emergence of three major themes: the importance of doing "real work" in learning situations; the inapplicability of "school learning" to professional research arenas; and the inclusive nature of the scientific community. At the same time, the study is confined by the narrow pool of participants I interviewed over a short period of time. These talented students were all academically successful, articulate, "well-rounded" and in this sense, mature. They typically had strong family support, and they talked about ideas with their parents. Indeed, the students were all capable story-tellers who were anxious to share their experiences publicly. Yet they themselves remind the reader of their struggles to overcome naivete in the lab. By doing so they suggested to me that their experiences might be accessible to a broad range of young men and women; thus this study is a good beginning for further research.

  18. ASTRO 101 Labs and the Invasion of the Cognitive Scientists

    NASA Astrophysics Data System (ADS)

    Slater, Stephanie J.

    2015-04-01

    Since the mid 1800's there has been widespread agreement that we should be about the business of engaging students in the practices of scientific research in order to best teach the methods and practices of science. There has been significantly less agreement on precisely how to teach science by mimicking scientific inquiry in a way that can be empirically supported, even with our ``top students.'' Engaging ``ASTRO 101 students'' in scientific inquiry is a task that has left our astronomy education research community more than a little stymied, to the extent that it is difficult to find non-major science students practicing anything other than confirmation exercises in college labs. Researchers at the CAPER Center for Astronomy & Physics Education Research have struggled with this problem as well, until in our frustration we had to ask: ``Can research tell us anything about how to get students to do research?'' This talk presents an overview of the cognitive science that we've brought to bear in the ASTRO 101 laboratory setting for non-science majoring undergraduates and future teachers, along with the results of early studies that suggest that a ``backwards faded scaffolding'' approach to instruction in Intro Labs can successfully support large numbers of students in enhancing their understanding of the nature of scientific inquiry. Supported by NSF DUE 1312562.

  19. Apprenticeships, Collaboration and Scientific Discovery in Academic Field Studies

    NASA Astrophysics Data System (ADS)

    Madden, Derek Scott; Grayson, Diane J.; Madden, Erinn H.; Milewski, Antoni V.; Snyder, Cathy Ann

    2012-11-01

    Teachers may use apprenticeships and collaboration as instructional strategies that help students to make authentic scientific discoveries as they work as amateur researchers in academic field studies. This concept was examined with 643 students, ages 14-72, who became proficient at field research through cognitive apprenticeships with the Smithsonian Institute, School for Field Studies and Earthwatch. Control student teams worked from single research goals and sets of methods, while experimental teams varied goals, methods, and collaborative activities in Kenya, Costa Rica, Panama, and Ecuador. Results from studies indicate that students who conducted local pilot studies, collaborative symposia, and ongoing, long-term fieldwork generated significantly more data than did control groups. Research reports of the experimental groups were ranked highest by experts, and contributed the most data to international science journals. Data and anecdotal information in this report indicate that structured collaboration in local long-term studies using apprenticeships may increase the potential for students' academic field studies contribution of new information to science.

  20. PREFACE: I International Scientific School Methods of Digital Image Processing in Optics and Photonics

    NASA Astrophysics Data System (ADS)

    Gurov, I. P.; Kozlov, S. A.

    2014-09-01

    The first international scientific school "Methods of Digital Image Processing in Optics and Photonics" was held with a view to develop cooperation between world-class experts, young scientists, students and post-graduate students, and to exchange information on the current status and directions of research in the field of digital image processing in optics and photonics. The International Scientific School was managed by: Saint Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University) - Saint Petersburg (Russia) Chernyshevsky Saratov State University - Saratov (Russia) National research nuclear University "MEPHI" (NRNU MEPhI) - Moscow (Russia) The school was held with the participation of the local chapters of Optical Society of America (OSA), the Society of Photo-Optical Instrumentation Engineers (SPIE) and IEEE Photonics Society. Further details, including topics, committees and conference photos are available in the PDF

  1. Developing a Test of Scientific Literacy Skills (TOSLS): Measuring Undergraduates’ Evaluation of Scientific Information and Arguments

    PubMed Central

    Gormally, Cara; Brickman, Peggy; Lutz, Mary

    2012-01-01

    Life sciences faculty agree that developing scientific literacy is an integral part of undergraduate education and report that they teach these skills. However, few measures of scientific literacy are available to assess students’ proficiency in using scientific literacy skills to solve scenarios in and beyond the undergraduate biology classroom. In this paper, we describe the development, validation, and testing of the Test of Scientific Literacy Skills (TOSLS) in five general education biology classes at three undergraduate institutions. The test measures skills related to major aspects of scientific literacy: recognizing and analyzing the use of methods of inquiry that lead to scientific knowledge and the ability to organize, analyze, and interpret quantitative data and scientific information. Measures of validity included correspondence between items and scientific literacy goals of the National Research Council and Project 2061, findings from a survey of biology faculty, expert biology educator reviews, student interviews, and statistical analyses. Classroom testing contexts varied both in terms of student demographics and pedagogical approaches. We propose that biology instructors can use the TOSLS to evaluate their students’ proficiencies in using scientific literacy skills and to document the impacts of curricular reform on students’ scientific literacy. PMID:23222832

  2. Science + Writing = Super Learning. Writing Workshop.

    ERIC Educational Resources Information Center

    Bower, Paula Rogovin

    1993-01-01

    Article presents suggestions for motivating elementary students to learn by combining science and writing. The strategies include planning the right environment; teaching the scientific method; establishing a link to literature; and making time for students to observe, experiment, and write. (SM)

  3. Possibilities of the Integration of the Method of the Ecologically Oriented Independent Scientific Research in the Study Process

    NASA Astrophysics Data System (ADS)

    Grizans, Jurijs; Vanags, Janis

    2010-01-01

    The aim of this paper is to analyse possibilities of the integration of the method of the ecologically oriented independent scientific research in the study process. In order to achieve the set aim, the following scientific research methods were used: analysis of the conceptual guidelines for the development of environmentally oriented entrepreneurship, interpretation of the experts' evaluation of the ecologically oriented management, analysis of the results of the students' ecologically oriented independent scientific research, as well as monographic and logically constructive methods. The results of the study give an opportunity to make conclusions and to develop conceptual recommendations on how to introduce future economics and business professionals with the theoretical and practical aspects of ecologically oriented management during the study process.

  4. Engaging in vocabulary learning in science: the promise of multimodal instruction

    NASA Astrophysics Data System (ADS)

    Townsend, Dianna; Brock, Cynthia; Morrison, Jennifer D.

    2018-02-01

    To a science 'outsider', science language often appears unnecessarily technical and dense. However, scientific language is typically used with the goal of being concise and precise, which allows those who regularly participate in scientific discourse communities to learn from each other and build upon existing scientific knowledge. One essential component of science language is the academic vocabulary that characterises it. This mixed-methods study investigates middle school students' (N = 59) growth in academic vocabulary as it relates to their teacher's instructional practices that supported academic language development. Students made significant gains in their production of general academic words, t(57) = 2.32, p = .024 and of discipline-specific science words, t(57) = 3.01, p = .004 in science writing. Results from the qualitative strand of this inquiry contextualised the students' learning of academic vocabulary as it relates to their teacher's instructional practices and intentions as well as the students' perceptions of their learning environment. These qualitative findings reveal that both the students and their teacher articulated that the teacher's intentional use of resources supported students' academic vocabulary growth. Implications for research and instruction with science language are shared.

  5. Using Students' Explanatory Models as Sources of Feedback: Conceptualizing Ocean Acidification and Its Impacts

    NASA Astrophysics Data System (ADS)

    Sezen-Barrie, A.; Stapleton, M.; Wolfson, J.

    2017-12-01

    This qualitative study focuses on students evidence-based explanatory models on how ocean acidification impacts oysters. Explanatory models are the crucial components of scientific endeavors as it helps scientists explain how the natural world functions and the reasons for the ways it functions. Moreover, these models assemble individual practices to understand how they work together to reach clear conclusions through scientific investigations. Due to their critical roles in making sense of authentic science, recent studies in science education suggest that these models should be part of the curriculum aligned with new science standards, i.e. Next Generation Science Standards, which stress the importance of engaging students in scientific practices. By collecting data from 400 secondary school students in Maryland, we aim to respond to the question: How can we use secondary school students' explanatory models to provide students with constructive feedback for more comprehensive learning of ocean acidification (the related evidence, causes and impact)? The data were analyzed through discourse analysis method. We highlighted and coded students' inscriptions (e.g., drawings, writings, and representations) that are signs of students' understanding (or lack thereof) of ocean acidification. These signs included explanations of pH levels, drawings of oyster growth, and inclusions of relevant data. The findings showed that the explanatory models can be critical forms of feedback as they reveal a) students' alternative conceptions on how ocean acidification impacts oysters or how acidification works in general; b) students' interpretations of oceans' (non)connectedness to Earth system; c) the choice of scientific representations and their sources; and d) the way students' integrate evidence or data from the investigations. Our work tackles an understanding of one of the most vital signs of modern climatic changes. Recent scientific evidence shows that if the change in ocean pH becomes too extreme, many organisms may not be able to adjust to this change. Based on our findings, we suggest that teachers can use explanatory models as sources of feedback to recognize how well their students conceptualize ocean acidification, integrate scientific practices, and use cultural artifacts of doing science.

  6. Video Creation: A Tool for Engaging Students to Learn Science

    NASA Astrophysics Data System (ADS)

    Courtney, A. R.

    2016-12-01

    Students today process information very differently than those of previous generations. They are used to getting their news from 140-character tweets, being entertained by You-Tube videos, and Googling everything. Thus, traditional passive methods of content delivery do not work well for many of these millennials. All students, regardless of career goals, need to become scientifically literate to be able to function in a world where scientific issues are of increasing importance. Those who have had experience applying scientific reasoning to real-world problems in the classroom will be better equipped to make informed decisions in the future. The problem to be solved is how to present scientific content in a manner that fosters student learning in today's world. This presentation will describe how the appeal of technology and social communication via creation of documentary-style videos has been used to engage students to learn scientific concepts in a university non-science major course focused on energy and the environment. These video projects place control of the learning experience into the hands of the learner and provide an opportunity to develop critical thinking skills. Students discover how to locate scientifically reliable information by limiting searches to respected sources and synthesize the information through collaborative content creation to generate a "story". Video projects have a number of advantages over research paper writing. They allow students to develop collaboration skills and be creative in how they deliver the scientific content. Research projects are more effective when the audience is larger than just a teacher. Although our videos are used as peer-teaching tools in the classroom, they also are shown to a larger audience in a public forum to increase the challenge. Video will be the professional communication tool of the future. This presentation will cover the components of the video production process and instructional lessons learned over a seven-year period.

  7. Development of Scientific Approach Based on Discovery Learning Module

    NASA Astrophysics Data System (ADS)

    Ellizar, E.; Hardeli, H.; Beltris, S.; Suharni, R.

    2018-04-01

    Scientific Approach is a learning process, designed to make the students actively construct their own knowledge through stages of scientific method. The scientific approach in learning process can be done by using learning modules. One of the learning model is discovery based learning. Discovery learning is a learning model for the valuable things in learning through various activities, such as observation, experience, and reasoning. In fact, the students’ activity to construct their own knowledge were not optimal. It’s because the available learning modules were not in line with the scientific approach. The purpose of this study was to develop a scientific approach discovery based learning module on Acid Based, also on electrolyte and non-electrolyte solution. The developing process of this chemistry modules use the Plomp Model with three main stages. The stages are preliminary research, prototyping stage, and the assessment stage. The subject of this research was the 10th and 11th Grade of Senior High School students (SMAN 2 Padang). Validation were tested by the experts of Chemistry lecturers and teachers. Practicality of these modules had been tested through questionnaire. The effectiveness had been tested through experimental procedure by comparing student achievement between experiment and control groups. Based on the findings, it can be concluded that the developed scientific approach discovery based learning module significantly improve the students’ learning in Acid-based and Electrolyte solution. The result of the data analysis indicated that the chemistry module was valid in content, construct, and presentation. Chemistry module also has a good practicality level and also accordance with the available time. This chemistry module was also effective, because it can help the students to understand the content of the learning material. That’s proved by the result of learning student. Based on the result can conclude that chemistry module based on discovery learning and scientific approach in electrolyte and non-electrolyte solution and Acid Based for the 10th and 11th grade of senior high school students were valid, practice, and effective.

  8. Integrating Scientific Argumentation to Improve Undergraduate Writing and Learning in a Global Environmental Change Course

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koffman, Bess G.; Kreutz, Karl J.; Trenbath, Kim

    We present a strategy for using scientific argumentation in an early undergraduate laboratory course to teach disciplinary writing practices and to promote critical thinking, knowledge transformation, and understanding of the scientific method. The approach combines targeted writing instruction; data analysis and interpretation; formulation of a hypothesis; and construction of an argument. Students submit and receive feedback on two drafts of two different argumentation essays, providing the opportunity for guided practice. Each written argument is intended to draw on several weeks' course material, including short lectures, discussions, readings, and problem sets. Thus our aim with these writing assignments is to helpmore » students synthesize content and concepts, deepening their learning. We have found that this inquiry-based approach to writing engages students in course material, and significantly improves both writing and learning. We observed the greatest improvement among students with the lowest initial scores, suggesting that lower-achieving students benefitted disproportionately from this approach. Students have responded positively to the use of writing in the course, many stating on course evaluations that this is the first time they have received instruction in scientific writing. They have also pointed to a greater 'big-picture' understanding of the course gained through writing. We describe the course and our curriculum, and provide suggestions for implementation as well as rubrics used to evaluate problem sets and student argumentation essays.« less

  9. The Application of Problem Solving Method on Science Teacher Trainees on the Solution of the Environmental Problems

    ERIC Educational Resources Information Center

    Dogru, Mustafa

    2008-01-01

    Helping students to improve their problems solving skills is the primary target of science teacher trainees. In modern science, for training the students, methods should be used for improving their thinking skills, making connections with events and concepts and scientific operations skills rather than information and definition giving. One of…

  10. Using the Virtual Vee Map for Inquiry with Geoscience Research Data

    NASA Astrophysics Data System (ADS)

    Rutherford, S.

    2009-04-01

    The Vee Map is a method by which any teacher can implement guided inquiry in their classroom. It was originally designed to work with classic laboratories. However, Coffman and Riggs (2006) used the idea so that students could gather online scientific data to answer a research question. This is known as the "Virtual Vee Map" because the scientific data collected is online or virtual. Students have great difficulty with designing and conducting a research project. They also are not able to work with scientific data. Many organizations are now making their scientific data available for use by the educational community. However, many educators and students have found geoscience data difficult to find and use. Ledley et al. (2008) suggests that organizations use educationally relevant review criteria for their data sites. As part of a National Oceanic and Atmosphere Administration (NOAA) research project, a website was developed using the Great Lakes Environmental Research Laboratory's (GLERL) scientific data about the Great Lakes. This data was made available such that pre-service Earth Science elementary teachers could design a research question for use with the Virtual Vee Map's guided inquiry approach.

  11. Knowledge, attitudes, and barriers toward research: The perspectives of undergraduate medical and dental students.

    PubMed

    Kyaw Soe, Htoo Htoo; Than, Nan Nitra; Lwin, Htay; Nu Htay, Mila Nu Nu; Phyu, Khine Lynn; Abas, Adinegara Lutfi

    2018-01-01

    Scientific research not only promotes health and combats diseases of an individual, but also it can strengthen the effectiveness of health systems. Hence, understanding of scientific methods becomes a crucial component in the medical profession. This study was conducted to assess the knowledge, attitudes, and barriers toward research among undergraduate medical and dental students. This cross-sectional study was conducted among 295 undergraduate Bachelor of Medicine and Bachelor of Surgery (MBBS) and Bachelor of Dental Surgery (BDS) students from a private medical college in Malaysia. We purposively selected 360 students attending the 3 rd , 4 th , and 5 th year in MBBS course and BDS course in September 2015. A total of 295 students who were willing to provide written informed consent were included in this study. We collected data using a validated, self-administered, structured questionnaire which included 20 questions about knowledge toward scientific research, 21 attitude items in regard to scientific research, a list of 10 barriers toward conducting medical research, and 5 questions of confidence to conduct the medical research. Data were analyzed using descriptive statistics, independent t-test, ANOVA, and multiple linear regression. Among the students, 56.9% had moderate knowledge while the majority (83.3%) had moderate attitude toward scientific research. The majorly cited barriers were the lack of time (79.9%), lack of knowledge and skills (72.1%), lack of funding (72.0%) and facilities (63.6%), and lack of rewards (55.8%). There was a significant association between age, academic year, and knowledge of research as the older age group, and 4 th - and 5 th -year students had higher knowledge score. The students of higher attitude score had better-perceived barriers score toward research with regression coefficient 0.095 (95% confidence interval 0.032-0.159). Even though the students had the positive attitudes toward scientific research, a supportive and positive environment is needed to improve skills and knowledge of research and to overcome the barriers toward the conduct of scientific research.

  12. Narratives in Mind and Media: A Cognitive Semiotic Account of Novices Interpreting Visual Science Media

    NASA Astrophysics Data System (ADS)

    Matuk, Camillia Faye

    Visual representations are central to expert scientific thinking. Meanwhile, novices tend toward narrative conceptions of scientific phenomena. Until recently, however, relationships between visual design, narrative thinking, and their impacts on learning science have only been theoretically pursued. This dissertation first synthesizes different disciplinary perspectives, then offers a mixed-methods investigation into interpretations of scientific representations. Finally, it considers design issues associated with narrative and visual imagery, and explores the possibilities of a pedagogical notation to scaffold the understanding of a standard scientific notation. Throughout, I distinguish two categories of visual media by their relation to narrative: Narrative visual media, which convey content via narrative structure, and Conceptual visual media, which convey states of relationships among objects. Given the role of narrative in framing conceptions of scientific phenomena and perceptions of its representations, I suggest that novices are especially prone to construe both kinds of media in narrative terms. To illustrate, I first describe how novices make meaning of the science conveyed in narrative visual media. Vignettes of an undergraduate student's interpretation of a cartoon about natural selection; and of four 13-year olds' readings of a comic book about human papillomavirus infection, together demonstrate conditions under which designed visual narrative elements facilitate or hinder understanding. I next consider the interpretation of conceptual visual media with an example of an expert notation from evolutionary biology, the cladogram. By combining clinical interview methods with experimental design, I show how undergraduate students' narrative theories of evolution frame perceptions of the diagram (Study 1); I demonstrate the flexibility of symbolic meaning, both with the content assumed (Study 2A), and with alternate manners of presenting the diagram (Study 2B); finally, I show the effects of content assumptions on the diagrams students invent of phylogenetic data (Study 3A), and how first inventing a diagram influences later interpretations of the standard notation (Study 3B). Lastly, I describe the prototype design and pilot test of an interactive diagram to scaffold biology students' understanding of this expert scientific notation. Insights from this dissertation inform the design of more pedagogically useful representations that might support students' developing fluency with expert scientific representations.

  13. JoVE: the Journal of Visualized Experiments.

    PubMed

    Vardell, Emily

    2015-01-01

    The Journal of Visualized Experiments (JoVE) is the world's first scientific video journal and is designed to communicate research and scientific methods in an innovative, intuitive way. JoVE includes a wide range of biomedical videos, from biology to immunology and bioengineering to clinical and translation medicine. This column describes the browsing and searching capabilities of JoVE, as well as its additional features (including the JoVE Scientific Education Database designed for students in scientific fields).

  14. Problems Identifying Independent and Dependent Variables

    ERIC Educational Resources Information Center

    Leatham, Keith R.

    2012-01-01

    This paper discusses one step from the scientific method--that of identifying independent and dependent variables--from both scientific and mathematical perspectives. It begins by analyzing an episode from a middle school mathematics classroom that illustrates the need for students and teachers alike to develop a robust understanding of…

  15. Ask "Teaching Sociology": What Should Faculty Consider before Having Students Conduct Research in a Class?

    ERIC Educational Resources Information Center

    Lowney, Kathleen S.

    2014-01-01

    There are many things that sociology faculty have to consider as they begin planning a student course such as: (1) why students need to understand scientific methods, by conducting research for themselves; (2) What specific learning goals and objectives will be met by students doing research, either individually or collectively?; (3) Why do…

  16. Learning the scientific method using GloFish.

    PubMed

    Vick, Brianna M; Pollak, Adrianna; Welsh, Cynthia; Liang, Jennifer O

    2012-12-01

    Here we describe projects that used GloFish, brightly colored, fluorescent, transgenic zebrafish, in experiments that enabled students to carry out all steps in the scientific method. In the first project, students in an undergraduate genetics laboratory course successfully tested hypotheses about the relationships between GloFish phenotypes and genotypes using PCR, fluorescence microscopy, and test crosses. In the second and third projects, students doing independent research carried out hypothesis-driven experiments that also developed new GloFish projects for future genetics laboratory students. Brianna Vick, an undergraduate student, identified causes of the different shades of color found in orange GloFish. Adrianna Pollak, as part of a high school science fair project, characterized the fluorescence emission patterns of all of the commercially available colors of GloFish (red, orange, yellow, green, blue, and purple). The genetics laboratory students carrying out the first project found that learning new techniques and applying their knowledge of genetics were valuable. However, assessments of their learning suggest that this project was not challenging to many of the students. Thus, the independent projects will be valuable as bases to widen the scope and range of difficulty of experiments available to future genetics laboratory students.

  17. Exploring Secondary Students' Understanding of Chemical Kinetics through Inquiry-Based Learning Activities

    ERIC Educational Resources Information Center

    Chairam, Sanoe; Klahan, Nutsuda; Coll, Richard K.

    2015-01-01

    This research is trying to evaluate the feedback of Thai secondary school students to inquiry-based teaching and learning methods, exemplified by the study of chemical kinetics. This work used the multiple-choice questions, scientifically practical diagram and questionnaire to assess students' understanding of chemical kinetics. The findings…

  18. Particulate Nature of Matter Misconceptions Held by Middle and High School Students in Turkey

    ERIC Educational Resources Information Center

    Özgür Kapici, Hasan; Akcay, Hakan

    2016-01-01

    Misconceptions are one the biggest troubles for both teachers and students. In order to have scientifically valid knowledge, students should have meaningful conceptual understanding. Researchers have been designing studies based on different teaching methods so as to reach beneficial outcomes to handle with misconceptions. In this study, the main…

  19. On a Calculus-Based Statistics Course for Life Science Students

    ERIC Educational Resources Information Center

    Watkins, Joseph C.

    2010-01-01

    The choice of pedagogy in statistics should take advantage of the quantitative capabilities and scientific background of the students. In this article, we propose a model for a statistics course that assumes student competency in calculus and a broadening knowledge in biology. We illustrate our methods and practices through examples from the…

  20. Data Nuggets: Bringing Real Data into the Classroom to Unearth Students' Quantitative & Inquiry Skills

    ERIC Educational Resources Information Center

    Schultheis, Elizabeth H.; Kjelvik, Melissa K.

    2015-01-01

    Current educational reform calls for increased integration between science and mathematics to overcome the shortcomings in students' quantitative skills. Data Nuggets (free online resource, http://datanuggets.org) are worksheets that bring data into the classroom, repeatedly guiding students through the scientific method and making claims…

  1. Teaching Complex Dynamic Systems to Young Students with StarLogo

    ERIC Educational Resources Information Center

    Klopfer, Eric; Yoon, Susan; Um, Tricia

    2005-01-01

    In this paper, we report on a program of study called Adventures in Modeling that challenges the traditional scientific method approach in science classrooms using StarLogo modeling software. Drawing upon previous successful efforts with older students, and the related work of other projects working with younger students, we explore: (a) What can…

  2. Ciencias 2 (Science 2). [Student's Workbook].

    ERIC Educational Resources Information Center

    Raposo, Lucilia

    Ciencias 2 is the second in a series of elementary science textbooks written for Portuguese-speaking students. The text develops the basic skills that students need to study their surroundings and observe natural facts and phenomena by following scientific methods. The book is composed of 10 chapters and includes 57 lessons. Topics included are…

  3. Authorized Course of Instruction for the Quinmester Program. Science: Scientific Approach to Solving Problems; Who's Who; and What in the World's Going On.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    Performance objectives are stated for each of the three secondary school units included in this package prepared for the Dade County Florida Quinmester Program. The units all concern some aspect of instruction in scientific method. "The Scientific Approach to Solving Problems" introduces students to the use of experimental testing of…

  4. Teaching to Learn and Learning to Teach

    NASA Astrophysics Data System (ADS)

    Bao, Lei

    2010-02-01

    In STEM education, widely accepted teaching goals include not only the development of solid content knowledge but also the development of general scientific reasoning abilities that will enable students to successfully handle open-ended real-world tasks in future careers and design their own experiments to solve scientific, engineering, and social problems. Traditionally, it is often expected that consistent and rigorous content learning will help develop students' general reasoning abilities; however, our research has shown that the content-rich style of STEM education made little impact on the development of students' scientific reasoning abilities. Therefore, how to train teachers who can help students develop both solid content knowledge and adequate scientific reasoning skills has become an important question for educators and researchers. Research has also suggested that inquiry based science instruction can promote scientific reasoning abilities and that the scientific reasoning skills of instructors can also significantly affect their ability to use inquiry methods effectively in science courses. In this talk, I will compare the features of the teacher preparation programs in China and USA and discuss the possible strength and weakness of the education systems and programs in the two countries. Understanding the different education settings and the outcome can help researchers in both countries to learn from each other's success and to avoid known problems. Examples of current research that may foster such knowledge development among researchers from both countries will be discussed. )

  5. Students' Conceptions of the Nature of Science: Perspectives from Canadian and Korean Middle School Students

    NASA Astrophysics Data System (ADS)

    Park, Hyeran; Nielsen, Wendy; Woodruff, Earl

    2014-05-01

    This study examined and compared students' understanding of nature of science (NOS) with 521 Grade 8 Canadian and Korean students using a mixed methods approach. The concepts of NOS were measured using a survey that had both quantitative and qualitative elements. Descriptive statistics and one-way multivariate analysis of variances examined the quantitative data while a conceptually clustered matrix classified the open-ended responses. The country effect could explain 3-12 % of the variances of subjectivity, empirical testability and diverse methods, but it was not significant for the concepts of tentativeness and socio-cultural embeddedness of science. The open-ended responses showed that students believed scientific theories change due to errors or discoveries. Students regarded empirical evidence as undeniable and objective although they acknowledged experiments depend on theories or scientists' knowledge. The open responses revealed that national situations and curriculum content affected their views. For our future democratic citizens to gain scientific literacy, science curricula should include currently acknowledged NOS concepts and should be situated within societal and cultural perspectives.

  6. [Assessment of teaching quality: from normative aspects to the relapse of the formative project].

    PubMed

    Binetti, P; Petitti, T

    2001-01-01

    To base the medical student's education on scientific evidence, we need to applied to medical education the same evidence-based methods characteristics of scientific research. Our goal is to change curricula, educational methods, teaching of clinical skills, in order to improve professional training of medical and nursing students. Our work highlights the student's point of view relative to changes of educational project, that is a constitutive aspect of best evidence medical education. Every year, an evaluation test is submitted to all medical, nursing and nutritionist students of Università "Campus Bio-Medico". This test worked out by both teachers and students, is designed to explore student's perception of all aspects, educational and relational, related to the university. Data are been processed using explorative analysis of principal elements, and then using factorial analysis with "Varimax", data orthogonal rotation. A specific database in Microsoft Access, is been used for data entry, while statistical analysis is been performed using didactic software STATA (Stata Corporation). According to data, we can claim that our students evaluate their teachers and tutors depending on two principal factors: on one hand educational skills, that include personal competence on teaching and getting in touch with the students; on the other hand managing and planning skills. These are very important to overcome the dangers related to integrated courses, composed by many different scientific matters and planned by many teachers: without a very good planning, students may not be allowed to achieve clear, synthetic and well-structured knowledge. Students want to be regarded as adult learners, they wish to achieve a well structured knowledge, both composed by theoretical and practical skills and personal relations, in order to think of every activity according to an organic knowledge.

  7. Interactive, Online, Adsorption Lab to Support Discovery of the Scientific Process

    NASA Astrophysics Data System (ADS)

    Carroll, K. C.; Ulery, A. L.; Chamberlin, B.; Dettmer, A.

    2014-12-01

    Science students require more than methods practice in lab activities; they must gain an understanding of the application of the scientific process through lab work. Large classes, time constraints, and funding may limit student access to science labs, denying students access to the types of experiential learning needed to motivate and develop new scientists. Interactive, discovery-based computer simulations and virtual labs provide an alternative, low-risk opportunity for learners to engage in lab processes and activities. Students can conduct experiments, collect data, draw conclusions, and even abort a session. We have developed an online virtual lab, through which students can interactively develop as scientists as they learn about scientific concepts, lab equipment, and proper lab techniques. Our first lab topic is adsorption of chemicals to soil, but the methodology is transferrable to other topics. In addition to learning the specific procedures involved in each lab, the online activities will prompt exploration and practice in key scientific and mathematical concepts, such as unit conversion, significant digits, assessing risks, evaluating bias, and assessing quantity and quality of data. These labs are not designed to replace traditional lab instruction, but to supplement instruction on challenging or particularly time-consuming concepts. To complement classroom instruction, students can engage in a lab experience outside the lab and over a shorter time period than often required with real-world adsorption studies. More importantly, students can reflect, discuss, review, and even fail at their lab experience as part of the process to see why natural processes and scientific approaches work the way they do. Our Media Productions team has completed a series of online digital labs available at virtuallabs.nmsu.edu and scienceofsoil.com, and these virtual labs are being integrated into coursework to evaluate changes in student learning.

  8. Doing, talking and writing science: A discourse analysis of the process of resemiotization in a middle school lab-based science class

    NASA Astrophysics Data System (ADS)

    Wright, Laura J.

    This study examines students' sense making practices in a middle school science class from a discourse analytic perspective. Using Mediated Discourse Analysis (MDA) (Scollon 1998, 2001) and interactional sociolinguistics (Gumperz 1999, 2001, Schiffrin 1994), my research seeks to enrich findings from recent sociocultural studies of science classrooms that focus on doing, talking and writing science (Roth 2005, Kress, et al. 2002, Halliday & Martin 1993, Lemke 1990). Within a middle school science classroom, these fundamental activities form a nexus of practice (Scollon 1998, 2001) basic to science literacy (AAAS 1989) and reflective of the work of practicing scientists. Moreover, students' engagement in these practices provides insight into the cultural production and reproduction of science and scientist. I first examine how the students' curriculum text encourages these three scientific practices and then trace students' uptake; that is, how they subsequently do, talk, and write science throughout the course of the unit. I argue that learning science with this curriculum unit requires students to resemiotize (Iedema 2001, 2003) first hand experience so they can represent their knowledge cohesively and coherently in evaluable forms. Ultimately, students must transform language from the curriculum text and their teacher into action in their laboratory activities and action in their laboratory activities into language. In addition, I show how students are apprenticed to the conventionalized practices and voices (Bakhtin 1986) of science (i.e. the scientific register), and how their figures of personhood (Agha 2005) reflect the development of their scientific identities. Overall, I argue that the microanalytic methods I use illuminate how students draw upon curricular resources to become scientifically literate and develop scientific identities.

  9. Mentos and Scientific Method: A Sweet Combination

    ERIC Educational Resources Information Center

    Eichler, Jack F.; Patrick, Heather; Harmon, Brenda; Coonce, Janet

    2007-01-01

    Several active-learning techniques and inquiry-driven laboratory exercises were incorporated in labs to determine the effects of these methodologies on the fundamental skills of the students. The practice has been found extremely useful for developing the learning abilities of the students.

  10. Epistemic beliefs of middle and high school students in a problem-based, scientific inquiry unit: An exploratory, mixed methods study

    NASA Astrophysics Data System (ADS)

    Gu, Jiangyue

    Epistemic beliefs are individuals' beliefs about the nature of knowledge, how knowledge is constructed, and how knowledge can be justified. This study employed a mixed-methods approach to examine: (a) middle and high school students' self-reported epistemic beliefs (quantitative) and epistemic beliefs revealed from practice (qualitative) during a problem-based, scientific inquiry unit, (b) How do middle and high school students' epistemic beliefs contribute to the construction of students' problem solving processes, and (c) how and why do students' epistemic beliefs change by engaging in PBL. Twenty-one middle and high school students participated in a summer science class to investigate local water quality in a 2-week long problem-based learning (PBL) unit. The students worked in small groups to conduct water quality tests at in their local watershed and visited several stakeholders for their investigation. Pretest and posttest versions of the Epistemological Beliefs Questionnaire were conducted to assess students' self-reported epistemic beliefs before and after the unit. I videotaped and interviewed three groups of students during the unit and conducted discourse analysis to examine their epistemic beliefs revealed from scientific inquiry activities and triangulate with their self-reported data. There are three main findings from this study. First, students in this study self-reported relatively sophisticated epistemic beliefs on the pretest. However, the comparison between their self-reported beliefs and beliefs revealed from practice indicated that some students were able to apply sophisticated beliefs during the unit while others failed to do so. The inconsistency between these two types of epistemic beliefs may due to students' inadequate cognitive ability, low validity of self-report measure, and the influence of contextual factors. Second, qualitative analysis indicated that students' epistemic beliefs of the nature of knowing influenced their problem solving processes and construction of arguments during their inquiry activities. Students with more sophisticated epistemic beliefs acquired knowledge, presented solid evidence, and used it to support their claims more effectively than their peers. Third, students' self-reported epistemic beliefs became significantly more sophisticated by engaging in PBL. Findings from this study can potentially help researchers to better understand the relation between students' epistemic beliefs and their scientific inquiry practice,

  11. Spatially Resolved Measurements Of Plasma Density Irregularities In The Ionosphere F Region For Scintillation Studies.

    NASA Astrophysics Data System (ADS)

    Spencer, E. A.; Russ, S.; Clark, D. C.; Latif, S.; Montalvo, C.

    2016-12-01

    This qualitative study focuses on students evidence-based explanatory models on how ocean acidification impacts oysters. Explanatory models are the crucial components of scientific endeavors as it helps scientists explain how the natural world functions and the reasons for the ways it functions. Moreover, these models assemble individual practices to understand how they work together to reach clear conclusions through scientific investigations. Due to their critical roles in making sense of authentic science, recent studies in science education suggest that these models should be part of the curriculum aligned with new science standards, i.e. Next Generation Science Standards, which stress the importance of engaging students in scientific practices. By collecting data from 400 secondary school students in Maryland, we aim to respond to the question: How can we use secondary school students' explanatory models to provide students with constructive feedback for more comprehensive learning of ocean acidification (the related evidence, causes and impact)? The data were analyzed through discourse analysis method. We highlighted and coded students' inscriptions (e.g., drawings, writings, and representations) that are signs of students' understanding (or lack thereof) of ocean acidification. These signs included explanations of pH levels, drawings of oyster growth, and inclusions of relevant data. The findings showed that the explanatory models can be critical forms of feedback as they reveal a) students' alternative conceptions on how ocean acidification impacts oysters or how acidification works in general; b) students' interpretations of oceans' (non)connectedness to Earth system; c) the choice of scientific representations and their sources; and d) the way students' integrate evidence or data from the investigations. Our work tackles an understanding of one of the most vital signs of modern climatic changes. Recent scientific evidence shows that if the change in ocean pH becomes too extreme, many organisms may not be able to adjust to this change. Based on our findings, we suggest that teachers can use explanatory models as sources of feedback to recognize how well their students conceptualize ocean acidification, integrate scientific practices, and use cultural artifacts of doing science.

  12. Considering Students' Out-of-School Lives and Values in Designing Learning Environments for Climate Change

    NASA Astrophysics Data System (ADS)

    Walsh, E.; Tsurusaki, B.

    2012-12-01

    What are the implications of social controversy for the teaching and learning of climate change science? How do the political dimensions of this controversy affect learners' attitudes towards and reasoning about climate change and climate science? Case studies from a pilot enactment of an ecological impacts of climate change curriculum explore these questions by describing how five high school students' understandings of climate change science developed at the intersection of political and scientific values, attitudes, and ways of knowing. Case studies combine qualitative, ethnographic methods including interviews and classroom video observations with quantitative pre/post-assessments of student conceptual understandings and weekly surveys of student engagement. Data indicate that students had initial perceptions of climate change informed by the media and their families—both supporting and rejecting the scientific consensus—that influenced how they engaged with the scientific evidence. While students who were initially antagonistic to anthropogenic climate change did develop conceptual understandings of the scientific evidence for human-influences on climate change, this work was challenging and at times frustrating for them. These case studies demonstrate the wide range of initial attitudes and understandings that students bring to the study of climate change. They also demonstrate that it is possible to make significant shifts in students' understandings of climate change science, even in students who were initially resistant to the idea of anthropogenic climate change. Finally, multiple case studies discuss ways that the learning that occurred in the classroom crossed out of the classroom into the students' homes and family talk. This work highlights how learners' pathways are shaped not only by their developing understanding of the scientific evidence but also by the political and social influences that learners navigate across the contexts of their lives. It underscores the need to understand and support students as they interact with climate change across the contexts of their lives.

  13. Continued multidisciplinary project-based learning - implementation in health informatics.

    PubMed

    Wessel, C; Spreckelsen, C

    2009-01-01

    Problem- and project-based learning are approved methods to train students, graduates and post-graduates in scientific and other professional skills. The students are trained on realistic scenarios in a broader context. For students specializing in health informatics we introduced continued multidisciplinary project-based learning (CM-PBL) at a department of medical informatics. The training approach addresses both students of medicine and students of computer science. The students are full members of an ongoing research project and develop a project-related application or module, or explore or evaluate a sub-project. Two teachers guide and review the students' work. The training on scientific work follows a workflow with defined milestones. The team acts as peer group. By participating in the research team's work the students are trained on professional skills. A research project on a web-based information system on hospitals built the scenario for the realistic context. The research team consisted of up to 14 active members at a time, who were scientists and students of computer science and medicine. The well communicated educational approach and team policy fostered the participation of the students. Formative assessment and evaluation showed a considerable improvement of the students' skills and a high participant satisfaction. Alternative education approaches such as project-based learning empower students to acquire scientific knowledge and professional skills, especially the ability of life-long learning, multidisciplinary team work and social responsibility.

  14. Pathway Towards Fluency: Using 'disaggregate instruction' to promote science literacy

    NASA Astrophysics Data System (ADS)

    Brown, Bryan A.; Ryoo, Kihyun; Rodriguez, Jamie

    2010-07-01

    This study examines the impact of Disaggregate Instruction on students' science learning. Disaggregate Instruction is the idea that science teaching and learning can be separated into conceptual and discursive components. Using randomly assigned experimental and control groups, 49 fifth-grade students received web-based science lessons on photosynthesis using our experimental approach. We supplemented quantitative statistical comparisons of students' performance on pre- and post-test questions (multiple choice and short answer) with a qualitative analysis of students' post-test interviews. The results revealed that students in the experimental group outscored their control group counterparts across all measures. In addition, students taught using the experimental method demonstrated an improved ability to write using scientific language as well as an improved ability to provide oral explanations using scientific language. This study has important implications for how science educators can prepare teachers to teach diverse student populations.

