Sample records for scientific thinking processes

  1. How Close Student Teachers' Educational Philosophies and Their Scientific Thinking Processes in Science Education

    ERIC Educational Resources Information Center

    Yurumezoglu, Kemal; Oguz, Ayse

    2007-01-01

    For being guidance, science teachers should be framed by strong content knowledge to construct scientific thinking process as a scaffold. The aim of this research was to look at student teachers' scientific thinking processes. Then, the results compared with their educational philosophy. During the study, two different instruments were used. For…

  2. Science Learning with Information Technologies as a Tool for "Scientific Thinking" in Engineering Education

    ERIC Educational Resources Information Center

    Smirnov, Eugeny; Bogun, Vitali

    2011-01-01

    New methodologies in science (or mathematics) learning process and scientific thinking in the classroom activity of engineer students with ICT (information and communication technology), including graphic calculator are presented: visual modelling with ICT, action research with graphic calculator, insight in classroom and communications and…

  3. Scientific thinking in elementary school: Children's social cognition and their epistemological understanding promote experimentation skills.

    PubMed

    Osterhaus, Christopher; Koerber, Susanne; Sodian, Beate

    2017-03-01

    Do social cognition and epistemological understanding promote elementary school children's experimentation skills? To investigate this question, 402 children (ages 8, 9, and 10) in 2nd, 3rd, and 4th grades were assessed for their experimentation skills, social cognition (advanced theory of mind [AToM]), epistemological understanding (understanding the nature of science), and general information-processing skills (inhibition, intelligence, and language abilities) in a whole-class testing procedure. A multiple indicators multiple causes model revealed a significant influence of social cognition (AToM) on epistemological understanding, and a McNemar test suggested that children's development of AToM is an important precursor for the emergence of an advanced, mature epistemological understanding. Children's epistemological understanding, in turn, predicted their experimentation skills. Importantly, this relation was independent of the common influences of general information processing. Significant relations between experimentation skills and inhibition, and between epistemological understanding, intelligence, and language abilities emerged, suggesting that general information processing contributes to the conceptual development that is involved in scientific thinking. The model of scientific thinking that was tested in this study (social cognition and epistemological understanding promote experimentation skills) fitted the data significantly better than 2 alternative models, which assumed nonspecific, equally strong relations between all constructs under investigation. Our results support the conclusion that social cognition plays a foundational role in the emergence of children's epistemological understanding, which in turn is closely related to the development of experimentation skills. Our findings have significant implications for the teaching of scientific thinking in elementary school and they stress the importance of children's epistemological understanding in scientific-thinking processes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Developing the critical thinking skills of astrobiology students through creative and scientific inquiry.

    PubMed

    Foster, Jamie S; Lemus, Judith D

    2015-01-01

    Scientific inquiry represents a multifaceted approach to explore and understand the natural world. Training students in the principles of scientific inquiry can help promote the scientific learning process as well as help students enhance their understanding of scientific research. Here, we report on the development and implementation of a learning module that introduces astrobiology students to the concepts of creative and scientific inquiry, as well as provide practical exercises to build critical thinking skills. The module contained three distinct components: (1) a creative inquiry activity designed to introduce concepts regarding the role of creativity in scientific inquiry; (2) guidelines to help astrobiology students formulate and self-assess questions regarding various scientific content and imagery; and (3) a practical exercise where students were allowed to watch a scientific presentation and practice their analytical skills. Pre- and post-course surveys were used to assess the students' perceptions regarding creative and scientific inquiry and whether this activity impacted their understanding of the scientific process. Survey results indicate that the exercise helped improve students' science skills by promoting awareness regarding the role of creativity in scientific inquiry and building their confidence in formulating and assessing scientific questions. Together, the module and survey results confirm the need to include such inquiry-based activities into the higher education classroom, thereby helping students hone their critical thinking and question asking skill set and facilitating their professional development in astrobiology.

  5. Research Thinking Development by Teaching Archaeoastronomy

    NASA Astrophysics Data System (ADS)

    Muglova, P. V.; Stoev, A. D.

    2006-08-01

    A model of research thinking development by teaching archaeoastronomy in specialized three-year extra-curriculum Astronomy programme and creation of favourable socio-educational surroundings is suggested. It is shown as a didactic system of conditions, influences and possibilities of answering specific hierarchic complex of personal needs in the 14 - 18 year age interval. Transformation of these needs in worldly values secures an active position of the students in the educational process and determines their personality development. It is also shown that the Archaeoastronomy School, as an educational environment, executes specific work of students' teaching, upbringing and progress as well as their inclusion in the real process of scientific research. Thus, they have the possibility of generating scientific ideas and obtaining results in the science archaeoastronomy. In consequence of this, their activity acquires social significance. Usages of this model of scientific school in the extra-curriculum Astronomy education reproduces norms and traditions of the real scientific research and directly relay subject content, cultural norms and values of archaeoastronomy in the educative process. Students' participation in archaeoastronomical expeditions, their competent work during the research of concrete archaeoastronomical objects create an investigation style of thinking and steady habits of scientific activity.

  6. Deathcore, creativity, and scientific thinking

    USGS Publications Warehouse

    Angeler, David G.; Sundstrom, Shana M.; Allen, Craig R.

    2016-01-01

    BackgroundMajor scientific breakthroughs are generally the result of materializing creative ideas, the result of an inductive process that sometimes spontaneously and unexpectedly generates a link between thoughts and/or objects that did not exist before. Creativity is the cornerstone of scientific thinking, but scientists in academia are judged by metrics of quantification that often leave little room for creative thinking. In many scientific fields, reductionist approaches are rewarded and new ideas viewed skeptically. As a result, scientific inquiry is often confined to narrow but safe disciplinary ivory towers, effectively preventing profoundly creative explorations that could yield unexpected benefits.New informationThis paper argues how apparently unrelated fields specifically music and belief systems can be combined in a provocative allegory to provide novel perspectives regarding patterns in nature, thereby potentially inspiring innovation in the natural, social and other sciences. The merger between basic human tensions such as those embodied by religion and music, for example the heavy metal genre of deathcore, may be perceived as controversial, challenging, and uncomfortable. However, it is an example of moving the thinking process out of unconsciously established comfort zones, through the connection of apparently unrelated entities. We argue that music, as an auditory art form, has the potential to enlighten and boost creative thinking in science. Metal, as a fast evolving and diversifying extreme form of musical art, may be particularly suitable to trigger surprising associations in scientific inquiry. This may pave the way for dealing with questions about what we don´t know that we don´t know in a fast-changing planet.

  7. Developing the Critical Thinking Skills of Astrobiology Students through Creative and Scientific Inquiry

    PubMed Central

    Lemus, Judith D.

    2015-01-01

    Abstract Scientific inquiry represents a multifaceted approach to explore and understand the natural world. Training students in the principles of scientific inquiry can help promote the scientific learning process as well as help students enhance their understanding of scientific research. Here, we report on the development and implementation of a learning module that introduces astrobiology students to the concepts of creative and scientific inquiry, as well as provide practical exercises to build critical thinking skills. The module contained three distinct components: (1) a creative inquiry activity designed to introduce concepts regarding the role of creativity in scientific inquiry; (2) guidelines to help astrobiology students formulate and self-assess questions regarding various scientific content and imagery; and (3) a practical exercise where students were allowed to watch a scientific presentation and practice their analytical skills. Pre- and post-course surveys were used to assess the students' perceptions regarding creative and scientific inquiry and whether this activity impacted their understanding of the scientific process. Survey results indicate that the exercise helped improve students' science skills by promoting awareness regarding the role of creativity in scientific inquiry and building their confidence in formulating and assessing scientific questions. Together, the module and survey results confirm the need to include such inquiry-based activities into the higher education classroom, thereby helping students hone their critical thinking and question asking skill set and facilitating their professional development in astrobiology. Key Words: Scientific inquiry—Critical thinking—Curriculum development—Astrobiology—Microbialites. Astrobiology 15, 89–99. PMID:25474292

  8. Are Fourth and Fifth Grade Children Better Scientists through Metacognitive Learning?

    ERIC Educational Resources Information Center

    Dejonckheere, Peter; Van de Keere, Kristof; Tallir, Isabel

    2011-01-01

    Introduction: A way to find out how scientific thinking in children develops is to focus on the processes that are involved. As such, scientific thinking can be seen as a particular form of problem solving in which the problem solver selects a strategy from the space of possible experiments that can reveal the cause of an event. Notwithstanding…

  9. Evidence-based Medicine--How to Teach Critical Scientific Thinking to Medical Undergraduates.

    ERIC Educational Resources Information Center

    Pitkala, K.; Mantyranta, T.; Strandberg, T. E.; Makela, M.; Vanhanen, H.; Varonen, H.

    2000-01-01

    Discusses an evidence-based course which activates students' critical thinking, enhances social learning and group processes, and promotes attitudes towards independent information retrieval and critical appraisal. (Author/CCM)

  10. Metacognitive Analysis of Pre-Service Teachers of Chemistry in Posting Questions

    NASA Astrophysics Data System (ADS)

    Santoso, T.; Yuanita, L.

    2017-04-01

    Questions addressed to something can induce metacognitive function to monitor a person’s thinking process. This study aims to describe the structure of the level of student questions based on thinking level and chemistry understanding level and describe how students use their metacognitive knowledge in asking. This research is a case study in chemistry learning, followed by 87 students. Results of the analysis revealed that the structure of thinking level of student question consists of knowledge question, understanding and application question, and high thinking question; the structure of chemistry understanding levels of student questions are a symbol, macro, macro-micro, macro-process, micro-process, and the macro-micro-process. The level Questioning skill of students to scientific articles more qualified than the level questioning skills of students to the teaching materials. The analysis result of six student interviews, a student question demonstrate the metacognitive processes with categories: (1) low-level metacognitive process, which is compiled based on questions focusing on a particular phrase or change the words; (2) intermediate level metacognitive process, submission of questions requires knowledge and understanding, and (3) high-level metacognitive process, the student questions posed based on identifying the central topic or abstraction essence of scientific articles.

  11. Redesigning a General Education Science Course to Promote Critical Thinking

    PubMed Central

    Rowe, Matthew P.; Gillespie, B. Marcus; Harris, Kevin R.; Koether, Steven D.; Shannon, Li-Jen Y.; Rose, Lori A.

    2015-01-01

    Recent studies question the effectiveness of a traditional university curriculum in helping students improve their critical thinking and scientific literacy. We developed an introductory, general education (gen ed) science course to overcome both deficiencies. The course, titled Foundations of Science, differs from most gen ed science offerings in that it is interdisciplinary; emphasizes the nature of science along with, rather than primarily, the findings of science; incorporates case studies, such as the vaccine-autism controversy; teaches the basics of argumentation and logical fallacies; contrasts science with pseudoscience; and addresses psychological factors that might otherwise lead students to reject scientific ideas they find uncomfortable. Using a pretest versus posttest design, we show that students who completed the experimental course significantly improved their critical-thinking skills and were more willing to engage scientific theories the general public finds controversial (e.g., evolution), while students who completed a traditional gen ed science course did not. Our results demonstrate that a gen ed science course emphasizing the process and application of science rather than just scientific facts can lead to improved critical thinking and scientific literacy. PMID:26231561

  12. Teaching through Trade Books: What We Do with Ideas

    ERIC Educational Resources Information Center

    Royce, Christine Anne

    2016-01-01

    Creative thinking is important to scientists and engineers as they frame their work and engage in the practices of their fields. Elementary-age children need opportunities to think about and develop an idea from its inception through to its conclusion to expand their thinking and engage in scientific processes. Generating and expanding on ideas…

  13. A Case for Thinking Without Consciousness.

    PubMed

    Dijksterhuis, Ap; Strick, Madelijn

    2016-01-01

    People can engage in prolonged thought processes, such as when they are facing an important decision or when they are working on a scientific discovery. Such thought processes can take months or even years. We argue that while people engage in such thinking, they make progress not only when they consciously think but also sometimes when they are consciously thinking about something else-that is, while they think unconsciously. We review the literature on unconscious thought (UT) processes and conclude that there is indeed quite some evidence for UT. Conceptualized as a form of unconscious goal pursuit, UT is likely to be especially fruitful for thought processes that are complex, important, or interesting to the thinker. In addition, we discuss other characteristics of the UT process. We end with proposing Type 3 processes, in addition to Type 1 and Type 2 (or Systems 1 and 2) processes, to accommodate prolonged thought processes in models on thought. © The Author(s) 2015.

  14. Processes Utilized by High School Students Reading Scientific Text

    ERIC Educational Resources Information Center

    Clinger, Alicia Farr

    2014-01-01

    In response to an increased emphasis on disciplinary literacy in the secondary science classroom, an investigation of the literacy processes utilized by high school students while reading scientific text was undertaken. A think-aloud protocol was implemented to collect data on the processes students used when not prompted while reading a magazine…

  15. A Proposal for a Research-based Constructivist Physics-and-Pedagogy Course

    NASA Astrophysics Data System (ADS)

    Zirbel, Esther

    2006-12-01

    This poster proposes a research-based science-and-pedagogy course that will combine the learning of fundamental physics concepts with methods of how to teach these concepts. Entitled “Understanding the Cosmos: From Antiquity to the Modern Day,” the course will explore how people learn science concepts through the ages, and from childhood through adulthood. This course will use the historical-constructivist approach to illustrate how our understanding of scientific phenomena advanced as we progressed from simple 2-dimensional thinking (starting with the flat Earth concept) to 3-D thinking (learning about the structure of the solar system) to 4-D thinking (understanding space-time and theories about the Big Bang). While transitioning from Impetus to Aristotelian to Newtonian to Einsteinian thinking, students will learn the essence of scientific thinking and inquiry. The overall goal of this course is to excite students in the process of scientific discovery, help them develop scientific reasoning skills, and provide them with fulfilling experiences of truly understanding science concepts. This will be done by employing active engagement techniques (e.g., peer tutoring, Socratic dialogue, and think/pair/share methods) and by challenging students to articulate their thoughts clearly and persuasively. This course could be of value for anybody wanting to enter the teaching profession or simply for anybody who would like to deepen their science understanding.

  16. [Critical thinking skills in the nursing diagnosis process].

    PubMed

    Bittencourt, Greicy Kelly Gouveia Dias; Crossetti, Maria da Graça Oliveira

    2013-04-01

    The aim of this study was to identify the critical thinking skills utilized in the nursing diagnosis process. This was an exploratory descriptive study conducted with seven nursing students on the application of a clinical case to identify critical thinking skills, as well as their justifications in the nursing diagnosis process. Content analysis was performed to evaluate descriptive data. Six participants reported that analysis, scientific and technical knowledge and logical reasoning skills are important in identifying priority nursing diagnoses; clinical experience was cited by five participants, knowledge about the patient and application of standards were mentioned by three participants; Furthermore, discernment and contextual perspective were skills noted by two participants. Based on these results, the use of critical thinking skills related to the steps of the nursing diagnosis process was observed. Therefore, that the application of this process may constitute a strategy that enables the development of critical thinking skills.

  17. What Is Scientific Thinking?

    ERIC Educational Resources Information Center

    Tweney, Ryan D.

    Drawing parallels with critical thinking and creative thinking, this document describes some ways that scientific thinking is utilized. Cognitive approaches to scientific thinking are discussed, and it is argued that all science involves an attempt to construct a testable mental model of some aspect of reality. The role of mental models is…

  18. Gaming science: the "Gamification" of scientific thinking.

    PubMed

    Morris, Bradley J; Croker, Steve; Zimmerman, Corinne; Gill, Devin; Romig, Connie

    2013-09-09

    Science is critically important for advancing economics, health, and social well-being in the twenty-first century. A scientifically literate workforce is one that is well-suited to meet the challenges of an information economy. However, scientific thinking skills do not routinely develop and must be scaffolded via educational and cultural tools. In this paper we outline a rationale for why we believe that video games have the potential to be exploited for gain in science education. The premise we entertain is that several classes of video games can be viewed as a type of cultural tool that is capable of supporting three key elements of scientific literacy: content knowledge, process skills, and understanding the nature of science. We argue that there are three classes of mechanisms through which video games can support scientific thinking. First, there are a number of motivational scaffolds, such as feedback, rewards, and flow states that engage students relative to traditional cultural learning tools. Second, there are a number of cognitive scaffolds, such as simulations and embedded reasoning skills that compensate for the limitations of the individual cognitive system. Third, fully developed scientific thinking requires metacognition, and video games provide metacognitive scaffolding in the form of constrained learning and identity adoption. We conclude by outlining a series of recommendations for integrating games and game elements in science education and provide suggestions for evaluating their effectiveness.

  19. Gaming science: the “Gamification” of scientific thinking

    PubMed Central

    Morris, Bradley J.; Croker, Steve; Zimmerman, Corinne; Gill, Devin; Romig, Connie

    2013-01-01

    Science is critically important for advancing economics, health, and social well-being in the twenty-first century. A scientifically literate workforce is one that is well-suited to meet the challenges of an information economy. However, scientific thinking skills do not routinely develop and must be scaffolded via educational and cultural tools. In this paper we outline a rationale for why we believe that video games have the potential to be exploited for gain in science education. The premise we entertain is that several classes of video games can be viewed as a type of cultural tool that is capable of supporting three key elements of scientific literacy: content knowledge, process skills, and understanding the nature of science. We argue that there are three classes of mechanisms through which video games can support scientific thinking. First, there are a number of motivational scaffolds, such as feedback, rewards, and flow states that engage students relative to traditional cultural learning tools. Second, there are a number of cognitive scaffolds, such as simulations and embedded reasoning skills that compensate for the limitations of the individual cognitive system. Third, fully developed scientific thinking requires metacognition, and video games provide metacognitive scaffolding in the form of constrained learning and identity adoption. We conclude by outlining a series of recommendations for integrating games and game elements in science education and provide suggestions for evaluating their effectiveness. PMID:24058354

  20. The Development of Creative Thinking in Graduate Students Doing Scientific Research

    ERIC Educational Resources Information Center

    Truran, Peter

    2016-01-01

    The teaching of research methodology to graduate science students places an emphasis on scientific reasoning and on the generation and evaluation of evidence in support of research conclusions. Very little attention is paid to the teaching of scientific creativity, the processes for generation of new ideas, hypotheses, and theories. By contrast,…

  1. Probing concept of critical thinking in nursing education in Iran: a concept analysis.

    PubMed

    Tajvidi, Mansooreh; Ghiyasvandian, Shahrzad; Salsali, Mahvash

    2014-06-01

    Given the wide disagreement over the definition of critical thinking in different disciplines, defining and standardizing the concept according to the discipline of nursing is essential. Moreover, there is limited scientific evidence regarding critical thinking in the context of nursing in Iran. The aim of this study was to analyze and clarify the concept of critical thinking in nursing education in Iran. We employed the hybrid model to define the concept of critical thinking. The hybrid model has three interconnected phases--the theoretical phase, the fieldwork phase, and the final analytic phase. In the theoretical phase, we searched the online scientific databases (such as Elsevier, Wiley, CINAHL, Proquest, Ovid, and Springer as well as Iranian databases such as SID, Magiran, and Iranmedex). In the fieldwork phase, a purposive sample of 17 nursing faculties, PhD students, clinical instructors, and clinical nurses was recruited. Participants were interviewed by using an interview guide. In the analytical phase we compared the data from the theoretical and the fieldwork phases. The concept of critical thinking had many different antecedents, attributes, and consequences. Antecedents, attributes, and consequences of critical thinking concept identified in the theoretical phase were in some ways different and in some way similar to antecedents, attributes, and consequences identified in the fieldwork phase. Finally critical thinking in nursing education in Iran was clarified. Critical thinking is a logical, situational, purposive, and outcome-oriented thinking process. It is an acquired and evolving ability which develops individually. Such thinking process could lead to the professional accountability, personal development, God's consent, conscience appeasement, and personality development. Copyright © 2014. Published by Elsevier B.V.

  2. An Easy & Fun Way to Teach about How Science "Works": Popularizing Haack's Crossword-Puzzle Analogy

    ERIC Educational Resources Information Center

    Pavlova, Iglika V.; Lewis, Kayla C.

    2013-01-01

    Science is a complex process, and we must not teach our students overly simplified versions of "the" scientific method. We propose that students can uncover the complex realities of scientific thinking by exploring the similarities and differences between solving the familiar crossword puzzles and scientific "puzzles."…

  3. Visual, Critical, and Scientific Thinking Dispositions in a 3rd Grade Science Classroom

    NASA Astrophysics Data System (ADS)

    Foss, Stacy

    Many American students leave school without the required 21st century critical thinking skills. This qualitative case study, based on the theoretical concepts of Facione, Arheim, and Vygotsky, explored the development of thinking dispositions through the arts in science on the development of scientific thinking skills when used as a conceptual thinking routine in a rural 3rd grade classroom. Research questions examined the disposition to think critically through the arts in science and focused on the perceptions and experiences of 25 students with the Visual Thinking Strategy (VTS) process. Data were collected from classroom observations (n = 10), student interviews (n = 25), teacher interviews ( n = 1), a focus group discussion (n = 3), and artifacts of student work (n = 25); these data included perceptions of VTS, school culture, and classroom characteristics. An inductive analysis of qualitative data resulted in several emergent themes regarding disposition development and students generating questions while increasing affective motivation. The most prevalent dispositions were open-mindedness, the truth-seeking disposition, the analytical disposition, and the systematicity disposition. The findings about the teachers indicated that VTS questions in science supported "gradual release of responsibility", the internalization of process skills and vocabulary, and argumentation. This case study offers descriptive research that links visual arts inquiry and the development of critical thinking dispositions in science at the elementary level. A science curriculum could be developed, that emphasizes the development of thinking dispositions through the arts in science, which in turn, could impact the professional development of teachers and learning outcomes for students.

  4. Practicing What We Preach: Assessing "Critical Thinking" in Organic Chemistry

    ERIC Educational Resources Information Center

    Stowe, Ryan L.; Cooper, Melanie M.

    2017-01-01

    Organic chemistry is often promoted as a course designed to cultivate skill in scientific "ways of thinking." Expert organic chemists perceive their field as one in which plausible answers to complex questions are arrived at through analytical thought processes. They draw analogy between problem solving in organic chemistry and diagnosis…

  5. Experiential thinking in creationism--a textual analysis.

    PubMed

    Nieminen, Petteri; Ryökäs, Esko; Mustonen, Anne-Mari

    2015-01-01

    Creationism is a religiously motivated worldview in denial of biological evolution that has been very resistant to change. We performed a textual analysis by examining creationist and pro-evolutionary texts for aspects of "experiential thinking", a cognitive process different from scientific thought. We observed characteristics of experiential thinking as follows: testimonials (present in 100% of sampled creationist texts), such as quotations, were a major form of proof. Confirmation bias (100% of sampled texts) was represented by ignoring or dismissing information that would contradict the creationist hypothesis. Scientifically irrelevant or flawed information was re-interpreted as relevant for the falsification of evolution (75-90% of sampled texts). Evolutionary theory was associated to moral issues by demonizing scientists and linking evolutionary theory to atrocities (63-93% of sampled texts). Pro-evolutionary rebuttals of creationist claims also contained testimonials (93% of sampled texts) and referred to moral implications (80% of sampled texts) but displayed lower prevalences of stereotypical thinking (47% of sampled texts), confirmation bias (27% of sampled texts) and pseudodiagnostics (7% of sampled texts). The aspects of experiential thinking could also be interpreted as argumentative fallacies. Testimonials lead, for instance, to ad hominem and appeals to authorities. Confirmation bias and simplification of data give rise to hasty generalizations and false dilemmas. Moral issues lead to guilt by association and appeals to consequences. Experiential thinking and fallacies can contribute to false beliefs and the persistence of the claims. We propose that science educators would benefit from the systematic analysis of experiential thinking patterns and fallacies in creationist texts and pro-evolutionary rebuttals in order to concentrate on scientific misconceptions instead of the scientifically irrelevant aspects of the creationist-evolutionist debate.

  6. Look What's in My Dirt.

    ERIC Educational Resources Information Center

    Green, Connie

    1997-01-01

    Describes a classroom unit that provides preschoolers with hands-on experience, using common dirt as a way to develop scientific thinking and foster an appreciation of biology, ecology, and the natural world. Focuses on practicing the basic steps in the scientific process, including prediction, observation, documentation, conclusions, and…

  7. The Art of Strategic Management: A Case-Based Exercise

    ERIC Educational Resources Information Center

    Maranville, Steven

    2011-01-01

    This article contends that the strategic thinking process is composed of two joint, but paradigmatically distinct, activities--analysis and synthesis. Analysis represents the scientific paradigm, whereas synthesis represents the artistic paradigm. Nevertheless, the Strategic Management course is dominated by the scientific paradigm, even though…

  8. Such Low Temperatures in the Arctic Region: How Can the Polar Bears Call It Home?

    ERIC Educational Resources Information Center

    Pringle, Rose M.

    2005-01-01

    Science requires active learning--it is something that children do, rather than something that is done to them. The learning process involves students' thinking and doing to develop higher-order thinking skills, strengthen their reading and mathematical skills, and attain scientific knowledge. In the elementary grades, children learn biological…

  9. CREATE cornerstone: introduction to scientific thinking, a new course for STEM-interested freshmen, demystifies scientific thinking through analysis of scientific literature.

    PubMed

    Gottesman, Alan J; Hoskins, Sally G

    2013-01-01

    The Consider, Read, Elucidate hypotheses, Analyze and interpret data, Think of the next Experiment (CREATE) strategy for teaching and learning uses intensive analysis of primary literature to improve students' critical-thinking and content integration abilities, as well as their self-rated science attitudes, understanding, and confidence. CREATE also supports maturation of undergraduates' epistemological beliefs about science. This approach, originally tested with upper-level students, has been adapted in Introduction to Scientific Thinking, a new course for freshmen. Results from this course's initial semesters indicate that freshmen in a one-semester introductory course that uses a narrowly focused set of readings to promote development of analytical skills made significant gains in critical-thinking and experimental design abilities. Students also reported significant gains in their ability to think scientifically and understand primary literature. Their perceptions and understanding of science improved, and multiple aspects of their epistemological beliefs about science gained sophistication. The course has no laboratory component, is relatively inexpensive to run, and could be adapted to any area of scientific study.

  10. CREATE Cornerstone: Introduction to Scientific Thinking, a New Course for STEM-Interested Freshmen, Demystifies Scientific Thinking through Analysis of Scientific Literature

    PubMed Central

    Gottesman, Alan J.; Hoskins, Sally G.

    2013-01-01

    The Consider, Read, Elucidate hypotheses, Analyze and interpret data, Think of the next Experiment (CREATE) strategy for teaching and learning uses intensive analysis of primary literature to improve students’ critical-thinking and content integration abilities, as well as their self-rated science attitudes, understanding, and confidence. CREATE also supports maturation of undergraduates’ epistemological beliefs about science. This approach, originally tested with upper-level students, has been adapted in Introduction to Scientific Thinking, a new course for freshmen. Results from this course's initial semesters indicate that freshmen in a one-semester introductory course that uses a narrowly focused set of readings to promote development of analytical skills made significant gains in critical-thinking and experimental design abilities. Students also reported significant gains in their ability to think scientifically and understand primary literature. Their perceptions and understanding of science improved, and multiple aspects of their epistemological beliefs about science gained sophistication. The course has no laboratory component, is relatively inexpensive to run, and could be adapted to any area of scientific study. PMID:23463229

  11. Visual Invention and the Composition of Scientific Research Graphics: A Topological Approach

    ERIC Educational Resources Information Center

    Walsh, Lynda

    2018-01-01

    This report details the second phase of an ongoing research project investigating the visual invention and composition processes of scientific researchers. In this phase, four academic researchers completed think-aloud protocols as they composed graphics for research presentations; they also answered follow-up questions about their visual…

  12. 76 FR 43693 - Standard Operating Procedure for “Notice to Industry” Letters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    ... the Center for Devices and Radiological Health's (CDRH) process to clarify and more quickly inform stakeholders when CDRH has changed its expectations relating to, or otherwise has new scientific information... scientific information changes CDRH's regulatory thinking, it has been challenging for the Center to...

  13. Distinguishing science from pseudoscience in school psychology: science and scientific thinking as safeguards against human error.

    PubMed

    Lilienfeld, Scott O; Ammirati, Rachel; David, Michal

    2012-02-01

    Like many domains of professional psychology, school psychology continues to struggle with the problem of distinguishing scientific from pseudoscientific and otherwise questionable clinical practices. We review evidence for the scientist-practitioner gap in school psychology and provide a user-friendly primer on science and scientific thinking for school psychologists. Specifically, we (a) outline basic principles of scientific thinking, (b) delineate widespread cognitive errors that can contribute to belief in pseudoscientific practices within school psychology and allied professions, (c) provide a list of 10 key warning signs of pseudoscience, illustrated by contemporary examples from school psychology and allied disciplines, and (d) offer 10 user-friendly prescriptions designed to encourage scientific thinking among school psychology practitioners and researchers. We argue that scientific thinking, although fallible, is ultimately school psychologists' best safeguard against a host of errors in thinking. Copyright © 2011 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  14. Redesigning a General Education Science Course to Promote Critical Thinking.

    PubMed

    Rowe, Matthew P; Gillespie, B Marcus; Harris, Kevin R; Koether, Steven D; Shannon, Li-Jen Y; Rose, Lori A

    2015-01-01

    Recent studies question the effectiveness of a traditional university curriculum in helping students improve their critical thinking and scientific literacy. We developed an introductory, general education (gen ed) science course to overcome both deficiencies. The course, titled Foundations of Science, differs from most gen ed science offerings in that it is interdisciplinary; emphasizes the nature of science along with, rather than primarily, the findings of science; incorporates case studies, such as the vaccine-autism controversy; teaches the basics of argumentation and logical fallacies; contrasts science with pseudoscience; and addresses psychological factors that might otherwise lead students to reject scientific ideas they find uncomfortable. Using a pretest versus posttest design, we show that students who completed the experimental course significantly improved their critical-thinking skills and were more willing to engage scientific theories the general public finds controversial (e.g., evolution), while students who completed a traditional gen ed science course did not. Our results demonstrate that a gen ed science course emphasizing the process and application of science rather than just scientific facts can lead to improved critical thinking and scientific literacy. © 2015 M. P. Rowe, B. M. Gillespie, et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Experiential Thinking in Creationism—A Textual Analysis

    PubMed Central

    Nieminen, Petteri; Ryökäs, Esko; Mustonen, Anne-Mari

    2015-01-01

    Creationism is a religiously motivated worldview in denial of biological evolution that has been very resistant to change. We performed a textual analysis by examining creationist and pro-evolutionary texts for aspects of “experiential thinking”, a cognitive process different from scientific thought. We observed characteristics of experiential thinking as follows: testimonials (present in 100% of sampled creationist texts), such as quotations, were a major form of proof. Confirmation bias (100% of sampled texts) was represented by ignoring or dismissing information that would contradict the creationist hypothesis. Scientifically irrelevant or flawed information was re-interpreted as relevant for the falsification of evolution (75–90% of sampled texts). Evolutionary theory was associated to moral issues by demonizing scientists and linking evolutionary theory to atrocities (63–93% of sampled texts). Pro-evolutionary rebuttals of creationist claims also contained testimonials (93% of sampled texts) and referred to moral implications (80% of sampled texts) but displayed lower prevalences of stereotypical thinking (47% of sampled texts), confirmation bias (27% of sampled texts) and pseudodiagnostics (7% of sampled texts). The aspects of experiential thinking could also be interpreted as argumentative fallacies. Testimonials lead, for instance, to ad hominem and appeals to authorities. Confirmation bias and simplification of data give rise to hasty generalizations and false dilemmas. Moral issues lead to guilt by association and appeals to consequences. Experiential thinking and fallacies can contribute to false beliefs and the persistence of the claims. We propose that science educators would benefit from the systematic analysis of experiential thinking patterns and fallacies in creationist texts and pro-evolutionary rebuttals in order to concentrate on scientific misconceptions instead of the scientifically irrelevant aspects of the creationist—evolutionist debate. PMID:25734650

  16. [On establishing comparative reference system for syndrome classification study from the thinking characteristics of syndrome differentiation dependent therapy].

    PubMed

    Liu, Ping; Hu, Yi-yang; Ni, Li-qiang

    2006-05-01

    To create a comparative referential system for syndrome classification study by viewing from the thinking characteristics of TCM on syndrome differentiation dependent therapy (SDDT), through analyzing the thinking process of SDDT, and the basic features of disease, syndrome and prescription, combining the basic principles of modern evidence-based medicine and feasibility of establishing integrative disease-syndrome animal model. The practice of creating a comparative referential system based on clinical efficacy of prescription was discussed around syndrome pathogenesis and its relationship with disease and prescription, which was one of the important scientific problems in TCM syndrome study. The authors hold that, it may be one of the available approaches for the present study on integration of disease with syndrome by way of insisting on the thinking pathway of stressing the characteristics of TCM and intermerging with modern scientific design; on taking the efficacy of prescription as the comparative reference system to accumulate and improve unceasingly according to the TCM method of syndrome diagnosis inferred from effect of prescription with reverse thought (i.e., to differentiate syndrome from the effect of prescription), and thus build up the syndrome diagnostic standard on the solid clinical and scientific base.

  17. Social Metaphorical Mapping of the Concept of Force "CHI-KA-RA" in Japanese

    ERIC Educational Resources Information Center

    Suzuki, Mariko

    2005-01-01

    This research focused on the concept of "force" ("CHI-KA-RA" in Japanese) in Newtonian mechanics. The primary objective was to develop a tool, based on metaphor, to interpret student thinking in learning scientific topics. The study provides an example of using the tool to trace the process of mutual changes in thinking during a dialog among…

  18. Flexible Strategy Use by Students Who Learn Much versus Little from Text: Transitions within Think-Aloud Protocols

    ERIC Educational Resources Information Center

    Cromley, Jennifer G.; Wills, Theodore W.

    2016-01-01

    Van den Broek's landscape model explicitly posits sequences of moves during reading in real time. Two other models that implicitly describe sequences of processes during reading are tested in the present research. Coded think-aloud data from 24 undergraduate students reading scientific text were analysed with lag-sequential techniques to compare…

  19. The development of scientific reasoning in medical education: a psychological perspective.

    PubMed

    Barz, Daniela Luminita; Achimaş-Cadariu, Andrei

    2016-01-01

    Scientific reasoning has been studied from a variety of theoretical perspectives, which have tried to identify the underlying mechanisms responsible for the development of this particular cognitive process. Scientific reasoning has been defined as a problem-solving process that involves critical thinking in relation to content, procedural, and epistemic knowledge. The development of scientific reasoning in medical education was influenced by current paradigmatic trends, it could be traced along educational curriculum and followed cognitive processes. The purpose of the present review is to discuss the role of scientific reasoning in medical education and outline educational methods for its development. Current evidence suggests that medical education should foster a new ways of development of scientific reasoning, which include exploration of the complexity of scientific inquiry, and also take into consideration the heterogeneity of clinical cases found in practice.

  20. College Students' Scientific Epistemological Views and Thinking Patterns in Socioscientific Decision Making

    ERIC Educational Resources Information Center

    Liu, Shiang-Yao; Lin, Chuan-Shun; Tsai, Chin-Chung

    2011-01-01

    This study aims to test the nature of the assumption that there are relationships between scientific epistemological views (SEVs) and reasoning processes in socioscientific decision making. A mixed methodology that combines both qualitative and quantitative approaches of data collection and analysis was adopted not only to verify the assumption…

  1. Using Puppets to Provide Opportunities for Dialogue and Scientific Inquiry

    ERIC Educational Resources Information Center

    Liston, Maeve

    2015-01-01

    Talk, peer collaboration and exchanging ideas significantly contribute to a child's conceptual understanding in science (Howe, McWilliam and Cross, 2005). Dialogue helps children to clarify their thinking and to develop their capacity to reason, which are crucial scientific process skills (Mercer et al., 2004). One very effective way of supporting…

  2. Development of a Structured Undergraduate Research Experience: Framework and Implications

    ERIC Educational Resources Information Center

    Brown, Anne M.; Lewis, Stephanie N.; Bevan, David R.

    2016-01-01

    Participating in undergraduate research can be a pivotal experience for students in life science disciplines. Development of critical thinking skills, in addition to conveying scientific ideas in oral and written formats, is essential to ensuring that students develop a greater understanding of basic scientific knowledge and the research process.…

  3. Getting into the Swing of Things: Using Pendulums to Learn the Scientific Method.

    ERIC Educational Resources Information Center

    Grambo, Gregory

    1996-01-01

    A middle school science teacher describes the learning and thinking processes of his class as they worked and played with pendulums and learned to build a swing that could tell time. The article illustrates how students can learn the value of the scientific method for problem solving. (DB)

  4. 78 FR 54655 - Center for Devices and Radiological Health: Draft Standard Operating Procedure for Level 1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ... Devices and Radiological Health's (CDRH's or the Center's) draft process to clarify and more quickly inform stakeholders when CDRH has changed its expectations relating to, or otherwise has new scientific... scientific information changes CDRH's regulatory thinking, it has been challenging for the Center to...

  5. Sciencewise: Discovering Scientific Process through Problem Solving. Book 3.

    ERIC Educational Resources Information Center

    Holley, Dennis

    This science activity book, for grades 8-12, can be used to teach students the thinking skills they will need to undertake scientific exploration on their own. The skills they develop will improve their science abilities and enhance their overall academic performance. This book is divided into two sections: (1) "Dynamo Demos", teacher-led…

  6. Integrating critical thinking and evidence-based dentistry across a four-year dental curriculum: a model for independent learning.

    PubMed

    Marshall, Teresa A; Straub-Morarend, Cheryl L; Handoo, Nidhi; Solow, Catherine M; Cunningham-Ford, Marsha A; Finkelstein, Michael W

    2014-03-01

    Introducing critical thinking and evidence-based dentistry (EBD) content into an established dental curriculum can be a difficult and challenging process. Over the past three years, the University of Iowa College of Dentistry has developed and implemented a progressive four-year integrated critical thinking and EBD curriculum. The objective of this article is to describe the development and implementation process to make it available as a model for other dental schools contemplating introduction of critical thinking and EBD into their curricula. The newly designed curriculum built upon an existing problem-based learning foundation, which introduces critical thinking and the scientific literature in the D1 year, in order to expose students to the rationale and resources for practicing EBD in the D2 and D3 years and provide opportunities to practice critical thinking and apply the EBD five-step process in the D2, D3, and D4 years. All curricular content is online, and D3 and D4 EBD activities are integrated within existing clinical responsibilities. The curricular content, student resources, and student activities are described.

  7. Developing Scientific Thinking Methods and Applications in Islamic Education

    ERIC Educational Resources Information Center

    Al-Sharaf, Adel

    2013-01-01

    This article traces the early and medieval Islamic scholarship to the development of critical and scientific thinking and how they contributed to the development of an Islamic theory of epistemology and scientific thinking education. The article elucidates how the Qur'an and the Sunna of Prophet Muhammad have also contributed to the…

  8. Formal and Informal Learning and First-Year Psychology Students’ Development of Scientific Thinking: A Two-Wave Panel Study

    PubMed Central

    Soyyılmaz, Demet; Griffin, Laura M.; Martín, Miguel H.; Kucharský, Šimon; Peycheva, Ekaterina D.; Vaupotič, Nina; Edelsbrunner, Peter A.

    2017-01-01

    Scientific thinking is a predicate for scientific inquiry, and thus important to develop early in psychology students as potential future researchers. The present research is aimed at fathoming the contributions of formal and informal learning experiences to psychology students’ development of scientific thinking during their 1st-year of study. We hypothesize that informal experiences are relevant beyond formal experiences. First-year psychology student cohorts from various European countries will be assessed at the beginning and again at the end of the second semester. Assessments of scientific thinking will include scientific reasoning skills, the understanding of basic statistics concepts, and epistemic cognition. Formal learning experiences will include engagement in academic activities which are guided by university authorities. Informal learning experiences will include non-compulsory, self-guided learning experiences. Formal and informal experiences will be assessed with a newly developed survey. As dispositional predictors, students’ need for cognition and self-efficacy in psychological science will be assessed. In a structural equation model, students’ learning experiences and personal dispositions will be examined as predictors of their development of scientific thinking. Commonalities and differences in predictive weights across universities will be tested. The project is aimed at contributing information for designing university environments to optimize the development of students’ scientific thinking. PMID:28239363

  9. Formal and Informal Learning and First-Year Psychology Students' Development of Scientific Thinking: A Two-Wave Panel Study.

    PubMed

    Soyyılmaz, Demet; Griffin, Laura M; Martín, Miguel H; Kucharský, Šimon; Peycheva, Ekaterina D; Vaupotič, Nina; Edelsbrunner, Peter A

    2017-01-01

    Scientific thinking is a predicate for scientific inquiry, and thus important to develop early in psychology students as potential future researchers. The present research is aimed at fathoming the contributions of formal and informal learning experiences to psychology students' development of scientific thinking during their 1st-year of study. We hypothesize that informal experiences are relevant beyond formal experiences. First-year psychology student cohorts from various European countries will be assessed at the beginning and again at the end of the second semester. Assessments of scientific thinking will include scientific reasoning skills, the understanding of basic statistics concepts, and epistemic cognition. Formal learning experiences will include engagement in academic activities which are guided by university authorities. Informal learning experiences will include non-compulsory, self-guided learning experiences. Formal and informal experiences will be assessed with a newly developed survey. As dispositional predictors, students' need for cognition and self-efficacy in psychological science will be assessed. In a structural equation model, students' learning experiences and personal dispositions will be examined as predictors of their development of scientific thinking. Commonalities and differences in predictive weights across universities will be tested. The project is aimed at contributing information for designing university environments to optimize the development of students' scientific thinking.

  10. Experiment Clarifies Buoyancy

    ERIC Educational Resources Information Center

    Oguz, Ayse; Yurumezoglu, Kemal

    2008-01-01

    This article presents a simple activity using Archimedes' principle that helps students to develop their scientific thinking and also to identify and correct their misconceptions. The exercise consists of linear and reverse processes.

  11. Development of Scientific Thinking Facilitated by Reflective Self-Assessment in a Communication-Intensive Food Science and Human Nutrition Course

    ERIC Educational Resources Information Center

    Hendrich, Suzanne; Licklider, Barbara; Thompson, Katherine; Thompson, Janette; Haynes, Cynthia; Wiersema, Jan

    2018-01-01

    A one-credit seminar on controversies in food science and human nutrition was a platform to introduce students to learning frameworks for thinking-like-a-scientist. We hypothesized that explicitly engaging students in thinking about their thinking abilities within these frameworks would enhance their self-perception of scientific thinking, an…

  12. The Development of Scientific Thinking in Elementary School: A Comprehensive Inventory

    ERIC Educational Resources Information Center

    Koerber, Susanne; Mayer, Daniela; Osterhaus, Christopher; Schwippert, Knut; Sodian, Beate

    2015-01-01

    The development of scientific thinking was assessed in 1,581 second, third, and fourth graders (8-, 9-, 10-year-olds) based on a conceptual model that posits developmental progression from naïve to more advanced conceptions. Using a 66-item scale, five components of scientific thinking were addressed, including experimental design, data…

  13. The development of scientific thinking in elementary school: a comprehensive inventory.

    PubMed

    Koerber, Susanne; Mayer, Daniela; Osterhaus, Christopher; Schwippert, Knut; Sodian, Beate

    2015-01-01

    The development of scientific thinking was assessed in 1,581 second, third, and fourth graders (8-, 9-, 10-year-olds) based on a conceptual model that posits developmental progression from naïve to more advanced conceptions. Using a 66-item scale, five components of scientific thinking were addressed, including experimental design, data interpretation, and understanding the nature of science. Unidimensional and multidimensional item response theory analyses supported the instrument's reliability and validity and suggested that the multiple components of scientific thinking form a unitary construct, independent of verbal or reasoning skills. A partial credit model gave evidence for a hierarchical developmental progression. Across each grade transition, advanced conceptions increased while naïve conceptions decreased. Independent effects of intelligence, schooling, and parental education on scientific thinking are discussed. © 2014 The Authors. Child Development © 2014 Society for Research in Child Development, Inc.

  14. Using a Simple "Escherichia Coli" Growth Curve Model to Teach the Scientific Method

    ERIC Educational Resources Information Center

    McKernan, Lisa N.

    2015-01-01

    The challenge of teaching in the sciences is not only conveying knowledge in the discipline, but also developing essential critical thinking, data analysis, and scientific writing skills. I outline an exercise that can be done easily as part of a microbiology laboratory course. It teaches the nature of the research process, from asking questions…

  15. Supporting the Scientific Thinking and Inquiry of Toddlers and Preschoolers through Play

    ERIC Educational Resources Information Center

    Hamlin, Maria; Wisneski, Debora B.

    2012-01-01

    Play provides abundant opportunities for children to learn science concepts such as the diversity and interdependence of life, relationships between force and motion, and the structure of matter. It is also a rich context in which to introduce young children to the process of scientific inquiry. Teachers support play through intentional planning…

  16. Learning Biology through Research Papers: A Stimulus for Question-Asking by High-School Students

    ERIC Educational Resources Information Center

    Brill, Gilat; Yarden, Anat

    2003-01-01

    Question-asking is a basic skill, required for the development of scientific thinking. However, the way in which science lessons are conducted does not usually stimulate question-asking by students. To make students more familiar with the scientific inquiry process, we developed a curriculum in developmental biology based on research papers…

  17. Illusions of causality: how they bias our everyday thinking and how they could be reduced.

    PubMed

    Matute, Helena; Blanco, Fernando; Yarritu, Ion; Díaz-Lago, Marcos; Vadillo, Miguel A; Barberia, Itxaso

    2015-01-01

    Illusions of causality occur when people develop the belief that there is a causal connection between two events that are actually unrelated. Such illusions have been proposed to underlie pseudoscience and superstitious thinking, sometimes leading to disastrous consequences in relation to critical life areas, such as health, finances, and wellbeing. Like optical illusions, they can occur for anyone under well-known conditions. Scientific thinking is the best possible safeguard against them, but it does not come intuitively and needs to be taught. Teaching how to think scientifically should benefit from better understanding of the illusion of causality. In this article, we review experiments that our group has conducted on the illusion of causality during the last 20 years. We discuss how research on the illusion of causality can contribute to the teaching of scientific thinking and how scientific thinking can reduce illusion.

  18. Illusions of causality: how they bias our everyday thinking and how they could be reduced

    PubMed Central

    Matute, Helena; Blanco, Fernando; Yarritu, Ion; Díaz-Lago, Marcos; Vadillo, Miguel A.; Barberia, Itxaso

    2015-01-01

    Illusions of causality occur when people develop the belief that there is a causal connection between two events that are actually unrelated. Such illusions have been proposed to underlie pseudoscience and superstitious thinking, sometimes leading to disastrous consequences in relation to critical life areas, such as health, finances, and wellbeing. Like optical illusions, they can occur for anyone under well-known conditions. Scientific thinking is the best possible safeguard against them, but it does not come intuitively and needs to be taught. Teaching how to think scientifically should benefit from better understanding of the illusion of causality. In this article, we review experiments that our group has conducted on the illusion of causality during the last 20 years. We discuss how research on the illusion of causality can contribute to the teaching of scientific thinking and how scientific thinking can reduce illusion. PMID:26191014

  19. Training the Scientific Thinking Circle in Pre- and Primary School Children

    ERIC Educational Resources Information Center

    Dejonckheere, Peter J. N.; Van De Keere, Kristof; Mestdagh, Nele

    2009-01-01

    Using two experiments, the authors examined the extent to which the scientific thinking circle can be used as heuristics to support scientific thinking in a classroom of children between the ages of 3 and 9 years old. To do this, the authors asked the children to build a bridge, raft, or electrical circuit using the material available to them.…

  20. The Role of the Learning Environment of the Faculty of Education at Najran University in the Development of Scientific Thinking

    ERIC Educational Resources Information Center

    Alsayed, Ahmad Atteya Ahmad; Nimer, Ameen Mohammad Ameen

    2016-01-01

    This research aimed to identify the role of the learning environment of the faculty of education at Najran University, KSA, in developing the scientific thinking style of its students. This required identification of the extent of respondents choose the scientific, religious or superstitious thinking style in interpretation of life and social…

  1. Beyond Control of Variables: What Needs to Develop to Achieve Skilled Scientific Thinking?

    ERIC Educational Resources Information Center

    Kuhn, Deanna; Iordanou, Kalypso; Pease, Maria; Wirkala, Clarice

    2008-01-01

    We identify three aspects of scientific thinking beyond the control-of-variables strategy that we claim are essential for students to master as a foundation for skilled scientific thinking. The first is strategic and involves the ability to coordinate effects of multiple causal influences on an outcome. The second is a mature understanding of the…

  2. Simulated and Virtual Science Laboratory Experiments: Improving Critical Thinking and Higher-Order Learning Skills

    NASA Astrophysics Data System (ADS)

    Simon, Nicole A.

    Virtual laboratory experiments using interactive computer simulations are not being employed as viable alternatives to laboratory science curriculum at extensive enough rates within higher education. Rote traditional lab experiments are currently the norm and are not addressing inquiry, Critical Thinking, and cognition throughout the laboratory experience, linking with educational technologies (Pyatt & Sims, 2007; 2011; Trundle & Bell, 2010). A causal-comparative quantitative study was conducted with 150 learners enrolled at a two-year community college, to determine the effects of simulation laboratory experiments on Higher-Order Learning, Critical Thinking Skills, and Cognitive Load. The treatment population used simulated experiments, while the non-treatment sections performed traditional expository experiments. A comparison was made using the Revised Two-Factor Study Process survey, Motivated Strategies for Learning Questionnaire, and the Scientific Attitude Inventory survey, using a Repeated Measures ANOVA test for treatment or non-treatment. A main effect of simulated laboratory experiments was found for both Higher-Order Learning, [F (1, 148) = 30.32,p = 0.00, eta2 = 0.12] and Critical Thinking Skills, [F (1, 148) = 14.64,p = 0.00, eta 2 = 0.17] such that simulations showed greater increases than traditional experiments. Post-lab treatment group self-reports indicated increased marginal means (+4.86) in Higher-Order Learning and Critical Thinking Skills, compared to the non-treatment group (+4.71). Simulations also improved the scientific skills and mastery of basic scientific subject matter. It is recommended that additional research recognize that learners' Critical Thinking Skills change due to different instructional methodologies that occur throughout a semester.

  3. Introducing Interactive Teaching Styles into Astronomy Lectures

    NASA Astrophysics Data System (ADS)

    Deming, G. L.

    1997-12-01

    The majority of undergraduate students who take an astronomy class are non-science majors attempting to satisfy a science requirement. Often in these "scientific literacy" courses, facts are memorized for the exam and forgotten shortly afterwards. Scientific literacy courses should advance student skills toward processing information and applying higher order thinking rather than simple recall and memorization of facts. Thinking about material as it is presented, applying new knowledge to solve problems, and thinking critically about topics are objectives that many astronomy instructors hope their students are achieving. A course in astronomy is more likely to achieve such goals if students routinely participate in their learning. Interactive techniques can be quite effective even in large classes. Examples of activities are presented that involve using cooperative learning techniques, writing individual and group "minute papers," identifying and correcting misconceptions, including the whole class in a demonstration, and applying knowledge to new situations.