  15. Exploring high school students' use of theory and evidence in an everyday context: the role of scientific thinking in environmental science decision-making

    NASA Astrophysics Data System (ADS)

    Yang, Fang-Ying

    2004-11-01

    This study examined 10th-grade students' use of theory and evidence in evaluating a socio-scientific issue: the use of underground water, after students had received a Science, Technology and Society-oriented instruction. Forty-five male and 45 female students from two intact, single-sex, classes participated in this study. A flow-map method was used to assess the participants' conceptual knowledge. The reasoning mode was assessed using a questionnaire with open-ended questions. Results showed that, although some weak to moderate associations were found between conceptual organization in memory and reasoning modes, the students' ability to incorporate theory and evidence was in general inadequate. It was also found that students' reasoning modes were consistent with their epistemological perspectives. Moreover, male and female students appear to have different reasoning approaches.

  16. Expanding the scope of anatomical sciences: the case of "Human evolution: The fossil evidence" course at the Sackler School of Medicine, Tel-Aviv University.

    PubMed

    Notzer, Netta; Abramovitz, Ruth

    2012-01-01

    The Anatomy Department at Tel-Aviv University Medical School offers its students an elective course of 26 didactic hours on human evolution. The course is open to students from all faculties, who must fulfill all academic requirements, without a prerequisite of a background in anatomy. Approximately 120 students attend annually, a third of them are nonmedical students who major in philosophy, archeology, and sociology. This article discusses the course's contributions to students' understanding of a scientific concept that a scientific theory can be contradicted by new evidence, because facts govern science. Also, research methods of applying scientific principles establish the understanding of the human body, which evidently contributes to health and medicine. In the classes, the students are divided into mini-groups of 2-3 students, while the lecturer moves among students to examine fossils. In addition, analogies, open-discussions, and explanations accompany the tangible experiences. The lecturer of the course is an experienced anthropologist-anatomist researcher. He is a role-model and a mentor, sharing with the students his belief that a scientist should be persistent in his research to overcome difficult circumstances. Students, regardless of their backgrounds, express high appreciation of the course in their feedback questionnaires. The message conveyed by this course is that not only knowledge counts but also its integration with scientific principles. This course teaches us that science can bring students from different areas to study together and share ideas. In conclusion, this is a unique course in the eyes of the faculty and students alike. Copyright © 2012 American Association of Anatomists.

  17. A Writing-Intensive, Methods-Based Laboratory Course for Undergraduates

    ERIC Educational Resources Information Center

    Colabroy, Keri L.

    2011-01-01

    Engaging undergraduate students in designing and executing original research should not only be accompanied by technique training but also intentional instruction in the critical analysis and writing of scientific literature. The course described here takes a rigorous approach to scientific reading and writing using primary literature as the model…

  18. Teaching/Research Project "Wheelmap"

    NASA Astrophysics Data System (ADS)

    Gollenstede, Andreas

    2018-05-01

    In recent years new didactic concepts and approaches have been developed and evaluated at the universities. The concept for cartography lectures presented in this article is based on the close link of research and teaching/learning. The students are involved in all essential steps of a scientific project taking place during a series of lectures - beginning with the development of the scientific issues, followed by the choice and execution of the research methods and finally the presentation of the achieved outcomes. The specific project introduced here is based on self-experiments in which students took the perspective of wheelchair users entrusted with the task to map places, which are accessible for people with impairments. Among others, the goal set for the students was to develop an appropriate concept for the mobile acquisition of data and to visualise the final results by different methods of cartography.

  19. A Capstone Experience in Physics

    NASA Astrophysics Data System (ADS)

    Ba, Jean-Claude; Lott, Trina

    1997-04-01

    This is an intergrated science course required for all AS/AA degree seeking students. It includes; ethical issues in science, the scientific method and interpretation of scientific results. This paper will present the work done by the only student enrolled in the course Autumn Quarter 1996. This course is in its 2 nd year at Columbus State Community College and may open the door to the development of more programs/courses that will introduce students from two-year Colleges to the different steps of a research project of a research project. In the future such projects could be completed in a local company as part of an internship.

  20. Pre-Service Teachers' Opinions about the Course on Scientific Research Methods and the Levels of Knowledge and Skills They Gained in This Course

    ERIC Educational Resources Information Center

    Tosun, Cemal

    2014-01-01

    The purpose of this study was to ascertain whether the pre-service teachers taking the Scientific Research Methods course attained basic research knowledge and skills. In addition, the impact of the process, which is followed while implementing the course, on the students' anxiety and attitude during the course is examined. Moreover, the study…

  1. Enracinement or the earth, the originary ark, does not move: on the phenomenological (historical and ontogenetic) origin of common and scientific sense and the genetic method of teaching (for) understanding

    NASA Astrophysics Data System (ADS)

    Roth, Wolff-Michael

    2015-06-01

    For many students, the experience with science tends to be alienating and uprooting. In this study, I take up Simone Weil's concepts of enracinement (rooting) and déracinement (uprooting) to theorize the root of this alienation, the confrontation between children's familiarity with the world and unfamiliar/strange scientific conceptions. I build on the works of the phenomenological philosopher Edmund Husserl and the German physics educator Martin Wagenschein (who directly refers to Weil's concepts) to make a case for the rooting function of original/originary experiences and the genetic method to science teaching. The genetic approach allows students to retain their foundational familiarity with the world and their descriptions thereof all the while evolving other (more scientific) ways of explaining natural phenomena.

  2. From "sit and listen" to "shake it out yourself": Helping urban middle school students to bridge personal knowledge to scientific knowledge through a collaborative environmental justice curriculum

    NASA Astrophysics Data System (ADS)

    Sadeh, Shamu Fenyvesi

    Science education and environmental education are not meeting the needs of marginalized communities such as urban, minority, and poor communities (Seller, 2001; U.S. Environmental Protection Agency [EPA], 1996). There exists an equity gap characterized by the racial and socioeconomic disparities in: levels of participation in scientific and environmental careers and environmental organizations (Lewis & James, 1995; Sheppard, 1995), access to appropriate environmental education programs (U.S. EPA, 1996), exposure to environmental toxins (Bullard, 1993), access to environmental amenities and legal protections (Bullard, 1993), and in grades and standardized test scores in K-12 science (Jencks & Phillips, 1998; Johnston & Viadero, 2000). Researchers point to the cultural divide between home and school culture as one of the reasons for the equity gap in science education (Barton, 2003; Delpit, 1995; Seiler, 2001). This study is designed to address the equity gap by helping students connect personal/cultural knowledge to scientific knowledge. A collaborative action research study was conducted in 8th-grade science classrooms of low-income African American and Latino students. The participating teacher and the researcher developed, enacted and evaluated a curriculum that elicited students' personal and cultural knowledge in the investigation of local community issues. Using qualitative methods, data were collected through student and teacher interviews, observation, and written documents. Data were analyzed to answer questions on student participation and learning, bridging between personal and scientific knowledge, and student empowerment. The most compelling themes from the data were described as parts of three stories: tensions between the empire of school and the small student nation, bridging between the two nations, and students gaining empowerment. This study found that the bridging the curriculum intended was successful in that many students brought personal knowledge to class and started to bring scientific knowledge into their personal worlds. Students translated between scientific language and their own language, displayed an understanding of community environmental health issues, and expressed a sense of empowerment as students and community members. Recommendations to science educators and researchers included: eliciting students' personal and cultural knowledge in the classroom, helping students to create new ways of participating in science, and engaging in collaborative research efforts.

  3. In the Footsteps of Galileo

    NASA Astrophysics Data System (ADS)

    van der Veen, W.; Moody, T.; Erickson, J.; White, V.; O'Dea, T.

    2008-11-01

    Are you tired of teaching that same old scientific method lesson? Are you looking for ideas that bring the process of science to life for your students? Experience hands-on inquiry based activities that allow your students to recreate the excitement of Galileo's historic observations.

  4. Epistemic Beliefs of Middle and High School Students in a Problem-Based, Scientific Inquiry Unit: An Exploratory, Mixed Methods Study

    ERIC Educational Resources Information Center

    Gu, Jiangyue

    2016-01-01

    Epistemic beliefs are individuals' beliefs about the nature of knowledge, how knowledge is constructed, and how knowledge can be justified. This study employed a mixed-methods approach to examine: (a) middle and high school students' self-reported epistemic beliefs (quantitative) and epistemic beliefs revealed from practice (qualitative) during a…

  5. Influence of Three Different Methods of Teaching Physics on the Gain in Students' Development of Reasoning

    NASA Astrophysics Data System (ADS)

    Marušić, Mirko; Sliško, Josip

    2012-01-01

    The Lawson Classroom Test of Scientific Reasoning (LCTSR) was used to gauge the relative effectiveness of three different methods of pedagogy, Reading, Presenting, and Questioning (RPQ), Experimenting and Discussion (ED), and Traditional Methods (TM), on increasing students' level of scientific thinking. The data of a one-semester-long senior high-school project indicate that, for the LCTSR: (a) the RPQ group (n = 91) achieved effect-sizes d = 0.30 and (b) the ED group (n  =  85) attained effect-sizes d = 0.64. These methods have shown that the Piagetian and Vygotskian visions on learning and teaching can go hand in hand and as such achieve respectable results. To do so, it is important to challenge the students and thus encourage the shift towards higher levels of reasoning. This aim is facilitated through class management which recognizes the importance of collaborative learning. Carrying out Vygotsky's original intention to use teaching to promote cognitive development as well as subject concepts, this research has shown that it is better to have students experience cognitive conflict from directly observed experiments than by reflecting on reported experience from popularization papers or writings found on the internet.

  6. Developing the critical thinking skills of astrobiology students through creative and scientific inquiry.

    PubMed

    Foster, Jamie S; Lemus, Judith D

    2015-01-01

    Scientific inquiry represents a multifaceted approach to explore and understand the natural world. Training students in the principles of scientific inquiry can help promote the scientific learning process as well as help students enhance their understanding of scientific research. Here, we report on the development and implementation of a learning module that introduces astrobiology students to the concepts of creative and scientific inquiry, as well as provide practical exercises to build critical thinking skills. The module contained three distinct components: (1) a creative inquiry activity designed to introduce concepts regarding the role of creativity in scientific inquiry; (2) guidelines to help astrobiology students formulate and self-assess questions regarding various scientific content and imagery; and (3) a practical exercise where students were allowed to watch a scientific presentation and practice their analytical skills. Pre- and post-course surveys were used to assess the students' perceptions regarding creative and scientific inquiry and whether this activity impacted their understanding of the scientific process. Survey results indicate that the exercise helped improve students' science skills by promoting awareness regarding the role of creativity in scientific inquiry and building their confidence in formulating and assessing scientific questions. Together, the module and survey results confirm the need to include such inquiry-based activities into the higher education classroom, thereby helping students hone their critical thinking and question asking skill set and facilitating their professional development in astrobiology.

  7. Modeling "Tiktaalik": Using a Model-Based Inquiry Approach to Engage Community College Students in the Practices of Science during an Evolution Unit

    ERIC Educational Resources Information Center

    Baze, Christina L.; Gray, Ron

    2018-01-01

    Inquiry methods have been successful in improving science literacy in students of all ages. Model-Based Inquiry (MBI) is an instructional model that engages students in the practices of science through the collaborative development of scientific models to explain an anchoring phenomenon. Student ideas are tested through engagement in content-rich…

  8. A Scientific Approach To STEM Education

    DTIC Science & Technology

    2011-06-16

    T My Physics graduate students -- Why excellence in physics courses≠ competence in physics research ? Two years in lab transforms? approached as...learned? (100’s of courses/yr) improved methods average trad. Cal Poly instruction 2. Multiple instructors facilitating same established set of student ...Intro biology Univ. of Wash.– similar research - based instruction •All students improve •Underrepresented students improve more (+1/3 letter grade

  9. Young children learning about living things: A case study of conceptual change from ontological and social perspectives

    NASA Astrophysics Data System (ADS)

    Venville, Grady

    2004-05-01

    Although research from a developmental/psychological perspective indicates that many children do not have a scientific understanding of living things, even by the age of 10 years, little research has been conducted about how students learn this science topic in the classroom. This exploratory research used a case-study design and qualitative data-collection methods to investigate the process of conceptual change from ontological and social perspectives when Year 1 (5- and 6-year-old) students were learning about living things. Most students were found to think about living things with either stable, nonscientific or stable, scientific framework theories. Transitional phases of understanding also were identified. Patterns of conceptual change observed over the 5-week period of instruction included theory change and belief revision as well as reversals in beliefs. The predominant pattern of learning, however, was the assimilation of facts and information into the students' preferred framework theory. The social milieu of the classroom context exposed students' scientific and nonscientific beliefs that influenced other individuals in a piecemeal fashion. Children with nonscientific theories of living things were identified as being least able to benefit from socially constructed, scientific knowledge; hence, recommendations are made for teaching that focuses on conceptual change strategies rather than knowledge enrichment.

  10. Comparing the Effectiveness of two Methods of Teaching Agricultural Science to Students in Vocational Agriculture.

    ERIC Educational Resources Information Center

    Williams, Twyman G., Jr.

    The effectiveness of visible recorded feedback responses in teaching scientific theory and principles to vocational agriculture students was studied. Specific objectives were to determine the value of group feedback to the teacher, the difference in learning retention between students with and without feedback, and the difference in efficient use…

  11. Open-Ended Science Inquiry in Lower Secondary School: Are Students' Learning Needs Being Met?

    ERIC Educational Resources Information Center

    Whannell, Robert; Quinn, Fran; Taylor, Subhashni; Harris, Katherine; Cornish, Scott; Sharma, Manjula

    2018-01-01

    Australian science curricula have promoted the use of investigations that allow secondary students to engage deeply with the methods of scientific inquiry, through student-directed, open-ended investigations over an extended duration. This study presents the analysis of data relating to the frequency of completion and attitudes towards long…

  12. A Digital Simulation Program for Health Science Students to Follow Drug Levels in the Body

    ERIC Educational Resources Information Center

    Stavchansky, Salomon; And Others

    1977-01-01

    The Rayetheon Scientific Simulation Language (RSSL) program, an easily-used simulation on the CDC/6600 computer at the University of Texas at Austin, offers a simple method of solving differential equations on a digital computer. It is used by undergraduate biopharmaceutics-pharmacokinetics students and graduate students in all areas. (Author/LBH)

  13. On a Calculus-based Statistics Course for Life Science Students

    PubMed Central

    2010-01-01

    The choice of pedagogy in statistics should take advantage of the quantitative capabilities and scientific background of the students. In this article, we propose a model for a statistics course that assumes student competency in calculus and a broadening knowledge in biology. We illustrate our methods and practices through examples from the curriculum. PMID:20810962

  14. Elementary Teachers' Curriculum Design and Pedagogical Reasoning for Supporting Students' Comparison and Evaluation of Evidence-Based Explanations

    ERIC Educational Resources Information Center

    Biggers, Mandy; Forbes, Cory T.; Zangori, Laura

    2013-01-01

    Previous research suggests that elementary teachers vary in their enactment of science curriculum materials and may not always engage students in substantive sense making. This mixed-methods study investigates elementary teachers' use of science curriculum materials to engage students in the scientific practice of comparing and evaluating…

  15. Developing the Critical Thinking Skills of Astrobiology Students through Creative and Scientific Inquiry

    PubMed Central

    Lemus, Judith D.

    2015-01-01

    Abstract Scientific inquiry represents a multifaceted approach to explore and understand the natural world. Training students in the principles of scientific inquiry can help promote the scientific learning process as well as help students enhance their understanding of scientific research. Here, we report on the development and implementation of a learning module that introduces astrobiology students to the concepts of creative and scientific inquiry, as well as provide practical exercises to build critical thinking skills. The module contained three distinct components: (1) a creative inquiry activity designed to introduce concepts regarding the role of creativity in scientific inquiry; (2) guidelines to help astrobiology students formulate and self-assess questions regarding various scientific content and imagery; and (3) a practical exercise where students were allowed to watch a scientific presentation and practice their analytical skills. Pre- and post-course surveys were used to assess the students' perceptions regarding creative and scientific inquiry and whether this activity impacted their understanding of the scientific process. Survey results indicate that the exercise helped improve students' science skills by promoting awareness regarding the role of creativity in scientific inquiry and building their confidence in formulating and assessing scientific questions. Together, the module and survey results confirm the need to include such inquiry-based activities into the higher education classroom, thereby helping students hone their critical thinking and question asking skill set and facilitating their professional development in astrobiology. Key Words: Scientific inquiry—Critical thinking—Curriculum development—Astrobiology—Microbialites. Astrobiology 15, 89–99. PMID:25474292

  16. Broadening Educational Horizons: The National Science Foundation GK-12 Teaching Fellowship Program at the University of Maine, Orono, ME, USA.

    NASA Astrophysics Data System (ADS)

    Wilson, K. R.; Kelley, J. T.

    2005-12-01

    The future of meaningful scientific research in the United States depends heavily upon the quality of the science and mathematics education received by students in our grade K-12 education system. The National Science Foundation's GK-12 Teaching Fellowship Program provides opportunities for scientific enrichment for students and their teachers at the K-12 level. Currently in its fifth year at the University of Maine, Orono, the program is one of over 100 such programs in the country. Last year, the program was honored by the New England Board of Higher Education with a Regional Award for Excellence in Project Achievement. The program has three broad goals: to enrich the scientific education of students by providing equipment, role models, and expertise that they may not otherwise be exposed; to provide professional development for teachers through curriculum enrichment and participation at scientific conferences; and to improve the teaching and communication skills of fellows. Fellows represent a broad spectrum of research interests at the University of Maine, including Biology, Chemistry, Engineering, Forestry, Geological Sciences, and Marine Science. This past year, 13 graduate students and 1 undergraduate student worked with 52 teachers and 2300 students in 26 schools across the state of Maine. The benefits of this program are tangible and substantial. New awareness of the innovative ways that K-12 and University education systems can work together to promote hands-on science and the scientific method, is one of the major contributions of the NSF GK-12 Teaching Fellowship Program.

  17. The impact of collaborative groups versus individuals in undergraduate inquiry-based astronomy laboratory learning exercises

    NASA Astrophysics Data System (ADS)

    Sibbernsen, Kendra J.

    One of the long-standing general undergraduate education requirements common to many colleges and universities is a science course with a laboratory experience component. One of the objectives frequently included in the description of most of these courses is that a student will understand the nature and processes of scientific inquiry. However, recent research has shown that learners in traditional undergraduate science laboratory environments are not developing a sufficiently meaningful understanding of scientific inquiry. Recently, astronomy laboratory activities have been developed that intentionally scaffold a student from guided activities to open inquiry ones and preliminary results show that these laboratories are successful for supporting students to understand the nature of scientific inquiry (Slater, S., Slater, T. F., & Shaner, 2008). This mixed-method quasi-experimental study was designed to determine how students in an undergraduate astronomy laboratory increase their understanding of inquiry working in relative isolation compared to working in small collaborative learning groups. The introductory astronomy laboratory students in the study generally increased their understanding of scientific inquiry over the course of the semester and this held true similarly for students working in groups and students working individually in the laboratories. This was determined by the examining the change in responses from the pretest to the posttest administration of the Views of Scientific Inquiry (VOSI) survey, the increase in scores on laboratory exercises, and observations from the instructor. Because the study was successful in determining that individuals in the astronomy laboratory do as well at understanding inquiry as those who complete their exercises in small groups, it would be appropriate to offer these inquiry-based exercises in an online format.

  18. FCS Undergrads at Mississippi State Learn Research Process

    ERIC Educational Resources Information Center

    Worthy, Sheri L.

    2009-01-01

    Understanding the research process is a vital part of the undergraduate experience. Conducting research helps students see the value of the scientific process and various research methods, and encourages inquisitiveness about family and consumer sciences (FCS) issues. Research experiences augment students' professional development, increase their…

  19. Diagramming Scientific Papers - A New Idea for Understanding/Teaching/Sharing Science

    NASA Astrophysics Data System (ADS)

    Saltus, R. W.; Fedi, M.

    2014-12-01

    How do we best communicate scientific results? As the number of scientists and scientific papers steadily increases, one of the greatest challenges is effective and efficient sharing of science. The official repository of scientific knowledge is the peer-reviewed journal archive. However, this primary knowledge can be difficult to access and understand by anyone but a relevant specialist. We propose some new ideas for diagramming the content and significance of scientific papers using a simple and intuitive graphical approach. We propose a visual mapping that highlights four fundamental aspects of most scientific papers: Data, Methods/Models, Results/Ideas, and Implications/Importance. Each of these aspects is illustrated within boxed fields which contain one or more labeled elements positioned to reflect novelty (aka originality) and impact relative to the vertical and horizontal axes. The relative position of the boxed fields themselves indicates the relative significance of data, methods, ideas, or implications to the paper. Optional lines between boxed elements indicate the flow and dependence of data/methods/ideas within the paper. As with any graphical depiction, you need to see it to best appreciate it -- this written abstract is only meant as an introduction to the idea.We anticipate that diagramming may prove useful in both communication of scientific ideas among scientists as well as in education and outreach. For example, professors could assign diagramming of papers as a way to help students organize their thoughts about the structure and impact of scientific articles. Students could compare and defend their diagrams as a way to facilitate discussion/debate. Authors could diagram their own work as a way to efficiently summarize the importance and significance of their work. We also imagine that (in the future) automatic diagramming might be used to help summarize or facilitate the discovery of archived work.

  20. "Why bother so incredibly much?": student perspectives on PISA science assignments

    NASA Astrophysics Data System (ADS)

    Serder, Margareta; Jakobsson, Anders

    2015-09-01

    Large-scale assessment, such as the Programme for International Assessment (PISA), plays an increasingly important role in current educational practice and politics. However, many scholars have questioned the validity and reliability of the tests and the extent to which they actually constitute trustworthy representations of students' knowledge. In the light of such critical voices the present article adopts a sociocultural perspective of human knowledge and action in order to explore the encounters between students and the science test assignments with which their knowledge is tested. Of particular interest in this study are the described "real-life situations" presented as the relevant background in which scientific literacy is assessed in PISA. According to the sociocultural theoretical onset the methodology used to approach the students' meaning making of the image of science as portrayed in the test were collaborative situations in which students work in small groups with units of PISA assignments, enabling a study of student-assignment encounters in action. The data we worked with consists of video-recordings from 71 Swedish 15-year-old students working with three released units from the PISA science test. According to our analysis, the "real-life situations" described in the test emerge as problematic in the students' meaning-making. This is demonstrated for instance by the students' positioning themselves as being different from and opposed to the fictional pictured students who appear in the backstories of the test. This article provides examples of how the scientific and academic language used by the fictional students in the assignments mediates distance and resistance among the students. The fictional students' use of strict scientific language and methods in day-to-day life situations leads them to be perceived as "little scientists" and as elite stereotypes of the scientific culture. We conclude that, by using assignments of this type, measurements of students' knowledge in science run the risk of becoming a measurement of cultural consistency regarding how well students will overcome the hurdles of scientific cultures. We mean that all though understanding the scientific culture is an important goal for science education, there is a problem that the assessment organizations communicate the results as representations of students' knowledge in science. This study adheres to research that advises caution in not over-interpreting the PISA results and stresses that understanding students' "knowledge" about science is much more complex than what is communicated by the international assessment organizations.

  1. Shaping scientific attitude of biology education students through research-based teaching

    NASA Astrophysics Data System (ADS)

    Firdaus, Darmadi

    2017-08-01

    Scientific attitude is need of today's society for peaceful and meaningful living of every person in a multicultural world. A case study was conducted at the Faculty of Teacher Training and Education, University of Riau, Pekanbaru in order to describe the scientific attitude that shaped by research-based teaching (RBT). Eighteen students of English for Biology bilingual program were selected from 88 regular students as a subject of the study. RBT designed consists of 9 steps: 1) field observations, 2) developing research proposals, 3) research proposal seminar, 4) field data collecting, 5) data analyzing & ilustrating, 6) writing research papers, 7) preparing power point slides, 8) creating a scientific poster, 9) seminar & poster session. Data were collected by using check list observation instuments during 14 weeks (course sessions), then analyzed by using descriptive-quantitative method. The results showed that RBT were able to shape critical-mindedness, suspended judgement, respect for evidence, honesty, objectivity, and questioning attitude as well as tolerance of uncertainty. These attitudes which shaped were varies according to every steps of learning activities. It's seems that the preparation of scientific posters and research seminar quite good in shaping the critical-mindedness, suspended judgment, respect for evidence, honesty, objectivity, and questioning attitude, as well as tolerance of uncertainty. In conclusion, the application of research-based teaching through the English for Biology courses could shape the students scientific attitudes. However, the consistency of the appearance of a scientific attitude in every stage of Biology-based RBT learning process need more intensive and critical assessment.

  2. Mutation-based learning to improve student autonomy and scientific inquiry skills in a large genetics laboratory course.

    PubMed

    Wu, Jinlu

    2013-01-01

    Laboratory education can play a vital role in developing a learner's autonomy and scientific inquiry skills. In an innovative, mutation-based learning (MBL) approach, students were instructed to redesign a teacher-designed standard experimental protocol by a "mutation" method in a molecular genetics laboratory course. Students could choose to delete, add, reverse, or replace certain steps of the standard protocol to explore questions of interest to them in a given experimental scenario. They wrote experimental proposals to address their rationales and hypotheses for the "mutations"; conducted experiments in parallel, according to both standard and mutated protocols; and then compared and analyzed results to write individual lab reports. Various autonomy-supportive measures were provided in the entire experimental process. Analyses of student work and feedback suggest that students using the MBL approach 1) spend more time discussing experiments, 2) use more scientific inquiry skills, and 3) find the increased autonomy afforded by MBL more enjoyable than do students following regimented instructions in a conventional "cookbook"-style laboratory. Furthermore, the MBL approach does not incur an obvious increase in labor and financial costs, which makes it feasible for easy adaptation and implementation in a large class.

  3. Teachers' Integration of Scientific and Engineering Practices in Primary Classrooms

    NASA Astrophysics Data System (ADS)

    Merritt, Eileen G.; Chiu, Jennie; Peters-Burton, Erin; Bell, Randy

    2017-06-01

    The Next-Generation Science Standards (NGSS) challenge primary teachers and students to work and think like scientists and engineers as they strive to understand complex concepts. Teachers and teacher educators can leverage what is already known about inquiry teaching as they plan instruction to help students meet the new standards. This cross-case analysis of a multiple case study examined teacher practices in the context of a semester-long professional development course for elementary teachers. We reviewed lessons and teacher reflections, examining how kindergarten and first grade teachers incorporated NGSS scientific and engineering practices during inquiry-based instruction. We found that most of the teachers worked with their students on asking questions; planning and carrying out investigations; analyzing and interpreting data, using mathematics and computational thinking; and obtaining, evaluating and communicating information. Teachers faced challenges in supporting students in developing their own questions that could be investigated and using data collection strategies that aligned with students' development of number sense concepts. Also, some teachers overemphasized the scientific method and lacked clarity in how they elicited and responded to student predictions. Discussion focuses on teacher supports that will be needed as states transition to NGSS.

  4. Measuring the Disparities between Biology Undergraduates' Perceptions and Their Actual Knowledge of Scientific Literature with Clickers

    ERIC Educational Resources Information Center

    Bandyopadhyay, Aditi

    2013-01-01

    This article demonstrates an innovative method used to determine the need for information literacy among science undergraduate students at Adelphi University. Using clickers technology, this study measured the disconnect between biology undergraduates' perceived and actual knowledge of scientific literature. The quantitative data collected in the…

  5. Use of Thermochrons in the Classroom

    ERIC Educational Resources Information Center

    Avard, Margaret Marie

    2010-01-01

    Preservice elementary education students often do not have a good feel for the process of science. Many may be acquainted with the steps of the scientific method but have never been through the scientific process. An exercise was designed using temperature-logging iButtons (Thermochrons) to improve knowledge of and familiarity with the process of…

  6. Articulated Multimedia Physics, Lesson 3, The Arithmetic of Scientific Notation.

    ERIC Educational Resources Information Center

    New York Inst. of Tech., Old Westbury.

    As the third lesson of the Articulated Multimedia Physics Course, instructional materials are presented in this study guide. An introductory description is given for scientific notation methods. The subject content is provided in scrambled form, and the use of matrix transparencies is required for students to control their learning process.…

  7. Using Computer Simulations for Promoting Model-Based Reasoning: Epistemological and Educational Dimensions

    ERIC Educational Resources Information Center

    Develaki, Maria

    2017-01-01

    Scientific reasoning is particularly pertinent to science education since it is closely related to the content and methodologies of science and contributes to scientific literacy. Much of the research in science education investigates the appropriate framework and teaching methods and tools needed to promote students' ability to reason and…

  8. Effectiveness of the use of question-driven levels of inquiry based instruction (QD-LOIBI) assisted visual multimedia supported teaching material on enhancing scientific explanation ability senior high school students

    NASA Astrophysics Data System (ADS)

    Suhandi, A.; Muslim; Samsudin, A.; Hermita, N.; Supriyatman

    2018-05-01

    In this study, the effectiveness of the use of Question-Driven Levels of Inquiry Based Instruction (QD-LOIBI) assisted visual multimedia supported teaching materials on enhancing senior high school students scientific explanation ability has been studied. QD-LOIBI was designed by following five-levels of inquiry proposed by Wenning. Visual multimedia used in teaching materials included image (photo), virtual simulation and video phenomena. QD-LOIBI assisted teaching materials supported by visual multimedia were tried out on senior high school students at one high school in one district in West Java. A quasi-experiment method with design one experiment group (n = 31) and one control group (n = 32) were used. Experimental group were given QD-LOIBI assisted teaching material supported by visual multimedia, whereas the control group were given QD-LOIBI assisted teaching materials not supported visual multimedia. Data on the ability of scientific explanation in both groups were collected by scientific explanation ability test in essay form concerning kinetic gas theory concept. The results showed that the number of students in the experimental class that has increased the category and quality of scientific explanation is greater than in the control class. These results indicate that the use of multimedia supported instructional materials developed for implementation of QD-LOIBI can improve students’ ability to provide explanations supported by scientific evidence gained from practicum activities and applicable concepts, laws, principles or theories.

  9. Student’s profile about science literacy in Surakarta

    NASA Astrophysics Data System (ADS)

    Nur’aini, D.; Rahardjo, S. B.; Elfi Susanti, V. H.

    2018-05-01

    This research was conducted to find out student’s initial profile of science literacy. The method used was descriptive with 46 students as subjects. The instrument used is science literacy question referring to PISA 2015. Data processing technique used are scoring on each question, changing the score values, grouping the level subjects obtain based on the value and conclusion. Competencies measure in this test are explaining scientific phenomena, interpretation of data and evidence scientifically, and evaluate and design scientific inquiry. The results of the three competencies are 30,87%, 40,20% and 24,90%. Achievement level of science literacy achieved by students in level 1 47,82%, level 2 33,82%, level 3 42,93%, level 4 26,50%, level 5 21,73%. Based on the result of research, it can be concluded that the ability of science literacy students in Surakarta relatively low.

  10. Using Communication Technology to Facilitate Scientific Literacy: A Framework for Engaged Learning

    NASA Astrophysics Data System (ADS)

    VanBuskirk, Shireen Adele

    The purpose of this research project is to describe how existing communication technologies are used to foster scientific literacy for secondary students. This study develops a new framework as an analytic tool to categorize the activities of teachers and students involved in scientific literacy to describe what elements of scientific literacy are facilitated by such technologies. Four case studies are analyzed using the framework to describe the scientific literacy initiatives. Data collection at each site included interviews with the teacher, student focus groups, student surveys, and classroom observations. Qualitative analysis of the data provided insight into the learning activities and student experiences in the four cases. This study intentionally provides a platform for student voice. Very few previous empirical studies in the area of scientific literacy include the student experience. This represents a significant gap in the current literature on scientific literacy. An interpretation of scientific literacy that promotes student engagement, interaction, and initiative corresponds to a need to listen to students' perspectives on these experiences. Findings of the study indicated that the classroom activities depended on the teacher's philosophy regarding scientific literacy. Communication technology was ubiquitous; where the teacher did not initiate the use of social media in the classroom, the students did. The goal of supporting scientific literacy in students is an objective that extends beyond the boundaries of classroom walls, and it can be facilitated by technologies that seem both abundant and underutilized. Technology-enhanced pedagogy altered the classroom practices and resulted in more student participation and engagement.

  11. Using Computer Simulations for Promoting Model-based Reasoning. Epistemological and Educational Dimensions

    NASA Astrophysics Data System (ADS)

    Develaki, Maria

    2017-11-01

    Scientific reasoning is particularly pertinent to science education since it is closely related to the content and methodologies of science and contributes to scientific literacy. Much of the research in science education investigates the appropriate framework and teaching methods and tools needed to promote students' ability to reason and evaluate in a scientific way. This paper aims (a) to contribute to an extended understanding of the nature and pedagogical importance of model-based reasoning and (b) to exemplify how using computer simulations can support students' model-based reasoning. We provide first a background for both scientific reasoning and computer simulations, based on the relevant philosophical views and the related educational discussion. This background suggests that the model-based framework provides an epistemologically valid and pedagogically appropriate basis for teaching scientific reasoning and for helping students develop sounder reasoning and decision-taking abilities and explains how using computer simulations can foster these abilities. We then provide some examples illustrating the use of computer simulations to support model-based reasoning and evaluation activities in the classroom. The examples reflect the procedure and criteria for evaluating models in science and demonstrate the educational advantages of their application in classroom reasoning activities.

  12. The delta cooperative model: a dynamic and innovative team-work activity to develop research skills in microbiology.

    PubMed

    Rios-Velazquez, Carlos; Robles-Suarez, Reynaldo; Gonzalez-Negron, Alberto J; Baez-Santos, Ivan

    2006-05-01

    The Delta Cooperative Model (DCM) is a dynamic and innovative teamwork design created to develop fundamentals in research skills. High school students in the DCM belong to the Upward Bound Science and Math (UBSM) program at the Inter American University, Ponce Campus. After workshops on using the scientific method, students were organized into groups of three students with similar research interests. Each student had to take on a role within the group as either a researcher, data analyst, or research editor. Initially, each research team developed hypothesis-driven ideas on their proposed project. In intrateam research meetings, they emphasized team-specific tasks. Next, interteam meetings were held to present ideas and receive critical input. Finally, oral and poster research presentations were conducted at the UBSM science fair. Several team research projects covered topics in medical, environmental, and general microbiology. The three major assessment areas for the workshop and DCM included: (i) student's perception of the workshops' effectiveness in developing skills, content, and values; (ii) research team self- and group participation evaluation, and (iii) oral and poster presentation during the science fair. More than 91% of the students considered the workshops effective in the presentation of scientific method fundamentals. The combination of the workshop and the DCM increased student's knowledge by 55% from pre- to posttests. Two rubrics were designed to assess the oral presentation and poster set-up. The poster and oral presentation scores averaged 83% and 75% respectively. Finally, we present a team assessment instrument that allows the self- and group evaluation of each research team. While the DCM has educational plasticity and versatility, here we document how the this model has been successfully incorporated in training and engaging students in scientific research in microbiology.

  13. Impact of backwards faded scaffolding approach to inquiry-based astronomy laboratory experiences on undergraduate non-science majors' views of scientific inquiry

    NASA Astrophysics Data System (ADS)

    Lyons, Daniel J.

    This study explored the impact of a novel inquiry-based astronomy laboratory curriculum designed using the Backwards Faded Scaffolding inquiry teaching framework on non-science majoring undergraduate students' views of the nature of scientific inquiry (NOSI). The study focused on two aspects of NOSI: The Distinction between Data and Evidence (DvE), and The Multiple Methods of Science (MMS). Participants were 220 predominately non-science majoring undergraduate students at a small, doctoral granting, research-extensive university in the Rocky Mountain region of the United States. The student participants were enrolled in an introductory astronomy survey course with an associated laboratory section and were selected in two samples over consecutive fall and spring semesters. The participants also included four of the graduate student instructors who taught the laboratory courses using the intervention curriculum. In the first stage, student participant views of NOSI were measured using the VOSI-4 research instrument before and after the intervention curriculum was administered. The responses were quantified, and the distributions of pre and posttest scores of both samples were separately analyzed to determine if there was a significant improvement in understanding of either of the two aspects of NOSI. The results from both samples were compared to evaluate the consistency of the results. In the second stage, the quantitative results were used to strategically design a qualitative investigation, in which the four lab instructors were interviewed about their observations of how the student participants interacted with the intervention curriculum as compared to traditional lab activities, as well as their suggestions as to how the curriculum may or may not have contributed to the results of the first stage. These interviews were summarized and analyzed for common themes as to how the intervention curriculum influenced the students' understandings of the two aspect of NOSI. According to the results of a Wilcoxon Signed Rank test, there was a significant shift in the distributions of both samples toward a more informed understanding of DvE after the intervention curriculum was administered, while there was no significant change in either direction for understanding of MMS. The results of the instructor interview analysis suggested that the intervention curriculum provided multiple opportunities for students to evaluate and determine the relevance of data in the context of producing evidence-based conclusions directly related to specific research questions, thereby supporting the development of more informed views of DvE. These results also suggested that students might not have realized that they were exclusively engaged in non-experimental type inquiries, as various research methods were not explicitly addressed. The intervention curriculum used a consistently phased stepwise format, which may also have led the students to accommodate their astronomy inquiry experiences within persistent misconceptions of "The Scientific Method" as the only valid means of constructing scientific knowledge, thereby leading to no change in understanding of MMS. The results of the study suggest that a scaffolded, inquiry-based, introductory astronomy laboratory curriculum purposefully designed and scaffolded to enhance students' understandings could be effective in enhancing undergraduate non-science majoring students' views of certain aspects of NOSI. Through scaffolding inquiry experiences that deliver multiple opportunities to engage in authentic scientific inquiries, the novel curriculum provides a valuable resource for the astronomy education community to engage students in learning experiences that reflect the contemporary views of constructivist inquiry-based learning, which focuses on the interpretation of data to create evidence in light of specific questions, as well as opportunities to engage in authentic scientific discourse. As such it can enable astronomy educators in the undergraduate teaching community to support student learning beyond astronomy content knowledge toward a more informed understanding of the process of scientific knowledge construction to the end of supporting proficiency in science and science literacy.

  14. An inquiry-based practical for a large, foundation-level undergraduate laboratory that enhances student understanding of basic cellular concepts and scientific experimental design.

    PubMed

    Bugarcic, A; Zimbardi, K; Macaranas, J; Thorn, P

    2012-01-01

    Student-centered education involving research experiences or inquiry have been shown to help undergraduate students understand, and become excited about, the process of scientific investigation. These benefits are particularly important for students in the early stages of their degree (Report and Kenny, http://naplesccsunysbedu/Pres/boyernsf/1998). However, embedding such experiences into the curriculum is particularly difficult when dealing with early stage students, who are in larger cohorts and often lack the background content knowledge necessary to engage with primary research literature and research level methods and equipment. We report here the design, delivery, assessment, and subsequent student learning outcomes of a 4-week practical module for 120 students at the beginning of their second year of university, which successfully engages students in designing cell culture experiments and in understanding the molecular processes and machinery involved in the basic cellular process of macropinocytosis. Copyright © 2011 Wiley Periodicals, Inc.

  15. Research Based Science Education: Bringing Authentic Scientific Research into the Secondary Classroom

    NASA Astrophysics Data System (ADS)

    Sayers, J.

    2003-12-01

    Teachers and students at Northview High School in Brazil, Indiana have the opportunity to engage in authentic scientific research through our participation in two national projects, TLRBSE and PEPP. Teacher Leaders in Research Based Science Education (TLRBSE) is a teacher professional development and retention program coupled with authentic scientific research projects in astronomy. Teacher-Leaders are trained in research-based pedagogy and serve as mentors to less experienced colleagues and work with students to develop science research methods and research projects for the classroom. Astronomical data collected at Kitt Peak by astronomers and teachers is made available on CD for classroom use. Northview is in its second year as a TLRBSE school. The Princeton Earth Physics Project (PEPP) trains mentor teachers in fundamentals of research in seismology. Teachers and students then gain hands on experience in science research through operation of a research quality seismic station sited at the high school. Data from the Northview seismometer are stored locally and also transmitted over the Internet to a database at Indiana University. Students have access to local data as well as seismic databases accessible through the Internet to use for research projects. The Northview Seismic Station has been in operation since 1998. In this presentation, I will describe how these projects have been incorporated into the physics and earth science programs at Northview High School. I will discus how our teachers and students have benefited from the opportunity to take part in hands-on scientific research under the guidance of university faculty. In particular, I will describe our participation in a regional seismic network through seismic data acquisition, data analysis using seismological software, and students' experiences in a university-based student research symposium. I reflect on the some of the successes and barriers to high-school teachers' and students' involvement in scientific research programs. I conclude with a discussion of a successful student seismology project that was a finalist in the 2003 INTEL International Science and Engineering Fair

  16. Variations on an Historical Case Study

    ERIC Educational Resources Information Center

    Field, Patrick

    2006-01-01

    The National Inquiry Standard for Science Education Preparation requires science teachers to introduce students to scientific inquiry to solve problems by various methods, including active learning in a collaborative environment. In order for science teachers to comply with this inquiry standard, activities must be designed for students to…

  17. Easing Your Pain: A Method for Evaluating Research Writing from Students

    ERIC Educational Resources Information Center

    Jensen, Barbara E.; Martin, Kathleen A.; Mann, Betty L.; Fogarty, Tracey

    2004-01-01

    Throughout their undergraduate and graduate careers, students are assigned various types of papers that require scientific writing style. The scope of these assignments include laboratory reports that require only graphing and statements of findings; abstract assignments with critical summaries included; abbreviated research papers, including…

  18. Teaching the Scientific Method: It's All in the Perspective

    ERIC Educational Resources Information Center

    Ayers, James M.; Ayers, Kathleen M.

    2007-01-01

    A three unit module of inquiry, including morphological comparison, cladogram construction, and data mining has been developed to teach students the nature of experimental science. Students generate angiosperm morphological data, form cladistic hypotheses, then mine taxonomic, bioinformatic and historical data from many sources to replicate and…

  19. Making Sense of Scientific Biographies: Scientific Achievement, Nature of Science, and Storylines in College Students' Essays

    ERIC Educational Resources Information Center

    Hwang, Seyoung

    2015-01-01

    In this article, the educative value of scientific biographies will be explored, especially for non-science major college students. During the "Scientist's life and thought" course, 66 college students read nine scientific biographies including five biologists, covering the canonical scientific achievements in Western scientific history.…

  20. Assessment of Evidence in University Students' Scientific Writing.

    ERIC Educational Resources Information Center

    Takao, Allison Y.; Kelly, Gregory J.

    2003-01-01

    Examines uses of evidence in university students' writing of scientific argument in an introductory-level oceanography course. Provides students with an interactive CD-ROM entitled 'Our Dynamic Planet' to write a scientific technical paper. Discusses ways of teaching students the construction of argument in scientific writing. (KHR)

  1. A philosophical examination of Mead's pragmatist constructivism as a referent for adult science education

    NASA Astrophysics Data System (ADS)

    Furbish, Dean Russel

    The purpose of this study is to examine pragmatist constructivism as a science education referent for adult learners. Specifically, this study seeks to determine whether George Herbert Mead's doctrine, which conflates pragmatist learning theory and philosophy of natural science, might facilitate (a) scientific concept acquisition, (b) learning scientific methods, and (c) preparation of learners for careers in science and science-related areas. A philosophical examination of Mead's doctrine in light of these three criteria has determined that pragmatist constructivism is not a viable science education referent for adult learners. Mead's pragmatist constructivism does not portray scientific knowledge or scientific methods as they are understood by practicing scientists themselves, that is, according to scientific realism. Thus, employment of pragmatist constructivism does not adequately prepare future practitioners for careers in science-related areas. Mead's metaphysics does not allow him to commit to the existence of the unobservable objects of science such as molecular cellulose or mosquito-borne malarial parasites. Mead's anti-realist metaphysics also affects his conception of scientific methods. Because Mead does not commit existentially to the unobservable objects of realist science, Mead's science does not seek to determine what causal role if any the hypothetical objects that scientists routinely posit while theorizing might play in observable phenomena. Instead, constructivist pragmatism promotes subjective epistemology and instrumental methods. The implication for learning science is that students are encouraged to derive scientific concepts based on a combination of personal experience and personal meaningfulness. Contrary to pragmatist constructivism, however, scientific concepts do not arise inductively from subjective experience driven by personal interests. The broader implication of this study for adult education is that the philosophically laden claims of constructivist learning theories need to be identified and assessed independently of any empirical support that these learning theories might enjoy. This in turn calls for educational experiences for graduate students of education that incorporate philosophical understanding such that future educators might be able to recognize and weigh the philosophically laden claims of adult learning theories.

  2. Middle/High School Students in the Research Laboratory: A Summer Internship Program Emphasizing the Interdisciplinary Nature of Biology

    ERIC Educational Resources Information Center

    McMiller, Tracee; Lee, Tameshia; Saroop, Ria; Green, Tyra; Johnson, Casonya M.

    2006-01-01

    We describe an eight-week summer Young Scientist in Training (YSIT) internship program involving middle and high school students. This program exposed students to current basic research in molecular genetics, while introducing or reinforcing principles of the scientific method and demonstrating the uses of mathematics and chemistry in biology. For…

  3. Identifying Students' Mental Models of Sound Propagation: The Role of Conceptual Blending in Understanding Conceptual Change

    ERIC Educational Resources Information Center

    Hrepic, Zdeslav; Zollman, Dean A.; Rebello, N. Sanjay

    2010-01-01

    We investigated introductory physics students' mental models of sound propagation. We used a phenomenographic method to analyze the data in the study. In addition to the scientifically accepted Wave model, students used the "Entity" model to describe the propagation of sound. In this latter model sound is a self-standing entity,…

  4. Developing Teaching Materials PISA-Based for Mathematics and Science of Junior High School

    ERIC Educational Resources Information Center

    Somakim; Suharman, Andi; Madang, Kodri; Taufiq

    2016-01-01

    This research aims to develop valid and practical teaching materials for mathematics and science lesson PISA-based for junior high school students and to determine potential effects on students in scientific activity. Subjects of this study were students of Junior High School 9 Palembang (SMP Negeri 9 Palembang). The method used in this study is…

  5. IYPT problems teach high school students about teamwork and the scientific method

    NASA Astrophysics Data System (ADS)

    Kochanski, K.; Klishin, A.

    2015-12-01

    Laboratory work is often STEM students' primary exposure to key creative and communicative skills in the sciences, including experimental design, trouble shooting, team work, and oral presentations. The International Young Physicists' Tournament (IYPT) teaches these skills by inviting high school students to investigate simple unsolved systems instead of reproducing familiar results. Students work in teams to form hypotheses, gather data, and present their results orally in a tournament format. The IYPT has published 17 questions yearly since 1988, and its archives are an efficient source of experimental problems for outreach programs and have also been used for first-year undergraduate project classes (Planisic, 2009). We present insights and outcomes from two schools in which we introduced a new extracurricular program based on the IYPT model. Twenty-four students worked in small teams for three hours per day for six weeks. Surprisingly, most teams chose problems in unfamiliar subject areas such as fluid dynamics, and tailored their approaches to take advantage of individual skills including soldering, photography, and theoretical analysis. As the program progressed, students developed an increasingly intuitive understanding of the scientific method. They began to discuss the repeatability of their experiments without prompting, and were increasingly willing to describe alternative hypotheses.

  6. Does The Sun Rotate Around The Earth Or Does The Earth Rotate Around the Sun? An Important Key to Evaluating Science Education

    NASA Astrophysics Data System (ADS)

    Isobe, S.

    2006-08-01

    The Japan Spaceguard Association, Tokyo, Japan Sciences are continuously developing. This is a good situation for the sciences, but when one tries to teach scientific results, it is hard to decide which levels of science should be taught in schools. The point to evaluate is not only the quality of scientific accuracy, but also the method with which school students of different scientific abilities study scientific results. In astronomy, an important question, which is "Does the Sun rotate around the Earth or does the Earth rotate around the Sun?" can be used to evaluate student abilities. Scientifically, it is obvious that the latter choice is the better answer, but it is not so obvious for the lower-grade students and also for the lower-ability students even in the higher grades. If one sees daily the sky without scientific knowledge, one has an impression of "the Sun rotates around the Earth," and for his rest of his life he will not see any problem. If one wants to be a scientist, though, he should know that "the Earth rotates around the Sun" before reaching university level. If he will become a physical scientist, he should understand that it is not correct to say "the Earth rotates around the Sun," but he should know that the Earth rotates around the center of gravity of the solar system. A similar type of question is "has the Earth the shape of a sphere, or a pear, or a geoid?" There are many teachers with varying ranges of students who do not understand the proper level of science instruction. When students of lower capacity are instructed to understand concepts with the higher degrees of sophistication, they can easily lose their interest in the sciences. This happens in many countries, especially in Japan, where there are many different types of people with different jobs. We, as educators, should appreciate that the students can be interested in any given scientific idea, no matter what level of sophistication it is.

  7. MS PHD'S Professional Development Program: A Scientific Renaissance in Cyberspace

    NASA Astrophysics Data System (ADS)

    Powell, J. M.; Williamson, V. A.; Griess, C. A.; Pyrtle, A. J.

    2004-12-01

    This study is a component of a four-year investigation of MS PHD'S Professional Development Program's virtual community through the lenses of underrepresented minority students in Earth system science and engineering fields. In this presentation, the development, assessment and projected utilization of the ongoing study will be discussed. The overall goal of this study is to examine the effectiveness of virtual team building methods and understand how the development of a communal cyberinfrastructure acts as an integral part of the emergence of a Scientific Renaissance. The exemplar, Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science (MS PHD'S), provides professional development experiences to facilitate the advancement of students of color achieving outstanding Earth system careers. Undergraduate and graduate students are supported through access to scientific conferences, mentorship and virtual community building. Framed by critical theory, this ethnographic exploration uses a mixed methods research design to record, observe, and analyze both the processes and products of the website, listserv and synchronous web-based dialogue. First, key findings of the formative evaluation and annual reports of the successfully implemented 2003 MS PHD'S Pilot Project are presented. These findings inform future evaluations of the use of technological resources and illustrate how this public space provides peer support and enriched research opportunities. Quantitative methods such as statistical analysis, academic and professional tracking and evaluative tools for scientific content and competency are complimented by qualitative methods that include observations, heuristic case studies and focus group interviews. The findings of this ongoing investigation will provide insight on how national organizations, higher education practitioners, community-based support systems and underrepresented minorities in the sciences promote diversity by developing successful cyberspace programs and networks. Through the examination of the transformation, expansion and democratization of the Earth system science community, new knowledge will be obtained on how a cyber-community fuses science, diversity and technology to form dialectics between creating and analyzing a Scientific Renaissance.

  8. Community development in a Research Experience for Teachers (RET) program: Teacher growth and translation of the experience back to the classroom

    NASA Astrophysics Data System (ADS)

    Johnston, Carol Suzanne Chism

    This qualitative study explores how a scientific research experience helped seven secondary science teachers to grow professionally. The design of this Research Experience for Teachers (RET) program emphasized having teachers become members of university scientific research communities---participating in experimental design, data collection, analysis, and presenting of findings---in order to have a better understanding of research science. I conducted individual interviews with teacher and scientist participants, visited the teachers in their laboratories, videotaped classroom visits, and videotaped group meetings during the summers to learn what teachers brought back to their classrooms about the processes of science. I examined the teachers' views of research science, views shaped by their exposure to research science under the mentorship of a scientist participant. The teachers observed the collaborative efforts of research scientists and experienced doing scientific research, using technology and various experimental methods. Throughout their two-year experience, the teachers continually refined their images of scientists. I also examined how teachers in this program built a professional community as they developed curricula. Further, I investigated what the teachers brought from their experiences back to the classroom, deciding on a theme of "Communicating Science" as a way to convey aspects of scientific inquiry to students. Teacher growth as a result of this two-year program included developing more empathy for student learning and renewing their enthusiasm for both learning and teaching science. Teacher growth also included developing curricula to involve students in behaving as scientists. The teachers identified a few discrete communication practices of scientists that they deemed appropriate for students to adopt to increase their communication skills. Increased community building in classes to model scientific communities was seen as a way to motivate students and to help them to understand scientific concepts.

  9. Exploration of Korean Students' Scientific Imagination Using the Scientific Imagination Inventory

    NASA Astrophysics Data System (ADS)

    Mun, Jiyeong; Mun, Kongju; Kim, Sung-Won

    2015-09-01

    This article reports on the study of the components of scientific imagination and describes the scales used to measure scientific imagination in Korean elementary and secondary students. In this study, we developed an inventory, which we call the Scientific Imagination Inventory (SII), in order to examine aspects of scientific imagination. We identified three conceptual components of scientific imagination, which were composed of (1) scientific sensitivity, (2) scientific creativity, and (3) scientific productivity. We administered SII to 662 students (4th-8th grades) and confirmed validity and reliability using exploratory factor analysis and Cronbach α coefficient. The characteristics of Korean elementary and secondary students' overall scientific imagination and difference across gender and grade level are discussed in the results section.

  10. Introducing Pre-university Students to Primary Scientific Literature Through Argumentation Analysis

    NASA Astrophysics Data System (ADS)

    Koeneman, Marcel; Goedhart, Martin; Ossevoort, Miriam

    2013-10-01

    Primary scientific literature is one of the most important means of communication in science, written for peers in the scientific community. Primary literature provides an authentic context for showing students how scientists support their claims. Several teaching strategies have been proposed using (adapted) scientific publications, some for secondary education, but none of these strategies focused specifically on scientific argumentation. The purpose of this study is to evaluate a strategy for teaching pre-university students to read unadapted primary scientific literature, translated into students' native language, based on a new argumentation analysis framework. This framework encompasses seven types of argumentative elements: motive, objective, main conclusion, implication, support, counterargument and refutation. During the intervention, students studied two research articles. We monitored students' reading comprehension and their opinion on the articles and activities. After the intervention, we measured students' ability to identify the argumentative elements in a third unadapted and translated research article. The presented framework enabled students to analyse the article by identifying the motive, objective, main conclusion and implication and part of the supports. Students stated that they found these activities useful. Most students understood the text on paragraph level and were able to read the article with some help for its vocabulary. We suggest that primary scientific literature has the potential to show students important aspects of the scientific process and to learn scientific vocabulary in an authentic context.

  11. "We're All Gonna' Die": Using Human Interest in Disasters to Promote Student Interest and Research in Introductory Science Classes for Non-Science Majors.

    NASA Astrophysics Data System (ADS)

    Prueher, L.

    2008-12-01

    Humans are fascinated by disasters. Volcanic eruptions, earthquakes, and other natural disasters capture the public interest and provide educators a venue in which to present scientific information and dispel common misconceptions. Presenting scientific information via the vehicle of a disaster can attract even the most science-phobic student, capturing their interest in a way that more traditional methods of presentation cannot or do not. People are inundated with scientific data through the popular media yet little is done to provide non-scientists with the information needed to distinguish between fact and fiction. Docudramas such as, "Supervolcano", blur the boundary between reality and fiction. Human interest in disasters can be used as an educational tool to foster scientific literacy among non-science majors. "We're All Gonna' Die", is an inquiry-based research project used in introductory geology classes at Arapahoe Community College and the University of Northern Colorado. Most students taking this class have no college science background. The project introduces students to geological and environmental hazards. Students choose a city of interest, analyze the potential geologic and environmental hazards in the area, and determine what can be done to minimize potential damage and fatalities. Students are more interested in a topic and delve deeper into the subject matter when researching a project of their own choosing. Students have incorporated demonstrations, skits, student-made videos, games, current geologic events, and research results into their projects. Perhaps as important, the students have fun, become excited about their project and topic, and disseminate the information to family and friends.

  12. Next Generation Scientists - Creating opportunities for high school students through astronomical research

    NASA Astrophysics Data System (ADS)

    Kelly, Madeline; Cebulla, Hannah; Powers, Lynn

    2015-01-01

    Through various opportunities and experiences with extracurricular scientific research, primarily astronomical research with programs like NASA/IPAC Teacher Archive Research Project (NITARP), and the Mars Exploration Student Data Teams (MESDT), we have noticed a change in our learning style, career path, and general outlook on the scientific community that we strongly believe could also be added to the lives of many other high school students given similar opportunities. The purpose of our poster is to emphasize the importance of granting high school students opportunities to explore different styles and methods of learning. We believe that although crucial, a basic high school education is not enough to expose young adults to the scientific community and create enough interest for a career path. As a result, we wish to show that more of these programs and opportunities should be offered to a greater number of students of all ages, allowing them to explore their passions, develop their understanding of different fields, and determine the paths best suited to their interests. Within our poster, we will emphasize how these programs have specifically impacted our lives, what we hope to see in the future, and how we hope to attain the growth of such opportunities. We include such proposals as; increasing outreach programs, expanding the exposure of young students to the sciences, both in the classroom and out, allowing high school students to participate in active scientific research, and involving students in hands-on activities/experiments within school clubs, the classroom, at home, or at local events. Spreading these opportunities to directly interact with the sciences in similar manners as that of professional scientists will allow students to discover their interests, realize what being a scientist truly entails, and allow them to take the first steps into following their career paths.

  13. The Parallelism between Scientists' and Students' Resistance to New Scientific Ideas.

    ERIC Educational Resources Information Center

    Campanario, Juan Miguel

    2002-01-01

    Compares resistance by scientists to new ideas in scientific discovery with students' resistance to conceptual change in scientific learning. Studies the resistance by students to abandoning their misconceptions concerning scientific topics and the resistance by scientists to scientific discovery. (Contains 64 references.) (Author/YDS)

  14. Using Solar System Topics to Teach the Scientific Method in an Age of Science Denial

    NASA Astrophysics Data System (ADS)

    Lo Presto, M. C.

    2013-04-01

    A number of excellent opportunities to remind students of the scientific method and how the process of science works come about during coverage of common topics in a Solar System “unit” in an introductory college astronomy course. With the tremendous amount of misinformation about science that students are exposed to through the Internet and other forms of media, this is now more important than ever. If non-science majors can leave introductory astronomy, often the only science course they will take, with a decent appreciation of, or at least an exposure to, how science works, they will then be better able to judge the validity of what they hear about science in the media throughout their lives.

  15. A Proposal for a Research-based Constructivist Physics-and-Pedagogy Course

    NASA Astrophysics Data System (ADS)

    Zirbel, Esther

    2006-12-01

    This poster proposes a research-based science-and-pedagogy course that will combine the learning of fundamental physics concepts with methods of how to teach these concepts. Entitled “Understanding the Cosmos: From Antiquity to the Modern Day,” the course will explore how people learn science concepts through the ages, and from childhood through adulthood. This course will use the historical-constructivist approach to illustrate how our understanding of scientific phenomena advanced as we progressed from simple 2-dimensional thinking (starting with the flat Earth concept) to 3-D thinking (learning about the structure of the solar system) to 4-D thinking (understanding space-time and theories about the Big Bang). While transitioning from Impetus to Aristotelian to Newtonian to Einsteinian thinking, students will learn the essence of scientific thinking and inquiry. The overall goal of this course is to excite students in the process of scientific discovery, help them develop scientific reasoning skills, and provide them with fulfilling experiences of truly understanding science concepts. This will be done by employing active engagement techniques (e.g., peer tutoring, Socratic dialogue, and think/pair/share methods) and by challenging students to articulate their thoughts clearly and persuasively. This course could be of value for anybody wanting to enter the teaching profession or simply for anybody who would like to deepen their science understanding.

  16. Curriculum Alignment with Vision and Change Improves Student Scientific Literacy

    PubMed Central

    Auerbach, Anna Jo; Schussler, Elisabeth E.

    2017-01-01

    The Vision and Change in Undergraduate Biology Education final report challenged institutions to reform their biology courses to focus on process skills and student active learning, among other recommendations. A large southeastern university implemented curricular changes to its majors’ introductory biology sequence in alignment with these recommendations. Discussion sections focused on developing student process skills were added to both lectures and a lab, and one semester of lab was removed. This curriculum was implemented using active-learning techniques paired with student collaboration. This study determined whether these changes resulted in a higher gain of student scientific literacy by conducting pre/posttesting of scientific literacy for two cohorts: students experiencing the unreformed curriculum and students experiencing the reformed curriculum. Retention of student scientific literacy for each cohort was also assessed 4 months later. At the end of the academic year, scientific literacy gains were significantly higher for students in the reformed curriculum (p = 0.005), with those students having double the scientific literacy gains of the cohort in the unreformed curriculum. Retention of scientific literacy did not differ between the cohorts. PMID:28495933

  17. Achievable Inquiry in the College Laboratory: The Mini-Journal

    ERIC Educational Resources Information Center

    Witzig, Stephen B.; Zhao, Ningfeng; Abell, Sandra K.; Weaver, Jan C.; Adams, John E.; Schmidt, Frank J.

    2010-01-01

    The authors engage students in inquiry-based learning by presenting laboratory exercises as mini-journal articles that mirror the format of a scientific journal article, including a title, authors, abstract, introduction, materials and methods, results, discussion, and citations. Students develop and carry out their follow-up investigation, then…

  18. Using the Scientific Method to Improve Mentoring

    ERIC Educational Resources Information Center

    McGuire, Saundra Yancy

    2007-01-01

    Many students who enter colleges and universities seem to be focused on memorizing and regurgitating information rather than on developing critical thinking and problem solving skills. Mentoring is crucial to help these students transition from the current approach to one that will be successful in college. Successful mentoring requires a…

  19. Introducing Students to Psychological Research: General Psychology as a Laboratory Course

    ERIC Educational Resources Information Center

    Thieman, Thomas J.; Clary, E. Gil; Olson, Andrea M.; Dauner, Rachel C.; Ring, Erin E.

    2009-01-01

    For 6 years, we have offered an integrated weekly laboratory focusing on research methods as part of our general psychology course. Through self-report measures and controlled comparisons, we found that laboratory projects significantly increase students' knowledge and comfort level with scientific approaches and concepts, sustain interest in…

  20. Broadcasting a Lab Measurement over Existing Conductor Networks

    ERIC Educational Resources Information Center

    Knipp, Peter A.

    2009-01-01

    Students learn about physical laws and the scientific method when they analyze experimental data in a laboratory setting. Three common sources exist for the experimental data that they analyze: (1) "hands-on" measurements by the students themselves, (2) electronic transfer (by downloading a spreadsheet, video, or computer-aided data-acquisition…

  1. Guided-Inquiry Labs Using Bean Beetles for Teaching the Scientific Method & Experimental Design

    ERIC Educational Resources Information Center

    Schlueter, Mark A.; D'Costa, Allison R.

    2013-01-01

    Guided-inquiry lab activities with bean beetles ("Callosobruchus maculatus") teach students how to develop hypotheses, design experiments, identify experimental variables, collect and interpret data, and formulate conclusions. These activities provide students with real hands-on experiences and skills that reinforce their understanding of the…

  2. Virus Hunters: The Science of Applied Research

    ERIC Educational Resources Information Center

    Baker, William P.; Leyva, Kathryn J.

    2006-01-01

    Virology is an integral part of introductory biology courses. Research and experience indicate that, although the topic is a difficult one for many students, the effectiveness of instruction is enhanced when assignments actively engage the students in the generation of scientific explanations. These authors have found that the methods and…

  3. Multiple Drafts of Experimental Laboratory Reports.

    ERIC Educational Resources Information Center

    Sanford, James F.

    Students could gain considerable insight into the philosophy and methods of scientific experimentation if instructors adopted procedures based on an understanding of and respect for writing as a process. Laboratory courses in psychology offer such an opportunity. These courses usually involve a heavy workload for both students and faculty, for, in…

  4. Merging of Research and Teaching in Developmental Biology: Adaptation of Current Scientific Research Papers for Use in Undergraduate Laboratory Exercises

    ERIC Educational Resources Information Center

    Lee, H. H.; and others

    1970-01-01

    Describes two laboratory exercises adopted from current research papers for use in an undergraduate developmental biology course. Gives methods, summary of student results, and student comments. Lists lecture topics, text and reprint assignments, and laboratory exercises for course. (EB)

  5. Attitudinal Impact of Hybridized Writing about a Socioscientific Issue

    ERIC Educational Resources Information Center

    Tomas, Louisa; Ritchie, Stephen M.; Tones, Megan

    2011-01-01

    The development of scientifically literate citizens remains an important priority of science education; however, growing evidence of students' disenchantment with school science continues to challenge the realization of this aim. This triangulation mixed methods study investigated the learning experiences of 152 9th grade students as they…

  6. Reaching More Students through Thinking in Physics

    ERIC Educational Resources Information Center

    Coletta, Vincent P.

    2017-01-01

    Thinking in Physics (TIP) is a new curriculum that is more effective than commonly used interactive engagement methods for students who have the greatest difficulty learning physics. Research has shown a correlation between learning in physics and other factors, including scientific reasoning ability. The TIP curriculum addresses those factors.…

  7. Turning Scientific Presentations into Stories

    ERIC Educational Resources Information Center

    Aruffo, Christopher

    2015-01-01

    To increase students' confidence in giving scientific presentations, students were shown how to present scientific findings as a narrative story. Students who were preparing to give a scientific talk attended a workshop in which they were encouraged to experience the similarities between telling a personal anecdote and presenting scientific data.…

  8. It's Time for a Conceptual Change.

    ERIC Educational Resources Information Center

    Hausfather, Samuel J.

    1992-01-01

    Conceptual change teaching is an instructional method that helps students modify, extend, or exchange their alternative conceptions for the appropriate scientific conceptions. Provides activities and a diagnostic test to apply the method to the concepts of heat and temperature. (MDH)

  9. High school students' scientific epistemological beliefs, self-efficacy in learning physics and attitudes toward physics: a structural equation model

    NASA Astrophysics Data System (ADS)

    Kapucu, Serkan; Bahçivan, Eralp

    2015-05-01

    Background: There are some theoretical evidences that explain the relationships between core beliefs (i.e., epistemological beliefs) and peripheral beliefs (self-efficacy in learning) in the literature. The close relationships of such type of beliefs with attitudes are also discussed by some researchers. Constructing a model that investigates these relationships by considering theoretical and empirical evidences can empower researchers to discuss these relationships more comprehensively. Purpose: The purpose of this study is to explore the relationships among Turkish high school students' scientific epistemological beliefs, self-efficacy in learning physics and their attitudes toward physics. Sample: A total of 632 high school students participated in this study; however, 269 female and 229 male (a total of 498) high school students' data were used. Design and methods: Three distinct instruments that measure scientific epistemological beliefs, self-efficacy in learning physics and attitudes toward physics were combined into a unique questionnaire form and it was distributed to high school students. To explore the relationships among these variables, structural equation modeling was used. Results: The results showed that scientific epistemological belief dimensions uncovered by the nature of knowing (source and justification) significantly and positively related to both self-efficacy in learning physics and attitudes toward other important physics dimensions. Additionally, self-efficacy in learning physics significantly and positively predicted attitudes toward multiple physics dimensions (importance, comprehension and requirement). However, epistemological belief dimensions related to the nature of knowledge (certainty and development) did not have significant impact on self-efficacy in learning physics or attitudes toward physics. Conclusions: This study concludes that there are positive and significant relationships among Turkish high school students' scientific epistemological beliefs, self-efficacy in learning physics and their attitudes toward physics.

  10. Scientific Basis vs. Contextualized Teaching and Learning: The Effect on the Achievement of Postsecondary Students

    ERIC Educational Resources Information Center

    Curry, Kevin W., Jr.; Wilson, Elizabeth; Flowers, Jim L.; Farin, Charlotte E.

    2012-01-01

    The purpose of the study was to compare two teaching methodologies for an integrated agricultural biotechnology course at the postsecondary level. The two teaching methods tested were the explanation of the scientific basis for content (comparison treatment) versus the application of content to a real-world agricultural context (experimental…

  11. Comparative Difficulties with Non-Scientific General Vocabulary and Scientific/Medical Terminology in English as a Second Language (ESL) Medical Students.

    PubMed

    Heming, Thomas A; Nandagopal, Shobha

    2012-11-01

    Medical education requires student comprehension of both technical (scientific/medical) and non-technical (general) vocabulary. Our experience with "English as a second language" (ESL) Arab students suggested they often have problems comprehending scientific statements because of weaknesses in their understanding of non-scientific vocabulary. This study aimed to determine whether ESL students have difficulties with general vocabulary that could hinder their understanding of scientific/medical texts. A survey containing English text was given to ESL students in the premedical years of an English-medium medical school in an Arabic country. The survey consisted of sample questions from the Medical College Admission Test (USA). Students were instructed to identify all unknown words in the text. ESL students commenced premedical studies with substantial deficiencies in English vocabulary. Students from English-medium secondary schools had a selective deficiency in scientific/medical terminology which disappeared with time. Students from Arabic-medium secondary schools had equal difficulty with general and scientific/medical vocabulary. Deficiencies in both areas diminished with time but remained even after three years of English-medium higher education. Typically, when teaching technical subjects to ESL students, attention is focused on subject-unique vocabulary and associated modifiers. This study highlights that ESL students also face difficulties with the general vocabulary used to construct statements employing technical words. Such students would benefit from increases in general vocabulary knowledge.

  12. Characterizing High School Students' Written Explanations in Biology Laboratories

    NASA Astrophysics Data System (ADS)

    Peker, Deniz; Wallace, Carolyn S.

    2011-03-01

    The purpose of this qualitative interpretive research study was to examine high school students' written scientific explanations during biology laboratory investigations. Specifically, we characterized the types of epistemologies and forms of reasoning involved in students' scientific explanations and students' perceptions of scientific explanations. Sixteen students from a rural high school in the Southeastern United States were the participants of this research study. The data consisted of students' laboratory reports and individual interviews. The results indicated that students' explanations were primarily based on first-hand knowledge gained in the science laboratories and mostly representing procedural recounts. Most students did not give explanations based on a theory or a principle and did not use deductive reasoning in their explanations. The students had difficulties explaining phenomena that involved intricate cause-effect relationships. Students perceived scientific explanation as the final step of a scientific inquiry and as an account of what happened in the inquiry process, and held a constructivist-empiricist view of scientific explanations. Our results imply the need for more explicit guidance to help students construct better scientific explanations and explicit teaching of the explanatory genre with particular focus on theoretical and causal explanations.

  13. Research knowledge in undergraduate school in Brazil: a comparison between medical and law students.

    PubMed

    Reis Filho, Antonio José Souza; Andrade, Bruno Bezerril; Mendonça, Vitor Rosa Ramos de; Barral-Netto, Manoel

    2010-09-01

    Exposure to science education during college may affect a student's profile, and research experience may be associated with better professional performance. We hypothesized that the impact of research experience obtained during graduate study differs among professional curricula and among graduate courses. A validated multiple-choice questionnaire concerning scientific concepts was given to students in the first and fourth years of medical and law school at a public Brazilian educational institution. Medical students participated more frequently in introductory scientific programs than law students, and this trend increased from the first to the fourth years of study. In both curricula, fourth-year students displayed a higher percentage of correct answers than first-year students. A higher proportion of fourth-year students correctly defined the concepts of scientific hypothesis and scientific theory. In the areas of interpretation and writing of scientific papers, fourth-year students, in both curricula, felt more confident than first-year students. Although medical students felt less confident in planning and conducting research projects than law students, they were more involved in research activities. Medical graduation seems to favor the development of critical scientific maturity than law graduation. Specific policy in medical schools is a reasonable explanation for medical students' participation in more scientific activities.

  14. Making the Introductory Meteorology Class Relevant in a Minority Serving Community College

    NASA Astrophysics Data System (ADS)

    Marchese, P. J.; Tremberger, G.; Bluestone, C.

    2008-12-01

    Queensborough Community College (QCC), a constituent campus of the City University of New York (CUNY), has modified the introductory Meteorology Class lecture and lab to include active learning activities and discovery based learning. The modules were developed at QCC and other 4 year colleges and designed to introduce basic physical concepts important in meteorology. The modules consisted of either interactive lecture demonstrations or discovery-based activities. The discovery based activities are intended to have students become familiar with scientific investigation. Students engage in formulating hypotheses, developing and carrying out experiments, and analyzing scientific data. These activities differ from traditional lab experiments in that they avoid "cookbook" procedures and emphasize having the students learn about physical concepts by applying the scientific method. During the interactive lecture demonstrations the instructor describes an experiment/phenomenon that is to be demonstrated in class. Students discuss the phenomenon based on their experiences and make a prediction about the outcome. The class then runs the experiment, makes observations, and compares the expected results to the actual outcome. As a result of these activities students in the introductory Meteorology class scored higher in exams questions measuring conceptual understanding, as well as factual knowledge. Lower scoring students demonstrated the greatest benefit, while the better students had little (or no) changes. All students also had higher self-efficacy scores after the intervention, compared to an unmodified class.

  15. Scientists in the making: An ethnographic investigation of scientific processes as literate practice in an elementary classroom

    NASA Astrophysics Data System (ADS)

    Crawford, Teresa Jo

    This study explored the issue of literacy in science by examining how the social and academic literate practices in an elementary classroom formed the basis for learning across the curriculum, with a specific focus on the disciplinary field of science. Through the study of classroom interaction, issues related to student knowledge and ability were addressed as they pertain to scientific literacy in the context of science education reform. The theoretical framework guiding this study was drawn from sociocultural studies of scientific communities and interactional ethnography in education. To investigate the literate practices of science in a school setting, data were collected over a two-year period with the same teacher in her third grade and then her fourth/fifth grade classroom. Data were collected through participant observation in the form of fieldnotes, video data, interviews, and various artifacts (e.g., writings, drawings, teaching protocols). Using ethnographic and sociolinguistic methods of analysis this work examined classroom members' discursive practices to illustrate the role that discourse plays in creating opportunities for engagement in, and access to, scientific knowledge. These analyses revealed that the discursive actions and practices among members of this classroom shaped a particular type of learning environment that was process-oriented and inquiry based. It was shown that this learning environment afforded opportunities for students to engage in the processes of science outside the official, planned curriculum, often leading to whole class scientific investigations and discussions. Additionally, within this classroom community students were able to draw on multiple discourses to display their knowledge of scientific concepts and practices. Overall, this study found that the literate practices of this classroom community, as they were socially constructed among members, contributed to opportunities for students to practice science and demonstrate scientific literacy.

  16. Effects of Students' Prior Knowledge on Scientific Reasoning in Density.

    ERIC Educational Resources Information Center

    Yang, Il-Ho; Kwon, Yong-Ju; Kim, Young-Shin; Jang, Myoung-Duk; Jeong, Jin-Woo; Park, Kuk-Tae

    2002-01-01

    Investigates the effects of students' prior knowledge on the scientific reasoning processes of performing the task of controlling variables with computer simulation and identifies a number of problems that students encounter in scientific discovery. Involves (n=27) 5th grade students and (n=33) 7th grade students. Indicates that students' prior…

  17. Analizing Student Biology Education Misconception And Scientific Argumentation Ability Using Diagnostic Question Clusters (Dqcs) Of Molecular Genetic Concept

    NASA Astrophysics Data System (ADS)

    Nurlaila, L.; Sriyati, S.; Riandi

    2017-02-01

    The purpose of this research is to describe the profile of misconceptions and scientific argumentation ability using Diagnostic Question Cluster (DQCs) of molecular genetics concept. This research use descriptive research method and biology education students as a research subject. The Instrument that used in this research are DQCs, sheets interviews, observations, and field notes. The DQCs tested by writing and oral that used to analyze misconceptions and scientific argumentation ability. Sheets interviews, observations and field notes, are used to analyze the possible factors causing misconceptions and scientific argumentation ability. The results showed that misconception of molecular genetics are: DNA (23.75%), genes (18.75%) of chromosomes (15%) and protein synthesis (5.5%). The pattern of the highest misconceptions owned Misconception-Understand Partial. The average scientific argumentation ability is 55% and still categorized warrant (W). The pattern of the scientific argumentation abilities formed is level 2 to level 2 that consists of the arguments in the form of a claim with a counter claim that accompanied by data, collateral (warrant) or support (backing) but does not contain a disclaimer (rebutal).

  18. Socio-scientific reasoning influenced by identities

    NASA Astrophysics Data System (ADS)

    Simonneaux, Laurence; Simonneaux, Jean

    2009-09-01

    Based on the comments by Lopez-Facal and Jiménez-Aleixandre, we consider that the cultural identities within Europe interfere with the question of the re-introduction of the Slovenian bear, generating a kind of "discrimination." When the SAQs under debate run against the students' systems of value, it seems that the closer the connection between the SAQs (socially acute questions) and the territorial and cultural identity, the more deeply the associated systems of values are affected; and the more the evidence is denied, the weaker the socio-scientific reasoning becomes. This result shows the importance of attempting to get the students to clarify the values underlying their socio-scientific reasoning. As Sadler observed, there was no transfer of socio-scientific reasoning on the three questions considered; each SAQ, as they are deeply related to social representations and identity, generated a specific line of reasoning balancing more or less each operation. Among various methods of teaching SAQs—problematizing, genetic, doctrinal and praxeological methods--socio-scientific reasoning may be a complex activity of problematization fostering the development of critical thinking. Confronted with the refusal to analyse the evidence in the case of the bear, and because of the nature of SAQs, we explore the notion of tangible proof. We think it relevant to study, together with the students, the processes of investigation used by the actors to establish or disestablish tangible proof on SAQs by analysing the intermediary states of the systems of proof, and possibly the "weak signals" which result in calling for the implementation of the precautionary principle.