  4. Tools for Observation: Art and the Scientific Process

    NASA Astrophysics Data System (ADS)

    Pettit, E. C.; Coryell-Martin, M.; Maisch, K.

    2015-12-01

    Art can support the scientific process during different phases of a scientific discovery. Art can help explain and extend the scientific concepts for the general public; in this way art is a powerful tool for communication. Art can aid the scientist in processing and interpreting the data towards an understanding of the concepts and processes; in this way art is powerful - if often subconscious - tool to inform the process of discovery. Less often acknowledged, art can help engage students and inspire scientists during the initial development of ideas, observations, and questions; in this way art is a powerful tool to develop scientific questions and hypotheses. When we use art as a tool for communication of scientific discoveries, it helps break down barriers and makes science concepts less intimidating and more accessible and understandable for the learner. Scientists themselves use artistic concepts and processes - directly or indirectly - to help deepen their understanding. Teachers are following suit by using art more to stimulate students' creative thinking and problem solving. We show the value of teaching students to use the artistic "way of seeing" to develop their skills in observation, questioning, and critical thinking. In this way, art can be a powerful tool to engage students (from elementary to graduate) in the beginning phase of a scientific discovery, which is catalyzed by inquiry and curiosity. Through qualitative assessment of the Girls on Ice program, we show that many of the specific techniques taught by art teachers are valuable for science students to develop their observation skills. In particular, the concepts of contour drawing, squinting, gesture drawing, inverted drawing, and others can provide valuable training for student scientists. These art techniques encourage students to let go of preconceptions and "see" the world (the "data") in new ways they help students focus on both large-scale patterns and small-scale details.

  5. Science Process Skills in Science Curricula Applied in Turkey

    ERIC Educational Resources Information Center

    Yumusak, Güngör Keskinkiliç

    2016-01-01

    One of the most important objectives of the science curricula is to bring in science process skills. The science process skills are skills that lie under scientific thinking and decision-making. Thus it is important for a science curricula to be rationalized in such a way that it brings in science process skills. New science curricula were…

  6. Pushing Critical Thinking Skills With Multiple-Choice Questions: Does Bloom's Taxonomy Work?

    PubMed

    Zaidi, Nikki L Bibler; Grob, Karri L; Monrad, Seetha M; Kurtz, Joshua B; Tai, Andrew; Ahmed, Asra Z; Gruppen, Larry D; Santen, Sally A

    2018-06-01

    Medical school assessments should foster the development of higher-order thinking skills to support clinical reasoning and a solid foundation of knowledge. Multiple-choice questions (MCQs) are commonly used to assess student learning, and well-written MCQs can support learner engagement in higher levels of cognitive reasoning such as application or synthesis of knowledge. Bloom's taxonomy has been used to identify MCQs that assess students' critical thinking skills, with evidence suggesting that higher-order MCQs support a deeper conceptual understanding of scientific process skills. Similarly, clinical practice also requires learners to develop higher-order thinking skills that include all of Bloom's levels. Faculty question writers and examinees may approach the same material differently based on varying levels of knowledge and expertise, and these differences can influence the cognitive levels being measured by MCQs. Consequently, faculty question writers may perceive that certain MCQs require higher-order thinking skills to process the question, whereas examinees may only need to employ lower-order thinking skills to render a correct response. Likewise, seemingly lower-order questions may actually require higher-order thinking skills to respond correctly. In this Perspective, the authors describe some of the cognitive processes examinees use to respond to MCQs. The authors propose that various factors affect both the question writer and examinee's interaction with test material and subsequent cognitive processes necessary to answer a question.

  7. What Undergraduates Choose to Think and Write about when Reading Science News Articles on the Internet

    ERIC Educational Resources Information Center

    Ghent, Cindy

    2010-01-01

    Students are scientifically literate when they can read material about science and intelligently communicate their viewpoints, comments, and critiques, using scientific vocabulary and applying the ideas of the process and nature of science. As part of their normal class, 80 students were asked to find an article on the internet, read it, and then…

  8. "Thinking like a Neuroscientist": Using Scaffolded Grant Proposals to Foster Scientific Thinking in a Freshman Neuroscience Course.

    PubMed

    Köver, Hania; Wirt, Stacey E; Owens, Melinda T; Dosmann, Andrew J

    2014-01-01

    Learning and practicing scientific inquiry is an essential component of a STEM education, but it is often difficult to teach to novices or those outside of a laboratory setting. To promote scientific thinking in a freshmen introductory neuroscience course without a lab component, we developed a series of learning activities and assignments designed to foster scientific thinking through the use of scientific grant proposals. Students wrote three short grant proposals on topics ranging from molecular to cognitive neuroscience during a 10-week class (one quarter). We made this challenging and advanced task feasible for novice learners through extensive instructional scaffolding, opportunity for practice, and frequent peer and instructor feedback. Student and instructor reports indicate that the assignments were highly intellectually engaging and that they promoted critical thinking, a deeper understanding of neuroscience material, and effective written communication skills. Here we outline the mechanics of the assignment, student and instructor impressions of learning outcomes, and the advantages and disadvantages of implementing this approach.

  9. “Thinking like a Neuroscientist”: Using Scaffolded Grant Proposals to Foster Scientific Thinking in a Freshman Neuroscience Course

    PubMed Central

    Köver, Hania; Wirt, Stacey E.; Owens, Melinda T.; Dosmann, Andrew J.

    2014-01-01

    Learning and practicing scientific inquiry is an essential component of a STEM education, but it is often difficult to teach to novices or those outside of a laboratory setting. To promote scientific thinking in a freshmen introductory neuroscience course without a lab component, we developed a series of learning activities and assignments designed to foster scientific thinking through the use of scientific grant proposals. Students wrote three short grant proposals on topics ranging from molecular to cognitive neuroscience during a 10-week class (one quarter). We made this challenging and advanced task feasible for novice learners through extensive instructional scaffolding, opportunity for practice, and frequent peer and instructor feedback. Student and instructor reports indicate that the assignments were highly intellectually engaging and that they promoted critical thinking, a deeper understanding of neuroscience material, and effective written communication skills. Here we outline the mechanics of the assignment, student and instructor impressions of learning outcomes, and the advantages and disadvantages of implementing this approach. PMID:25565917

  10. [Structural elements of critical thinking of nurses in emergency care].

    PubMed

    Crossetti, Maria da Graça Oliveira; Bittencourt, Greicy Kelly Gouveia Dias; Lima, Ana Amélia Antunes; de Góes, Marta Georgina Oliveira; Saurin, Gislaine

    2014-09-01

    The objective of this study was to analyze the structural elements of critical thinking (CT) of nurses in the clinical decision-making process. This exploratory, qualitative study was conducted with 20 emergency care nurses in three hospitals in southern Brazil. Data were collected from April to June 2009, and a validated clinical case was applied from which nurses listed health problems, prescribed care and listed the structural elements of CT. Content analysis resulted in categories used to determine priority structural elements of CT, namely theoretical foundations and practical relationship to clinical decision making; technical and scientific knowledge and clinical experience, thought processes and clinical decision making: clinical reasoning and basis for clinical judgments of nurses: patient assessment and ethics. It was concluded that thinking critically is a skill that enables implementation of a secure and effective nursing care process.

  11. The learning process of capita selecta based on journals review

    NASA Astrophysics Data System (ADS)

    Diniaty, Artina; Febriana, Beta Wulan; Arlianty, Widinda Normalia

    2017-03-01

    The learning process on capita selecta subject of Chemistry Education Department, Islamic University of Indonesia, was carried out based on reviewing of journals in chemistry and chemistry education scopes. The learning process procedure included planning, implementation and reflection. The purposes of learning were 1) students got an insight into the trend research in chemistry and chemistry education scopes, 2) students knew how to access and search journals, 3) increased students learning motivation on reading scientific journals, 4) students had be trained for reviewing scientific journals, and inspiring students to think about research ideas, performed research and publishing in scientific journals. The result showed that the students' responses in this learning were good.

  12. Cause-and-effect mapping of critical events.

    PubMed

    Graves, Krisanne; Simmons, Debora; Galley, Mark D

    2010-06-01

    Health care errors are routinely reported in the scientific and public press and have become a major concern for most Americans. In learning to identify and analyze errors health care can develop some of the skills of a learning organization, including the concept of systems thinking. Modern experts in improving quality have been working in other high-risk industries since the 1920s making structured organizational changes through various frameworks for quality methods including continuous quality improvement and total quality management. When using these tools, it is important to understand systems thinking and the concept of processes within organization. Within these frameworks of improvement, several tools can be used in the analysis of errors. This article introduces a robust tool with a broad analytical view consistent with systems thinking, called CauseMapping (ThinkReliability, Houston, TX, USA), which can be used to systematically analyze the process and the problem at the same time. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Think Locally, Act Globally! Linking Local and Global Communities through Democracy and Environment. Hands-On! Developing Active Learning Modules on the Human Dimensions of Global Change.

    ERIC Educational Resources Information Center

    Dowler, Lorraine

    Designed so that it can be adapted to a wide range of student abilities and institutional settings, this learning module on the human dimensions of global change seeks to: actively engage students in problem solving, challenge them to think critically, invite them to participate in the process of scientific inquiry, and involve them in cooperative…

  14. The Scientific Status of Learning Styles Theories

    ERIC Educational Resources Information Center

    Willingham, Daniel T.; Hughes, Elizabeth M.; Dobolyi, David G.

    2015-01-01

    Theories of learning styles suggest that individuals think and learn best in different ways. These are not differences of ability but rather preferences for processing certain types of information or for processing information in certain types of way. If accurate, learning styles theories could have important implications for instruction because…

  15. Magnifying Students' Interest in Science

    ERIC Educational Resources Information Center

    Frazier, Wendy

    2006-01-01

    While some textbooks still teach students that there is one scientific process that must be rigidly followed, this stagnant portrayal of the process of science can lead students to think that science and scientists are quite boring. Through integrating visual art and microscopy, students learn about the creativity of scientists and begin to…

  16. Examination of the relationship between preservice science teachers' scientific reasoning and problem solving skills on basic mechanics

    NASA Astrophysics Data System (ADS)

    Yuksel, Ibrahim; Ates, Salih

    2018-02-01

    The purpose of this study is to determine relationship between scientific reasoning and mechanics problem solving skills of students in science education program. Scientific Reasoning Skills Test (SRST) and Basic Mechanics Knowledge Test (BMKT) were applied to 90 second, third and fourth grade students who took Scientific Reasoning Skills course at science teaching program of Gazi Faculty of Education for three successive fall semesters of 2014, 2015 and 2016 academic years. It was found a statistically significant positive (p = 0.038 <0.05) but a low correlation (r = 0.219) between SRST and BMKT. There were no significant relationship among Conservation Laws, Proportional Thinking, Combinational Thinking, Correlational Thinking, Probabilistic Thinking subskills of reasoning and BMKT. There were significant and positive correlation among Hypothetical Thinking and Identifying and Controlling Variables subskills of reasoning and BMKT. The findings of the study were compared with other studies in the field and discussed.

  17. What is Science?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, H.

    Helen Quinn is a theoretical particle physicist at SLAC. Throughout her career, she has been passionately involved in science education and public understanding of science. In talking about science, whether to the public or to students, we scientists often assume that they share with us a common idea of science. In my experience that is often not the case. To oversimplify, scientists think of science both as a process for discovering properties of nature, and as the resulting body of knowledge, whereas most people seem to think of science, or perhaps scientists, as an authority that provides some information--just onemore » more story among the many that they use to help make sense of their world. Can we close that gap in understanding? Middle school teachers typically spend a day or so teaching something called the scientific method, but the process by which scientific ideas are developed and tested is messier and much more interesting than that typical capsule description. Some remarkable features of the process are seldom stressed in teaching science, nor are they addressed in explaining any one piece of science to the public. My goal in this column is to provide some ideas for closing that gap in understanding, and to encourage scientists and teachers to communicate about the process as they discuss scientific work.« less

  18. Override the controversy: Analytic thinking predicts endorsement of evolution.

    PubMed

    Gervais, Will M

    2015-09-01

    Despite overwhelming scientific consensus, popular opinions regarding evolution are starkly divided. In the USA, for example, nearly one in three adults espouse a literal and recent divine creation account of human origins. Plausibly, resistance to scientific conclusions regarding the origins of species-like much resistance to other scientific conclusions (Bloom & Weisberg, 2007)-gains support from reliably developing intuitions. Intuitions about essentialism, teleology, agency, and order may combine to make creationism potentially more cognitively attractive than evolutionary concepts. However, dual process approaches to cognition recognize that people can often analytically override their intuitions. Two large studies (total N=1324) found consistent evidence that a tendency to engage analytic thinking predicted endorsement of evolution, even controlling for relevant demographic, attitudinal, and religious variables. Meanwhile, exposure to religion predicted reduced endorsement of evolution. Cognitive style is one factor among many affecting opinions on the origin of species. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The effectiveness of web-programming module based on scientific approach to train logical thinking ability for students in vocational high school

    NASA Astrophysics Data System (ADS)

    Nashiroh, Putri Khoirin; Kamdi, Waras; Elmunsyah, Hakkun

    2017-09-01

    Web programming is a basic subject in Computer and Informatics Engineering, a program study in a vocational high school. It requires logical thinking ability in its learning activities. The purposes of this research were (1) to develop a web programming module that implement scientific approach that can improve logical thinking ability for students in vocational high school; and (2) to test the effectiveness of web programming module based on scientific approach to train students' logical thinking ability. The results of this research was a web-programming module that apply scientific approach for learning activities to improve logical thinking ability of students in the vocational high school. The results of the effectiveness test of web-programming module give conclusion that it was very effective to train logical thinking ability and to improve learning result, this conclusion was supported by: (1) the average of posttest result of students exceeds the minimum criterion value, it was 79.91; (2) the average percentage of students' logical thinking score is 82,98; and (3) the average percentage of students' responses to the web programming module was 81.86%.

  20. The Role of Metaphorical Thinking in the Creativity of Scientific Discourse

    ERIC Educational Resources Information Center

    Sanchez-Ruiz, Maria-Jose; Santos, Manuela Romo; Jiménez, Juan Jiménez

    2013-01-01

    This article critically reviews the extant literature on scientific creativity and metaphorical thinking. Metaphorical thinking is based on a conceptual transfer of relationships or mapping, from a well-known source domain to a poorly known target domain, which could result in creative outcomes in sciences. Creativity leads to products that are…

  1. Fostering Scientific Literacy and Critical Thinking in Elementary Science Education

    ERIC Educational Resources Information Center

    Vieira, Rui Marques; Tenreiro-Vieira, Celina

    2016-01-01

    Scientific literacy (SL) and critical thinking (CT) are key components of science education aiming to prepare students to think and to function as responsible citizens in a world increasingly affected by science and technology (S&T). Therefore, students should be given opportunities in their science classes to be engaged in learning…

  2. Neuroart: picturing the neuroscience of intentional actions in art and science.

    PubMed

    Siler, Todd

    2015-01-01

    Intentional actions cover a broad spectrum of human behaviors involving consciousness, creativity, innovative thinking, problem-solving, critical thinking, and other related cognitive processes self-evident in the arts and sciences. The author discusses the brain activity associated with action intentions, connecting this activity with the creative process. Focusing on one seminal artwork created and exhibited over a period of three decades, Thought Assemblies (1979-82, 2014), he describes how this symbolic art interprets the neuropsychological processes of intuition and analytical reasoning. It explores numerous basic questions concerning observed interactions between artistic and scientific inquiries, conceptions, perceptions, and representations connecting mind and nature. Pointing to some key neural mechanisms responsible for forming and implementing intentions, he considers why and how we create, discover, invent, and innovate. He suggests ways of metaphorical thinking and symbolic modeling that can help integrate the neuroscience of intentional actions with the neuroscience of creativity, art and neuroaesthetics.

  3. Neuroart: picturing the neuroscience of intentional actions in art and science

    PubMed Central

    Siler, Todd

    2015-01-01

    Intentional actions cover a broad spectrum of human behaviors involving consciousness, creativity, innovative thinking, problem-solving, critical thinking, and other related cognitive processes self-evident in the arts and sciences. The author discusses the brain activity associated with action intentions, connecting this activity with the creative process. Focusing on one seminal artwork created and exhibited over a period of three decades, Thought Assemblies (1979–82, 2014), he describes how this symbolic art interprets the neuropsychological processes of intuition and analytical reasoning. It explores numerous basic questions concerning observed interactions between artistic and scientific inquiries, conceptions, perceptions, and representations connecting mind and nature. Pointing to some key neural mechanisms responsible for forming and implementing intentions, he considers why and how we create, discover, invent, and innovate. He suggests ways of metaphorical thinking and symbolic modeling that can help integrate the neuroscience of intentional actions with the neuroscience of creativity, art and neuroaesthetics. PMID:26257629

  4. Authentic scientific data collection in support of an integrative model-based class: A framework for student engagement in the classroom

    NASA Astrophysics Data System (ADS)

    Sorensen, A. E.; Dauer, J. M.; Corral, L.; Fontaine, J. J.

    2017-12-01

    A core component of public scientific literacy, and thereby informed decision-making, is the ability of individuals to reason about complex systems. In response to students having difficulty learning about complex systems, educational research suggests that conceptual representations, or mental models, may help orient student thinking. Mental models provide a framework to support students in organizing and developing ideas. The PMC-2E model is a productive tool in teaching ideas of modeling complex systems in the classroom because the conceptual representation framework allows for self-directed learning where students can externalize systems thinking. Beyond mental models, recent work emphasizes the importance of facilitating integration of authentic science into the formal classroom. To align these ideas, a university class was developed around the theme of carnivore ecology, founded on PMC-2E framework and authentic scientific data collection. Students were asked to develop a protocol, collect, and analyze data around a scientific question in partnership with a scientist, and then use data to inform their own learning about the system through the mental model process. We identified two beneficial outcomes (1) scientific data is collected to address real scientific questions at a larger scale and (2) positive outcomes for student learning and views of science. After participating in the class, students report enjoying class structure, increased support for public understanding of science, and shifts in nature of science and interest in pursuing science metrics on post-assessments. Further work is ongoing investigating the linkages between engaging in authentic scientific practices that inform student mental models, and how it might promote students' systems-thinking skills, implications for student views of nature of science, and development of student epistemic practices.

  5. Scientists and Scientific Thinking: Understanding Scientific Thinking through an Investigation of Scientists Views about Superstitions and Religious Beliefs

    ERIC Educational Resources Information Center

    Coll, Richard K.; Lay, Mark C.; Taylor, Neil

    2008-01-01

    Scientific literacy is explored in this paper which describes two studies that seek to understand a particular feature of the nature of science; namely scientists' habits of mind. The research investigated scientists' views of scientific evidence and how scientists judge evidence claims. The first study is concerned with scientists' views of what…

  6. Guidelines for a Scientific Approach to Critical Thinking Assessment

    ERIC Educational Resources Information Center

    Bensley, D. Alan; Murtagh, Michael P.

    2012-01-01

    Assessment of student learning outcomes can be a powerful tool for improvement of instruction when a scientific approach is taken; unfortunately, many educators do not take full advantage of this approach. This article examines benefits of taking a scientific approach to critical thinking assessment and proposes guidelines for planning,…

  7. The Future of Testing: A Research Agenda for Cognitive Psychology and Psychometrics.

    DTIC Science & Technology

    1981-02-01

    sports, engineering technology in electronics and steel production, maintaining leads in scientific knowledge and theory , creative writing and other art...how the available individual difference data can be used even as a starting point for generating a theory as to the process nature of general...primarily addressed. In what follows, I review some recent scientific developments that I think will be influencing future theory and practices in

  8. Educational interventions to advance children's scientific thinking.

    PubMed

    Klahr, David; Zimmerman, Corinne; Jirout, Jamie

    2011-08-19

    The goal of science education interventions is to nurture, enrich, and sustain children's natural and spontaneous interest in scientific knowledge and procedures. We present taxonomy for classifying different types of research on scientific thinking from the perspective of cognitive development and associated attempts to teach science. We summarize the literature on the early--unschooled--development of scientific thinking, and then focus on recent research on how best to teach science to children from preschool to middle school. We summarize some of the current disagreements in the field of science education and offer some suggestions on ways to continue to advance the science of science instruction.

  9. [Martin Heidegger, beneficence, health, and evidence based medicine--contemplations regarding ethics and complementary and alternative medicine].

    PubMed

    Oberbaum, Menachem; Gropp, Cornelius

    2015-03-01

    Beneficence is considered a core principle of medical ethics. Evidence Based Medicine (EBM) is used almost synonymously with beneficence and has become the gold standard of efficiency of conventional medicine. Conventional modern medicine and EBM in particular are based on what Heidegger called calculative thinking, whereas complementary medicine (CM) is often based on contemplative thinking according to Heidegger's distinction of different thinking processes. A central issue of beneficence is the striving for health and wellbeing. EBM is little concerned directly with wellbeing, though it does claim to aim at improving quality of life by correcting pathological processes and conditions like infectious diseases, ischemic heart disease but also hypertension and hyperlipidemia. On the other hand, wellbeing is central to therapeutic efforts of CM. Scientific methods to gauge results of EBM are quantitative and based on calculative thinking, while results of treatments with CM are expressed in a qualitative way and based on meditative thinking. In order to maximize beneficence it seems important and feasible to use both approaches, by combining EBM and CM in the best interest of the individual patient.

  10. Operation ARA: A Computerized Learning Game that Teaches Critical Thinking and Scientific Reasoning

    ERIC Educational Resources Information Center

    Halpern, Diane F.; Millis, Keith; Graesser, Arthur C.; Butler, Heather; Forsyth, Carol; Cai, Zhiqiang

    2012-01-01

    Operation ARA (Acquiring Research Acumen) is a computerized learning game that teaches critical thinking and scientific reasoning. It is a valuable learning tool that utilizes principles from the science of learning and serious computer games. Students learn the skills of scientific reasoning by engaging in interactive dialogs with avatars. They…

  11. The Development of Scientific Thinking Skills in Elementary and Middle School

    ERIC Educational Resources Information Center

    Zimmerman, Corinne

    2007-01-01

    The goal of this article is to provide an integrative review of research that has been conducted on the development of children's scientific reasoning. Broadly defined, scientific thinking includes the skills involved in inquiry, experimentation, evidence evaluation, and inference that are done in the service of "conceptual change" or scientific…

  12. Case Study: Assessing Critical-Thinking Skills Using Articles from the Popular Press

    ERIC Educational Resources Information Center

    Terry, David R.

    2012-01-01

    Meaningful science education requires an understanding of essential concepts, but it is just as important for scientifically literate persons to use critical thinking as they apply scientific understanding to their lives. Students should learn to use scientific information appropriately to make wise choices and to effectively solve problems that…

  13. Distinguishing Science from Pseudoscience in School Psychology: Science and Scientific Thinking as Safeguards against Human Error

    ERIC Educational Resources Information Center

    Lilienfeld, Scott O.; Ammirati, Rachel; David, Michal

    2012-01-01

    Like many domains of professional psychology, school psychology continues to struggle with the problem of distinguishing scientific from pseudoscientific and otherwise questionable clinical practices. We review evidence for the scientist-practitioner gap in school psychology and provide a user-friendly primer on science and scientific thinking for…

  14. Logical Thinking Abilities among Form 4 Students in the Interior Division of Sabah, Malaysia

    ERIC Educational Resources Information Center

    Fah, Lay Yoon

    2009-01-01

    The science curriculum in Malaysia emphasizes the acquisition of scientific skills, thinking skills, and the inculcation of scientific attitudes and noble values. Besides that, the acquisition of scientific and technological knowledge and its application to the natural phenomena and students' daily experiences are also equally emphasized. The…

  15. How would photons describe natural phenomena based upon their physical experiences?

    NASA Astrophysics Data System (ADS)

    Roychoudhuri, Chandrasekhar

    2013-10-01

    The question posed in the title represents an impossible approach to scientific investigation, but the approach is like a subjectivist. Obviously, photons cannot express their views; neither can we ask directly any scientific questions to the photons. The purpose is to draw the attention of the reader that even our strongly mathematically driven scientific enterprise is full of subjectivism when we start dissecting our thinking process. First, we frame questions in our mind to understand a natural phenomenon we have been observing. Let us not forget that framing the question determine the answer. The answers guide us to frame the foundational hypotheses to build a theory to "explain" the phenomenon under study. Our mind is a product of biological evolutionary requirements; which is further re-programmed by strong human social cultures. In other words, human constructed theories cannot spontaneously become rigorously objective, unless we consciously make them so. We need to develop a methodology of scientific thinking that will automatically force us to make repeated iterative corrections in generating questions as objectively as possible. Those questions will then guide us to re-construct the foundational hypotheses and re-frame the working theories. We are proposing that we add Interaction Process Mapping Epistemology (IPM-E) as a necessary extra thinking tool; which will complement the prevailing Measurable Data Modeling Epistemology (MDM-E). We believe that ongoing interaction processes in nature represent reality ontology. So the iterative application of IPM-E, along with MDM-E, will keep us along the route of ontological reality. We apply this prescription to reveal the universal property, Non-Interaction of Waves, which we have been neglecting for centuries. Using this property, we demonstrate that a large number of ad hoc hypotheses from Classical-, QM-, Relativity- and Astro-Physics can be easily modified to make physics more causal and understandable through common sense logics.

  16. Modeling Water Filtration

    ERIC Educational Resources Information Center

    Parks, Melissa

    2014-01-01

    Model-eliciting activities (MEAs) are not new to those in engineering or mathematics, but they were new to Melissa Parks. Model-eliciting activities are simulated real-world problems that integrate engineering, mathematical, and scientific thinking as students find solutions for specific scenarios. During this process, students generate solutions…

  17. Lean thinking in health and nursing: an integrative literature review 1

    PubMed Central

    Magalhães, Aline Lima Pestana; Erdmann, Alacoque Lorenzini; da Silva, Elza Lima; dos Santos, José Luís Guedes

    2016-01-01

    ABSTRACT Objectives: to demonstrate the scientific knowledge developed on lean thinking in health, highlighting the impact and contributions in health care and nursing. Method: an integrative literature review in the PubMed, CINAHL, Scopus, Web of Science, Emerald, LILACS and SciELO electronic library databases, from 2006 to 2014, with syntax keywords for each data base, in which 47 articles were selected for analysis. Results: the categories were developed from the quality triad proposed by Donabedian: structure, process and outcome. Lean thinking is on the rise in health surveys, particularly internationally, especially in the USA and UK, improving the structure, process and outcome of care and management actions. However, it is an emerging theme in nursing. Conclusion: this study showed that the use of lean thinking in the context of health has a transforming effect on care and organizational aspects, promoting advantages in terms of quality, safety and efficiency of health care and nursing focused on the patient. PMID:27508906

  18. Why I teach the controversy: using creationism to teach critical thinking

    PubMed Central

    Honey, P. Lynne

    2015-01-01

    Creationism and intelligent design are terms used to describe supernatural explanations for the origin of life, and the diversity of species on this planet. Many scientists have argued that the science classroom is no place for discussion of creationism. When I began teaching I did not teach creationism, as I focused instead on my areas of expertise. Over time it became clear that students had questions about creationism, and did not understand the difference between a scientific approach to knowledge and non-scientific approaches. This led me to wonder whether ignoring supernatural views allowed them to remain as viable “alternatives” to scientific hypotheses, in the minds of students. Also, a psychology class is an ideal place to discuss not only the scientific method but also the cognitive errors associated with non-science views. I began to explain creationism in my classes, and to model the scientific thought process that leads to a rejection of creationism. My approach is consistent with research that demonstrates that teaching content alone is insufficient for students to develop critical thinking and my admittedly anecdotal experience leads me to conclude that “teaching the controversy” has benefits for science students. PMID:26136700

  19. Assessment of Teaching Methods and Critical Thinking in a Course for Science Majors

    NASA Astrophysics Data System (ADS)

    Speck, Angela; Ruzhitskaya, L.; Whittington, A. G.

    2014-01-01

    Ability to think critically is a key ingredient to the scientific mindset. Students who take science courses may or may not be predisposed to critical thinking - the ability to evaluate information analytically. Regardless of their initial stages, students can significantly improve their critical thinking through learning and practicing their reasoning skills, critical assessments, conducting and reflecting on observations and experiments, building their questioning and communication skills, and through the use of other techniques. While, there are several of teaching methods that may help to improve critical thinking, there are only a few assessment instruments that can help in evaluating the efficacy of these methods. Critical thinking skills and improvement in those skills are notoriously difficult to measure. Assessments that are based on multiple-choice questions demonstrate students’ final decisions but not their thinking processes. In addition, during the course of studies students may develop subject-based critical thinking while not being able to extend the skills to the general critical thinking. As such, we wanted to design and conduct a study on efficacy of several teaching methods in which we would learn how students’ improve their thinking processes within a science discipline as well as in everyday life situations. We conducted a study among 20 astronomy, physics and geology majors-- both graduate and undergraduate students-- enrolled in our Solar System Science course (mostly seniors and early graduate students) at the University of Missouri. We used the Ennis-Weir Critical Thinking Essay test to assess students’ general critical thinking and, in addition, we implemented our own subject-based critical thinking assessment. Here, we present the results of this study and share our experience on designing a subject-based critical thinking assessment instrument.

  20. Children's Learning in Scientific Thinking: Instructional Approaches and Roles of Variable Identification and Executive Function

    NASA Astrophysics Data System (ADS)

    Blums, Angela

    The present study examines instructional approaches and cognitive factors involved in elementary school children's thinking and learning the Control of Variables Strategy (CVS), a critical aspect of scientific reasoning. Previous research has identified several features related to effective instruction of CVS, including using a guided learning approach, the use of self-reflective questions, and learning in individual and group contexts. The current study examined the roles of procedural and conceptual instruction in learning CVS and investigated the role of executive function in the learning process. Additionally, this study examined how learning to identify variables is a part of the CVS process. In two studies (individual and classroom experiments), 139 third, fourth, and fifth grade students participated in hands-on and paper and pencil CVS learning activities and, in each study, were assigned to either a procedural instruction, conceptual instruction, or control (no instruction) group. Participants also completed a series of executive function tasks. The study was carried out with two parts--Study 1 used an individual context and Study 2 was carried out in a group setting. Results indicated that procedural and conceptual instruction were more effective than no instruction, and the ability to identify variables was identified as a key piece to the CVS process. Executive function predicted ability to identify variables and predicted success on CVS tasks. Developmental differences were present, in that older children outperformed younger children on CVS tasks, and that conceptual instruction was slightly more effective for older children. Some differences between individual and group instruction were found, with those in the individual context showing some advantage over the those in the group setting in learning CVS concepts. Conceptual implications about scientific thinking and practical implications in science education are discussed.

  1. Analysis of students critical thinking skills in socio-scientific issues of biodiversity subject

    NASA Astrophysics Data System (ADS)

    Santika, A. R.; Purwianingsih, W.; Nuraeni, E.

    2018-05-01

    Critical thinking is a skills the which students should have in order to face 21st century demands. Critical thinking skills can help people in facing their daily problems, especially problems roommates relate to science. This research is aimed to analyze students critical thinking skills in socio-scientific issues of biodiversity subject. The method used in this research was descriptive method. The research subject is first-grade students’ in senior high school. The data collected by interview and open-ended question the which classified based on framework : (1) question at issue, (2) information (3) purpose (4) concepts (5) assumptions, (6) point of view, (7) interpretation and inference, and (8) implication and consequences, then it will be assessed by using rubrics. The result of the data showed students critical thinking skills in socio-scientific issues of biodiversity subject is in low and medium category. Therefore we need a learning activity that is able to develop student’s critical thinking skills, especially regarding issues of social science.

  2. Using the Illogic of Creationism to Teach the Logic of Science.

    ERIC Educational Resources Information Center

    Wells, Neil Andrew

    1989-01-01

    Presented is a strategy which uses creationism and other pseudosciences as examples of non-scientific approaches to critical thinking to teach students the nature of science and the scientific method. Examples of the illogic of non-scientific approaches are given along with an explanation of how they can be used in teaching critical thinking to…

  3. Understanding the Complex Relationship between Critical Thinking and Science Reasoning among Undergraduate Thesis Writers.

    PubMed

    Dowd, Jason E; Thompson, Robert J; Schiff, Leslie A; Reynolds, Julie A

    2018-01-01

    Developing critical-thinking and scientific reasoning skills are core learning objectives of science education, but little empirical evidence exists regarding the interrelationships between these constructs. Writing effectively fosters students' development of these constructs, and it offers a unique window into studying how they relate. In this study of undergraduate thesis writing in biology at two universities, we examine how scientific reasoning exhibited in writing (assessed using the Biology Thesis Assessment Protocol) relates to general and specific critical-thinking skills (assessed using the California Critical Thinking Skills Test), and we consider implications for instruction. We find that scientific reasoning in writing is strongly related to inference , while other aspects of science reasoning that emerge in writing (epistemological considerations, writing conventions, etc.) are not significantly related to critical-thinking skills. Science reasoning in writing is not merely a proxy for critical thinking. In linking features of students' writing to their critical-thinking skills, this study 1) provides a bridge to prior work suggesting that engagement in science writing enhances critical thinking and 2) serves as a foundational step for subsequently determining whether instruction focused explicitly on developing critical-thinking skills (particularly inference ) can actually improve students' scientific reasoning in their writing. © 2018 J. E. Dowd et al. CBE—Life Sciences Education © 2018 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Introductory Biology Textbooks Under-Represent Scientific Process

    PubMed Central

    Duncan, Dara B.; Lubman, Alexandra; Hoskins, Sally G.

    2011-01-01

    Attrition of undergraduates from Biology majors is a long-standing problem. Introductory courses that fail to engage students or spark their curiosity by emphasizing the open-ended and creative nature of biological investigation and discovery could contribute to student detachment from the field. Our hypothesis was that introductory biology books devote relatively few figures to illustration of the design and interpretation of experiments or field studies, thereby de-emphasizing the scientific process. To investigate this possibility, we examined figures in six Introductory Biology textbooks published in 2008. On average, multistep scientific investigations were presented in fewer than 5% of the hundreds of figures in each book. Devoting such a small percentage of figures to the processes by which discoveries are made discourages an emphasis on scientific thinking. We suggest that by increasing significantly the illustration of scientific investigations, textbooks could support undergraduates’ early interest in biology, stimulate the development of design and analytical skills, and inspire some students to participate in investigations of their own. PMID:23653758

  5. Does Copper Metal React with Acetic Acid?

    ERIC Educational Resources Information Center

    DeMeo, Stephen

    1997-01-01

    Describes an activity that promotes analytical thinking and problem solving. Gives students experience with important scientific processes that can be generalized to other new laboratory experiences. Provides students with the opportunity to hypothesize answers, control variables by designing an experiment, and make logical deductions based on…

  6. [Concept analysis of reflective thinking].

    PubMed

    Van Vuuren, M; Botes, A

    1999-09-01

    The nursing practice is described as a scientific practice, but also as a practice where caring is important. The purpose of nursing education is to provide competent nursing practitioners. This implies that future practitioners must have both critical analytical thinking abilities, as well as empathy and moral values. Reflective thinking could probably accommodate these thinking skills. It seems that the facilitation of reflective thinking skills is essential in nursing education. The research question that is relevant in this context is: "What is reflective thinking?" The purpose of this article is to report on the concept analysis of reflective thinking and in particular on the connotative meaning (critical attributes) thereof. The method used to perform the concept analysis is based on the original method of Wilson (1987) as described by Walker & Avant (1995). As part of the concept analysis the connotations (critical attributes) are identified, reduced and organized into three categories, namely pre-requisites, processes and outcomes. A model case is described which confirms the essential critical attributes of reflective thinking. Finally a theoretical definition of reflective thinking is derived and reads as follows: Reflective thinking is a cyclic, hierarchical and interactive construction process. It is initiated, extended and continued because of personal cognitive-affective interaction (individual dimension) as well as interaction with the social environment (social dimension). to realize reflective thinking, a level of internalization on the cognitive and affective domain is required. The result of reflective thinking is a integrated framework of knowledge (meaningful learning) and a internalized value system providing a new perspective on and better understanding of a problem. Reflective thinking further leads to more effective decision making- and problem solving skills.

  7. Examination of the Computational Thinking Skills of Students

    ERIC Educational Resources Information Center

    Korucu, Agah Tugrul; Gencturk, Abdullah Tarik; Gundogdu, Mustafa Mucahit

    2017-01-01

    Computational thinking is generally considered as a kind of analytical way of thinking. According to Wings (2008) it shares with mathematical thinking, engineering thinking and scientific thinking in the general ways in which we may use for solving a problem, designing and evaluating complex systems or understanding computability and intelligence…

  8. A Cultural-Historical Study of the Development of Children's Scientific Thinking about Clouds in Everyday Life

    NASA Astrophysics Data System (ADS)

    Fragkiadaki, Glykeria; Fleer, Marilyn; Ravanis, Konstantinos

    2017-09-01

    Research into early childhood children's understandings in science has a long history. However, few studies have drawn upon cultural-historical theory to frame their research. Mostly, what is known has come from studies which have examined individual understandings of science concepts, without reference to culture, context or the collective nature in which children learn, play and live. The cultural-historical study reported in this paper examines the process of constructing understandings about clouds by kindergarten children (16 children, aged 4.5 to 6 years, mean age of 5. 3 years) in an urban area of Greece. The research examines how children form relevant representations of clouds, how they conceptualize meteorological understandings in everyday life and how understandings transform through communications with others. The collection of the data was achieved through expanded, open-type conversations between pairs of children and one of the researchers, totalling 4 h of data. In depth analysis, using Rogoff's three foci of analysis (personal, interpersonal and context focusing) allowed for an examination of children's representations of clouds, how social and cultural factors framed thinking and gave insights into the processes of scientific thinking. On this basis, theoretical and methodological insights of this study of natural science by young children are discussed.

  9. An Inquiry-Based Biochemistry Laboratory Structure Emphasizing Competency in the Scientific Process: A Guided Approach with an Electronic Notebook Format

    ERIC Educational Resources Information Center

    Hall, Mona L.; Vardar-Ulu, Didem

    2014-01-01

    The laboratory setting is an exciting and gratifying place to teach because you can actively engage the students in the learning process through hands-on activities; it is a dynamic environment amenable to collaborative work, critical thinking, problem-solving and discovery. The guided inquiry-based approach described here guides the students…

  10. Gender-fair assessment of young gifted students' scientific thinking skills

    NASA Astrophysics Data System (ADS)

    Dori, Y. J.; Zohar, A.; Fischer-Shachor, D.; Kohan-Mass, J.; Carmi, M.

    2018-04-01

    This paper describes an Israeli national-level research examining the extent to which admissions of elementary school students to the gifted programmes based on standardised tests are gender-fair. In the research, the gifted students consisted of 275 boys, 128 girls, and additional 80 girls who were admitted to the gifted programme through affirmative action (AA). To assess these young students' scientific thinking skills, also referred to as science practices, open-ended questions of case-based questionnaires were developed. The investigated scientific thinking skills were question posing, explanation, graphing, inquiry, and metacognition. Analysis of the students' responses revealed that gifted girls who entered the programmes through AA performed at the same level as the other gifted students. We found significant differences between the three research groups in question posing and graphing skills. We suggest increasing gender-fairness by revising the standard national testing system to include case-based narratives followed by open-ended questions that assess gifted students' scientific thinking skills. This may diminish the gender inequity expressed by the different number of girls and boys accepted to the gifted programmes. We show that open-ended tools for analysing students' scientific thinking might better serve both research and practice by identifying gifted girls and boys equally well.

  11. Science Education in Primary Schools: Is an Animation Worth a Thousand Pictures?

    NASA Astrophysics Data System (ADS)

    Barak, Miri; Dori, Yehudit J.

    2011-10-01

    Science teaching deals with abstract concepts and processes that very often cannot be seen or touched. The development of Java, Flash, and other web-based applications allow teachers and educators to present complex animations that attractively illustrate scientific phenomena. Our study evaluated the integration of web-based animated movies into primary schools science curriculum. Our goal was to examine teachers' methods for integrating animated movies and their views about the role of animations in enhancing young students' thinking skills. We also aimed at investigating the effect of animated movies on students' learning outcomes. Applying qualitative and quantitative tools, we conducted informal discussions with science teachers (N = 15) and administered pre- and post-questionnaires to 4th (N = 641) and 5th (N = 694) grade students who were divided into control and experimental groups. The experimental group students studied science while using animated movies and supplementary activities at least once a week. The control group students used only textbooks and still-pictures for learning science. Findings indicated that animated movies support the use of diverse teaching strategies and learning methods, and can promote various thinking skills among students. Findings also indicated that animations can enhance scientific curiosity, the acquisition of scientific language, and fostering scientific thinking. These encouraging results can be explained by the fact that the students made use of both visual-pictorial and auditory-verbal capabilities while exploring animated movies in diverse learning styles and teaching strategies.

  12. Mixing and Making Changes

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2006-01-01

    Young children do science exploration and observation every day in their play. They spontaneously engage in parts of the scientific inquiry process--wondering, asking a question, planning how to answer the question, documenting their work, thinking about what happened, and sharing their results with others. Conducting an entire experiment is…

  13. Implementation of science process skills using ICT-based approach to facilitate student life skills

    NASA Astrophysics Data System (ADS)

    Rahayu, Y. S.; Yuliani; Wijaya, B. R.

    2018-01-01

    The purpose of this study is to describe the results of the implementation of a teaching-learning package in Plant Physiology courses to improve the student’s life skills using the science process skills-based approach ICT. This research used 15 students of Biology Education of Undergraduate International Class who are in the Plant Physiology course. This study consists of two phases items, namely the development phase and implementation phase by using a one-shot case study design. Research parameters were the feasibility of lesson plans, student achievement, Including academic skills, thinking skills, and social skills. Data were descriptively Analyzed According to the characteristics of the existing data. The result shows that the feasibility of a lesson plan is very satisfied and can be improvements in student’s life skills, especially with regards to student’s thinking skills and scientific thinking skills. The results indicate that the science process skills using ICT-based approach can be effective methods to improve student’s life skills.

  14. The laboratory report: A pedagogical tool in college science courses

    NASA Astrophysics Data System (ADS)

    Ferzli, Miriam

    When viewed as a product rather than a process that aids in student learning, the lab report may become rote, busywork for both students and instructors. Students fail to see the purpose of the lab report, and instructors see them as a heavy grading load. If lab reports are taught as part of a process rather than a product that aims to "get the right answer," they may serve as pedagogical tools in college science courses. In response to these issues, an in-depth, web-based tutorial named LabWrite (www.ncsu.edu/labwrite) was developed to help students and instructors (www.ncsu.edu/labwrite/instructors) understand the purpose of the lab report as grounded in the written discourse and processes of science. The objective of this post-test only quasi-experimental study was to examine the role that in-depth instruction such as LabWrite plays in helping students to develop skills characteristic of scientifically literate individuals. Student lab reports from an introductory-level biology course at NC State University were scored for overall understanding of scientific concepts and scientific ways of thinking. The study also looked at students' attitudes toward science and lab report writing, as well as students' perceptions of lab reports in general. Significant statistical findings from this study show that students using LabWrite were able to write lab reports that showed a greater understanding of scientific investigations (p < .003) and scientific ways of thinking (p < .0001) than students receiving traditional lab report writing instruction. LabWrite also helped students develop positive attitudes toward lab reports as compared to non-LabWrite users (p < .01). Students using LabWrite seemed to perceive the lab report as a valuable tool for determining learning objectives, understanding science concepts, revisiting the lab experience, and documenting their learning.

  15. The persistence of personal and social themes in context: Long- and short-term studies of students' scientific ideas

    NASA Astrophysics Data System (ADS)

    Helldén, Gustav F.; Solomon, Joan

    2004-11-01

    In this paper we will examine the persistence of misconceptions. We used data from a longitudinal study of personal ideas in 24 students' thinking about ecological processes. The results show students often speaking about personal experiences dating from an early age, to which they had also referred in similar interviews conducted years before. These data are compared with results from a different study of middle school physics students' thinking about energy and steam engines. After the new learning had been successfull completed and assessed, old ideas returned. These findings are used to set up a theoretical basis for understanding the longitudinal results. Findings from memory studies are shown to explicate the long-term effects of the passage of time and prompts for the recall of scientific concepts.

  16. Thinking Scientifically: Understanding Measurement and Errors

    ERIC Educational Resources Information Center

    Alagumalai, Sivakumar

    2015-01-01

    Thinking scientifically consists of systematic observation, experiment, measurement, and the testing and modification of research questions. In effect, science is about measurement and the understanding of causation. Measurement is an integral part of science and engineering, and has pertinent implications for the human sciences. No measurement is…

  17. Reframing Science Learning and Teaching: A Communities of Practice Approach

    ERIC Educational Resources Information Center

    Sansone, Anna

    2018-01-01

    Next Generation Science Standards encourage science instruction that offers not only opportunities for inquiry but also the diverse social and cognitive processes involved in scientific thinking and communication. This article gives an introduction to Lave and Wenger's (1991) communities of practice framework as a potential way of viewing…

  18. Mining the gap: Assessing leadership needs to improve 21st century plant pathology

    USDA-ARS?s Scientific Manuscript database

    Scientists and plant pathologists are trained in scientific knowledge and critical thinking as part of their career preparation process. However, the extensive training in science-related skills comes at a cost to “soft skills”, the competencies needed for interpersonal skills, communication, manage...

  19. New Pathways for Teaching Chemistry: Reflective Judgment in Science.

    ERIC Educational Resources Information Center

    Finster, David C.

    1992-01-01

    The reflective judgment model offers a rich context for analysis of science and science teaching. It provides deeper understanding of the scientific process and its critical thinking and reveals fundamental connections between science and the other liberal arts. Classroom techniques from a college chemistry course illustrate the utility of the…

  20. The Moral Impotence of Contemporary Experts

    ERIC Educational Resources Information Center

    Filion, Yves R.

    2004-01-01

    Technological growth in developed and developing countries in the 20th century has lent a great deal of importance to scientific reasoning in the management of human affairs. An important outgrowth has been the development of systems thinking to organize the workplace. The business reengineering process and the enterprise resource planning system…

  1. Thinking Aloud Together: A Test of an Intervention To Foster Students' Collaborative Scientific Reasoning.

    ERIC Educational Resources Information Center

    Hogan, Kathleen

    1999-01-01

    Describes the use of an intervention stressing the metacognitive, regulatory, and strategic aspects of knowledge co-construction. Finds that eighth grade students who received the intervention gained in metacognitive knowledge about collaborative reasoning and ability to articulate their collaborative reasoning processes compared to students in…

  2. Defend Science: The Attack on Scientific Thinking and What Must Be Done

    NASA Astrophysics Data System (ADS)

    Curtis, Jason

    2006-03-01

    ``In the United States today science, as science, is under attack as never before (Defend Science, defendscience.org).'' Beyond, and underlying, the many particular attacks and outrages in different spheres and policy areas is the question of the scientific method and whether it is going to be upheld and applied, or whether -- even in the realm of science itself -- that method is going to be replaced by something antagonistically opposed to the scientific method. These attacks are increasingly coming from powerful forces, in and out of the Bush administration, with an extreme right-wing political agenda, a Biblical-literalist ideological agenda, and theocratic aspirations for society. Individual scientists may be atheists, agnostics, or may hold various religious beliefs, but if religious and theistic elements are forced into the definition of science, then the scientific process is undermined and science cannot really be practiced. We can and must develop a society wide battle, initiated by scientists, but involving ever growing masses of people to defend science and scientific thinking. Scientists from various fields must be mobilized to issue a public call to millions with this urgent message as the beginning of this effort. I will discuss the necessity, possibility, and some initial efforts toward developing this kind of societal movement in defense of science.

  3. Defend Science: The Attack on Scientific Thinking and What Must Be Done

    NASA Astrophysics Data System (ADS)

    Curtis, Jason

    2006-04-01

    ``In the United States today science, as science, is under attack as never before (Defend Science, defendscience.org).'' Beyond, and underlying, the many particular attacks and outrages in different spheres and policy areas is the question of the scientific method and whether it is going to be upheld and applied, or whether -- even in the realm of science itself -- that method is going to be replaced by something antagonistically opposed to the scientific method. These attacks are increasingly coming from powerful forces, in and out of the Bush administration, with an extreme right-wing political agenda, a Biblical-literalist ideological agenda, and theocratic aspirations for society. Individual scientists may be atheists, agnostics, or may hold various religious beliefs, but if religious and theistic elements are forced into the definition of science, then the scientific process is undermined and science cannot really be practiced. We can and must develop a society wide battle, initiated by scientists, but involving ever growing masses of people to defend science and scientific thinking. Scientists from various fields must be mobilized to issue a public call to millions with this urgent message as the beginning of this effort. I will discuss the necessity, possibility, and some initial efforts toward developing this kind of societal movement in defense of science.

  4. Defining Computational Thinking for Mathematics and Science Classrooms

    ERIC Educational Resources Information Center

    Weintrop, David; Beheshti, Elham; Horn, Michael; Orton, Kai; Jona, Kemi; Trouille, Laura; Wilensky, Uri

    2016-01-01

    Science and mathematics are becoming computational endeavors. This fact is reflected in the recently released Next Generation Science Standards and the decision to include "computational thinking" as a core scientific practice. With this addition, and the increased presence of computation in mathematics and scientific contexts, a new…

  5. Using the First-Year English Class to Develop Scientific Thinking Skills

    NASA Astrophysics Data System (ADS)

    McNamara, B. J.; Burnham, C.; Green, S.; Ball, E.; Schryer, A.

    2002-12-01

    This poster presents the preliminary results from an experimental approach to teaching first-year writing using the scientific method as an organizing theme. The approach presumes a close connection between the classical scientific method: observing, hypothesis forming, hypothesis testing, and generalizing from the results of the testing, and the writing process: inventing and prewriting, drafting, and revising. The project has four goals: 1. To introduce students to the relations between scientific method, academic inquiry, and the writing process; 2. To help students see that academic inquiry, the work of generating, testing, and validating knowledge and then applying that knowledge in real contexts, is actually a hybrid form of the scientific method; 3. To encourage students to connect the work they are doing in the writing classroom with the work they are doing in other classes so they can transfer the skills learned in one context to the other; and 4. To cause students who have previously been alienated by science and science teaching to reconsider their attitudes, and to see the powerful influence of science and scientific thinking in our world. In short, we are teaching science literacy in a humanities classroom. The materials we use include science-based reading and the kinds of writing typically required in science classes. The poster presents the basic premises of the project, samples of class materials, and preliminary results of a controlled pre- and post-test of student attitudes toward science and writing, analyzed especially according to gender and minority status. We also present insights by participating instructors including a female graduate teaching assistant who had been trained as a scientist and a male who had not.