  19. Examining elementary teachers' knowledge and instruction of scientific explanations for fostering children's explanations in science

    NASA Astrophysics Data System (ADS)

    Wiebke, Heidi Lynn

    This study employed an embedded mixed methods multi-case study design (Creswell, 2014) with six early childhood (grades K-2) teachers to examine a) what changes occurred to their subject matter knowledge (SMK) and pedagogical content knowledge (PCK) for teaching scientific explanations while participating in a professional development program, b) how they planned for and implemented scientific explanation instruction within a teacher developed unit on properties of matter, and c) what affordances their instruction of scientific explanations had on fostering their students' abilities to generate explanations in science. Several quantitative and qualitative measures were collected and analyzed in accordance to this studies conceptual framework, which consisted of ten instructional practices teachers should consider assimilating or accommodating into their knowledge base (i.e., SMK & PCK) for teaching scientific explanations. Results of this study indicate there was little to no positive change in the teachers' substantive and syntactic SMK. However, all six teachers did make significant changes to all five components of their PCK for teaching explanations in science. While planning for scientific explanation instruction, all six teachers' contributed some ideas for how to incorporate seven of the ten instructional practices for scientific explanations within the properties of matter unit they co-developed. When enacting the unit, the six teachers' employed seven to nine of the instructional practices to varying levels of effectiveness, as measured by researcher developed rubrics. Given the six teachers' scientific explanation instruction, many students did show improvement in their ability to formulate a scientific explanation, particularly their ability to provide multiple pieces of evidence. Implications for professional developers, teacher educators, researchers, policy makers, and elementary teachers regarding how to prepare teachers for and support students' construction of scientific explanations are discussed.

  20. Promotion of scientific literacy: Bangladeshi teachers' perspectives and practices

    NASA Astrophysics Data System (ADS)

    Sarkar, Mahbub; Corrigan, Deborah

    2014-05-01

    Background: In Bangladesh, a common science curriculum caters for all students at the junior secondary level. Since this curriculum is for all students, its aims are both to build a strong foundation in science while still providing students with the opportunities to use science in everyday life - an aim consistent with the notion of scientific literacy. Purpose: This paper reports Bangladeshi science teachers' perspectives and practices in regard to the promotion of scientific literacy. Sample: Six science teachers representing a range of geographical locations, school types with different class sizes, lengths of teaching experience and educational qualifications. Design and method: This study employed a case study approach. The six teachers and their associated science classes (including students) were considered as six cases. Data were gathered through observing the teachers' science lessons, interviewing them twice - once before and once after the lesson observation, and interviewing their students in focus groups. Results: This study reveals that participating teachers held a range of perspectives on scientific literacy, including some naïve perspectives. In addition, their perspectives were often not seen to be realised in the classroom as for teachers the emphasis of learning science was more traditional in nature. Many of their teaching practices promoted a culture of academic science that resulted in students' difficulty in finding connections between the science they study in school and their everyday lives. This research also identified the tension which teachers encountered between their religious values and science values while they were teaching science in a culture with a religious tradition. Conclusions: The professional development practice for science teachers in Bangladesh with its emphasis on developing science content knowledge may limit the scope for promoting the concepts of scientific literacy. Opportunities for developing pedagogic knowledge is also limited and consequently impacts on teachers' ability to develop the concepts of scientific literacy and learn how to teach for its promotion.

  1. High School Students' Written Argumentation Qualities with Problem-Based Computer-Aided Material (PBCAM) Designed about Human Endocrine System

    ERIC Educational Resources Information Center

    Vekli, Gülsah Sezen; Çimer, Atilla

    2017-01-01

    This study investigated development of students' scientific argumentation levels in the applications made with Problem-Based Computer-Aided Material (PBCAM) designed about Human Endocrine System. The case study method was used: The study group was formed of 43 students in the 11th grade of the science high school in Rize. Human Endocrine System…

  2. Associations among attitudes, perceived difficulty of learning science, gender, parents' occupation and students' scientific competencies

    NASA Astrophysics Data System (ADS)

    Chi, ShaoHui; Wang, Zuhao; Liu, Xiufeng; Zhu, Lei

    2017-11-01

    This study investigated the associations among students' attitudes towards science, students' perceived difficulty of learning science, gender, parents' occupations and their scientific competencies. A sample of 1591 (720 males and 871 females) ninth-grade students from 29 junior high schools in Shanghai completed a scientific competency test and a Likert scale questionnaire. Multiple regression analysis revealed that students' general interest of science, their parents' occupations and perceived difficulty of science significantly associated with their scientific competencies. However, there was no gender gap in terms of scientific competencies.

  3. Scientific Caricatures in the Earth Science Classroom: An Alternative Assessment for Meaningful Science Learning

    NASA Astrophysics Data System (ADS)

    Clary, Renee M.; Wandersee, James H.

    2010-01-01

    Archive-based, historical research of materials produced during the Golden Age of Geology (1788-1840) uncovered scientific caricatures (SCs) which may serve as a unique form of knowledge representation for students today. SCs played important roles in the past, stimulating critical inquiry among early geologists and fueling debates that addressed key theoretical issues. When historical SCs were utilized in a large-enrollment college Earth History course, student response was positive. Therefore, we offered SCs as an optional assessment tool. Paired t-tests that compared individual students’ performances with the SC option, as well as without the SC option, showed a significant positive difference favoring scientific caricatures ( α = 0.05). Content analysis of anonymous student survey responses revealed three consistent findings: (a) students enjoyed expressing science content correctly but creatively through SCs, (b) development of SCs required deeper knowledge integration and understanding of the content than conventional test items, and (c) students appreciated having SC item options on their examinations, whether or not they took advantage of them. We think that incorporation of SCs during assessment may effectively expand the variety of methods for probing understanding, thereby increasing the mode validity of current geoscience tests.

  4. Exploring hypothetical learning progressions for the chemistry of nitrogen and nuclear processes

    NASA Astrophysics Data System (ADS)

    Henry, Deborah McKern

    Chemistry is a bridge that connects a number of scientific disciplines. High school students should be able to determine whether scientific information is accurate, how chemistry applies to daily life, and the mechanism by which systems operate (NRC, 2012). This research focuses on describing hypothetical learning progressions for student understanding of the chemical reactions of nitrogen and nuclear processes and examines whether there is consistency in scientific reasoning between these two distinct conceptual areas. The constant comparative method was used to analyze the written products of students including homework, formative and summative tests, laboratory notebooks, reflective journals, written presentations, and discussion board contributions via Edmodo (an online program). The ten participants were 15 and 16 year old students enrolled in a general high school chemistry course. Instruction took place over a ten week period. The learning progression levels ranged from 0 to 4 and were described as missing, novice, intermediate, proficient, and expert. The results were compared to the standards set by the NRC with a lower anchor (expectations for grade 8) and upper anchor (expectations for grade 12). The results indicate that, on average, students were able to reach an intermediate level of understanding for these concepts.

  5. Demystifying Scientific Data ­ Using Earth Science to Teach the Scientific Method

    NASA Astrophysics Data System (ADS)

    Nassiff, P. J.; Santos, E. A.; Erickson, P. J.; Niell, A. E.

    2006-12-01

    The collection of large quantities of data and their subsequent analyses are important components of any scientific process, particularly at research institutes such as MIT's Haystack Observatory, where the collection and analyses of data is crucial to research efforts. Likewise, a recent study on science education concluded that students should be introduced to analyzing evidence and hypotheses, to critical thinking - including appropriate skepticism, to quantitative reasoning and the ability to make reasonable estimates, and to the role of uncertainty and error in science. In order to achieve this goal with grades 9-12 students and their instructors, we developed lesson plans and activities based on atmospheric science and geodetic research at Haystack Observatory. From the complex steps of experimental design, measurement, and data analysis, students and teachers will gain insight into the scientific research processes as they exist today. The use of these space weather and geodesy activities in classrooms will be discussed. Space Weather: After decades of data collection with multiple variables, space weather is about as complex an area of investigation as possible. Far from the passive relationship between the Sun and Earth often taught in the early grades, or the beautiful auroras discussed in high school, there are complex and powerful interactions between the Sun and Earth. In spite of these complexities, high school students can learn about space weather and the repercussions on our communication and power technologies. Starting from lessons on the basic method of observing space weather with incoherent scatter radar, and progressing to the use of simplified data sets, students will discover how space weather affects Earth over solar cycles and how severe solar activity is measured and affects the Earth over shorter time spans. They will see that even from complex, seemingly ambiguous data with many variables and unknowns, scientists can gain valuable insights into complicated processes. Geodesy: Students learn about tectonic plate theory in middle school to explain continental drift, but have no idea about how it is determined. By learning about the process, students become more familiar with measurement, uncertainty, and error. Students who analyze continental drift using observations from very long baseline interferometry (VLBI) will discover the current limits of scientific measurement (approximately one part in a billion) and see how even these data may contain unmodeled effects. In both projects the process of understanding data will give the students a better picture of how science works. These lessons and activities were created under the Research Experiences for Teachers program of the National Science Foundation.

  6. Guiding students towards sensemaking: teacher questions focused on integrating scientific practices with science content

    NASA Astrophysics Data System (ADS)

    Benedict-Chambers, Amanda; Kademian, Sylvie M.; Davis, Elizabeth A.; Palincsar, Annemarie Sullivan

    2017-10-01

    Science education reforms articulate a vision of ambitious science teaching where teachers engage students in sensemaking discussions and emphasise the integration of scientific practices with science content. Learning to teach in this way is complex, and there are few examples of sensemaking discussions in schools where textbook lessons and teacher-directed discussions are the norm. The purpose of this study was to characterise the questioning practices of an experienced teacher who taught a curricular unit enhanced with educative features that emphasised students' engagement in scientific practices integrated with science content. Analyses indicated the teacher asked four types of questions: explication questions, explanation questions, science concept questions, and scientific practice questions, and she used three questioning patterns including: (1) focusing students on scientific practices, which involved a sequence of questions to turn students back to the scientific practice; (2) supporting students in naming observed phenomena, which involved a sequence of questions to help students use scientific language; and (3) guiding students in sensemaking, which involved a sequence of questions to help students learn about scientific practices, describe evidence, and develop explanations. Although many of the discussions in this study were not yet student-centred, they provide an image of a teacher asking specific questions that move students towards reform-oriented instruction. Implications for classroom practice are discussed and recommendations for future research are provided.

  7. Students' abilities to critique scientific evidence when reading and writing scientific arguments

    NASA Astrophysics Data System (ADS)

    Knight, Amanda M.

    Scientific arguments are used to persuade others for explanations that make sense of the natural world. Over time, through the accumulation of evidence, one explanation for a scientific phenomenon tends to take precedence. In science education, arguments make students' thinking and reasoning visible while also supporting the development of their conceptual, procedural, and epistemic knowledge. As such, argumentation has become a goal within recent policy documents, including the Next Generation Science Standards, which, in turn, presents a need for comprehensive, effective, and scalable assessments. This dissertation used assessments that measure students' abilities to critique scientific evidence, which is measured in terms of the form of justification and the support of empirical evidence, when reading and writing scientific arguments. Cognitive interviews were then conducted with a subset of the students to explore the criteria they used to critique scientific evidence. Specifically, the research investigated what characteristics of scientific evidence the students preferred, how they critiqued both forms of justification and empirical evidence, and whether the four constructs represented four separate abilities. Findings suggest that students' prioritized the type of empirical evidence to the form of justification, and most often selected relevant-supporting justifications. When writing scientific arguments, most students constructed a justified claim, but struggled to justify their claims with empirical evidence. In comparison, when reading scientific arguments, students had trouble locating a justification when it was not empirical data. Additionally, it was more difficult for students to critique than identify or locate empirical evidence, and it was more difficult for students to identify than locate empirical evidence. Findings from the cognitive interviews suggest that students with more specific criteria tended to have more knowledge of the construct. Lastly, dimensional analyses suggest that these may not be four distinct constructs, which has important implications for curriculum development and instructional practice. Namely, teachers should attend to the critique of scientific evidence separately when reading and writing scientific arguments.

  8. Mutation-Based Learning to Improve Student Autonomy and Scientific Inquiry Skills in a Large Genetics Laboratory Course

    PubMed Central

    Wu, Jinlu

    2013-01-01

    Laboratory education can play a vital role in developing a learner's autonomy and scientific inquiry skills. In an innovative, mutation-based learning (MBL) approach, students were instructed to redesign a teacher-designed standard experimental protocol by a “mutation” method in a molecular genetics laboratory course. Students could choose to delete, add, reverse, or replace certain steps of the standard protocol to explore questions of interest to them in a given experimental scenario. They wrote experimental proposals to address their rationales and hypotheses for the “mutations”; conducted experiments in parallel, according to both standard and mutated protocols; and then compared and analyzed results to write individual lab reports. Various autonomy-supportive measures were provided in the entire experimental process. Analyses of student work and feedback suggest that students using the MBL approach 1) spend more time discussing experiments, 2) use more scientific inquiry skills, and 3) find the increased autonomy afforded by MBL more enjoyable than do students following regimented instructions in a conventional “cookbook”-style laboratory. Furthermore, the MBL approach does not incur an obvious increase in labor and financial costs, which makes it feasible for easy adaptation and implementation in a large class. PMID:24006394

  9. PREFACE: 21th International Conference for Students and Young Scientists: Modern Technique and Technologies (MTT'2015)

    NASA Astrophysics Data System (ADS)

    2015-10-01

    Involving young researchers in the scientific process, and allowing them to gain scientific experience, are important issues for scientific development. The International Conference for Students and Young Scientists ''Modern Technique and Technologies'' is one of a number of scientific events, held at National Research Tomsk Polytechnic University aimed at training and forming the scientific elite. During previous years the conference established itself as a serious scientific event at an international level, attracting members which annually number about 400 students and young scientists from Russia and near and far abroad. An important indicator of this scientific event is the large number of scientific areas covered, such as power engineering, heat power engineering, electronic devices for monitoring and diagnostics, instrumentation, materials and technologies of new generations, methods of research and diagnostics of materials, automatic control and system engineering, physical methods science and engineering, design and artistic aspects of engineering, social and humanitarian aspects of engineering. The main issues, which are discussed at the conference by young researchers, are connected with analysis of contemporary problems, application of new techniques and technologies, and consideration of their relationship. Over the years, the conference committee has gained a lot of experience in organizing scientific meetings. There are all the necessary conditions: the staff of organizers includes employees of Tomsk Polytechnic University; the auditoriums are equipped with modern demonstration and office equipment; leading scientists are TPU professors; the status of the Tomsk Polytechnic University as a leading research university in Russia also plays an important role. All this allows collaboration between leading scientists from all around the world, who are annually invited to give lectures at the conference. The editorial board expresses gratitude to the Administration of Tomsk Polytechnic University (TPU Rector, Professor P.S. Chubik and Vice Rector for Research and Innovation, Professor A.N. Dyachenko) for financial support of the conference. Also, we heartily thank both chairmen of the conference sections and the organizing committee's members for the great, effective, creative work in organizing and developing the conference as well as a significant contribution to the safeguarding and replenishment of the intellectual potential of Russia.

  10. Exploring scientific creativity of eleventh-grade students in Taiwan

    NASA Astrophysics Data System (ADS)

    Liang, Jia-Chi

    2002-04-01

    Although most researchers focus on scientists' creativity, students' scientific creativity should be considered, especially for high school and college students. It is generally assumed that most professional creators in science emerge from amateur creators. Therefore, the purpose of this study is to investigate the relationship between students' scientific creativity and selected variables including creativity, problem finding, formulating hypotheses, science achievement, the nature of science, and attitudes toward science for finding significant predictors of eleventh grade students' scientific creativity. A total of 130 male eleventh-grade students in three biology classes participated in this study. The main instruments included the Test of Divergent Thinking (TDT) for creativity measurement, the Creativity Rating Scale (CRS) and the Creative Activities and Accomplishments Check Lists (CAACL ) for measurement of scientific creativity, the Nature of Scientific Knowledge Scale (NSKS) for measurement of the nature of science, and the Science Attitude Inventory II (SAI II) for measurement of attitudes toward science. In addition, two instruments on measuring students' abilities of problem finding and abilities of formulating hypotheses were developed by the researcher in this study. Data analysis involved descriptive statistics, Pearson product-moment correlations, and stepwise multiple regressions. The major findings suggested the following: (1) students' scientific creativity significantly correlated with some of selected variables such as attitudes toward science, problem finding, formulating hypotheses, the nature of science, resistance to closure, originality, and elaboration; (2) four significant predictors including attitudes toward science, problem finding, resistance to closure, and originality accounted for 48% of the variance of students' scientific creativity; (3) there were big differences between students with a higher and a lower degree of scientific creativity on the variables of family support, career images, and readings about science; and (4) many students were confused about the creative and moral levels on NSKS and the concept of "almighty of science" and purposes of science on SAI II. The results of this study may provide a more holistic and integrative interpretation of students' scientific creativity and propose better ways of evaluating students' scientific creativity. In addition, the research results may encourage teachers to view scientific creativity as an ability that can be enhanced through various means in classroom science teaching.

  11. Epistemological Development and Judgments and Reasoning about Teaching Methods

    ERIC Educational Resources Information Center

    Spence, Sarah; Helwig, Charles C.

    2013-01-01

    Children's, adolescents', and adults' (N = 96 7-8, 10-11, and 13-14-year-olds and university students) epistemological development and its relation to judgments and reasoning about teaching methods was examined. The domain (scientific or moral), nature of the topic (controversial or noncontroversial), and teaching method (direct instruction by…

  12. Infusing Active Learning into the Research Methods Unit

    ERIC Educational Resources Information Center

    Bluestone, Cheryl

    2007-01-01

    The research methods unit of survey psychology classes introduces important concepts of scientific reasoning and fluency, making it an ideal course in which to deliver enhanced curricula. To increase interest and engagement, the author developed an expanded research methods and statistics module to give students the opportunity to explore…

  13. Constructing Scientific Explanations: a System of Analysis for Students' Explanations

    NASA Astrophysics Data System (ADS)

    de Andrade, Vanessa; Freire, Sofia; Baptista, Mónica

    2017-08-01

    This article describes a system of analysis aimed at characterizing students' scientific explanations. Science education literature and reform documents have been highlighting the importance of scientific explanations for students' conceptual understanding and for their understanding of the nature of scientific knowledge. Nevertheless, and despite general agreement regarding the potential of having students construct their own explanations, a consensual notion of scientific explanation has still not been reached. As a result, within science education literature, there are several frameworks defining scientific explanations, with different foci as well as different notions of what accounts as a good explanation. Considering this, and based on a more ample project, we developed a system of analysis to characterize students' explanations. It was conceptualized and developed based on theories and models of scientific explanations, science education literature, and from examples of students' explanations collected by an open-ended questionnaire. With this paper, it is our goal to present the system of analysis, illustrating it with specific examples of students' collected explanations. In addition, we expect to point out its adequacy and utility for analyzing and characterizing students' scientific explanations as well as for tracing their progression.

  14. Inquiring into Familiar Objects: An Inquiry-Based Approach to Introduce Scientific Vocabulary

    ERIC Educational Resources Information Center

    Hicks Pries, Caitlin; Hughes, Julie

    2012-01-01

    Learning science vocabulary is an often tedious but important component of many curricula. Frequently, students are expected to learn science vocabulary indirectly, but this method can hinder the success of lower-performing students (Carlisle, Fleming, and Gudbrandsen 2000). We have developed an inquiry-based vocabulary activity wherein students…

  15. Active-Learning Methods To Improve Student Performance and Scientific Interest in a Large Introductory Oceanography Course.

    ERIC Educational Resources Information Center

    Yuretich, Richard F.; Khan, Samia A.; Leckie, R. Mark; Clement, John J.

    2001-01-01

    Transfers the environment of a large enrollment oceanography course by modifying lectures to include cooperative learning via interactive in-class exercises and directed discussion. Results of student surveys, course evaluations, and exam performance demonstrate that learning of the subject under these conditions has improved. (Author/SAH)

  16. The Utility of Storytelling Strategies in the Biology Classroom

    ERIC Educational Resources Information Center

    Csikar, Elizabeth; Stefaniak, Jill E.

    2018-01-01

    Conveying scientific information with high intrinsic cognitive load to students is a challenge. Often, students do not have the existing schema to incorporate the information in a comprehensive manner. One method that has shown promise is storytelling. Storytelling has been successfully used to convey public health information to non-experts.…

  17. Jump-Start Your Middle School Students' Background Knowledge and Vocabulary Skills

    ERIC Educational Resources Information Center

    Ward, Elizabeth; Williams-Rossi, Dara

    2012-01-01

    One of the most challenging tasks in increasingly diverse classrooms is helping students develop the "knowledge and language of science to communicate scientific explanations and ideas" (NRC 1996, p. 144). In this article, the authors share one of their favorite methods for incorporating and reinforcing science vocabulary instruction in…

  18. Memorisation Methods in Science Education: Tactics to Improve the Teaching and Learning Practice

    ERIC Educational Resources Information Center

    Pals, Frits F. B.; Tolboom, Jos L. J.; Suhre, Cor J. M.; van Geert, Paul L. C.

    2018-01-01

    How can science teachers support students in developing an appropriate declarative knowledge base for solving problems? This article focuses on the question whether the development of students' memory of scientific propositions is better served by writing propositions down on paper or by making drawings of propositions either by silent or…

  19. Inquiry Based Teaching in Turkey: A Content Analysis of Research Reports

    ERIC Educational Resources Information Center

    Kizilaslan, Aydin; Sozbilir, Mustafa; Yasar, M. Diyaddin

    2012-01-01

    Inquiry-based learning [IBL] enhances students' critical thinking abilities and help students to act as a scientist through using scientific method while learning. Specifically, inquiry as a teaching approach has been defined in many ways, the most important one is referred to nature of constructing knowledge while the individuals possess a…

  20. Original Research and Peer Review Using Web-Based Collaborative Tools by College Students

    ERIC Educational Resources Information Center

    Cakir, Mustafa; Carlsen, William S.

    2007-01-01

    The Environmental Inquiry program supports inquiry based, student-centered science teaching on selected topics in the environmental sciences. Many teachers are unfamiliar with both the underlying science of toxicology, and the process and importance of peer review in scientific method. The protocol and peer review process was tested with college…

  1. The Use of Video Technology in Science Teaching: A Vehicle for Alternative Assessment.

    ERIC Educational Resources Information Center

    Lawrence, Michael

    1994-01-01

    A secondary physics teacher used video assessments in science as an economical assessment form that required students to use the scientific method, explanation, feedback, critical thinking, and metacognition. When using video assessment in optics, he found his scoring was not biased and that students improved their performance following video…

  2. Design and Validation of a Questionnaire to Measure Research Skills: Experience with Engineering Students

    ERIC Educational Resources Information Center

    Cobos Alvarado, Fabián; Peñaherrera León, Mónica; Ortiz Colon, Ana María

    2016-01-01

    Universities in Latin American countries are undergoing major changes in its institutional and academic settings. One strategy for continuous improvement of teaching and learning process is the incorporation of methods and teaching aids seeking to develop scientific research skills in students from their undergraduate studies. The aim of this…

  3. Exposing Students to the Idea that Theories Can Change

    ERIC Educational Resources Information Center

    Hoellwarth, Chance; Moelter, Matthew J.

    2011-01-01

    The scientific method is arguably the most reliable way to understand the physical world, yet this aspect of science is rarely addressed in introductory science courses. Students typically learn about the theory in its final, refined form, and seldom experience the experiment-to-theory cycle that goes into producing the theory. One exception to…

  4. Developing Information Fluency in Introductory Biology Students in the Context of an Investigative Laboratory

    ERIC Educational Resources Information Center

    Lindquester, Gary J.; Burks, Romi L.; Jaslow, Carolyn R.

    2005-01-01

    Students of biology must learn the scientific method for generating information in the field. Concurrently, they should learn how information is reported and accessed. We developed a progressive set of exercises for the undergraduate introductory biology laboratory that combine these objectives. Pre- and postassessments of approximately 100…

  5. Leveraging Educational Data Mining for Real-Time Performance Assessment of Scientific Inquiry Skills within Microworlds

    ERIC Educational Resources Information Center

    Gobert, Janice D.; Sao Pedro, Michael A.; Baker, Ryan S. J. D.; Toto, Ermal; Montalvo, Orlando

    2012-01-01

    We present "Science Assistments," an interactive environment, which assesses students' inquiry skills as they engage in inquiry using science microworlds. We frame our variables, tasks, assessments, and methods of analyzing data in terms of "evidence-centered design." Specifically, we focus on the "student model," the…

  6. An Investigative Alternative to Single-Species Dissection in the Introductory Biology Laboratory

    ERIC Educational Resources Information Center

    Carlin, Joel L.

    2010-01-01

    Dissections of single species (e.g., fetal pig) are a common student learning activity in introductory biology courses. Such dissections demonstrate location of anatomical parts and provide dissection practice but provide less opportunity for student critical thinking, numeracy and demonstration of the scientific method. A comparative anatomy lab…

  7. Teaching Optics with an Intra-Curricular Kit Designed for Inquiry-Based Learning

    ERIC Educational Resources Information Center

    Cords, Nina; Fischer, Robert; Euler, Manfred; Prasad, Amrita

    2012-01-01

    In order to increase scientific literacy and the knowledge of science and technology of Europe's citizens, the European Commission suggests a more student-centred implementation of natural sciences in education systems. Inquiry-based learning (IBL) is not only an accepted method to promote students' interest and motivation, it also helps students…

  8. The gross anatomy laboratory: a novel venue for critical thinking and interdisciplinary teaching in dental education.

    PubMed

    Rowland, Kevin C; Joy, Anita

    2015-03-01

    Reports on the status of dental education have concluded that there is a need for various types of curricular reform, making recommendations that include better integration of basic, behavioral, and clinical sciences, increased case-based teaching, emphasis on student-driven learning, and creation of lifelong learners. Dental schools faced with decreasing contact hours, increasing teaching material, and technological advancements have experimented with alternate curricular strategies. At Southern Illinois University School of Dental Medicine, curricular changes have begun with a series of integrated biomedical sciences courses. During the process of planning and implementing the integrated courses, a novel venue-the gross anatomy laboratory-was used to introduce all Year 1 students to critical thinking, self-directed learning, and the scientific method. The venture included student-driven documentation of anatomical variations encountered in the laboratory using robust scientific methods, thorough literature review, and subsequent presentation of findings in peer review settings. Students responded positively, with over 75% agreeing the experience intellectually challenged them. This article describes the process of re-envisioning the gross anatomy laboratory as an effective venue for small group-based, student-driven projects that focus on key pedagogical concepts to encourage the development of lifelong learners.

  9. A guide to writing a scientific paper: a focus on high school through graduate level student research.

    PubMed

    Hesselbach, Renee A; Petering, David H; Berg, Craig A; Tomasiewicz, Henry; Weber, Daniel

    2012-12-01

    This article presents a detailed guide for high school through graduate level instructors that leads students to write effective and well-organized scientific papers. Interesting research emerges from the ability to ask questions, define problems, design experiments, analyze and interpret data, and make critical connections. This process is incomplete, unless new results are communicated to others because science fundamentally requires peer review and criticism to validate or discard proposed new knowledge. Thus, a concise and clearly written research paper is a critical step in the scientific process and is important for young researchers as they are mastering how to express scientific concepts and understanding. Moreover, learning to write a research paper provides a tool to improve science literacy as indicated in the National Research Council's National Science Education Standards (1996), and A Framework for K-12 Science Education (2011), the underlying foundation for the Next Generation Science Standards currently being developed. Background information explains the importance of peer review and communicating results, along with details of each critical component, the Abstract, Introduction, Methods, Results, and Discussion. Specific steps essential to helping students write clear and coherent research papers that follow a logical format, use effective communication, and develop scientific inquiry are described.

  10. A Guide to Writing a Scientific Paper: A Focus on High School Through Graduate Level Student Research

    PubMed Central

    Petering, David H.; Berg, Craig A.; Tomasiewicz, Henry; Weber, Daniel

    2012-01-01

    Abstract This article presents a detailed guide for high school through graduate level instructors that leads students to write effective and well-organized scientific papers. Interesting research emerges from the ability to ask questions, define problems, design experiments, analyze and interpret data, and make critical connections. This process is incomplete, unless new results are communicated to others because science fundamentally requires peer review and criticism to validate or discard proposed new knowledge. Thus, a concise and clearly written research paper is a critical step in the scientific process and is important for young researchers as they are mastering how to express scientific concepts and understanding. Moreover, learning to write a research paper provides a tool to improve science literacy as indicated in the National Research Council's National Science Education Standards (1996), and A Framework for K–12 Science Education (2011), the underlying foundation for the Next Generation Science Standards currently being developed. Background information explains the importance of peer review and communicating results, along with details of each critical component, the Abstract, Introduction, Methods, Results, and Discussion. Specific steps essential to helping students write clear and coherent research papers that follow a logical format, use effective communication, and develop scientific inquiry are described. PMID:23094692

  11. ``Orion, I Don't Love You'': The Astronomical Legacy of Carl Sandburg

    NASA Astrophysics Data System (ADS)

    Ricca, B.

    2013-04-01

    Can poetry provide an accurate means of representing the scientific universe? This paper looks at the astronomical poetry of Carl Sandburg and how the poet employs a scientific framework to deepen his work. Sandburg's method is then compared to a class project of middle school students who use his poetry (and their own) to learn and understand astronomical facts.

  12. A Comparative Study on Scientific Misconduct between Korean and Japanese Science Gifted Students

    ERIC Educational Resources Information Center

    Lee, Jiwon; Kim, Jung Bog; Isozaki, Tetsuo

    2017-01-01

    The scientific integrity, perceptions of scientific misconduct, and students' needs in the research ethics education of Korean and Japanese gifted students were analyzed to address three questions. First, how well do students practice research ethics in their research? Second, how do students perceive scientists' misconduct? Third, do students…

  13. Scaffolding Students' Online Critiquing of Expert- and Peer-generated Molecular Models of Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Chang, Hsin-Yi; Chang, Hsiang-Chi

    2013-08-01

    In this study, we developed online critiquing activities using an open-source computer learning environment. We investigated how well the activities scaffolded students to critique molecular models of chemical reactions made by scientists, peers, and a fictitious peer, and whether the activities enhanced the students' understanding of science models and chemical reactions. The activities were implemented in an eighth-grade class with 28 students in a public junior high school in southern Taiwan. The study employed mixed research methods. Data collected included pre- and post-instructional assessments, post-instructional interviews, and students' electronic written responses and oral discussions during the critiquing activities. The results indicated that these activities guided the students to produce overall quality critiques. Also, the students developed a more sophisticated understanding of chemical reactions and scientific models as a result of the intervention. Design considerations for effective model critiquing activities are discussed based on observational results, including the use of peer-generated artefacts for critiquing to promote motivation and collaboration, coupled with critiques of scientific models to enhance students' epistemological understanding of model purpose and communication.

  14. What Makes a Scientific Research Question Worth Investigating? Students' Epistemic Criteria and Considerations of Contribution

    NASA Astrophysics Data System (ADS)

    Berson, Eric Bruckner

    This dissertation introduces the construct of worthwhileness as an important aspect of students' practical epistemologies of science (Sandoval, 2005). Specifically, it examines how students conceptualize what makes a scientific research question worthwhile, through a close analysis of the criteria they use for evaluating scientific research questions. Elementary (n=21) and high school students (n=21) participated in this study. As part of semi-structured interviews, students engaged in three novel tasks designed to elicit the epistemic criteria they use to evaluate scientific research questions in a variety of contexts. Findings indicate that elementary and high school students alike could engage in the practice of evaluating the worth of scientific questions. The criteria they employed included degree of interest, difficulty, and the contribution of questions to knowledge or to solving a problem. The criteria students considered varied by context. Several key differences emerged between the reasoning of the two grade cohorts. High school students tended to place more weight on the contribution of the research question. Also, the criteria reflected in the high school students' judgments of the scientific value of individual questions more closely accorded with the criteria they identified retrospectively as the basis of their judgments. Furthermore, the older cohort more often rationalized the selection and sequence of research questions within a single domain on the basis of epistemic contingency between questions. How students conceptualize what makes a scientific research question worthwhile constitutes a key aspect of students' epistemic reasoning. It is particularly important to understand how students judge the worthwhilness of scientific research questions given the central epistemic role of research questions in scientific inquiry.

  15. Secondary Science Student Teachers' Use of Verbal Discourse to Communicate Scientific Ideas in Their Field Placement Classrooms

    NASA Astrophysics Data System (ADS)

    Cian, Heidi; Cook, Michelle

    2018-06-01

    Student teachers struggle to identify themselves as teachers in their field placement during their student teaching year, and some of the difficulty can be attributed to the change they encounter when they must communicate scientific ideas to students in a language that differs from how they recently learned science at the university level. Using developmental levels of student teaching (Drafall and Grant in Music Educators Journal, 81(1), 35-38, 1995), we explore how three cases differ in their use of verbal classroom discourse over the course of their student teaching year. We use data from six observations, post-observation debriefs, reflections associated with the observations, and responses to assignments from the student teachers' teaching classes as data to demonstrate how the cases differ in the proficiency of their verbal communication in their classroom placement. We find that when student teachers have difficulty communicating science to their students, they struggle to use lectures effectively or engage students in meaningful conversation or questioning. This work suggests a need for more study as to the causes of different communication proficiencies and how methods instructors can help teachers develop awareness of the value of their verbal discourse interactions with students.

  16. Addressing scientific literacy through content area reading and processes of scientific inquiry: What teachers report

    NASA Astrophysics Data System (ADS)

    Cooper, Susan J.

    The purpose of this study was to interpret the experiences of secondary science teachers in Florida as they address the scientific literacy of their students through teaching content reading strategies and student inquiry skills. Knowledge of the successful integration of content reading and inquiry skills by experienced classroom teachers would be useful to many educators as they plan instruction to achieve challenging state and national standards for reading as well as science. The problem was investigated using grounded theory methodology. Open-ended questions were asked in three focus groups and six individual interviews that included teachers from various Florida school districts. The constant comparative approach was used to analyze the data. Initial codes were collapsed into categories to determine the conceptual relationships among the data. From this, the five core categories were determined to be Influencers, Issues, Perceptions, Class Routines, and Future Needs. These relate to the central phenomenon, Instructional Modifications, because teachers often described pragmatic and philosophical changes in their teaching as they deliberated to meet state standards in both reading and science. Although Florida's secondary science teachers have been asked to incorporate content reading strategies into their science instruction for the past several years, there was limited evidence of using these strategies to further student understanding of scientific processes. Most teachers saw little connection between reading and inquiry, other than the fact that students must know how to read to follow directions in the lab. Scientific literacy, when it was addressed by teachers, was approached mainly through class discussions, not reading. Teachers realized that students cannot learn secondary science content unless they read science text with comprehension; therefore the focus of reading instruction was on learning science content, not scientific literacy or student inquiry. Most of the teachers were actively looking for reading materials and strategies to facilitate student understanding of science concepts, but they did not want to give up limited class time attempting methods that have not been proven to be successful in science classrooms.

  17. Rocks, Landforms, and Landscapes vs. Words, Sentences, and Paragraphs: An Interdisciplinary Team Approach to Teaching the Tie Between Scientific Literacy and Inquiry-based Writing in a Community College's Geoscience Program and a University's' Geoscience Program

    NASA Astrophysics Data System (ADS)

    Thweatt, A. M.; Giardino, J. R.; Schroeder, C.

    2014-12-01

    Scientific literacy and inquiry-based writing go together like a hand and glove. Science literacy, defined by NRC in The NSF Standards, stresses the relationship between knowledge of science and skill in literacy so "a person can ask, find, or determine answers to questions derived from curiosity about everyday experiences. It means that a person has the ability to describe, explain, and predict natural phenomena. Scientific literacy entails being able to read with understanding articles about science in the popular press and to engage in social conversation about the validity of the conclusions. Scientific literacy implies that a person can identify scientific issues underlying national and local decisions and express positions that are scientifically and technologically informed." A growing body of research and practice in science instruction suggests language is essential in the practice of the geosciences. Writing and critical thinking are iterative processes. We use this approach to educate our geoscience students to learn, write, and think critically. One does not become an accomplished writer via one course. Proficiency is gained through continued exposure, guidance and tailored assignments. Inquiry-based geoscience makes students proficient in the tools of the geosciences and to develop explanations to questions about Earth events. We have scaffolded our courses from introductory geology, English composition, writing in the geosciences, introduction to field methods and report writing to do more critical thinking, research data gatherings, and in-depth analysis and synthesis. These learning experiences that encourage students to compare their reasoning models, communicate verbally, written and graphically. The English composition course sets the stage for creative assignments through formulation of original research questions, collection of primary data, analysis, and construction of written research papers. Proper use of language allows students to clarify their ideas, make claims, present arguments, and record and present findings. Students have acquired the skills to be considered scientifically literate and capable of learning. A poster demonstrating the tie between Scientific Literacy and Inquiry-Based Writing has been produced and distributed widely around campus.

  18. Scientific Explanations: Characterizing and Evaluating the Effects of Teachers' Instructional Practices on Student Learning

    ERIC Educational Resources Information Center

    McNeill, Katherine L.; Krajcik, Joseph

    2008-01-01

    Teacher practices are essential for supporting students in scientific inquiry practices, such as the construction of scientific explanations. In this study, we examine what instructional practices teachers engage in when they introduce scientific explanation and whether these practices influence students' ability to construct scientific…

  19. What Determines Student Acceptance of Politically Controversial Scientific Conclusions?

    ERIC Educational Resources Information Center

    Walker, J. D.; Wassenberg, Deena; Franta, Gabriel; Cotner, Sehoya

    2017-01-01

    Certain scientific conclusions are controversial, in that they are rejected by a substantial proportion of nonscientists despite an overwhelming scientific consensus. Science educators are motivated to help students understand the evidence behind the scientific consensus on these matters and to move students' views into alignment with those held…

  20. Using a multi-user virtual simulation to promote science content: Mastery, scientific reasoning, and academic self-efficacy in fifth grade science

    NASA Astrophysics Data System (ADS)

    Ronelus, Wednaud J.

    The purpose of this study was to examine the impact of using a role-playing game versus a more traditional text-based instructional method on a cohort of general education fifth grade students' science content mastery, scientific reasoning abilities, and academic self-efficacy. This is an action research study that employs an embedded mixed methods design model, involving both quantitative and qualitative data. The study is guided by the critical design ethnography theoretical lens: an ethnographic process involving participatory design work aimed at transforming a local context while producing an instructional design that can be used in multiple contexts. The impact of an immersive 3D multi-user web-based educational simulation game on a cohort of fifth-grade students was examined on multiple levels of assessments--immediate, close, proximal and distal. A survey instrument was used to assess students' self-efficacy in technology and scientific inquiry. Science content mastery was assessed at the immediate (participation in game play), close (engagement in-game reports) and proximal (understanding of targeted concepts) levels; scientific reasoning was assessed at the distal (domain general critical thinking test) level. This quasi-experimental study used a convenient sampling method. Seven regular fifth-grade classes participated in this study. Three of the classes were the control group and the other four were the intervention group. A cohort of 165 students participated in this study. The treatment group contained 38 boys and 52 girls, and the control group contained 36 boys and 39 girls. Two-tailed t-test, Analysis of Covariance (ANCOVA), and Pearson Correlation were used to analyze data. The data supported the rejection of the null hypothesis for the three research questions. The correlational analyses showed strong relationship among three of the four variables. There were no correlations between gender and the three dependent variables. The findings of this study support the hypothesis that the intervention group students will obtain dramatically larger gains on the three measures: Cornell Critical Thinking Test, Curriculum-Oriented Test, and the Self-Efficacy in Technology and Science (SETS) survey.

  1. Neuromyths in Music Education: Prevalence and Predictors of Misconceptions among Teachers and Students

    PubMed Central

    Düvel, Nina; Wolf, Anna; Kopiez, Reinhard

    2017-01-01

    In the last decade, educational neuroscience has become increasingly important in the context of instruction, and its applications have been transformed into new teaching methods. Although teachers are interested in educational neuroscience, communication between scientists and teachers is not always straightforward. Thus, misunderstandings of neuroscientific research results can evolve into so-called neuromyths. The aim of the present study was to investigate the prevalence of such music-related neuromyths among music teachers and music students. Based on an extensive literature research, 26 theses were compiled and subsequently evaluated by four experts. Fourteen theses were selected, of which seven were designated as scientifically substantiated and seven as scientifically unsubstantiated (hereafter labeled as “neuromyths”). One group of adult music teachers (n = 91) and one group of music education students (n = 125) evaluated the theses (forced-choice discrimination task) in two separate online surveys. Additionally, in both surveys person-characteristic variables were gathered to determine possible predictors for the discrimination performance. As a result, identification rates of the seven scientifically substantiated theses were similar for teachers (76%) and students (78%). Teachers and students correctly rejected 60 and 59%, respectively, of the seven neuromyths as scientifically unsubstantiated statements. Sensitivity analysis by signal detection theory revealed a discrimination performance of d' = 1.25 (SD = 1.12) for the group of teachers and d' = 1.48 (SD = 1.22) for the students. Both groups showed a general tendency to evaluate the theses as scientifically substantiated (teachers: c = −0.35, students: c = −0.41). Specifically, buzz words such as “brain hemisphere” or “cognitive enhancement” were often classified as correct. For the group of teachers, the best predictor of discrimination performance was having read a large number of media about educational neuroscience and related topics (R2 = 0.06). For the group of students, the best predictors for discrimination performance were a high number of read media and the hitherto completed number of semesters (R2 = 0.14). Our findings make clear that both teachers and students are far from being experts on topics related to educational neuroscience in music and would therefore benefit from current education-related research in psychology and neuroscience. PMID:28484416

  2. Neuromyths in Music Education: Prevalence and Predictors of Misconceptions among Teachers and Students.

    PubMed

    Düvel, Nina; Wolf, Anna; Kopiez, Reinhard

    2017-01-01

    In the last decade, educational neuroscience has become increasingly important in the context of instruction, and its applications have been transformed into new teaching methods. Although teachers are interested in educational neuroscience, communication between scientists and teachers is not always straightforward. Thus, misunderstandings of neuroscientific research results can evolve into so-called neuromyths . The aim of the present study was to investigate the prevalence of such music-related neuromyths among music teachers and music students. Based on an extensive literature research, 26 theses were compiled and subsequently evaluated by four experts. Fourteen theses were selected, of which seven were designated as scientifically substantiated and seven as scientifically unsubstantiated (hereafter labeled as "neuromyths"). One group of adult music teachers ( n = 91) and one group of music education students ( n = 125) evaluated the theses (forced-choice discrimination task) in two separate online surveys. Additionally, in both surveys person-characteristic variables were gathered to determine possible predictors for the discrimination performance. As a result, identification rates of the seven scientifically substantiated theses were similar for teachers (76%) and students (78%). Teachers and students correctly rejected 60 and 59%, respectively, of the seven neuromyths as scientifically unsubstantiated statements. Sensitivity analysis by signal detection theory revealed a discrimination performance of d' = 1.25 ( SD = 1.12) for the group of teachers and d' = 1.48 ( SD = 1.22) for the students. Both groups showed a general tendency to evaluate the theses as scientifically substantiated (teachers: c = -0.35, students: c = -0.41). Specifically, buzz words such as "brain hemisphere" or "cognitive enhancement" were often classified as correct. For the group of teachers, the best predictor of discrimination performance was having read a large number of media about educational neuroscience and related topics ( R 2 = 0.06). For the group of students, the best predictors for discrimination performance were a high number of read media and the hitherto completed number of semesters ( R 2 = 0.14). Our findings make clear that both teachers and students are far from being experts on topics related to educational neuroscience in music and would therefore benefit from current education-related research in psychology and neuroscience.

  3. Toward a Model of Social Influence that Explains Minority Student Integration into the Scientific Community

    ERIC Educational Resources Information Center

    Estrada, Mica; Woodcock, Anna; Hernandez, Paul R.; Schultz, P. Wesley

    2011-01-01

    Students from several ethnic minority groups are underrepresented in the sciences, indicating that minority students more frequently drop out of the scientific career path than nonminority students. Viewed from a perspective of social influence, this pattern suggests that minority students do not integrate into the scientific community at the same…

  4. Living in a material world: Development and evaluation of a new materials science course for non-science majors

    NASA Astrophysics Data System (ADS)

    Brust, Gregory John

    This study was designed to discover if there is a difference in the scientific attitudes and process skills between a group of students who were instructed with Living in a Material World and groups of students in non-science majors sections of introductory biology, chemistry, and geology courses at the University of Southern Mississippi (USM). Each of the four courses utilized different instructional techniques. Students' scientific attitudes were measured with the Scientific Attitudes Inventory (SAI II) and their knowledge of science process skills were measured with the Test of Integrated Process Skills (TIPS II). The Group Assessment of Logical Thinking (GALT) was also administered to determine if the cognitive levels of students are comparable. A series of four questionnaires called Qualitative Course Assessments (QCA) were also administered to students in the experimental course to evaluate subtle changes in their understanding of the nature and processes of science and attitudes towards science. Student responses to the QCA questionnaires were triangulated with results of the qualitative instruments, and students' work on the final project. Results of the GALT found a significant difference in the cognitive levels of students in the experimental course (PSC 190) and in one of the control group, the introductory biology (BSC 107). Results of the SAI II and the TIPS II found no significant difference between the experimental group and the control groups. Qualitative analyses of students' responses to selected questions from the TIPS II, selected items on the SAI II, QCA questionnaires, and Materials that Fly project reports demonstrate an improvement in the understanding of the nature and processes of science and a change to positive attitude toward science of students in the experimental group. Students indicated that hands-on, inquiry-based labs and performance assessment were the most effective methods for their learning. These results indicate that science courses for non-science majors should focus on connections to students' daily lives while utilizing an STS curriculum and inquiry-based activities. Future research could focus on long term effects of this type of course as well as the effectiveness of these teaching methods for science majors.

  5. The Relationship Between Chinese Students' Subject Matter Knowledge and Argumentation Pedagogy

    NASA Astrophysics Data System (ADS)

    Wang, Jianlan; Buck, Gayle

    2015-01-01

    Science education in China is Subject Matter Knowledge (SMK) oriented in that SMK understanding is the major benchmark to assess students' achievement in science learning. Such an orientation causes students to overemphasize the memorization of SMK and neglect other indispensable components of science, such as scientific attitudes and research skills. The central government in China launched an educational innovation known as New Curriculum Reform in 2003. Considerable progress has been made in the past 11 years in regard to theoretical understandings and administrative priorities, but little progress has been made in terms of classroom instruction and scientific literacy cultivation at the secondary level. Under the pressure of nationwide standardized exams, any educational innovations are unlikely to be accepted unless there is robust evidence suggesting their efficacy in promoting students' achievements on exams, or even attempted unless teachers are assured such attempts will not negatively impact such achievement. Argumentation-integrated curriculum is one such innovation. Scientific argumentation is an essential scientific activity that leads to the development of an explanation based on empirical evidence. An initial foundation of SMK, in terms of the necessary background knowledge, is considered by many to be a vital component of argumentation and an enhanced SMK is one of the intended products of argumentation. The purpose of this sequential explanatory mixed methods study was to investigate the relationship between Chinese students' SMK levels and argumentation pedagogy and to provide insights into a possible research agenda focused on implementing argumentation in a heavily SMK-oriented context.

  6. Analysis According to Certain Variables of Scientific Literacy among Gifted Students That Participate in Scientific Activities at Science and Art Centers

    ERIC Educational Resources Information Center

    Kömek, Emre; Yagiz, Dursun; Kurt, Murat

    2015-01-01

    The purpose of this study is to analyze scientific literacy levels relevant to science and technology classes among gifted students that participate in scientific activities at science and art centers. This study investigated whether there was a significant difference in scientific literacy levels among gifted students according to the areas of…

  7. Nature of Science, Scientific Inquiry, and Socio-Scientific Issues Arising from Genetics: A Pathway to Developing a Scientifically Literate Citizenry

    NASA Astrophysics Data System (ADS)

    Lederman, Norman G.; Antink, Allison; Bartos, Stephen

    2014-02-01

    The primary focus of this article is to illustrate how teachers can use contemporary socio-scientific issues to teach students about nature of scientific knowledge as well as address the science subject matter embedded in the issues. The article provides an initial discussion about the various aspects of nature of scientific knowledge that are addressed. It is important to remember that the aspects of nature of scientific knowledge are not considered to be a comprehensive list, but rather a set of important ideas for adolescent students to learn about scientific knowledge. These ideas have been advocated as important for secondary students by numerous reform documents internationally. Then, several examples are used to illustrate how genetically based socio-scientific issues can be used by teachers to improve students' understandings of the discussed aspects of nature of scientific knowledge.

  8. Research in Mathematics Education: Multiple Methods for Multiple Uses

    ERIC Educational Resources Information Center

    Battista, Michael; Smith, Margaret S.; Boerst, Timothy; Sutton, John; Confrey, Jere; White, Dorothy; Knuth, Eric; Quander, Judith

    2009-01-01

    Recent federal education policies and reports have generated considerable debate about the meaning, methods, and goals of "scientific research" in mathematics education. Concentrating on the critical problem of determining which educational programs and practices reliably improve students' mathematics achievement, these policies and reports focus…

  9. Students' Scientific Epistemic Beliefs, Online Evaluative Standards, and Online Searching Strategies for Science Information: The Moderating Role of Cognitive Load Experience

    NASA Astrophysics Data System (ADS)

    Hsieh, Ya-Hui; Tsai, Chin-Chung

    2014-06-01

    The purpose of this study is to examine the moderating role of cognitive load experience between students' scientific epistemic beliefs and information commitments, which refer to online evaluative standards and online searching strategies. A total of 344 science-related major students participated in this study. Three questionnaires were used to ascertain the students' scientific epistemic beliefs, information commitments, and cognitive load experience. Structural equation modeling was then used to analyze the moderating effect of cognitive load, with the results revealing its significant moderating effect. The relationships between sophisticated scientific epistemic beliefs and the advanced evaluative standards used by the students were significantly stronger for low than for high cognitive load students. Moreover, considering the searching strategies that the students used, the relationships between sophisticated scientific epistemic beliefs and advanced searching strategies were also stronger for low than for high cognitive load students. However, for the high cognitive load students, only one of the sophisticated scientific epistemic belief dimensions was found to positively associate with advanced evaluative standard dimensions.

  10. Enhancing Scientific Communication Through an Undergraduate Biology and Journalism Partnership.

    PubMed

    Schwingel, Johanna M

    2018-01-01

    Scientific terminology presents an obstacle to effective communication with nonscientific audiences. To overcome this obstacle, biology majors in a general microbiology elective completed a project involving two different audiences: a scientific audience of their peers and a general, nonscientific audience. First, students presented an overview of a primary research paper and the significance of its findings to a general, nonscientific audience in an elevator-type talk. This was followed by a peer interview with a student in a journalism course, in which the biology students needed to comprehend the article to effectively communicate it to the journalism students, and the journalism students needed to ask questions about an unfamiliar, technical topic. Next, the biology students wrote a summary of their article for a scientific audience. Finally, the students presented a figure from the article to their peers in a scientific, Bio-Minute format. The biology-journalism partnership allowed biology students to develop their ability to communicate scientific information and journalism students their ability to ask appropriate questions and establish a base of knowledge from which to write.

  11. Teaching the process of science: faculty perceptions and an effective methodology.

    PubMed

    Coil, David; Wenderoth, Mary Pat; Cunningham, Matthew; Dirks, Clarissa

    2010-01-01

    Most scientific endeavors require science process skills such as data interpretation, problem solving, experimental design, scientific writing, oral communication, collaborative work, and critical analysis of primary literature. These are the fundamental skills upon which the conceptual framework of scientific expertise is built. Unfortunately, most college science departments lack a formalized curriculum for teaching undergraduates science process skills. However, evidence strongly suggests that explicitly teaching undergraduates skills early in their education may enhance their understanding of science content. Our research reveals that faculty overwhelming support teaching undergraduates science process skills but typically do not spend enough time teaching skills due to the perceived need to cover content. To encourage faculty to address this issue, we provide our pedagogical philosophies, methods, and materials for teaching science process skills to freshman pursuing life science majors. We build upon previous work, showing student learning gains in both reading primary literature and scientific writing, and share student perspectives about a course where teaching the process of science, not content, was the focus. We recommend a wider implementation of courses that teach undergraduates science process skills early in their studies with the goals of improving student success and retention in the sciences and enhancing general science literacy.

  12. Teaching the Process of Science: Faculty Perceptions and an Effective Methodology

    PubMed Central

    Coil, David; Wenderoth, Mary Pat; Cunningham, Matthew

    2010-01-01

    Most scientific endeavors require science process skills such as data interpretation, problem solving, experimental design, scientific writing, oral communication, collaborative work, and critical analysis of primary literature. These are the fundamental skills upon which the conceptual framework of scientific expertise is built. Unfortunately, most college science departments lack a formalized curriculum for teaching undergraduates science process skills. However, evidence strongly suggests that explicitly teaching undergraduates skills early in their education may enhance their understanding of science content. Our research reveals that faculty overwhelming support teaching undergraduates science process skills but typically do not spend enough time teaching skills due to the perceived need to cover content. To encourage faculty to address this issue, we provide our pedagogical philosophies, methods, and materials for teaching science process skills to freshman pursuing life science majors. We build upon previous work, showing student learning gains in both reading primary literature and scientific writing, and share student perspectives about a course where teaching the process of science, not content, was the focus. We recommend a wider implementation of courses that teach undergraduates science process skills early in their studies with the goals of improving student success and retention in the sciences and enhancing general science literacy. PMID:21123699

  13. Integrated argument-based inquiry with multiple representation approach to promote scientific argumentation skill

    NASA Astrophysics Data System (ADS)

    Suminar, Iin; Muslim, Liliawati, Winny

    2017-05-01

    The purpose of this research was to identify student's written argument embedded in scientific inqury investigation and argumentation skill using integrated argument-based inquiry with multiple representation approach. This research was using quasi experimental method with the nonequivalent pretest-posttest control group design. Sample ot this research was 10th grade students at one of High School in Bandung using two classes, they were 26 students of experiment class and 26 students of control class. Experiment class using integrated argument-based inquiry with multiple representation approach, while control class using argument-based inquiry. This study was using argumentation worksheet and argumentation test. Argumentation worksheet encouraged students to formulate research questions, design experiment, observe experiment and explain the data as evidence, construct claim, warrant, embedded multiple modus representation and reflection. Argumentation testinclude problem which asks students to explain evidence, warrants, and backings support of each claim. The result of this research show experiment class students's argumentation skill performed better than control class students that of experiment class was 0.47 and control class was 0.31. The results of unequal variance t-test for independent means show that students'sargumentationskill of experiment class performed better significantly than students'sargumentationskill of control class.

  14. Bringing Authentic Research into the Classroom with the Mars Student Imaging Project: Comparison of the PBL Gold Standards to the Scientific Methods

    NASA Astrophysics Data System (ADS)

    Pounder, Jean

    2017-04-01

    The goal of Project Based Learning (PBL) is to actively engage students through authentic, real word study to increase content knowledge, understanding, and skills for everyday success. The essential design of PBL is very similar in nature to the scientific method and therefore easy to adapt to the science classroom. In my classroom, students use these essential elements when engaging in the study of the processes that affect the surface of a planet such as weathering and erosion. Studying Mars is a hook to getting students to learn about the same processes that occur on Earth and to contrast the differences that occur on another planetary body. As part of the Mars Student Imaging Project (MSIP), students have the opportunity to engage and collaborate with NASA scientists at Arizona State University and get feedback on their work. They research and develop their own question or area of focus to study. They use images of Mars taken using the THEMIS camera onboard the Mars Odyssey Satellite, which has been orbiting Mars since 2001. Students submit a proposal to the scientists at ASU and, if accepted, they are given the opportunity to use the THEMIS camera in orbit to photograph a new region on Mars that will hopefully contribute to their research. Students give a final presentation to the faculty, staff, community, and other students by presenting their work in a poster session and explaining their work to the audience.

  15. Microbes in Mascara: Hypothesis-Driven Research in a Nonmajor Biology Lab †

    PubMed Central

    Burleson, Kathryn M.; Martinez-Vaz, Betsy M.

    2011-01-01

    In this laboratory exercise, students were taught concepts of microbiology and scientific process through an everyday activity — cosmetic use. The students’ goals for the lab were to develop a hypothesis regarding microbial contamination in cosmetics, learn techniques to culture and differentiate microorganisms from cosmetics, and propose best practices in cosmetics use based on their findings. Prior to the lab, students took a pretest to assess their knowledge of scientific hypotheses, microbiology, and cosmetic safety. In the first week, students were introduced to microbiological concepts and methodologies, and cosmetic terminology and safety. Students completed a hypothesis-writing exercise before formulating and testing their own hypotheses regarding cosmetic contamination. Students provided a cosmetic of their own and, in consultation with their lab group, chose one product for testing. Samples were serially diluted and plated on a variety of selective media. In the second week, students analyzed their plates to determine the presence and diversity of microbes and if their hypotheses were supported. Students completed a worksheet of their results and were given a posttest to assess their knowledge. Average test scores improved from 5.2 (pretest) to 7.8 (posttest), with p-values < 0.0001. Seventy-nine percent (79%) of students correctly identified hypotheses that were not falsifiable or lacked variables, and 89% of students improved their scores on questions concerning safe cosmetic use. Ninety-one percent (91%) of students demonstrated increased knowledge of microbial concepts and methods. Based on our results, this lab is an easy, yet effective, way to enhance knowledge of scientific concepts for nonmajors, while maintaining relevance to everyday life. PMID:23653761

  16. Science and Literacy: Incorporating Vocabulary, Reading Comprehension, Research Methods, and Writing into the Science Curriculum

    NASA Astrophysics Data System (ADS)

    Nieser, K.; Carlson, C.; Bering, E. A.; Slagle, E.

    2012-12-01

    Part of preparing the next generation of STEM researchers requires arming these students with the requisite literacy and research skills they will need. In a unique collaboration, the departments of Physics (ECE) and Psychology at the University of Houston have teamed up with NASA in a grant to develop a supplemental curriculum for elementary (G3-5) and middle school (G6-8) science teachers called Mars Rover. During this six week project, students work in teams to research the solar system, the planet Mars, design a research mission to Mars, and create a model Mars Rover to carry out this mission. Targeted Language Arts skills are embedded in each lesson so that students acquire the requisite academic vocabulary and research skills to enable them to successfully design their Mars Rover. Students learn academic and scientific vocabulary using scientifically based reading research. They receive direct instruction in research techniques, note-taking, summarizing, writing and other important language skills. The interdisciplinary collaboration empowers students as readers, writers and scientists. After the curriculum is completed, a culminating Mars Rover event is held at a local university, bringing students teams in contact with real-life scientists who critique their work, ask questions, and generate excite about STEM careers. Students have the opportunity to showcase their Mars Rover and to orally demonstrate their knowledge of Mars. Students discover the excitement of scientific research, STEM careers, important research and writing tools in a practical, real-life setting.

  17. Exploration on the reform of the science and engineering experiment teaching based on the combination with teaching and scientific research

    NASA Astrophysics Data System (ADS)

    Song, Peng

    2017-08-01

    The existing problems of the experiment education in colleges and universities are analyzed. Take the science and engineering specialty as example, the idea of the combination with teaching and scientific research is discussed. The key problems are how the scientific research and scientific research achievements are used effectively in the experiment education, how to effectively use scientific research laboratories and scientific researchers. Then, a specialty experiment education system is established which is good for the teaching in accordance of all students' aptitude. The research in this paper can give the construction of the experiment teaching methods and the experiment system reform for the science and engineering specialties in colleges and universities.

  18. Elementary Students' Scientific Epistemological Beliefs in Relation to Socio-Economic Status and Gender

    ERIC Educational Resources Information Center

    Ozkal, Kudret; Tekkaya, Ceren; Sungur, Semra; Cakiroglu, Jale; Cakiroglu, Erdinc

    2010-01-01

    This study investigated students' scientific epistemological beliefs in relation to socio-economic status (SES) and gender. Data were obtained from 1,152 eight grade Turkish elementary school students using Scientific Epistemological Beliefs instrument. Canonical correlation analysis indicated that students with a working mother and educated…

  19. Epistemologies in Practice: Making Scientific Practices Meaningful for Students

    ERIC Educational Resources Information Center

    Berland, Leema K.; Schwarz, Christina V.; Krist, Christina; Kenyon, Lisa; Lo, Abraham S.; Reiser, Brian J.

    2016-01-01

    Recent research and policy documents call for engaging students and teachers in scientific practices such that the goal of science education shifts from students "knowing" scientific and epistemic ideas, to students "developing and using" these understandings as tools to make sense of the world. This perspective pushes students…

  20. Exploring Korean Middle School Students' View about Scientific Inquiry

    ERIC Educational Resources Information Center

    Yang, Il-Ho; Park, Sang-Woo; Shin, Jung-Yun; Lim, Sung-Man

    2017-01-01

    The aim of this study is to examine Korean middle school students' view about scientific inquiry with the Views about Scientific Inquiry (VASI) questionnaire, an instrument that deals with eight aspects of scientific inquiry. 282 Korean middle school students participated in this study, and their responses were classified as informed, mixed, and…

  1. The Nature of Students' Chemical Reasoning Employed in Scientific Argumentation in Physical Chemistry

    ERIC Educational Resources Information Center

    Moon, A.; Stanford, C.; Cole, R.; Towns, M.

    2016-01-01

    Recent science education reform efforts have emphasized scientific practices in addition to scientific knowledge. Less work has been done at the tertiary level to consider students' engagement in scientific practices. In this work, we consider physical chemistry students' engagement in argumentation and construction of causal explanations.…

  2. Science literacy and academic identity formulation

    NASA Astrophysics Data System (ADS)

    Reveles, John M.; Cordova, Ralph; Kelly, Gregory J.

    2004-12-01

    The purpose of this article is to report findings from an ethnographic study that focused on the co-development of science literacy and academic identity formulation within a third-grade classroom. Our theoretical framework draws from sociocultural theory and studies of scientific literacy. Through analysis of classroom discourse, we identified opportunities afforded students to learn specific scientific knowledge and practices during a series of science investigations. The results of this study suggest that the collective practice of the scientific conversations and activities that took place within this classroom enabled students to engage in the construction of communal science knowledge through multiple textual forms. By examining the ways in which students contributed to the construction of scientific understanding, and then by examining their performances within and across events, we present evidence of the co-development of students' academic identities and scientific literacy. Students' communication and participation in science during the investigations enabled them to learn the structure of the discipline by identifying and engaging in scientific activities. The intersection of academic identities with the development of scientific literacy provides a basis for considering specific ways to achieve scientific literacy for all students.

  3. The marine biological week as an approach to science

    NASA Astrophysics Data System (ADS)

    Ransdorf, Angela; Satzinger, Viktoria

    2017-04-01

    The "Wiedner Gymnasium" is an academic high school with two branches: one focusses on languages and the other one on science. In the language branch the students learn at least three languages; one of which is Latin, whereas the students of the scientific branch can learn geometrical drawing and have to attend a scientific laboratory throughout the last four upper classes. As incentive highlights the language classes have a one week's school trip to France, Italy or Spain at the beginning of their 7th form in order to attend a language school and to practice their language skills. As a counterbalance, there was introduced the "marine biological week" several years ago, in which the students of the scientific branch take part whilst their colleagues have their language trips. The marine biological week takes place in Rovinj, Croatia. A team of biologists and divers leads through a programme, by which the students get an overview of different habitats, their conditions and the different ways of adaptation organisms find. Thus, they also become acquainted with several species of animals and plants which are characteristic for this area. They become familiar with some methods of scientific work and also get to know some of the problems marine ecosystems are confronted with. They also learn a little bit if the Mediterranean history and culture. Back in school all the findings are reviewed and brought into an ecological context. The insights can be used for many other topics, too, such as e.g. evolution. This week has proved to be a good start as well for the topic of ecology as for learning to think scientifically in general. So, you can call it a pivot for the scientific branch of our school.

  4. A Workshop for Developing Learning Modules for Science Classes Based on Biogeochemical Research

    ERIC Educational Resources Information Center

    Harrington, James M.; Gardner, Terrence G.; Amoozegar, Aziz; Andrews, Megan Y.; Rivera, Nelson A.; Duckworth, Owen W.

    2013-01-01

    A challenging aspect of educating secondary students is integrating complex scientific concepts related to modern research topics into lesson plans that students can relate to and understand at a basic level. One method of encouraging the achievement of learning outcomes is to use real-world applications and current research to fuel student…

  5. Teaching Climate Change Science in Senior Secondary School: Issues, Barriers and Opportunities

    ERIC Educational Resources Information Center

    Bunten, Rod; Dawson, Vaille

    2014-01-01

    This paper argues that, despite its difficulties, climate change can (and perhaps needs to) be taught rigorously to students by enquiry rather than through transmission and that such a method will enable students to make judgments on other issues of scientific controversy. It examines the issues and barriers to the teaching of climate change,…

  6. Modeling Scientific Processes with Mathematics Equations Enhances Student Qualitative Conceptual Understanding and Quantitative Problem Solving

    ERIC Educational Resources Information Center

    Schuchardt, Anita M.; Schunn, Christian D.

    2016-01-01

    Amid calls for integrating science, technology, engineering, and mathematics (iSTEM) in K-12 education, there is a pressing need to uncover productive methods of integration. Prior research has shown that increasing contextual linkages between science and mathematics is associated with student problem solving and conceptual understanding. However,…

  7. Investigation of High School Students' Online Science Information Searching Performance: The Role of Implicit and Explicit Strategies

    ERIC Educational Resources Information Center

    Tsai, Meng-Jung; Hsu, Chung-Yuan; Tsai, Chin-Chung

    2012-01-01

    Due to a growing trend of exploring scientific knowledge on the Web, a number of studies have been conducted to highlight examination of students' online searching strategies. The investigation of online searching generally employs methods including a survey, interview, screen-capturing, or transactional logs. The present study firstly intended to…

  8. Concept Learning by Direct Current Design Challenges in Secondary Education

    ERIC Educational Resources Information Center

    van Breukelen, Dave H. J.; de Vries, Marc J.; Schure, Frank A.

    2017-01-01

    This paper presents a mixed methods study in which 77 students and 3 teachers took part, that investigated the practice of Learning by Design (LBD). The study is part of a series of studies, funded by the Netherlands Organisation for Scientific Research, that aims to improve student learning, teaching skills and teacher training. LBD uses the…

  9. A Mixed Methods Comparison of Teachers' Lunar Modeling Lesson Implementation and Student Learning Outcomes

    ERIC Educational Resources Information Center

    Lamar, Mary F.; Wilhelm, Jennifer Anne; Cole, Merryn

    2018-01-01

    The authors compare three teachers' adaptations and implementation of a lunar modeling lesson to explain marked differences in student learning outcomes on a spatial-scientific lunar assessment. They used a modified version of the Practices of Science Observation Protocol (P-SOP; Forbes, Biggers, & Zangori, 2013) to identify ways in which…

  10. Sugar-Cube Science: An Economical Inquiry Experiment for High School Chemistry

    ERIC Educational Resources Information Center

    Smith, Jennifer

    2010-01-01

    Many first-year chemistry students have memorized the steps of the "scientific method" and can recite them without any prompting. But when introduced to controlled, independent, and dependent variables, they hit a brick wall. Therefore, the author of this article created a lesson that allows students to determine the fastest way to dissolve a…

  11. The Effects of Visualizations on Linguistically Diverse Students' Understanding of Energy and Matter in Life Science

    ERIC Educational Resources Information Center

    Ryoo, Kihyun; Bedell, Kristin

    2017-01-01

    Although extensive research has shown the educational value of different types of interactive visualizations on students' science learning in general, how such technologies can contribute to English learners' (ELs) understanding of complex scientific concepts has not been sufficiently explored to date. This mixed-methods study investigated how…

  12. Alzheimer's Disease under Scrutiny: Short Newspaper Articles as a Case Study Tool.

    ERIC Educational Resources Information Center

    Hudecki, Michael S.

    2001-01-01

    After reading a newspaper article on Alzheimer disease, an incurable medical problem involving gradual and debilitating loss of memory, students examine the key elements of the scientific method as conveyed in the story. During their analysis students explore the workings of the nervous system and consider the role of animal model systems in…

  13. Effectiveness of Reading and Mathematics Software Products: Findings from the First Student Cohort. Report to Congress

    ERIC Educational Resources Information Center

    Dynarski, Mark; Agodini, Roberto; Heaviside, Sheila: Novak, Timothy; Carey, Nancy; Campuzano, Larissa; Means, Barbara; Murphy, Robert; Penuel, William; Javitz, Hal; Emery, Deborah; Sussex, Willow

    2007-01-01

    The National Center for Education Evaluation and Regional Assistance produced this major study of the effectiveness of education technology. Mandated by Congress, the report uses scientifically based research methods and control groups to focus on the impact of technology on student academic achievement. Thirty-three districts, 132 schools, and…

  14. The Effectiveness of WhatsApp Mobile Learning Activities Guided by Activity Theory on Students' Knowledge Management

    ERIC Educational Resources Information Center

    Barhoumi, Chokri

    2015-01-01

    This research paper explores the effectiveness of using mobile technologies to support a blended learning course titled Scientific Research Methods in Information Science. Specifically, it discusses the effects of WhatsApp mobile learning activities guided by activity theory on students' knowledge Management (KM). During the 2014 academic year,…

  15. Implementation of the Flipped Classroom Model in the Scientific Ethics Course

    ERIC Educational Resources Information Center

    Urfa, Mehmet; Durak, Gürhan

    2017-01-01

    In the present study, the purpose was to determine students' views about the application of Flipped Classroom Model (FL), in which, different from the traditional method, homework is replaced by in-class activities and which has frequently been mentioned recently. The study was carried out with 24 students from the department of Computer Education…

  16. Determinants of Students' Academic Performance in Four Selected Accounting Courses at University of Zimbabwe

    ERIC Educational Resources Information Center

    Nyikahadzoi, Loveness; Matamande, Wilson; Taderera, Ever; Mandimika, Elinah

    2013-01-01

    The study seeks to establish scientific evidence of the factors affecting academic performance for first year accounting students using four selected courses at the University of Zimbabwe. It uses Ordinary Least Squares method to analyse the influence of personal and family background on performance. The findings show that variables age gender,…

  17. The Energy Retrofit of a Building: A Journey Through Bloom's Learning Domains

    ERIC Educational Resources Information Center

    Morgenstern, Mark; Meyer, Sally; Whitten, Barbara; Reuer, Matt

    2008-01-01

    At Colorado College, the energy retrofit of a building is used as a service-learning research project to teach physics and chemistry in a variety of courses. In introductory courses for nonscience majors, the project helps students appreciate the scientific method and quantitative reasoning. Within the physical-chemistry course, students see that…

  18. A Bright Spark: Open Teaching of Science Using Faraday's Lectures on Candles

    ERIC Educational Resources Information Center

    Walker, Mark; Groger, Martin; Schutler, Kirsten; Mosler, Bernd

    2008-01-01

    As well as being a founding father of modern chemistry and physics Michael Faraday was also a skilled lecturer, able to explain scientific principles and ideas simply and concisely to nonscientific audiences. However science didactics today emphasizes the use of open and student-centered methods of teaching in which students find and develop…

  19. Eclipse 2017: Partnering with NASA MSFC to Inspire Students

    NASA Technical Reports Server (NTRS)

    Fry, Craig " Ghee" ; Adams, Mitzi; Gallagher, Dennis; Krause, Linda

    2017-01-01

    NASA's Marshall Space Flight Center (MSFC) is partnering with the U.S. Space and Rocket Center (USSRC), and Austin Peay State University (APSU) to engage citizen scientists, engineers, and students in science investigations during the 2017 American Solar Eclipse. Investigations will support the Citizen Continental America Telescopic Eclipse (CATE), Ham Radio Science Citizen Investigation(HamSCI), and Interactive NASA Space Physics Ionosphere Radio Experiments (INSPIRE). All planned activities will engage Space Campers and local high school students in the application of the scientific method as they seek to explore a wide range of observations during the eclipse. Where planned experiments touch on current scientific questions, the camper/students will be acting as citizen scientists, participating with researchers from APSU and MSFC. Participants will test their expectations and after the eclipse, share their results, experiences, and conclusions to younger Space Campers at the US Space & Rocket Center.

  20. “We Do Science Here”: Underrepresented Students’ Interactions with Faculty in Different College Contexts

    PubMed Central

    Hurtado, Sylvia; Eagan, M. Kevin; Tran, Minh C.; Newman, Christopher B.; Chang, Mitchell J.; Velasco, Paolo

    2011-01-01

    Faculty members play a key role in the identification and training of the next generation of scientific talent. In the face of the need to advance and diversify the scientific workforce, we examine whether and how specific institutional contexts shape student interactions with faculty. We conducted a mixed methods study to understand institutional contextual differences in the experiences of aspiring scientists. Data from a qualitative five-campus case study and a quantitative longitudinal study of students from over 117 higher education institutions were analyzed to determine how aspiring scientists interact with faculty and gain access to resources that will help them achieve their educational goals. Findings indicate that important structural differences exist between institutions in shaping students’ interactions with faculty. For example, students at more selective institutions typically have less frequent, less personal interactions with faculty whereas Black students at HBCUs report having more support and frequent interactions with faculty. PMID:23503924

  1. Modeling Aspects Of Nature Of Science To Preservice Elementary Teachers

    NASA Astrophysics Data System (ADS)

    Ashcraft, Paul

    2007-01-01

    Nature of science was modeled using guided inquiry activities in the university classroom with elementary education majors. A physical science content course initially used an Aristotelian model where students discussed the relationship between distance from a constant radiation source and the amount of radiation received based on accepted ``truths'' or principles and concluded that there was an inverse relationship. The class became Galilean in nature, using the scientific method to test that hypothesis. Examining data, the class rejected their hypothesis and concluded that there is an inverse square relationship. Assignments, given before and after the hypothesis testing, show the student's misconceptions and their acceptance of scientifically acceptable conceptions. Answers on exam questions further support this conceptual change. Students spent less class time on the inverse square relationship later when examining electrostatic force, magnetic force, gravity, and planetary solar radiation because the students related this particular experience to other physical relationships.

  2. Effects of Scaffolds and Scientific Reasoning Ability on Web-Based Scientific Inquiry

    ERIC Educational Resources Information Center

    Wu, Hui-Ling; Weng, Hsiao-Lan; She, Hsiao-Ching

    2016-01-01

    This study examined how background knowledge, scientific reasoning ability, and various scaffolding forms influenced students' science knowledge and scientific inquiry achievements. The students participated in an online scientific inquiry program involving such activities as generating scientific questions and drawing evidence-based conclusions,…

  3. The Effect of Project-Based History and Nature of Science Practices on the Change of Nature of Scientific Knowledge

    ERIC Educational Resources Information Center

    Çibik, Ayse Sert

    2016-01-01

    The aim of this study is to compare the change of pre-service science teachers' views about the nature of scientific knowledge through Project-Based History and Nature of Science training and Conventional Method. The sample of the study consists of two groups of 3rd grade undergraduate students attending teacher preparation program of science…

  4. Horoscopes Versus Telescopes: A Focus on Astrology.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew, Ed.

    1988-01-01

    Criticizes astrology and uses student interest to help encouraging critical thinking and the scientific method. Provides some thought-provoking questions, three activities, and resource materials and a list of astronomy organizations. (YP)

  5. Science Olympiad students' nature of science understandings

    NASA Astrophysics Data System (ADS)

    Philpot, Cindy J.

    2007-12-01

    Recent reform efforts in science education focus on scientific literacy for all citizens. In order to be scientifically literate, an individual must have informed understandings of nature of science (NOS), scientific inquiry, and science content matter. This study specifically focused on Science Olympiad students' understanding of NOS as one piece of scientific literacy. Research consistently shows that science students do not have informed understandings of NOS (Abd-El-Khalick, 2002; Bell, Blair, Crawford, and Lederman, 2002; Kilcrease and Lucy, 2002; Schwartz, Lederman, and Thompson, 2001). However, McGhee-Brown, Martin, Monsaas and Stombler (2003) found that Science Olympiad students had in-depth understandings of science concepts, principles, processes, and techniques. Science Olympiad teams compete nationally and are found in rural, urban, and suburban schools. In an effort to learn from students who are generally considered high achieving students and who enjoy science, as opposed to the typical science student, the purpose of this study was to investigate Science Olympiad students' understandings of NOS and the experiences that formed their understandings. An interpretive, qualitative, case study method was used to address the research questions. The participants were purposefully and conveniently selected from the Science Olympiad team at a suburban high school. Data collection consisted of the Views of Nature of Science -- High School Questionnaire (VNOS-HS) (Schwartz, Lederman, & Thompson, 2001), semi-structured individual interviews, and a focus group. The main findings of this study were similar to much of the previous research in that the participants had informed understandings of the tentative nature of science and the role of inferences in science, but they did not have informed understandings of the role of human imagination and creativity, the empirical nature of science, or theories and laws. High level science classes and participation in Science Olympiad did not translate into informed understandings of NOS. There were implications that labs with a set procedure and given data tables did not contribute to informed NOS understandings, while explicit instruction may have contributed to more informed understandings. Exploring these high achieving, Science Olympiad students' understandings of NOS was a crucial step to understanding what experiences formed these students' understandings so that teachers may better their practices and help more students succeed in becoming scientifically literate citizens.

  6. Professional development model for science teachers based on scientific literacy

    NASA Astrophysics Data System (ADS)

    Rubini, B.; Ardianto, D.; Pursitasari, I. D.; Permana, I.

    2017-01-01

    Scientific literacy is considered as a benchmark of high and low quality of science education in a country. Teachers as a major component of learning at the forefront of building science literacy skills of students in the class. The primary purpose this study is development science teacher coaching model based on scientific literacy. In this article we describe about teacher science literacy and profile coaching model for science’ teachers based on scientific literacy which a part of study conducted in first year. The instrument used in this study consisted of tests, observation sheet, interview guides. The finding showed that problem of low scientific literacy is not only happen the students, but science’ teachers which is a major component in the learning process is still not satisfactory. Understanding science teacher is strongly associated with the background disciplinary. Science teacher was still weak when explaining scientific phenomena, mainly related to the material that relates to the concept of environmental. Coaching model generated from this study consisted of 8 stages by assuming the teacher is an independent learner, so the coaching is done with methods on and off, with time off for activities designed more.