  6. The Effects of Educational Multimedia for Scientific Signs in the Holy Quran in Improving the Creative Thinking Skills for Deaf Children

    NASA Astrophysics Data System (ADS)

    Abusaleh, Sumaya; Abdelfattah, Eman; Alabadi, Zain; Sharieh, Ahmad

    This paper investigates the role of the scientific signs in the holy Quran in improving the creative thinking skills for the deaf children using multimedia. The paper investigates if the performance made by the experimental group's individuals is statistically significant compared with the performance made by the control group's individuals on Torrance Test for creative thinking (fluency, flexibility, originality and the total degree) in two cases:

  7. Meditate to Create: The Impact of Focused-Attention and Open-Monitoring Training on Convergent and Divergent Thinking

    PubMed Central

    Colzato, Lorenza S.; Ozturk, Ayca; Hommel, Bernhard

    2012-01-01

    The practice of meditation has seen a tremendous increase in the western world since the 60s. Scientific interest in meditation has also significantly grown in the past years; however, so far, it has neglected the idea that different type of meditations may drive specific cognitive-control states. In this study we investigate the possible impact of meditation based on focused-attention (FA) and meditation based on open-monitoring (OM) on creativity tasks tapping into convergent and divergent thinking. We show that FA meditation and OM meditation exert specific effect on creativity. First, OM meditation induces a control state that promotes divergent thinking, a style of thinking that allows many new ideas of being generated. Second, FA meditation does not sustain convergent thinking, the process of generating one possible solution to a particular problem. We suggest that the enhancement of positive mood induced by meditating has boosted the effect in the first case and counteracted in the second case. PMID:22529832

  8. Knowledge mobilized by a critical thinking process deployed by nursing students in practical care situations: a qualitative study.

    PubMed

    Lechasseur, Kathleen; Lazure, Ginette; Guilbert, Louise

    2011-09-01

    This paper is a report of a qualitative study of mobilization of knowledge within the critical thinking process deployed by female undergraduate nursing students in practical care situations. Holistic practice is based on variety of knowledge mobilized by a critical thinking process. Novices and, more specifically, students experience many difficulties in this regard. Therefore, a better understanding of the knowledge they mobilize in their practice is important for nurse educators. A qualitative study, guided by grounded theory, was carried out. Sixteen nursing students, registered in an undergraduate programme in an Eastern Canadian university, were recruited. Descriptions of practical care situations were obtained through explicitation interviews in 2007. A sociodemographic questionnaire, semi-structured interviews and field notes were also used. Data were analysed using an approach based on grounded theory. An additional stage of analysis involved data condensation. Various types of knowledge guide nursing students' practice. These include intrapersonal, interpersonal, perceptual, moral/ethical, experiential, practical, scientific and contextual knowledge. The mobilization of these types of knowledge is only possible when the process of critical thinking has attained a higher level, giving rise to a new knowledge that we have termed combinational constructive knowledge rather than aesthetic knowledge. Clarification of the types of knowledge guiding the practice of student nurses and of the role of critical thinking in their mobilization could lead to innovative educational strategies. The findings provide guidance for the revision and development of both academic and clinical training programmes. © 2011 Blackwell Publishing Ltd.

  9. The Cognitive Development of Secondary School Students in the Republic of Korea.

    ERIC Educational Resources Information Center

    Han, Jong-Ha

    This paper describes a study designed to investigate the development of scientific reasoning or logical thinking patterns of South Korean secodary school students. The scientific reasoning or logical thinking patterns were categorized into patterns of logic such as seriation, combinations, proportion, control of variables, probability, and…

  10. An Investigation on the Scientific Thinking Ability of Fourth Year University Students.

    ERIC Educational Resources Information Center

    Boo, Hong-Kwen; Toh, Kok-Aun

    1998-01-01

    Fourth-year university students (n=12) in a secondary-science-education degree program in Singapore were interviewed after demonstrations of five familiar chemical reactions. The majority of interviewees used perceptually-dominated rather than conceptually-dominated thinking and were unable to use scientific concepts consistently across the five…

  11. Opportunities to Learn Scientific Thinking in Joint Doctoral Supervision

    ERIC Educational Resources Information Center

    Kobayashi, Sofie; Grout, Brian W.; Rump, Camilla Østerberg

    2015-01-01

    Research into doctoral supervision has increased rapidly over the last decades, yet our understanding of how doctoral students learn scientific thinking from supervision is limited. Most studies are based on interviews with little work being reported that is based on observation of actual supervision. While joint supervision has become widely…

  12. Inductive & Deductive Science Thinking: A Model for Lesson Development

    ERIC Educational Resources Information Center

    Bilica, Kim; Flores, Margaret

    2009-01-01

    Middle school students make great learning gains when they participate in lessons that invite them to practice their developing scientific reasoning skills; however, designing developmentally appropriate, clear, and structured lessons about scientific thinking and reasoning can be difficult. This challenge can be met through lessons that teach…

  13. [The study of tomato fruit weight quantitative trait locus and its application in genetics teaching].

    PubMed

    Wang, Hai-yan

    2015-08-01

    The classical research cases, which have greatly promoted the development of genetics in history, can be combined with the content of courses in genetics teaching to train students' ability of scientific thinking and genetic analysis. The localization and clone of gene controlling tomato fruit weight is a pioneer work in quantitative trait locus (QTL) studies and represents a complete process of QTL research in plants. Application of this integrated case in genetics teaching, which showed a wonderful process of scientific discovery and the fascination of genetic research, has inspired students' interest in genetics and achieved a good teaching effect.

  14. Learning Biology through Research Papers: A Stimulus for Question-Asking by High-School Students

    PubMed Central

    Brill, Gilat; Yarden, Anat

    2003-01-01

    Question-asking is a basic skill, required for the development of scientific thinking. However, the way in which science lessons are conducted does not usually stimulate question-asking by students. To make students more familiar with the scientific inquiry process, we developed a curriculum in developmental biology based on research papers suitable for high-school students. Since a scientific paper poses a research question, demonstrates the events that led to the answer, and poses new questions, we attempted to examine the effect of studying through research papers on students' ability to pose questions. Students were asked before, during, and after instruction what they found interesting to know about embryonic development. In addition, we monitored students' questions, which were asked orally during the lessons. Questions were scored according to three categories: properties, comparisons, and causal relationships. We found that before learning through research papers, students tend to ask only questions of the properties category. In contrast, students tend to pose questions that reveal a higher level of thinking and uniqueness during or following instruction with research papers. This change was not observed during or following instruction with a textbook. We suggest that learning through research papers may be one way to provide a stimulus for question-asking by high-school students and results in higher thinking levels and uniqueness. PMID:14673492

  15. [Constructing images and territories: thinking on the visuality and materiality of remote sensing].

    PubMed

    Monteiro, Marko

    2015-01-01

    This article offers a reflection on the question of the image in science, thinking about how visual practices contribute towards the construction of knowledge and territories. The growing centrality of the visual in current scientific practices shows the need for reflection that goes beyond the image. The object of discussion will be the scientific images used in the monitoring and visualization of territory. The article looks into the relations between visuality and a number of other factors: the researchers that construct it; the infrastructure involved in the construction; and the institutions and policies that monitor the territory. It is argued that such image-relations do not just visualize but help to construct the territory based on specific forms. Exploring this process makes it possible to develop a more complex understanding of the forms through which sciences and technology help to construct realities.

  16. Learning and teaching science as inquiry: A case study of elementary school teachers' investigations of light

    NASA Astrophysics Data System (ADS)

    van Zee, Emily H.; Hammer, David; Bell, Mary; Roy, Patricia; Peter, Jennifer

    2005-11-01

    This case study documents an example of inquiry learning and teaching during a summer institute for elementary and middle school teachers. A small group constructed an explanatory model for an intriguing optical phenomenon that they were observing. Research questions included: What physics thinking did the learners express? What aspects of scientific inquiry were evident in what the learners said and did? What questions did the learners ask one another as they worked? How did these learners collaborate in constructing understanding? How did the instructor foster their learning? Data sources included video- and audio- tapes of instruction, copies of the participants' writings and drawings, field notes, interviews, and staff reflections. An interpretative narrative of what three group members said and did presents a detailed account of their learning process. Analyses of their utterances provide evidence of physics thinking, scientific inquiry, questioning, collaborative sense making, and insight into ways to foster inquiry learning.

  17. Task-Oriented Reading of Multiple Documents: Online Comprehension Processes and Offline Products

    ERIC Educational Resources Information Center

    Anmarkrud, Øistein; McCrudden, Matthew T.; Bråten, Ivar; Strømsø, Helge I.

    2013-01-01

    We explored readers' judgments of text relevance and strategy use while they read about a controversial scientific issue in multiple conflicting documents using a think-aloud methodology and had them write a short essay after reading. Participants were university-level students. There were three main findings. First, readers discriminated…

  18. Vague-to-Crisp Dynamics of Percept Formation Modeled as Operant (Selectionist) Process

    DTIC Science & Technology

    2013-04-04

    simplifying heuristics versus careful thinking: scientific analysis of millennial spiritual issues. Zygon J Sci Religion 43(4):797 821 Li Y , Nara S (2008...and the pleasures of learning: wanting and liking new information. Cogn Emot 19(6):793 814 Neiman T, Loewenstein Y (2013) Covariance based synaptic

  19. Teaching the Use of Metaphor in Science Writing.

    ERIC Educational Resources Information Center

    Anderson, Philip M.; Sunstein, Bonnie S.

    A freshman writing assignment sequence encouraged students to use metaphors to think their way through scientific topics, improving their writing skills in the process. The students were all women, aged 18 to 48 years, who had been journal writing for several months but who did not consider themselves competent readers or writers. Reading material…

  20. Inquiry-Based Laboratory Practices in a Science Teacher Training Program

    ERIC Educational Resources Information Center

    Yakar, Zeha; Baykara, Hatice

    2014-01-01

    In this study, the effects of inquiry-based learning practices on the scientific process skills, creative thinking, and attitudes towards science experiments of preservice science teachers have been analyzed. A non-experimental quantitative analysis method, the single-group pre test posttest design, has been used. In order to observe the…

  1. A Virtual Tour of Plate Tectonics: Using Google Earth for Inquiry Investigations

    ERIC Educational Resources Information Center

    Mulvey, Bridget; Bell, Randy

    2012-01-01

    Google Earth is an exciting way to engage students in scientific inquiry--the foundation of science education standards and reforms. The National Science Education Standards identify inquiry as an active process that incorporates questioning, gathering and analyzing data, and thinking critically about the interplay of evidence and explanations.…

  2. Easy Ways to Promote Inquiry in a Laboratory Course: The Power of Student Questions

    ERIC Educational Resources Information Center

    Polacek, Kelly Myer; Keeling, Elena Levine

    2005-01-01

    To teach students to think like scientists, the authors modified their laboratory course to include regular opportunities for student practice of inquiry and the scientific process. Their techniques are simple; they can be implemented without rewriting lab manuals, require little additional grading beyond typical lab reports, and are applicable…

  3. Intelligence and Scientific-Creative Thinking: Their Convergence in the Explanation of Students' Academic Performance

    ERIC Educational Resources Information Center

    Ruiz, Maria Jose; Bermejo, Rosario; Ferrando, Mercedes; Prieto, Maria Dolores; Sainz, Marta

    2014-01-01

    Introduction: Academic performance is usually generally explained by student's intelligence, although other factors such as personality and motivation also account for it. Factors associated with a more complex thought process in adolescence are also beginning to gain importance in the prediction of academic performance. Among these forms of…

  4. Social science as a tool in developing scientific thinking skills in underserved, low-achieving urban students.

    PubMed

    Jewett, Elizabeth; Kuhn, Deanna

    2016-03-01

    Engagement in purposeful problem solving involving social science content was sufficient to develop a key set of inquiry skills in low-performing middle school students from an academically and economically disadvantaged urban public school population, with this skill transferring to a more traditional written scientific thinking assessment instrument 3weeks later. Students only observing their peers' activity or not participating at all failed to show these gains. Implications are addressed with regard to the mastery of scientific thinking skills among academically disadvantaged students. Also addressed are the efficacy of problem-based learning and the limits of observational learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Explicitly Teaching Critical Thinking Skills in a History Course

    ERIC Educational Resources Information Center

    McLaughlin, Anne Collins; McGill, Alicia Ebbitt

    2017-01-01

    Critical thinking skills are often assessed via student beliefs in non-scientific ways of thinking, (e.g, pseudoscience). Courses aimed at reducing such beliefs have been studied in the STEM fields with the most successful focusing on skeptical thinking. However, critical thinking is not unique to the sciences; it is crucial in the humanities and…

  6. Cell migration analysis: A low-cost laboratory experiment for cell and developmental biology courses using keratocytes from fish scales.

    PubMed

    Prieto, Daniel; Aparicio, Gonzalo; Sotelo-Silveira, Jose R

    2017-11-01

    Cell and developmental processes are complex, and profoundly dependent on spatial relationships that change over time. Innovative educational or teaching strategies are always needed to foster deep comprehension of these processes and their dynamic features. However, laboratory exercises in cell and developmental biology at the undergraduate level do not often take into account the time dimension. In this article, we provide a laboratory exercise focused in cell migration, aiming to stimulate thinking in time and space dimensions through a simplification of more complex processes occurring in cell or developmental biology. The use of open-source tools for the analysis, as well as the whole package of raw results (available at http://github.com/danielprieto/keratocyte) make it suitable for its implementation in courses with very diverse budgets. Aiming to facilitate the student's transition from science-students to science-practitioners we propose an exercise of scientific thinking, and an evaluation method. This in turn is communicated here to facilitate the finding of common caveats and weaknesses in the process of producing simple scientific communications describing the results achieved. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):475-482, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  7. Scientific Inquiry Based Professional Development Models in Teacher Education

    ERIC Educational Resources Information Center

    Corlu, Mehmet Ali; Corlu, M. Sencer

    2012-01-01

    Scientific inquiry helps students develop critical thinking abilities and enables students to think and construct knowledge like a scientist. The study describes a method course implementation at a major public teachers college in Turkey. The main goal of the course was to improve research and teaching abilities of prospective physics teachers…

  8. Probing Student Understanding of Scientific Thinking in the Context of Introductory Astrophysics

    ERIC Educational Resources Information Center

    Steinberg, Richard N.; Cormier, Sebastien; Fernandez, Adiel

    2009-01-01

    Common forms of testing of student understanding of science content can be misleading about their understanding of the nature of scientific thinking. Observational astronomy integrated with related ideas of force and motion is a rich context to explore the correlation between student content knowledge and student understanding of the scientific…

  9. Scientific Skills as Core Competences in Medical Education: What Do Medical Students Think?

    ERIC Educational Resources Information Center

    Ribeiro, Laura; Severo, Milton; Pereira, Margarida; Ferreira, Maria Amélia

    2015-01-01

    Background: Scientific excellence is one of the most fundamental underpinnings of medical education and its relevance is unquestionable. To be involved in research activities enhances students' critical thinking and problem-solving capacities, which are mandatory competences for new achievements in patient care and consequently to the improvement…

  10. Thinking about Evolution: Combinatorial Play as a Strategy for Exercising Scientific Creativity

    ERIC Educational Resources Information Center

    Wingate, Richard J. T.

    2011-01-01

    An enduring focus in education on how scientists formulate experiments and "do science" in the laboratory has excluded a vital element of scientific practice: the creative and imaginative thinking that generates models and testable hypotheses. In this case study, final-year biomedical sciences university students were invited to create and justify…

  11. Rocks, Landforms, and Landscapes vs. Words, Sentences, and Paragraphs: An Interdisciplinary Team Approach to Teaching the Tie Between Scientific Literacy and Inquiry-based Writing in a Community College's Geoscience Program and a University's' Geoscience Program

    NASA Astrophysics Data System (ADS)

    Thweatt, A. M.; Giardino, J. R.; Schroeder, C.

    2014-12-01

    Scientific literacy and inquiry-based writing go together like a hand and glove. Science literacy, defined by NRC in The NSF Standards, stresses the relationship between knowledge of science and skill in literacy so "a person can ask, find, or determine answers to questions derived from curiosity about everyday experiences. It means that a person has the ability to describe, explain, and predict natural phenomena. Scientific literacy entails being able to read with understanding articles about science in the popular press and to engage in social conversation about the validity of the conclusions. Scientific literacy implies that a person can identify scientific issues underlying national and local decisions and express positions that are scientifically and technologically informed." A growing body of research and practice in science instruction suggests language is essential in the practice of the geosciences. Writing and critical thinking are iterative processes. We use this approach to educate our geoscience students to learn, write, and think critically. One does not become an accomplished writer via one course. Proficiency is gained through continued exposure, guidance and tailored assignments. Inquiry-based geoscience makes students proficient in the tools of the geosciences and to develop explanations to questions about Earth events. We have scaffolded our courses from introductory geology, English composition, writing in the geosciences, introduction to field methods and report writing to do more critical thinking, research data gatherings, and in-depth analysis and synthesis. These learning experiences that encourage students to compare their reasoning models, communicate verbally, written and graphically. The English composition course sets the stage for creative assignments through formulation of original research questions, collection of primary data, analysis, and construction of written research papers. Proper use of language allows students to clarify their ideas, make claims, present arguments, and record and present findings. Students have acquired the skills to be considered scientifically literate and capable of learning. A poster demonstrating the tie between Scientific Literacy and Inquiry-Based Writing has been produced and distributed widely around campus.

  12. Hauntings, homeopathy, and the Hopkinsville Goblins: using pseudoscience to teach scientific thinking

    PubMed Central

    Schmaltz, Rodney; Lilienfeld, Scott O.

    2014-01-01

    With access to information ever increasing, it is essential that students acquire the skills to distinguish fact from fiction. By incorporating examples of pseudoscience into lectures, instructors can provide students with the tools needed to understand the difference between scientific and pseudoscientific or paranormal claims. We discuss examples involving psychics, ghosts, aliens, and other phenomena in relation to scientific thinking. In light of research literature demonstrating that presenting and dispelling scientific misconceptions in the classroom is an effective means of countering non-scientific or pseudoscientific beliefs, we provide examples of pseudoscience that can be used to help students acquire healthy skepticism while avoiding cynicism. PMID:24860520

  13. Hauntings, homeopathy, and the Hopkinsville Goblins: using pseudoscience to teach scientific thinking.

    PubMed

    Schmaltz, Rodney; Lilienfeld, Scott O

    2014-01-01

    With access to information ever increasing, it is essential that students acquire the skills to distinguish fact from fiction. By incorporating examples of pseudoscience into lectures, instructors can provide students with the tools needed to understand the difference between scientific and pseudoscientific or paranormal claims. We discuss examples involving psychics, ghosts, aliens, and other phenomena in relation to scientific thinking. In light of research literature demonstrating that presenting and dispelling scientific misconceptions in the classroom is an effective means of countering non-scientific or pseudoscientific beliefs, we provide examples of pseudoscience that can be used to help students acquire healthy skepticism while avoiding cynicism.

  14. Mental models as indicators of scientific thinking

    NASA Astrophysics Data System (ADS)

    Derosa, Donald Anthony

    One goal of science education reform is student attainment of scientific literacy. Therefore, it is imperative for science educators to identify its salient elements. A dimension of scientific literacy that warrants careful consideration is scientific thinking and effective ways to foster scientific thinking among students. This study examined the use of mental models as evidence of scientific thinking in the context of two instructional approaches, transmissional and constructivist. Types of mental models, frequency of explanative information, and scores on problem solving transfer questions were measured and compared among subjects in each instructional context. Methods. Subjects consisted of sophomore biology students enrolled in general biology courses at three public high schools. The Group Assessment of Logical Thinking instrument was used to identify two equivalent groups with an N of 65. Each group was taught the molecular basis of sickle cell anemia and the principles of hemoglobin gel electrophoresis using one of the two instructional approaches at their schools during five instructional periods over the course of one week. Laboratory equipment and materials were provided by Boston University School of Medicine's MobileLab program. Following the instructional periods, each subject was asked to think aloud while responding to four problem solving transfer questions. Each response was audiotaped and videotaped. The interviews were transcribed and coded to identify types of mental models and explanative information. Subjects' answers to the problem solving transfer questions were scored using a rubric. Results. Students taught in a constructivist context tended to use more complete mental models than students taught in a transmissional context. Fifty-two percent of constructivist subjects and forty-four percent of transmissional subjects demonstrated evidence of relevant mental models. Overall fifty-two percent of the subjects expressed naive mental models with respect to content. There was no significant difference in the frequency of explanative information expressed by either group. Both groups scored poorly on the problem solving transfer problems. The average score for the constructivist group was 30% and the average score for the transmissional group was 34%. A significant correlation was found between the frequency of explanative information and scores on the problem-solving transfer questions, r = 0.766. Conclusion. The subjects exhibited difficulty in formulating and applying mental models to effectively answer problem solving transfer questions regardless of the context in which the subjects were taught. The results call into question the extent to which students have been taught to use mental models and more generally, the extent to which their prior academic experience has encouraged them to develop an awareness of scientific thinking skills. Implications of the study suggest further consideration of mental modeling in science education reform and the deliberate integration of an awareness of scientific thinking skills in the development of science curricula.

  15. Activating Children's Thinking Skills (ACTS): The Effects of an Infusion Approach to Teaching Thinking in Primary Schools

    ERIC Educational Resources Information Center

    Dewey, Jessica; Bento, Janet

    2009-01-01

    Background: Recent interest in the teaching of thinking skills within education has led to an increase in thinking skills packages available to schools. However many of these are not based on scientific evaluation (DfEE, 1999). This paper endeavours to examine the effectiveness of one approach, that of infusion, to teaching thinking. Aims: To…

  16. [Problems of world outlook and methodology of science integration in biological studies].

    PubMed

    Khododova, Iu D

    1981-01-01

    Problems of worldoutlook and methodology of the natural-science knowledge are considered basing on the analysis of tendencies in the development of the membrane theory of cell processes and the use of principles of biological membrane functioning when solving some scientific and applied problems pertaining to different branches of chemistry and biology. The notion scientific knowledge integration is defined as interpenetration of approaches, methods and ideas of different branches of knowledge and enrichment on this basis of their content resulting in knowledge augmentation in each field taken separately. These processes are accompanied by appearance of new branches of knowledge - sciences "on junction" and their subsequent differentiations. The analysis of some gnoseological situations shows that integration of sciences contributes to coordination and some agreement of thinking styles of different specialists, puts forward keen personality of a scientist demanding, in particular, his high professional mobility. Problems of scientific activity organization are considered, which involve social sciences into the integration processes. The role of philosophy in the integration processes is emphasized.

  17. Meta-Sticks: Having Children Consider the Source of Knowledge Promotes Scientific Thinking

    ERIC Educational Resources Information Center

    Kuhn, Mason

    2016-01-01

    Many elementary science teachers understand that the best way to enhance reasoning and thinking skills in their students is to have them engage in scientific negotiation. They know that teaching is not the simple transmission of information but a complex act that requires teachers to apply knowledge from multiple sources, including student…

  18. How Scientists Use Critical-Thinking Skills: Isolating Both Total RNA and Protein Using the Same Small Organ

    ERIC Educational Resources Information Center

    Porta, Angela R.; Dhawan, Puneet

    2006-01-01

    Undergraduate biology programs are currently undergoing reform to involve students in biomedical research. Engaging students in more active, hands-on experiments allows students to discover scientific principles for themselves, and to develop techniques of critical thinking and problem solving. This models the world of real scientific research,…

  19. A Flipped Classroom Exercise to Teach Undergraduates to Critically Think Using Primary Scientific Literature

    ERIC Educational Resources Information Center

    Zimeri, Anne Marie

    2016-01-01

    Critically thinking about scientific data to form opinions on controversial issues in environmental health is crucial in undergraduate education in the field. An assignment paired with a "flipped" classroom activity was designed to impart knowledge on how to search the primary literature and extract data that can help formulate a point…

  20. Fostering Scientific Thinking by Prospective Teachers in a Course That Integrates Physics and Literacy Learning

    ERIC Educational Resources Information Center

    van Zee, Emily H.; Jansen, Henri; Winograd, Kenneth; Crowl, Michele; Devitt, Adam

    2013-01-01

    We designed a physics course for prospective elementary and middle school teachers to foster aspects of scientific thinking recommended in reform documents. Because the elementary school curriculum focuses heavily on literacy, we also explicitly integrated physics and literacy learning in this course. By integrating physics and literacy learning,…

  1. Training Scientific Thinking Skills: Evidence from an MCAT[superscript 2015]-Aligned Classroom Module

    ERIC Educational Resources Information Center

    Stevens, Courtney; Witkow, Melissa R.

    2014-01-01

    The present study reports on the development and evaluation of a classroom module to train scientific thinking skills. The module was implemented in two of four parallel sections of introductory psychology. To assess learning, a passage-based question set from the medical college admissions test (MCAT[superscript 2015]) preview guide was included…

  2. Science in mid-Victorian Punch.

    PubMed

    Noakes, Richard

    2002-09-01

    This article examines the scientific content of the most famous comic journal of the Victorian period: Punch. Concentrating on the first three decades of the periodical (1841-1871), I show that Punch usually engaged with science that was highly topical, of consequence to the lives of its bourgeois readers, and suitable for comic interpretation. But Punch's satire of scientific topics was highly complex. It often contained allusions to non-scientific topics, and its engagement with science ranged from the utterly comic to the sharply critical. Punch prompted readers to think as well as laugh about science, and probably shaped their scientific education more than we think.

  3. The Scientific Method - Critical and Creative Thinking

    NASA Astrophysics Data System (ADS)

    Cotton, John; Scarlise, Randall

    2011-10-01

    The ``scientific method'' is not just for scientists! Combined with critical thinking, the scientific method can enable students to distinguish credible sources of information from nonsense and become intelligent consumers of information. Professors John Cotton and Randall Scalise illustrate these principles using a series of examples and demonstrations that is enlightening, educational, and entertaining. This lecture/demonstration features highlights from their course (whose unofficial title is ``debunking pseudoscience'' ) which enables students to detect pseudoscience in its many guises: paranormal phenomena, free-energy devices, alternative medicine, and many others.

  4. Assessments in the Arguments

    ERIC Educational Resources Information Center

    Schleigh, Sharon

    2014-01-01

    While most of us probably don't think of teachers as scientists, the truth of the matter is that teachers actually follow many of the scientific processes that scientists use to help them be effective. Teachers have to find ways to measure student learning and to use that measurement to inform their teaching practices. They need to know what…

  5. The Ethics of Big Data and Nursing Science.

    PubMed

    Milton, Constance L

    2017-10-01

    Big data is a scientific, social, and technological trend referring to the process and size of datasets available for analysis. Ethical implications arise as healthcare disciplines, including nursing, struggle over questions of informed consent, privacy, ownership of data, and its possible use in epistemology. The author offers straight-thinking possibilities for the use of big data in nursing science.

  6. Inquiry in the Large-Enrollment Science Classroom: Simulating a Research Investigation

    ERIC Educational Resources Information Center

    Reeve, Suzanne; Hammond, Jennetta W.; Bradshaw, William S.

    2004-01-01

    We conduct research workshops twice each semester in our cell biology lecture course. Instead of solely analyzing data obtained by others, students form groups to design research questions and experimental protocols on a given topic. The main focus is the process of scientific thinking, not simply obtaining a correct product. (Contains 3 tables…

  7. A Circular Model of Thinking Processes as a Basis of Technical Understanding

    ERIC Educational Resources Information Center

    Menger, Julia

    2010-01-01

    Children often experience the influence of technology around them, but there is little emphasis placed on technology within a scientific education in Grundschule (primary schools) in Germany. One of the reasons for this could be a lack of research projects that ascertain young learners' conceptions of technical issues. So there is no basis for…

  8. The Effect of Hyperventilation on the Ability To Hold One's Breath: Testing the Influence of Beliefs versus Physiology.

    ERIC Educational Resources Information Center

    Given, Mac F.

    1997-01-01

    Reports on a simple classroom exercise that investigates whether students' beliefs of what they think should happen influences their measurements. The exercise also provides a framework for discussing the challenges that human belief systems bring to the discipline of using the scientific process. Results suggest that students' preconceived…

  9. Challenging traditional assumptions of high school science through the physics and Everyday Thinking Curriculum(TM)

    NASA Astrophysics Data System (ADS)

    Ross, Michael J.

    Science education in the U.S. has failed for over a century to bring the experience of scientific induction to classrooms, from elementary science to undergraduate courses. The achievement of American students on international comparisons of science proficiency is unacceptable, and the disparities between groups underrepresented in STEM and others are large and resistant to reform efforts. This study investigated the enactment of a physics curriculum designed upon the inductive method in a high school serving mostly students from groups underrepresented in science. The Physics and Everyday Thinking curriculum was designed to model the central practices of science and to provide opportunities for students to both extract general principles of physics and to develop scientific models from laboratory evidence. The findings of this study suggest that scientific induction is not only a process that is well within the capacity of high school students, but they enjoy it as well. Students that engaged in the central practices of science through the inductive method reported a new sense of agency and control in their learning. These findings suggest that modeling the pedagogy of the science classroom upon the epistemology of science can result in a mode of learning that can lead to positive identification with physics and the development of scientific literacy.

  10. Building Science Identity in Disadvantaged Teenage Girls using an Apprenticeship Model

    NASA Astrophysics Data System (ADS)

    Pettit, E. C.; Conner, L.; Tzou, C.

    2015-12-01

    Expeditionary science differs from laboratory science in that expeditionary science teams conduct investigations in conditions that are often physically and socially, as well as intellectually, challenging. Team members live in close quarters for extended periods of time, team building and leadership affect the scientific process, and research tools are limited to what is available on site. Girls on Ice is an expeditionary science experience primarily for disadvantaged girls; it fully immerses girls in a mini scientific expedition to study alpine, glacierized environments. In addition to mentoring the girls through conducting their own scientific research, we encourage awareness and discussion of different sociocultural perspectives on the relation between the natural world, science, and society. The experience aligns closely with the apprenticeship model of learning, which can be effective in enhancing identification with science. Using a mixed-methods approach, we show that the Girls on Ice model helps girls (1) increase their interest and engagement in science and build a stronger science identity, (2) develop confidence, importantly they develop a combined physical and intellectual confidence; (3) engage in authentic scientific thinking, including critical thinking and problem solving; and (4) enhance leadership self-confidence. We discuss these results in a learning sciences framework, which posits that learning is inseparable from the social and physical contexts in which it takes place.

  11. Incorporating Primary Scientific Literature in Middle and High School Education.

    PubMed

    Fankhauser, Sarah C; Lijek, Rebeccah S

    2016-03-01

    Primary literature is the most reliable and direct source of scientific information, but most middle school and high school science is taught using secondary and tertiary sources. One reason for this is that primary science articles can be difficult to access and interpret for young students and for their teachers, who may lack exposure to this type of writing. The Journal of Emerging Investigators (JEI) was created to fill this gap and provide primary research articles that can be accessed and read by students and their teachers. JEI is a non-profit, online, open-access, peer-reviewed science journal dedicated to mentoring and publishing the scientific research of middle and high school students. JEI articles provide reliable scientific information that is written by students and therefore at a level that their peers can understand. For student-authors who publish in JEI, the review process and the interaction with scientists provide invaluable insight into the scientific process. Moreover, the resulting repository of free, student-written articles allows teachers to incorporate age-appropriate primary literature into the middle and high school science classroom. JEI articles can be used for teaching specific scientific content or for teaching the process of the scientific method itself. The critical thinking skills that students learn by engaging with the primary literature will be invaluable for the development of a scientifically-literate public.

  12. Incorporating Primary Scientific Literature in Middle and High School Education†

    PubMed Central

    Fankhauser, Sarah C.; Lijek, Rebeccah S.

    2016-01-01

    Primary literature is the most reliable and direct source of scientific information, but most middle school and high school science is taught using secondary and tertiary sources. One reason for this is that primary science articles can be difficult to access and interpret for young students and for their teachers, who may lack exposure to this type of writing. The Journal of Emerging Investigators (JEI) was created to fill this gap and provide primary research articles that can be accessed and read by students and their teachers. JEI is a non-profit, online, open-access, peer-reviewed science journal dedicated to mentoring and publishing the scientific research of middle and high school students. JEI articles provide reliable scientific information that is written by students and therefore at a level that their peers can understand. For student-authors who publish in JEI, the review process and the interaction with scientists provide invaluable insight into the scientific process. Moreover, the resulting repository of free, student-written articles allows teachers to incorporate age-appropriate primary literature into the middle and high school science classroom. JEI articles can be used for teaching specific scientific content or for teaching the process of the scientific method itself. The critical thinking skills that students learn by engaging with the primary literature will be invaluable for the development of a scientifically-literate public. PMID:27047607

  13. The Impact of Instructor Intention for Student Learning and Implementaton of Undergraduate Science Education Reform on Student Perception of the Learning Environment

    ERIC Educational Resources Information Center

    Steele, Erika M.

    2013-01-01

    The rapid advances in technology and scientific knowledge in modern society increases the need for a workforce with an understanding of technology and critical thinking skills College graduates are entering the working world without the critical thinking skills and ability to apply the scientific knowledge gained during their undergraduate…

  14. Promoting middle school students’ mathematical creative thinking ability using scientific approach

    NASA Astrophysics Data System (ADS)

    Istiqomah, A.; Perbowo, K. S.; Purwanto, S. E.

    2018-01-01

    This research aims to identify the strength of scientific approach in order to develop mathematical creative thinking in junior high school. Descriptive qualitative method is used in this research. 34 students in 7th grade are chosen using purposive sampling. For collecting data, this research uses test, observation, and interview. The test consists of 6 items which have been tested for their validity and reliability and used in pre-test and post-test. The pre-test shows that students average score in mathematical creative thinking is 43 (low), while in post-test it is 69 (middle). The N-gain in mathematical creative thinking point is 0.461, which is classified in the middle grade. Furthermore, the N-gain for each indicator, they score 0.438 for fluency; 0.568 for flexibility; and 0.382 for novelty. The N-gain for those indicators falls under middle grade. The research shows that scientific approach develops more flexibility, and, on the other hand, it develops less novelty.

  15. Clinical review: Thinking outside the box - an iconoclastic view of current practice

    PubMed Central

    2011-01-01

    Many advances in medicine have been achieved through challenging established dogma with revolutionary thought and novel practices. Each and every specialty is reinvigorated by regular re-evaluation of processes and practices in the light of new evidence and fresh conceptualization. Challenge can galvanize fresh thinking and new approaches, yet may also reinforce and strengthen traditional paradigms if the prevailing orthodoxy is subsequently revalidated. This article is a synopsis of a roundtable meeting held in Brussels in March 2010 designed specifically to confront doctrine with reasoned scientific argument, and to propose new ideas for advancing critical care practices and outcomes. PMID:21888690

  16. Beliefs of Chilean University English Teachers: Uncovering Their Role in the Teaching and Learning Process (Creencias de profesores universitarios de inglés: descubriendo su papel en el proceso de enseñanza y aprendizaje)

    ERIC Educational Resources Information Center

    Díaz Larenas, Claudio; Alarcón Hernández, Paola; Vásquez Neira, Andrea; Pradel Suárez, Boris; Ortiz Navarrete, Mabel

    2013-01-01

    Beliefs continue to be an important source to get to know teachers' thinking processes and pedagogical decisions. Research in teachers' beliefs has traditionally come from English-speaking contexts; however, a great deal of scientific work has been written lately in Brazil, Mexico, Colombia, and Argentina. This study elicits 30 Chilean university…

  17. Critical thinking in nursing: Scoping review of the literature.

    PubMed

    Zuriguel Pérez, Esperanza; Lluch Canut, Maria Teresa; Falcó Pegueroles, Anna; Puig Llobet, Montserrat; Moreno Arroyo, Carmen; Roldán Merino, Juan

    2015-12-01

    This article seeks to analyse the current state of scientific knowledge concerning critical thinking in nursing. The methodology used consisted of a scoping review of the main scientific databases using an applied search strategy. A total of 1518 studies published from January 1999 to June 2013 were identified, of which 90 met the inclusion criteria. The main conclusion drawn is that critical thinking in nursing is experiencing a growing interest in the study of both its concepts and its dimensions, as well as in the development of training strategies to further its development among both students and professionals. Furthermore, the analysis reveals that critical thinking has been investigated principally in the university setting, independent of conceptual models, with a variety of instruments used for its measurement. We recommend (i) the investigation of critical thinking among working professionals, (ii) the designing of evaluative instruments linked to conceptual models and (iii) the identification of strategies to promote critical thinking in the context of providing nursing care. © 2014 Wiley Publishing Asia Pty Ltd.

  18. Learning our L.I.M.I.T.S.: less is more in teaching science.

    PubMed

    Hoskins, Sally G; Stevens, Leslie M

    2009-03-01

    The rapid and accelerating pace of change in physiology and cell biology, along with the easy access to huge amounts of content, have altered the playing field for science students, yet most students are still mainly taught from textbooks. Of necessity, textbooks are usually broad in scope, cover topics much more superficially than do journal articles, and present the scientific process as a linear string of successful experiments, largely ignoring the reality of rejected hypotheses, unanticipated discoveries, or surprising findings that may shift paradigms. We suggest that a more narrow focus on scientific thinking, using a new method for reading a series of journal articles that track the evolution of a single project over a period of years, can more realistically convey the excitement and challenges of research science and perhaps stimulate some students to consider research careers for themselves. Our approach, termed "CREATE" (for Consider, Read, Elucidate hypotheses, Analyze data, and Think of the next Experiment), has proven successful at both demystifying the scientific literature and humanizing science/scientists in undergraduate biology courses (8), and we suggest that it could be profitably expanded to physiology courses.

  19. Rearing Media as a Variable in Fruit Fly Fecundity: An Activity to Introduce Scientific Methods of Inquiry to Biology Students

    ERIC Educational Resources Information Center

    Wollard, Laura; Klein, Benjamin; Carlson, Darby J.; Carlson, Kimberly A.

    2006-01-01

    A major challenge in teaching the process of science to students is designing and implementing laboratory activities that emulate what is actually done in a research laboratory. To facilitate this effort, science educators have been encouraged to design exercises that span multiple laboratory periods, encourage independent thinking, promote…

  20. The gross anatomy laboratory: a novel venue for critical thinking and interdisciplinary teaching in dental education.

    PubMed

    Rowland, Kevin C; Joy, Anita

    2015-03-01

    Reports on the status of dental education have concluded that there is a need for various types of curricular reform, making recommendations that include better integration of basic, behavioral, and clinical sciences, increased case-based teaching, emphasis on student-driven learning, and creation of lifelong learners. Dental schools faced with decreasing contact hours, increasing teaching material, and technological advancements have experimented with alternate curricular strategies. At Southern Illinois University School of Dental Medicine, curricular changes have begun with a series of integrated biomedical sciences courses. During the process of planning and implementing the integrated courses, a novel venue-the gross anatomy laboratory-was used to introduce all Year 1 students to critical thinking, self-directed learning, and the scientific method. The venture included student-driven documentation of anatomical variations encountered in the laboratory using robust scientific methods, thorough literature review, and subsequent presentation of findings in peer review settings. Students responded positively, with over 75% agreeing the experience intellectually challenged them. This article describes the process of re-envisioning the gross anatomy laboratory as an effective venue for small group-based, student-driven projects that focus on key pedagogical concepts to encourage the development of lifelong learners.

  1. Toward critical spatial thinking in the social sciences and humanities.

    PubMed

    Goodchild, Michael F; Janelle, Donald G

    2010-02-01

    The integration of geographically referenced information into the conceptual frameworks and applied uses of the social sciences and humanities has been an ongoing process over the past few centuries. It has gained momentum in recent decades with advances in technologies for computation and visualization and with the arrival of new data sources. This article begins with an overview of this transition, and argues that the spatial integration of information resources and the cross-disciplinary sharing of analysis and representation methodologies are important forces for the integration of scientific and artistic expression, and that they draw on core concepts in spatial (and spatio-temporal) thinking. We do not suggest that this is akin to prior concepts of unified knowledge systems, but we do maintain that the boundaries to knowledge transfer are disintegrating and that our abilities in problem solving for purposes of artistic expression and scientific development are enhanced through spatial perspectives. Moreover, approaches to education at all levels must recognize the need to impart proficiency in the critical and efficient application of these fundamental spatial concepts, if students and researchers are to make use of expanding access to a broadening range of spatialized information and data processing technologies.

  2. Computational thinking and thinking about computing

    PubMed Central

    Wing, Jeannette M.

    2008-01-01

    Computational thinking will influence everyone in every field of endeavour. This vision poses a new educational challenge for our society, especially for our children. In thinking about computing, we need to be attuned to the three drivers of our field: science, technology and society. Accelerating technological advances and monumental societal demands force us to revisit the most basic scientific questions of computing. PMID:18672462

  3. An analysis of 12th-grade students' reasoning styles and competencies when presented with an environmental problem in a social and scientific context

    NASA Astrophysics Data System (ADS)

    Yang, Fang-Ying

    This study examined reasoning and problem solving by 182 12th grade students in Taiwan when considering a socio-scientific issue regarding the use of nuclear energy. Students' information preferences, background characteristics, and eleven everyday scientific thinking skills were scrutinized. It was found most participants displayed a willingness to take into account both scientific and social information in reasoning the merits of a proposed construction of a nuclear power plant. Students' reasoning scores obtained from the "information reasoning style" test ranged from -0.5 to 1.917. And, the distribution was approximately normal with mean and median at around 0.5. For the purpose of categorization, students whose scores were within one standard deviation from the mean were characterized as having a "equally disposed" reasoning style. One hundred and twenty-five subjects, about 69%, belonged to this category. Students with scores locating at the two tails of the distribution were assigned to either the "scientifically oriented" or the "socially oriented" reasoning category. Among 23 background characteristics investigated using questionnaire data and ANOVA statistical analysis, only students' science performance and knowledge about nuclear energy were statistically significantly related to their information reasoning styles (p < 0.05). The assessed background characteristics addressed dimensions such as gender, academic performances, class difference, future education, career expectation, commitment to study, assessment to educational enrichment, family conditions, epistemological views about science, religion, and the political party preference. For everyday scientific thinking skills, interview data showed that both "scientifically oriented" students and those who were categorized as "equally disposed to using scientific and social scientific sources of data" displayed higher frequencies than "socially oriented" ones in using these skills, except in the use of the "multidisciplinary thinking" skill. Among the 11 skills assessed, the "scientifically oriented" students outperformed the "equally disposed" ones only in the use of 3 thinking skills; namely, searching for or recalling scientific concepts/evidence, recognizing and evaluating alternatives, and making conclusions based on the scientific intuition.

  4. Examining the Affordances of Dual Cognitive Processing to Explain the Development of High School Students' Nature of Science Views

    NASA Astrophysics Data System (ADS)

    Jackson, Luke M.

    This mixed method study was aimed at examining the influence of dual processing (Type 1 and Type 2 thinking) on the development of high school students' nature of science (NOS) views. Type 1 thinking is intuitive, experiential, and heuristic. Type 2 thinking is rational, analytical, and explicit. Three research questions were asked: (1) Do the experiential process (Type 1) and the logical process (Type 2) influence the development of students' NOS views? (2) If there is an influence on students' NOS views, then what is the nature of relationship between the experiential process (Type 1) and the development of NOS views? (3) What is the nature of relationship between the logical process (Type 2) and the development of NOS views? The Views of Nature of Science Questionnaire C (VNOS-C; Lederman, Abd-El-Khalick, Bell, & Schwartz, 2002) was administered to 29 high school students at the beginning and at the end of an explicit-reflective NOS intervention offered in an Advanced Placement environmental science course. Changes in students' NOS views were calculated through a chi-square test and examining the percentage of students holding NOS views at various levels of sophistication. With the chi-square goodness of fit test performed, the relationship between pre and post NOS scores was not significant, X2(3, 29) = 4.78, p <.05. The informed and preinformed NOS views increased (14%, 17%) in frequency while the mixed and uninformed NOS views decreased (i.e. improved 26%, 24%) in frequency from pre to posttest. The reading discussions were coded based on the EBR framework (Furtak et al., 2010) to analyze the use of dual processing. Type1 and Type 2 thinking were both used during the intervention and reading reflections. Type 2 thinking was more prominent when analyzing a problem, formulating a hypothesis, or stating logical claims. The association of NOS education and Type 1 and Type 2 thinking in scientific literacy was examined, and implications and future research are discussed.

  5. Shared scientific thinking in everyday parent-child activity

    NASA Astrophysics Data System (ADS)

    Crowley, Kevin; Callanan, Maureen A.; Jipson, Jennifer L.; Galco, Jodi; Topping, Karen; Shrager, Jeff

    2001-11-01

    Current accounts of the development of scientific reasoning focus on individual children's ability to coordinate the collection and evaluation of evidence with the creation of theories to explain the evidence. This observational study of parent-child interactions in a children's museum demonstrated that parents shape and support children's scientific thinking in everyday, nonobligatory activity. When children engaged an exhibit with parents, their exploration of evidence was observed to be longer, broader, and more focused on relevant comparisons than children who engaged the exhibit without their parents. Parents were observed to talk to children about how to select and encode appropriate evidence and how to make direct comparisons between the most informative kinds of evidence. Parents also sometimes assumed the role of explainer by casting children's experience in causal terms, connecting the experience to prior knowledge, or introducing abstract principles. We discuss these findings with respect to two dimensions of children's scientific thinking: developments in evidence collection and developments in theory construction.

  6. Defining Computational Thinking for Mathematics and Science Classrooms

    NASA Astrophysics Data System (ADS)

    Weintrop, David; Beheshti, Elham; Horn, Michael; Orton, Kai; Jona, Kemi; Trouille, Laura; Wilensky, Uri

    2016-02-01

    Science and mathematics are becoming computational endeavors. This fact is reflected in the recently released Next Generation Science Standards and the decision to include "computational thinking" as a core scientific practice. With this addition, and the increased presence of computation in mathematics and scientific contexts, a new urgency has come to the challenge of defining computational thinking and providing a theoretical grounding for what form it should take in school science and mathematics classrooms. This paper presents a response to this challenge by proposing a definition of computational thinking for mathematics and science in the form of a taxonomy consisting of four main categories: data practices, modeling and simulation practices, computational problem solving practices, and systems thinking practices. In formulating this taxonomy, we draw on the existing computational thinking literature, interviews with mathematicians and scientists, and exemplary computational thinking instructional materials. This work was undertaken as part of a larger effort to infuse computational thinking into high school science and mathematics curricular materials. In this paper, we argue for the approach of embedding computational thinking in mathematics and science contexts, present the taxonomy, and discuss how we envision the taxonomy being used to bring current educational efforts in line with the increasingly computational nature of modern science and mathematics.

  7. Optimizing students’ scientific communication skills through higher order thinking virtual laboratory (HOTVL)

    NASA Astrophysics Data System (ADS)

    Sapriadil, S.; Setiawan, A.; Suhandi, A.; Malik, A.; Safitri, D.; Lisdiani, S. A. S.; Hermita, N.

    2018-05-01

    Communication skill is one skill that is very needed in this 21st century. Preparing and teaching this skill in teaching physics is relatively important. The focus of this research is to optimizing of students’ scientific communication skills after the applied higher order thinking virtual laboratory (HOTVL) on topic electric circuit. This research then employed experimental study particularly posttest-only control group design. The subject in this research involved thirty senior high school students which were taken using purposive sampling. A sample of seventy (70) students participated in the research. An equivalent number of thirty five (35) students were assigned to the control and experimental group. The results of this study found that students using higher order thinking virtual laboratory (HOTVL) in laboratory activities had higher scientific communication skills than students who used the verification virtual lab.

  8. Making sense of policy choices: understanding the roles of value predispositions, mass media, and cognitive processing in public attitudes toward nanotechnology.

    PubMed

    Ho, Shirley S; Scheufele, Dietram A; Corley, Elizabeth A

    2010-10-01

    Using a nationally representative telephone survey of 1,015 adults in the United States, this study examines how value predispositions, communication variables, and perceptions of risks and benefits are associated with public support for federal funding of nanotechnology. Our findings show that highly religious individuals were less supportive of funding of nanotech than less religious individuals, whereas individuals who held a high deference for scientific authority were more supportive of funding of the emerging technology than those low in deference. Mass media use and elaborative processing of scientific news were positively associated with public support for funding, whereas factual scientific knowledge had no significant association with policy choices. The findings suggest that thinking about and reflecting upon scientific news promote better understanding of the scientific world and may provide a more sophisticated cognitive structure for the public to form opinions about nanotech than factual scientific knowledge. Finally, heuristic cues including trust in scientists and perceived risks and benefits of nanotech were found to be associated with public support for nanotech funding. We conclude with policy implications that will be useful for policymakers and science communication practitioners.

  9. Making sense of policy choices: understanding the roles of value predispositions, mass media, and cognitive processing in public attitudes toward nanotechnology

    NASA Astrophysics Data System (ADS)

    Ho, Shirley S.; Scheufele, Dietram A.; Corley, Elizabeth A.

    2010-10-01

    Using a nationally representative telephone survey of 1,015 adults in the United States, this study examines how value predispositions, communication variables, and perceptions of risks and benefits are associated with public support for federal funding of nanotechnology. Our findings show that highly religious individuals were less supportive of funding of nanotech than less religious individuals, whereas individuals who held a high deference for scientific authority were more supportive of funding of the emerging technology than those low in deference. Mass media use and elaborative processing of scientific news were positively associated with public support for funding, whereas factual scientific knowledge had no significant association with policy choices. The findings suggest that thinking about and reflecting upon scientific news promote better understanding of the scientific world and may provide a more sophisticated cognitive structure for the public to form opinions about nanotech than factual scientific knowledge. Finally, heuristic cues including trust in scientists and perceived risks and benefits of nanotech were found to be associated with public support for nanotech funding. We conclude with policy implications that will be useful for policymakers and science communication practitioners.

  10. Making sense of policy choices: understanding the roles of value predispositions, mass media, and cognitive processing in public attitudes toward nanotechnology

    PubMed Central

    Scheufele, Dietram A.; Corley, Elizabeth A.