  7. AVICENNA'S MEDICAL DIDACTIC POEM: URJUZEHTEBBI.

    PubMed

    Nimrouzi, Majid; Salehi, Alireza; Kiani, Hossein

    2015-01-01

    Historical research shows that many physicians experienced in medical sciences are also talented in art, literature and poetry. Avicenna was a sage who was skilled in poetry in addition to philosophy and medicine. He wrote two different types of poetry: those meant to be enjoyed for their literary qualities of novelty and imagination, and his didactic Urjuzeh. Didactic poems are different from poetry evoked by imagination and feeling. In didactic poetry, the poets want to learn science and philosophy, whether spiritual, ethical or practical to the readers. Rhyme and poetry were often used for scientific writing in Avicenna's era, and were considered a method for memorizing scientific information and raising students' interest in difficult scientific concepts. Verse was used to simplify the didactic content, ease memorization and make difficult scientific issues more attractive. In medieval Persia, students of medicine had learned the basics of philosophy before starting medical courses. Poetry could help the students memorize the poem itself in combination with its meaning, in a way that was better and easier than prose. Avicenna's masterpiece, UrjuzehTebbi, comprises a perfect course in traditional Persian medicine in rhyming text written in Arabic. This great work was translated into Persian at the research centre for traditional medicine and history of medicine. We hope that the Persian translation of Urjuzeh Tebbi will allow students and experts to better appreciate the role of didactic poems in compiling and transmitting the concepts of Iranian medicine.

  8. Indicators that influence prospective mathematics teachers representational and reasoning abilities

    NASA Astrophysics Data System (ADS)

    Darta; Saputra, J.

    2018-01-01

    Representational and mathematical reasoning ability are very important ability as basic in mathematics learning process. The 2013 curriculum suggests that the use of a scientific approach emphasizes higher order thinking skills. Therefore, a scientific approach is required in mathematics learning to improve ability of representation and mathematical reasoning. The objectives of this research are: (1) to analyze representational and reasoning abilities, (2) to analyze indicators affecting the ability of representation and mathematical reasoning, (3) to analyze scientific approaches that can improve the ability of representation and mathematical reasoning. The subject of this research is the students of mathematics prospective teachers in the first semester at Private Higher Education of Bandung City. The research method of this research was descriptive analysis. The research data were collected using reasoning and representation tests on sixty-one students. Data processing was done by descriptive analysis specified based on the indicators of representation ability and mathematical reasoning that influenced it. The results of this first-year study showed that students still had many weaknesses in reasoning and mathematical representation that were influenced by the ability to understand the indicators of both capabilities. After observing the results of the first-year research, then in the second and third year, the development of teaching materials with a scientific approach in accordance with the needs of prospective students was planned.

  9. Multilingual education of students on a global scale and perspective-international networking on the example of bioindication and biomonitoring (B&B technologies).

    PubMed

    Markert, Bernd; Baltrėnaitė, Edita; Chudzińska, Ewa; De Marco, Silvia; Diatta, Jean; Ghaffari, Zahra; Gorelova, Svetlana; Marcovecchio, Jorge; Tabors, Guntis; Wang, Meie; Yousef, Naglaa; Fraenzle, Stefan; Wuenschmann, Simone

    2014-04-01

    Living or formerly living organisms are being used to obtain information on the quality of the general health status of our environment by bioindication and biomonitoring methods for many decades. Thus, different roads toward this common scientific goal were developed by a lot of different international research groups. Global cooperation in between various scientific teams throughout the world has produced common ideas, scientific definitions, and highly innovative results of this extremely attractive working field. The transdisciplinary approach of different and multifaceted scientific areas-starting from biology, analytical chemistry, via health physics, up to social and economic issues-have surpassed mental barriers of individual scientists, so that "production" of straightforward common results related to the influence of material and immaterial environmental factors to the well-being of organisms and human life has now reached the forefront of international thinking. For the further sustainable development of our common scientific "hobby" of bioindication and biomonitoring, highest personal energy has to be given by us, being teachers to our students and to convince strategically decision makers as politicians to invest (financially) into the development of education and research of this innovative technique. Young people have to be intensively convinced on the "meaning" of our scientific doing, e.g., by extended forms of education. One example of multilingual education of students on a global scale and perspective is given here, which we started about 3 years ago.

  10. Do Students Eventually Get to Publish their Research Findings? The Case of Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome Research in Cameroon

    PubMed Central

    Munung, NS; Vidal, L; Ouwe-Missi-Oukem-Boyer, O

    2014-01-01

    Background: Scientific publication is commonly used to communicate research findings and in most academic/research settings, to evaluate the potential of a researcher and for recruitment and promotion. It has also been said that researchers have the duty to make public, the findings of their research. As a result, researchers are encouraged to share their research findings with the scientific world through peer review publications. In this study, we looked at the characteristics and publication rate of theses that documented studies on human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome in Cameroon. Materials and Methods: To check if a thesis resulted in a publication, we searched: A database of publications on HIV in Cameroon, African Journals Online, PubMed and Google scholar. For each publication we recorded if the student was an author, the position of the student in the author listing, the journal and where the journal was indexed. We also looked at the impact factor of the journals. Results: One hundred and thirty theses/dissertations were included in the study, 74.6% (97/130) were written as part of a medical degree (MD), 23.8% (31/130) a postgraduate (PG) degree and 1.5% (2/130) for a Doctorate/PhD. On a whole, 13.9% (18/130) of the theses resulted in at least one publication in a scientific journal with a total of 22 journal articles, giving a mean publication rate of 0.17 article/thesis, 86.4% (11/22) were indexed on PubMed, 9.1% (2/22) on African Journals Online and 4.6% (1/22) on Google scholar. One PG thesis led to two book chapters. The student was the first author in 22.7% (5/22) of the articles and not an author in 9.1% (2/22) of the articles. Student supervisor was an author in all the articles. Conclusion: This study reveals that most students in Cameroon failed to transform their theses/dissertations to scientific publications. This indicates an urgent need to sensitize students on the importance of presenting their research findings in scientific meetings and peer reviewed journals. There is also a great necessity to build capacity in scientific writing among university students in Cameroon. PMID:24971222

  11. What can scientific practice look like in a classroom? Insights from scientists' critique of high school students' climate change argumentation practice

    NASA Astrophysics Data System (ADS)

    Walsh, E.; McGowan, V. C.

    2015-12-01

    The Next Generation Science Standards promote a vision in which learners engage in authentic knowledge in practice to tackle personally consequential science problems in the classroom. However, there is not yet a clear understanding amongst researchers and educators of what authentic practice looks like in a classroom and how this can be accomplished. This study explores these questions by examining interactions between scientists and students on a social media platform during two pilot enactments of a project-based curriculum focusing on the ecological impacts of climate change. During this unit, scientists provided feedback to students on infographics, visual representations of scientific information meant to communicate to an audience about climate change. We conceptualize the feedback and student work as boundary objects co-created by students and scientists moving between the school and scientific contexts, and analyze the structure and content of the scientists' feedback. We find that when giving feedback on a particular practice (e.g. argumentation), scientists would provide avenues, critiques and questions that incorporated many other practices (e.g. data analysis, visual communication); thus, scientists encouraged students to participate systemically in practices instead of isolating one particular practice. In addition, scientists drew attention to particular habits of mind that are valued in the scientific community and noted when students' work aligned with scientific values. In this way, scientists positioned students as capable of participating "scientifically." While traditionally, incorporating scientific inquiry in a classroom has emphasized student experimentation and data generation, in this work, we found that engaging with scientists around established scientific texts and data sets provided students with a platform for developing expertise in other important scientific practices during argment construction.

  12. Attack of the Killer Fungus: A Hypothesis-Driven Lab Module †

    PubMed Central

    Sato, Brian K.

    2013-01-01

    Discovery-driven experiments in undergraduate laboratory courses have been shown to increase student learning and critical thinking abilities. To this end, a lab module involving worm capture by a nematophagous fungus was developed. The goals of this module are to enhance scientific understanding of the regulation of worm capture by soil-dwelling fungi and for students to attain a set of established learning goals, including the ability to develop a testable hypothesis and search for primary literature for data analysis, among others. Students in a ten-week majors lab course completed the lab module and generated novel data as well as data that agrees with the published literature. In addition, learning gains were achieved as seen through a pre-module and post-module test, student self-assessment, class exam, and lab report. Overall, this lab module enables students to become active participants in the scientific method while contributing to the understanding of an ecologically relevant model organism. PMID:24358387

  13. Improving Students' PISA Scientific Competencies through Online Argumentation

    ERIC Educational Resources Information Center

    Tsai, Chun-Yen

    2015-01-01

    The scientific competencies advocated by the Programme for International Student Assessment (PISA) focus on the abilities needed in students' adult lives. This study investigated how such scientific competencies could be improved by using online argumentation. One hundred and thirty-eight 8th grade high school students took part in the study, with…

  14. Middle School Students' Views of Scientific Inquiry: An International Comparative Study

    ERIC Educational Resources Information Center

    Senler, B.

    2015-01-01

    The aim of this study is to investigate middle school students' views of scientific inquiry. A total of 489 middle school students (238 from the United States, and 251 from Turkey) participated in the study. The Views of Scientific Inquiry-Elementary (VOSI-E) was used to assess participants' scientific inquiry views. The instrument covered four…

  15. Understanding the Impact of an Apprenticeship-Based Scientific Research Program on High School Students' Understanding of Scientific Inquiry

    ERIC Educational Resources Information Center

    Aydeniz, Mehmet; Baksa, Kristen; Skinner, Jane

    2011-01-01

    The purpose of this study was to understand the impact of an apprenticeship program on high school students' understanding of the nature of scientific inquiry. Data related to seventeen students' understanding of science and scientific inquiry were collected through open-ended questionnaires. Findings suggest that although engagement in authentic…

  16. What can we learn from PISA?: Investigating PISA's approach to scientific literacy

    NASA Astrophysics Data System (ADS)

    Schwab, Cheryl Jean

    This dissertation is an investigation of the relationship between the multidimensional conception of scientific literacy and its assessment. The Programme for International Student Assessment (PISA), developed under the auspices of the Organization for Economic Cooperation and Development (OECD), offers a unique opportunity to evaluate the assessment of scientific literacy. PISA developed a continuum of performance for scientific literacy across three competencies (i.e., process, content, and situation). Foundational to the interpretation of PISA science assessment is PISA's definition of scientific literacy, which I argue incorporates three themes drawn from history: (a) scientific way of thinking, (b) everyday relevance of science, and (c) scientific literacy for all students. Three coordinated studies were conducted to investigate the validity of PISA science assessment and offer insight into the development of items to assess scientific 2 literacy. Multidimensional models of the internal structure of the PISA 2003 science items were found not to reflect the complex character of PISA's definition of scientific literacy. Although the multidimensional models across the three competencies significantly decreased the G2 statistic from the unidimensional model, high correlations between the dimensions suggest that the dimensions are similar. A cognitive analysis of student verbal responses to PISA science items revealed that students were using competencies of scientific literacy, but the competencies were not elicited by the PISA science items at the depth required by PISA's definition of scientific literacy. Although student responses contained only knowledge of scientific facts and simple scientific concepts, students were using more complex skills to interpret and communicate their responses. Finally the investigation of different scoring approaches and item response models illustrated different ways to interpret student responses to assessment items. These analyses highlighted the complexities of students' responses to the PISA science items and the use of the ordered partition model to accommodate different but equal item responses. The results of the three investigations are used to discuss ways to improve the development and interpretation of PISA's science items.

  17. Interdisciplinary Laboratory Course Facilitating Knowledge Integration, Mutualistic Teaming, and Original Discovery.

    PubMed

    Full, Robert J; Dudley, Robert; Koehl, M A R; Libby, Thomas; Schwab, Cheryl

    2015-11-01

    Experiencing the thrill of an original scientific discovery can be transformative to students unsure about becoming a scientist, yet few courses offer authentic research experiences. Increasingly, cutting-edge discoveries require an interdisciplinary approach not offered in current departmental-based courses. Here, we describe a one-semester, learning laboratory course on organismal biomechanics offered at our large research university that enables interdisciplinary teams of students from biology and engineering to grow intellectually, collaborate effectively, and make original discoveries. To attain this goal, we avoid traditional "cookbook" laboratories by training 20 students to use a dozen research stations. Teams of five students rotate to a new station each week where a professor, graduate student, and/or team member assists in the use of equipment, guides students through stages of critical thinking, encourages interdisciplinary collaboration, and moves them toward authentic discovery. Weekly discussion sections that involve the entire class offer exchange of discipline-specific knowledge, advice on experimental design, methods of collecting and analyzing data, a statistics primer, and best practices for writing and presenting scientific papers. The building of skills in concert with weekly guided inquiry facilitates original discovery via a final research project that can be presented at a national meeting or published in a scientific journal. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  18. Integrated Concentration in Science (iCons): Undergraduate Education Through Interdisciplinary, Team-Based, Real-World Problem Solving

    NASA Astrophysics Data System (ADS)

    Tuominen, Mark

    2013-03-01

    Attitude, Skills, Knowledge (ASK) - In this order, these are fundamental characteristics of scientific innovators. Through first-hand practice in using science to unpack and solve complex real-world problems, students can become self-motivated scientific leaders. This presentation describes the pedagogy of a recently developed interdisciplinary undergraduate science education program at the University of Massachusetts Amherst focused on addressing global challenges with scientific solutions. Integrated Concentration in Science (iCons) is an overarching concentration program that supplements the curricula provided within each student's chosen major. iCons is a platform for students to perform student-led research in interdisciplinary collaborative teams. With a schedule of one course per year over four years, the cohort of students move through case studies, analysis of real-world problems, development of potential solutions, integrative communication, laboratory practice, and capstone research projects. In this presentation, a track emphasizing renewable energy science is used to illustrate the iCons pedagogical methods. This includes discussion of a third-year laboratory course in renewable energy that is educationally scaffolded: beginning with a boot camp in laboratory techniques and culminating with student-designed research projects. Among other objectives, this course emphasizes the practice of using reflection and redesign, as a means of generating better solutions and embedding learning for the long term. This work is supported in part by NSF grant DUE-1140805.

  19. E-Beam Capture Aid Drawing Based Modelling on Cell Biology

    NASA Astrophysics Data System (ADS)

    Hidayat, T.; Rahmat, A.; Redjeki, S.; Rahman, T.

    2017-09-01

    The objectives of this research are to find out how far Drawing-based Modeling assisted with E-Beam Capture could support student’s scientific reasoning skill using Drawing - based Modeling approach assisted with E-Beam Capture. The research design that is used for this research is the Pre-test and Post-test Design. The data collection of scientific reasoning skills is collected by giving multiple choice questions before and after the lesson. The data analysis of scientific reasoning skills is using scientific reasoning assessment rubric. The results show an improvement of student’s scientific reasoning in every indicator; an improvement in generativity which shows 2 students achieving high scores, 3 students in elaboration reasoning, 4 students in justification, 3 students in explanation, 3 students in logic coherency, 2 students in synthesis. The research result in student’s explanation reasoning has the highest number of students with high scores, which shows 20 students with high scores in the pre-test and 23 students in post-test and synthesis reasoning shows the lowest number, which shows 1 student in the pretest and 3 students in posttest. The research result gives the conclusion that Drawing-based Modeling approach assisted with E-Beam Capture could not yet support student’s scientific reasoning skills comprehensively.

  20. Some Practical Distinctions between Preaching, Teaching, and Training.

    ERIC Educational Resources Information Center

    Pestel, Beverly C.

    1988-01-01

    Describes some of the teaching techniques found to be effective for educating students and combatting scientific illiteracy. Presents instructional methods developed for implementing learner-oriented educational philosophies and interactive teaching strategies. (RT)

  1. Validation of an Instrument for Assessing Conceptual Change with Respect to the Theory of Evolution by Secondary Biology Students

    NASA Astrophysics Data System (ADS)

    Goff, Kevin David

    This pilot study evaluated the validity of a new quantitative, closed-response instrument for assessing student conceptual change regarding the theory of evolution. The instrument has two distinguishing design features. First, it is designed not only to gauge student mastery of the scientific model of evolution, but also to elicit a trio of deeply intuitive tendencies that are known to compromise many students' understanding: the projection of intentional agency, teleological directionality, and immutable essences onto biological phenomena. Second, in addition to a section of conventional multiple choice questions, the instrument contains a series of items where students may simultaneously endorse both scientifically normative propositions and intuitively appealing yet unscientific propositions, without having to choose between them. These features allow for the hypothesized possibility that the three intuitions are partly innate, themselves products of cognitive evolution in our hominin ancestors, and thus may continue to inform students' thinking even after instruction and conceptual change. The test was piloted with 340 high school students from diverse schools and communities. Confirmatory factor analysis and other statistical methods provided evidence that the instrument already has strong potential for validly distinguishing students who hold a correct scientific understanding from those who do not, but that revision and retesting are needed to render it valid for gauging students' adherence to intuitive misconceptions. Ultimately the instrument holds promise as a tool for classroom intervention studies by conceptual change researchers, for diagnostic testing and data gathering by instructional leaders, and for provoking classroom dialogue and debate by science teachers.

  2. Using a moot to develop students’ understanding of human cloning and statutory interpretation

    PubMed Central

    Kind, Vanessa

    2017-01-01

    This article reports and analyses the method and findings from a 3-year interdisciplinary project investigating how the medium of law can support understanding of socio-scientific issues. Law represents one of the most important means by which society decides and communicates its values. Activities mirroring legal processes therefore have significant potential to inform, inspire and involve school students in exploring the conceptual, social and ethical issues relating to developments in biomedical science. This article focusses on an intervention-style study in which UK-based 16- to 17-year-old students role played a Supreme Court moot, developed by modifying a domestic appeal case concerned with whether the contemporary legislation covered the creation of cloned human embryos. We draw attention to how the science of cloning has been slightly misunderstood by the courts and in science materials provided to UK school students. We argue that moot-centred engagement activities offer great potential for science communication among post-16 students and, despite the limitations of the judicial process for addressing complex socio-scientific issues, such role plays aid development of scientific and sociolegal understanding, as well as enhancing students’ self-confidence and argumentation skills. PMID:28943724

  3. The QuarkNet Collaboration: How "Doing Science" is Changing Science Education

    NASA Astrophysics Data System (ADS)

    Whelan, K.

    2004-12-01

    QuarkNet is a national initiative to involve high-school teachers and their students in real scientific research. Students and teachers assist in seeking to resolve some of the mysteries about the structure of matter and the fundamental forces of nature It is supported by the Department and Energy and the National Science Foundation. This long-term project, beginning its sixth year of implementation, has provided a successful framework that might be adapted to similar endeavors. It is an international collaboration of universities, high schools and research centers including CERN in Switzerland, and Fermilab, LBNL, and SLAC in the United States. The goals of this program include the involvement of students and teachers in authentic scientific research projects. By actually "doing science", they gain first hand knowledge of the research procedure and the inquiry method of learning. Teachers increase their content knowledge and enhance their teaching skills by solving scientific research problems through the inquiry method of learning. Students involved in this program learn fundamental physics and research-based skills through the analysis of real data. Particle physicists also benefit by being exposed to some of the current issues in science education. Through an understanding of National Science Education Standards, physicist-mentors are made aware of the needs of local science education and gain a better grasp of age appropriate content. The QuarkNet program was developed while consulting with research physicists throughout the United States. There are three main program areas that have been established-teacher research experiences, teacher development programs, and an online resource that makes available numerous inquiry-based activities. Select teachers are given eight-week appointments allowing them to gain first hand experience as a part of a scientific research team. Those teachers become lead teachers during the following summer and, along with physicist mentors, work with other teachers on a short research scenario or activity over a period of several weeks. The scenarios can then be adapted for classroom use at virtually any level. The QuarkNet website provides a wide variety of resources for teacher and student use including- samples of experimental data for use in inquiry based activities, venues for communication and collaboration between students, teachers and physicists, student publication areas where ideas can be exchanged, and numerous other resources, activities, and simulations. Currently, the QuarkNet program involves over 50 research institutions and hundreds of teachers. This year, we have also added a student research component at several of the centers. This component will be expanded in the coming years so that many more students will have the opportunity to become an active part and contributing member of a scientific research team.

  4. Constructing Scientific Arguments Using Evidence from Dynamic Computational Climate Models

    NASA Astrophysics Data System (ADS)

    Pallant, Amy; Lee, Hee-Sun

    2015-04-01

    Modeling and argumentation are two important scientific practices students need to develop throughout school years. In this paper, we investigated how middle and high school students ( N = 512) construct a scientific argument based on evidence from computational models with which they simulated climate change. We designed scientific argumentation tasks with three increasingly complex dynamic climate models. Each scientific argumentation task consisted of four parts: multiple-choice claim, openended explanation, five-point Likert scale uncertainty rating, and open-ended uncertainty rationale. We coded 1,294 scientific arguments in terms of a claim's consistency with current scientific consensus, whether explanations were model based or knowledge based and categorized the sources of uncertainty (personal vs. scientific). We used chi-square and ANOVA tests to identify significant patterns. Results indicate that (1) a majority of students incorporated models as evidence to support their claims, (2) most students used model output results shown on graphs to confirm their claim rather than to explain simulated molecular processes, (3) students' dependence on model results and their uncertainty rating diminished as the dynamic climate models became more and more complex, (4) some students' misconceptions interfered with observing and interpreting model results or simulated processes, and (5) students' uncertainty sources reflected more frequently on their assessment of personal knowledge or abilities related to the tasks than on their critical examination of scientific evidence resulting from models. These findings have implications for teaching and research related to the integration of scientific argumentation and modeling practices to address complex Earth systems.

  5. Optimize scientific communication skills on work and energy concept with implementation of interactive conceptual instruction and multi representation approach

    NASA Astrophysics Data System (ADS)

    Patriot, E. A.; Suhandi, A.; Chandra, D. T.

    2018-05-01

    The ultimate goal of learning in the curriculum 2013 is that learning must improve and balance between soft skills and hard skills of learners. In addition to the knowledge aspect, one of the other skills to be trained in the learning process using a scientific approach is communication skills. This study aims to get an overview of the implementation of interactive conceptual instruction with multi representation to optimize the achievement of students’ scientific communication skills on work and energy concept. The scientific communication skills contains the sub-skills were searching the information, scientific writing, group discussion and knowledge presentation. This study was descriptive research with observation method. Subjects in this study were 35 students of class X in Senior High School at Sumedang. The results indicate an achievement of optimal scientific communication skills. The greatest achievement of KKI based on observation is at fourth meeting of KKI-3, which is a sub-skill of resume writing of 89%. Allmost students responded positively to the implication of interactive conceptual instruction with multi representation approach. It can be concluded that the implication of interactive conceptual instruction with multi representation approach can optimize the achievement of students’ scientific communication skill on work and energy concept.

  6. Increasing Diversity in the Geosciences at the City University of New York

    NASA Astrophysics Data System (ADS)

    Damas, C.; Johnson, L.; McHugh, C.; Marchese, P. J.

    2007-12-01

    The City University of New York (CUNY) is the nation's largest urban university, with 23 institutions serving a large number of underrepresented minority (URM) and women students at all levels of the pipeline - community college to graduate school. CUNY has a strong record of recruiting, enrolling, retaining and graduating URMs in science, technology, engineering and mathematics (STEM) fields. Current efforts are underway to increase the number of URMs in the geosciences. These efforts include: 1) involving students in research at all levels of the pipeline; 2) incorporating innovative and proven pedagogical methods into the classroom; and 3) mentoring of students by research scientists from CUNY and other participating institutions. At all levels of the pipeline, students are actively engaged in Space and Earth Science research. At the community college level, students are introduced to the scientific research process through familiar software such as MS Excel to analyze simple time series. At the senior colleges, students progress to multi-variate data analysis, and they also have the opportunity to go into the field to collect data. As graduate students, they are involved as mentors and supervise undergraduate student research. Program initiatives such as the CUNY pipeline provide stipends and academic enrichment activities (i.e., GRE training, applying to graduate school, etc.) throughout the summer and academic year. During the summer, students also have the opportunity to work with and be mentored by research scientists at a CUNY campus, at a NASA center or a national laboratory. Mentors advise students about graduate school and careers, serve as role models, and perhaps more importantly, provide encouragement to students who lack confidence in their ability to do scientific research. Students also are expected to present their research findings at meetings and conferences, both locally and nationally. In addition to their research experiences, students also benefit from classroom instructions that emphasize active learning, and the integration of research related activities. Proven educational materials and pedagogical methods developed at Medgar Evers College and Queensborough Community College have proven quite effective at engaging and assisting students who have conceptual difficulties in their science and mathematics courses. Overall, students demonstrate an increase in their conceptual understanding of the subject matter, as well an increase in their confidence to solve scientific problems and to become scientists.

  7. Formal and Informal Learning and First-Year Psychology Students' Development of Scientific Thinking: A Two-Wave Panel Study.

    PubMed

    Soyyılmaz, Demet; Griffin, Laura M; Martín, Miguel H; Kucharský, Šimon; Peycheva, Ekaterina D; Vaupotič, Nina; Edelsbrunner, Peter A

    2017-01-01

    Scientific thinking is a predicate for scientific inquiry, and thus important to develop early in psychology students as potential future researchers. The present research is aimed at fathoming the contributions of formal and informal learning experiences to psychology students' development of scientific thinking during their 1st-year of study. We hypothesize that informal experiences are relevant beyond formal experiences. First-year psychology student cohorts from various European countries will be assessed at the beginning and again at the end of the second semester. Assessments of scientific thinking will include scientific reasoning skills, the understanding of basic statistics concepts, and epistemic cognition. Formal learning experiences will include engagement in academic activities which are guided by university authorities. Informal learning experiences will include non-compulsory, self-guided learning experiences. Formal and informal experiences will be assessed with a newly developed survey. As dispositional predictors, students' need for cognition and self-efficacy in psychological science will be assessed. In a structural equation model, students' learning experiences and personal dispositions will be examined as predictors of their development of scientific thinking. Commonalities and differences in predictive weights across universities will be tested. The project is aimed at contributing information for designing university environments to optimize the development of students' scientific thinking.

  8. Investigating the Influence of Teachers’ Characteristics on the Teacher-Student Relations from Students’ Perspective at Ilam University of Medical Sciences

    PubMed Central

    Maleki, Farajolah; Talaei, Mehri Hosein; moghadam, Seyed Rahmatollah Mousavi; Shadigo, Shahryar; Taghinejad, Hamid

    2017-01-01

    Introduction Establishing an effective teacher-student relationship may affect the quality of learning. Such a complex human relationship may be influenced by various factors in addition to teacher and student. Aim The present study aimed at investigating the influence of teacher characteristics on the Teacher-student relationship from students’ perspective. Materials and Methods In this descriptive-survey research, statistical population included 1500 students at Ilam University of Medical Sciences Ilam, Iran. Out of which 281 students were selected by simple random sampling, they received and completed series of questionnaires. Data was collected using a researcher-made questionnaire containing 37 Likert type items from which five items measured demographic profile of participants and 32 items measured impact of teacher’s characteristics upon the teacher-student relationship. Data was analysed by SPSS software version 16 using descriptive statistics, t-test and One way ANOVA. Results The current study included 281 students (117 (41.6%) male, 164 (58.4%) female) studying at Ilam University of Medical Sciences. The effect of teachers’ characteristics on the teacher-student relationship from the students’ perspective in three areas (personal, professional and scientific) scored 4.37±0.54, 4.05±0.27, and 3.91±0.44, respectively. The highest score was related to “respect for students” (Mean=4.74, SD=0.55) and the lowest score was dedicated to ‘gender’ (Mean=2.40, SD= 0.64). Effect of other studied parameters was also higher than the average level. Conclusion The findings indicated that teacher-student relationship and consequently the quality of education was overshadowed by the overall characteristics of teacher (namely-personal, professional and scientific). Notably, coupled with the professional and scientific properties of the teacher, his/ her communication skills may also help to provide a favourable learning condition for the students. Therefore, attention to the education of scientific as well as professional skills of the teachers in interaction with students through appropriate workshops and training courses is a matter of great necessity. PMID:28764198

  9. Exploration of Korean Students' Scientific Imagination Using the Scientific Imagination Inventory

    ERIC Educational Resources Information Center

    Mun, Jiyeong; Mun, Kongju; Kim, Sung-Won

    2015-01-01

    This article reports on the study of the components of scientific imagination and describes the scales used to measure scientific imagination in Korean elementary and secondary students. In this study, we developed an inventory, which we call the Scientific Imagination Inventory (SII), in order to examine aspects of scientific imagination. We…

  10. Evaluation to Improve a High School Summer Science Outreach Program †

    PubMed Central

    Chiappinelli, Katherine B.; Moss, Britney L.; Lenz, Devjanee Swain; Tonge, Natasha A.; Joyce, Adam; Holt, Glen E.; Holt, Leslie Edmonds; Woolsey, Thomas A.

    2016-01-01

    The goal of the Young Scientist Program (YSP) at Washington University School of Medicine in St. Louis (WUSM) is to broaden science literacy and recruit talent for the scientific future. In particular, YSP seeks to expose underrepresented minority high school students from St. Louis public schools (SLPS) to a wide variety of careers in the sciences. The centerpiece of YSP, the Summer Focus Program (SFP), is a nine-week, intensive research experience for competitively chosen rising high school seniors (Scholars). Scholars are paired with volunteer graduate student, medical student, or postdoctoral fellow mentors who are active members of the practicing scientific community and serve as guides and exemplars of scientific careers. The SFP seeks to increase the number of underrepresented minority students pursuing STEM undergraduate degrees by making the Scholars more comfortable with science and science literacy. The data presented here provide results of the objective, quick, and simple methods developed by YSP to assess the efficacy of the SFP from 2006 to 2013. We demonstrate that the SFP successfully used formative evaluation to continuously improve the various activities within the SFP over the course of several years and in turn enhance student experiences within the SFP. Additionally we show that the SFP effectively broadened confidence in science literacy among participating high school students and successfully graduated a high percentage of students who went on to pursue science, technology, engineering, and mathematics (STEM) majors at the undergraduate level. PMID:27158303

  11. Evaluation to Improve a High School Summer Science Outreach Program.

    PubMed

    Chiappinelli, Katherine B; Moss, Britney L; Lenz, Devjanee Swain; Tonge, Natasha A; Joyce, Adam; Holt, Glen E; Holt, Leslie Edmonds; Woolsey, Thomas A

    2016-05-01

    The goal of the Young Scientist Program (YSP) at Washington University School of Medicine in St. Louis (WUSM) is to broaden science literacy and recruit talent for the scientific future. In particular, YSP seeks to expose underrepresented minority high school students from St. Louis public schools (SLPS) to a wide variety of careers in the sciences. The centerpiece of YSP, the Summer Focus Program (SFP), is a nine-week, intensive research experience for competitively chosen rising high school seniors (Scholars). Scholars are paired with volunteer graduate student, medical student, or postdoctoral fellow mentors who are active members of the practicing scientific community and serve as guides and exemplars of scientific careers. The SFP seeks to increase the number of underrepresented minority students pursuing STEM undergraduate degrees by making the Scholars more comfortable with science and science literacy. The data presented here provide results of the objective, quick, and simple methods developed by YSP to assess the efficacy of the SFP from 2006 to 2013. We demonstrate that the SFP successfully used formative evaluation to continuously improve the various activities within the SFP over the course of several years and in turn enhance student experiences within the SFP. Additionally we show that the SFP effectively broadened confidence in science literacy among participating high school students and successfully graduated a high percentage of students who went on to pursue science, technology, engineering, and mathematics (STEM) majors at the undergraduate level.

  12. Effects of learning-style environmental and tactal/kinesthetic preferences on the understanding of scientific terms and attitude test scores of fifth-grade students

    NASA Astrophysics Data System (ADS)

    Sullivan, Angela Tirino

    This investigator analyzed the effects of learning-style environmental and tactual/kinesthetic preferences on the understanding of scientific terms and attitude test scores of fifth-grade students. To identify individual preferences, the Learning-Styles Inventory (Dunn, Dunn & Price, 1996) was administered to students who attended a suburban elementary school. Forty-six general education students were given instruction through the gradual establishment of an environmentally- and perceptually-responsive learning-style classroom. Instructional units were divided into three phases of two weeks each. The units of scientific terms were instructed for varied learning-style preferences and were gradually introduced during these instructional phases: Phase 1: Electricity was taught with traditional teaching methods; Phase 2: The Source of Energy was taught with accommodations for sound, light, temperature, design elements; Phase 3: Pollution was taught with accommodations for tactual/kinesthetic modalities. Pre and Post-tests, were administered in each of the three phases to determine scientific term gains. A repeated measures ANOVA and General Linear Model were employed to compare mean gains from phase to phase. Post-hoc comparisons were performed using the Bonferroni method and similar procedures were conducted on the Semantic Differential Scales (Pizzo, 1981). Correlations of relative gain scores during each phase were assessed by means of Pearson-product-moment correlations. Differences in the strengths of correlated correlations were evaluated by means of t-tests for related correlation coefficients. Significant gains were found when students were instructed employing incremental learning-styles strategies. To determine attitudinal changes toward science terms, the Semantic Differential Scale (Pizzo, 1981) was administered three times throughout this study: after Phase 1, traditional teaching; Phases 2 and 3, after learning-styles intervention. Statistically higher significance was achieved in both achievement (p < .001) and attitude (p < .001) as each sequential phase was introduced. Thus, the more the instruction and environment responded to students' instructional learning-styles, the better they performed and the more they liked learning. These data confirmed the importance of matching learning-styles with complementary instructional strategies and environments.

  13. Assessing the impact participation in science journalism activities has on scientific literacy among high school students

    NASA Astrophysics Data System (ADS)

    Farrar, Cathy

    As part of the National Science Foundation Science Literacy through Science Journalism (SciJourn) research and development initiative (http://www.scijourn.org ; Polman, Saul, Newman, and Farrar, 2008) a quasi-experimental design was used to investigate what impact incorporating science journalism activities had on students' scientific literacy. Over the course of a school year students participated in a variety of activities culminating in the production of science news articles for Scijourner, a regional print and online high school science news magazine. Participating teachers and SciJourn team members collaboratively developed activities focused on five aspects of scientific literacy: placing information into context, recognizing relevance, evaluating factual accuracy, use of multiple credible sources and information seeking processes. This study details the development process for the Scientific Literacy Assessment (SLA) including validity and reliability studies, evaluates student scientific literacy using the SLA, examines student SLA responses to provide a description of high school students' scientific literacy, and outlines implications of the findings in relation to the National Research Council's A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (2012) and classroom science teaching practices. Scientifically literate adults acting as experts in the assessment development phase informed the creation of a scoring guide that was used to analyze student responses. Experts tended to draw on both their understanding of science concepts and life experiences to formulate answers; paying close attention to scientific factual inaccuracies, sources of information, how new information fit into their view of science and society as well as targeted strategies for information seeking. Novices (i.e., students), in contrast, tended to ignore factual inaccuracies, showed little understanding about source credibility and suggested unproductive information seeking strategies. However, similar to the experts, novices made references to both scientific and societal contexts. The expert/novice comparison provides a rough description of a developmental continuum of scientific literacy. The findings of this study including student results and Generalized Linear Mixed Modeling suggest that the incorporation of science journalism activities focused on STEM issues can improve student scientific literacy. Incorporation of a wide variety of strategies raised scores on the SLA. Teachers who included a writing and revision process that prioritized content had significantly larger gains in student scores. Future studies could broaden the description of high school student scientific literacy and measured by the SLA and provide alternative pathways for developing scientific literacy as envisioned by SciJourn and the NRC Frameworks.

  14. Connecting Inquiry and the Nature of Science

    ERIC Educational Resources Information Center

    Peters, Erin

    2006-01-01

    Inquiry has been one of the most prominent reforms in science education. One of the goals of teaching through inquiry methods is to enable students to have experiences that are authentic to scientists' experiences. Too often, inquiry science is taught as either the "scientific method" or as "hands-on," disconnected activities…

  15. The Lagrange Points

    ERIC Educational Resources Information Center

    Lovell, M.S.

    2007-01-01

    This paper presents a derivation of all five Lagrange points by methods accessible to sixth-form students, and provides a further opportunity to match Newtonian gravity with centripetal force. The predictive powers of good scientific theories are also discussed with regard to the philosophy of science. Methods for calculating the positions of the…

  16. Relationships between Scientific Process Skills and Scientific Creativity: Mediating Role of Nature of Science Knowledge

    ERIC Educational Resources Information Center

    Ozdemir, Gokhan; Dikici, Ayhan

    2017-01-01

    The purpose of this study is to explore the strength of relationships between 7th grade students' Scientific Process Skills (SPS), Nature of Science (NOS) beliefs, and Scientific Creativity (SC) through Structural Equation Modeling (SEM). For this purpose, data were collected from 332 students of two public middle school students in Turkey. SPS,…

  17. The Effect of Scientific Process Skills Education on Students' Scientific Creativity, Science Attitudes and Academic Achievements

    ERIC Educational Resources Information Center

    Aktamis, Hilal; Ergin, Omer

    2008-01-01

    The aim of this study is to investigate the effects of teaching scientific process skills education to students to promote their scientific creativity, attitudes towards science, and achievements in science. The research includes a pre-test post-test research model with a control group. The subjects of the research consist of 40 students reading…

  18. Scientific method by argumentation design: learning process for maintaining student’s retention

    NASA Astrophysics Data System (ADS)

    Siswanto; Yusiran; Asriyadin; Gumilar, S.; Subali, B.

    2018-03-01

    The purpose of this research describes the effect of scientific methods designed by argumentation in maintaining retention of pre-service physics teachers (students) in mechanical concept. This learning consists of five stages including the first two stages namely observing and questioning. While the next three stages of reasoning, trying, and communicating are made of argumentation design. To know the effectiveness of treatment, students are given pre-test and post-test in one time. On the other hand, students were given advanced post-test to know the durability of retention as many as four times in four months. The results show that there was mean difference between pre-test and post-test based on the Wilcoxon test (z = -3.4, p=0.001). While the effectiveness of treatment is in the high category based on normalized gain values ( = 0.86). Meanwhile, mean difference of all post-test is significantly different based on Analysis of Varian (F = 365.63, p = 0.00). However, in the fourth month, students retention rates began to stabilize based on Tuckey’s HSD (p=0.074) for comparison of mean difference between fourth and fifth post-test. Overall, learning designed can maintain students retention within 4 months after the learning finish.

  19. Arguing Like a Scientist: Engaging Students in Core Scientific Practices

    ERIC Educational Resources Information Center

    Chen, Ying-Chih; Steenhoek, Joshua

    2014-01-01

    Argumentation is now seen as a core practice for helping students engage with the construction and critique of scientific ideas and for making students scientifically literate. This article demonstrates a negotiation model to show how argumentation can be a vehicle to drive students to learn science's big ideas. The model has six phases:…

  20. Associations among Attitudes, Perceived Difficulty of Learning Science, Gender, Parents' Occupation and Students' Scientific Competencies

    ERIC Educational Resources Information Center

    Chi, ShaoHui; Wang, Zuhao; Liu, Xiufeng; Zhu, Lei

    2017-01-01

    This study investigated the associations among students' attitudes towards science, students' perceived difficulty of learning science, gender, parents' occupations and their scientific competencies. A sample of 1591 (720 males and 871 females) ninth-grade students from 29 junior high schools in Shanghai completed a scientific competency test and…

  1. Ninth Grade Students' Understanding of The Nature of Scientific Knowledge

    ERIC Educational Resources Information Center

    Kilic, Kerem; Sungur, Semra; Cakiroglu, Jale; Tekkaya, Ceren

    2005-01-01

    The purpose of this study was to investigate the 9th-grade students' understandings of the nature of scientific knowledge. The study also aimed to investigate the differences in students' understanding of the nature of scientific knowledge by gender, and school types. A total of 575 ninth grade students from four different school types (General…

  2. Teachers' Use of Curriculum to Support Students in Writing Scientific Arguments to Explain Phenomena

    ERIC Educational Resources Information Center

    McNeill, Katherine L.

    2009-01-01

    The role of the teacher is essential for students' successful engagement in scientific inquiry practices. This study focuses on teachers' use of an 8-week chemistry curriculum that explicitly supports students in one particular inquiry practice, the construction of scientific arguments to explain phenomena in which students justify their claims…

  3. Secondary school physics teachers' conceptions of scientific evidence: A collective case study

    NASA Astrophysics Data System (ADS)

    Taylor, Joseph A.

    Engaging secondary school students in inquiry-oriented tasks that more closely simulate the scholarly activities of scientists has been recommended as a way to improve scientific literacy. Two tasks that are frequently recommended include students' design of original experiments, and students' evaluation of scientific evidence and conclusions. Yet, little is known about teachers' conceptions of experimentation. The principal aim of this study, therefore, was to describe the nature of prospective and practicing physics teachers' conceptions of scientific evidence. More specifically, the following research questions guided this study: (1) What types of issues related to the measurement reliability and experimental validity of scientific evidence do practicing and prospective physics teachers think about when designing experiments? (2) When presented with hypothetical scenarios that describe unsound experimental procedures or poorly supported conclusions (or both), what concerns will prospective and practicing physics teachers raise? And (3) When the participants' responses to parallel research prompts are compared across protocols, what similarities and differences exist? The nature of the teacher-participants' conceptions was described from an analysis of data collected from research prompts such as interviews and hand written artifacts. In these research prompts, the teachers "thought aloud" while designing experiments and critically evaluated student-collected evidence presented in hypothetical classroom scenarios. The data from this study suggested that the three teachers, while contemplating the reliability and validity of scientific evidence, frequently used their conceptions of evidence in conjunction with specific subject matter conceptions. The data also indicated that the relationship between subject matter knowledge and conceptions of evidence was more pronounced for some conceptions of evidence than for others. Suggestions for future research included conducting similar studies in other physics content areas as well as other scientific disciplines. Implications for science teacher education suggested that science and science methods courses encourage the construction of evidence-based arguments, as well as engagement in peer review and critique.

  4. ELWIRA "Plants, wood, steel, concrete - a lifecycle as construction materials": University meets school - science meets high school education

    NASA Astrophysics Data System (ADS)

    Strauss-Sieberth, Alexandra; Strauss, Alfred; Kalny, Gerda; Rauch, Hans Peter; Loiskandl, Willibald

    2016-04-01

    The research project "Plants, wood, steel, concrete - a lifecycle as construction materials" (ELWIRA) is in the framework of the Sparkling Science programme performed by the University of Natural Resources and Life Sciences together with the Billroth Gymnasium in Vienna. The targets of a Sparkling Science project are twofold (a) research and scientific activities should already be transferred in the education methods of schools in order to fascinate high school students for scientific methods and to spark young people's interest in research, and (b) exciting research questions not solved and innovative findings should be addressed. The high school students work together with the scientists on their existing research questions improve the school's profile and the high school student knowledge in the investigated Sparkling Science topic and can lead to a more diverse viewing by the involvement of the high school students. In the project ELWIRA scientists collaborate with the school to quantify and evaluate the properties of classical building materials like concrete and natural materials like plants and woodlogs in terms of their life cycle through the use of different laboratory and field methods. The collaboration with the high school students is structured in workshops, laboratory work and fieldworks. For an efficient coordination/communication, learning and research progress new advanced electronic media like "Moodle classes/courses" have been used and utilized by the high school students with great interest. The Moodle classes are of high importance in the knowledge transfer in the dialogue with the high school students. The research project is structured into four main areas associated with the efficiencies of building materials: (a) the aesthetic feeling of people in terms of the appearance of materials and associated structures will be evaluated by means of jointly developed and collected questionnaires. The analysis, interpretation and evaluation are carried out in close cooperation between the scientists and the high school students, (b) high school students perform classical as well as advanced laboratory testing procedures on the selected materials under the guidance of researchers. They determine a set of mechanical properties and mechanical short and long term performance indicators, such as compression strength, Young modulus, fracture energy etc., (c) field tests on sites are performed to specify climatic characteristics of the examined materials, in order to find out their impact on the surrounding microclimate caused by for instance solar radiation and air temperature, and (d) finally an energy balance (CO2) for the selected materials over their entire life cycle will be carried out by the scientists. These results will provide an important contribution to a sustainable, climate-friendly and resource conserving handling with building materials. The aim of this poster is to present and discuss alternative scientific approaches of scientific working between scientists and high school students and to discuss the learning outcomes already obtained by the high school students within the project "Plants, wood, steel, concrete - a lifecycle as construction materials" ELWIRA.

  5. [Scientific journals of medical students in Latin-America].

    PubMed

    Cabrera-Samith, Ignacio; Oróstegui-Pinilla, Diana; Angulo-Bazán, Yolanda; Mayta-Tristán, Percy; Rodríguez-Morales, Alfonso J

    2010-11-01

    This article deals with the history and evolution of student's scientific journals in Latin-America, their beginnings, how many still exist and which is their future projection. Relevant events show the growth of student's scientific journals in Latin-America and how are they working together to improve their quality. This article is addressed not only for Latin American readers but also to worldwide readers. Latin American medical students are consistently working together to publish scientific research, whose quality is constantly improving.

  6. The Effect of a Flipped Classroom Model on Academic Achievement, Self-Directed Learning Readiness, Motivation and Retention

    ERIC Educational Resources Information Center

    Alsancak Sirakaya, Didem; Ozdemir, Selçuk

    2018-01-01

    This study examined the effect of a flipped classroom model on students' academic achievement, self-directed learning readiness and motivation. The participants of this study were a total of 66 students who took the "Scientific Research Methods" course and were studying in two different classes in the Faculty of Education at Ahi Evran…

  7. A Novel Assessment Tool for Quantitative Evaluation of Science Literature Search Performance: Application to First-Year and Senior Undergraduate Biology Majors

    ERIC Educational Resources Information Center

    Blank, Jason M.; McGaughey, Karen J.; Keeling, Elena L.; Thorp, Kristen L.; Shannon, Conor C.; Scaramozzino, Jeanine M.

    2016-01-01

    Expertise in searching and evaluating scientific literature is a requisite skill of trained scientists and science students, yet information literacy instruction varies greatly among institutions and programs. To ensure that science students acquire information literacy skills, robust methods of assessment are needed. Here, we describe a novel…

  8. Training School Pupils in the Scientific Method: Student Participation in an International VLF Radio Experiment

    ERIC Educational Resources Information Center

    Denton, J. J.; Denton, M. H.; Kavanagh, A. J.; Harron, H.; Ulich, T.; Denton, J. S.

    2012-01-01

    We report on a school-university collaboration to involve students in the deployment, testing, and operation of a very low frequency (VLF) radio receiver as part of an international network of such experiments. A background to the collaboration is presented, along with a summary of planning and development, and the ultimate deployment of the…

  9. Community-Based Inquiry in Allied Health Biochemistry Promotes Equity by Improving Critical Thinking for Women and Showing Promise for Increasing Content Gains for Ethnic Minority Students

    ERIC Educational Resources Information Center

    Goeden, Terrah J.; Kurtz, Martha J.; Quitadamo, Ian J.; Thomas, Carin

    2015-01-01

    In the Community-Based Inquiry (CBI) instructional method, cooperative student groups complete case study activities based on scientific literature and conduct their own laboratory investigations that address authentic community needs. This study compared critical thinking and content knowledge outcomes between traditional Introduction to…

  10. College Students Constructing Collective Knowledge of Natural Science History in a Collaborative Knowledge Building Community

    ERIC Educational Resources Information Center

    Hong, Huang-Yao; Chai, Ching Sing; Tsai, Chin-Chung

    2015-01-01

    This study investigates whether engaging college students (n = 42) in a knowledge building environment would help them work as a community to construct their collective knowledge of history of science and, accordingly, develop a more informed scientific view. The study adopted mixed-method analyses and data mainly came from surveys and student…

  11. Exploration of Reaction Time: Ideas for an Inquiry Investigation in Physics Education

    ERIC Educational Resources Information Center

    Brown, Todd; Brown, Katrina; Barnot, Vickilyn

    2012-01-01

    Reaction time, the time between a stimulus and a person's reaction to it, is a concept familiar to most teenagers, particularly in the context of driving. We describe a simple inexpensive activity that utilizes students' creativity and invokes the scientific method in order to explore reaction time. The goal of the activity is to give students a…

  12. Exploring the Nature of the H[subscript 2] Bond. 1. Using Spreadsheet Calculations to Examine the Valence Bond and Molecular Orbital Methods

    ERIC Educational Resources Information Center

    Halpern, Arthur M.; Glendening, Eric D.

    2013-01-01

    A three-part project for students in physical chemistry, computational chemistry, or independent study is described in which they explore applications of valence bond (VB) and molecular orbital-configuration interaction (MO-CI) treatments of H[subscript 2]. Using a scientific spreadsheet, students construct potential-energy (PE) curves for several…

  13. Rearing Media as a Variable in Fruit Fly Fecundity: An Activity to Introduce Scientific Methods of Inquiry to Biology Students

    ERIC Educational Resources Information Center

    Wollard, Laura; Klein, Benjamin; Carlson, Darby J.; Carlson, Kimberly A.

    2006-01-01

    A major challenge in teaching the process of science to students is designing and implementing laboratory activities that emulate what is actually done in a research laboratory. To facilitate this effort, science educators have been encouraged to design exercises that span multiple laboratory periods, encourage independent thinking, promote…

  14. Teaching optics with an intra-curricular kit designed for inquiry-based learning

    NASA Astrophysics Data System (ADS)

    Cords, Nina; Fischer, Robert; Euler, Manfred; Prasad, Amrita

    2012-01-01

    In order to increase scientific literacy and the knowledge of science and technology of Europe's citizens, the European Commission suggests a more student-centred implementation of natural sciences in education systems. Inquiry-based learning (IBL) is not only an accepted method to promote students' interest and motivation, it also helps students learn the scientific method and fosters their research skills. However, IBL is rarely used in European classrooms. The main reason is that due to the strict curricula teachers do not have the time for preparation and they do not feel well equipped and trained in the use of IBL methods in class. The Photonics Explorer programme addresses these problems on the European level. Within the programme, a pan-European collaboration of professors, teachers and photonics experts have developed the Photonics Explorer kit for the teaching of optics and light-related topics in physics across various European secondary school curricula. It is designed for intra-curricular use and contains specially designed, hands-on experimental components, worksheets based on guided IBL and multimedia material. Additionally, the kit provides a teacher guide with a suggested lesson outline and sufficient background information for each topic.

  15. Grade 10 Thai students' scientific argumentation in learning about electric field through science, technology, and society (STS) approach

    NASA Astrophysics Data System (ADS)

    Chitnork, Amporn; Yuenyong, Chokchai

    2018-01-01

    The research aimed to enhance Grade 10 Thai students' scientific argumentation in learning about electric field through science, technology, and society (STS) approach. The participants included 45 Grade 10 students who were studying in a school in Nongsonghong, Khon Kaen, Thailand. Methodology regarded interpretive paradigm. The intervention was the force unit which was provided based on Yuenyong (2006) STS approach. Students learned about the STS electric field unit for 4 weeks. The students' scientific argumentation was interpreted based on Toulmin's argument pattern or TAP. The TAP provided six components of argumentation including data, claim, warrants, qualifiers, rebuttals and backing. Tools of interpretation included students' activity sheets, conversation, journal writing, classroom observation and interview. The findings revealed that students held the different pattern of argumentation. Then, they change pattern of argumentation close to the TAP. It indicates that the intervention of STS electric field unit enhance students to develop scientific argumentation. This finding may has implication of further enhancing scientific argumentation in Thailand.

  16. The Numbers Game.

    ERIC Educational Resources Information Center

    Lustick, David

    1997-01-01

    Describes a simple activity that explores and reveals the principles of significant figures and scientific notation using a 500 gram bag of unpopped popcorn. Students must devise a method for determining the number of kernels in the bag. (DDR)

  17. History and Legacy

    ERIC Educational Resources Information Center

    Mason, Diana S.

    2004-01-01

    The history of the computer usage in high school laboratories is discussed. Students learned scientific methods by acknowledging measurement errors, using significant digits, questioning their own results, and without doubts, they benefited from applying skill learned in mathematics classes.

  18. Students’ scientific production: a proposal to encourage it.

    PubMed

    Corrales-Reyes, Ibraín Enrique; Dorta-Contreras, Alberto Juan

    2018-01-31

    The scientific production of medical students in Latin America, is poor and below their potential. The reason for this is the low theoretical and practical knowledge of scientific writing, a low margin for new knowledge generation, a heavy academic and clinical load, and the expected profile of the medical school graduate. In the present short communication, we propose teaching courses in research methodology, scientific writing in English and Spanish, a personalized search for students and mentors with research aptitudes. Also, we propose academic and material stimuli for publishing, rewards for the best papers made by students and the development and support of scientific student journals. Other proposals are the requirement to publish a paper for graduation, and sharing the most outstanding experiences.

  19. Curriculum Alignment with Vision and Change Improves Student Scientific Literacy.

    PubMed

    Auerbach, Anna Jo; Schussler, Elisabeth E

    2017-01-01

    The Vision and Change in Undergraduate Biology Education final report challenged institutions to reform their biology courses to focus on process skills and student active learning, among other recommendations. A large southeastern university implemented curricular changes to its majors' introductory biology sequence in alignment with these recommendations. Discussion sections focused on developing student process skills were added to both lectures and a lab, and one semester of lab was removed. This curriculum was implemented using active-learning techniques paired with student collaboration. This study determined whether these changes resulted in a higher gain of student scientific literacy by conducting pre/posttesting of scientific literacy for two cohorts: students experiencing the unreformed curriculum and students experiencing the reformed curriculum. Retention of student scientific literacy for each cohort was also assessed 4 months later. At the end of the academic year, scientific literacy gains were significantly higher for students in the reformed curriculum ( p = 0.005), with those students having double the scientific literacy gains of the cohort in the unreformed curriculum. Retention of scientific literacy did not differ between the cohorts. © 2017 A. J. Auerbach and E. E. Schussler. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. The influence of contextual teaching with the problem solving method on students' knowledge and attitudes toward horticulture, science, and school

    NASA Astrophysics Data System (ADS)

    Whitcher, Carrie Lynn

    2005-08-01

    Adolescence is marked with many changes in the development of higher order thinking skills. As students enter high school they are expected to utilize these skills to solve problems, become abstract thinkers, and contribute to society. The goal of this study was to assess horticultural science knowledge achievement and attitude toward horticulture, science, and school in high school agriculture students. There were approximately 240 high school students in the sample including both experimental and control groups from California and Washington. Students in the experimental group participated in an educational program called "Hands-On Hortscience" which emphasized problem solving in investigation and experimentation activities with greenhouse plants, soilless media, and fertilizers. Students in the control group were taught by the subject matter method. The activities included in the Hands-On Hortscience curriculum were created to reinforce teaching the scientific method through the context of horticulture. The objectives included evaluating whether the students participating in the Hands-On Hortscience experimental group benefited in the areas of science literacy, data acquisition and analysis, and attitude toward horticulture, science, and school. Pre-tests were administered in both the experimental and control groups prior to the research activities and post-tests were administered after completion. The survey questionnaire included a biographical section and attitude survey. Significant increases in hortscience achievement were found from pre-test to post-test in both control and experimental study groups. The experimental treatment group had statistically higher achievement scores than the control group in the two areas tested: scientific method (p=0.0016) and horticulture plant nutrition (p=0.0004). In addition, the students participating in the Hands-On Hortscience activities had more positive attitudes toward horticulture, science, and school (p=0.0033). Students who were more actively involved in hands-on projects had higher attitude scores compared to students who were taught traditional methods alone. In demographic comparisons, females had more positive attitudes toward horticulture science than males; and students from varying ethnic backgrounds had statistically different achievement (p=0.0001). Ethnicity was determined with few students in each background, 8 in one ethnicity and 10 students in another. Youth organization membership such as FFA or 4-H had no significant bearing on achievement or attitude.

  1. On the substance of a sophisticated epistemology

    NASA Astrophysics Data System (ADS)

    Elby, Andrew; Hammer, David

    2001-09-01

    Among researchers who study students' epistemologies, a consensus has emerged about what constitutes a sophisticated stance toward scientific knowledge. According to this community consensus, students should understand scientific knowledge as tentative and evolving, rather than certain and unchanging; subjectively tied to scientists' perspectives, rather than objectively inherent in nature; and individually or socially constructed, rather than discovered. Surveys, interview protocols, and other methods used to probe students' beliefs about scientific knowledge broadly reflect this outlook. This article questions the community consensus about epistemological sophistication. We do not suggest that scientific knowledge is objective and fixed; if forced to choose whether knowledge is certain or tentative, with no opportunity to elaborate, we would choose tentative. Instead, our critique consists of two lines of argument. First, the literature fails to distinguish between the correctness and productivity of an epistemological belief. For instance, elementary school students who believe that science is about discovering objective truths to questions, such as whether the earth is round or flat, or whether an asteroid led to the extinction of the dinosaurs, may be more likely to succeed in science than students who believe science is about telling stories that vary with one's perspective. Naïve realism, although incorrect (according to a broad consensus of philosophers and social scientists), may nonetheless be productive for helping those students learn. Second, according to the consensus view as reflected in commonly used surveys, epistemological sophistication consists of believing certain blanket generalizations about the nature of knowledge and learning, generalizations that do not attend to context. These generalizations are neither correct nor productive. For example, it would be unsophisticated for students to view as tentative the idea that the earth is round rather than flat. By contrast, they should take a more tentative stance toward theories of mass extinction. Nonetheless, many surveys and interview protocols tally students as sophisticated not for attending to these contextual nuances, but for subscribing broadly to the view that knowledge is tentative.

  2. Snapshots of Authentic Scientific Inquiry and Teacher Preparation: Undergraduate STEM Courses, Preservice and Inservice Teachers' Experiences

    NASA Astrophysics Data System (ADS)

    French, Debbie Ann

    In this dissertation, the researcher describes authentic scientific inquiry (ASI) within three stages of teacher preparation and development: a1) undergraduate STEM courses, b2) preservice secondary science education methods courses, and c3) inservice teacher professional development (PD). Incorporating (ASI)-- pedagogy closely modeling the research practices of scientists--is at the forefront of national science, technology, engineering, and mathematics (STEM) initiatives and the Next Generation Science Standards (NGSS). In the first of three research articles, 42 students participated in an introductory astronomy course which employed inquiry-based pedagogy. The researcher administered the Test Of Astronomy STandards (TOAST) pre/post instruction. In the second article, 56 preservice secondary science teachers completed ideal lesson plan scenarios before and after 80 hours of methods instruction. The researcher scored the scenarios using a rubrirubric developedc according to the NGSS Science and Engineering Practices, and analyzed the components from the scenarios. The third article surveyed 63 inservice STEM teachers with prior research and industry experience. The researcher highlights teacher ASI perspectives. Overall, teachers incorporated opportunities for K-20 students to use scientific instrumentation and technology to collect and analyze data, work collaboratively, and develop evidence-based conclusions. Few teachers provided opportunities for students to ask scientific questions or disseminate results, suggesting the need that teachers (at all levels) need scaffolded instruction in these areas. The researcher argues that while ASI and STEM PDs are effective for teachers, developing similar interest, on-going communities of practice may provide support for teacher to implement the ASI practices in their classrooms.

  3. Writing Stories to Enhance Scientific Literacy

    ERIC Educational Resources Information Center

    Ritchie, Stephen M.; Tomas, Louisa; Tones, Megan

    2011-01-01

    In response to international concerns about scientific literacy and students' waning interest in school science, this study investigated the effects of a science-writing project about the socioscientific issue (SSI) of biosecurity on the development of students' scientific literacy. Students generated two "BioStories" each that merged…

  4. Describing Changes in Undergraduate Students' Preconceptions of Research Activities

    ERIC Educational Resources Information Center

    Cartrette, David P.; Melroe-Lehrman, Bethany M.

    2012-01-01

    Research has shown that students bring naive scientific conceptions to learning situations which are often incongruous with accepted scientific explanations. These preconceptions are frequently determined to be misconceptions; consequentially instructors spend time to remedy these beliefs and bring students' understanding of scientific concepts to…

  5. Socio-Scientific Decision Making in the Science Classroom

    ERIC Educational Resources Information Center

    Siribunnam, Siripun; Nuangchalerm, Prasart; Jansawang, Natchanok

    2014-01-01

    The learning ability of students in science is improved by socio-scientific decision-making, an important activity that improves a student's scientific literacy, conceptual understanding, scientific inquiry, attitudes, and social values. The socio-scientific issues must be discussed during science classroom activities in the current state of 21st…

  6. Design training activity for teachers and students on environmental science topic in the frame of ENVRIPLUS project

    NASA Astrophysics Data System (ADS)

    D'Addezio, G.; Beranzoli, L.; Antonella, M.

    2016-12-01

    We elaborated actions to improve the content of the ENVRIPLUS e-Training Platform for multimedia education of secondary school level teachers and students. The purpose is to favor teacher training and consequently students training on selected scientific themes faced within the ENVRIPLUS Research Infrastructures. In particular we address major thematic research areas and challenges on Biodiversity and Ecosystem Services, Greenhouse effect and Earth Warming, Ocean acidifications and Environmental sustainability. First we identified "Best practices" that could positively impacts on students by providing motivation on promoting scientific research and increase the awareness of the Earth System complexity and Environmental challenges for its preservation and sustainability,). Best practice teaching strategies represent an inherent part of a curriculum that exemplifies the connection and relevance identified in education research. To realize the training platform we start detailed study and analysis of teaching and multimedia information materials already available. We plan the realization of a digital repository for access to teachers and students with opportunities to develop original content, with standardization of the design methods of the scientific and technical content, classification / cataloging of information in digital form and definition of a logical model for the provision of thematic content in a single digital environment. To better design the actions and to catch teacher needs, we prepare a questionnaire that will be administered to a large sample of international secondary school level teachers. The first part focused on objective information about the formal, quantitative and qualitative position of science class in schools and the content and methods of teaching in different countries. The second part investigate subjective teacher experiences and their views on what can improve training offer for environmental science lessons and courses.

  7. Young science journalism: writing popular scientific articles may contribute to an increase of high-school students' interest in the natural sciences

    NASA Astrophysics Data System (ADS)

    Simon, Uwe K.; Steindl, Hanna; Larcher, Nicole; Kulac, Helga; Hotter, Annelies

    2016-03-01

    Far too few high-school students choose subjects from the natural sciences (NaSc) for their majors in many countries. Even fewer study biology, chemistry or physics at university. Those, that do, often lack training to present and discuss scientific results and ideas in texts. To meet these challenges the center for didactics of biology of Graz University has set up the program Young Science Journalism. This new workshop-based interdisciplinary concept was tested in an exploratory study with grade 10 students of one Austrian high school, engaging both the biology and the German teacher of the class. It was our aim to raise students' interest in the NaSc by encouraging them to write popular scientific articles about self-chosen topics, and to help them improve their writing competence. In this paper we focus on interest development through writing. Results from this pilot study were promising. Using a mixed-method approach (comparing pre- and post-test questionnaires and semi-structured interviews from different time points analyzed qualitatively), we found that almost all students valued the project-related work highly. Most of them showed higher interest in the NaSc at project end with girls, in average, seeming to profit more from project participation. We thus recommend integrating such writing tasks into school curricula to increase students' interest in NaSc or to even create new interest. Additionally, we introduce a network presentation of questionnaire data as a powerful tool to visualize the effect of an intervention on individual students and student profile groups.

  8. When Scientific Knowledge, Daily Life Experience, Epistemological and Social Considerations Intersect: Students' Argumentation in Group Discussions on a Socio-Scientific Issue

    ERIC Educational Resources Information Center

    Albe, Virginie

    2008-01-01

    Socio-scientific issues in class have been proposed in an effort to democratise science in society. A micro-ethnographic approach has been used to explore how students elaborate arguments on a socio-scientific controversy in the context of small group discussions. Several processes of group argumentation have been identified. Students' arguments…

  9. An analysis of 12th-grade students' reasoning styles and competencies when presented with an environmental problem in a social and scientific context

    NASA Astrophysics Data System (ADS)

    Yang, Fang-Ying

    This study examined reasoning and problem solving by 182 12th grade students in Taiwan when considering a socio-scientific issue regarding the use of nuclear energy. Students' information preferences, background characteristics, and eleven everyday scientific thinking skills were scrutinized. It was found most participants displayed a willingness to take into account both scientific and social information in reasoning the merits of a proposed construction of a nuclear power plant. Students' reasoning scores obtained from the "information reasoning style" test ranged from -0.5 to 1.917. And, the distribution was approximately normal with mean and median at around 0.5. For the purpose of categorization, students whose scores were within one standard deviation from the mean were characterized as having a "equally disposed" reasoning style. One hundred and twenty-five subjects, about 69%, belonged to this category. Students with scores locating at the two tails of the distribution were assigned to either the "scientifically oriented" or the "socially oriented" reasoning category. Among 23 background characteristics investigated using questionnaire data and ANOVA statistical analysis, only students' science performance and knowledge about nuclear energy were statistically significantly related to their information reasoning styles (p < 0.05). The assessed background characteristics addressed dimensions such as gender, academic performances, class difference, future education, career expectation, commitment to study, assessment to educational enrichment, family conditions, epistemological views about science, religion, and the political party preference. For everyday scientific thinking skills, interview data showed that both "scientifically oriented" students and those who were categorized as "equally disposed to using scientific and social scientific sources of data" displayed higher frequencies than "socially oriented" ones in using these skills, except in the use of the "multidisciplinary thinking" skill. Among the 11 skills assessed, the "scientifically oriented" students outperformed the "equally disposed" ones only in the use of 3 thinking skills; namely, searching for or recalling scientific concepts/evidence, recognizing and evaluating alternatives, and making conclusions based on the scientific intuition.

  10. Scientific reasoning skills development in the introductory biology courses for undergraduates

    NASA Astrophysics Data System (ADS)

    Schen, Melissa S.

    Scientific reasoning is a skill of critical importance to those students who seek to become professional scientists. Yet, there is little research on the development of such reasoning in science majors. In addition, scientific reasoning is often investigated as two separate entities: hypothetico-deductive reasoning and argumentation, even though these skills may be linked. With regard to argumentation, most investigations look at its use in discussing socioscientific issues, not in analyzing scientific data. As scientists often use the same argumentation skills to develop and support conclusions, this avenue needs to be investigated. This study seeks to address these issues and establish a baseline of both hypothetico-deductive reasoning and argumentation of scientific data of biology majors through their engagement in introductory biology coursework. This descriptive study investigated the development of undergraduates' scientific reasoning skills by assessing them multiple times throughout a two-quarter introductory biology course sequence for majors. Participants were assessed at the beginning of the first quarter, end of the first quarter, and end of the second quarter. A split-half version of the revised Lawson Classroom Test of Scientific Reasoning (LCTSR) and a paper and pencil argumentation instrument developed for this study were utilized to assess student hypothetico-deductive reasoning and argumentation skills, respectively. To identify factors that may influence scientific reasoning development, demographic information regarding age, gender, science coursework completed, and future plans was collected. Evidence for course emphasis on scientific reasoning was found in lecture notes, assignments, and laboratory exercises. This study did not find any trends of improvement in the students' hypothetico-deductive reasoning or argumentation skills either during the first quarter or over both quarters. Specific difficulties in the control of variables and direct hypothetico-deductive reasoning were found through analysis of the LCTSR data. Students were also found to have trouble identifying and rebutting counterarguments, compared to generating initial arguments from scientific data sets. Although no overall improvement was found, a moderate, positive relationship was detected between LCTSR and argumentation scores at each administration, affirming the predicted association. Lastly, no difference was determined between biology majors and other students also enrolled in the courses. Overall, the results found here are similar to those classified in the literature for both hypothetico-deductive reasoning and argumentation, indicating that biology majors may be similar to other populations studied. Also, as no explicit attention was paid to scientific reasoning skills in the two courses, these findings complement those that illustrate a need for direct attention to foster the development of these skills. These results suggest the need to develop direct and explicit methods in order to improve the scientific reasoning skills of future biological scientists early in their undergraduate years.

  11. Toward a Model of Social Influence that Explains Minority Student Integration into the Scientific Community

    PubMed Central

    Estrada, Mica; Woodcock, Anna; Hernandez, Paul R.; Schultz, P. Wesley

    2010-01-01

    Students from several ethnic minority groups are underrepresented in the sciences, such that minority students more frequently drop out of the scientific career path than non-minority students. Viewed from a perspective of social influence, this pattern suggests that minority students do not integrate into the scientific community at the same rate as non-minority students. Kelman (1958, 2006) describes a tripartite integration model of social influence (TIMSI) by which a person orients to a social system. To test if this model predicts integration into the scientific community, we conducted analyses of data from a national panel of minority science students. A structural equation model framework showed that self-efficacy (operationalized consistent with Kelman’s ‘rule-orientation’) predicted student intentions to pursue a scientific career. However, when identification as a scientist and internalization of values are added to the model, self-efficacy becomes a poorer predictor of intention. Additional mediation analyses support the conclusion that while having scientific self-efficacy is important, identifying with and endorsing the values of the social system reflect a deeper integration and more durable motivation to persist as a scientist. PMID:21552374

  12. Examining the progression and consistency of thermal concepts: a cross-age study

    NASA Astrophysics Data System (ADS)

    Adadan, Emine; Yavuzkaya, Merve Nur

    2018-03-01

    This cross-sectional study examined how the progression and consistency of students' understanding of thermal concepts in everyday contexts changes across the grade levels. A total of 656 Turkish students from Grade 8 (age 13-14), Grade 10 (age 15-16), and the first year of college (age 19-20) participated in the study. The data were analysed using statistical procedures (descriptive and inferential). Findings indicated a substantial progression in the students' scientific understanding of thermal concepts across grade levels. In addition, the students' alternative conceptions about thermal concepts generally decreased in frequency across grade levels, but certain alternative conceptions were observed in every grade level to a similar extent. Even though the number of students who consistently used scientific ideas increased across grade levels, the number of students who consistently used non-scientific ideas decreased across grade levels. However, the number of students who used scientific and non-scientific ideas inconsistently generally increased as they progressed in the science curriculum. These findings can be associated with either fragmentation or alternative conceptions that result from the gradual enrichment processes students experience when they try to integrate scientific concepts into their conceptual frameworks.

  13. An interdisciplinary learning experience in neuro-optics.

    PubMed

    Anselmi, Francesca; Bertherat, Julien; Estebanez, Luc; van 't Hoff, Marcel; Zylbersztejn, Kathleen

    2012-01-01

    How can a Ph.D. student initially trained as a biologist take part in the development of a multineuronal recording method that requires cross interaction between physics, neurobiology and mathematics? Beyond student training in the laboratory, interdisciplinary research calls for a new style of academic training of young researchers. Here we present an innovative approach to graduate student academic training that fills the need for multidisciplinary knowledge and provides students, in addition, with a deeper understanding of the interdisciplinary approach to scientific research. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Bone, Calcium and Spaceflight: A Living Systems Experiment Relating Animals and Plants the Effects of Calcium on Plant Growth and Development

    NASA Technical Reports Server (NTRS)

    Reiss-Bubenheim, Debra; Navarro, B. J.; Souza, Kenneth A. (Technical Monitor)

    1994-01-01

    This educational outreach activity provided students with information about ARC's role in conducting life sciences research in space. Students were introduced to the scientific method while conducting a plant experiment that was correlated to the flight animal experiment. Students made daily observations, collected data and reported on their findings. This classroom experiment providing a hands-on learning opportunity about terrestrial and space biology in which exposed the students to new fields of study for future endeavors.

  15. The profile of high school students’ scientific literacy on fluid dynamics

    NASA Astrophysics Data System (ADS)

    Parno; Yuliati, L.; Munfaridah, N.

    2018-05-01

    This study aims to describe the profile of scientific literacy of high school students on Fluid Dynamics materials. Scientific literacy is one of the ability to solve daily problems in accordance with the context of materials related to science and technology. The study was conducted on 90 high school students in Sumbawa using survey design. Data were collected using an instrument of scientific literacy for high school students on dynamic fluid materials. Data analysis was conducted descriptively to determine the students’ profile of scientific literacy. The results showed that high school students’ scientific literacy on Fluid Dynamics materials was in the low category. The highest average is obtained on indicators of scientific literacy i.e. the ability to interpret data and scientific evidence. The ability of scientific literacy is related to the mastery of concepts and learning experienced by students, therefore it is necessary to use learning that can trace this ability such as Science, Technology, Engineering, and Mathematics (STEM).

  16. Instructional scientific humor in the secondary classroom

    NASA Astrophysics Data System (ADS)

    Wizner, Francine

    This study is an examination of the manner in which educators employ scientific content humor and how that humor is perceived by their students. Content humor is a useful strategy in drawing the attention of students and improving their receptivity toward scientific information. It is also a useful tool in combating the growing distractions of the electronic classroom. Previous studies have found that humor has a positive effect on knowledge, memory, and understanding. However, few studies have been conducted below the undergraduate level and mainly quantitative measures of student recall have been used to measure learning. This study employed multiple data sources to determine how two secondary biology teachers used humor in order to explain scientific concepts and how their students perceived their teachers' use of scientific instructional humor. Evidence of student humor reception was collected from four students in each of the two classes. All of the scientific instructional humor used in the studied classrooms was cognitive in nature, varying among factual, procedural, conceptual, and metacognitive knowledge. Teachers tended to use dialogic forms of humor. Their scientific humor reflected everyday experiences, presented queries, poked fun at authority, and asked students to search out new perspectives and perform thought experiments. Teachers were the primary actors in performing the humorous events. The events were sometimes physical exaggerations of words or drawings, and they occurred for the purpose of establishing rapport or having students make connections between scientific concepts and prior knowledge. Student perceptions were that teachers did employ humor toward instructional objectives that helped their learning. Helping students become critical thinkers is a trademark of science teachers. Science teachers who take the risk of adopting some attributes of comedians may earn the reward of imparting behaviors on their students like critical thinking skills, the ability to explore questions in a detached manner, and the ability to search out new perspectives. The results of this research may encourage additional study on how secondary science teachers use humor to explain scientific concepts and may also encourage science teachers to investigate novel ways that instructional humor can be used in their classrooms. Keywords: Scientific Humor, Instructional Humor, Secondary, Biology.

  17. Seminar in Flow Visualization at Lafayette College: Variations on the Hertzberg Effect

    NASA Astrophysics Data System (ADS)

    Rossmann, Jenn Stroud

    2013-11-01

    Flow visualization reveals an invisible world of fluid dynamics, blending scientific investigation and artistic exploration. The resulting images have inspired, and in some cases themselves become appreciated as, art. At Lafayette College, a sophomore-level seminar in The Art and Science of Flow Visualization exposes students to these techniques and the science of fluid mechanics, and to the photographic methods needed to create effective images that are successful both scientifically and artistically. Unlike other courses in flow visualization, this course assumes no a priori familiarity with fluid flow or with photography. The fundamentals of both are taught and practiced in a studio setting. Students are engaged in an interdisciplinary discourse about fluids and physics, photography, scientific ethics, and historical societal responses to science and art. Relevant texts from several disciplines are read, discussed, and responded to in student writing. This seminar approach makes flow visualization and fluid dynamics a natural part of a liberal education. The development, implementation, and assessment of this team-taught course at Lafayette College will be discussed. Support provided by National Science Foundation.

  18. Natural Sciences and Pre-Schoolers: Impact and Future Approaches

    NASA Astrophysics Data System (ADS)

    Mira, Sara; Leote, Catarina; Ferreira, Hélder; Correia, Diana; Alho, Joana; Costa, Júlio; Silva, Adriana; Faria, Cláudia; Azevedo Rodrigues, Luis

    2017-04-01

    Geosciences are more and more part of the primary school curriculum. However, the subjects of Earth and Astronomy remain very lightly approached. In Portugal, after the mandatory class period from 9 a.m. to 4 p.m., a complementary Experimental Sciences class of 1 or 2 hours per week has been introduced. In the past two years, through a partnership with the Lagos City Hall, the Lagos Ciência Viva Science Centre (CCVL) has been responsible for these classes in 8 primary schools engaging roughly 500 students in STEM activities that aim to support students to better understand and explore general scientific (and geosciences) subjects. But what is the impact of these classes in their knowledge and thinking procedure? What competencies and skills are gained, if any? And what is the background of our students regarding scientific literacy and habits? To answer these questions, we used questionnaires and personal meaning mapping to characterize our primary school population concerning scientific literacy and habits, assess the impact in their knowledge and identify potential caveats in our teaching and evaluation methods.

  19. Scientific Literacy of High School Students.

    ERIC Educational Resources Information Center

    Lucas, Keith B.; Tulip, David F.

    This investigation was undertaken in order to establish the status of scientific literacy among three groups of secondary school students in four Brisbane, Australia high schools, and to reduce the apparent reticence of science teachers to evaluate students' achievement in the various dimensions of scientific literacy by demonstrating appropriate…

  20. The effects of conducting authentic field-geology research on high school students' understanding of the nature of science, and their views of themselves as research scientists

    NASA Astrophysics Data System (ADS)

    Millette, Patricia M.