    2010-01-01

    Using a nationally representative telephone survey of 1,015 adults in the United States, this study examines how value predispositions, communication variables, and perceptions of risks and benefits are associated with public support for federal funding of nanotechnology. Our findings show that highly religious individuals were less supportive of funding of nanotech than less religious individuals, whereas individuals who held a high deference for scientific authority were more supportive of funding of the emerging technology than those low in deference. Mass media use and elaborative processing of scientific news were positively associated with public support for funding, whereas factual scientific knowledge had no significant association with policy choices. The findings suggest that thinking about and reflecting upon scientific news promote better understanding of the scientific world and may provide a more sophisticated cognitive structure for the public to form opinions about nanotech than factual scientific knowledge. Finally, heuristic cues including trust in scientists and perceived risks and benefits of nanotech were found to be associated with public support for nanotech funding. We conclude with policy implications that will be useful for policymakers and science communication practitioners. PMID:21170125

  11. Developing Students' Futures Thinking in Science Education

    ERIC Educational Resources Information Center

    Jones, Alister; Buntting, Cathy; Hipkins, Rose; McKim, Anne; Conner, Lindsey; Saunders, Kathy

    2012-01-01

    Futures thinking involves a structured exploration into how society and its physical and cultural environment could be shaped in the future. In science education, an exploration of socio-scientific issues offers significant scope for including such futures thinking. Arguments for doing so include increasing student engagement, developing students'…

  12. A model of "integrated scientific method" and its application for the analysis of instruction

    NASA Astrophysics Data System (ADS)

    Rusbult, Craig Francis

    A model of 'integrated scientific method' (ISM) was constructed as a framework for describing the process of science in terms of activities (formulating a research problem, and inventing and evaluating actions--such as selecting and inventing theories, evaluating theories, designing experiments, and doing experiments--intended to solve the problem) and evaluation criteria (empirical, conceptual, and cultural-personal). Instead of trying to define the scientific method, ISM is intended to serve as a flexible framework that--by varying the characteristics of its components, their integrated relationships, and their relative importance can be used to describe a variety of scientific methods, and a variety of perspectives about what constitutes an accurate portrayal of scientific methods. This framework is outlined visually and verbally, followed by an elaboration of the framework and my own views about science, and an evaluation of whether ISM can serve as a relatively neutral framework for describing a wide range of science practices and science interpretations. ISM was used to analyze an innovative, guided inquiry classroom (taught by Susan Johnson, using Genetics Construction Kit software) in which students do simulated scientific research by solving classical genetics problems that require effect-to-cause reasoning and theory revision. The immediate goal of analysis was to examine the 'science experiences' of students, to determine how the 'structure of instruction' provides opportunities for these experiences. Another goal was to test and improve the descriptive and analytical utility of ISM. In developing ISM, a major objective was to make ISM educationally useful. A concluding discussion includes controversies about "the nature of science" and how to teach it, how instruction can expand opportunities for student experience, and how goal-oriented intentional learning (using ISM might improve the learning, retention, and transfer of thinking skills. Potential educational applications of ISM could involve its use for instructional analysis or design, or for teaching students in the classroom; or ISM and IDM (a closely related, generalized 'integrated design method') could play valuable roles in a 'wide spiral' curriculum designed for the coordinated teaching of thinking skills, including creativity and critical thinking, across a wide range of subjects.

  13. Effectiveness of Learning with 3D-Lab on Omani Basic Education Students' Achievement, Attitudes and Scientific Thinking

    ERIC Educational Resources Information Center

    Musawi, Ali Al; Ambusaidi, Abdullah; Al-Balushi, Sulaiman; Al-Sinani, Mohamed; Al-Balushi, Kholoud

    2017-01-01

    This paper aims to measure the effectiveness of the 3DL on Omani students' acquisition of practical abilities and skills. It examines the effectiveness of the 3D-lab in science education and scientific thinking acquisition as part of a national project funded by The Research Council. Four research tools in a Pre-Post Test Control Group Design,…

  14. Enrich the Physics Curriculum Scheduled for Students of Intermediate School E-Learning and Its Effectiveness in Scientific Thinking and Their Attitude towards the Development of Physics

    ERIC Educational Resources Information Center

    Hameed, Saddam Mohammed; Mohammed, Essam Mahmoud

    2016-01-01

    The current research aims know the effectiveness of enriching the physics curriculum for students in middle school electronic learning in the development of their thinking and scientific their direction towards physics, sample formed from second grade students in Sinae intermediate school 64 students (32) student as experimental group & (32)…

  15. Children, Health and Science: Child-to-Child Activities and Science and Technology Teaching. Science and Technology Education Document Series No. 41.

    ERIC Educational Resources Information Center

    Hawes, Hugh, Ed.; And Others

    This volume is about children's health, how good science teaching and scientific thinking can improve health, and how health education can contribute to scientific thinking. It is concerned with skills for life: skills which can save and improve lives; skills which go beyond the classroom and are used in daily life and which, when thoroughly…

  16. Science and thinking: The write connection

    NASA Astrophysics Data System (ADS)

    Butler, Gene

    1991-09-01

    The effective use of writing in science instruction may open the way for students to grow in their ability to exercise higher order thinking skills (Bland & Koppel, 1988). Scinto (1986) makes a compelling case for writing as a means of stimulating thinking when he states: The production of written text demands more elaborate strategies of preplanning. Written language demands the conscious organization of ensembles of propositions to achieve its end. The need to manipulate linguistic means in such a conscious and deliberate fashion entails a level of linguistic self-reflection not called forth in oral discourse (p. 101). Science educators may find that the writing process is one technique to help them move away from the teacher-centered, textbook-driven science classroom of today, and move toward the realization of science education which will ensure that students are able to function as scientifically literate citizens in our contemporary society.

  17. Constructing a Scientific Explanation—A Narrative Account

    NASA Astrophysics Data System (ADS)

    Yeo, Jennifer; Gilbert, John K.

    2014-07-01

    Studies analyzing explanations that have been constructed by science students have found that they were generally weak and lack necessary features. The goal of this study was to establish the competencies that one needs to construct a scientific explanation. Scientific explanations can be looked at in three ways, in terms of their function, form and level, as being essentially sign-making processes. Taking a case study approach and using Lemke's multimodal framework, we analyzed the scientific explanation of an electromagnetic induction phenomenon constructed by one high school student. We found that such a construction involves the complex coordination of different types of signs, not only to represent the entities in the phenomenon, but also to support thinking and reasoning about it at abstract levels. Scientific conventions and rules, and everyday material and social tools were found to be crucial in shifting from one level of abstraction to another. The findings highlight the importance of developing the skillful use of schemes of scientific representation by students and familiarizing them with commonly encountered contexts.

  18. Creationism as a Misconception: Socio-cognitive conflict in the teaching of evolution

    NASA Astrophysics Data System (ADS)

    Foster, Colin

    2012-09-01

    This position paper argues that students' understanding and acceptance of evolution may be supported, rather than hindered, by classroom discussion of creationism. Parallels are drawn between creationism and other scientific misconceptions, both of the scientific community in the past and of students in the present. Science teachers frequently handle their students' misconceptions as they arise by offering appropriate socio-cognitive conflict, which highlights reasons to disbelieve one idea and to believe another. It is argued that this way of working, rather than outlawing discussion, is more scientific and more honest. Scientific truth does not win the day by attempting to deny its opponents a voice but by engaging them with evidence. Teachers can be confident that evolution has nothing to fear from a free and frank discussion in which claims can be rebutted with evidence. Such an approach is accessible to children of all ages and is ultimately more likely to drive out pre-scientific superstitions. It also models the scientific process more authentically and develops students' ability to think critically.

  19. An Hypothesis on Thinking

    ERIC Educational Resources Information Center

    Maclennan, Ian

    1977-01-01

    Suggests that there exists a "finite" number of elementary concepts and distinguishable modes of thinking, that all human beings tend to acquire the same set of elements of thinking and the same strategies with which to understand and control their physical environment, and that the method of analysis used here is a standard scientific method.…

  20. Visual-spatial thinking: An aspect of science overlooked by educators

    NASA Astrophysics Data System (ADS)

    Mathewson, James H.

    1999-01-01

    Thinking with images plays a central role in scientific creativity and communication but is neglected in science classrooms. This article reviews the fundamental role of imagery in science and technology and our current knowledge of visual-spatial cognition. A novel analogic and thematic organization of images and visualization within science and technology is proposed that can help in the generation and evaluation of classroom activities and materials, and serve as a focus for professional development programs in visual-spatial thinking for science teachers. Visual-spatial thinking includes vision - using the eyes to identify, locate, and think about objects and ourselves in the world, and imagery - the formation, inspection, transformation, and maintenance of images in the mind's eye in the absence of a visual stimulus. A spatial image preserves relationships among a complex set of ideas as a single chunk in working memory, increasing the amount of information that can be maintained in consciousness at a given moment. Vision and imagery are fundamental cognitive processes using specialized pathways in the brain and rely on our memory of prior experience. Visual-spatial thinking develops from birth, together with language and other specialized abilities, through interactions between inherited capabilities and experience. Scientific creativity can be considered as an amalgam of three closely allied mental formats: images; metaphors; and unifying ideas (themes). Combinations of images, analogies, and themes pervade science in the form of master images and visualization techniques. A critique of current practice in education contrasts the subservient role of visual-spatial learning with the dominance of the alphanumeric encoding skills in classroom and textbooks. The lack of coherence in curriculum, pedagogy, and learning theory requires reform that addresses thinking skills, including imagery. Successful integration of information, skills and attitudes into cohesive mental schemata employed by self-aware human beings is a basic goal of education. The current attempt to impose integration using themes is criticized on the grounds that the required underpinning in cognitive skills and content knowledge by teachers and students may be absent. Teaching strategies that employ visual-spatial thinking are reviewed. Master images are recommended as a novel point of departure for a systematic development of programs on visual-spatial thinking in research, teacher education, curriculum, and classroom practice.

  1. Commentary: Teaching creativity and innovative thinking in medicine and the health sciences.

    PubMed

    Ness, Roberta B

    2011-10-01

    The National Academies of Science recently criticized the state of scientific innovation and competitiveness in the United States. Evaluations of already-established creativity training programs--examining a broad array of students, from school age to adult and with a wide range of abilities--have shown that such courses improve thinking skills, attitudes, and performance. Although academic medicine provides informal training in creativity and innovation, it has yet to incorporate formal instruction on these topics into medical education. A number of existing, thoughtfully constructed and evaluated creativity programs in other fields provide a pedagogical basis for developing creativity training programs for the health sciences. The content of creativity training programs typically includes instruction and application in (1) divergent thinking, (2) problem solving, and (3) creative production. Instructional formats that have been shown to elicit the best outcomes are an admixture of lectures, discussion, and guided practice. A pilot program to teach innovative thinking to health science students at the University of Texas includes instruction in recognizing and finding alternatives to frames or habitual cognitive patterns, in addition to the constructs already mentioned. As innovation is the engine of scientific progress, the author, founder of Innovative Thinking, the creativity training pilot program at the University of Texas, argues in this commentary that academic health centers should implement and evaluate new methods for enhancing science students' innovative thinking to keep the United States as a worldwide leader in scientific discovery.

  2. The use of scientific direct instruction model with video learning of ethnoscience to improve students’ critical thinking skills

    NASA Astrophysics Data System (ADS)

    Sudarmin, S.; Mursiti, S.; Asih, A. G.

    2018-04-01

    In this disruption era, students are encouraged to develop critical thinking skills and important cultural conservation characters. Student's thinking skill in chemistry learning has not been developed because learning chemistry in schools still uses teacher-centered, lecture method, is less interesting and does not utilize local culture as a learning resource. The purpose of this research is to know the influence of the application of direct Instruction (DI) model with video learning of ethnoscience on the improvement of students’ critical thinking skills. This study was experimental research. The population was the students from class XI MIPA MA Negeri Gombong with the sample chosen by purposive random sampling. The material of local wisdom as the study of ethnosciences which was the focus of the research was the production of genting, dawet, lanting, and sempor reservoirs which is integrated with colloidal chemical contents. The learning video of ethnoscience before being applied was validated by experts. Students’ critical thinking skills were revealed through the concept of conceptualizing test instruments. The data analysis technique used was the test of proportion and Kolmogorov-Smirnov test. The results of this study suggested that the experimental class that was treated by scientific direct instruction model with the learning video of ethnoscience shows cognitive learning and critical thinking which were better than the control class. Besides, the students indicated their interest in the application of scientific direct instruction model with ethnoscience learning video.

  3. A set of vertically integrated inquiry-based practical curricula that develop scientific thinking skills for large cohorts of undergraduate students.

    PubMed

    Zimbardi, Kirsten; Bugarcic, Andrea; Colthorpe, Kay; Good, Jonathan P; Lluka, Lesley J

    2013-12-01

    Science graduates require critical thinking skills to deal with the complex problems they will face in their 21st century workplaces. Inquiry-based curricula can provide students with the opportunities to develop such critical thinking skills; however, evidence suggests that an inappropriate level of autonomy provided to underprepared students may not only be daunting to students but also detrimental to their learning. After a major review of the Bachelor of Science, we developed, implemented, and evaluated a series of three vertically integrated courses with inquiry-style laboratory practicals for early-stage undergraduate students in biomedical science. These practical curricula were designed so that students would work with increasing autonomy and ownership of their research projects to develop increasingly advanced scientific thinking and communication skills. Students undertaking the first iteration of these three vertically integrated courses reported learning gains in course content as well as skills in scientific writing, hypothesis construction, experimental design, data analysis, and interpreting results. Students also demonstrated increasing skills in both hypothesis formulation and communication of findings as a result of participating in the inquiry-based curricula and completing the associated practical assessment tasks. Here, we report the specific aspects of the curricula that students reported as having the greatest impact on their learning and the particular elements of hypothesis formulation and communication of findings that were more challenging for students to master. These findings provide important implications for science educators concerned with designing curricula to promote scientific thinking and communication skills alongside content acquisition.

  4. Scientific Literacy: Resurrecting the Phoenix with Thinking Skills

    ERIC Educational Resources Information Center

    Deming, John C.; O'Donnell, Jacqueline R.; Malone, Christopher J.

    2012-01-01

    Prior research suggests that students' understanding of scientific concepts is pre-determined by their reasoning ability. Other efforts suggest that American students' scientific literacy is in decline. One difficulty Bybee (2009) acknowledges is that there are two divergent philosophical models of scientific literacy. The first describes the…

  5. Disentangling the influence of value predispositions and risk/benefit perceptions on support for nanotechnology among the American public.

    PubMed

    Kim, Jiyoun; Yeo, Sara K; Brossard, Dominique; Scheufele, Dietram A; Xenos, Michael A

    2014-05-01

    Using nanotechnology as a case study, this article explores (1) how people's perceptions of benefits and risks are related to their approval of nanotechnology, (2) which information-processing factors contribute to public risk/benefit perceptions, and (3) whether individuals' predispositions (i.e., deference to scientific authority and ideology) may moderate the relationship between cognitive processing and risk perceptions of the technology. Results indicate that benefit perceptions positively affect public support for nanotechnology; perceptions of risk tend to be more influenced by systematic processing than by heuristic cues, whereas both heuristic and systematic processing influence benefit perceptions. People who are more liberal-minded tend to be more affected by systematic processing when thinking about the benefits of nanotechnology than those who are more conservative. Compared to less deferent individuals, those who are more deferent to scientific authority tend to be less influenced by systematic processing when making judgments about the benefits and risks of nanotechnology. Implications are discussed. © 2013 Society for Risk Analysis.

  6. Citizen Science: Opportunities for Girls' Development of Science Identity

    NASA Astrophysics Data System (ADS)

    Brien, Sinead Carroll

    Many students in the United States, particularly girls, have lost interest in science by the time they reach high school and do not pursue higher degrees or careers in science. Several science education researchers have found that the ways in which youth see themselves and position themselves in relation to science can influence whether they pursue science studies and careers. I suggest that participation in a citizen science program, which I define as a program in which girls interact with professional scientists and collect data that contributes to scientific research, could contribute to changing girls' perceptions of science and scientists, and promote their science identity work. I refer to science identity as self-recognition and recognition by others that one thinks scientifically and does scientific work. I examined a case study to document and analyze the relationship between girls' participation in a summer citizen science project and their development of science identity. I observed six girls between the ages of 16 and 18 during the Milkweed and Monarch Project, taking field notes on focal girls' interactions with other youth, adults, and the scientist, conducted highly-structured interviews both pre-and post- girls' program participation, and interviewed the project scientist and educator. I qualitatively analyzed field notes and interview responses for themes in girls' discussion of what it meant to think scientifically, roles they took on, and how they recognized themselves as thinking scientifically. I found that girls who saw themselves as thinking scientifically during the program seemed to demonstrate shifts in their science identity. The aspects of the citizen science program that seemed to most influence shifts in these girls' science identities were 1) the framing of the project work as "real science, 2) that it involved ecological field work, and 3) that it created a culture that valued data and scientific work. However, some of the girls only saw themselves as completing a repetitive task of data collection, and these evidenced no change in science identity. This indicates that science identity work might require more explicit attention by educators and scientists to girls' perceptions of science and scientific thinking, and discussion of how this is related to the project work and the roles they are playing within the citizen science project.

  7. Promoting the 21st century scientific literacy skills through innovative chemistry instruction

    NASA Astrophysics Data System (ADS)

    Rahayu, Sri

    2017-12-01

    Students need to be equipped with the 21st century skills/capabilities to ensure their competitiveness in the knowledge era. So, it is imperative that education at school should be changed in order to fulfill the need. However, there is not any specified approach on how to educate young students for the 21st century capabilities. Regardless the impediment for ts exist, we need to construct an innovative instruction that can develop the students' 21st century skills by incorporating the skills needed, based on contemporary theory of learning, necessary context of learning and appropriate assessment in a chemistry subject matter. This paper discuss the feasible skills to be promoted through chemistry course. Those skills/capabilities are scientific literacy, higher order thinking, communicationand collaboration and curiosity. The promoted are called the 21st century scientific literacy skills in which it emphasis on scientific literacy and embedded the other 21st century skills into the innovative chemistry instruction. The elements involve in the instruction such as inquiry and constructivist approach, nature of science, contemporary/socioscientific issues, critical thinking (higher order thinking).

  8. Redesign of students’ worksheet on basic physics experiment based on students’ scientific process skills analysis in Melde’s law

    NASA Astrophysics Data System (ADS)

    Nugraha, M. G.; Utari, S.; Saepuzaman, D.; Nugraha, F.

    2018-05-01

    Scientific process skills (SPS) are an intellectual skill to build knowledge, solve problems scientifically, train thinking skills as well as a very important part of the inquiry process and contribute to scientific literacy. Therefore, SPS is very important to be developed. This study aims to develop Student Worksheets (SW) that can trace SPS through basic physics experiments (BPE) on Melde’s law. This research uses R&D method involving 18 physics education department students who take the BPE course as a sample. The research instrument uses an SW designed with a SPS approach that have been reviewed and judged by expert, which includes observing, communicating, classifying, measuring, inferring, predicting, identifying variable, constructing hypothesis, defining variable operationally, designing experiment, acquiring and processing data to conclusions. The result of the research shows that the student’s SPS has not been trained optimally, the students’ answers are not derived from the observations and experiments conducted but derived from the initial knowledge of the students, as well as in the determination of experimental variables, inferring and hypothesis. This result is also supported by a low increase of conceptual content on Melde’s law with n-gain of 0.40. The research findings are used as the basis for the redesign of SW.

  9. Enhancing the role of science in the decision-making of the European Union.

    PubMed

    Allio, Lorenzo; Ballantine, Bruce; Meads, Richard

    2006-02-01

    Used well, science provides effective ways of identifying potential risks, protecting citizens, and using resources wisely. It enables government decisions to be based on evidence and provides a foundation for a rule-based framework that supports global trade. To ensure that the best available science becomes a key input in the decisions made by EU institutions, this abridged version of a working paper produced for the European Policy Centre, a leading, independent think tank, considers how science is currently used in the policy and decision-making processes of the EU, what the limitations of scientific evidence are, and how a risk assessment process based on scientific 'good practices' can be advantageous. Finally, the paper makes recommendations on how to improve the use of science by EU institutions.

  10. Earthquake: Game-based learning for 21st century STEM education

    NASA Astrophysics Data System (ADS)

    Perkins, Abigail Christine

    To play is to learn. A lack of empirical research within game-based learning literature, however, has hindered educational stakeholders to make informed decisions about game-based learning for 21st century STEM education. In this study, I modified a research and development (R&D) process to create a collaborative-competitive educational board game illuminating elements of earthquake engineering. I oriented instruction- and game-design principles around 21st century science education to adapt the R&D process to develop the educational game, Earthquake. As part of the R&D, I evaluated Earthquake for empirical evidence to support the claim that game-play results in student gains in critical thinking, scientific argumentation, metacognitive abilities, and earthquake engineering content knowledge. I developed Earthquake with the aid of eight focus groups with varying levels of expertise in science education research, teaching, administration, and game-design. After developing a functional prototype, I pilot-tested Earthquake with teacher-participants (n=14) who engaged in semi-structured interviews after their game-play. I analyzed teacher interviews with constant comparison methodology. I used teachers' comments and feedback from content knowledge experts to integrate game modifications, implementing results to improve Earthquake. I added player roles, simplified phrasing on cards, and produced an introductory video. I then administered the modified Earthquake game to two groups of high school student-participants (n = 6), who played twice. To seek evidence documenting support for my knowledge claim, I analyzed videotapes of students' game-play using a game-based learning checklist. My assessment of learning gains revealed increases in all categories of students' performance: critical thinking, metacognition, scientific argumentation, and earthquake engineering content knowledge acquisition. Players in both student-groups improved mostly in critical thinking, having doubled the number of exhibited instances of critical thinking between games. Players in the first group exhibited about a third more instances of metacognition between games, while players in the second group doubled such instances. Between games, players in both groups more than doubled the number of exhibited instances of using earthquake engineering content knowledge. The student-players expanded use of scientific argumentation for all game-based learning checklist categories. With empirical evidence, I conclude play and learning can connect for successful 21 st century STEM education.

  11. Combating plagiarism: a shared responsibility.

    PubMed

    Rathod, Sujit D

    2010-01-01

    Scientific progress depends on the free dissemination of original thinking and research. With the evidence base formed by publication, investigators develop and implement additional studies, and policy makers propose new laws and regulations. The ramifications of this evidence can affect millions of lives and reallocate considerable resources for programmes or research. As such, it is incumbent on investigators to conduct rigorous research, which precludes engaging in scientific misconduct such as falsification, fabrication and plagiarism. This article addresses the causes and consequences of plagiarism and the processes by which plagiarism is discovered. It concludes by considering the responsibilities of members of the research community in preventing and addressing plagiarism.

  12. Mythical thinking, scientific discourses and research dissemination.

    PubMed

    Hroar Klempe, Sven

    2011-06-01

    This article focuses on some principles for understanding. By taking Anna Mikulak's article "Mismatches between 'scientific' and 'non-scientific' ways of knowing and their contributions to public understanding of science" (IPBS 2011) as a point of departure, the idea of demarcation criteria for scientific and non-scientific discourses is addressed. Yet this is juxtaposed with mythical thinking, which is supposed to be the most salient trait of non-scientific discourses. The author demonstrates how the most widespread demarcation criterion, the criterion of verification, is self-contradictory, not only when it comes to logic, but also in the achievement of isolating natural sciences from other forms of knowledge. According to Aristotle induction is a rhetorical device and as far as scientific statements are based on inductive inferences, they are relying on humanities, which rhetoric is a part of. Yet induction also has an empirical component by being based on sense-impressions, which is not a part of the rhetoric, but the psychology. Also the myths are understood in a rhetorical (Lévi-Strauss) and a psychological (Cassirer) perspective. Thus it is argued that both scientific and non-scientific discourses can be mythical.

  13. Creative Cognition in Secondary Science: An Exploration of Divergent Thinking in Science among Adolescents

    ERIC Educational Resources Information Center

    Antink-Meyer, Allison; Lederman, Norman G.

    2015-01-01

    The divergent thinking skills in science of 282 US high school students were investigated across 16 weeks of instruction in order to determine whether typical academic time periods can significantly influence changes in thinking skills. Students' from 6 high school science classrooms completed the Scientific Structures Creativity Measure (SSCM)…

  14. Learning to Think Spatially in an Undergraduate Interdisciplinary Computational Design Context: A Case Study

    ERIC Educational Resources Information Center

    Ben Youssef, Belgacem; Berry, Barbara

    2012-01-01

    Spatial thinking skills are vital for success in everyday living and work, not to mention the centrality of spatial reasoning in scientific discoveries, design-based disciplines, medicine, geosciences and mathematics to name a few. This case study describes a course in spatial thinking and communicating designed and delivered by an…

  15. Girls on Ice: An Inquiry-Based Wilderness Science Education Program

    NASA Astrophysics Data System (ADS)

    Pettit, E. C.; Koppes, M. N.

    2001-12-01

    We developed a wilderness science education program for high school girls. The program offers opportunities for students to explore and learn about mountain glaciers and the alpine landscape through scientific field studies with geologists and glaciologists. Our purpose is to give students a feeling for the natural processes that create the alpine world and provide an environment that fosters the critical thinking necessary to all scientific inquiry. The program is currently being offered through the North Cascades Institute, a non-profit organization offering outdoor education programs for the general public. We lead eight girls for a weeklong expedition to the remote USGS South Cascade Glacier Research Station in Washington's North Cascades. For four days, we explore the glacier and the nearby alpine valleys. We encourage the girls to observe and think like scientists through making observations and inferences. They develop their own experiments to test ideas about glacier dynamics and geomorphology. In addition to scientific exploration, we engage the students in discussions about the philosophy of science and its role in our everyday lives. Our program exemplifies the success of hands-on, inquiry-based teaching in small groups for science education in the outdoors. The wilderness setting and single gender field team inspires young women's interest in science and provides a challenging environment that increases their physical and intellectual self-confidence.

  16. Socio-scientific reasoning influenced by identities

    NASA Astrophysics Data System (ADS)

    Simonneaux, Laurence; Simonneaux, Jean

    2009-09-01

    Based on the comments by Lopez-Facal and Jiménez-Aleixandre, we consider that the cultural identities within Europe interfere with the question of the re-introduction of the Slovenian bear, generating a kind of "discrimination." When the SAQs under debate run against the students' systems of value, it seems that the closer the connection between the SAQs (socially acute questions) and the territorial and cultural identity, the more deeply the associated systems of values are affected; and the more the evidence is denied, the weaker the socio-scientific reasoning becomes. This result shows the importance of attempting to get the students to clarify the values underlying their socio-scientific reasoning. As Sadler observed, there was no transfer of socio-scientific reasoning on the three questions considered; each SAQ, as they are deeply related to social representations and identity, generated a specific line of reasoning balancing more or less each operation. Among various methods of teaching SAQs—problematizing, genetic, doctrinal and praxeological methods--socio-scientific reasoning may be a complex activity of problematization fostering the development of critical thinking. Confronted with the refusal to analyse the evidence in the case of the bear, and because of the nature of SAQs, we explore the notion of tangible proof. We think it relevant to study, together with the students, the processes of investigation used by the actors to establish or disestablish tangible proof on SAQs by analysing the intermediary states of the systems of proof, and possibly the "weak signals" which result in calling for the implementation of the precautionary principle.

  17. The integrated learning management using the STEM education for improve learning achievement and creativity in the topic of force and motion at the 9th grade level

    NASA Astrophysics Data System (ADS)

    Kakarndee, Nampetch; Kudthalang, Nukool; Jansawang, Natchanok

    2018-01-01

    The aims of this research study were to investigate and analyze the processing performances and the performance results (E1/E2) efficiency at the determining criteria for planning students' improvements to their learning processes toward their scientific knowledge were investigated, carry out the investigations, gathering evidence, and proposing explanations were developed and predicted. Students' engagements to their needs in unambiguous and clearly content of science teaching onto the instructional processes were attempted for establishing a national approach with the STEM education instructional method were strategized. Research administrations were designed to a sample size consisted of 40 secondary students in science class at the 9th grade level in Borabu School with the purposive sampling technique was selected. Using the STEM Education instructional innovation's lesson plans were managed learning activities. Students' learning achievements were assessed with the Pre-Test and Post-Test designs of 30 items. Students' creative thinking abilities were determined of their perceptions that obtained of the 3-item Creative Thinking Ability Test. The results for the effectiveness of the innovative instructional lesson plans based on the STEM Education Method, the lessoning effectiveness (E1/E2) evidences of 78.95/76.58 over the threshold setting is 75/75. Pretest-posttest designs for assessing students' learning achievements that impact a student's ability to achieve and explains with the STEM education instructional method were differences, significantly (ρ<.001) and the posttest of the 3-item Creative Thinking Ability Test designs for assessing Students' creative thinking abilities that impact a student's ability to have a good skill level in originality, fluency and flexibility thinking with the STEM education instructional method were differences, significantly (ρ<.001).

  18. Creativity and Criticism. The Components of Scientific Thought.

    ERIC Educational Resources Information Center

    Zielinski, Edward J.; Sarachine, D. Michael

    1990-01-01

    Presented are six activities that help to promote critical and creative student thinking. Activities include discrepant events and questioning, divergent thinking, dilemma discussions, and drawing objects from symbols. Activities can be adapted to any science discipline. (KR)

  19. Interactive forms of conducting business and role games in dialogical training

    NASA Astrophysics Data System (ADS)

    Medvedeva, L.; Yushkov, E.; Yakovlev, D.; Bogatyreova, M.

    2017-01-01

    Mastering interactive technologies by teachers of higher educational institutions is the basis of enhancing the quality of education. The competent use of interactive forms of business and role-play games at seminars strengthens a pedagogical effect on the development of the culture of thinking, professional and personal qualities of students, as well as provides an in-depth study of the subject and acquisition of scientific cognition methods. Dialogical thinking creates a truly open mind for sharing opinions and freely discussing suggestions made by the participants, especially in situations of seeking effective task-solving methods. In order to train competitive graduates, ready to act efficiently in their future career, it is necessary to apply innovational interactive technologies in the educational process.

  20. The doubt-certainty continuum in psychopathology, lay thinking, and science.

    PubMed

    Ron, Omri; Oren, Ela; Dar, Reuven

    2016-12-01

    This paper presents a theoretical model suggesting that doubt and certainty are two extremes of a continuum. Different people can be located in different locations on this continuum, according to how much they tend to seek refutation vs. confirmation. In both ends of the continuum lay mental disorders, which can be seen as extreme deviations from the usual relatively stable equilibrium between the two thinking processes. One end is defined by excessive skepticism and manifested as obsessive compulsive disorder (OCD), a disorder characterized by incessant doubt. The other end is defined by excessive certainty and lack of doubt, manifested as delusional disorders. Throughout this article, we demonstrate that the differences between normative thoughts and delusional thoughts are relatively vague, and that in general, the human default tendency is to prefer certainty over doubt. This preference is reflected in the confirmation bias as well as in other cognitive constructs such as overconfidence and stereotypes. Recent perspectives on these biases suggest that the human preference for confirmation can be explained in evolutionary terms as adaptive and rational. A parallel view of the scientific enterprise suggests that it also requires a certain equilibrium between skepticism and confirmation. We conclude by discussing the importance of the dialectic relationship between confirmation and refutation in both lay thinking and scientific thought. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. From monocausality to systems thinking: a complementary and alternative conceptual approach for better understanding the development and prevention of sports injury.

    PubMed

    Hulme, Adam; Finch, Caroline F

    The science of sports injury control, including both its cause and prevention, has largely been informed by a biomedical and mechanistic model of health. Traditional scientific practice in sports injury research has routinely involved collapsing the broader socioecological landscape down in order to analyse individual-level determinants of injury - whether biomechanical and/or behavioural. This approach has made key gains for sports injury prevention research and should be further encouraged and allowed to evolve naturally. However, the public health, Applied Human Factors and Ergonomics, and injury epidemiological literature more broadly, has accepted the value of a socioecological paradigm for better understanding disease and injury processes, and sports injury research will fall further behind unless it does the same. A complementary and alternative conceptual approach towards injury control known as systems thinking that builds on socioecological science, both methodologically and analytically, is readily available and fast developing in other research areas. This review outlines the historical progression of causal concepts in the field of epidemiology over the course of the modern scientific era. From here, causal concepts in injury epidemiology, and models of aetiology as found in the context of sports injury research are presented. The paper finishes by proposing a new research agenda that considers the potential for a systems thinking approach to further enhance sports injury aetiological understanding. A complementary systems paradigm, however, will require that sports injury epidemiologists bring their knowledge and skillsets forwards in an attempt to use, adapt, and even refine existing systems-based approaches. Alongside the natural development of conventional scientific methodologies and analyses in sports injury research, progressing forwards to a systems paradigm is now required.

  2. Should Science be Taught in Early Childhood?

    NASA Astrophysics Data System (ADS)

    Eshach, Haim; Fried, Michael N.

    2005-09-01

    This essay considers the question of why we should teach science to K-2. After initial consideration of two traditional reasons for studying science, six assertions supporting the idea that even small children should be exposed to science are given. These are, in order: (1) Children naturally enjoy observing and thinking about nature. (2) Exposing students to science develops positive attitudes towards science. (3) Early exposure to scientific phenomena leads to better understanding of the scientific concepts studied later in a formal way. (4) The use of scientifically informed language at an early age influences the eventual development of scientific concepts. (5) Children can understand scientific concepts and reason scientifically. (6) Science is an efficient means for developing scientific thinking. Concrete illustrations of some of the ideas discussed in this essay, particularly, how language and prior knowledge may influence the development of scientific concepts, are then provided. The essay concludes by emphasizing that there is a window of opportunity that educators should exploit by presenting science as part of the curriculum in both kindergarten and the first years of primary school.

  3. Life-Cycle Thinking in Inquiry-Based Sustainability Education--Effects on Students' Attitudes towards Chemistry and Environmental Literacy

    ERIC Educational Resources Information Center

    Juntunen, Marianne; Aksela, Maija

    2013-01-01

    The aim of the present study is to improve the quality of students' environmental literacy and sustainability education in chemistry teaching by combining the socio-scientific issue of life-cycle thinking with inquiry-based learning approaches. This case study presents results from an inquiry-based life-cycle thinking project: an interdisciplinary…

  4. A Set of Vertically Integrated Inquiry-Based Practical Curricula that Develop Scientific Thinking Skills for Large Cohorts of Undergraduate Students

    ERIC Educational Resources Information Center

    Zimbardi, Kirsten; Bugarcic, Andrea; Colthorpe, Kay; Good, Jonathan P.; Lluka, Lesley J.

    2013-01-01

    Science graduates require critical thinking skills to deal with the complex problems they will face in their 21st century workplaces. Inquiry-based curricula can provide students with the opportunities to develop such critical thinking skills; however, evidence suggests that an inappropriate level of autonomy provided to under prepared students…

  5. New thinking: the evolution of human cognition

    PubMed Central

    Heyes, Cecilia

    2012-01-01

    Humans are animals that specialize in thinking and knowing, and our extraordinary cognitive abilities have transformed every aspect of our lives. In contrast to our chimpanzee cousins and Stone Age ancestors, we are complex political, economic, scientific and artistic creatures, living in a vast range of habitats, many of which are our own creation. Research on the evolution of human cognition asks what types of thinking make us such peculiar animals, and how they have been generated by evolutionary processes. New research in this field looks deeper into the evolutionary history of human cognition, and adopts a more multi-disciplinary approach than earlier ‘Evolutionary Psychology’. It is informed by comparisons between humans and a range of primate and non-primate species, and integrates findings from anthropology, archaeology, economics, evolutionary biology, neuroscience, philosophy and psychology. Using these methods, recent research reveals profound commonalities, as well striking differences, between human and non-human minds, and suggests that the evolution of human cognition has been much more gradual and incremental than previously assumed. It accords crucial roles to cultural evolution, techno-social co-evolution and gene–culture co-evolution. These have produced domain-general developmental processes with extraordinary power—power that makes human cognition, and human lives, unique. PMID:22734052

  6. New thinking: the evolution of human cognition.

    PubMed

    Heyes, Cecilia

    2012-08-05

    Humans are animals that specialize in thinking and knowing, and our extraordinary cognitive abilities have transformed every aspect of our lives. In contrast to our chimpanzee cousins and Stone Age ancestors, we are complex political, economic, scientific and artistic creatures, living in a vast range of habitats, many of which are our own creation. Research on the evolution of human cognition asks what types of thinking make us such peculiar animals, and how they have been generated by evolutionary processes. New research in this field looks deeper into the evolutionary history of human cognition, and adopts a more multi-disciplinary approach than earlier 'Evolutionary Psychology'. It is informed by comparisons between humans and a range of primate and non-primate species, and integrates findings from anthropology, archaeology, economics, evolutionary biology, neuroscience, philosophy and psychology. Using these methods, recent research reveals profound commonalities, as well striking differences, between human and non-human minds, and suggests that the evolution of human cognition has been much more gradual and incremental than previously assumed. It accords crucial roles to cultural evolution, techno-social co-evolution and gene-culture co-evolution. These have produced domain-general developmental processes with extraordinary power-power that makes human cognition, and human lives, unique.

  7. Teacher Students' Dilemmas When Teaching Science through Inquiry

    ERIC Educational Resources Information Center

    Krämer, Philipp; Nessler, Stefan H.; Schlüter, Kirsten

    2015-01-01

    Background: Inquiry-based science education (IBSE) is suitable to teach scientific contents as well as to foster scientific skills. Similar conclusions are drawn by studies with respect to scientific literacy, motivational aspects, vocabulary knowledge, conceptual understandings, critical thinking, and attitudes toward science. Nevertheless, IBSE…

  8. Understanding Science: Frameworks for using stories to facilitate systems thinking

    NASA Astrophysics Data System (ADS)

    ElShafie, S. J.; Bean, J. R.

    2017-12-01

    Studies indicate that using a narrative structure for teaching and learning helps audiences to process and recall new information. Stories also help audiences retain specific information, such as character names or plot points, in the context of a broader narrative. Stories can therefore facilitate high-context systems learning in addition to low-context declarative learning. Here we incorporate a framework for science storytelling, which we use in communication workshops, with the Understanding Science framework developed by the UC Museum of Paleontology (UCMP) to explore the application of storytelling to systems thinking. We translate portions of the Understanding Science flowchart into narrative terms. Placed side by side, the two charts illustrate the parallels between the scientific process and the story development process. They offer a roadmap for developing stories about scientific studies and concepts. We also created a series of worksheets for use with the flowcharts. These new tools can generate stories from any perspective, including a scientist conducting a study; a character that plays a role in a larger system (e.g., foraminifera or a carbon atom); an entire system that interacts with other systems (e.g., the carbon cycle). We will discuss exemplar stories about climate change from each of these perspectives, which we are developing for workshops using content and storyboard models from the new UCMP website Understanding Global Change. This conceptual framework and toolkit will help instructors to develop stories about scientific concepts for use in a classroom setting. It will also help students to analyze stories presented in class, and to create their own stories about new concepts. This approach facilitates student metacognition of the learning process, and can also be used as a form of evaluation. We are testing this flowchart and its use in systems teaching with focus groups, in preparation for use in teacher professional development workshops.

  9. Scientific Writing = Thinking in Words

    USDA-ARS?s Scientific Manuscript database

    Ensuring that research results are reported accurately and effectively is an eternal challenge for scientists. The book Science Writing = Thinking in Words (David Lindsay, 2011. CSIRO Publishing) is a primer for researchers who seek to improve their impact through better written (and oral) presentat...

  10. The effect of physics-based scientific learning on the improvement of the student’s critical thinking skills

    NASA Astrophysics Data System (ADS)

    Zaidah, A.; Sukarmin; Sunarno, W.

    2018-04-01

    This study aimed to determine the influence of a physics-based scientific learning to increase student’s critical thinking skill. This type of this research was quantitative research with taking the conclusion through statistical analysis. This research was carried out in MA (Senior High School) Mu'allimat NW Pancor in the second semester in the academic year of 2016/2017 with all students of XI class. The sampling is done by using technique purposive sampling where the class was taken from XI 6 class. Based on the result of descriptive analysis, it was obtained an average pre-test score of 49.17 and an average post-test score of 82.43. Also, the results showed that the average score was gained of 0.67 with a medium category. Based on the inferential analysis showed the value of t = 22.559 while the ttable in significance level of 5% was 2.04. Thus, t > the ttable from Ha is accepted. Therefore, the pre-test and posttest were different significantly when the students used scientific-based learning. The result showed that a physics-based scientific learning has influenced to increase the student’s critical thinking skill.

  11. The Creative Stereotype Effect.

    PubMed

    Dumas, Denis; Dunbar, Kevin N

    2016-01-01

    Because of its fundamental relevance to scientific innovation, artistic expression, and human ingenuity, creativity has long been the subject of systematic psychological investigation. Concomitantly, the far-reaching effects of stereotypes on various cognitive and social processes have been widely researched. Bridging these two literatures, we show in a series of two studies that stereotypes related to creativity can both enhance and diminish individuals' performance on a divergent thinking task. Specifically, Study 1 demonstrated that participants asked to take on a stereotypically uninhibited perspective performed significantly better on a divergent thinking task than those participants who took on a stereotypically inhibited perspective, and a control group. Relatedly, Study 2 showed that the same effect is found within-subjects, with divergent thinking significantly improving when participants invoke an uninhibited stereotype. Moreover, we demonstrate the efficacy of Latent Semantic Analysis as an objective measure of the originality of ideas, and discuss implications of our findings for the nature of creativity. Namely, that creativity may not be best described as a stable individual trait, but as a malleable product of context and perspective.

  12. The Role of the Spacecraft Operator in Scientific Exploration

    NASA Astrophysics Data System (ADS)

    Love, S. G.

    2011-03-01

    Pilot and flight engineer crew members can improve scientific exploration missions and effectively support field work that they may not understand by contributing leadership, teamwork, communication, and operational thinking skills.

  13. Developing an Instrument of Scientific Literacy Assessment on the Cycle Theme

    ERIC Educational Resources Information Center

    Rusilowati, Ani; Kurniawati, Lina; Nugroho, Sunyoto E.; Widiyatmoko, Arif

    2016-01-01

    The purpose of this study is to develop scientific literacy evaluation instrument that tested its validity, reliability, and characteristics to measure the skill of student's scientific literacy used four scientific literacy, categories as follow:science as a body of knowledge (category A), science as a way of thinking (category B), science as a…

  14. Roadblocks to Scientific Thinking in Educational Decision Making

    ERIC Educational Resources Information Center

    Yates, Gregory C. R.

    2008-01-01

    Principles of scientific data accumulation and evidence-based practices are vehicles of professional enhancement. In this article, the author argues that a scientific knowledge base exists descriptive of the relationship between teachers' activities and student learning. This database appears barely recognised however, for reasons including (a)…

  15. Teaching toward a More Scientifically Literate Society

    ERIC Educational Resources Information Center

    LoGiudici, Raymond; Ende, Fred

    2010-01-01

    To teach scientific literacy to eighth graders, the authors created a yearlong project that emphasizes the various components and skills required to be a scientifically literate citizen. This project is broken into four separate components: skeptical thinking (pseudoscience), current-event article analysis, fiction and nonfiction literature, and…

  16. Explicitly Teaching Critical Thinking Skills in a History Course

    NASA Astrophysics Data System (ADS)

    McLaughlin, Anne Collins; McGill, Alicia Ebbitt

    2017-03-01

    Critical thinking skills are often assessed via student beliefs in non-scientific ways of thinking, (e.g, pseudoscience). Courses aimed at reducing such beliefs have been studied in the STEM fields with the most successful focusing on skeptical thinking. However, critical thinking is not unique to the sciences; it is crucial in the humanities and to historical thinking and analysis. We investigated the effects of a history course on epistemically unwarranted beliefs in two class sections. Beliefs were measured pre- and post-semester. Beliefs declined for history students compared to a control class and the effect was strongest for the honors section. This study provides evidence that a humanities education engenders critical thinking. Further, there may be individual differences in ability or preparedness in developing such skills, suggesting different foci for critical thinking coursework.

  17. Advancing the Science of Community-Level Interventions

    PubMed Central

    Beehler, Sarah; Deutsch, Charles; Green, Lawrence W.; Hawe, Penelope; McLeroy, Kenneth; Miller, Robin Lin; Rapkin, Bruce D.; Schensul, Jean J.; Schulz, Amy J.; Trimble, Joseph E.

    2011-01-01

    Community interventions are complex social processes that need to move beyond single interventions and outcomes at individual levels of short-term change. A scientific paradigm is emerging that supports collaborative, multilevel, culturally situated community interventions aimed at creating sustainable community-level impact. This paradigm is rooted in a deep history of ecological and collaborative thinking across public health, psychology, anthropology, and other fields of social science. The new paradigm makes a number of primary assertions that affect conceptualization of health issues, intervention design, and intervention evaluation. To elaborate the paradigm and advance the science of community intervention, we offer suggestions for promoting a scientific agenda, developing collaborations among professionals and communities, and examining the culture of science. PMID:21680923

  18. How to Teach High-School Students "How Science Really Works?"

    NASA Astrophysics Data System (ADS)

    Losiak, Anna; Students, High-School; Winiarska, Anna; Parys-Wasylkiewicz, Magdalena

    2016-04-01

    One of the largest problems in Poland (as well as in the large part of the developed world) is that people do not understand how science works. Based on what they learned at school, they think that science is an aggregation of facts that you need to learn by heart. Based on media coverage of the science topics, they think it is a collection of curiosities about the two-headed-snakes. Based on the way in which science is shown in movies and TV series, they envision science as a magic performed in a white coat with usage of colorful fluids and magic spells such as "transformative hermeneutics of quantum gravity". As a result, our societies include a large number of people who "do not believe" in evolution, think that vaccinations are causing autism and that anthropogenic global warming is a myth. This is not very surprising, given that most people never had a chance to perform a real scientific experiment. Most of people, if they are lucky, are able to see some science demonstrations in the classrooms. They are of course very useful, but it is quite clear for everyone that (if everything goes well) the demonstration can end up in one, pre-defined way. The "real" scientific experiment, as a part of the scientific process, is when the outcome is unknown until the end of the entire process. In order to teach high-school students "How Science Really Works" we have developed a project lasting one year (grant from Foundation for Polish Science 26/UD/SKILLS/2015): 1) At first students learned about scientific method, science history and performed a simple scientific experiment. 2) Later, students developed an experiment that was answering a real, unanswered scientific problem (the problem was given by the Leading Scientist). The aim of the project was to determine influence of albedo and emissivity of rock particles laying on a surface of a glacier on the rate of cryoconite holes formation. The results of this experiment can be used to better determine the rate of melting terrestrial glaciers and Martian North Polar Residual Cap. 3) Students were responsible for physically preparing scientific equipment (within a given budget). 4) Students prepared detailed procedures which were used during the experiment. The experiment was performed by the Austrian Space Forum analog astronauts during the Mars Analog Mission AMADEE-15 between 2nd and 14th of August 2015 at the Kaunertal Glacier in Austria. 5) During and after the mission students analyzed data collected during the experiment. 6) Students presented their findings during the regional science fair (Dolnoslaski Festiwal Nauki). Despite the fact the quality of the data produced during the experiment was not satisfactory, the project was a success in terms of explaining students "How Science Really Works" (e.g., how much depends on the properly designed and executed procedures).

  19. Change in Thinking Demands for Students Across the Phases of a Science Task: An Exploratory Study

    NASA Astrophysics Data System (ADS)

    Tekkumru-Kisa, Miray; Schunn, Christian; Stein, Mary Kay; Reynolds, Bertha

    2017-08-01

    Science education communities around the world have increasingly emphasized engaging students in the disciplinary practices of science as they engage in high levels of reasoning about scientific ideas. Consistently, this is a critical moment in time in the USA as it goes through a new wave of science education reform within the context of Next Generation Science Standards (NGSS). We argue that the placement of high demands on students' thinking (i.e., a high level of thinking) in combination with positioning students to use disciplinary practices as they try to make sense of scientific ideas (i.e., a deep kind of thinking) constitute critical aspects of the reform. The main purpose of this paper is to identify and describe the kinds and levels of thinking in which students engage when they are invited to think and reason as demanded by NGSS-aligned curricular tasks. Our analysis of video records of classrooms in which an NGSS-aligned, cognitively demanding task was used, revealed many ways in which the aspirational level and kind of student thinking will not be met in many science classrooms. We propose a way of characterizing and labeling the differences among these kinds and levels of thinking during the implementation of a reform-based biology curriculum. These categories, which focus on two important features emphasized in the NGSS, can help us to better understand, diagnose, and communicate issues during the implementation of high-level tasks in science classrooms.

  20. Scientific Notation Watercolor

    ERIC Educational Resources Information Center

    Linford, Kyle; Oltman, Kathleen; Daisey, Peggy

    2016-01-01

    (Purpose) The purpose of this paper is to describe visual literacy, an adapted version of Visual Thinking Strategy (VTS), and an art-integrated middle school mathematics lesson about scientific notation. The intent of this lesson was to provide students with a real life use of scientific notation and exponents, and to motivate them to apply their…

  1. Scientism and Scientific Thinking: A Note on Science Education

    ERIC Educational Resources Information Center

    Gasparatou, Renia

    2017-01-01

    The move from respecting science to "scientism," i.e., the idealization of science and scientific method, is simple: We go from acknowledging the sciences as fruitful human activities to oversimplifying the ways they work, and accepting a fuzzy belief that "Science" and "Scientific Method," will give us a direct…

  2. Hands-on and Online: Scientific Explorations through Distance Learning

    ERIC Educational Resources Information Center

    Mawn, Mary V.; Carrico, Pauline; Charuk, Ken; Stote, Kim S.; Lawrence, Betty

    2011-01-01

    Laboratory experiments are often considered the defining characteristic of science courses. Such activities provide students with real-world contexts for applying scientific concepts, while also allowing them to develop scientific ways of thinking and promoting an interest in science. In recent years, an increasing number of campuses have moved…

  3. The Benefits of Scientific Modeling

    ERIC Educational Resources Information Center

    Kenyon, Lisa; Schwarz, Christina; Hug, Barbara

    2008-01-01

    When students are engaged in scientific modeling, they are able to notice patterns and develop and revise representations that become useful models to predict and explain--making their own scientific knowledge stronger, helping them to think critically, and helping them know more about the nature of science. To illustrate, this article describes a…

  4. Investigating Undergraduates’ Perceptions of Science in Courses Taught Using the CREATE Strategy †

    PubMed Central

    Hoskins, Sally G.; Gottesman, Alan J.

    2018-01-01

    Many science educators agree that 21st century students need to develop mature scientific thinking skills. Unsurprisingly, students’ and experts’ perceptions about the nature of scientific knowledge differ. Moreover, students’ naïve and entrenched epistemologies can preclude their development toward “thinking like scientists.” Novel teaching approaches that guide students toward more mature perceptions may be needed to support their development of scientific thinking skills. To address such issues, physics educators developed the Colorado Learning Attitudes About Science Survey (CLASS), subsequently adapted for chemistry and biology. These surveys are “designed to compare novice and expert perceptions about the content and structure of a specific discipline; the source of knowledge about that discipline, including connection of the discipline to the real world; and problem-solving approaches” (Semsar et al., CBE Life Sci. Educ. 10:268–278; p 269). We used CLASS-Bio to track students’ perceptions of science in separate first-year and upper-level CREATE (Consider, Read, Elucidate hypotheses, Analyze and interpret the data, Think of the next Experiment) electives, hypothesizing that perceptions would become significantly more expert-like across a semester. Both first-year and upper-level cohorts made significant expert-like shifts. Students also made significant critical thinking gains in CREATE courses. Our findings of more mature, expert-like perceptions of science post-course contrast with those of previous studies, where students’ thinking became significantly less expert-like across a term of introductory instruction and changed little in upper-level biology electives. Augmenting traditional biology curricula with CREATE courses could be an economical way to help undergraduates develop more mature views of science. PMID:29904553

  5. Creative Cognition in Secondary Science: An exploration of divergent thinking in science among adolescents

    NASA Astrophysics Data System (ADS)

    Antink-Meyer, Allison; Lederman, Norman G.

    2015-07-01

    The divergent thinking skills in science of 282 US high school students were investigated across 16 weeks of instruction in order to determine whether typical academic time periods can significantly influence changes in thinking skills. Students' from 6 high school science classrooms completed the Scientific Structures Creativity Measure (SSCM) before and after a semester of instruction. Even the short time frame of a typical academic term was found to be sufficient to promote both improvements in divergent thinking skills as well as declining divergent thinking. Declining divergent thinking skills were more common in this time frame than were improvements. The nature of student performance on the SSCM and implications are discussed.