    Authentic field geology research is a inquiry method that encourages students to interact more with their local environment, and by solving genuine puzzles, begin to increase their intuitive understanding of the nature and processes of science. The goal of the current study was to determine if conducting authentic field research and giving high school students the opportunity to present findings to adult audiences outside of the school setting 1) enhances students' understanding of the nature of science, and 2) affects students views of themselves as researchers. To accomplish this, ninth-grade students from a public school in northern New England engaged in a community-initiated glacial geology problem, completed a field research investigation, and presented their findings at several professional conferences. Following the completion of this student-centered field research, I investigated its effects by using a mixed methods approach consisting of qualitative and quantitative data from two sources. These included selected questions from an open-response survey (VNOS-c), and interviews that were conducted with fifteen of the students of different ages and genders. Findings show that conducting original field research seems to have a positive influence on these students' understanding of the NOS as well as the processes of science. Many of the students reported feelings of accomplishment, acceptance of responsibility for the investigation, a sense of their authentic contribution to the body of scientific knowledge in the world, and becoming scientists. This type of authentic field investigation is significant because recent reforms in earth-science education stress the importance of students learning about the nature and processes of scientific knowledge along with science content.

  1. Engaging Undergraduate Biology Students in Scientific Modeling: Analysis of Group Interactions, Sense-Making, and Justification

    PubMed Central

    Bierema, Andrea M.-K.; Schwarz, Christina V.; Stoltzfus, Jon R.

    2017-01-01

    National calls for improving science education (e.g., Vision and Change) emphasize the need to learn disciplinary core ideas through scientific practices. To address this need, we engaged small groups of students in developing diagrammatic models within two (one large-enrollment and one medium-enrollment) undergraduate introductory biology courses. During these activities, students developed scientific models of biological phenomena such as enhanced growth in genetically modified fish. To investigate whether undergraduate students productively engaged in scientific practices during these modeling activities, we recorded groups of students as they developed models and examined three characteristics: how students 1) interacted with one another, 2) made sense of phenomena, and 3) justified their ideas. Our analysis indicates that students spent most of the time on task, developing and evaluating their models. Moreover, they worked cooperatively to make sense of core ideas and justified their ideas to one another throughout the activities. These results demonstrate that, when provided with the opportunity to develop models during class, students in large-enrollment lecture courses can productively engage in scientific practices. We discuss potential reasons for these outcomes and suggest areas of future research to continue advancing knowledge regarding engaging students in scientific practices in large-enrollment lecture courses. PMID:29196429

  2. Redesign of students’ worksheet on basic physics experiment based on students’ scientific process skills analysis in Melde’s law

    NASA Astrophysics Data System (ADS)

    Nugraha, M. G.; Utari, S.; Saepuzaman, D.; Nugraha, F.

    2018-05-01

    Scientific process skills (SPS) are an intellectual skill to build knowledge, solve problems scientifically, train thinking skills as well as a very important part of the inquiry process and contribute to scientific literacy. Therefore, SPS is very important to be developed. This study aims to develop Student Worksheets (SW) that can trace SPS through basic physics experiments (BPE) on Melde’s law. This research uses R&D method involving 18 physics education department students who take the BPE course as a sample. The research instrument uses an SW designed with a SPS approach that have been reviewed and judged by expert, which includes observing, communicating, classifying, measuring, inferring, predicting, identifying variable, constructing hypothesis, defining variable operationally, designing experiment, acquiring and processing data to conclusions. The result of the research shows that the student’s SPS has not been trained optimally, the students’ answers are not derived from the observations and experiments conducted but derived from the initial knowledge of the students, as well as in the determination of experimental variables, inferring and hypothesis. This result is also supported by a low increase of conceptual content on Melde’s law with n-gain of 0.40. The research findings are used as the basis for the redesign of SW.

  3. A cross-age study of students' conceptual understanding of interdependency in seed dispersal, pollination, and food chains using a constructivist theoretical framework

    NASA Astrophysics Data System (ADS)

    Smith, Shirley Mccraw

    2003-06-01

    The purpose of this research was to investigate students' understanding of interdependency across grade levels. Interdependency concepts selected for this study included food chains, pollination, and seed dispersal. Children's everyday concepts and scientific concepts across grade levels represented the focus of conceptual understanding. The researcher interviewed a total of 24 students across grade levels, six students each from grades 3, 7, and 10, and 6 college students. Data were collected by means of interviews and card sorts. A constructivist theoretical framework formed the groundwork for presenting the focus of this study and for interpreting the results of the interview data. Results were analyzed on the basis of identifying student responses to interview questions as either everyday concepts or as scientific concepts, along with transition through the zone of proximal development (ZPD) by mediation, as developed by Vygotsky. Results revealed that children across grade levels vary in their everyday and scientific understanding of the three interdependency concepts. Results for seed dispersal showed little evidence of understanding for grade 3, that is, seed dispersal was not within the zone of proximal development (ZPD) for grade 3 students. Students in grades 7 and 10 showed a developing transition within the zone of proximal development from everyday to scientific understanding, and college students demonstrated scientific understanding of seed dispersal. For pollination and food chains, results showed that grades 3, 7, and 10 were in transition from everyday to scientific understanding, and all college students demonstrated scientific understanding. The seed dispersal concept proved more complex than pollination and food chains. The findings of this study have implications for classroom teachers. By understanding the dynamic nature of the ZPD continuum for students, teachers can plan instruction to meet the needs of each student.

  4. Authentic scientific data collection in support of an integrative model-based class: A framework for student engagement in the classroom

    NASA Astrophysics Data System (ADS)

    Sorensen, A. E.; Dauer, J. M.; Corral, L.; Fontaine, J. J.

    2017-12-01

    A core component of public scientific literacy, and thereby informed decision-making, is the ability of individuals to reason about complex systems. In response to students having difficulty learning about complex systems, educational research suggests that conceptual representations, or mental models, may help orient student thinking. Mental models provide a framework to support students in organizing and developing ideas. The PMC-2E model is a productive tool in teaching ideas of modeling complex systems in the classroom because the conceptual representation framework allows for self-directed learning where students can externalize systems thinking. Beyond mental models, recent work emphasizes the importance of facilitating integration of authentic science into the formal classroom. To align these ideas, a university class was developed around the theme of carnivore ecology, founded on PMC-2E framework and authentic scientific data collection. Students were asked to develop a protocol, collect, and analyze data around a scientific question in partnership with a scientist, and then use data to inform their own learning about the system through the mental model process. We identified two beneficial outcomes (1) scientific data is collected to address real scientific questions at a larger scale and (2) positive outcomes for student learning and views of science. After participating in the class, students report enjoying class structure, increased support for public understanding of science, and shifts in nature of science and interest in pursuing science metrics on post-assessments. Further work is ongoing investigating the linkages between engaging in authentic scientific practices that inform student mental models, and how it might promote students' systems-thinking skills, implications for student views of nature of science, and development of student epistemic practices.

  5. Science information in the media: an academic approach to improve its intrinsic quality.

    PubMed

    Bruno, Flavia; Vercellesi, Luisa

    2002-01-01

    The lay audience expresses a clear demand for scientific information, particularly when health and welfare are involved. For most people science is what they learn from the media. The need for good scientific journalism is pressing, to bridge the gap between the slow pace of science and the fast-moving and concise nature of successful mass communication. This academic postgraduate course was established by the Department of Pharmacological Sciences to train mediators to improve the quality of lay scientific dissemination. The programme focuses on teaching a method of selecting, analysing, understanding, mediating and diffusing scientific information to lay people. The course explores the theoretical and practical aspects of methods, techniques and channels of scientific communication. Case studies, practical exercises, and stages complement the theoretical curriculum. The teaching focus is on reducing the asymmetry between scientists and the public. The different backgrounds of students and the spread of topics are major challenges. Copyright 2002 Academic Press.

  6. Making holograms in middle and high schools

    NASA Astrophysics Data System (ADS)

    Jeong, Tung H.

    2000-06-01

    Holography is a worthy topic that should become an integral part of any basic science curriculum. It embodies basic scientific principle that include the direct applications of three Nobel Prize physics concepts; it involves procedures that teaches the scientific method of problem solving; it can be learned by `doing' without previous experience; it is artistically creative; it can be appreciated by students of all ranges of abilities; and it is an open-ended subject so that specially interested students can continue to pursue deeper and more creative projects beyond the scope that fits into the curriculum. Finally, with the availability of high quality and low cost diode lasers, it is an affordable unit for any school.

  7. Universal Lessons.

    ERIC Educational Resources Information Center

    Wortham, Anne

    1992-01-01

    Afrocentrism terms the pluralistic experience of modern society dislocating and disruptive. Afrocentrists would reimpose a solidarity and cohesion that the ethnic communities cannot themselves maintain. Advocates discredit the content and universality of Western civilization by liberating students from rationality, the scientific method, economic…

  8. Promoting children's agency and communication skills in an informal science program

    NASA Astrophysics Data System (ADS)

    Wulf, Rosemary; Hinko, Kathleen; Finkelstein, Noah

    2013-01-01

    The Partnerships for Informal Science Education in the Community (PISEC) program at the University of Colorado Boulder brings together university and community institutions to create an environment where K-12 students join with university educators to engage in inquiry-based scientific practices after school. In our original framing, these afterschool activities were developed to reinforce the traditional learning goals of the classroom, including mastering scientific content, skills and processes. Recently, the primary focus of the PISEC curriculum has been shifted towards the development of students' scientific identity, an explicit objective of informal learning environments. The new curriculum offers students more activity choices, affords opportunities for scientific drawings and descriptions, and provides incentive for students to design their own experiments. We have analyzed student science notebooks from both old and new curricula and find that with the redesigned curriculum, students exhibit increased agency and more instances of scientific communication while still demonstrating substantial content learning gains.

  9. Evaluating Scientific Misconceptions and Scientific Literacy in a General Science Course

    NASA Astrophysics Data System (ADS)

    Courtier, A. M.; Scott, T. J.

    2009-12-01

    The data used in this study were collected as part of the course assignments for General Education Science (GSci) 101: “Physics, Chemistry, and the Human Experience” at James Madison University. The course covers the basic principles of physics, chemistry, and astronomy. The primary goals of this study were to analyze student responses to general scientific questions, to identify scientific misconceptions, and to evaluate scientific literacy by comparing responses collected from different groups of students and from questions given during the course versus at the end of the course. While this project is focused on general scientific concepts, the misconceptions and patterns identified are particularly relevant for improving pedagogy in the geosciences as this field relies on multidisciplinary knowledge of fundamental physics, chemistry, and astronomy. We discuss differences in the results between the disciplines of physics, chemistry, and astronomy and their implications for general geology education and literacy, emphasizing the following questions: (a) What do students typically get wrong? (b) Did the overall scientific literacy of the students increase throughout the semester? Are the concepts discussed in answers provided at the end of class more accurate than those provided during class? (c) How do the before- and after- class responses change with respect to language and terminology? Did the students use more scientific terminology? Did the students use scientific terminology correctly?

  10. A Sourcebook of Cooperative Learning Activities for Introductory Undergraduate Astronomy for Non-Science Majors

    NASA Astrophysics Data System (ADS)

    Deming, Grace L.; Miller, Scott T.; Trasco, John D.

    1996-05-01

    Students become more interested in learning and retain more in courses that rely on active rather than passive teaching methods. Cooperative learning activities can be structured to engage students toward greater participation in their own education. We have developed a sourcebook containing a variety of cooperative learning methods and activities to aid in the teaching of astronomy at the undergraduate level. Special effort has been made to include activities that can be used within the classroom or as a group homework assignment, in courses with teaching assistants and those without, and in large or small classes. In addition to reinforcing concepts taught in introductory astronomy, the activities are structured to strengthen skills associated with a scientifically literate person. A goal of undergraduate science education is to produce citizens who can understand and share in the excitement of scientific discoveries as well as make informed decisions regarding scientific and technological issues. The sourcebook, available in August, 1996, will contain sections on the advantages/disadvantages of group activities, basic cooperative learning techniques, in class/out of class activities, and how to use peer instruction to expose students to the wonderfaul astronomy resources on the internet. Each activity includes suggestions to the instructor as to how the assignment can be incorporated into an introductory astronomy course. This project funded by NSF DUE-9354503.

  11. Using Rasch Measurement to Validate the Instrument of Students' Understanding of Models in Science (SUMS)

    ERIC Educational Resources Information Center

    Wei, Silin; Liu, Xiufeng; Jia, Yuane

    2014-01-01

    Scientific models and modeling play an important role in science, and students' understanding of scientific models is essential for their understanding of scientific concepts. The measurement instrument of "Students' Understanding of Models in Science" (SUMS), developed by Treagust, Chittleborough & Mamiala ("International…

  12. Supporting Scientific Experimentation and Reasoning in Young Elementary School Students

    ERIC Educational Resources Information Center

    Varma, Keisha

    2014-01-01

    Researchers from multiple perspectives have shown that young students can engage in the scientific reasoning involved in science experimentation. However, there is little research on how well these young students learn in inquiry-based learning environments that focus on using scientific experimentation strategies to learn new scientific…

  13. Investigating the Impact of Automated Feedback on Students' Scientific Argumentation

    ERIC Educational Resources Information Center

    Zhu, Mengxiao; Lee, Hee-Sun; Wang, Ting; Liu, Ou Lydia; Belur, Vinetha; Pallant, Amy

    2017-01-01

    This study investigates the role of automated scoring and feedback in supporting students' construction of written scientific arguments while learning about factors that affect climate change in the classroom. The automated scoring and feedback technology was integrated into an online module. Students' written scientific argumentation occurred…

  14. Individual versus Group Argumentation: Student's Performance in a Malaysian Context

    ERIC Educational Resources Information Center

    Heng, Lee Ling; Surif, Johari; Seng, Cher Hau

    2014-01-01

    Scientific argumentation has been greatly emphasized in the National Science Standard due to its ability to enhance students' understanding of scientific concepts. This study investigated the mastery level of scientific argumentation, based on Toulmin's Argumentation Model (TAP), when students engage in individual and group argumentations. A total…

  15. Elementary Students' Laboratory Record Keeping during Scientific Inquiry

    ERIC Educational Resources Information Center

    Garcia-Mila, Merce; Andersen, Christopher; Rojo, Nubia E.

    2011-01-01

    The present study examines the mutual interaction between students' writing and scientific reasoning among sixth-grade students (age 11-12 years) engaged in scientific inquiry. The experimental task was designed to promote spontaneous record keeping compared to previous task designs by increasing the saliency of task requirements, with the design…

  16. Agriscience Student Engagement in Scientific Inquiry: Representations of Scientific Processes and Nature of Science.

    PubMed

    Grady, Julie R; Dolan, Erin L; Glasson, George E

    2010-01-01

    Students' experiences with science integrated into agriscience courses contribute to their developing epistemologies of science. The purpose of this case study was to gain insight into the implementation of scientific inquiry in an agriscience classroom. Also of interest was how the tenets of the nature of science were reflected in the students' experiments. Participants included an agriscience teacher and her fifteen students who were conducting plant experiments to gain insight into the role of a gene disabled by scientists. Data sources included classroom observations, conversations with students, face-to-face interviews with the teacher, and students' work. Analysis of the data indicated that the teacher viewed scientific inquiry as a mechanical process with little emphasis on the reasoning that typifies scientific inquiry. Students' participation in their experiments also centered on the procedural aspects of inquiry with little attention to scientific reasoning. There was no explicit attention to the nature of science during the experiments, but the practice implied correct, incorrect, and underdeveloped conceptions of the nature of science. Evidence from the study suggests a need for collaboration between agriscience and science teacher educators to design and conduct professional development focused on scientific inquiry and nature of science for preservice and practicing teachers.

  17. Media-Savvy Scientific Literacy: Developing Critical Evaluation Skills by Investigating Scientific Claims

    ERIC Educational Resources Information Center

    Brickman, Peggy; Gormally, Cara; Francom, Greg; Jardeleza, Sarah E.; Schutte, Virginia G. W.; Jordan, Carly; Kanizay, Lisa

    2012-01-01

    Students must learn content knowledge and develop scientific literacy skills to evaluate and use scientific information in real-world situations. Recognizing the accessibility of scientific information to the average citizen, we developed an instructional approach to help students learn how to judge the quality of claims. We describe a…

  18. Development of an Empirically Based Learning Performances Framework for Third-Grade Students' Model-Based Explanations about Plant Processes

    ERIC Educational Resources Information Center

    Zangori, Laura; Forbes, Cory T.

    2016-01-01

    To develop scientific literacy, elementary students should engage in knowledge building of core concepts through scientific practice (Duschl, Schweingruber, & Schouse, 2007). A core scientific practice is engagement in scientific modeling to build conceptual understanding about discipline-specific concepts. Yet scientific modeling remains…

  19. Guiding students to develop an understanding of scientific inquiry: a science skills approach to instruction and assessment.

    PubMed

    Stone, Elisa M

    2014-01-01

    New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific investigation. An individual teacher's investigation of the strategies and tools she designed to promote scientific inquiry in her classroom is outlined. This teacher-driven action research in the high school biology classroom presents a simple study design that allowed for reciprocal testing of two simultaneous treatments, one that aimed to guide students to use vocabulary to identify and describe different scientific practices they were using in their investigations-for example, hypothesizing, data analysis, or use of controls-and another that focused on scientific collaboration. A knowledge integration (KI) rubric was designed to measure how students integrated their ideas about the skills and practices necessary for scientific inquiry. KI scores revealed that student understanding of scientific inquiry increased significantly after receiving instruction and using assessment tools aimed at promoting development of specific inquiry skills. General strategies for doing classroom-based action research in a straightforward and practical way are discussed, as are implications for teaching and evaluating introductory life sciences courses at the undergraduate level.

  20. Korean Students' Perceptions of Scientific Practices and Understanding of Nature of Science

    NASA Astrophysics Data System (ADS)

    Yoon, Sae Yeol; Suh, Jee Kyung; Park, Soonhye

    2014-11-01

    Korean students have shown relatively little interest and confidence in learning science, despite being ranked in the top percentile in international evaluations of academic achievement in science such as the Trends in International Mathematics and Science Study. Although research indicates a positive relationship between student perceptions of science and their science learning, this area has not been sufficiently explored in Korea. Particularly, even though both students' perceptions of scientific practice and their understanding of the nature of science (NOS) are influenced by their science learning experiences at schools, little research examines how this perception, understanding, and experience are related to one another. This study aimed to uncover Korean students' perceptions of school scientific practice through exploring their drawings, writings, and responses to questionnaires. Participants were 500 Korean students in 3rd, 7th, and 10th grades who were asked to complete an open-ended questionnaire. The results indicated that Korean students typically viewed school scientific practices as experimental activities or listening to lecture; and that most participants held an insufficient understanding of the NOS. Overall, no significant relationship emerged between students' perceptions of school scientific practice and their understanding of the NOS. Our findings highlight the need to help both teachers and students understand the potential breadth of school scientific practices, beyond simple 'activity mania.' This study also suggests that teachers must balance implicit and explicit instructional approaches to teaching about the NOS through scientific practices in school science contexts.

  1. How People Reason: A Grounded Theory Study of Scientific Reasoning about Global Climate Change

    NASA Astrophysics Data System (ADS)

    Liu, Shiyu

    Scientific reasoning is crucial in both scientific inquiry and everyday life. While the majority of researchers have studied "how people reason" by focusing on their cognitive processes, factors related to the underpinnings of scientific reasoning are still under-researched. The present study aimed to develop a grounded theory that captures not only the cognitive processes during reasoning but also their underpinnings. In particular, the grounded theory and phenomenographic methodologies were integrated to explore how undergraduate students reason about competing theories and evidence on global climate change. Twenty-six undergraduate students were recruited through theoretical sampling. Constant comparative analysis of responses from interviews and written assessments revealed that participants were mostly drawn to the surface features when reasoning about evidence. While prior knowledge might not directly contribute to participants' performance on evidence evaluation, it affected their level of engagement when reading and evaluating competing arguments on climate issues. More importantly, even though all participants acknowledged the relative correctness of multiple perspectives, they predominantly favored arguments that supported their own beliefs with weak scientific reasoning about the opposing arguments. Additionally, factors such as personal interests, religious beliefs, and reading capacity were also found to have bearings on the way participants evaluated evidence and arguments. In all, this work contributes to the current endeavors in exploring the nature of scientific reasoning. Taking a holistic perspective, it provides an in-depth discussion of factors that may affect or relate to scientific reasoning processes. Furthermore, in comparison with traditional methods used in the literature, the methodological approach employed in this work brought an innovative insight into the investigation of scientific reasoning. Last but not least, this research may help initiate further discussion regarding how to bridge cognitive research with science education to promote student learning of complex scientific issues such as global climate change.

  2. Supporting students' construction of scientific explanation through curricular scaffolds and teacher instructional practices

    NASA Astrophysics Data System (ADS)

    McNeill, Katherine Lynch

    An essential goal of classroom science is to help all students become scientifically literate to encourage greater public understanding in a science infused world. This type of literacy requires that students participate in scientific inquiry practices such as construction of arguments or scientific explanations in which they justify their claims with appropriate evidence and reasoning. Although scientific explanations are an important learning goal, this complex inquiry practice is frequently omitted from k-12 science classrooms and students have difficulty creating them. I investigated how two different curricular scaffolds (context-specific vs. generic), teacher instructional practices, and the interaction between these two types of support influence student learning of scientific explanations. This study focuses on an eight-week middle school chemistry curriculum, How can I make new stuff from old stuff?, which was enacted by six teachers with 578 students during the 2004-2005 school year. Overall, students' written scientific explanations improved during the unit in which they were provided with multiple forms of teacher and curricular support. A growth curve model of student learning showed that there was a significant difference in the effect of the two curricular scaffolds towards the end of the unit and on the posttest. The context-specific scaffolds resulted in greater student learning of how to write scientific explanations, but only for three of the six teachers. The case studies created from the videotapes of classroom enactments revealed that teachers varied in which instructional practices they engaged in and the quality of those practices. Analyses suggested that the curricular scaffolds and teacher instructional practices were synergistic in that the supports interacted and the effect of the written curricular scaffolds depended on the teacher's enactment of the curriculum. The context-specific curricular scaffolds were more successful in supporting students in this complex task only when teachers' enactments provided generic support for scientific explanation through instructional practices. For teachers who did not provide their students with generic support, neither curricular scaffold was more effective. Classrooms are complex systems in which multiple factors and the interactions between those factors influence student learning.

  3. Methods of teaching the physics of climate change in undergraduate physics courses

    NASA Astrophysics Data System (ADS)

    Sadler, Michael

    2015-04-01

    Although anthropogenic climate change is generally accepted in the scientific community, there is considerable skepticism among the general population and, therefore, in undergraduate students of all majors. Students are often asked by their peers, family members, and others, whether they ``believe'' climate change is occurring and what should be done about it (if anything). I will present my experiences and recommendations for teaching the physics of climate change to both physics and non-science majors. For non-science majors, the basic approach is to try to develop an appreciation for the scientific method (particularly peer-reviewed research) in a course on energy and the environment. For physics majors, the pertinent material is normally covered in their undergraduate courses in modern physics and thermodynamics. Nevertheless, it helps to review the basics, e.g. introductory quantum mechanics (discrete energy levels of atomic systems), molecular spectroscopy, and blackbody radiation. I have done this in a separate elective topics course, titled ``Physics of Climate Change,'' to help the students see how their knowledge gives them insight into a topic that is very volatile (socially and politically).

  4. Science-Technology-Society literacy in college non-majors biology: Comparing problem/case studies based learning and traditional expository methods of instruction

    NASA Astrophysics Data System (ADS)

    Peters, John S.

    This study used a multiple response model (MRM) on selected items from the Views on Science-Technology-Society (VOSTS) survey to examine science-technology-society (STS) literacy among college non-science majors' taught using Problem/Case Studies Based Learning (PBL/CSBL) and traditional expository methods of instruction. An initial pilot investigation of 15 VOSTS items produced a valid and reliable scoring model which can be used to quantitatively assess student literacy on a variety of STS topics deemed important for informed civic engagement in science related social and environmental issues. The new scoring model allows for the use of parametric inferential statistics to test hypotheses about factors influencing STS literacy. The follow-up cross-institutional study comparing teaching methods employed Hierarchical Linear Modeling (HLM) to model the efficiency and equitability of instructional methods on STS literacy. A cluster analysis was also used to compare pre and post course patterns of student views on the set of positions expressed within VOSTS items. HLM analysis revealed significantly higher instructional efficiency in the PBL/CSBL study group for 4 of the 35 STS attitude indices (characterization of media vs. school science; tentativeness of scientific models; cultural influences on scientific research), and more equitable effects of traditional instruction on one attitude index (interdependence of science and technology). Cluster analysis revealed generally stable patterns of pre to post course views across study groups, but also revealed possible teaching method effects on the relationship between the views expressed within VOSTS items with respect to (1) interdependency of science and technology; (2) anti-technology; (3) socioscientific decision-making; (4) scientific/technological solutions to environmental problems; (5) usefulness of school vs. media characterizations of science; (6) social constructivist vs. objectivist views of theories; (7) impact of cultural religious/ethical views on science; (8) tentativeness of scientific models, evidence and predictions; (9) civic control of technological developments. This analysis also revealed common relationships between student views which would not have been revealed under the original unique response model (URM) of VOSTS and also common viewpoint patterns that warrant further qualitative exploration.

  5. The influence of the history of science course on pre-service science teachers' understanding of the nature of science concepts

    NASA Astrophysics Data System (ADS)

    Akcay, Behiye

    The purpose of this study was to investigate the influence of a history of science course on pre-service science teachers' understanding of the nature of science concepts. Subjects in the study were divided in two groups: (1) students who enrolled in only in the history of science course, (2) students who enrolled both the meaning of science and the history of science courses. An interpretative-descriptive approach and constant comparative analysis were used to identify similarities and differences among pre-service teachers' views about nature of scientific knowledge prior to and after the history of science course. The results of this study indicate that explicitly addressing certain aspects of the nature of science is effective in promoting adequate understanding of the nature of science for pre-service science teachers. Moreover, the results indicate that a student's prior experience with the history of science helps to improve their understanding of the history and nature of science. The history of science course helped pre-service teachers to develop the following views which are parallel with these advocated in both the Benchmarks (AAAS, 1993) and the National Science Education Standards (NRC, 1996) concerning the nature of scientific knowledge: (1) Scientific knowledge is empirically based and an ongoing process of experimentation, investigation, and observation. (2) Science is a human endeavor. (3) People from different cultures, races, genders, and nationality contribute to science. (4) Scientific knowledge is not based on myths, personal beliefs, and religious values. (5) Science background and prior knowledge have important roles for scientific investigations. (6) Scientific theories and laws represent different kinds of knowledge. (7) Science is affected by political, social, and cultural values. (8) Creativity and imagination are used during all stages of scientific investigations. (9) Theories change because of new evidence and new views of existing data as well as advances in technology. (10) Theories have significant roles in generating future research questions. (11) Adequate understanding of differences between observations and inferences develop from considering the history of science. (12) There is no single universal step-by-step scientific method. (13) Learning about the nature of scientific knowledge helps students to become scientifically literate.

  6. Derivation of Heliophysical Scientific Data from Amateur Observations of Solar Eclipses

    NASA Astrophysics Data System (ADS)

    Stoev, A. D.; Stoeva, P. V.

    2006-03-01

    The basic scientific aims and observational experiments included in the complex observational program - Total Solar Eclipse '99 - are described in the work. Results from teaching and training students of total solar eclipse (TSE) observation in the Public Astronomical Observatory (PAO) in Stara Zagora and their selection for participation in different observational teams are also discussed. During the final stage, a special system of methods for investigation of the level of pretensions (the level of ambition as to what he/she feels capable of achieving in the context of problem solving/observation) of the students is applied. Results obtained from the observational experiments are interpreted mainly in the following themes: Investigation of the structure of the white-light solar corona and evolution of separate coronal elements during the total phase of the eclipse; Photometry of the white-light solar corona and specific emission lines; Meteorological, actinometrical and optical atmospheric investigations; Astrometry of the Moon during the phase evolution of the eclipse; Biological and behavioral reactions of highly organized colonies (ants and bats) during the eclipse. It is also shown that data processing, observational results and their interpretation, presentation and publishing in specialized and amateur editions is a peak in the independent creative activity of students and amateur astronomers. This enables students from the Astronomy schools at Public Astronomical Observatories and Planetariums (PAOP) to develop creative skills, emotional - volitional personal qualities, orientation towards scientific work, observations and experiments, and build an effective scientific style of thinking.

  7. Integrating Project-Based Service-Learning into an Advanced Environmental Chemistry Course

    NASA Astrophysics Data System (ADS)

    Draper, Alison J.

    2004-02-01

    In an advanced environmental chemistry course, the inclusion of semester-long scientific service projects successfully integrated the research process with course content. Each project involved a unique community-based environmental analysis in which students assessed an aspect of environmental health. The projects were due in small pieces at even intervals, and students worked independently or in pairs. Initially, students wrote a project proposal in which they chose and justified a project. Following a literature review of their topic, they drafted sampling and analysis plans using methods in the literature. Samples were collected and analyzed, and all students assembled scientific posters describing the results of their study. In the last week of the semester, the class traveled to a regional professional meeting to present the posters. In all, students found the experience valuable. They learned to be professional environmental chemists and learned the value of the discipline to community health. Students not only learned about their own project in depth, but they were inspired to learn textbook material, not for an exam, but because it helped them understand their own project. Finally, having a community to answer to at the end of the project motivated students to do careful work.

  8. Original Research By Young Twinkle Students(ORBYTS): When can students start performingoriginal research?

    NASA Astrophysics Data System (ADS)

    Sousa-Silva, Clara; ORBYTS, Twinkle Space Mission, ExoMol

    2018-01-01

    Involving students in state-of-the-art research from an early age eliminates the idea that science is only for the scientists and empowers young people to explore STEM (Science, Technology, Engineering and Maths) subjects. It is also a great opportunity to dispel harmful stereotypes about who is suitable for STEM careers, while leaving students feeling engaged in modern science and the scientific method. As part of the Twinkle Space Mission’s educational programme, EduTwinkle, students between the ages of 15 and 18 have been performing original research associated with the exploration of space since January 2016. The student groups have each been led by junior researchers - PhD student and post-doctoral scientists - who themselves benefit substantially from the opportunity to supervise and manage a research project. This research aims to meet a standard for publication in peer-reviewed journals. At present the research of one ORBYTS team has been published in the Astrophysical Journal Supplement Series and another submitted to JQSRT; we expect more papers to follow. Here we outline the necessary steps for a productive scientific collaboration with school children, generalising from the successes and downfalls of the pilot ORBYTS projects.

  9. Examining the Effects of Electronic Mentoring Prompts on Learners' Scientific Reasoning Skills in a Text-Based Online Conference for a Science Education Course

    ERIC Educational Resources Information Center

    Angeli, Charoula; Valanides, Nicos

    2008-01-01

    In a science education methods course, groups of students were initially involved in a face-to-face discussion and were sensitized about certain conflicting claims regarding a puzzling observation or set of observations. They were then instructed to resolve their conflicting ideas through electronic discussion. Students had two weeks time to…

  10. An appeal to undergraduate wildlife programs: send scientists to learn statistics

    USGS Publications Warehouse

    Kendall, W.L.; Gould, W.R.

    2002-01-01

    Undergraduate wildlife students taking introductory statistics too often are poorly prepared and insufficiently motivated to learn statistics. We have also encountered too many wildlife professionals, even with graduate degrees, who exhibit an aversion to thinking statistically, either relying too heavily on statisticians or avoiding statistics altogether. We believe part of the reason for these problems is that wildlife majors are insufficiently grounded in the scientific method and analytical thinking before they take statistics. We suggest that a partial solution is to assure wildlife majors are trained in the scientific method at the very beginning of their academic careers.

  11. The Opinions of Nursing Students Regarding the Nursing Process and Their Levels of Proficiency in Turkey

    PubMed Central

    Taskın Yilmaz, Feride; Sabanciogullari, Selma; Aldemir, Kadriye

    2015-01-01

    Introduction: Nursing process, as a scientific method of nursing practice, is an important tool for putting nursing knowledge into practice which increases the quality of nursing care. The study was aimed to determine the opinions of nursing students regarding the nursing process and their levels of proficiency. Methods: A total of 44 nursing students participated in this descriptive study. Data were collected by a three-part questionnaire including the opinion of students on nursing process, Gordon’s functional health patterns model and the NANDA diagnoses. Data were analyzed by SPSS software. Results: Most of the students (65.9%) believed that the nursing process was necessary. half of the students explained the diagnosis, 58.3% explained the planning, 41.3% explained the implementation, and 43.6% explained the evaluation sufficiently. Conclusion: It is suggested for instructors to use different teaching methods in order to develop critical thinking while teaching the nursing process. PMID:26744726

  12. The pursuit of understanding: A study of exemplary high school students' conceptions of knowledge validation in science and history

    NASA Astrophysics Data System (ADS)

    Boix Mansilla, Veronica Maria

    The study presented examined 16 award-winning high school students' beliefs about the criteria by which scientific theories and historical narratives are deemed trustworthy. It sought to (a) describe such beliefs as students reasoned within each discipline; (b) examine the degree to which such beliefs were organized as coherent systems of thought; and (c) explore the relationship between students' beliefs and their prior disciplinary research experience. Students were multiple-year award-winners at the Massachusetts Science Fair and the National History Day---two pre-collegiate State-level competitions. Two consecutive semi-structured interviews invited students to assess and enhance the trustworthiness of competing accounts of genetic inheritance and the Holocaust in science and history respectively. A combined qualitative and quantitative data analysis yielded the following results: (a) Students valued three standards of acceptability that were common across disciplines: e.g. empirical strength, explanatory power and formal and presentational strength. However, when reasoning within each discipline they tended to define each standard in disciplinary-specific ways. Students also valued standards of acceptability that were not shared across disciplines: i.e., external validity in science and human understanding in history. (b) In science, three distinct epistemological orientations were identified---i.e., "faith in method," "trusting the scientific community" and "working against error." In history students held two distinct epistemologies---i.e., "reproducing the past" and "organizing the past". Students' epistemological orientations tended to operate as collections of mutually supporting ideas about what renders a theory or a narrative acceptable. (c) Contrary to the standard position to date in the literature on epistemological beliefs, results revealed that students' research training in a particular discipline (e.g., science or history) was strongly related to the ways in which they interpreted problems, methods, and satisfactory solutions in each domain. Students trained in science favored a sophisticated "working against error" epistemology of science and a naive "reproducing the past" epistemology of history. Students trained in history revealed a sophisticated "organizing the past" epistemology in that discipline and a naive "faith in methods" in one in science. Students trained in both domains revealed sophisticated epistemologies in both disciplines.

  13. Opinions of medical students on the pre-graduate scientific activities--how to improve the situation?

    PubMed

    Mokry, Juraj; Mokra, Daniela

    2007-06-01

    The number of medical undergraduates taking part in Student Scientific Activities (SSA) at Jessenius Faculty of Medicine Comenius University in Slovakia remains low. The aim of this study was to discover some of the factors responsible and suggest improvements. An anonymous 30-item questionnaire was devised and sent to 245 medical undergraduates (UG) of the 1st, 2nd, 3rd and 5th years. Foreign fellowships, postgraduate research, assistant posts at universities and financial incentives were cited as the main positive motivators for participation in UG student scientific research. Characteristics in tutors that encouraged student research were scientific knowledge, giving time to students and enthusiasm for research while poor infrastructure, tutor lack of time/interest, own time constraints, weak career motivation and lack of information were the strongest discouraging factors. Involvement of students in SSA is influenced by many factors. To increase the number of students taking part in SSA, student research and/or continuing to Ph.D and scientific career, these factors need to be addressed by medical schools.

  14. Einstein in Hollywood: Capturing the Scientific Minds of Movie Buffs

    NASA Astrophysics Data System (ADS)

    Young, Chadwick

    2010-10-01

    The film industry captures the minds of most students today. Americans spend one-half of their leisure time watching television, and students may often neglect their studies to catch the latest episode of Desperate Housewives or the new release of Leatherheads. Science teachers are challenged to compete with these seemingly unconquerable forces. One alternative to battling the influence of multimedia in its onslaught against the scientific minds of our youth is to embrace these monsters and tame them. By relating what the students know best (who kissed who in Walk the Line) with what they know least (thermodynamics, e.g.), teachers form connections in the minds of their students that will last for many years. In this session, the presenter will demonstrate an inquiry-based method employing clips from popular movies to learn physics. He will show movie clips from several different areas of physics, examine the particular clips in light of those physical principles, and discuss how to use the clips in the classroom.

  15. Assessment of Burmese Refugee Students' Meaning Making of Scientific Informational Texts

    ERIC Educational Resources Information Center

    Croce, Keri-Anne

    2014-01-01

    This two and a half year study examines how non-native English-speaking Burmese refugee students from first to third grades made meaning of scientific informational texts. The study is framed by sociocultural theory and transactional theory. Primary data were drawn from 160 student retellings of scientific informational texts. Secondary data…

  16. OPASS: An Online Portfolio Assessment and Diagnosis Scheme to Support Web-Based Scientific Inquiry Experiments

    ERIC Educational Resources Information Center

    Su, Jun-Ming; Lin, Huan-Yu; Tseng, Shian-Shyong; Lu, Chia-Jung

    2011-01-01

    Promoting the development of students' scientific inquiry capabilities is a major learning objective in science education. As a result, teachers require effective assessment approaches to evaluate students' scientific inquiry-related performance. Teachers must also be able to offer appropriate supplementary instructions, as needed, to students.…

  17. Students' Positions and Considerations of Scientific Evidence about a Controversial Socioscientific Issue

    ERIC Educational Resources Information Center

    Albe, Virginie

    2008-01-01

    Efforts have been devoted to introduce in science curricula direct instruction for evaluating scientific reports on socioscientific issues. In this study, students' opinions on the SSI of mobile telephones effects have been investigated before and after a classroom activity designed to enable students to assess scientific data. Aspects of the…

  18. Computer-Supported Aids to Making Sense of Scientific Articles: Cognitive, Motivational, and Attitudinal Effects

    ERIC Educational Resources Information Center

    Gegner, Julie A.; Mackay, Donald H. J.; Mayer, Richard E.

    2009-01-01

    High school students can access original scientific research articles on the Internet, but may have trouble understanding them. To address this problem of online literacy, the authors developed a computer-based prototype for guiding students' comprehension of scientific articles. High school students were asked to read an original scientific…

  19. Mastery of Scientific Argumentation on the Concept of Neutralization in Chemistry: A Malaysian Perspective

    ERIC Educational Resources Information Center

    Heng, Lee Ling; Surif, Johari; Seng, Cher Hau; Ibrahim, Nor Hasniza

    2015-01-01

    Purpose: Argumentative practices are central to science education, and have recently been emphasised to promote students' reasoning skills and to develop student's understanding of scientific concepts. This study examines the mastery of scientific argumentation, based on the concept of neutralisation, among secondary level science students, when…

  20. Validation of Automated Scoring for a Formative Assessment That Employs Scientific Argumentation

    ERIC Educational Resources Information Center

    Mao, Liyang; Liu, Ou Lydia; Roohr, Katrina; Belur, Vinetha; Mulholland, Matthew; Lee, Hee-Sun; Pallant, Amy

    2018-01-01

    Scientific argumentation is one of the core practices for teachers to implement in science classrooms. We developed a computer-based formative assessment to support students' construction and revision of scientific arguments. The assessment is built upon automated scoring of students' arguments and provides feedback to students and teachers.…

Top