  6. The link between inequalities in science and the scientific evaluation process

    NASA Astrophysics Data System (ADS)

    Koren, Ilan

    2016-04-01

    Unlike the "out of the box", innovative and unconventional way of thinking we would like to cultivate in our science, the academic system tends to be very conservative in the way by which it performs academic evaluations. In the case of hiring and promotion processes, the traditional way may imply the "like attracts like" rule in which the same dominant subset of the population (with respect to culture, nation and gender) preserves its hegemony on the expense of equality and diversity. Being aware of such biases is a good start. Forcing diversity in the hiring and promoting processes is even better.

  7. Othering Processes and STS Curricula: From Nineteenth Century Scientific Discourse on Interracial Competition and Racial Extinction to Othering in Biomedical Technosciences

    NASA Astrophysics Data System (ADS)

    Arteaga, Juan Manuel Sánchez; El-Hani, Charbel N.

    2012-05-01

    This paper analyzes the debates on "interracial competition" and "racial extinction" in the biological discourse on human evolution during the second half of the nineteenth century. Our intention is to discuss the ideological function of these biological concepts as tools for the naturalization and scientific legitimation of racial hierarchies during that period. We argue that the examination of these scientific discussions about race from a historical perspective can play the role of a critical platform for students and teachers to think about the role of science in current othering processes, such as those related to biomedical technosciences. If they learn how biological ideas played an ideological function concerning interracial relationships in the past, they can be compelled to ask which ideological functions the biological knowledge they are teaching and learning might play now. If this is properly balanced, they can eventually both value scientific knowledge for its contributions and have a critical appraisal of some of its implications. We propose, here, a number of initial design principles for the construction of teaching sequences about scientific racism and science-technology-society relationships, yet to be empirically tested by iterative cycles of implementation in basic education and teacher education classrooms.

  8. Comments on "Distinguishing science from pseudoscience in school psychology:" Evidence-based interventions for grandiose bragging.

    PubMed

    Kratochwill, Thomas R

    2012-02-01

    The purpose of this article is to provide some perspectives on Lilienfeld, Ammirati, and David's (2012) paper on distinguishing science from pseudoscience in school psychology. In many respects their work represents an intervention for "grandiose bragging," a problem that has occasionally occurred when various non-evidence-based or discredited interventions receive sensationalized positive endorsement for adoption in school psychology practice. In this paper, the implications of the Lilienfeld et al. work are discussed within the context of the scientist-practitioner gap, scientific thinking and evaluation of scientific thinking, and negative results research. The authors have advanced our thinking on evidence-based practices in school psychology and education. Copyright © 2011 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  9. Beginning without a Conclusion.

    ERIC Educational Resources Information Center

    Frazier, Richard

    1988-01-01

    Describes a series of activities without conclusions to introduce scientific reasoning in a ninth grade physical science course. Uses popcorn popping to get students to think about the concepts of graphing, histograms, frequency, probability, and scientific methodology. (CW)

  10. The Acquisition of Scientific Knowledge via Critical Thinking: A Philosophical Approach to Science Education

    ERIC Educational Resources Information Center

    Talavera, Isidoro

    2016-01-01

    There is a gap between the facts learned in a science course and the higher-cognitive skills of analysis and evaluation necessary for students to secure scientific knowledge and scientific habits of mind. Teaching science is not just about how we do science (i.e., focusing on just "accumulating undigested facts and scientific definitions and…

  11. 42 CFR 426.400 - Procedure for filing an acceptable complaint concerning a provision (or provisions) of an LCD.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... is needed and why the aggrieved party thinks that the provision(s) of the LCD is (are) not valid... scientific evidence that support the complaint and an explanation for why the aggrieved party thinks that...

  12. A High-Enrollment Course-Based Undergraduate Research Experience Improves Student Conceptions of Scientific Thinking and Ability to Interpret Data

    PubMed Central

    Brownell, Sara E.; Hekmat-Scafe, Daria S.; Singla, Veena; Chandler Seawell, Patricia; Conklin Imam, Jamie F.; Eddy, Sarah L.; Stearns, Tim; Cyert, Martha S.

    2015-01-01

    We present an innovative course-based undergraduate research experience curriculum focused on the characterization of single point mutations in p53, a tumor suppressor gene that is mutated in more than 50% of human cancers. This course is required of all introductory biology students, so all biology majors engage in a research project as part of their training. Using a set of open-ended written prompts, we found that the course shifts student conceptions of what it means to think like a scientist from novice to more expert-like. Students at the end of the course identified experimental repetition, data analysis, and collaboration as important elements of thinking like a scientist. Course exams revealed that students showed gains in their ability to analyze and interpret data. These data indicate that this course-embedded research experience has a positive impact on the development of students’ conceptions and practice of scientific thinking. PMID:26033869

  13. Embedding Scientific Integrity and Ethics into the Scientific Process and Research Data Lifecycle

    NASA Astrophysics Data System (ADS)

    Gundersen, L. C.

    2016-12-01

    Predicting climate change, developing resources sustainably, and mitigating natural hazard risk are complex interdisciplinary challenges in the geosciences that require the integration of data and knowledge from disparate disciplines and scales. This kind of interdisciplinary science can only thrive if scientific communities work together and adhere to common standards of scientific integrity, ethics, data management, curation, and sharing. Science and data without integrity and ethics can erode the very fabric of the scientific enterprise and potentially harm society and the planet. Inaccurate risk analyses of natural hazards can lead to poor choices in construction, insurance, and emergency response. Incorrect assessment of mineral resources can bankrupt a company, destroy a local economy, and contaminate an ecosystem. This paper presents key ethics and integrity questions paired with the major components of the research data life cycle. The questions can be used by the researcher during the scientific process to help ensure the integrity and ethics of their research and adherence to sound data management practice. Questions include considerations for open, collaborative science, which is fundamentally changing the responsibility of scientists regarding data sharing and reproducibility. The publication of primary data, methods, models, software, and workflows must become a norm of science. There are also questions that prompt the scientist to think about the benefit of their work to society; ensuring equity, respect, and fairness in working with others; and always striving for honesty, excellence, and transparency.

  14. The transition from animal spirits to animal electricity: a neuroscience paradigm shift.

    PubMed

    Clower, W T

    1998-12-01

    The Animal Spirits Paradigm had been in place for over a thousand years as a general way of looking at the nervous system, and was completely ingrained into the fabric of scientific thinking. However, the community of researchers in the 17th and 18th centuries abandoned their long-held assumptions, and started anew with the novel assertion that the currency of nervous function was, instead of Animal Spirits, a uniquely amimal electricity. This conceptual rearrangement represented a scientific revolution in thinking, a change in absolute perspective that required the reinterpretation of old data within a completely novel framework. The manner in which this transition occurred followed the general form of scientific paradigm shifts as outlined by Thomas Kuhn (Kuhn, 1962)

  15. Default Mode and Executive Networks Areas: Association with the Serial Order in Divergent Thinking

    PubMed Central

    Heinonen, Jarmo; Numminen, Jussi; Hlushchuk, Yevhen; Antell, Henrik; Taatila, Vesa; Suomala, Jyrki

    2016-01-01

    Scientific findings have suggested a two-fold structure of the cognitive process. By using the heuristic thinking mode, people automatically process information that tends to be invariant across days, whereas by using the explicit thinking mode people explicitly process information that tends to be variant compared to typical previously learned information patterns. Previous studies on creativity found an association between creativity and the brain regions in the prefrontal cortex, the anterior cingulate cortex, the default mode network and the executive network. However, which neural networks contribute to the explicit mode of thinking during idea generation remains an open question. We employed an fMRI paradigm to examine which brain regions were activated when participants (n = 16) mentally generated alternative uses for everyday objects. Most previous creativity studies required participants to verbalize responses during idea generation, whereas in this study participants produced mental alternatives without verbalizing. This study found activation in the left anterior insula when contrasting idea generation and object identification. This finding suggests that the insula (part of the brain’s salience network) plays a role in facilitating both the central executive and default mode networks to activate idea generation. We also investigated closely the effect of the serial order of idea being generated on brain responses: The amplitude of fMRI responses correlated positively with the serial order of idea being generated in the anterior cingulate cortex, which is part of the central executive network. Positive correlation with the serial order was also observed in the regions typically assigned to the default mode network: the precuneus/cuneus, inferior parietal lobule and posterior cingulate cortex. These networks support the explicit mode of thinking and help the individual to convert conventional mental models to new ones. The serial order correlated negatively with the BOLD responses in the posterior presupplementary motor area, left premotor cortex, right cerebellum and left inferior frontal gyrus. This finding might imply that idea generation without a verbal processing demand reflecting lack of need for new object identification in idea generation events. The results of the study are consistent with recent creativity studies, which emphasize that the creativity process involves working memory capacity to spontaneously shift between different kinds of thinking modes according to the context. PMID:27627760

  16. Organ transplantation and magical thinking.

    PubMed

    Vamos, Marina

    2010-10-01

    Organ transplantation can provide important treatment benefits in a variety of situations. While a number of live donor procedures are now possible, procurement of organs from dead donors remains the mainstay of transplant programmes. However, cadaveric donation rates remain much lower than anticipated, and some patients who receive organs struggle to adapt to their new body. The reasons for this are not entirely explained by rational or logical means. This paper uses concepts drawn from magical thinking to try to explain some of the less apparent issues at play within the process of cadaveric organ transplantation, including both the donation and receiving of organs. Three themes are explored as potentially relevant: superstitions and rituals around death and the dead body, incorporation and the meanings attached to the transplanted organ, and survivor guilt. All three are shown to be relevant for some part of the transplantation process in at least a minority of cases. It is therefore suggested that focusing not only on the logical and scientific, but also on the ambiguous and magical may enhance the organ donation process and thus increase donation rates and the psychological adjustment of transplant recipients.

  17. Basic Blue Skies Research in the UK: Are we losing out?

    PubMed Central

    Linden, Belinda

    2008-01-01

    Background The term blue skies research implies a freedom to carry out flexible, curiosity-driven research that leads to outcomes not envisaged at the outset. This research often challenges accepted thinking and introduces new fields of study. Science policy in the UK has given growing support for short-term goal-oriented scientific research projects, with pressure being applied on researchers to demonstrate the future application of their work. These policies carry the risk of restricting freedom, curbing research direction, and stifling rather than stimulating the creativity needed for scientific discovery. Methods This study tracks the tortuous routes that led to three major discoveries in cardiology. It then investigates the constraints in current research, and opportunities that may be lost with existing funding processes, by interviewing selected scientists and fund providers for their views on curiosity-driven research and the freedom needed to allow science to flourish. The transcripts were analysed using a grounded theory approach to gather recurrent themes from the interviews. Results The results from these interviews suggest that scientists often cannot predict the future applications of research. Constraints such as lack of scientific freedom, and a narrow focus on relevance and accountability were believed to stifle the discovery process. Although it was acknowledged that some research projects do need a clear and measurable framework, the interviewees saw a need for inquisitive, blue skies research to be managed in a different way. They provided examples of situations where money allocated to 'safe' funding was used for more innovative research. Conclusion This sample of key UK scientists and grant providers acknowledge the importance of basic blue skies research. Yet the current evaluation process often requires that scientists predict their likely findings and estimate short-term impact, which does not permit freedom of research direction. There is a vital need for prominent scientists and for universities to help the media, the public, and policy makers to understand the importance of innovative thought along with the need for scientists to have the freedom to challenge accepted thinking. Encouraging an avenue for blue skies research could have immense influence over future scientific discoveries. PMID:18312612

  18. Basic Blue Skies Research in the UK: Are we losing out?

    PubMed

    Linden, Belinda

    2008-02-29

    The term blue skies research implies a freedom to carry out flexible, curiosity-driven research that leads to outcomes not envisaged at the outset. This research often challenges accepted thinking and introduces new fields of study. Science policy in the UK has given growing support for short-term goal-oriented scientific research projects, with pressure being applied on researchers to demonstrate the future application of their work. These policies carry the risk of restricting freedom, curbing research direction, and stifling rather than stimulating the creativity needed for scientific discovery. This study tracks the tortuous routes that led to three major discoveries in cardiology. It then investigates the constraints in current research, and opportunities that may be lost with existing funding processes, by interviewing selected scientists and fund providers for their views on curiosity-driven research and the freedom needed to allow science to flourish. The transcripts were analysed using a grounded theory approach to gather recurrent themes from the interviews. The results from these interviews suggest that scientists often cannot predict the future applications of research. Constraints such as lack of scientific freedom, and a narrow focus on relevance and accountability were believed to stifle the discovery process. Although it was acknowledged that some research projects do need a clear and measurable framework, the interviewees saw a need for inquisitive, blue skies research to be managed in a different way. They provided examples of situations where money allocated to 'safe' funding was used for more innovative research. This sample of key UK scientists and grant providers acknowledge the importance of basic blue skies research. Yet the current evaluation process often requires that scientists predict their likely findings and estimate short-term impact, which does not permit freedom of research direction. There is a vital need for prominent scientists and for universities to help the media, the public, and policy makers to understand the importance of innovative thought along with the need for scientists to have the freedom to challenge accepted thinking. Encouraging an avenue for blue skies research could have immense influence over future scientific discoveries.

  19. Integrating Scientific Argumentation to Improve Undergraduate Writing and Learning in a Global Environmental Change Course

    ERIC Educational Resources Information Center

    Koffman, Bess G.; Kreutz,Karl J.; Trenbath, Kim

    2017-01-01

    We present a strategy for using scientific argumentation in an early undergraduate laboratory course to teach disciplinary writing practices and to promote critical thinking, knowledge transformation, and understanding of the scientific method. The approach combines targeted writing instruction; data analysis and interpretation; formulation of a…

  20. A Simple Exercise Reveals the Way Students Think about Scientific Modeling

    ERIC Educational Resources Information Center

    Ruebush, Laura; Sulikowski, Michelle; North, Simon

    2009-01-01

    Scientific modeling is an integral part of contemporary science, yet many students have little understanding of how models are developed, validated, and used to predict and explain phenomena. A simple modeling exercise led to significant gains in understanding key attributes of scientific modeling while revealing some stubborn misconceptions.…

  1. Understanding and Affecting Science Teacher Candidates' Scientific Reasoning in Introductory Astrophysics

    ERIC Educational Resources Information Center

    Steinberg, Richard; Cormier, Sebastien

    2013-01-01

    This study reports on a content course for science immersion teacher candidates that emphasized authentic practice of science and thinking scientifically in the context of introductory astrophysics. We explore how 122 science teacher candidates spanning three cohorts did and did not reason scientifically and how this evolved in our program. Our…

  2. Argument to Foster Scientific Literacy: A Review of Argument Interventions in K-12 Science Contexts

    ERIC Educational Resources Information Center

    Cavagnetto, Andy R.

    2010-01-01

    The goal of scientific literacy has led to a steady increase in argument-based interventions in science education contexts. It has been suggested that student participation in argument develops communication skills, metacognitive awareness, critical thinking, an understanding of the culture and practice of science, and scientific literacy.…

  3. Integrating Socio-Scientific Issues to Enhance the Bioethical Decision-Making Skills of High School Students

    ERIC Educational Resources Information Center

    Gutierez, Sally B.

    2015-01-01

    Scientific literacy has been focused on the construction of students' knowledge to use appropriate and meaningful concepts, critically think, and make balanced, well-informed decisions relevant to their lives. This study presents the effects of integrating socio-scientific issues to enhance the bioethical decision-making skills of biology…

  4. Causal criteria and counterfactuals; nothing more (or less) than scientific common sense.

    PubMed

    Phillips, Carl V; Goodman, Karen J

    2006-05-26

    Two persistent myths in epidemiology are that we can use a list of "causal criteria" to provide an algorithmic approach to inferring causation and that a modern "counterfactual model" can assist in the same endeavor. We argue that these are neither criteria nor a model, but that lists of causal considerations and formalizations of the counterfactual definition of causation are nevertheless useful tools for promoting scientific thinking. They set us on the path to the common sense of scientific inquiry, including testing hypotheses (really putting them to a test, not just calculating simplistic statistics), responding to the Duhem-Quine problem, and avoiding many common errors. Austin Bradford Hill's famous considerations are thus both over-interpreted by those who would use them as criteria and under-appreciated by those who dismiss them as flawed. Similarly, formalizations of counterfactuals are under-appreciated as lessons in basic scientific thinking. The need for lessons in scientific common sense is great in epidemiology, which is taught largely as an engineering discipline and practiced largely as technical tasks, making attention to core principles of scientific inquiry woefully rare.

  5. Theory of Constraints for Services: Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Ricketts, John A.

    Theory of constraints (TOC) is a thinking process and a set of management applications based on principles that run counter to conventional wisdom. TOC is best known in the manufacturing and distribution sectors where it originated. Awareness is growing in some service sectors, such as Health Care. And it's been adopted in some high-tech industries, such as Computer Software. Until recently, however, TOC was barely known in the Professional, Scientific, and Technical Services (PSTS) sector. Professional services include law, accounting, and consulting. Scientific services include research and development. And Technical services include development, operation, and support of various technologies. The main reason TOC took longer to reach PSTS is it's much harder to apply TOC principles when services are highly customized. Nevertheless, with the management applications described in this chapter, TOC has been successfully adapted for PSTS. Those applications cover management of resources, projects, processes, and finances.

  6. Thinking like a scientist: innateness as a case study.

    PubMed

    Knobe, Joshua; Samuels, Richard

    2013-01-01

    The concept of innateness appears in systematic research within cognitive science, but it also appears in less systematic modes of thought that long predate the scientific study of the mind. The present studies therefore explore the relationship between the properly scientific uses of this concept and its role in ordinary folk understanding. Studies 1-4 examined the judgments of people with no specific training in cognitive science. Results showed (a) that judgments about whether a trait was innate were not affected by whether or not the trait was learned, but (b) such judgments were impacted by moral considerations. Study 5 looked at the judgments of both non-scientists and scientists, in conditions that encouraged either thinking about individual cases or thinking about certain general principles. In the case-based condition, both non-scientists and scientists showed an impact of moral considerations but little impact of learning. In the principled condition, both non-scientists and scientists showed an impact of learning but little impact of moral considerations. These results suggest that both non-scientists and scientists are drawn to a conception of innateness that differs from the one at work in contemporary scientific research but that they are also both capable of 'filtering out' their initial intuitions and using a more scientific approach. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Angry thoughts in Spanish drivers and their relationship with crash-related events. The mediation effect of aggressive and risky driving.

    PubMed

    Herrero-Fernández, David; Fonseca-Baeza, Sara

    2017-09-01

    Several studies have related aggressive and risky driving behaviours to accidents. However, the cognitive processes associated with driving aggression have received very little attention in the scientific literature. With the aim of shedding light on this topic, the present research was carried out on a sample of 414 participants in order to validate the Driver's Angry Thoughts Questionnaire (DATQ) with a sample of Spanish drivers and to test the hypothesis of the mediation effect of aggressive and risky driving on the relationship between drivers' angry thoughts and crash-related events. The results showed a good fit with the five-factor model of the questionnaire (Judgmental and Disbelieving Thinking, Pejorative Labelling and Verbally Aggressive Thinking, Revenge and Retaliatory Thinking, Physically Aggressive Thinking, and Coping Self-Instruction). Moreover, slight gender differences were observed in drivers' angry thoughts, with women scoring higher than men (η 2 =0.03). However, younger drivers had higher scores than older drivers in general (η 2 =0.06). Finally, several mediation effects of aggressive driving and risky driving on the relationship between aggressive thinking and the crash-related events were found. Implications of the results for research in traffic psychology and clinical assessment of aggressive drivers as well as limitations of the study are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. `Quantum Mechanics' and `Scientific Explanation' An Explanatory Strategy Aiming at Providing `Understanding'

    NASA Astrophysics Data System (ADS)

    Hadzidaki, Pandora

    2008-01-01

    Empirical studies persistently indicate that the usual explanatory strategies used in quantum mechanics (QM) instruction fail, in general, to yield understanding. In this study, we propose an instructional intervention, which: (a) incorporates into its subject matter a critical comparison of QM scientific content with the fundamental epistemological and ontological commitments of the prominent philosophical theories of explanation, a weak form of which we meet in QM teaching; (b) illuminates the reasons of their failure in the quantum domain; and (c) implements an explanatory strategy highly inspired by the epistemological pathways through which, during the birth-process of QM, science has gradually reached understanding. This strategy, an inherent element of which is the meta-cognitive and meta-scientific thinking, aims at leading learners not only to an essential understanding of QM worldview, but to a deep insight into the ‘Nature of Science’ as well.

  9. Sensemaking: Conceptualizing and Coding for “Good” Student Reasoning

    NASA Astrophysics Data System (ADS)

    Elby, Andrew; Scherr, R.; Bing, T.

    2006-12-01

    Physics instructors’ goals often go beyond improving students’ conceptual understanding and problem solving. Instructors also want students to engage in inquiry, become scientific/critical thinkers, understand the scientific process, and so on. We see two problems with these “non-content” goals. First, notions such as inquiry and scientific thinking are often defined vaguely or inconsistently across the literature. Second, even when like-minded instructors share a vision of what we’d love to see our students do, descriptions of that vision are often too squishy to communicate, debate, or assess: “We know it when we see it!” In this talk and poster, we address these problems by introducing sensemaking vs. answermaking, two mindsets with which students can approach physics. Our definitions of those notions benefit from a theoretical base, and our coding scheme for sensemaking vs. answermaking displays high interrater reliability and rests upon a list of specific indicators.

  10. University-Level Teaching of Anthropogenic Global Climate Change (AGCC) via Student Inquiry

    NASA Technical Reports Server (NTRS)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2017-01-01

    This paper reviews university-level efforts to improve understanding of anthropogenic global climate change (AGCC) through curricula that enable student scientific inquiry. We examined 152 refereed publications and proceedings from academic conferences and selected 26 cases of inquiry learning that overcome specific challenges to AGCC teaching. This review identifies both the strengths and weaknesses of each of these case studies. It is the first to go beyond examining the impact of specific inquiry instructional approaches to offer a synthesis of cases. We find that inquiry teaching can succeed by concretising scientific processes, providing access to global data and evidence, imparting critical and higher order thinking about AGCC science policy and contextualising learning with places and scientific facts. We recommend educational researchers and scientists collaborate to create and refine curricula that utilise geospatial technologies, climate models and communication technologies to bring students into contact with scientists, climate data and authentic AGCC research processes. Many available science education technologies and curricula also require further research to maximise trade-offs between implementation and training costs and their educational value.

  11. Thinking like an Ecologist

    ERIC Educational Resources Information Center

    Carlson, Jenn

    2008-01-01

    This article presents a lesson in which students examine current field research on global change. In particular, students investigate the effect of carbon dioxide and tropospheric ozone on ecosystems by applying their knowledge of scientific inquiry and photosynthesis. The goal of the activity is for students to think like ecologists and draw…

  12. Kidspiration[R] for Inquiry-Centered Activities

    ERIC Educational Resources Information Center

    Shaw, Edward L., Jr.; Baggett, Paige V.; Salyer, Barbara

    2004-01-01

    Computer technology can be integrated into science inquiry activities to increase student motivation and enhance and expand scientific thinking. Fifth-grade students used the visual thinking tools in the Kidspiration[R] software program to generate and represent a web of hypotheses around the question, "What affects the distance a marble rolls?"…

  13. Developing Intuitive Reasoning with Graphs to Support Science Arguments

    ERIC Educational Resources Information Center

    Grueber, David

    2011-01-01

    Graphs are important for supporting critical thinking and scientific argumentation because students can use them to reason, make judgments and decisions, and solve problems like a scientist (Connery 2007). Yet teaching students how to use math to actually think critically continues to be difficult for teachers. This article describes two…

  14. Reaching More Students through Thinking in Physics

    ERIC Educational Resources Information Center

    Coletta, Vincent P.

    2017-01-01

    Thinking in Physics (TIP) is a new curriculum that is more effective than commonly used interactive engagement methods for students who have the greatest difficulty learning physics. Research has shown a correlation between learning in physics and other factors, including scientific reasoning ability. The TIP curriculum addresses those factors.…

  15. The future of poultry science research: things I think I think.

    PubMed

    Taylor, R L

    2009-06-01

    Much poultry research progress has occurred over the first century of the Poultry Science Association. During that time, specific problems have been solved and much basic biological knowledge has been gained. Scientific discovery has exceeded its integration into foundation concepts. Researchers need to be involved in the public's development of critical thinking skills to enable discernment of fact versus fiction. Academic, government, and private institutions need to hire the best people. Issues of insufficient research funding will be remedied by a combination of strategies rather than by a single cure. Scientific advocacy for poultry-related issues is critical to success. Two other keys to the future are funding for higher-risk projects, whose outcome is truly unknown, and specific allocations for new investigators. Diligent, ongoing efforts by poultry scientists will enable progress beyond the challenges.

  16. Teaching socioscientific issues: classroom culture and students' performances

    NASA Astrophysics Data System (ADS)

    Tal, Tali; Kedmi, Yarden

    2006-12-01

    The "Treasures in the Sea: Use and Abuse" unit that deals with authentic socioscientific issues related to the Mediterranean was developed as part of a national effort to increase scientific literacy. The unit aimed to enhance active participation of the learners and encourage higher order thinking in class by applying teaching methods that reduce the unfamiliarity felt by students. This was expected through an explicit use of a variety of teaching and assessment-for-learning methods, suitable for Science for All students. Our main goal was to examine the culture of Science for All classes in which the unit was enacted. In order to address the main learning objectives, we monitored students' performances in tasks that required the higher order thinking skills of argumentation and value judgment, which are central constituents of decision-making processes. We show that while socioscientific issues were discussed in whole class and small group sessions, and students' argumentation improved, there is still a long way to go in applying a thinking culture in non-science major classes. We suggest that science teachers should shift from traditional content-based and value-free approach, to a sociocultural approach that views science as a community practice and the students as active participants in decision-making processes.

  17. Modern health worries - the dark side of spirituality?

    PubMed

    Köteles, Ferenc; Simor, Péter; Czető, Márton; Sárog, Noémi; Szemerszky, Renáta

    2016-08-01

    Modern health worries (MHWs) are widespread in modern societies. MHWs were connected to both negative and positive psychological characteristics in previous studies. The study aimed to investigate the relationships among intuitive-experiential information processing style, spirituality, MHWs, and psychological well-being. Members of the Hungarian Skeptic Society (N = 128), individuals committed to astrology (N = 601), and people from a non-representative community sample (N = 554) completed questionnaires assessing intuitive-experiential information processing style, spirituality, modern health worries (MHWs), and psychological well-being. Astrologers showed higher levels of spirituality, intuitive-experiential thinking, and modern health worries than individuals from the community sample; and skeptics scored even lower than the latter group with respect to all three constructs. Within the community sample, medium level connections between measures of spirituality and the experiential thinking style, and weak to medium level correlations between spirituality and MHWs were found. The connection between MHWs and experiential thinking style was completely mediated by spirituality. Individuals with higher levels of spirituality are particularly vulnerable to overgeneralized messages on health related risks. Official communication of potential risks based on rational scientific reasoning is not appropriate to persuade them as it has no impact on the intuitive-experiential system. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  18. Classroom Preschool Science Learning: The Learner, Instructional Tools, and Peer-Learning Assignments

    NASA Astrophysics Data System (ADS)

    Reuter, Jamie M.

    The recent decades have seen an increased focus on improving early science education. Goals include helping young children learn about pertinent concepts in science, and fostering early scientific reasoning and inquiry skills (e.g., NRC 2007, 2012, 2015). However, there is still much to learn about what constitutes appropriate frameworks that blend science education with developmentally appropriate learning environments. An important goal for the construction of early science is a better understanding of appropriate learning experiences and expectations for preschool children. This dissertation examines some of these concerns by focusing on three dimensions of science learning in the preschool classroom: (1) the learner; (2) instructional tools and pedagogy; and (3) the social context of learning with peers. In terms of the learner, the dissertation examines some dimensions of preschool children's scientific reasoning skills in the context of potentially relevant, developing general reasoning abilities. As young children undergo rapid cognitive changes during the preschool years, it is important to explore how these may influence scientific thinking. Two features of cognitive functioning have been carefully studied: (1) the demonstration of an epistemic awareness through an emerging theory of mind, and (2) the rapid improvement in executive functioning capacity. Both continue to develop through childhood and adolescence, but changes in early childhood are especially striking and have been neglected as regards their potential role in scientific thinking. The question is whether such skills relate to young children's capacity for scientific thinking. Another goal was to determine whether simple physics diagrams serve as effective instructional tools in supporting preschool children's scientific thinking. Specifically, in activities involving predicting and checking in scientific contexts, the question is whether such diagrams facilitate children's ability to accurately recall initial predictions, as well as discriminate between the outcome of a scientific manipulation and their original predictions (i.e., to determine whether one's predictions were confirmed). Finally, this dissertation also explores the social context of learning science with peers in the preschool classroom. Due to little prior research in this area, it is currently unclear whether and how preschool children may benefit from working with peers on science activities in the classroom. This work aims to examine preschoolers' collaboration on a science learning activity, as well as the developmental function for such collaborative skills over the preschool years.

  19. Maximizing profit and endangering health: corporate strategies to avoid litigation and regulation.

    PubMed

    Bohme, Susanna Rankin; Zorabedian, John; Egilman, David S

    2005-01-01

    Corporations and industries use various tactics to obscure the fact that their products are dangerous or deadly. Their aim is to secure the least restrictive possible regulatory environment and avert legal liability for deaths or injuries in order to maximize profit. They work with attorneys and public relations professionals, using scientists, science advisory boards; front groups, industry organizations, think tanks, and the media to influence scientific and popular opinion of the risks of their products or processes. The strategy, which depends on corrupt science, profits corporations at the expense of public health. Public health professionals can learn from this strategy how to effectively build scientific and public opinion that prioritizes both good science and the public health.

  20. Scientific Research: What it Means to Me.

    PubMed

    Narlikar, Jayant V

    2008-01-01

    This article gives a personal perception of the author, of what scientific research means. Citing examples from the lives of all time greats like Newton, Kelvin and Maxwell he stresses the agonies of thinking up new ideas, the urge for creativity and the pleasure one derives from the process when it is completed. He then narrates instances from his own life that proved inspirational towards his research career. In his early studenthood, his parents and maternal uncle had widened his intellectual horizons while in later life his interaction with Fred Hoyle made him take up research challenges away from the beaten path. He concludes that taking up an anti-Establishment stand in research can create many logistical difficulties, but the rewards of success are all the more pleasing.

  1. An appeal to undergraduate wildlife programs: send scientists to learn statistics

    USGS Publications Warehouse

    Kendall, W.L.; Gould, W.R.

    2002-01-01

    Undergraduate wildlife students taking introductory statistics too often are poorly prepared and insufficiently motivated to learn statistics. We have also encountered too many wildlife professionals, even with graduate degrees, who exhibit an aversion to thinking statistically, either relying too heavily on statisticians or avoiding statistics altogether. We believe part of the reason for these problems is that wildlife majors are insufficiently grounded in the scientific method and analytical thinking before they take statistics. We suggest that a partial solution is to assure wildlife majors are trained in the scientific method at the very beginning of their academic careers.

  2. Science Literacy, Critical Thinking, and Scientific Literature: Guidelines for Evaluating Scientific Literature in the Classroom

    ERIC Educational Resources Information Center

    Jurecki, Karenann; Wander, Matthew C. F.

    2012-01-01

    In this work, we present an approach for teaching students to evaluate scientific literature and other materials critically. We use four criteria divided into two tiers: original research, authority, objectivity, and validity. The first tier, originality and authority, assesses the quality of the source. The second tier, objectivity and validity,…

  3. "Small Science": Infants and Toddlers Experiencing Science in Everyday Family Life

    ERIC Educational Resources Information Center

    Sikder, Shukla; Fleer, Marilyn

    2015-01-01

    Vygotsky (1987) stated that the restructured form of everyday concepts learned at home and in the community interact with scientific concepts introduced in formal school settings, leading to a higher level of scientific thinking for school-aged children. But, what does this mean for the scientific learning of infants and toddlers? What kinds of…

  4. "A Scientist Has Many Things to Do:" EPO Strategies that Focus on the Processes of Science

    NASA Astrophysics Data System (ADS)

    Laursen, S. L.; Brickley, A. L.

    2011-09-01

    Scientists' effort in education and public outreach (EPO) is best invested in sharing their expertise on the nature and processes of science - the "understandings of science" that are emphasized in the National Science Education Standards, but that are difficult to teach and poorly supported by existing curricular materials. These understandings address the intellectual process of science - posing questions, gathering and interpreting evidence - and the social process of science as a human endeavor for building knowledge. We share several ways of incorporating concepts about the nature and processes of science into EP/O activities and making them focal points in their own right. Hands-on activities used at science festivals and in classrooms and professional development workshops illustrate key scientific thinking skills such as observing, classifying, making predictions, and drawing inferences. A more comprehensive approach is exemplified by Upward and Outward: Scientific Inquiry on the Tibetan Plateau, a 20-minute educational documentary film for school science classrooms and teacher professional development. The film portrays the intellectual and human processes of science through an inside view of a research project; classroom assessments offer evidence of its impact on students' ideas about these processes.

  5. The development of scientific literacy assessment to measure student’s scientific literacy skills in energy theme

    NASA Astrophysics Data System (ADS)

    Rusilowati, A.; Nugroho, S. E.; Susilowati, E. S. M.; Mustika, T.; Harfiyani, N.; Prabowo, H. T.

    2018-03-01

    The research were aimed to develop and find out of validity, reliability, characteristic of scientific literacy assessment, and find out of the profile of students’ scientific literacy skills in Energy themed. The research is conducted in 7th grade of Secondary School at Demak, Central of Java Indonesia. The research design used R&D (Research and Development). The results of the research showed that the scientific literacy assessment was valid and reliable with 0.68 value in the first try out and 0.73 value in the last try out. The characteristics of the scientific literacy assessment are the difficulty index and the discrimination power. The difficulty index and distinguishing are 56.25% easy, 31.25% medium, and 12.5% very difficult with good discrimination power. The proportion of category of scientific literacy as the body of knowledge, the science as a way of investigating, science as a way of thinking, and the interaction among science, environment, technology, and society was 37.5%:25%:18.75%:18.75%. The highest to the lowest profile of students’ scientific literacy skills at Secondary School Demak was 72% in the category of science as a way of thinking and the lowest was 59% in the category of science as the body of knowledge.

  6. Knowledge, beliefs and pedagogy: how the nature of science should inform the aims of science education (and not just when teaching evolution)

    NASA Astrophysics Data System (ADS)

    Taber, Keith S.

    2017-03-01

    Lisa Borgerding's work highlights how students can understand evolution without necessarily committing to it, and how learners may come to see it as one available way of thinking amongst others. This is presented as something that should be considered a successful outcome when teaching about material that many students may find incompatible with their personal worldviews. These findings derive from work exploring a cause célèbre of the science education community—the teaching of natural selection in cultural contexts where learners feel they have strong reasons for rejecting evolutionary ideas. Accepting that students may understand but not commit to scientific ideas that are (from some cultural perspectives) controversial may easily be considered as a form of compromise position when teaching canonical science prescribed in curriculum but resisted by learners. Yet if we take scholarship on the nature of science seriously, and wish to reflect the nature of scientific knowledge in science teaching, then the aim of science education should always be to facilitate understanding of, yet to avoid belief in, the ideas taught in science lessons. The philosophy of science suggests that scientific knowledge needs to be understood as theoretical in nature, as conjectural and provisional; and the history of science warns of the risks of strongly committing to any particular conceptualisation as a final account of some feature of nature. Research into student thinking and learning in science suggests that learning science is often a matter of coming to understand a new viable way of thinking about a topic to complement established ways of thinking. Science teaching should then seek to have students appreciate scientific ideas as viable ways of making sense of the currently available empirical evidence, but should not be about persuading students of the truth of any particular scientific account.

  7. The Creative Stereotype Effect

    PubMed Central

    Dumas, Denis; Dunbar, Kevin N.

    2016-01-01

    Because of its fundamental relevance to scientific innovation, artistic expression, and human ingenuity, creativity has long been the subject of systematic psychological investigation. Concomitantly, the far-reaching effects of stereotypes on various cognitive and social processes have been widely researched. Bridging these two literatures, we show in a series of two studies that stereotypes related to creativity can both enhance and diminish individuals’ performance on a divergent thinking task. Specifically, Study 1 demonstrated that participants asked to take on a stereotypically uninhibited perspective performed significantly better on a divergent thinking task than those participants who took on a stereotypically inhibited perspective, and a control group. Relatedly, Study 2 showed that the same effect is found within-subjects, with divergent thinking significantly improving when participants invoke an uninhibited stereotype. Moreover, we demonstrate the efficacy of Latent Semantic Analysis as an objective measure of the originality of ideas, and discuss implications of our findings for the nature of creativity. Namely, that creativity may not be best described as a stable individual trait, but as a malleable product of context and perspective. PMID:26863143

  8. Analytic thinking promotes religious disbelief.

    PubMed

    Gervais, Will M; Norenzayan, Ara

    2012-04-27

    Scientific interest in the cognitive underpinnings of religious belief has grown in recent years. However, to date, little experimental research has focused on the cognitive processes that may promote religious disbelief. The present studies apply a dual-process model of cognitive processing to this problem, testing the hypothesis that analytic processing promotes religious disbelief. Individual differences in the tendency to analytically override initially flawed intuitions in reasoning were associated with increased religious disbelief. Four additional experiments provided evidence of causation, as subtle manipulations known to trigger analytic processing also encouraged religious disbelief. Combined, these studies indicate that analytic processing is one factor (presumably among several) that promotes religious disbelief. Although these findings do not speak directly to conversations about the inherent rationality, value, or truth of religious beliefs, they illuminate one cognitive factor that may influence such discussions.

  9. Scaffolding Student Learning in the Discipline-Specific Knowledge through Contemporary Science Practices: Developing High-School Students' Epidemiologic Reasoning through Data Analysis

    NASA Astrophysics Data System (ADS)

    Oura, Hiroki

    Science is a disciplined practice about knowing puzzling observations and unknown phenomena. Scientific knowledge of the product is applied to develop technological artifacts and solve complex problems in society. Scientific practices are undeniably relevant to our economy, civic activity, and personal lives, and thus public education should help children acquire scientific knowledge and recognize the values in relation to their own lives and civil society. Likewise, developing scientific thinking skills is valuable not only for becoming a scientist, but also for becoming a citizen who is able to critically evaluate everyday information, select and apply only the trustworthy, and make wise judgments in their personal and cultural goals as well as for obtaining jobs that require complex problem solving and creative working in the current knowledge-based economy and rapid-changing world. To develop students' scientific thinking, science instruction should focus not only on scientific knowledge and inquiry processes, but also on its epistemological aspects including the forms of causal explanations and methodological choices along with epistemic aims and values under the social circumstances in focal practices. In this perspective, disciplinary knowledge involves heterogeneous elements including material, cognitive, social, and cultural ones and the formation differs across practices. Without developing such discipline-specific knowledge, students cannot enough deeply engage in scientific "practices" and understand the true values of scientific enterprises. In this interest, this dissertation explores instructional approaches to make student engagement in scientific investigations more authentic or disciplinary. The present dissertation work is comprised of three research questions as stand-alone studies written for separate publication. All of the studies discuss different theoretical aspects related to disciplinary engagement in epidemiologic inquiry and student development in epidemiologic reasoning. The first chapter reviews literature on epistemological instruction and explores theoretical frameworks for epistemically-guided instruction. The second chapter explores methodological strategies to elicit students' disciplinary understanding and demonstrates an approach with a case study in which students engaged in a curriculum unit for an epidemiologic investigation. The last chapter directs the focus into scientific reasoning and demonstrates how the curriculum unit and its scaffolds helped students develop epidemiologic reasoning with a focus on population-based reasoning.

  10. Generating Testable Questions in the Science Classroom: The BDC Model

    ERIC Educational Resources Information Center

    Tseng, ChingMei; Chen, Shu-Bi Shu-Bi; Chang, Wen-Hua

    2015-01-01

    Guiding students to generate testable scientific questions is essential in the inquiry classroom, but it is not easy. The purpose of the BDC ("Big Idea, Divergent Thinking, and Convergent Thinking") instructional model is to to scaffold students' inquiry learning. We illustrate the use of this model with an example lesson, designed…

  11. Epistemic Cognition when Students Read Multiple Documents Containing Conflicting Scientific Evidence: A Think-Aloud Study

    ERIC Educational Resources Information Center

    Ferguson, Leila E.; Braten, Ivar; Stromso, Helge I.

    2012-01-01

    This study used think-aloud methodology to investigate 51 Norwegian undergraduates' topic-specific epistemic cognition while working with six documents presenting conflicting views on the issue of cell phones and potential health risks. Results showed that students' epistemic cognition was represented by one dimension concerning the certainty and…

  12. Applying Cognitive Science to Education: Thinking and Learning in Scientific and Other Complex Domains

    ERIC Educational Resources Information Center

    Reif, Frederick

    2008-01-01

    Many students find it difficult to learn the kinds of knowledge and thinking required by college or high school courses in mathematics, science, or other complex domains. Thus they often emerge with significant misconceptions, fragmented knowledge, and inadequate problem-solving skills. Most instructors or textbook authors approach their teaching…

  13. Understanding the Complex Relationship between Critical Thinking and Science Reasoning among Undergraduate Thesis Writers

    ERIC Educational Resources Information Center

    Dowd, Jason E.; Thompson, Robert J., Jr.; Schif, Leslie A.; Reynolds, Julie A.

    2018-01-01

    Developing critical-thinking and scientific reasoning skills are core learning objectives of science education, but little empirical evidence exists regarding the interrelationships between these constructs. Writing effectively fosters students' development of these constructs, and it offers a unique window into studying how they relate. In this…

  14. Scientific Literacy: Where Did It Come From? Where Is It Going?

    ERIC Educational Resources Information Center

    Hammond, Dick E.

    This paper examines how the revolution in human thinking, with the smaller revolution in astronomy begun by Nicolus Copernicus, has plunged science educators into the new Age of Information. Examples which illustrate this development and change in human thinking (from Copernicus' time to the present) are provided from such disciplines as…

  15. Cricital Thinking Abilities That Support Scientific Skills. Workshop.

    ERIC Educational Resources Information Center

    Pallas, Stella

    Science is suggested as an excellent content area for teaching primary students the creative and critical thinking skills that can help them become better problem solvers. J. P. Guilford's Structure of Intellect model and Benjamin Bloom's Taxonomy of Educational Objectives serve as the basis for developing exercises which lead to improvement of…

  16. A Phenomenological Examination of Perceived Skills and Concepts Necessary for Teaching Scientific Thinking

    ERIC Educational Resources Information Center

    Kapetanis, Ana Cristina

    2011-01-01

    The use of high stakes testing to improve educational outcomes falls short in many settings. Proposals for improvement include providing more opportunities for students to extend their thinking, gaining experience in the social nature of science, and learning how to interpret, explain, and justify results. This phenomenological qualitative project…

  17. Inquiry and Learning: Realizing Science Standards in the Classroom. The Thinking Series.

    ERIC Educational Resources Information Center

    Layman, John W.; And Others

    This book provides a focused, extended response to the question How does standards-based science instruction look and feel in the classroom? This question is addressed by considering two related issues: (1) "How can teachers cultivate the quality of scientific thinking and understanding defined by standards?" and (2) "How can…

  18. Planning Science Instruction for Critical Thinking: Two Urban Elementary Teachers' Responses to a State Science Assessment

    ERIC Educational Resources Information Center

    Mangiante, Elaine Silva

    2013-01-01

    Science education reform standards have shifted focus from exploration and experimentation to evidence-based explanation and argumentation to prepare students with knowledge for a changing workforce and critical thinking skills to evaluate issues requiring increasing scientific literacy. However, in urban schools serving poor, diverse populations,…

  19. Decoding the Disciplines: An Approach to Scientific Thinking

    ERIC Educational Resources Information Center

    Pinnow, Eleni

    2016-01-01

    The Decoding the Disciplines methodology aims to teach students to think like experts in discipline-specific tasks. The central aspect of the methodology is to identify a bottleneck in the course content: a particular topic that a substantial number of students struggle to master. The current study compared the efficacy of standard lecture and…

  20. Biodesign process and culture to enable pediatric medical technology innovation.

    PubMed

    Wall, James; Wynne, Elizabeth; Krummel, Thomas

    2015-06-01

    Innovation is the process through which new scientific discoveries are developed and promoted from bench to bedside. In an effort to encourage young entrepreneurs in this area, Stanford Biodesign developed a medical device innovation training program focused on need-based innovation. The program focuses on teaching systematic evaluation of healthcare needs, invention, and concept development. This process can be applied to any field of medicine, including Pediatric Surgery. Similar training programs have gained traction throughout the United States and beyond. Equally important to process in the success of these programs is an institutional culture that supports transformative thinking. Key components of this culture include risk tolerance, patience, encouragement of creativity, management of conflict, and networking effects. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. What type of person are you? Old-fashioned thinking even in modern science.

    PubMed

    Weiss, Kenneth M; Lambert, Brian W

    2014-01-01

    People around the world have folk origin myths, stories that explain where they came from and account for their place in the world and their differences from other peoples. As scientists, however, we claim to be seeking literal historical truth. In Western culture, typological ideas about human variation are at least as ancient as written discussion of the subject, and have dominated both social and scientific thinking about race. From Herodotus to the Biblical lost tribes of Israel, and surprisingly even to today, it has been common to view our species as composed of distinct, or even discrete groups, types, or "races," with other individuals admixed from among those groups. Such rhetoric goes so much against the well-known evolutionary realities that it must reflect something deep about human thought, at least in Western culture. Typological approaches can be convenient for some pragmatic aspects of scientific analysis, but they can be seductively deceiving. We know how to think differently and should do so, given the historical abuses that have occurred as a result of typological thinking that seem always to lurk in the human heart.

  2. [How Can We Cuddle Up to Dying Patients? Attempts of Cancer Philosophy Clinic and Education].

    PubMed

    Yamada, Keisuke

    2016-03-01

    What is needed to treat problems about how can we cuddle up to dying patients is not scientific thinking but philosophical thinking. Cancer philosophy clinic is a place where both patients and medical staffs think about death and how to live until death. The author tries to manage cancer philosophy clinic with the idea of logotherapy and terminal art. The author also tries to educate medical students and other medical staffs in cancer philosophy.

  3. Watch your language: Power words at the human-nature interface

    NASA Astrophysics Data System (ADS)

    Norgaard, Richard B.

    2016-02-01

    Words are integral to thinking and communicating. Words also carry old baggage. The Anthropocene necessitates new thinking and communication at the human-nature interface. Words like progress, natural, and thresholds are pervasive in both scientific and policy discourse, but carry baggage that will likely slow understanding of the Anthropocene and appropriate adaptation. The dynamic systems thinking with emergent properties of ecology needs to replace the efficiency and growth framework of economics. Diversity and resilience are productive and less historically burdened words.

  4. The effect of Think Pair Share (TPS) using scientific approach on students’ self-confidence and mathematical problem-solving

    NASA Astrophysics Data System (ADS)

    Rifa’i, A.; Lestari, H. P.

    2018-03-01

    This study was designed to know the effects of Think Pair Share using Scientific Approach on students' self-confidence and mathematical problem-solving. Quasi-experimental with pre-test post-test non-equivalent group method was used as a basis for design this study. Self-confidence questionnaire and problem-solving test have been used for measurement of the two variables. Two classes of the first grade in religious senior high school (MAN) in Indonesia were randomly selected for this study. Teaching sequence and series from mathematics book at control group in the traditional way and at experiment group has been in TPS using scientific approach learning method. For data analysis regarding students’ problem-solving skill and self-confidence, One-Sample t-Test, Independent Sample t-Test, and Multivariate of Variance (MANOVA) were used. The results showed that (1) TPS using a scientific approach and traditional learning had positive effects (2) TPS using scientific approach learning in comparative with traditional learning had a more significant effect on students’ self-confidence and problem-solving skill.

  5. Pupils Produce Their Own Narratives Inspired by the History of Science: Animation Movies Concerning the Geocentric-Heliocentric Debate

    ERIC Educational Resources Information Center

    Piliouras, Panagiotis; Siakas, Spyros; Seroglou, Fanny

    2011-01-01

    In this paper, we present the design and application of a teaching scenario appropriate for 12-years-old pupils in the primary school aiming to a better understanding of scientific concepts and scientific methods, linking the development of individual thinking with the development of scientific ideas and facilitating a better understanding of the…

  6. Psychoanalytic contributions to the generation of creativity in children.

    PubMed

    Gottschalk, L A

    1981-08-01

    This paper describes the major characteristics of the concept of creativity: (1) originality and uniqueness, (2) comprehensibility to others, (3) utility, (4) generalizability to allied and other fields, (5) a capacity for continued and repeated creative outputs in similar and/or different fields, and (6) a capacity to stimulate others to artistic, literary, or scientific originality. Consideration is given to out limited current knowledge of hereditary factors contributing to creativity, in contrast to familial factors which are likely to include environmental contributions. A review follows of psychiatric and psychoanalytic observations on the enhancement or inhibition, during child development, of the innate capacity to be creative in children and adults. In regard to the development of creative prowess, emphasis is placed on the importance of preserving and encouraging the use of primary-process thinking in children so that this mental activity can be called upon at will. Emphasized also is the importance of the availability of examples of creative ability in parental behavior as well as in the kinship and social networks to which the child is exposed. The encouragement of analogical thinking and imagination in children and the development of the ability to turn on and off such mental activity by secondary-process thinking is stressed. Hence, in the enhancement of the creative process in children, catalytic parent-child rearing and exposure to creative people are key elements. Three brief case examples are given in which the creative potential was blocked or inhibited and later released by psychoanalytic psychotherapy.

  7. Study of the comprehension of the scientific method by members of a university health research laboratory.

    PubMed

    Burlamaque-Neto, A C; Santos, G R; Lisbôa, L M; Goldim, J R; Machado, C L B; Matte, U; Giugliani, R

    2012-02-01

    In Brazil, scientific research is carried out mainly at universities, where professors coordinate research projects with the active participation of undergraduate and graduate students. However, there is no formal program for the teaching/learning of the scientific method. The objective of the present study was to evaluate the comprehension of the scientific method by students of health sciences who participate in scientific projects in an academic research laboratory. An observational descriptive cross-sectional study was conducted using Edgar Morin complexity as theoretical reference. In a semi-structured interview, students were asked to solve an abstract logical puzzle - TanGram. The collected data were analyzed using the hermeneutic-dialectic analysis method proposed by Minayo and discussed in terms of the theoretical reference of complexity. The students' concept of the scientific method is limited to participation in projects, stressing the execution of practical procedures as opposed to scientific thinking. The solving of the TanGram puzzle revealed that the students had difficulties in understanding questions and activities focused on subjects and their processes. Objective answers, even when dealing with personal issues, were also reflected on the students' opinions about the characteristics of a successful researcher. Students' difficulties concerning these issues may affect their scientific performance and result in poorly designed experiments. This is a preliminary study that should be extended to other centers of scientific research.

  8. Study of the comprehension of the scientific method by members of a university health research laboratory

    PubMed Central

    Burlamaque-Neto, A.C.; Santos, G.R.; Lisbôa, L.M.; Goldim, J.R.; Machado, C.L.B.; Matte, U.; Giugliani, R.

    2012-01-01

    In Brazil, scientific research is carried out mainly at universities, where professors coordinate research projects with the active participation of undergraduate and graduate students. However, there is no formal program for the teaching/learning of the scientific method. The objective of the present study was to evaluate the comprehension of the scientific method by students of health sciences who participate in scientific projects in an academic research laboratory. An observational descriptive cross-sectional study was conducted using Edgar Morin complexity as theoretical reference. In a semi-structured interview, students were asked to solve an abstract logical puzzle - TanGram. The collected data were analyzed using the hermeneutic-dialectic analysis method proposed by Minayo and discussed in terms of the theoretical reference of complexity. The students' concept of the scientific method is limited to participation in projects, stressing the execution of practical procedures as opposed to scientific thinking. The solving of the TanGram puzzle revealed that the students had difficulties in understanding questions and activities focused on subjects and their processes. Objective answers, even when dealing with personal issues, were also reflected on the students' opinions about the characteristics of a successful researcher. Students' difficulties concerning these issues may affect their scientific performance and result in poorly designed experiments. This is a preliminary study that should be extended to other centers of scientific research. PMID:22249427

  9. Model-based reasoning in the physics laboratory: Framework and initial results

    NASA Astrophysics Data System (ADS)

    Zwickl, Benjamin M.; Hu, Dehui; Finkelstein, Noah; Lewandowski, H. J.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] We review and extend existing frameworks on modeling to develop a new framework that describes model-based reasoning in introductory and upper-division physics laboratories. Constructing and using models are core scientific practices that have gained significant attention within K-12 and higher education. Although modeling is a broadly applicable process, within physics education, it has been preferentially applied to the iterative development of broadly applicable principles (e.g., Newton's laws of motion in introductory mechanics). A significant feature of the new framework is that measurement tools (in addition to the physical system being studied) are subjected to the process of modeling. Think-aloud interviews were used to refine the framework and demonstrate its utility by documenting examples of model-based reasoning in the laboratory. When applied to the think-aloud interviews, the framework captures and differentiates students' model-based reasoning and helps identify areas of future research. The interviews showed how students productively applied similar facets of modeling to the physical system and measurement tools: construction, prediction, interpretation of data, identification of model limitations, and revision. Finally, we document students' challenges in explicitly articulating assumptions when constructing models of experimental systems and further challenges in model construction due to students' insufficient prior conceptual understanding. A modeling perspective reframes many of the seemingly arbitrary technical details of measurement tools and apparatus as an opportunity for authentic and engaging scientific sense making.

  10. Typological thinking: Then and now.

    PubMed

    Witteveen, Joeri

    2018-05-01

    A popular narrative about the history of modern biology has it that Ernst Mayr introduced the distinction between "typological thinking" and "population thinking" to mark a contrast between a metaphysically problematic and a promising foundation for (evolutionary) biology, respectively. This narrative sometimes continues with the observation that, since the late-20th century, typological concepts have been making a comeback in biology, primarily in the context of evolutionary developmental biology. It is hard to square this narrative with the historical and philosophical literature on the typology/population distinction from the last decade or so. The conclusion that emerges from this literature is that the very distinction between typological thinking and population thinking is a piece of mere rhetoric that was concocted and rehearsed for purely strategic, programmatic reasons. If this is right, it becomes hard to make sense of recent criticisms (and sometimes: espousals) of the purportedly typological underpinnings of certain contemporary research programs. In this article, I offer a way out of this apparent conflict. I show that we can make historical and philosophical sense of the continued accusations of typological thinking by looking beyond Mayr, to his contemporary and colleague George Gaylord Simpson. I show that before Mayr discussed the typology/population distinction as an issue in scientific metaphysics, Simpson introduced it to mark several contrasts in methodology and scientific practice. I argue that Simpson's insightful discussion offers useful resources for classifying and assessing contemporary attributions of typological thinking. © 2018 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution published by Wiley Periodicals, Inc.

  11. Generate an Argument: An Instructional Model

    ERIC Educational Resources Information Center

    Sampson, Victor; Grooms, Jonathon

    2010-01-01

    The Generate an Argument instructional model was designed to engage students in scientific argumentation. By using this model, students develop complex reasoning and critical-thinking skills, understand the nature and development of scientific knowledge, and improve their communication skills (Duschl and Osborne 2002). This article describes the…

  12. The Literacy Component of Mathematical and Scientific Literacy

    ERIC Educational Resources Information Center

    Yore, Larry D.; Pimm, David; Tuan, Hsiao-Lin

    2007-01-01

    This opening article of the Special Issue makes an argument for parallel definitions of scientific literacy and mathematical literacy that have shared features: importance of general cognitive and metacognitive abilities and reasoning/thinking and discipline-specific language, habits-of-mind/emotional dispositions, and information communication…

  13. Perceptions of Science Graduating Students on Their Learning Gains

    ERIC Educational Resources Information Center

    Varsavsky, Cristina; Matthews, Kelly E.; Hodgson, Yvonne

    2014-01-01

    In this study, the Science Student Skills Inventory was used to gain understanding of student perceptions about their science skills set developed throughout their programme (scientific content knowledge, communication, scientific writing, teamwork, quantitative skills, and ethical thinking). The study involved 400 responses from undergraduate…

  14. From Disinformation to Wishful Thinking

    NASA Astrophysics Data System (ADS)

    Oreskes, N.; Conway, E. M.

    2014-12-01

    In our book, Merchants of Doubt, we documented how deliberate disinformation campaigns served to confuse the American people about the reality and significance of climate change over more than two decades. We showed how a variety of strategies were used to persuade the public that the scientific "jury was still out" on climate change, including deliberate mispresentation of facts, cherry-picking of evidence, and personal attacks on scientists. And we documented the links, both conceptual and actual, between doubt-mongering about climate change and the rejection of scientific evidence of the harms of tobacco, acid rain, the ozone hole, nuclear winter, and DDT. These tactics are still in use today, but they are now reinforced by a new problem, the problem of wishful thinking. Increasingly, we see commentators who accept the reality of climate change assuring us that the problem can be solved by natural gas, or even by some as yet unknown and uninvented technological innovations. In this paper we argue that these forms of wishful thinking, while not malicious in the same way that previous doubt-mongering campaigns have been, contribute substantially to scientific illiteracy and misunderstanding both of the character of the challenges that we face and of the history of technological innovation.

  15. Inquiry Guided Learning Projects for the Development of Critical Thinking in the College Classroom: A Pilot Study

    ERIC Educational Resources Information Center

    Bentley, Danielle C.

    2014-01-01

    This paper describes the inaugural success of implementing Inquiry Guided Learning Projects within a college-level human anatomy and physiology course. In this context, scientific inquiry was used as a means of developing skills required for critical thinking among students. The projects were loosely designed using the Information Search Process…

  16. Teaching Thinking Skills in Context-Based Learning: Teachers' Challenges and Assessment Knowledge

    ERIC Educational Resources Information Center

    Avargil, Shirly; Herscovitz, Orit; Dori, Yehudit Judy

    2012-01-01

    For an educational reform to succeed, teachers need to adjust their perceptions to the reform's new curricula and strategies and cope with new content, as well as new teaching and assessment strategies. Developing students' scientific literacy through context-based chemistry and higher order thinking skills was the framework for establishing a new…

  17. Assessment of a Novel Group-Centered Testing Schema in an Upper-Level Undergraduate Molecular Biotechnology Course

    ERIC Educational Resources Information Center

    Srougi, Melissa C.; Miller, Heather B.; Witherow, D. Scott; Carson, Susan

    2013-01-01

    Providing students with assignments that focus on critical thinking is an important part of their scientific and intellectual development. However, as class sizes increase, so does the grading burden, prohibiting many faculty from incorporating critical thinking assignments in the classroom. In an effort to continue to provide our students with…

  18. Intertwining Evidence- and Model-Based Reasoning in Physics Sensemaking: An Example from Electrostatics

    ERIC Educational Resources Information Center

    Russ, Rosemary S.; Odden, Tor Ole B.

    2017-01-01

    Our field has long valued the goal of teaching students not just the facts of physics, but also the thinking and reasoning skills of professional physicists. The complexity inherent in scientific reasoning demands that we think carefully about how we conceptualize for ourselves, enact in our classes, and encourage in our students the relationship…

  19. Investigating Elementary Teachers' Thinking about and Learning to Notice Students' Science Ideas

    ERIC Educational Resources Information Center

    Luna, Melissa Jo

    2013-01-01

    Children naturally use observations and everyday thinking to construct explanations as to why phenomena happen in the world. Science instruction can benefit by starting with these ideas to help children build coherent scientific understandings of how the physical world works. To do so, science teaching must involve attending to students'…

  20. Science and Non-Science Undergraduate Students' Critical Thinking and Argumentation Performance in Reading a Science News Report

    ERIC Educational Resources Information Center

    Lin, Shu-Sheng

    2014-01-01

    A scientifically literate person should be able to engage and critique science news reports about socioscientific issues from a variety of information sources. Such engagement involves critical thinking and argumentation skills to determine if claims made are justified by evidence and explained by reasonable explanations. This study explored…

  1. Thinking about Diagnostic Thinking: A 30-Year Perspective

    ERIC Educational Resources Information Center

    Elstein, Arthur S.

    2009-01-01

    This paper has five objectives: (a) to review the scientific background of, and major findings reported in, Medical Problem Solving, now widely recognized as a classic in the field; (b) to compare these results with some of the findings in a recent best-selling collection of case studies; (c) to summarize criticisms of the hypothesis-testing model…

  2. The Control of Ventilation during Exercise: A Lesson in Critical Thinking

    ERIC Educational Resources Information Center

    Bruce, Richard M.

    2017-01-01

    Learning the basic competencies of critical thinking are very important in the education of any young scientist, and teachers must be prepared to help students develop a valuable set of analytic tools. In my experience, this is best achieved by encouraging students to study areas with little scientific consensus, such as the control mechanisms of…

  3. Teacher Questioning in Science Classrooms: Approaches that Stimulate Productive Thinking

    ERIC Educational Resources Information Center

    Chin, Christine

    2007-01-01

    The purpose of this study was to find out how teachers use questions in classroom discourse to scaffold student thinking and help students construct scientific knowledge. The study was conducted in large-class settings where the medium of instruction was English although the students were non-native speakers of the language. Six teachers teaching…

  4. Scientific Research: What it Means to Me

    PubMed Central

    Narlikar, Jayant V.

    2008-01-01

    This article gives a personal perception of the author, of what scientific research means. Citing examples from the lives of all time greats like Newton, Kelvin and Maxwell he stresses the agonies of thinking up new ideas, the urge for creativity and the pleasure one derives from the process when it is completed. He then narrates instances from his own life that proved inspirational towards his research career. In his early studenthood, his parents and maternal uncle had widened his intellectual horizons while in later life his interaction with Fred Hoyle made him take up research challenges away from the beaten path. He concludes that taking up an anti-Establishment stand in research can create many logistical difficulties, but the rewards of success are all the more pleasing. PMID:22013355

  5. Switching between Everyday and Scientific Language

    ERIC Educational Resources Information Center

    Blown, Eric J.; Bryce, Tom G. K.

    2017-01-01

    The research reported here investigated the everyday and scientific repertoires of children involved in semi-structured, Piagetian interviews carried out to check their understanding of dynamic astronomical concepts like daytime and night-time. It focused on the switching taking place between embedded and disembedded thinking; on the imagery which…

  6. The Place of "Mysticism" and "Occultism" in the Scientific Orientation.

    ERIC Educational Resources Information Center

    Read, Allen Walker

    1983-01-01

    Twelve propositions to help deal scientifically with cults and the unexplained are presented and discussed. The guru relationship is unhealthy. Sound teaching should foster an independence and freedom of the individual to think for him or herself and to question teachings of the teacher. (RM)

  7. The New Human Condition and Climate Change: Humanities and Social Science Perceptions of Threat

    NASA Astrophysics Data System (ADS)

    Holm, Poul; Travis, Charles

    2017-09-01

    Thinking, no doubt, plays an enormous role in every scientific enterprise, but it is the role of a means to an end; the end is determined by a decision about what is worth-while knowing and this decision cannot be scientific.

  8. Language-Based Reasoning in Primary Science

    ERIC Educational Resources Information Center

    Hackling, Mark; Sherriff, Barbara

    2015-01-01

    Language is critical in the mediation of scientific reasoning, higher-order thinking and the development of scientific literacy. This study investigated how an exemplary primary science teacher scaffolds and supports students' reasoning during a Year 4 materials unit. Lessons captured on video, teacher and student interviews and micro-ethnographic…

  9. Genetically Modified (GM) Foods & Teaching Critical Thinking.

    ERIC Educational Resources Information Center

    Flores, Vanessa S.; Tobin, Allan J.

    2003-01-01

    Describes instructional materials developed to address two major needs in biology education--how to form scientific opinions and providing a link between students and literature. Presents two essays, rats and potatoes and butterflies and corn, introduces students to article searching, reading peer-reviewed scientific studies, writing, critical…

  10. The Myth of Scientific Sufficiency in Librarianship.

    ERIC Educational Resources Information Center

    Wright, H. Curtis

    Postwar librarians have sacrificed the humanistic basis of librarianship and regard the use of science in librarianship as a settled issue. American librarianship is currently dominated by the physical thinking of scientific systems theory, which includes Bertalanffy's general system theory, Wiener's cybernetics, and the Hartley-Shannon theory of…

  11. The history of a movement: Saúde em Debate magazine and Brazilian health reform.

    PubMed

    Amarante, Paulo; Rizzotto, Maria Lucia Frizon; Costa, Ana Maria

    2015-07-01

    This article traces significant moments in the history of the magazine Saúde em Debate - sourcing references and information from documents, historical studies, editions of the magazine, academic work and interviews with physicians and writers who contributed to its creation. In its 39 years of existence, although there may have been variations in the magazine's editorial policy, its role as a means for exchange of ideas and debate on critical health thinking, and making a contribution by in some way intervening in the Brazilian political process, has not changed. The magazine established itself with a firm reputation as a vehicle of scientific communication especially in the areas of health policy and management, expanding the scope of subjects over time. Among the challenges it has faced, as well as that of financial sustenance, has been its role as an instrument for dissemination of Latin American thinking in the field of health.

  12. Excursions in fluvial (dis)continuity

    NASA Astrophysics Data System (ADS)

    Grant, Gordon E.; O'Connor, Jim; Safran, Elizabeth

    2017-01-01

    Lurking below the twin concepts of connectivity and disconnectivity are their first, and in some ways, richer cousins: continuity and discontinuity. In this paper we explore how continuity and discontinuity represent fundamental and complementary perspectives in fluvial geomorphology, and how these perspectives inform and underlie our conceptions of connectivity in landscapes and rivers. We examine the historical roots of continuum and discontinuum thinking, and how much of our understanding of geomorphology rests on contrasting views of continuity and discontinuity. By continuum thinking we refer to a conception of geomorphic processes as well as geomorphic features that are expressed along continuous gradients without abrupt changes, transitions, or thresholds. Balance of forces, graded streams, and hydraulic geometry are all examples of this perspective. The continuum view has played a prominent role in diverse disciplinary fields, including ecology, paleontology, and evolutionary biology, in large part because it allows us to treat complex phenomena as orderly progressions and invoke or assume equilibrium processes that introduce order and prediction into our sciences. In contrast the discontinuous view is a distinct though complementary conceptual framework that incorporates non-uniform, non-progressive, and non-equilibrium thinking into understanding geomorphic processes and landscapes. We distinguish and discuss examples of three different ways in which discontinuous thinking can be expressed: 1) discontinuous spatial arrangements or singular events; 2) specific process domains generally associated with thresholds, either intrinsic or extrinsic; and 3) physical dynamics or changes in state, again often threshold-linked. In moving beyond the continuous perspective, a fertile set of ideas comes into focus: thresholds, non-equilibrium states, heterogeneity, catastrophe. The range of phenomena that is thereby opened up to scientific exploration similarly expands: punctuated episodes of cutting and filling, discretization of landscapes into hierarchies of structure and control, the work of extreme events. Orderly and progressive evolution towards a steady or ideal state is replaced by chaotic episodes of disturbance and recovery. Recent developments in the field of geomorphology suggest that we may be on the cusp of a new paradigm that recognizes that both continuous and discontinuous processes and mechanisms play a role in fluvial processes and landscape evolution with neither holding sway over the other and both needed to see rivers as they are.

  13. Excursions in fluvial (dis)continuity

    USGS Publications Warehouse

    Grant, Gordon E.; O'Connor, James E.; Safran, Elizabeth

    2017-01-01

    Lurking below the twin concepts of connectivity and disconnectivity are their first, and in some ways, richer cousins: continuity and discontinuity. In this paper we explore how continuity and discontinuity represent fundamental and complementary perspectives in fluvial geomorphology, and how these perspectives inform and underlie our conceptions of connectivity in landscapes and rivers. We examine the historical roots of continuum and discontinuum thinking, and how much of our understanding of geomorphology rests on contrasting views of continuity and discontinuity. By continuum thinking we refer to a conception of geomorphic processes as well as geomorphic features that are expressed along continuous gradients without abrupt changes, transitions, or thresholds. Balance of forces, graded streams, and hydraulic geometry are all examples of this perspective. The continuum view has played a prominent role in diverse disciplinary fields, including ecology, paleontology, and evolutionary biology, in large part because it allows us to treat complex phenomena as orderly progressions and invoke or assume equilibrium processes that introduce order and prediction into our sciences.In contrast the discontinuous view is a distinct though complementary conceptual framework that incorporates non-uniform, non-progressive, and non-equilibrium thinking into understanding geomorphic processes and landscapes. We distinguish and discuss examples of three different ways in which discontinuous thinking can be expressed: 1) discontinuous spatial arrangements or singular events; 2) specific process domains generally associated with thresholds, either intrinsic or extrinsic; and 3) physical dynamics or changes in state, again often threshold-linked. In moving beyond the continuous perspective, a fertile set of ideas comes into focus: thresholds, non-equilibrium states, heterogeneity, catastrophe. The range of phenomena that is thereby opened up to scientific exploration similarly expands: punctuated episodes of cutting and filling, discretization of landscapes into hierarchies of structure and control, the work of extreme events. Orderly and progressive evolution towards a steady or ideal state is replaced by chaotic episodes of disturbance and recovery. Recent developments in the field of geomorphology suggest that we may be on the cusp of a new paradigm that recognizes that both continuous and discontinuous processes and mechanisms play a role in fluvial processes and landscape evolution with neither holding sway over the other and both needed to see rivers as they are.

  14. Assessment in Science Education

    NASA Astrophysics Data System (ADS)

    Rustaman, N. Y.

    2017-09-01

    An analyses study focusing on scientific reasoning literacy was conducted to strengthen the stressing on assessment in science by combining the important of the nature of science and assessment as references, higher order thinking and scientific skills in assessing science learning as well. Having background in developing science process skills test items, inquiry in its many form, scientific and STEM literacy, it is believed that inquiry based learning should first be implemented among science educators and science learners before STEM education can successfully be developed among science teachers, prospective teachers, and students at all levels. After studying thoroughly a number of science researchers through their works, a model of scientific reasoning was proposed, and also simple rubrics and some examples of the test items were introduced in this article. As it is only the beginning, further studies will still be needed in the future with the involvement of prospective science teachers who have interests in assessment, either on authentic assessment or in test items development. In balance usage of alternative assessment rubrics, as well as valid and reliable test items (standard) will be needed in accelerating STEM education in Indonesia.

  15. On three forms of thinking: magical thinking, dream thinking, and transformative thinking.

    PubMed

    Ogden, Thomas H

    2010-04-01

    The author believes that contemporary psychoanalysis has shifted its emphasis from the understanding of the symbolic meaning of dreams, play, and associations to the exploration of the processes of thinking, dreaming, and playing. In this paper, he discusses his understanding of three forms of thinking-magical thinking, dream thinking, and transformative thinking-and provides clinical illustrations in which each of these forms of thinking figures prominently. The author views magical thinking as a form of thinking that subverts genuine thinking and psychological growth by substituting invented psychic reality for disturbing external reality. By contrast, dream thinking--our most profound form of thinking-involves viewing an emotional experience from multiple perspectives simultaneously: for example, the perspectives of primary process and secondary process thinking. In transformative thinking, one creates a new way of ordering experience that allows one to generate types of feeling, forms of object relatedness, and qualities of aliveness that had previously been unimaginable.

  16. The Search for an Effective Clinical Behavior Analysis: The Nonlinear Thinking of Israel Goldiamond

    PubMed Central

    Layng, T.V Joe

    2009-01-01

    This paper has two purposes; the first is to reintroduce Goldiamond's constructional approach to clinical behavior analysis and to the field of behavior analysis as a whole, which, unfortunately, remains largely unaware of his nonlinear functional analysis and its implications. The approach is not simply a set of clinical techniques; instead it describes how basic, applied, and formal analyses may intersect to provide behavior-analytic solutions where the emphasis is on consequential selection. The paper takes the reader through a cumulative series of explorations, discoveries, and insights that hopefully brings the reader into contact with the power and comprehensiveness of Goldiamond's approach, and leads to an investigation of the original works cited. The second purpose is to provide the context of a life of scientific discovery that attempts to elucidate the variables and events that informed one of the most extraordinary scientific journeys in the history of behavior analysis, and expose the reader (especially young ones) to the exciting process of discovery followed by one of the field's most brilliant thinkers. One may perhaps consider this article a tribute to Goldiamond and his work, but the tribute is really to the process of scientific discovery over a professional lifetime. PMID:22478519

  17. Advancing Science through Mining Libraries, Ontologies, and Communities*

    PubMed Central

    Evans, James A.; Rzhetsky, Andrey

    2011-01-01

    Life scientists today cannot hope to read everything relevant to their research. Emerging text-mining tools can help by identifying topics and distilling statements from books and articles with increased accuracy. Researchers often organize these statements into ontologies, consistent systems of reality claims. Like scientific thinking and interchange, however, text-mined information (even when accurately captured) is complex, redundant, sometimes incoherent, and often contradictory: it is rooted in a mixture of only partially consistent ontologies. We review work that models scientific reason and suggest how computational reasoning across ontologies and the broader distribution of textual statements can assess the certainty of statements and the process by which statements become certain. With the emergence of digitized data regarding networks of scientific authorship, institutions, and resources, we explore the possibility of accounting for social dependences and cultural biases in reasoning models. Computational reasoning is starting to fill out ontologies and flag internal inconsistencies in several areas of bioscience. In the not too distant future, scientists may be able to use statements and rich models of the processes that produced them to identify underexplored areas, resurrect forgotten findings and ideas, deconvolute the spaghetti of underlying ontologies, and synthesize novel knowledge and hypotheses. PMID:21566119

  18. Science Is an Attitude: A Response to Kamhi

    ERIC Educational Resources Information Center

    Apel, Kenn

    2011-01-01

    Purpose: I provide alternative views to Kamhi's (2011) assertion that clinical practice cannot be scientific. I also discuss how the field of communication sciences and disorders might encourage scientific thinking about clinical practices in researchers and clinicians. Method: Kamhi's three main points for why clinical practice cannot be…

  19. Putting Science Literacy on Display

    ERIC Educational Resources Information Center

    Hayman, Arlene; Hoppe, Carole; Deniz, Hasan

    2012-01-01

    Imagine a classroom where students are actively engaged in seeking scientific knowledge from books and computers. Think of a classroom in which students fervently write to create PowerPoint presentations about their scientific topic and then enthusiastically practice their speaking roles to serve as docents in a classroom museum setting. Visualize…

  20. Scientific Inquiry, Digital Literacy, and Mobile Computing in Informal Learning Environments

    ERIC Educational Resources Information Center

    Marty, Paul F.; Alemanne, Nicole D.; Mendenhall, Anne; Maurya, Manisha; Southerland, Sherry A.; Sampson, Victor; Douglas, Ian; Kazmer, Michelle M.; Clark, Amanda; Schellinger, Jennifer

    2013-01-01

    Understanding the connections between scientific inquiry and digital literacy in informal learning environments is essential to furthering students' critical thinking and technology skills. The Habitat Tracker project combines a standards-based curriculum focused on the nature of science with an integrated system of online and mobile computing…

  1. Influence of Three Different Methods of Teaching Physics on the Gain in Students' Development of Reasoning

    ERIC Educational Resources Information Center

    Marusic, Mirko; Slisko, Josip

    2012-01-01

    The Lawson Classroom Test of Scientific Reasoning (LCTSR) was used to gauge the relative effectiveness of three different methods of pedagogy, "Reading, Presenting, and Questioning" (RPQ), "Experimenting and Discussion" (ED), and "Traditional Methods" (TM), on increasing students' level of scientific thinking. The…

  2. Addressing Barriers to Conceptual Understanding in IE Physics Classes

    NASA Astrophysics Data System (ADS)

    Coletta, Vincent P.; Phillips, Jeffrey A.

    2009-11-01

    We report on the Thinking in Physics project, which helps students who demonstrate weak scientific reasoning skills, as measured by low preinstruction scores on the Lawson Test of Scientific Reasoning Ability. Without special help, such students are unlikely to achieve a good conceptual understanding of introductory mechanics.

  3. Using Science as Evidence in Public Policy

    ERIC Educational Resources Information Center

    Prewitt, Kenneth, Ed.; Schwandt, Thomas A., Ed.; Straf, Miron L., Ed.

    2012-01-01

    "Using Science as Evidence in Public Policy" encourages scientists to think differently about the use of scientific evidence in policy making. This report investigates why scientific evidence is important to policy making and argues that an extensive body of research on knowledge utilization has not led to any widely accepted explanation…

  4. STEM Integration through Design and Inquiry

    ERIC Educational Resources Information Center

    Johns, Gary; Mentzer, Nathan

    2016-01-01

    Teachers can find opportunities to incorporate design thinking and scientific inquiry within any lesson where a constraint of the design can be connected to a scientific experiment. Within a lesson, this connection establishes context between engineering and science and can positively impact students' learning and interest in these subjects. The…

  5. Try This: Observing Using the Senses

    ERIC Educational Resources Information Center

    Preston, Christine

    2016-01-01

    This article is the first in a new series of hands-on activities designed especially for early childhood students to encourage their natural curiosity and promote development of scientific thinking. The activity presented was created to help children learn how to make scientific observations using their senses. Children develop science inquiry…

  6. Development of the Central Dogma Concept Inventory (CDCI) Assessment Tool

    ERIC Educational Resources Information Center

    Newman, Dina L.; Snyder, Christopher W.; Fisk, J. Nick; Wright, L. Kate

    2016-01-01

    Scientific teaching requires scientifically constructed, field-tested instruments to accurately evaluate student thinking and gauge teacher effectiveness. We have developed a 23-question, multiple select--format assessment of student understanding of the essential concepts of the central dogma of molecular biology that is appropriate for all…

  7. The Institutional Challenges of Cyberinfrastructure and E-Research

    ERIC Educational Resources Information Center

    Lynch, Clifford

    2008-01-01

    In thinking about how best to support the changes in scholarly and scientific work and also to accelerate these changes as a way of advancing scientific progress, science funding agencies began speaking about the need to systematically invest in what they called "cyberinfrastructure." This included not just information technologies but…

  8. Variations on a Simple Dice Game

    ERIC Educational Resources Information Center

    Heafner, Joe

    2018-01-01

    I begin my introductory astronomy course with a unit on critical thinking that focuses on, among other things, the differences between the "scientific method" as frequently presented in textbooks and actual scientific practice. One particular classroom activity uses a simple dice game to simulate observation of a natural phenomenon and…

  9. Science and intuition: do both have a place in clinical decision making?

    PubMed

    Pearson, Helen

    Intuition is widely used in clinical decision making yet its use is underestimated compared to scientific decision-making methods. Information processing is used within scientific decision making and is methodical and analytical, whereas intuition relies more on a practitioner's perception. Intuition is an unconscious process and may be referred to as a 'sixth sense', 'hunch' or 'gut feeling'. It is not underpinned by valid and reliable measures. Expert health professionals use a rapid, automatic process to recognise familiar problems instantly. Intuition could therefore involve pattern recognition, where experts draw on experiences, so could be perceived as a cognitive skill rather than a perception or knowing without knowing how. The NHS places great importance on evidence-based practice but intuition is seemingly becoming an acceptable way of thinking and knowing in clinical decision making. Recognising nursing as an art allows intuition to be used and the environment or situation to be interpreted to help inform decision making. Intuition can be used in conjunction with evidence-based practice and to achieve good outcomes and deserves to be acknowledged within clinical practice.

  10. Reframing science communication: How the use of metaphor, rhetoric, and other tools of persuasion can strengthen the public understanding of science (without weakening the integrity of the scientific process)

    NASA Astrophysics Data System (ADS)

    Soderberg, Jeanne

    This paper is about "truthiness", its resulting impact on the public understanding of science (and subsequently science policy), and why scientists need to learn how to navigate truthiness in order to ensure that the scientific body of knowledge is both preserved and shared. In order to contend with truthiness, scientists must understand and acknowledge how people receive and process information, how they form their reactions and opinions about it, and how they can be manipulated by various agencies and players to feel and think in certain ways. In order to accomplish these objectives, scientists must also understand various aspects of culture, language, psychology, neuroscience, and communication. Most importantly, scientists must recognize their own humanity, and learn how to accept and work with their own human boundaries. Truth can indeed be beauty. And, there is absolutely nothing unscientific about creating beauty in order to demonstrate and explain truth.

  11. Solar geoengineering economics: From incredible to inevitable and half-way back

    NASA Astrophysics Data System (ADS)

    Harding, Anthony; Moreno-Cruz, Juan B.

    2016-12-01

    Solar geoengineering technologies are unique in many ways, and the economic incentives they could unleash are just as interesting. Since their introduction as a potential alternative, economists have been intrigued by the potential of these technologies to dramatically alter the way we think about climate policy. As our scientific understanding of the technologies evolve, so does the way economists think about them. In this paper, we document the evolution of economic thinking around these technologies since before Crutzen (2006) until today and provide some fruitful areas for further research.

  12. [The role of ancient astrology in preparation for a secular natural science and medicine].

    PubMed

    Geller, Markham J

    2011-01-01

    The Persian period in the Near East (from c. 500 BCE) represented the first example of globalisation, during which advanced cultural centres from Egypt to Afghanistan were united under a single rule and common language. Paul Unschuld has drawn attention to a scientific revolution in the late first millennium BC, extending from Greece to China, from Thales to Confucius, which saw natural law replace the divine law in scientific thinking. This paper argues for new advances in astronomy as the specific motor which motivated changes in scientific thinking and influenced other branches of science, including medicine, just as the new science of astrology, which replaced divination, fundamentally changed the nature of medical prognoses. The secularisation of science was not universally accepted among ancient scholars, and the irony is that somewhat similar reservations accompanied the reception of modern quantum physics.

  13. Intertwining evidence- and model-based reasoning in physics sensemaking: An example from electrostatics

    NASA Astrophysics Data System (ADS)

    Russ, Rosemary S.; Odden, Tor Ole B.

    2017-12-01

    Our field has long valued the goal of teaching students not just the facts of physics, but also the thinking and reasoning skills of professional physicists. The complexity inherent in scientific reasoning demands that we think carefully about how we conceptualize for ourselves, enact in our classes, and encourage in our students the relationship between the multifaceted practices of professional science. The current study draws on existing research in the philosophy of science and psychology to advocate for intertwining two important aspects of scientific reasoning: using evidence from experimentation and modeling. We present a case from an undergraduate physics course to illustrate how these aspects can be intertwined productively and describe specific ways in which these aspects of reasoning can mutually reinforce one another in student learning. We end by discussing implications for this work for instruction in introductory physics courses and for research on scientific reasoning at the undergraduate level.

  14. On multi-level thinking and scientific understanding

    NASA Astrophysics Data System (ADS)

    McIntyre, Michael Edgeworth

    2017-10-01

    Professor Duzheng YE's name has been familiar to me ever since my postdoctoral years at MIT with Professors Jule CHARNEY and Norman PHILLIPS, back in the late 1960s. I had the enormous pleasure of meeting Professor YE personally in 1992 in Beijing. His concern to promote the very best science and to use it well, and his thinking on multi-level orderly human activities, reminds me not only of the communication skills we need as scientists but also of the multi-level nature of science itself. Here I want to say something (a) about what science is; (b) about why multi-level thinking—and taking more than one viewpoint—is so important for scientific as well as for other forms of understanding; and (c) about what is meant, at a deep level, by "scientific understanding" and trying to communicate it, not only with lay persons but also across professional disciplines. I hope that Professor YE would approve.

  15. The CREATE Strategy for Intensive Analysis of Primary Literature Can Be Used Effectively by Newly Trained Faculty to Produce Multiple Gains in Diverse Students

    ERIC Educational Resources Information Center

    Stevens, Leslie M.; Hoskins, Sally G.

    2014-01-01

    The CREATE (Consider Read, Elucidate the hypotheses, Analyze and interpret the data, and Think of the next Experiment) strategy aims to demystify scientific research and scientists while building critical thinking, reading/analytical skills, and improved science attitudes through intensive analysis of primary literature. CREATE was developed and…

  16. Community-Based Inquiry in Allied Health Biochemistry Promotes Equity by Improving Critical Thinking for Women and Showing Promise for Increasing Content Gains for Ethnic Minority Students

    ERIC Educational Resources Information Center

    Goeden, Terrah J.; Kurtz, Martha J.; Quitadamo, Ian J.; Thomas, Carin

    2015-01-01

    In the Community-Based Inquiry (CBI) instructional method, cooperative student groups complete case study activities based on scientific literature and conduct their own laboratory investigations that address authentic community needs. This study compared critical thinking and content knowledge outcomes between traditional Introduction to…

  17. Exploring the Function of Online Narratives to Develop Critical Thinking and Localisation of Knowledge in an International Science Program

    ERIC Educational Resources Information Center

    Hicks, Marianne; Tham, Melissa; Brookes, Rowan

    2017-01-01

    e-learning practitioners have long recognised the benefits of using online training to achieve knowledge transfer, less is understood about facilitating the sharing of values, attitudes, critical thinking, and localisation using online platforms. In this article an online learning platform in the context of an international scientific program was…

  18. Integration of a Zebrafish Research Project into a Molecular Biology Course to Support Critical Thinking and Course Content Goals

    ERIC Educational Resources Information Center

    Felzien, Lisa K.

    2016-01-01

    Engaging undergraduates in research is essential for teaching them to think like scientists, and it has become a desired component of classroom and laboratory instruction. Research projects that span an entire semester expose students to a variety of concepts and techniques and allow students to use experiments to learn scientific principles,…

  19. How Do Small Things Make a Big Difference? Activities to Teach about Human-Microbe Interactions

    ERIC Educational Resources Information Center

    Jasti, Chandana; Hug, Barbara; Waters, Jillian L.; Whitaker, Rachel J.

    2014-01-01

    Recent scientific studies are providing increasing evidence for how microbes living in and on us are essential to our good health. However, many students still think of microbes only as germs that harm us. The classroom activities presented here are designed to shift student thinking on this topic. In these guided inquiry activities, students…

  20. A Situational Study for the Identification of Pre-Service Science Teachers' Creative Thinking and Creative Scientific Thinking Skills

    ERIC Educational Resources Information Center

    Demir Kaçan, Sibel

    2015-01-01

    This study was conducted with the participation of 33 pre-service teachers attending the department science teaching of a Turkish university. Participants self-reported using the "Self-assessment of creativity scale" and were asked to choose the most appropriate answer to the five-choice self-assessment question "Which category best…

  1. Thinking about thinking: implications for patient safety.

    PubMed

    Montgomery, Kathryn

    2009-01-01

    Clinical medicine, a learned, rational, science-using practice, is labelled a science even though physicians have the good sense not to practise it that way. Rather than thinking like scientists - or how we think scientists think - physicians are engaged in analogical, interpretive reasoning that resembles Aristotle's phronesis, or practical reasoning, more closely than episteme, or scientific reasoning. In medicine, phronesis is clinical judgment; and while it depends on both a fund of information and extensive experience, somehow it is not quite teachable. This practical, clinical rationality relies on case narrative for teaching and learning about illness and disease, for recording and communicating about patient care and, inevitably, for thinking about and remembering the details, as well as the overarching rules of practice. At the same time, "anecdotal" remains the most pejorative word in medicine, and the tension between the justifiable caution this disdain expresses and the pervasive narrative structure of medical knowledge is characteristic of clinical knowing generally: a tug-of-war between apparent irreconcilables that can be settled only by an appeal to the circumstances of the clinical situation. Practical rationality in the clinical encounter is characterized by a productive circulation between the particular details of the patient's presentation and general information about disease stored as a taxonomy of cases. Evidence-based medicine can improve this negotiation between general knowledge and the patient's particulars, but it cannot replace it. In a scientific era, clinical judgment remains the quintessential intellectual strength of the clinician. Why, then, do we not teach the epistemology of medicine? Understanding the mis-description of physicians' thinking - and the accompanying claim that medicine is, in itself, a science - could mitigate the misplaced perfectionism that makes mistakes in medicine personal and unthinkable.

  2. Serious games for Geophysics

    NASA Astrophysics Data System (ADS)

    Lombardo, Valerio; Rubbia, Giuliana

    2015-04-01

    Childhood stage is indispensable in the education of human beings and especially critical to arise scientific interest in children. We discuss the participatory design of a didactic videogame, i.e. a "serious" game to teach geophysics and Earth sciences to high and low-school students. Geophysics is the application of the laws and techniques of physics to uncover knowledge about the earth's dynamic processes and subsurface structure. It explores phenomena such as earthquakes, volcanoes, tsunamis to improve our understanding of the earth's physical processes and our ability to predict reoccurrences. Effective mitigation of risks from catastrophic geologic hazards requires knowledge and understanding of local geology and geologic processes. Scientific outreach can be defined as discourse activity, whose main objective is to communicate some knowledge previously produced in scientific contexts to a non-expert massive audience. One of the difficulties science educators need to overcome is to explain specific concepts from a given discipline in a language simple and understandable for their audience. Digital games today play a large role in young people's lives. Games are directly connected to the life of today's adolescents. Therefore, digital games should be included and broached as a subject in the classroom. The ardor and enthusiasm that digital games evoke in teenagers has indeed brought many researchers, school leaders and teachers to the question "how video games" can be used to engage young people and support their learning inside the classroom. Additionally, studies have shown that digital games can enhance various skills such as the ability to concentrate, stamina, tactical aptness, anticipatory thinking, orientation in virtual spaces, and deductive reasoning. Thus, videogames become an effective didactic mechanism and should have a place in the classroom. The project aims to explore the potentials of entertainment technologies in educational processes; contribute to innovative pedagogies for scientific learning; create a scientific feedback-loop with students and teachers; implement a multi-level video game for scientific outreach.

  3. Variations on a simple dice game

    NASA Astrophysics Data System (ADS)

    Heafner, Joe

    2018-04-01

    I begin my introductory astronomy course with a unit on critical thinking that focuses on, among other things, the differences between the "scientific method" as frequently presented in textbooks and actual scientific practice. One particular classroom activity uses a simple dice game to simulate observation of a natural phenomenon and the process of figuring out the framework, which we have previously defined as the rules that allow us to make predictions, governing the simulated phenomenon. Using games to teach scientific methodology is not new (see Maloney and Masters and Smith and references therein). I have experimented with Maloney and Masters' games and discovered that my students found them too difficult to figure out and therefore they did not learn what I hoped they would from them. I also experimented with other card games and found that too many students already knew the rules of both well-known and obscure card games. I even tried inventing my own games with, at best, mediocre results.

  4. Forming of science teacher thinking through integrated laboratory exercises

    NASA Astrophysics Data System (ADS)

    Horváthová, Daniela; Rakovská, Mária; Zelenický, Ľubomír

    2017-01-01

    Within the three-semester optional course Science we have also included into curricula the subject entitled Science Practicum consisting of laboratory exercises of complementary natural scientific disciplines whose content exceeds the boundaries of relevant a scientific discipline (physics, biology, …). The paper presents the structure and selected samples of laboratory exercises of physical part of Science Practicum in which we have processed in an integrated way the knowledge of physics and biology at secondary grammar school. When planning the exercises we have proceeded from those areas of mentioned disciplines in which we can appropriately apply integration of knowledge and where the measurement methods are used. We have focused on the integration of knowledge in the field of human sensory organs (eye, ear), dolphins, bats (spatial orientation) and bees (ommatidium of faceted eye) and their modelling. Laboratory exercises are designed in such a way that they would motivate future teachers of natural scientific subjects to work independently with specialized literature of the mentioned natural sciences and ICT.

  5. Think Scientifically: Hiding Science in a Storybook

    NASA Astrophysics Data System (ADS)

    Van Norden, W. M.; Wawro, M.

    2013-12-01

    The pressure to focus on math and reading at the elementary level has increased in recent years. As a result, science education has taken a back seat in elementary classrooms. The Think Scientifically book series provides a way for science to easily integrate with existing math and reading curriculum. This story-based science literature program integrates a classic storybook format with solid solar science, to make an educational product that meets state literacy standards. Each story is accompanied by hands-on labs and activities that teachers can easily conduct in their classrooms with minimal training and materials, as well as math and language arts extensions and assessment questions. These books are being distributed through teacher workshops and conferences.

  6. Construction of the mathematical concept of pseudo thinking students

    NASA Astrophysics Data System (ADS)

    Anggraini, D.; Kusmayadi, T. A.; Pramudya, I.

    2018-05-01

    Thinking process is a process that begins with the acceptance of information, information processing and information calling in memory with structural changes that include concepts or knowledges. The concept or knowledge is individually constructed by each individual. While, students construct a mathematical concept, students may experience pseudo thinking. Pseudo thinking is a thinking process that results in an answer to a problem or construction to a concept “that is not true”. Pseudo thinking can be classified into two forms there are true pseudo and false pseudo. The construction of mathematical concepts in students of pseudo thinking should be immediately known because the error will have an impact on the next construction of mathematical concepts and to correct the errors it requires knowledge of the source of the error. Therefore, in this article will be discussed thinking process in constructing of mathematical concepts in students who experience pseudo thinking.

  7. Some Cognitive Components of the Diagnostic Thinking Process.

    ERIC Educational Resources Information Center

    Gale, Janet

    1982-01-01

    Identifies 14 cognitive components of the diagnostic thinking process in clinical problem solving. Analyzes the differences between medical students, hospital house officers, and hospital registrars in London, England, on the relative use of such thinking processes. Suggests that diagnostic thinking processes cannot be incorporated into medical…

  8. Cui bono? A review of breaking the spell: religion as a natural phenomenon by Daniel C. Dennett.

    PubMed

    Rachlin, Howard

    2007-01-01

    The three requirements for a Darwinian evolutionary process are replication, variation and selection. Dennett (2006) discusses various theories of how these three processes, especially selection, may have operated in the evolution of religion. He believes that the origins of religion, like the origins of language and music, may be approached scientifically. He hopes that such investigations will open a dialog between science and religion leading to moderation of current religious extremism. One problem with Dennett's program, illustrating the difficulty of breaking away from creationist thinking, is Dennett's own failure to consider how Darwinian methods may be used to study evolution of behavioral patterns over the lifetime of individual organisms.

  9. Measuring Science Literacy in College Undergraduates

    NASA Astrophysics Data System (ADS)

    Impey, Chris David; Buxner, S. R.; Antonellis, J.; King, C.; Johnson, E.; CATS

    2010-01-01

    Initial results from a major study of scientific literacy are presented, involving nearly 10,000 undergraduates in science classes at a large Southwestern Land Grant public university over a 20-year period. The science content questions overlap with those in the NSF's Science Indicators series. About 10% of all undergraduates in the US take a General Education astronomy course, and NSF data and the work of Jon Miller show that the number of college science courses taken is the strongest predictor of civic scientific literacy. Our data show that gains in knowledge on any particular item through the time students graduate are only 10-15%. Among students who have taken most or all of their science requirements, one-in-three think that antibiotics kill viruses as well as bacteria, one-in-four think lasers work by focusing sound waves, one-in-five think atoms are smaller than electrons, and the same fraction is unaware that humans evolved from earlier species of animals and that the Earth takes a year to go around the Sun. The fraction of undergraduates saying that astrology is "not at all” scientific increases from 17% to a still-low 34% as they move through the university. Equally worrying, half of all science majors say that astrology is "sort of” or "very” scientific. Education majors - the cohort of future teachers - perform worse than average on most individual questions and in terms of their overall scientific literacy. Assuming the study institution is representative of the nation's higher education institutions, our instruction is not raising students to the level we would expect for educated citizens who must vote on many issues that relate to science and technology. We acknowledge the NSF for funding under Award No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.

  10. Climate Change Denial Books and Conservative Think Tanks

    PubMed Central

    Jacques, Peter J.

    2013-01-01

    The conservative movement and especially its think tanks play a critical role in denying the reality and significance of anthropogenic global warming (AGW), especially by manufacturing uncertainty over climate science. Books denying AGW are a crucial means of attacking climate science and scientists, and we examine the links between conservative think tanks (CTTs) and 108 climate change denial books published through 2010. We find a strong link, albeit noticeably weaker for the growing number of self-published denial books. We also examine the national origins of the books and the academic backgrounds of their authors or editors, finding that with the help of American CTTs climate change denial has spread to several other nations and that an increasing portion of denial books are produced by individuals with no scientific training. It appears that at least 90% of denial books do not undergo peer review, allowing authors or editors to recycle scientifically unfounded claims that are then amplified by the conservative movement, media, and political elites. PMID:24098056

  11. [Issues of research in medicine].

    PubMed

    Topić, Elizabeta

    2006-01-01

    Research in medicine is liable to all rules and standards that apply to research in other natural sciences, since medicine as a science and service fully meets the general definition of science: it is a common, integrated, organized and systematized knowledge of mankind, whereby physician--being more or less aware of doing so-- in his daily activities applies scientific thinking and scientific methods. The procedure of problem solving in scientific work and in medical practice is characterized by many similarities as well as variation. In scientific research, the observation of some phenomenon that cannot be explained by the known facts and theories is followed by making a hypothesis, planning and carrying out experimental investigation resulting in some data. Interpretation of these data then provides evidence to confirm or reject the hypothesis. In medical practice, quite a similar procedure is followed; the initial examination of a patient, when his condition cannot be explained by the data thus obtained, is identical to the observation of a phenomenon which cannot be explained by the known facts; working diagnosis would correspond to making the hypothesis; and experimental investigation would compare to laboratory and other diagnostic studies. The working diagnosis is accepted or rejected depending on these results. Of course, there also are differences in the problem solving procedure between scientific research and daily medical practice. For example, in research a single hypothesis is posed, a single experiment with successive testing and/or repeats is performed, whereas in medical practice several hypotheses are made, multiple studies are concurrently performed to reject current hypotheses and to make new ones. Scientific investigation produces an abundance of systematic data, whereas in medical practice target data are being generated, yet not systematically. Definitive decision making also differs greatly, as in scientific research it only ensues from conclusive evidence, whereas in medical practice definitive decision is made and therapeutic procedures are performed even before reaching final evidence. The general strategy of work and research in medicine can be briefly described by four principles, i.e. good knowledge of one's own work; continuing upgrading of one's own work in collaboration with respective institutions (laboratories, university, and research institutes); implementation of standard, up-to-date and scientific methods most of the time; and publishing work results on a regular basis. This strategy ensures constant progress and treatment quality improvement while allowing due validation and evaluation of the work by the society. Scientific research is based on the pre-existing knowledge of the problem under study, and should be supervised, systematic and planned. Research produces data that may represent some new concepts, or such concepts are developed by further data processing. In research, scientific procedure includes a number of steps that have to be made to reach a new scientific result. This procedure includes (a) thinking about a scientific issue; (b) making a scientific hypothesis, i.e. the main objective of the study; (c) research ethics; (d) determination of sources and mode of data collection; (e) research performance; (f) collection and analysis of all research data; (g) interpretation of results and evidence; and (h) publications. The next section of this chapter brings an example of scientific research in the field of medicine, where the procedures carried out during the research are briefly described; other chapters of this supplement deal with statistical methodology used on processing the data obtained in the study, which is most frequently employed in scientific work in the field of medicine.

  12. Evolving Applications, Technological Challenges and Future Opportunities in Neuromodulation: Proceedings of the Fifth Annual Deep Brain Stimulation Think Tank

    PubMed Central

    Ramirez-Zamora, Adolfo; Giordano, James J.; Gunduz, Aysegul; Brown, Peter; Sanchez, Justin C.; Foote, Kelly D.; Almeida, Leonardo; Starr, Philip A.; Bronte-Stewart, Helen M.; Hu, Wei; McIntyre, Cameron; Goodman, Wayne; Kumsa, Doe; Grill, Warren M.; Walker, Harrison C.; Johnson, Matthew D.; Vitek, Jerrold L.; Greene, David; Rizzuto, Daniel S.; Song, Dong; Berger, Theodore W.; Hampson, Robert E.; Deadwyler, Sam A.; Hochberg, Leigh R.; Schiff, Nicholas D.; Stypulkowski, Paul; Worrell, Greg; Tiruvadi, Vineet; Mayberg, Helen S.; Jimenez-Shahed, Joohi; Nanda, Pranav; Sheth, Sameer A.; Gross, Robert E.; Lempka, Scott F.; Li, Luming; Deeb, Wissam; Okun, Michael S.

    2018-01-01

    The annual Deep Brain Stimulation (DBS) Think Tank provides a focal opportunity for a multidisciplinary ensemble of experts in the field of neuromodulation to discuss advancements and forthcoming opportunities and challenges in the field. The proceedings of the fifth Think Tank summarize progress in neuromodulation neurotechnology and techniques for the treatment of a range of neuropsychiatric conditions including Parkinson's disease, dystonia, essential tremor, Tourette syndrome, obsessive compulsive disorder, epilepsy and cognitive, and motor disorders. Each section of this overview of the meeting provides insight to the critical elements of discussion, current challenges, and identified future directions of scientific and technological development and application. The report addresses key issues in developing, and emphasizes major innovations that have occurred during the past year. Specifically, this year's meeting focused on technical developments in DBS, design considerations for DBS electrodes, improved sensors, neuronal signal processing, advancements in development and uses of responsive DBS (closed-loop systems), updates on National Institutes of Health and DARPA DBS programs of the BRAIN initiative, and neuroethical and policy issues arising in and from DBS research and applications in practice. PMID:29416498

  13. Evolving Applications, Technological Challenges and Future Opportunities in Neuromodulation: Proceedings of the Fifth Annual Deep Brain Stimulation Think Tank.

    PubMed

    Ramirez-Zamora, Adolfo; Giordano, James J; Gunduz, Aysegul; Brown, Peter; Sanchez, Justin C; Foote, Kelly D; Almeida, Leonardo; Starr, Philip A; Bronte-Stewart, Helen M; Hu, Wei; McIntyre, Cameron; Goodman, Wayne; Kumsa, Doe; Grill, Warren M; Walker, Harrison C; Johnson, Matthew D; Vitek, Jerrold L; Greene, David; Rizzuto, Daniel S; Song, Dong; Berger, Theodore W; Hampson, Robert E; Deadwyler, Sam A; Hochberg, Leigh R; Schiff, Nicholas D; Stypulkowski, Paul; Worrell, Greg; Tiruvadi, Vineet; Mayberg, Helen S; Jimenez-Shahed, Joohi; Nanda, Pranav; Sheth, Sameer A; Gross, Robert E; Lempka, Scott F; Li, Luming; Deeb, Wissam; Okun, Michael S

    2017-01-01

    The annual Deep Brain Stimulation (DBS) Think Tank provides a focal opportunity for a multidisciplinary ensemble of experts in the field of neuromodulation to discuss advancements and forthcoming opportunities and challenges in the field. The proceedings of the fifth Think Tank summarize progress in neuromodulation neurotechnology and techniques for the treatment of a range of neuropsychiatric conditions including Parkinson's disease, dystonia, essential tremor, Tourette syndrome, obsessive compulsive disorder, epilepsy and cognitive, and motor disorders. Each section of this overview of the meeting provides insight to the critical elements of discussion, current challenges, and identified future directions of scientific and technological development and application. The report addresses key issues in developing, and emphasizes major innovations that have occurred during the past year. Specifically, this year's meeting focused on technical developments in DBS, design considerations for DBS electrodes, improved sensors, neuronal signal processing, advancements in development and uses of responsive DBS (closed-loop systems), updates on National Institutes of Health and DARPA DBS programs of the BRAIN initiative, and neuroethical and policy issues arising in and from DBS research and applications in practice.

  14. Use of cognitive artifacts in chemistry learning

    NASA Astrophysics Data System (ADS)

    Yengin, Ilker

    In everyday life, we interact with cognitive artifacts to receive and/or manipulate information so as to alter our thinking processes. CHEM/TEAC 869Q is a distance course that includes extensive explicit instruction in the use of a cognitive artifact. This study investigates issues related to the design of that online artifact. In order to understand design implications and how cognitive artifacts contribute to students' thinking and learning, a qualitative research methodology was engaged that utilized think aloud sessions. Participants' described constrained and structured cognitive models while using the artifact. The study also was informed by interviews and researcher's field notes. A purposeful sampling method led to the selection of participants, four males and two females, who had no prior history of using a course from the 869 series but who had experienced the scientific content covered by the CHEM869Q course. Analysis of the results showed both that a cognitive artifact may lead users' minds in decision making, and that problem solving processes were affected by cognitive artifact's design. When there is no design flaw, users generally thought that the cognitive artifact was helpful by simplifying steps, overcoming other limitations, and reducing errors in a reliable, effective, and easy to use way. Moreover, results showed that successful implementation of cognitive artifacts into teaching --learning practices depended on user willingness to transfer a task to the artifact. While users may like the idea of benefiting from a cognitive artifact, nevertheless, they may tend to limit their usage. They sometimes think that delegating a task to a cognitive artifact makes them dependent, and that they may not learn how to perform the tasks by themselves. They appear more willing to use a cognitive artifact after they have done the task by themselves.

  15. Indicators that influence prospective mathematics teachers representational and reasoning abilities

    NASA Astrophysics Data System (ADS)

    Darta; Saputra, J.

    2018-01-01

    Representational and mathematical reasoning ability are very important ability as basic in mathematics learning process. The 2013 curriculum suggests that the use of a scientific approach emphasizes higher order thinking skills. Therefore, a scientific approach is required in mathematics learning to improve ability of representation and mathematical reasoning. The objectives of this research are: (1) to analyze representational and reasoning abilities, (2) to analyze indicators affecting the ability of representation and mathematical reasoning, (3) to analyze scientific approaches that can improve the ability of representation and mathematical reasoning. The subject of this research is the students of mathematics prospective teachers in the first semester at Private Higher Education of Bandung City. The research method of this research was descriptive analysis. The research data were collected using reasoning and representation tests on sixty-one students. Data processing was done by descriptive analysis specified based on the indicators of representation ability and mathematical reasoning that influenced it. The results of this first-year study showed that students still had many weaknesses in reasoning and mathematical representation that were influenced by the ability to understand the indicators of both capabilities. After observing the results of the first-year research, then in the second and third year, the development of teaching materials with a scientific approach in accordance with the needs of prospective students was planned.

  16. A Model of Distance Analysis. Epistemic Field Notes for Education Ethnographers

    ERIC Educational Resources Information Center

    Marty, O.

    2015-01-01

    This document aims to help education ethnographers to think about, describe and complete their scientific research: based on a personal research curricula and ongoing scientific discussions in social sciences and psychology, I develop an anthropology synthesis of three epistemic distances. (1) Cultural distance from fieldwork: How far is the…

  17. Students' Perceptions of the Nature of Evolutionary Theory

    ERIC Educational Resources Information Center

    Dagher, Zoubeida R.; Boujaoude, Saouma

    2005-01-01

    This study explored how some college students understand the nature of the theory of evolution and how they evaluate its scientific status. We conducted semistructured interviews with 15 college biology seniors in which we asked them to explain why they think evolution assumes the status of a scientific theory, how it compares to other scientific…

  18. Methods and Strategies: Digital Notebooks for Digital Natives

    ERIC Educational Resources Information Center

    Miller, Bridget; Martin, Christie

    2016-01-01

    The idea of notebooking is not new in the science classroom. Since the mid-1970s, writing has been found to facilitate students' critical thinking and learning across a variety of content areas. For science educators, notebooks have become an essential tool for supporting students' scientific inquiry in and across concepts. Scientific notebooks…

  19. Making the Grounds of Scientific Inquiry Visible in the Classroom

    ERIC Educational Resources Information Center

    Lucas, Deborah; Broderick, Nichole; Lehrer, Richard; Bohanan, Robert

    2005-01-01

    As every parent knows, children are no slouches at generating questions. But the scientific potential in a child's spontaneous question can easily be lost; children often fail to take the step beyond casual curiosity into systematic inquiry. Questioning is indeed robustly rooted in children's everyday ways of thinking about the world, but serious…

  20. Teaching Scientific and Technical French at Napier College in Scotland.

    ERIC Educational Resources Information Center

    Mitchell, Evelyne

    Scotland's vocationally-oriented Napier College was funded by the French Government to develop language courses for scientists and engineers. The courses developed have been intensive and extensive, based on work started by a team of French scientists focusing on the language, concepts, and ways of thinking common to the scientific community.…

  1. Thematic Continuities: Talking and Thinking about Adaptation in a Socially Complex Classroom

    ERIC Educational Resources Information Center

    Ash, Doris

    2008-01-01

    In this study I rely on sociocultural views of learning and teaching to describe how fifth- sixth-grade students in a Fostering a Community of Learners (FCL) classroom gradually adopted scientific ideas and language in a socially complex classroom. Students practiced talking science together, using everyday, scientific, and hybrid discourses as…

  2. The New Millennium and an Education That Captures the Basic Spirit of Science.

    ERIC Educational Resources Information Center

    Bybee, Rodger W.

    This document discusses reflections of the old and new millennium on education that capture the basic spirit of science. The explanation includes basic scientific ideas in physical sciences, earth systems, solar system and space; living systems; basic scientific thinking; the basic distinction between science and technology; basic connections…

  3. The Impact of Science Fiction Films on Student Interest in Science

    ERIC Educational Resources Information Center

    Laprise, Shari; Winrich, Chuck

    2010-01-01

    Science fiction films were used in required and elective nonmajor science courses as a pedagogical tool to motivate student interest in science and to reinforce critical thinking about scientific concepts. Students watched various films and critiqued them for scientific accuracy in written assignments. Students' perception of this activity was…

  4. Thinking like a Scientist: Innateness as a Case Study

    ERIC Educational Resources Information Center

    Knobe, Joshua; Samuels, Richard

    2013-01-01

    The concept of innateness appears in systematic research within cognitive science, but it also appears in less systematic modes of thought that long predate the scientific study of the mind. The present studies therefore explore the relationship between the properly scientific uses of this concept and its role in ordinary folk understanding.…

  5. Ghost Hunting as a Means to Illustrate Scientific Methodology and Enhance Critical Thinking

    ERIC Educational Resources Information Center

    Rockwell, Steven C.

    2012-01-01

    The increasing popularity of television shows featuring paranormal investigations has led to a renewed enthusiasm in ghost hunting activities, and belief in the paranormal in general. These shows typically feature a group of investigators who, while claiming to utilize proper scientifically correct methodologies, violate many core scientific…

  6. "Scientifically-Based Research": The Art of Politics and the Distortion of Science

    ERIC Educational Resources Information Center

    Shaker, Paul; Ruitenberg, Claudia

    2007-01-01

    The US Federal Government is forcefully prescribing a narrow definition of "scientifically-based" educational research. US policy, emerging from contemporary neoliberal and technocratic viewpoints and funded and propagated on a large scale, has the potential to influence international thinking on educational research. In this article we continue a…

  7. Making Real Virtual Labs

    ERIC Educational Resources Information Center

    Keller, Harry E.; Keller, Edward E.

    2005-01-01

    Francis Bacon began defining scientific methodology in the early 17th century, and secondary school science classes began to implement science labs in the mid-19th century. By the early 20th century, leading educators were suggesting that science labs be used to develop scientific thinking habits in young students, and at the beginning of the 21st…

  8. Unpacking the Relationship between Science Education and Applied Scientific Literacy

    ERIC Educational Resources Information Center

    Crowell, Amanda; Schunn, Christian

    2016-01-01

    Scientific literacy has many meanings: it can be thought of as foundational knowledge, foundational critical thinking skills, or the application of these two foundations to everyday decision making. Here, we examine the far transfer scenario: do increases in science education lead to everyday decision-making becoming more consistent with consensus…

  9. Paradigmatic and Presumptive Shifts: Thomas Kuhn and Richard Whately in Tandem.

    ERIC Educational Resources Information Center

    Miller, Christine M.

    Acceptance of a paradigm in the scientific community depends upon persuasion, upon the supplying of "good reasons" for supporting one paradigm over another. When one paradigm gains long-term acceptance and becomes the standard for scientific thought, scientists defer to such an authority in their thinking, and such established paradigms…

  10. Longitudinal Study of a Cooperation-Driven, Socio-Scientific Issue Intervention on Promoting Students' Critical Thinking and Self-Regulation in Learning Science

    ERIC Educational Resources Information Center

    Wang, Hsin-Hui; Chen, Hsiang-Ting; Lin, Huann-shyang; Huang, Yu-Ning; Hong, Zuway-R

    2017-01-01

    This longitudinal study explored the effects of a Cooperation-driven Socioscientific Issue (CDSSI) intervention on junior high school students' perceptions of critical thinking (CT) and self-regulation (SR) in Taiwan. Forty-nine grade 7 students were randomly selected as an experimental group (EG) to attend a 3-semester 72-hour intervention; while…

  11. Critical Thinking Training for Army Officers Volume One: Overview of Research Program

    DTIC Science & Technology

    2008-06-01

    Interview respondents favored a particular model of curriculum for adult learners, the Experiential Learning Model (ELM) ( Kolb , 1984) which has been...Psychologist, 58, 697-720. Klein, G. (1999). Sources of power. Cambridge, MA: MIT Press. Kolb , D.A. (1984). Experiential learning : Experience as... theory based, comprehensive, and widely available program of training is needed. Moreover, the scientific literature on critical thinking is highly

  12. The Design of Collaborative Learning for Teaching Physics in Vocational Secondary School

    NASA Astrophysics Data System (ADS)

    Ismayati, Euis

    2018-04-01

    Vocational secondary school (Sekolah Menengah Kejuruan or SMK) is a vocational education that is based on the principle of human resource investment (human capital investment) referring to the quality of education and productivity to compete in the global job market. Therefore, vocational education relates directly to business world/industry which fulfills the needs of the skilled worker. According to the results of some researches, the work ethics of vocational graduates are still unsatisfying. Most of them are less able to perform their works, to adapt to the changes and development of technology and science, to be retrained, to develop themselves, to collaborate, and to argue. Meanwhile, the employers in the world of work and industries require their employees to have abilities to think creatively and working collaboratively. In addition, the students’ abilities to adapt to the technology in working environment are greatly influenced by the learning process in their schools, especially in science learning. The process of science learning which can help the students to think and act scientifically should be implemented by teachers using a learning approach which is appropriate to the students’ need and the material taught to the students. To master technology and industry needs science mastery. Physics, as a part of science, has an important role in the development of technology since the products of technology strongly support further development of science. In order to develop the abilities to think critically and working collaboratively, education should be given to the students through the learning process using learning model which refers to a collaborative group discussion system called Collaborative Learning. Moreover, Collaborative learning for teaching Physics in vocational secondary school should be designed in such a way that the goal of teaching and learning can be achieved. Collaborative Learning is advantageous to improve the students’ creative thinking and collaborative working.

  13. The Opinions of Nursing Students Regarding the Nursing Process and Their Levels of Proficiency in Turkey.

    PubMed

    Taskın Yilmaz, Feride; Sabanciogullari, Selma; Aldemir, Kadriye

    2015-12-01

    Nursing process, as a scientific method of nursing practice, is an important tool for putting nursing knowledge into practice which increases the quality of nursing care. The study was aimed to determine the opinions of nursing students regarding the nursing process and their levels of proficiency. A total of 44 nursing students participated in this descriptive study. Data were collected by a three-part questionnaire including the opinion of students on nursing process, Gordon's functional health patterns model and the NANDA diagnoses. Data were analyzed by SPSS software. Most of the students (65.9%) believed that the nursing process was necessary. half of the students explained the diagnosis, 58.3% explained the planning, 41.3% explained the implementation, and 43.6% explained the evaluation sufficiently. It is suggested for instructors to use different teaching methods in order to develop critical thinking while teaching the nursing process.

  14. On the Existence and Uniqueness of the Scientific Method.

    PubMed

    Wagensberg, Jorge

    2014-01-01

    The ultimate utility of science is widely agreed upon: the comprehension of reality. But there is much controversy about what scientific understanding actually means, and how we should proceed in order to gain new scientific understanding. Is there a method for acquiring new scientific knowledge? Is this method unique and universal? There has been no shortage of proposals, but neither has there been a shortage of skeptics about these proposals. This article proffers for discussion a potential scientific method that aspires to be unique and universal and is rooted in the recent and ancient history of scientific thinking. Curiously, conclusions can be inferred from this scientific method that also concern education and the transmission of science to others.

  15. Dreaming and immanence: rejecting the dogmatic image of thought in science education

    NASA Astrophysics Data System (ADS)

    Bazzul, Jesse; Wallace, Maria F. G.; Higgins, Marc

    2018-02-01

    In this article, we, a multivocal-thinking-assemblage, trouble what we feel is the dogmatic image of thought in science education. Beginning with Lars Bang's (Cult Stud Sci Educ, 2017) dramatic and disruptive imagery of the Ouroboros as a means to challenge scientific literacy we explore the importance of dreams, thinking with both virtual and actual entities, and immanent thinking to science education scholarship. Dreaming as movement away from a dogmatic image of thought takes the authors in multiple directions as they attempt to open Deleuzian horizons of difference, immanence, and self-exploration.

  16. Clinical reasoning and critical thinking.

    PubMed

    da Silva Bastos Cerullo, Josinete Aparecida; de Almeida Lopes Monteiro da Cruz, Diná

    2010-01-01

    This study identifies and analyzes nursing literature on clinical reasoning and critical thinking. A bibliographical search was performed in LILACS, SCIELO, PUBMED and CINAHL databases, followed by selection of abstracts and the reading of full texts. Through the review we verified that clinical reasoning develops from scientific and professional knowledge, is permeated by ethical decisions and nurses values and also that there are different personal and institutional strategies that might improve the critical thinking and clinical reasoning of nurses. Further research and evaluation of educational programs on clinical reasoning that integrate psychosocial responses to physiological responses of people cared by nurses is needed.

  17. Scientific thinking in young children: theoretical advances, empirical research, and policy implications.

    PubMed

    Gopnik, Alison

    2012-09-28

    New theoretical ideas and empirical research show that very young children's learning and thinking are strikingly similar to much learning and thinking in science. Preschoolers test hypotheses against data and make causal inferences; they learn from statistics and informal experimentation, and from watching and listening to others. The mathematical framework of probabilistic models and Bayesian inference can describe this learning in precise ways. These discoveries have implications for early childhood education and policy. In particular, they suggest both that early childhood experience is extremely important and that the trend toward more structured and academic early childhood programs is misguided.

  18. Using Rubrics as a Scientific Writing Instructional Method in Early Stage Undergraduate Neuroscience Study.

    PubMed

    Clabough, Erin B D; Clabough, Seth W

    2016-01-01

    Scientific writing is an important communication and learning tool in neuroscience, yet it is a skill not adequately cultivated in introductory undergraduate science courses. Proficient, confident scientific writers are produced by providing specific knowledge about the writing process, combined with a clear student understanding about how to think about writing (also known as metacognition). We developed a rubric for evaluating scientific papers and assessed different methods of using the rubric in inquiry-based introductory biology classrooms. Students were either 1) given the rubric alone, 2) given the rubric, but also required to visit a biology subject tutor for paper assistance, or 3) asked to self-grade paper components using the rubric. Students who were required to use a peer tutor had more negative attitudes towards scientific writing, while students who used the rubric alone reported more confidence in their science writing skills by the conclusion of the semester. Overall, students rated the use of an example paper or grading rubric as the most effective ways of teaching scientific writing, while rating peer review as ineffective. Our paper describes a concrete, simple method of infusing scientific writing into inquiry-based science classes, and provides clear avenues to enhance communication and scientific writing skills in entry-level classes through the use of a rubric or example paper, with the goal of producing students capable of performing at a higher level in upper level neuroscience classes and independent research.

  19. Using Rubrics as a Scientific Writing Instructional Method in Early Stage Undergraduate Neuroscience Study

    PubMed Central

    Clabough, Erin B.D.; Clabough, Seth W.

    2016-01-01

    Scientific writing is an important communication and learning tool in neuroscience, yet it is a skill not adequately cultivated in introductory undergraduate science courses. Proficient, confident scientific writers are produced by providing specific knowledge about the writing process, combined with a clear student understanding about how to think about writing (also known as metacognition). We developed a rubric for evaluating scientific papers and assessed different methods of using the rubric in inquiry-based introductory biology classrooms. Students were either 1) given the rubric alone, 2) given the rubric, but also required to visit a biology subject tutor for paper assistance, or 3) asked to self-grade paper components using the rubric. Students who were required to use a peer tutor had more negative attitudes towards scientific writing, while students who used the rubric alone reported more confidence in their science writing skills by the conclusion of the semester. Overall, students rated the use of an example paper or grading rubric as the most effective ways of teaching scientific writing, while rating peer review as ineffective. Our paper describes a concrete, simple method of infusing scientific writing into inquiry-based science classes, and provides clear avenues to enhance communication and scientific writing skills in entry-level classes through the use of a rubric or example paper, with the goal of producing students capable of performing at a higher level in upper level neuroscience classes and independent research. PMID:27980476

  20. Use of critical thinking in the diagnostic process.

    PubMed

    Lunney, Margaret

    2010-01-01

    To demonstrate use of critical thinking in the diagnostic process in order to achieve accuracy of nursing diagnoses. The 7 cognitive skills and 10 habits of mind identified as important for nursing in a Delphi study by Scheffer and Rubenfeld are applied to the diagnostic process using a published case study of a woman with heart failure. Taking into account all data from the case study and using the concepts of critical thinking, two high-accuracy nursing diagnoses were selected to guide nursing interventions. Because the specific types of critical thinking needed for accurate diagnosing are not known, nurses should develop all 17 of the cognitive skills and habits of mind so these thinking abilities are available when needed. The 17 critical thinking concepts should be combined with domain knowledge, e.g., nursing diagnoses, to think about thinking, which will improve critical thinking processes.

  1. [Clinical decision making and critical thinking in the nursing diagnostic process].

    PubMed

    Müller-Staub, Maria

    2006-10-01

    The daily routine requires complex thinking processes of nurses, but clinical decision making and critical thinking are underestimated in nursing. A great demand for educational measures in clinical judgement related with the diagnostic process was found in nurses. The German literature hardly describes nursing diagnoses as clinical judgements about human reactions on health problems / life processes. Critical thinking is described as an intellectual, disciplined process of active conceptualisation, application and synthesis of information. It is gained through observation, experience, reflection and communication and leads thinking and action. Critical thinking influences the aspects of clinical decision making a) diagnostic judgement, b) therapeutic reasoning and c) ethical decision making. Human reactions are complex processes and in their course, human behavior is interpreted in the focus of health. Therefore, more attention should be given to the nursing diagnostic process. This article presents the theoretical framework of the paper "Clinical decision making: Fostering critical thinking in the nursing diagnostic process through case studies".

  2. Think Scientifically: The NASA Solar Dynamics Observatory's Elementary Science Literacy Program

    NASA Astrophysics Data System (ADS)

    Van Norden, Wendy; Wawro, Martha

    2013-03-01

    The pressure to focus on math and reading at the elementary level has increased in recent years. As a result, science education has taken a back seat in elementary classrooms. The Think Scientifically book series provides a way for science to easily integrate with existing math and reading curriculum. This story-based science literature program integrates a classic storybook format with solid solar science, to make an educational product that meets state literacy standards. Each story is accompanied by hands-on labs and activities that teachers can easily conduct in their classrooms with minimal training and materials, as well as math and language arts extensions and assessment questions. These books are being distributed through teacher workshops and conferences.

  3. Think Scientifically: The Solar Dynamics Observatory's Elementary Science Literacy Program

    NASA Astrophysics Data System (ADS)

    Van Norden, Wendy; Wawro; Martha

    2012-03-01

    The pressure to focus on math and reading at the elementary level has increased in recent years. As a result, science education has taken a back seat in elementary classrooms. The Think Scientifically book series provides a way for science to easily integrate with existing math and reading curriculum. This story-based science literature program integrates a classic storybook format with solid solar science, to make an educational product that meets state literacy standards. Each story is accompanied by hands-on labs and activities that teachers can easily conduct in their classrooms with minimal training and materials, as well as math and language arts extensions and assessment questions. These books are being distributed through teacher workshops and conferences.

  4. The Confluence of Perceiving and Thinking in Consciousness Phenomenology

    PubMed Central

    Wagemann, Johannes

    2018-01-01

    The processual relation of thinking and perceiving shall be examined from a historical perspective as well as on the basis of methodically conducted first-person observation. Historically, these two psychological aspects of human knowledge and corresponding philosophical positions have predominant alternating phases. At certain historical points, thinking and perceiving tend to converge, while in the interim phases they seem to diverge with an emphasis on one of them. While at the birth of modern science, for instance, these two forms of mental life were deeply interlinked, today they seem to be separated more than ever before – as a number of scientific crises have shown. Turning from the outer to the inner aspect of this issue, a phenomenological view becomes relevant. In terms of the consciousness phenomenology developed by Steiner (1861–1925) and Witzenmann’s (1905–1988) Structure Phenomenology, this article will show how a methodical integration of thinking and perceiving can be carried out on the basis of first-person observation. In the course of a skilled introspective or meditative self-observation the individual’s own mental micro-actions of separating and integrating come into view, jointly constituting what we usually call thinking and perceiving. Consequently, this approach includes a conceptual as well as a perceptual dimension the experimental confluence of which ties in with the methodological core principle of modern natural science. At the same time, making this principle explicit may open the way to a further development of human consciousness and its scientific delineation. PMID:29375432

  5. Investigating Elementary Teachers' Thinking About and Learning to Notice Students' Science Ideas

    NASA Astrophysics Data System (ADS)

    Luna, Melissa Jo

    Children naturally use observations and everyday thinking to construct explanations as to why phenomena happen in the world. Science instruction can benefit by starting with these ideas to help children build coherent scientific understandings of how the physical world works. To do so, science teaching must involve attending to students' ideas so that those ideas become the basis for learning. Yet while science education reform requires teachers to pay close attention to their students' ideas, we know little about what teachers think this means in practice. To examine this issue, my dissertation research is two-fold. First, I examine teacher thinking by investigating how teachers understand what it means to pay attention to students' science ideas. Specifically, using new digital technology, three participating teachers captured moments of student thinking in the midst of instruction. Analysis of these moments reveals that teachers capture many different kinds of moments containing students' ideas and think about students' science ideas in different ways at different times. In particular, these three teachers most often think about students' ideas as being (a) from authority, (b) from experience, and (c) under construction. Second, I examine teacher learning through the development of an innovative science teaching video club model. The model differs from previous research on video clubs in several key ways in an attempt to focus teachers on student thinking in a sustained way. I investigate the ways in which this model was effective for engaging teachers in noticing and making sense of their students' science ideas during one implementation. Results indicate that teachers talked about student thinking early, often, and in meaningful ways. Science education leaders have recognized the potential of science teaching video clubs as a form of professional development, and the model presented in this work promotes the conditions for successful teacher learning. This work contributes to research on teacher cognition by advancing what we know about teachers' understanding of attending to students' science ideas. In addition, it provides practical information concerning the design of teacher professional development supporting their learning to attend closely to the ideas students raise about scientific phenomena.

  6. The Effects of Inquiry-Based Computer Simulation with Cooperative Learning on Scientific Thinking and Conceptual Understanding of Gas Laws

    ERIC Educational Resources Information Center

    Abdullah, Sopiah; Shariff, Adilah

    2008-01-01

    The purpose of the study was to investigate the effects of inquiry-based computer simulation with heterogeneous-ability cooperative learning (HACL) and inquiry-based computer simulation with friendship cooperative learning (FCL) on (a) scientific reasoning (SR) and (b) conceptual understanding (CU) among Form Four students in Malaysian Smart…

  7. Revisions of Physical Geology Laboratory Courses to Increase the Level of Inquiry: Implications for Teaching and Learning

    ERIC Educational Resources Information Center

    Grissom, April N.; Czajka, C. Douglas; McConnell, David A.

    2015-01-01

    The introductory physical geology laboratory courses taught at North Carolina State University aims to promote scientific thinking and learning through the use of scientific inquiry-based activities. A rubric describing five possible levels of inquiry was applied to characterize the laboratory activities in the course. Two rock and mineral…

  8. CURRICULUM GUIDES IN PHYSICS--GENERAL ADVANCED PLACEMENT, COLLEGE LEVEL.

    ERIC Educational Resources Information Center

    WESNER, GORDON E.

    THE GENERAL PHYSICS CURRICULUM IS PLANNED FOR THOSE WHOSE GENERAL ABILITY IS BETTER THAN AVERAGE AND IS OFFERED IN GRADES 11 OR 12. GENERAL OBJECTIVES ARE, TO DEVELOP CRITICAL THINKING THROUGH THE SCIENTIFIC METHOD, TO UNDERSTAND BASIC PHYSICAL LAWS AND MAN'S PLACE IN THE UNIVERSE, AND TO DEVELOP A SCIENTIFIC ABILITY AND INTEREST. ELEVEN UNITS OF…

  9. Developing a Critical Dialog for Educational Technology: Understanding the Nature of Technology and the Legacy of Scientific Management in Our Schools

    ERIC Educational Resources Information Center

    Frizelle, Thomas Kenneth

    2012-01-01

    This dissertation examines the legacy of scientific management and the dominance of one-dimensional thinking in the field of educational technology. Through this analysis, I demonstrate that the ways practitioners and policymakers frame educational technology, assess its effectiveness, and make judgments about its potential, often exclude…

  10. Contributions of Islamic Scholars to the Scientific Enterprise

    ERIC Educational Resources Information Center

    Faruqi, Yasmeen Mahnaz

    2006-01-01

    This paper presents a discussion regarding the role that Muslim scholars played in the development of scientific thinking in the Middle Ages. It argues that the Muslims were not just the preservers of the ancient and Greek knowledge, but that they contributed original works to the different fields of science. They were inspired by the Islamic view…

  11. Teaching Anthropogenic Climate Change through Interdisciplinary Collaboration: Helping Students Think Critically about Science and Ethics in Dialogue

    ERIC Educational Resources Information Center

    Todd, Claire; O'Brien, Kevin J.

    2016-01-01

    Anthropogenic climate change is a complicated issue involving scientific data and analyses as well as political, economic, and ethical issues. In order to capture this complexity, we developed an interdisciplinary student and faculty collaboration by (1) offering introductory lectures on scientific and ethical methods to two classes, (2) assigning…

  12. Elk Habitat: A Case Study of Scientific Inquiry

    ERIC Educational Resources Information Center

    Graves, C. John

    2009-01-01

    A case study is an excellent way to help students think like scientists as they work to solve a dilemma. This article describes a case study of elk in Yellowstone National Park. Students read short narratives, based on scientific research data, about the puzzling question of why some elk live substantially longer than others in certain areas of…

  13. A Framework for Analyzing Cognitive Demand and Content-Practices Integration: Task Analysis Guide in Science

    ERIC Educational Resources Information Center

    Tekkumru-Kisa, Miray; Stein, Mary Kay; Schunn, Christian

    2015-01-01

    Many countries, including the United States, emphasize the importance of developing students' scientific habits of mind and their capacity to think deeply about scientific ideas in an integrated fashion. Recent science education policies in the United States portray a related vision of science teaching and learning that is meant to guide the…

  14. Focused Science Delivery makes science make sense.

    Treesearch

    Rachel W. Scheuering; Jamie Barbour

    2004-01-01

    Science does not exist in a vacuum, but reading scientific publications might make you think it does. Although the policy and management implications of their findings could often touch a much wider audience, many scientists write only for the few people in the world who share their area of expertise. In addition, most scientific publications provide information that...

  15. Targeting the Development of Content Knowledge and Scientific Reasoning: Reforming College-Level Chemistry for Nonscience Majors

    ERIC Educational Resources Information Center

    Carmel, Justin H.; Jessa, Yasmin; Yezierski, Ellen J.

    2015-01-01

    A liberal education curriculum requires discipline-specific courses that develop intellectual and practical skills. With this promise of development, it is crucial that instruction focuses on content knowledge as well as the thinking patterns associated with the content. In chemistry, scientific reasoning is one such skill that students should…

  16. Does Creativity Impact Scientific Aptitude of School Children?

    ERIC Educational Resources Information Center

    Jayalekshmi, N. B.; Raja, B. William Dharma

    2011-01-01

    Of all the equalities man possesses, creative thinking has been the most important for his well being and advancement. Creativity means to make, to bring into being, to originate or to invent something. Scientific aptitude is considered to be a unique or unusual potential or ability of an individual to acquire general knowledge and skill in…

  17. The Effectiveness of Reason Racer, a Game Designed to Engage Middle School Students in Scientific Argumentation

    ERIC Educational Resources Information Center

    Ault, Marilyn; Craig-Hare, Jana; Frey, Bruce; Ellis, James D.; Bulgren, Janis

    2015-01-01

    Reason Racer is an online, rate-based, multiplayer game that applies specific game features in order to engage middle school students in introductory knowledge of and thinking related to scientific argumentation. Game features include rapid and competitive play, timed performance, immediate feedback, and high rates of response across many…

  18. Focusing on the Processes of Science Using Inquiry-oriented Astronomy Labs for Learning Astronomy

    NASA Astrophysics Data System (ADS)

    Speck, Angela; Ruzhitskaya, L.; Whittington, A.; Witzig, S.

    2010-01-01

    The U.S. National Science Education Standards provide guidelines for teaching science through inquiry, where students actively develop their understanding of science by combining scientific knowledge with reasoning and thinking skills. Inquiry activities include reading scientific literature, generating hypotheses, designing and carrying out investigations, interpreting data, and formulating conclusions. Inquiry-based instruction emphasizes questions, evidence, and explanation, the essential features of inquiry. We present two projects designed to develop learning materials for laboratory experiences in an undergraduate astronomy course. First, we engage students in inquiry-based learning by using "mini-journal” articles that follow the format of a scientific journal article, including a title, authors, abstract, introduction, methods, results, discussion and citations to peer-reviewed literature. The mini-journal provides a scaffold and serves as a springboard for students to develop and carry out their own follow-up investigation. They then present their findings in the form of their own mini-journal. This mini-journal format more directly reflects and encourages scientific practice. We use this technique in both introductory and upper level courses. The second project develops 3D virtual reality environments to help students interact with scientific constructs, and the use of collaborative learning tools to motivate student activity, deepen understanding and support knowledge building.

  19. English Secondary Students' Thinking about the Status of Scientific Theories: Consistent, Comprehensive, Coherent and Extensively Evidenced Explanations of Aspects of the Natural World--Or Just "An Idea Someone Has"

    ERIC Educational Resources Information Center

    Taber, Keith S.; Billingsley, Berry; Riga, Fran; Newdick, Helen

    2015-01-01

    Teaching about the nature of science (NOS) is seen as a priority for science education in many national contexts. The present paper focuses on one central issue in learning about NOS: understanding the nature and status of scientific theories. A key challenge in teaching about NOS is to persuade students that scientific knowledge is generally…

  20. Learning the Rules of the Game

    NASA Astrophysics Data System (ADS)

    Smith, Donald A.

    2018-03-01

    Games have often been used in the classroom to teach physics ideas and concepts, but there has been less published on games that can be used to teach scientific thinking. D. Maloney and M. Masters describe an activity in which students attempt to infer rules to a game from a history of moves, but the students don't actually play the game. Giving the list of moves allows the instructor to emphasize the important fact that nature usually gives us incomplete data sets, but it does make the activity less immersive. E. Kimmel suggested letting students attempt to figure out the rules to Reversi by playing it, but this game only has two players, which makes it difficult to apply in a classroom setting. Kimmel himself admits the choice of Reversi is somewhat arbitrary. There are games, however, that are designed to make the process of figuring out the rules an integral aspect of play. These games involve more people and require only a deck or two of cards. I present here an activity constructed around the card game Mao, which can be used to help students recognize aspects of scientific thinking. The game is particularly good at illustrating the importance of falsification tests (questions designed to elicit a negative answer) over verification tests (examples that confirm what is already suspected) for illuminating the underlying rules.

  1. The Use of Newspaper Articles as a Tool to Develop Critical Thinking in Science Classes

    NASA Astrophysics Data System (ADS)

    Oliveras, Begoña; Márquez, Conxita; Sanmartí, Neus

    2013-04-01

    The aim of this research is to identify the difficulties experienced by secondary school students (aged 15-16) with the critical reading of newspaper articles with scientific content. Two newspaper critical reading activities in relation to the study of various scientific contents were designed and carried out in two schools (61 students in total), one with a student population from a medium to high social and economic bracket and the other with students from a medium to low social and economic bracket. These activities were designed taking into account the phases of the reading process: before, during and after reading. In order to analyse the difficulties 'Elements of science critical reading' were identified on the basis of the 'Elements of reasoning' of Paul and Elder and the categories proposed by Bartz C.R.I.T.I.C. questionnaire and a scale was drawn up. The results show that the activities designed were useful in helping students to read critically. We also rated very positively the instrument created to assess the students' answers: the scale based on the performance indicators of Paul and Elder. This instrument enabled us to detect the aspects of critical thinking where students have the most difficulties: identifying the writer's purpose and looking for evidence in a text. It was also shown that the stance taken in the articles also had an influence on the results.

  2. CHANGING HEALTH TECHNOLOGY ASSESSMENT PARADIGMS?

    PubMed

    Husereau, Don; Henshall, Chris; Sampietro-Colom, Laura; Thomas, Sarah

    2016-01-01

    Health technology assessment (HTA) has to innovate to best support changing health system environments and to help provide access to valuable innovation under fiscal constraint. Issues associated with changing HTA paradigms were identified through scoping and explored through deliberation at a meeting of industry and HTA leaders. Five broad areas of change (engagement, scientific dialogue, research prioritization, adaptive approaches, and real world data) were identified. The meeting focused on two themes derived from these: re-thinking scientific dialogue and multi-stakeholder engagement, and re-thinking value, affordability, and access. Earlier and ongoing engagement to steer the innovation process and help achieve appropriate use across the technology lifecycle was perceived as important but would be resource intensive and would require priority setting. Patients need to be involved throughout, and particularly at the early stages. Further discussion is needed on the type of body best suited to convening the dialogue required. There was agreement that HTA must continue to assess value, but views differed on the role that HTA should play in assessing affordability and on appropriate responses to challenges around affordability. Enhanced horizon scanning could play an important role in preparing for significant future investments. Early and ongoing multi-stakeholder engagement and revisiting approaches to valuing innovation are required. Questions remain as to the most appropriate role for HTA bodies. Changing HTA paradigms extend HTA's traditional remit of being responsive to decision-makers demands to being more proactive and considering whole system value.

  3. [Animal experiment, can we replace?

    PubMed

    Combrisson, H

    2017-09-01

    Animal experiment is a subject of controversies. Some people, defenders of animals, think that it is not acceptable to use for scientific purposes at the risk of making them suffer or assert that the results obtained with animals are not transposable in the human beings. Others, in particular researchers in biology or medicine, think that the animal models are essential for the biomedical search. This confrontation of the opinions bases largely on an evolution of the place of animals in our society. The regulations authorize the use of animals for scientific purposes but oblige to make it under restrictive conditions. The application of 3Rs - replacement, reduction, and refinement - expressed in 1959 by Russel and Burch is an ethical guide to improve the welfare of animals in research. The alternative methods do not allow, in the present state of the knowledge, to answer all the scientific questions in biology and medicine research. They are, most of the time, complementary methods of the in vivo methods. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Improving medical students' knowledge of genetic disease: a review of current and emerging pedagogical practices.

    PubMed

    Wolyniak, Michael J; Bemis, Lynne T; Prunuske, Amy J

    2015-01-01

    Genetics is an essential subject to be mastered by health professional students of all types. However, technological advances in genomics and recent pedagogical research have changed the way in which many medical training programs teach genetics to their students. These advances favor a more experience-based education focused primarily on developing student's critical thinking skills. In this review, we examine the current state of genetics education at both the preclinical and clinical levels and the ways in which medical and pedagogical research have guided reforms to current and emerging teaching practices in genetics. We discover exciting trends taking place in which genetics is integrated with other scientific disciplines both horizontally and vertically across medical curricula to emphasize training in scientific critical thinking skills among students via the evaluation of clinical evidence and consultation of online databases. These trends will produce future health professionals with the skills and confidence necessary to embrace the new tools of medical practice that have emerged from scientific advances in genetics, genomics, and bioinformatics.

  5. Site Selection for Mars Surveyor Landing Sites: Some Key Factors for 2001 and Relation to Long-Term Exploration of Mars

    NASA Astrophysics Data System (ADS)

    Head, James W.

    1999-01-01

    The Site Selection Process: Site selection as a process can be subdivided into several main elements and these can be represented as the corners of a tetrahedron. Successful site selection outcome requires the interactions between these elements or corners, and should also take into account several other external factors or considerations. In principle, elements should be defined in approximately the following order: (1) major scientific and programmatic goals and objectives: What are the major questions that are being asked, goals that should be achieved, and objectives that must be accomplished. Do programmatic goals (e.g., sample return) differ from mission goals (e.g., precursor to sample return)? It is most helpful if these questions can be placed in the context of site characterization and hypothesis testing (e.g., Was Mars warm and wet in the Noachian? Land at a Noachian-aged site that shows evidence of surface water and characterize it specifically to address this question). Goals and objectives, then, help define important engineering factors such as type of payload, landing regions of interest (highlands, lowlands, smooth, rough, etc.), mobility, mission duration, etc. Goals and objectives then lead to: (2) spacecraft design and engineering landing site constraints: the spacecraft is designed to optimize the areas that will meet the goals and objectives, but this in turn introduces constraints that must be met in the selection of a landing site. Scientific and programmatic goals and objectives also help to define (3), the specific lander scientific payload requirements and capabilities. For example, what observations and experiments are required to address the major questions? How do we characterize the site in reference to the specific questions? Is mobility required and if so, how much? Which experiments are on the spacecraft, which on the rover? The results of these deliberations should lead to a surface exploration strategy, in which the goals and objectives can in principle be achieved through the exploration of a site meeting the basic engineering constraints. Armed with all of this important background information, one can then proceed to (4) the selection of optimum sites to address major scientific and programmatic objectives. Following the successful completion of this process and the selection of a site or region, there is a further step of mission optimization, in which a detailed mission profile and surface exploration plan is developed. In practice, the process never works in a linear fashion. Scientific goals are influenced by ongoing discoveries and developments and simple crystallization of thinking. Programmatic goals are influenced by evolving fiscal constraints, perspectives on program duration, and roles of specific missions in the context of the larger program. Engineering constraints are influenced by evolving fiscal constraints, decisions on hardware design that may have little to do with scientific goals (e.g., lander clearance; size of landing ellipse), and evolving understanding (e.g., assessment of engineering constraint space reveals further the degree to which mission duration is severely influenced by available solar energy and thus latitude). Lander scientific payload is influenced by fiscal constraints, total mass, evolving complexity, technological developments, and a payload selection process that may involve very long-term goals (e.g., human exploration) as well as shorter term scientific and programmatic goals. Site selection activities commonly involve scientists who are actively trying to decipher the complex geology of the crust of Mars and to unravel its geologic history through geological mapping. By the nature of the process, they are thinking in terms of broad morphostratigraphic units which may have multiple possible origins, defined using images with resolutions of many tens to hundreds of meters, and whose surfaces at the scale of the lander and rover are virtually unknown; this approach and effort is crucially important but does not necessarily readily lend itself to integration with the other elements.

  6. Basic science right, not basic science lite: medical education at a crossroad.

    PubMed

    Fincher, Ruth-Marie E; Wallach, Paul M; Richardson, W Scott

    2009-11-01

    This perspective is a counterpoint to Dr. Brass' article, Basic biomedical sciences and the future of medical education: implications for internal medicine. The authors review development of the US medical education system as an introduction to a discussion of Dr. Brass' perspectives. The authors agree that sound scientific foundations and skill in critical thinking are important and that effective educational strategies to improve foundational science education should be implemented. Unfortunately, many students do not perceive the relevance of basic science education to clinical practice.The authors cite areas of disagreement. They believe it is unlikely that the importance of basic sciences will be diminished by contemporary directions in medical education and planned modifications of USMLE. Graduates' diminished interest in internal medicine is unlikely from changes in basic science education.Thoughtful changes in education provide the opportunity to improve understanding of fundamental sciences, the process of scientific inquiry, and translation of that knowledge to clinical practice.

  7. Focus: global currents in national histories of science: the "global turn" and the history of science in Latin America.

    PubMed

    McCook, Stuart

    2013-12-01

    The "global turn" in the history of science offers new ways to think about how to do national and regional histories of science, in this case the history of science in Latin America. For example, it questions structuralist and diffusionist models of the spread of science and shows the often active role that people in Latin America (and the rest of the Global South) played in the construction of "universal" scientific knowledge. It suggests that even national or regional histories of science must be situated in a global context; all too often, such histories have treated global processes as a distant backdrop. At the same time, historians need to pay constant attention to the role of power in the construction of scientific knowledge. Finally, this essay highlights a methodological tool for writing globally inflected histories of science: the method of "following".

  8. Geoscience and Public Policy

    NASA Astrophysics Data System (ADS)

    White, K. S.

    2013-12-01

    Many current public policy issues have a geoscience component: climate change, natural hazards, energy, and mineral resources to name just a few. In addition, Congress makes decisions that directly affect scientists, such as funding allocations and visa and travel policy. Yet few geoscientists are engaged in the policy-making process. Members of Congress have called on scientists to become more active, including Ph.D. physicist and former-Representative Vernon Ehlers (R-MI). In an address at the 2010 AAAS Forum on Science and Technology Policy, he told scientists, "The gulf between the scientifically minded and those who are not scientifically minded is still tremendous. I think we are keeping far too quiet about what we know and how we would go about solving problems. We have so much to offer this country à solutions to various difficulties." This talk will provide information on avenues for geoscientists to more effectively engage in the public policy arena.

  9. Exploring prospective secondary science teachers' understandings of scientific inquiry and Mendelian genetics concepts using computer simulation

    NASA Astrophysics Data System (ADS)

    Cakir, Mustafa

    The primary objective of this case study was to examine prospective secondary science teachers' developing understanding of scientific inquiry and Mendelian genetics. A computer simulation of basic Mendelian inheritance processes (Catlab) was used in combination with small-group discussions and other instructional scaffolds to enhance prospective science teachers' understandings. The theoretical background for this research is derived from a social constructivist perspective. Structuring scientific inquiry as investigation to develop explanations presents meaningful context for the enhancement of inquiry abilities and understanding of the science content. The context of the study was a teaching and learning course focused on inquiry and technology. Twelve prospective science teachers participated in this study. Multiple data sources included pre- and post-module questionnaires of participants' view of scientific inquiry, pre-posttests of understandings of Mendelian concepts, inquiry project reports, class presentations, process videotapes of participants interacting with the simulation, and semi-structured interviews. Seven selected prospective science teachers participated in in-depth interviews. Findings suggest that while studying important concepts in science, carefully designed inquiry experiences can help prospective science teachers to develop an understanding about the types of questions scientists in that field ask, the methodological and epistemological issues that constrain their pursuit of answers to those questions, and the ways in which they construct and share their explanations. Key findings included prospective teachers' initial limited abilities to create evidence-based arguments, their hesitancy to include inquiry in their future teaching, and the impact of collaboration on thinking. Prior to this experience the prospective teachers held uninformed views of scientific inquiry. After the module, participants demonstrated extended expertise in their understandings of following aspects of scientific inquiry: (a) the iterative nature of scientific inquiry; (b) the tentativeness of specific knowledge claims; (c) the degree to which scientists rely on empirical data, as well as broader conceptual and metaphysical commitments, to assess models and to direct future inquiries; (d) the need for conceptual consistency; (e) multiple methods of investigations and multiple interpretations of data; and (f) social and cultural aspects of scientific inquiry. This research provided evidence that hypothesis testing can support the integrated acquisition of conceptual and procedural knowledge in science. Participants' conceptual elaborations of Mendelian inheritance were enhanced. There were qualitative changes in the nature of the participants' explanations. Moreover, the average percentage of correct responses improved from 39% on the pretest to 67% on the posttest. Findings also suggest those prospective science teachers' experiences as learners of science in their methods course served as a powerful tool for thinking about the role of inquiry in teaching and learning science. They had mixed views about enacting inquiry in their teaching in the future. All of them stated some kind of general willingness to do so; yet, they also mentioned some reservations and practical considerations about inquiry-based teaching.

  10. The Cognitive Domain: The Last Frontier. Final Report of the Regional Study Award Project.

    ERIC Educational Resources Information Center

    Clary, Joan; Mahaffy, John

    The theoretical foundations of thinking skills models differ. One category of thinking skills programs uses the cognitive process approach on the premise that thinking abilities depend upon certain fundamental processes. Thinking skills programs that present a strategic approach to thinking are called heuristics-oriented programs, and focus on an…

  11. Positive consequences of SETI before detection

    NASA Astrophysics Data System (ADS)

    Tough, A.

    Even before a signal is detected, six positive consequences will result from the scientific search for extraterrestrial intelligence, usually called SETI. (1) Humanity's self-image: SETI has enlarged our view of ourselves and enhanced our sense of meaning. Increasingly, we feel a kinship with the civilizations whose signals we are trying to detect. (2) A fresh perspective: SETI forces us to think about how extraterrestrials might perceive us. This gives us a fresh perspective on our society's values, priorities, laws and foibles. (3) Questions: SETI is stimulating thought and discussion about several fundamental questions. (4) Education: some broad-gage educational programs have already been centered around SETI. (5) Tangible spin-offs: in addition to providing jobs for some people, SETI provides various spin-offs, such as search methods, computer software, data, and international scientific cooperation. (6) Future scenarios: SETI will increasingly stimulate us to think carefully about possible detection scenarios and their consequences, about our reply, and generally about the role of extraterrestrial communication in our long-term future. Such thinking leads, in turn, to fresh perspectives on the SETI enterprise itself.

  12. Preschool Pathways to Science (PrePS[TM]): Facilitating Scientific Ways of Thinking, Talking, Doing, and Understanding

    ERIC Educational Resources Information Center

    Gelman, Rochel; Brenneman, Kimberly; Macdonald, Gay; Roman, Moises

    2009-01-01

    To ensure they're meeting state early learning guidelines for science, preschool educators need fun, age-appropriate, and research-based ways to teach young children about scientific concepts. The basis for the PBS KIDS show "Sid the Science Kid," this teaching resource helps children ages 3-5 investigate their everyday world and develop the…

  13. Elementary Students' Views of Explanation, Argumentation, and Evidence, and Their Abilities to Construct Arguments over the School Year

    ERIC Educational Resources Information Center

    McNeill, Katherine L.

    2011-01-01

    Science includes more than just concepts and facts, but also encompasses scientific ways of thinking and reasoning. Students' cultural and linguistic backgrounds influence the knowledge they bring to the classroom, which impacts their degree of comfort with scientific practices. Consequently, the goal of this study was to investigate 5th grade…

  14. Using a Historical Controversy to Teach Critical Thinking, the Meaning of "Theory", and the Status of Scientific Knowledge

    ERIC Educational Resources Information Center

    Montgomery, Keith

    2009-01-01

    It is important that students understand the "open-ended" nature of scientific knowledge and the correct relationship between facts and theory. One way this can be taught is to examine a past controversy in which the interpretation of facts was contested. The controversy discussed here, with suggestions for teaching, is "Expanding…

  15. Teaching scientific thinking skills: Students and computers coaching each other

    NASA Astrophysics Data System (ADS)

    Reif, Frederick; Scott, Lisa A.

    1999-09-01

    Our attempts to improve physics instruction have led us to analyze thought processes needed to apply scientific principles to problems—and to recognize that reliable performance requires the basic cognitive functions of deciding, implementing, and assessing. Using a reciprocal-teaching strategy to teach such thought processes explicitly, we have developed computer programs called PALs (P_ersonal A_ssistants for L_earning) in which computers and students alternately coach each other. These computer-implemented tutorials make it practically feasible to provide students with individual guidance and feedback ordinarily unavailable in most courses. We constructed PALs specifically designed to teach the application of Newton's laws. In a comparative experimental study these computer tutorials were found to be nearly as effective as individual tutoring by expert teachers—and considerably more effective than the instruction provided in a well-taught physics class. Furthermore, almost all of the students using the PALs perceived them as very helpful to their learning. These results suggest that the proposed instructional approach could fruitfully be extended to improve instruction in various practically realistic contexts.

  16. Let's rise up to unite taxonomy and technology.

    PubMed

    Bik, Holly M

    2017-08-01

    What do you think of when you think of taxonomy? An 18th century gentlemen in breeches? Or perhaps botany drawings hung on the walls of a boutique hotel? Such old-fashioned conceptions to the contrary, taxonomy is alive today although constantly struggling for survival and recognition. The scientific community is losing valuable resources as taxonomy experts age and retire, and funding for morphological studies and species descriptions remains stagnant. At the same time, organismal knowledge (morphology, ecology, physiology) has never been more important: genomic studies are becoming more taxon focused, the scientific community is recognizing the limitations of traditional "model" organisms, and taxonomic expertise is desperately needed to fight against global biodiversity declines resulting from human impacts. There has never been a better time for a taxonomic renaissance.

  17. Let’s rise up to unite taxonomy and technology

    PubMed Central

    2017-01-01

    What do you think of when you think of taxonomy? An 18th century gentlemen in breeches? Or perhaps botany drawings hung on the walls of a boutique hotel? Such old-fashioned conceptions to the contrary, taxonomy is alive today although constantly struggling for survival and recognition. The scientific community is losing valuable resources as taxonomy experts age and retire, and funding for morphological studies and species descriptions remains stagnant. At the same time, organismal knowledge (morphology, ecology, physiology) has never been more important: genomic studies are becoming more taxon focused, the scientific community is recognizing the limitations of traditional “model” organisms, and taxonomic expertise is desperately needed to fight against global biodiversity declines resulting from human impacts. There has never been a better time for a taxonomic renaissance. PMID:28820884

  18. Think Scientifically: The NASA Solar Dynamics Observatory's Elementary Science Literacy Program

    NASA Astrophysics Data System (ADS)

    Van Norden, Wendy M.

    2013-07-01

    The pressure to focus on math and reading at the elementary level has increased in recent years. As a result, science education has taken a back seat in elementary classrooms. The Think Scientifically book series provides a way for science to easily integrate with existing math and reading curriculum. This story-based science literature program integrates a classic storybook format with solar science concepts, to make an educational product that meets state literacy standards. Each story is accompanied by hands-on labs and activities that teachers can easily conduct in their classrooms with minimal training and materials, as well as math and language arts extensions. These books are being distributed through teacher workshops and conferences, and are available free at http://sdo.gsfc.nasa.gov/epo/educators/thinkscientifically.php.

  19. Argumentation Quality of Socio-scientific Issue between High School Students and Postgraduate Students about Cancer

    NASA Astrophysics Data System (ADS)

    Anisa, A.; Widodo, A.; Riandi, R.

    2017-09-01

    Argumentation is one factor that can help improve critical thinking skills. Arguing means to defend statements with the various data, denials, evidence, and reinforcement that support the statement. The research aimed to capture the quality of argument skills by students in grade 12 high school students and in postgraduate student on social-scientific issues of cancer. Both group subjects are not in the same school or institution, chosen purposively with the subject of 39 high school students of grade 12 in one district of West Java and 13 students of Biology education postgraduate in one of University in West Java - Indonesia. The results of the quality structure of arguments in both subject groups show the same pattern, which is claim - warrant - and ground, with the quality of counterclaim aspects on the postgraduate students look better than grade 12 students. This provides an illustration that the ability in argumentation between students and teachers in the socio-scientific issue of cancer should be evaluate so that the learning process would be more refined in schools.

  20. School Chemistry: The Need for Transgression

    NASA Astrophysics Data System (ADS)

    Talanquer, Vicente

    2013-07-01

    Studies of the philosophy of chemistry over the past 15 years suggest that chemistry is a hybrid science which mixes scientific pursuits with technological applications. Dominant universal characterizations of the nature of science thus fail to capture the essence of the discipline. The central goal of this position paper is to encourage reflection about the extent to which dominant views about quality science education based on universal views of scientific practices may constrain school chemistry. In particular, we discuss how these predominant ideas restrict the development of chemistry curricula and instructional approaches that may better support the learning of the ideas and practices that studies of the philosophy of chemistry suggest are at the core of the discipline. Our analysis suggests that philosophical studies about the nature of chemistry invite us to transgress traditional educational boundaries between science and technology, inquiry and design, content and process, and to reconceptualize school chemistry as a paradigmatic techno scientific subject. To support these changes, chemical education researchers should expand the scope of their investigations to better understand how students and teachers reason about and engage in more authentic ways of chemical thinking and doing.

  1. What is a Planet?-Categorizing Objects

    NASA Astrophysics Data System (ADS)

    Lebofsky, Larry A.

    2009-05-01

    Observing, communicating, comparing, organizing, relating, and inferring are fundamental to scientific thinking processes. Teaching this way, rather than just teaching "the facts,” is also important for developing the critical thinking skills of our future generations of a scientifically literate society. Since the IAU started its discussions on a definition of a planet in 2005, I have been presenting a hands-on activity called "What is a Planet?” at the annual meeting of the DPS. This activity has been designed for short (20 minute) to long (two hour) presentations depending on the venue and the audience. This has been presented to elementary-grade students, middle school students, K-12 teachers, and scientists and educators. Depending on the amount of time available, I show students how people, as well as scientists group or categorize things such as plants and animals, cats and dog, etc. The students are then broken up into groups. Science is usually done by teams of scientists working together, not as individuals working alone. I assess their prior knowledge (how many planets, their names, their properties, etc.). They also do a hands-on group activity where they group/categorize ten spheres by their properties (size, color, etc.). Finally we discuss the process by which the IAU came up with a definition of a planet. I then discuss with them why some scientists, including myself, do not agree with this definition: as with the spheres, there may be more than one "right” answer. There are many ways to look at the properties of objects in the Solar System and group them into planets and other designations. This is the way that science should be done, to look at all of the properties of an object and categorize them in a meaningful way. There may be more than one right answer.

  2. Combination of inquiry learning model and computer simulation to improve mastery concept and the correlation with critical thinking skills (CTS)

    NASA Astrophysics Data System (ADS)

    Nugraha, Muhamad Gina; Kaniawati, Ida; Rusdiana, Dadi; Kirana, Kartika Hajar

    2016-02-01

    Among the purposes of physics learning at high school is to master the physics concepts and cultivate scientific attitude (including critical attitude), develop inductive and deductive reasoning skills. According to Ennis et al., inductive and deductive reasoning skills are part of critical thinking. Based on preliminary studies, both of the competence are lack achieved, it is seen from student learning outcomes is low and learning processes that are not conducive to cultivate critical thinking (teacher-centered learning). One of learning model that predicted can increase mastery concepts and train CTS is inquiry learning model aided computer simulations. In this model, students were given the opportunity to be actively involved in the experiment and also get a good explanation with the computer simulations. From research with randomized control group pretest-posttest design, we found that the inquiry learning model aided computer simulations can significantly improve students' mastery concepts than the conventional (teacher-centered) method. With inquiry learning model aided computer simulations, 20% of students have high CTS, 63.3% were medium and 16.7% were low. CTS greatly contribute to the students' mastery concept with a correlation coefficient of 0.697 and quite contribute to the enhancement mastery concept with a correlation coefficient of 0.603.

  3. The Salience of the Self: Self-referential Processing and Internalizing Problems in Children and Adolescents with Autism Spectrum Disorder

    PubMed Central

    Burrows, Catherine A.; Usher, Lauren V.; Mundy, Peter C.; Henderson, Heather A.

    2016-01-01

    Scientific Abstract Children and adolescents with autism spectrum disorder (ASD) demonstrate atypical processing of, and memory for, self-referenced information, which may contribute to the heightened rates of co-occurring internalizing problems. We assessed affective and cognitive aspects of self-referential processing in verbally-fluent children with ASD (N=79), and an age-matched comparison sample (COM, N=73) of children without an autism diagnosis. We examined group differences in these two aspects of the self-system, and their joint contributions to individual differnces in internalizing problems. Using a self-referenced memory (SRM) task, participants indicated whether a series of positive and negative trait adjectives described themselves and a well-known fictional character. Participants were then surprised with a recognition memory test on the same adjectives. Overall, individuals with ASD showed a reduction in the extent to which they preferentially endorsed positive over negative trait adjectives about themselves, and a reduction in their preferential memory for self- over other-referenced information. Across the full sample, these two aspects of self-referential processing jointly predicted self-reported internalizing problems. Specifically, self-evaluations were strongly and inversely associated with internalizing problems but only for children with relatively high self-referenced memory. These findings suggest that the salience of the self influences the extent to which affective self-evaluations impact emotional functioning for youth both with and without ASD. Implications for basic (e.g., developmental) and translational (e.g., intervention) research are discussed. Lay Abstract Children with autism spectrum disorder (ASD) think about themselves differently than typically developing children do. Specifically, children with ASD think less positively of themselves than is typical, which can lead to anxiety and depression. Their system for remembering information about themselves is also altered. Usually, individuals relate new information to things they know about themselves to aid memory. However, individuals with ASD do not show better memory when they think about themselves, compared to when they think about another person, which is called preferential self-referenced memory (SRM). We examined what children with ASD (N=79), and an age-matched comparison sample (COM, N=73) think of themselves, and how well they remember information about themselves. Participants answered whether trait adjectives described themselves, and later were surprised with a memory test on those same adjectives. Overall, youth with ASD viewed themselves less positively than COM participants. Children with ASD also remembered fewer self-relevant relative to other-relevant adjectives. For all children, having strong memory for self-referenced information meant that positive self-evaluations were highly protective against symptoms of anxiety and depression. Self-referenced memory might tell us how much an individual focuses on what they think of themselves, for better or for worse. These differences could influence social skills and mental health in children with ASD. Differences in how individuals with ASD think about themselves may be important to address in treatment. PMID:27868365

  4. The role of pattern recognition in creative problem solving: a case study in search of new mathematics for biology.

    PubMed

    Hong, Felix T

    2013-09-01

    Rosen classified sciences into two categories: formalizable and unformalizable. Whereas formalizable sciences expressed in terms of mathematical theories were highly valued by Rutherford, Hutchins pointed out that unformalizable parts of soft sciences are of genuine interest and importance. Attempts to build mathematical theories for biology in the past century was met with modest and sporadic successes, and only in simple systems. In this article, a qualitative model of humans' high creativity is presented as a starting point to consider whether the gap between soft and hard sciences is bridgeable. Simonton's chance-configuration theory, which mimics the process of evolution, was modified and improved. By treating problem solving as a process of pattern recognition, the known dichotomy of visual thinking vs. verbal thinking can be recast in terms of analog pattern recognition (non-algorithmic process) and digital pattern recognition (algorithmic process), respectively. Additional concepts commonly encountered in computer science, operations research and artificial intelligence were also invoked: heuristic searching, parallel and sequential processing. The refurbished chance-configuration model is now capable of explaining several long-standing puzzles in human cognition: a) why novel discoveries often came without prior warning, b) why some creators had no ideas about the source of inspiration even after the fact, c) why some creators were consistently luckier than others, and, last but not least, d) why it was so difficult to explain what intuition, inspiration, insight, hunch, serendipity, etc. are all about. The predictive power of the present model was tested by means of resolving Zeno's paradox of Achilles and the Tortoise after one deliberately invoked visual thinking. Additional evidence of its predictive power must await future large-scale field studies. The analysis was further generalized to constructions of scientific theories in general. This approach is in line with Campbell's evolutionary epistemology. Instead of treating science as immutable Natural Laws, which already existed and which were just waiting to be discovered, scientific theories are regarded as humans' mental constructs, which must be invented to reconcile with observed natural phenomena. In this way, the pursuit of science is shifted from diligent and systematic (or random) searching for existing Natural Laws to firing up humans' imagination to comprehend Nature's behavioral pattern. The insights gained in understanding human creativity indicated that new mathematics that is capable of handling effectively parallel processing and human subjectivity is sorely needed. The past classification of formalizability vs. non-formalizability was made in reference to contemporary mathematics. Rosen's conclusion did not preclude future inventions of new biology-friendly mathematics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Is thinking computable?

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1990-01-01

    Strong artificial intelligence claims that conscious thought can arise in computers containing the right algorithms even though none of the programs or components of those computers understand which is going on. As proof, it asserts that brains are finite webs of neurons, each with a definite function governed by the laws of physics; this web has a set of equations that can be solved (or simulated) by a sufficiently powerful computer. Strong AI claims the Turing test as a criterion of success. A recent debate in Scientific American concludes that the Turing test is not sufficient, but leaves intact the underlying premise that thought is a computable process. The recent book by Roger Penrose, however, offers a sharp challenge, arguing that the laws of quantum physics may govern mental processes and that these laws may not be computable. In every area of mathematics and physics, Penrose finds evidence of nonalgorithmic human activity and concludes that mental processes are inherently more powerful than computational processes.

  6. Scientists Revise Thinking on Comets, Planet Jupiter

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1974

    1974-01-01

    Discusses scientific information obtained from Pioneer 10's Jupiter flyby and the comet Kohoutek's first trip around the sun, including the high hydrogen emission of Jupiter's principal moon, Io. (CC)

  7. Focused attention, open monitoring and loving kindness meditation: effects on attention, conflict monitoring, and creativity – A review

    PubMed Central

    Lippelt, Dominique P.; Hommel, Bernhard; Colzato, Lorenza S.

    2014-01-01

    Meditation is becoming increasingly popular as a topic for scientific research and theories on meditation are becoming ever more specific. We distinguish between what is called focused Attention meditation, open Monitoring meditation, and loving kindness (or compassion) meditation. Research suggests that these meditations have differential, dissociable effects on a wide range of cognitive (control) processes, such as attentional selection, conflict monitoring, divergent, and convergent thinking. Although research on exactly how the various meditations operate on these processes is still missing, different kinds of meditations are associated with different neural structures and different patterns of electroencephalographic activity. In this review we discuss recent findings on meditation and suggest how the different meditations may affect cognitive processes, and we give suggestions for directions of future research. PMID:25295025

  8. The Crystals Cave in a test tube

    NASA Astrophysics Data System (ADS)

    Puig, C.; Romero, M. L.

    2012-04-01

    It's quite easy to understand formation of crystals in Nature by evaporation of the solutions that contain minerals, but many times we have realised that our pupils hardly understand that precipitation is a process mostly caused by changing parameters in a solution, like pH, temperature, etc. and not necessarily depending on evaporation. We propose a hands-on activity using the context of the Cave of the Crystals in Naica's mine, Mexico. The Crystals Cave is a wonderful place where giant crystals of selenite (gypsum) have grown feeding from a supersaturated anhydrite solution1. Miners discovered the cave filled with hot water, and drained it to explore the gallery. The cave is now a giant laboratory where scientists are looking for the keys to understand geological processes. Teaching sequence (for students 15 years old) is as follows: DISCOVERING A MARVELLOUS PLACE: We showed our pupils several images and a short video of the Cave of the Crystals and ask them about the process that may have caused the phenomenon. Whole-class discussion. PRESENTING A CHALLENGE TO OUR STUDENTS: "COULD WE CREATE A CRYSTALS CAVE IN A TEST TUBE?" EXPERIMENTING TO IMITATE NATURE: Students tried to grow crystals simulating the same conditions as those in Naica's mine. We have chosen KNO3, a salt more soluble than gypsum. We added 85 g of salt to 200 ml of water (solubility of KNO3 at 25°C is 36 g per 100 gr of water) and heated it until it is dissolved. Afterwards, we poured the solution into some test tubes and other recipients and let them cool at room temperature. And they got a beautiful crystals cave!! THINKING A LITTLE MORE: we asked pupils some questions to make them think about the process and to predict what would happen in different situations. For example: a) What would happen with crystals if we heated the tubes again? or b) What would happen if we took the remaining solution from the tubes and keep it in the fridge? PROVING A NEW HYPOTHESIS: Pupils collected the remaining solutions from all the containers, poured them in a Petri dish and let them inside the fridge for a day: New crystals grew at the bottom of the Petri dishes!!! LOOKING FOR THE SCIENTIFIC EXPLANATIONS: We made them work in pairs in order to find an explanation about giant crystals in Naica's mine, by using short videos2, a scientific article or any information they can find on line. THINKING OF FUTURE: Should we close Naica's mine in order to preserve it? Whole-class discussion

  9. Teaching Young People to Be Curious, to Observe the Environment, to Think Critically

    NASA Astrophysics Data System (ADS)

    Ferraris, M.; Scheurle, C.; Claustre, H.

    2016-02-01

    The Observatoire Océanologique de Villefranche-sur-Mer (OOV) is one of thirty partners participating to the outreach project MEDITES (Méditerranée Diffusion des Techniques et des Sciences). The aim of this innovating project is to bring scientific culture to secondary school students socially or territorially distant from this type of culture, by means of different learning paths conceived and carried out by researchers in collaboration with professionals in the scientific mediation. In particular the OOV staff works in tandem with animators of the association Les Petits Débrouillardsto introduce students to oceanography. Each of the ten sessions of our learning paths includes a scientific part, based on research topics of the OOV, and a hands-on part, consisting of games, experiments or dynamic debates to better understand the scientific topics. Mixing these two approaches is helpful to maintain concentration, to have fun and consequently reduce the gap with science, a real challenge in the case of students with social problems. The ultimate goal of this method is not only to teach oceanography, but rather to teach to observe what surrounds us, to be curious, to ask questions, to think critically, to experiment and test in order to find the answers to these questions by yourself. In particular one session of our learning paths is carried out also in collaboration with the astronomers and the géophysicists of the Observatoire de la Côte d'Azur(OCA), in order to make the students aware of some common points between oceanography, astronomy and geosciences : the observation of the environment with instruments more or less sophisticated, and to the scientific approach. The most interesting aspect of this project is to monitore these classes throughout the year. During this time we have seen them mature in their way of thinking and that we could arouse the curiosity of these young students to make them more resourceful.

  10. Promoting Art through Technology, Education and Research of Natural Sciences (PATTERNS) across Wyoming, A Wyoming NSF EPSCoR Funded Project

    NASA Astrophysics Data System (ADS)

    Gellis, B. S.; McElroy, B. J.

    2016-12-01

    PATTERNS across Wyoming is a science and art project that promotes new and innovative approaches to STEM education and outreach, helping to re-contextualize how educators think about creative knowledge, and how to reach diverse audiences through informal education. The convergence of art, science and STEM outreach efforts is vital to increasing the presence of art in geosciences, developing multidisciplinary student research opportunities, expanding creative STEM thinking, and generating creative approaches of visualizing scientific data. A major goal of this project is to train art students to think critically about the value of scientific and artistic inquiry. PATTERNS across Wyoming makes science tangible to Wyoming citizens through K-14 art classrooms, and promotes novel maker-based art explorations centered around Wyoming's geosciences. The first PATTERNS across Wyoming scientific learning module (SIM) is a fish-tank sized flume that recreates natural patterns in sand as a result of fluid flow and sediment transport. It will help promotes the understanding of river systems found across Wyoming (e.g. Green, Yellowstone, Snake). This SIM, and the student artwork inspired by it, will help to visualize environmental-water changes in the central Rocky Mountains and will provide the essential inspiration and tools for Wyoming art students to design biological-driven creative explorations. Each art class will receive different fluvial system conditions, allowing for greater understanding of river system interactions. Artwork will return to the University of Wyoming for a STE{A}M Exhibition inspired by Wyoming's varying fluvial systems. It is our hope that new generations of science and art critical thinkers will not only explore questions of `why' and `how' scientific phenomena occur, but also `how' to better predict, conserve and study invaluable artifacts, and visualize conditions which allow for better control of scientific outcomes and public understanding.

  11. Using writing as a vehicle to promote and develop scientific concepts and process skills in fourth-grade students

    NASA Astrophysics Data System (ADS)

    Disimoni, Katherine Cecilia

    The development of conceptual knowledge, particularly at the elementary level, is one area in which researchers and educators have noted remarkable deficiencies. The purpose of this descriptive study was to observe the impact of the use of writing as a thinking tool on the promotion and development of scientific concepts and science process skills in elementary students in the discipline of science. Reports from some of the publications for science research and educational progress cited the direct links of writing effectiveness to the development of skills in critical thinking. The study consisted of 12 fourth-grade students in the control group and their 12 fourth-grade counterparts in the experimental group. The treatment for the study was the use of learning logs by the experimental group to record their written responses to predesigned prompts related to hands-on science experiences during the intervention period. Their counterparts did no writing. Statistical measures used were Student's t tests to determine if significance was present. A pretest and posttest were given that involved written responses to the same prompt. Three judges used a specially designed rubric to evaluate and score the writing. Significant differences were found when the scores of the experimental group were analyzed between pretest and posttest. Also, a standardized test to assess basic process skills was administered prior to and after the intervention. There were no statistical differences found in either group to demonstrate that writing effected the development of process skills. The researcher determined that perhaps writing is not the best way to promote process skills. Rather, engaging in science is the best way. These skills are built separately but used in tandem, particularly when learning about science and mathematics. The implications of this study impact upon several areas of education which make up paradigms leading to good practice based on sound theory. These components include the use of writing as a tool to develop and link conceptual knowledge, use of scientific discourse in collaborative efforts, use of integration of language arts and theme-related content areas, and multiinstructional techniques. Rather than a "change" of paradigms for veteran teachers then, an "addition to" existing paradigms could lead to the changes necessary to revamp curriculum and may aid in meeting the demands of a vastly changing and diverse population of monolingual and multilingual learners experiencing gaps in their construction and demonstration of oral and written knowledge.

  12. Student Thinking Processes. The Influence of Immediate Computer Access on Students' Thinking. First- and Second-Year Findings. ACOT Report #3.

    ERIC Educational Resources Information Center

    Tierney, Robert J.

    This 2-year longitudinal study explored whether computers promote more sophisticated thinking, and examined how students' thinking changes as they become experienced computer users. The first-year study examined the thinking process of four ninth-grade Apple Classrooms of Tomorrow (ACOT) students. The second-year study continued following these…

  13. A high-enrollment course-based undergraduate research experience improves student conceptions of scientific thinking and ability to interpret data.

    PubMed

    Brownell, Sara E; Hekmat-Scafe, Daria S; Singla, Veena; Chandler Seawell, Patricia; Conklin Imam, Jamie F; Eddy, Sarah L; Stearns, Tim; Cyert, Martha S

    2015-01-01

    We present an innovative course-based undergraduate research experience curriculum focused on the characterization of single point mutations in p53, a tumor suppressor gene that is mutated in more than 50% of human cancers. This course is required of all introductory biology students, so all biology majors engage in a research project as part of their training. Using a set of open-ended written prompts, we found that the course shifts student conceptions of what it means to think like a scientist from novice to more expert-like. Students at the end of the course identified experimental repetition, data analysis, and collaboration as important elements of thinking like a scientist. Course exams revealed that students showed gains in their ability to analyze and interpret data. These data indicate that this course-embedded research experience has a positive impact on the development of students' conceptions and practice of scientific thinking. © 2015 S. E. Brownell et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. Computational Simulations and the Scientific Method

    NASA Technical Reports Server (NTRS)

    Kleb, Bil; Wood, Bill

    2005-01-01

    As scientific simulation software becomes more complicated, the scientific-software implementor's need for component tests from new model developers becomes more crucial. The community's ability to follow the basic premise of the Scientific Method requires independently repeatable experiments, and model innovators are in the best position to create these test fixtures. Scientific software developers also need to quickly judge the value of the new model, i.e., its cost-to-benefit ratio in terms of gains provided by the new model and implementation risks such as cost, time, and quality. This paper asks two questions. The first is whether other scientific software developers would find published component tests useful, and the second is whether model innovators think publishing test fixtures is a feasible approach.

  15. The role of imagistic simulation in scientific thought experiments.

    PubMed

    Clement, John J

    2009-10-01

    Interest in thought experiments (TEs) derives from the paradox: "How can findings that carry conviction result from a new experiment conducted entirely within the head?" Historical studies have established the importance of TEs in science but have proposed disparate hypotheses concerning the source of knowledge in TEs, ranging from empiricist to rationalist accounts. This article analyzes TEs in think-aloud protocols of scientifically trained experts to examine more fine-grained information about their use. Some TEs appear powerful enough to discredit an existing theory-a disconfirmatory purpose. In addition, confirmatory and generative purposes were identified for other TEs. One can also use details in transcript data, including imagery reports and gestures, to provide evidence for a central role played by imagistic simulations in many TEs, and to suggest that these simulations can generate new knowledge using several sources, including the "extended application" of perceptual motor schemas, implicit prior knowledge, and spatial reasoning operations, in contrast to formal arguments. These sources suggest what it means for TEs to be grounded in embodied processes that can begin to explain the paradox above. This leads to a rationalistic view of TEs as using productive internal reasoning, but the view also acknowledges the historical role that experience with the world can play in forming certain schemas used in TEs. Understanding such processes could help provide a foundation for developing a larger model of scientific investigation processes grounded on imagistic simulation (Clement, 2008). Copyright © 2009 Cognitive Science Society, Inc.

  16. Scaffolding as an effort for thinking process optimization on heredity

    NASA Astrophysics Data System (ADS)

    Azizah, N. R.; Masykuri, M.; Prayitno, B. A.

    2018-04-01

    Thinking is an activity and process of manipulating and transforming data or information into memory. Thinking process is different between one and other person. Thinking process can be developed by interaction between student and their environment, such as scaffolding. Given scaffolding is based on each student necessity. There are 2 level on scaffolding such as explaining, reviewing, and restructuring; and developing conceptual thinking. This research is aimed to describe student’s thinking process on heredity especially on inheritance that is before and after scaffolding. This research used descriptive qualitative method. There were three kinds of subject degree such as the students with high, middle, and low achieving students. The result showed that subjects had some difficulty in dihybrid inheritance question in different place. Most difficulty was on determining the number of different characteristic, parental genotype, gamete, and ratio of genotype and phenotype F2. Based on discussed during scaffolding showed that the subjects have some misunderstanding terms and difficulty to determine parental, gamete, genotype, and phenotype. Final result in this research showed that the subjects develop thinking process higher after scaffolding. Therefore the subjects can solve question properly.

  17. Promoting Science Literacy through Research Service-Learning--An Emerging Pedagogy with Significant Benefits for Students, Faculty, Universities, and Communities

    ERIC Educational Resources Information Center

    Reynolds, Julie A.; Ahern-Dodson, Jennifer

    2010-01-01

    Research service-learning (RSL) is an emerging pedagogy in which students engage in research within a service-learning context. This approach has great potential to promote science literacy because it teaches students how to use scientific knowledge and scientific ways of thinking in the service of society and helps them to better appreciate the…

  18. Early Science Instruction and Academic Language Development Can Go Hand in Hand. The Promising Effects of a Low-Intensity Teacher-Focused Intervention

    ERIC Educational Resources Information Center

    Henrichs, Lotte F.; Leseman, Paul P. M.

    2014-01-01

    Early science instruction is important in order to lay a firm basis for learning scientific concepts and scientific thinking. In addition, young children enjoy science. However, science plays only a minor role in the kindergarten curriculum. It has been reported that teachers feel they need to prioritize language and literacy practices over…

  19. Critical Thinking in Critical Care: Five Strategies to Improve Teaching and Learning in the Intensive Care Unit.

    PubMed

    Hayes, Margaret M; Chatterjee, Souvik; Schwartzstein, Richard M

    2017-04-01

    Critical thinking, the capacity to be deliberate about thinking, is increasingly the focus of undergraduate medical education, but is not commonly addressed in graduate medical education. Without critical thinking, physicians, and particularly residents, are prone to cognitive errors, which can lead to diagnostic errors, especially in a high-stakes environment such as the intensive care unit. Although challenging, critical thinking skills can be taught. At this time, there is a paucity of data to support an educational gold standard for teaching critical thinking, but we believe that five strategies, routed in cognitive theory and our personal teaching experiences, provide an effective framework to teach critical thinking in the intensive care unit. The five strategies are: make the thinking process explicit by helping learners understand that the brain uses two cognitive processes: type 1, an intuitive pattern-recognizing process, and type 2, an analytic process; discuss cognitive biases, such as premature closure, and teach residents to minimize biases by expressing uncertainty and keeping differentials broad; model and teach inductive reasoning by utilizing concept and mechanism maps and explicitly teach how this reasoning differs from the more commonly used hypothetico-deductive reasoning; use questions to stimulate critical thinking: "how" or "why" questions can be used to coach trainees and to uncover their thought processes; and assess and provide feedback on learner's critical thinking. We believe these five strategies provide practical approaches for teaching critical thinking in the intensive care unit.

  20. Critical Thinking in Critical Care: Five Strategies to Improve Teaching and Learning in the Intensive Care Unit

    PubMed Central

    Chatterjee, Souvik; Schwartzstein, Richard M.

    2017-01-01

    Critical thinking, the capacity to be deliberate about thinking, is increasingly the focus of undergraduate medical education, but is not commonly addressed in graduate medical education. Without critical thinking, physicians, and particularly residents, are prone to cognitive errors, which can lead to diagnostic errors, especially in a high-stakes environment such as the intensive care unit. Although challenging, critical thinking skills can be taught. At this time, there is a paucity of data to support an educational gold standard for teaching critical thinking, but we believe that five strategies, routed in cognitive theory and our personal teaching experiences, provide an effective framework to teach critical thinking in the intensive care unit. The five strategies are: make the thinking process explicit by helping learners understand that the brain uses two cognitive processes: type 1, an intuitive pattern-recognizing process, and type 2, an analytic process; discuss cognitive biases, such as premature closure, and teach residents to minimize biases by expressing uncertainty and keeping differentials broad; model and teach inductive reasoning by utilizing concept and mechanism maps and explicitly teach how this reasoning differs from the more commonly used hypothetico-deductive reasoning; use questions to stimulate critical thinking: “how” or “why” questions can be used to coach trainees and to uncover their thought processes; and assess and provide feedback on learner’s critical thinking. We believe these five strategies provide practical approaches for teaching critical thinking in the intensive care unit. PMID:28157389

  1. The World Hypotheses: Implications for Intercultural Communication Research.

    ERIC Educational Resources Information Center

    Ting-Toomey, Stella

    The "sense making" process structures humans' categorization, perceptual, and expressive processes. These "sense making" references are ultimately derived from four distinct "root metaphors": mechanism or mechanistic thinking (machine), formism or formistic thinking (similarity), organicism or organistic thinking (organic process), and…

  2. Component processes underlying future thinking.

    PubMed

    D'Argembeau, Arnaud; Ortoleva, Claudia; Jumentier, Sabrina; Van der Linden, Martial

    2010-09-01

    This study sought to investigate the component processes underlying the ability to imagine future events, using an individual-differences approach. Participants completed several tasks assessing different aspects of future thinking (i.e., fluency, specificity, amount of episodic details, phenomenology) and were also assessed with tasks and questionnaires measuring various component processes that have been hypothesized to support future thinking (i.e., executive processes, visual-spatial processing, relational memory processing, self-consciousness, and time perspective). The main results showed that executive processes were correlated with various measures of future thinking, whereas visual-spatial processing abilities and time perspective were specifically related to the number of sensory descriptions reported when specific future events were imagined. Furthermore, individual differences in self-consciousness predicted the subjective feeling of experiencing the imagined future events. These results suggest that future thinking involves a collection of processes that are related to different facets of future-event representation.

  3. Teaching examples for the design of experiments: geographical sensitivity and the self-fulfilling prophecy.

    PubMed

    Lendrem, Dennis W; Lendrem, B Clare; Rowland-Jones, Ruth; D'Agostino, Fabio; Linsley, Matt; Owen, Martin R; Isaacs, John D

    2016-01-01

    Many scientists believe that small experiments, guided by scientific intuition, are simpler and more efficient than design of experiments. This belief is strong and persists even in the face of data demonstrating that it is clearly wrong. In this paper, we present two powerful teaching examples illustrating the dangers of small experiments guided by scientific intuition. We describe two, simple, two-dimensional spaces. These two spaces give rise to, and at the same time appear to generate supporting data for, scientific intuitions that are deeply flawed or wholly incorrect. We find these spaces useful in unfreezing scientific thinking and challenging the misplaced confidence in scientific intuition. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Horoscopes Versus Telescopes: A Focus on Astrology.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew, Ed.

    1988-01-01

    Criticizes astrology and uses student interest to help encouraging critical thinking and the scientific method. Provides some thought-provoking questions, three activities, and resource materials and a list of astronomy organizations. (YP)

  5. Scientific meaning of meanings: quests for discoveries concerning our cultural ills.

    PubMed

    Patterson, C C

    1998-08-01

    This paper outlines pioneering concepts of fundamental physical and emotional features of the human brain which served as primary operators. These have developed during the past 10,000 years, giving rise to our present global megacultures and their various ancestral culture progenitors. Essential points are these: (1) Biological evolution endowed the human brain (quite inadvertently and unintentionally) with enormous latent powers for complex and sophisticated abstract ratiocinations. (2) Magnitudes of these latent powers grew exponentially with linear enlargements of brain size during the evolution of the genetic ancestors of Homo sapiens sapiens (Hss) during the past 3 million years, but these latent powers never materialized in utilized forms within the environmental contexts in which they evolved. (3) These sophisticated, abstract ratiocinations, both latent powers and operative forms in today's Hss brain, are divided between two major categories: utilitarian thinking and nonutilitarian thinking. (4) These two different types of thinking processes are carried out within separate, different regional combinations of neuronal biochemical entities within the same individual brain. (5) Sensitivities of abstract, sophisticated ratiocination processes within the human brain to influences from communication interactions with other human brains are exponentially greater in comparison with any other species of central nervous system in the earth's biosphere. This makes the brain population density the utmost critical factor, and determines the character of human thought within interacting populations of brains at a given time and place within a particular culture. (6) Abrupt increases of sedentary brain population densities, unnaturally greater by orders of magnitude than those that existed previously in biological evolutionary contexts, were engendered by the inauguration of agricultural practices 10,000 years ago. This enabled latent powers of the human brain used for complex and sophisticated abstract ratiocinations to become manifest in materialized forms of usage within relatively large groups of humans living i certain regions of the earth. (7) Thinking processes of the utilitarian category within brains living in such regions guided and dominated the development of sophisticated and complex social hierarchies and institutions, forms of communication, technologies, and cultures since that time. This dominating factor relegated thinking processes within the nonutilitarian categories of those brains to subservient roles during those developments. (8) Nonutilitarian abstracts ratiocinations possess a potential for proper adjudication and guidance of utilitarian abstract ratiocinations in the latter's development of culture. However, lack of the former's proper role in cultural developments since the beginning of the Holocene interglacial era has resulted in the imprisonment of Hss as aliens in an intellectual hell on a foreign planet.

  6. Video Creation: A Tool for Engaging Students to Learn Science

    NASA Astrophysics Data System (ADS)

    Courtney, A. R.

    2016-12-01

    Students today process information very differently than those of previous generations. They are used to getting their news from 140-character tweets, being entertained by You-Tube videos, and Googling everything. Thus, traditional passive methods of content delivery do not work well for many of these millennials. All students, regardless of career goals, need to become scientifically literate to be able to function in a world where scientific issues are of increasing importance. Those who have had experience applying scientific reasoning to real-world problems in the classroom will be better equipped to make informed decisions in the future. The problem to be solved is how to present scientific content in a manner that fosters student learning in today's world. This presentation will describe how the appeal of technology and social communication via creation of documentary-style videos has been used to engage students to learn scientific concepts in a university non-science major course focused on energy and the environment. These video projects place control of the learning experience into the hands of the learner and provide an opportunity to develop critical thinking skills. Students discover how to locate scientifically reliable information by limiting searches to respected sources and synthesize the information through collaborative content creation to generate a "story". Video projects have a number of advantages over research paper writing. They allow students to develop collaboration skills and be creative in how they deliver the scientific content. Research projects are more effective when the audience is larger than just a teacher. Although our videos are used as peer-teaching tools in the classroom, they also are shown to a larger audience in a public forum to increase the challenge. Video will be the professional communication tool of the future. This presentation will cover the components of the video production process and instructional lessons learned over a seven-year period.

  7. Schooling, cognition and creating capacity for technological innovation in Africa

    NASA Astrophysics Data System (ADS)

    Eisemon, Thomas Owen

    1989-09-01

    This paper examines the important role of schooling in creating capacities for technological innovation in Africa. Schooling is a principal source of the modern scientific knowledge which most individuals possess. However, increasing levels of educational attainment does not necessarily increase capacities for innovation; it is what students learn in school rather than how long they attend school that is important. Policies to strengthen the impact of schooling must be based on a better understanding of how the content, language and processes of instruction influence the ways individuals think about the natural world and perform practical tasks in daily life involving use of modern health and agricultural technologies.

  8. Creative mood swings: divergent and convergent thinking affect mood in opposite ways.

    PubMed

    Akbari Chermahini, Soghra; Hommel, Bernhard

    2012-09-01

    Increasing evidence suggests that emotions affect cognitive processes. Recent approaches have also considered the opposite: that cognitive processes might affect people's mood. Here we show that performing and, to a lesser degree, preparing for a creative thinking task induce systematic mood swings: Divergent thinking led to a more positive mood, whereas convergent thinking had the opposite effect. This pattern suggests that thought processes and mood are systematically related but the type of relationship is process-specific.

  9. Analysis of the critical thinking process of junior high school students in solving geometric problems by utilizing the v-a-k learning styles model

    NASA Astrophysics Data System (ADS)

    Hananto, R. B.; Kusmayadi, T. A.; Riyadi

    2018-05-01

    The research aims to identify the critical thinking process of students in solving geometry problems. The geometry problem selected in this study was the building of flat side room (cube). The critical thinking process was implemented to visual, auditory and kinesthetic learning styles. This research was a descriptive analysis research using qualitative method. The subjects of this research were 3 students selected by purposive sampling consisting of visual, auditory, and kinesthetic learning styles. Data collection was done through test, interview, and observation. The results showed that the students' critical thinking process in identifying and defining steps for each learning style were similar in solving problems. The critical thinking differences were seen in enumerate, analyze, list, and self-correct steps. It was also found that critical thinking process of students with kinesthetic learning style was better than visual and auditory learning styles.

  10. The Opinions of Nursing Students Regarding the Nursing Process and Their Levels of Proficiency in Turkey

    PubMed Central

    Taskın Yilmaz, Feride; Sabanciogullari, Selma; Aldemir, Kadriye

    2015-01-01

    Introduction: Nursing process, as a scientific method of nursing practice, is an important tool for putting nursing knowledge into practice which increases the quality of nursing care. The study was aimed to determine the opinions of nursing students regarding the nursing process and their levels of proficiency. Methods: A total of 44 nursing students participated in this descriptive study. Data were collected by a three-part questionnaire including the opinion of students on nursing process, Gordon’s functional health patterns model and the NANDA diagnoses. Data were analyzed by SPSS software. Results: Most of the students (65.9%) believed that the nursing process was necessary. half of the students explained the diagnosis, 58.3% explained the planning, 41.3% explained the implementation, and 43.6% explained the evaluation sufficiently. Conclusion: It is suggested for instructors to use different teaching methods in order to develop critical thinking while teaching the nursing process. PMID:26744726

  11. National Foundation for Infectious Diseases

    MedlinePlus

    ... Scientific Achievement John P. Utz Leadership Award Dr. Charles Mérieux Award for Achievement in Vaccinology and Immunology ... you think that the 2017-2018 influenza season will be: More severe than last year Same as ...

  12. Using Scientific Visualizations to Enhance Scientific Thinking In K-12 Geoscience Education

    NASA Astrophysics Data System (ADS)

    Robeck, E.

    2016-12-01

    The same scientific visualizations, animations, and images that are powerful tools for geoscientists can serve an important role in K-12 geoscience education by encouraging students to communicate in ways that help them develop habits of thought that are similar to those used by scientists. Resources such as those created by NASA's Scientific Visualization Studio (SVS), which are intended to inform researchers and the public about NASA missions, can be used in classrooms to promote thoughtful, engaged learning. Instructional materials that make use of those visualizations have been developed and are being used in K-12 classrooms in ways that demonstrate the vitality of the geosciences. For example, the Center for Geoscience and Society at the American Geosciences Institute (AGI) helped to develop a publication that outlines an inquiry-based approach to introducing students to the interpretation of scientific visualizations, even when they have had little to no prior experience with such media. To facilitate these uses, the SVS team worked with Center staff and others to adapt the visualizations, primarily by removing most of the labels and annotations. Engaging with these visually compelling resources serves as an invitation for students to ask questions, interpret data, draw conclusions, and make use of other processes that are key components of scientific thought. This presentation will share specific resources for K-12 teaching (all of which are available online, from NASA, and/or from AGI), as well as the instructional principles that they incorporate.

  13. Genetics problem solving and worldview

    NASA Astrophysics Data System (ADS)

    Dale, Esther

    The research goal was to determine whether worldview relates to traditional and real-world genetics problem solving. Traditionally, scientific literacy emphasized content knowledge alone because it was sufficient to solve traditional problems. The contemporary definition of scientific literacy is, "The knowledge and understanding of scientific concepts and processes required for personal decision-making, participation in civic and cultural affairs and economic productivity" (NRC, 1996). An expanded definition of scientific literacy is needed to solve socioscientific issues (SSI), complex social issues with conceptual, procedural, or technological associations with science. Teaching content knowledge alone assumes that students will find the scientific explanation of a phenomenon to be superior to a non-science explanation. Formal science and everyday ways of thinking about science are two different cultures (Palmer, 1999). Students address this rift with cognitive apartheid, the boxing away of science knowledge from other types of knowledge (Jedege & Aikenhead, 1999). By addressing worldview, cognitive apartheid may decrease and scientific literacy may increase. Introductory biology students at the University of Minnesota during fall semester 2005 completed a written questionnaire-including a genetics content-knowledge test, four genetic dilemmas, the Worldview Assessment Instrument (WAI) and some items about demographics and religiosity. Six students responded to the interview protocol. Based on statistical analysis and interview data, this study concluded the following: (1) Worldview, in the form of metaphysics, relates to solving traditional genetic dilemmas. (2) Worldview, in the form of agency, relates to solving traditional genetics problems. (3) Thus, worldview must be addressed in curriculum, instruction, and assessment.

  14. Science education for sustainability, epistemological reflections and educational practices: from natural sciences to trans-disciplinarity

    NASA Astrophysics Data System (ADS)

    Colucci-Gray, Laura; Perazzone, Anna; Dodman, Martin; Camino, Elena

    2013-03-01

    In this three-part article we seek to establish connections between the emerging framework of sustainability science and the methodological basis of research and practice in science education in order to bring forth knowledge and competences for sustainability. The first and second parts deal with the implications of taking a sustainability view in relation to knowledge processes. The complexity, uncertainty and urgency of global environmental problems challenge the foundations of reductionist Western science. Within such debate, the proposal of sustainability science advocates for inter-disciplinary and inter-paradigmatic collaboration and it includes the requirements of post- normal science proposing a respectful dialogue between experts and non-experts in the construction of new scientific knowledge. Such a change of epistemology is rooted into participation, deliberation and the gathering of extended-facts where cultural framings and values are the hard components in the face of soft facts. A reflection on language and communication processes is thus the focus of knowledge practices and educational approaches aimed at sustainability. Language contains the roots of conceptual thinking (including scientific knowledge) and each culture and society are defined and limited by the language that is used to describe and act upon the world. Within a scenario of sustainability, a discussion of scientific language is in order to retrace the connections between language and culture, and to promote a holistic view based on pluralism and dialogue. Drawing on the linguistic reflection, the third part gives examples of teaching and learning situations involving prospective science teachers in action-research contexts: these activities are set out to promote linguistic integration and to introduce reflexive process into science learning. Discussion will focus on the methodological features of a learning process that is akin to a communal and emancipatory research process within a sustainability scenario.

  15. Critical thinking in clinical nurse education: application of Paul's model of critical thinking.

    PubMed

    Andrea Sullivan, E

    2012-11-01

    Nurse educators recognize that many nursing students have difficulty in making decisions in clinical practice. The ability to make effective, informed decisions in clinical practice requires that nursing students know and apply the processes of critical thinking. Critical thinking is a skill that develops over time and requires the conscious application of this process. There are a number of models in the nursing literature to assist students in the critical thinking process; however, these models tend to focus solely on decision making in hospital settings and are often complex to actualize. In this paper, Paul's Model of Critical Thinking is examined for its application to nursing education. I will demonstrate how the model can be used by clinical nurse educators to assist students to develop critical thinking skills in all health care settings in a way that makes critical thinking skills accessible to students. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Improving medical students’ knowledge of genetic disease: a review of current and emerging pedagogical practices

    PubMed Central

    Wolyniak, Michael J; Bemis, Lynne T; Prunuske, Amy J

    2015-01-01

    Genetics is an essential subject to be mastered by health professional students of all types. However, technological advances in genomics and recent pedagogical research have changed the way in which many medical training programs teach genetics to their students. These advances favor a more experience-based education focused primarily on developing student’s critical thinking skills. In this review, we examine the current state of genetics education at both the preclinical and clinical levels and the ways in which medical and pedagogical research have guided reforms to current and emerging teaching practices in genetics. We discover exciting trends taking place in which genetics is integrated with other scientific disciplines both horizontally and vertically across medical curricula to emphasize training in scientific critical thinking skills among students via the evaluation of clinical evidence and consultation of online databases. These trends will produce future health professionals with the skills and confidence necessary to embrace the new tools of medical practice that have emerged from scientific advances in genetics, genomics, and bioinformatics. PMID:26604852

  17. Concept Maps for Improved Science Reasoning and Writing: Complexity Isn’t Everything

    PubMed Central

    Dowd, Jason E.; Duncan, Tanya; Reynolds, Julie A.

    2015-01-01

    A pervasive notion in the literature is that complex concept maps reflect greater knowledge and/or more expert-like thinking than less complex concept maps. We show that concept maps used to structure scientific writing and clarify scientific reasoning do not adhere to this notion. In an undergraduate course for thesis writers, students use concept maps instead of traditional outlines to define the boundaries and scope of their research and to construct an argument for the significance of their research. Students generate maps at the beginning of the semester, revise after peer review, and revise once more at the end of the semester. Although some students revised their maps to make them more complex, a significant proportion of students simplified their maps. We found no correlation between increased complexity and improved scientific reasoning and writing skills, suggesting that sometimes students simplify their understanding as they develop more expert-like thinking. These results suggest that concept maps, when used as an intervention, can meet the varying needs of a diverse population of student writers. PMID:26538388

  18. Young children learning about living things: A case study of conceptual change from ontological and social perspectives

    NASA Astrophysics Data System (ADS)

    Venville, Grady

    2004-05-01

    Although research from a developmental/psychological perspective indicates that many children do not have a scientific understanding of living things, even by the age of 10 years, little research has been conducted about how students learn this science topic in the classroom. This exploratory research used a case-study design and qualitative data-collection methods to investigate the process of conceptual change from ontological and social perspectives when Year 1 (5- and 6-year-old) students were learning about living things. Most students were found to think about living things with either stable, nonscientific or stable, scientific framework theories. Transitional phases of understanding also were identified. Patterns of conceptual change observed over the 5-week period of instruction included theory change and belief revision as well as reversals in beliefs. The predominant pattern of learning, however, was the assimilation of facts and information into the students' preferred framework theory. The social milieu of the classroom context exposed students' scientific and nonscientific beliefs that influenced other individuals in a piecemeal fashion. Children with nonscientific theories of living things were identified as being least able to benefit from socially constructed, scientific knowledge; hence, recommendations are made for teaching that focuses on conceptual change strategies rather than knowledge enrichment.

  19. EEG alpha synchronization is related to top-down processing in convergent and divergent thinking

    PubMed Central

    Benedek, Mathias; Bergner, Sabine; Könen, Tanja; Fink, Andreas; Neubauer, Aljoscha C.

    2011-01-01

    Synchronization of EEG alpha activity has been referred to as being indicative of cortical idling, but according to more recent evidence it has also been associated with active internal processing and creative thinking. The main objective of this study was to investigate to what extent EEG alpha synchronization is related to internal processing demands and to specific cognitive process involved in creative thinking. To this end, EEG was measured during a convergent and a divergent thinking task (i.e., creativity-related task) which once were processed involving low and once involving high internal processing demands. High internal processing demands were established by masking the stimulus (after encoding) and thus preventing further bottom-up processing. Frontal alpha synchronization was observed during convergent and divergent thinking only under exclusive top-down control (high internal processing demands), but not when bottom-up processing was allowed (low internal processing demands). We conclude that frontal alpha synchronization is related to top-down control rather than to specific creativity-related cognitive processes. Frontal alpha synchronization, which has been observed in a variety of different creativity tasks, thus may not reflect a brain state that is specific for creative cognition but can probably be attributed to high internal processing demands which are typically involved in creative thinking. PMID:21925520

  20. What can we learn from PISA?: Investigating PISA's approach to scientific literacy

    NASA Astrophysics Data System (ADS)

    Schwab, Cheryl Jean

    This dissertation is an investigation of the relationship between the multidimensional conception of scientific literacy and its assessment. The Programme for International Student Assessment (PISA), developed under the auspices of the Organization for Economic Cooperation and Development (OECD), offers a unique opportunity to evaluate the assessment of scientific literacy. PISA developed a continuum of performance for scientific literacy across three competencies (i.e., process, content, and situation). Foundational to the interpretation of PISA science assessment is PISA's definition of scientific literacy, which I argue incorporates three themes drawn from history: (a) scientific way of thinking, (b) everyday relevance of science, and (c) scientific literacy for all students. Three coordinated studies were conducted to investigate the validity of PISA science assessment and offer insight into the development of items to assess scientific 2 literacy. Multidimensional models of the internal structure of the PISA 2003 science items were found not to reflect the complex character of PISA's definition of scientific literacy. Although the multidimensional models across the three competencies significantly decreased the G2 statistic from the unidimensional model, high correlations between the dimensions suggest that the dimensions are similar. A cognitive analysis of student verbal responses to PISA science items revealed that students were using competencies of scientific literacy, but the competencies were not elicited by the PISA science items at the depth required by PISA's definition of scientific literacy. Although student responses contained only knowledge of scientific facts and simple scientific concepts, students were using more complex skills to interpret and communicate their responses. Finally the investigation of different scoring approaches and item response models illustrated different ways to interpret student responses to assessment items. These analyses highlighted the complexities of students' responses to the PISA science items and the use of the ordered partition model to accommodate different but equal item responses. The results of the three investigations are used to discuss ways to improve the development and interpretation of PISA's science items.

  1. Communicating Science through Editorial Cartoons in Microbiology Classrooms †

    PubMed Central

    dela Cruz, Thomas Edison E.; Aril-dela Cruz, Jeane V.

    2018-01-01

    The use of graphical illustration in lecture presentations can make a seemingly boring lesson more attractive and enticing to students. Creating science-themed illustrations and science-based narratives can also lead to creative and critical thinking among students. We used writing editorials and creating editorial cartoons as a learning activity to promote critical thinking and creative skills that are essential in communicating scientific information. This activity can be used with a range of audiences, at various educational levels and in basic to advanced courses. PMID:29904513

  2. Too good to be true?

    NASA Astrophysics Data System (ADS)

    Kalogera, Vicky

    2017-04-01

    Scientific discovery is often perceived as associated with a single act of genius or a moment in time that changes one's thinking and scientific discourse. Most scientists know that this perception is almost always far from reality. Scientific discovery is reached through long, persistent effort from groups of people who are willing to take risks and are not afraid to fail. Equally important is that funders of scientific research appreciate the need for such persistent effort and do not look only for easily identifiable, short-term benefits. We may occasionally recognize historic 'moments', but these often occur because of the less famous but equally important advances that came before, often over decades of work.

  3. Leibniz's Observations on Hydrology: An Unpublished Letter on the Great Lombardy Flood of 1705.

    PubMed

    Strickland, Lloyd; Church, Michael

    2015-01-01

    Although the historical reputation of Gottfried Wilhelm Leibniz (1646-1716) largely rests on his philosophical and mathematical work, it is widely known that he made important contributions to many of the emerging but still inchoate branches of natural science of his day. Among the many scientific papers Leibniz published during his lifetime are ones on the nascent science we now know as hydrology. While Leibniz's other scientific work has become of increasing interest to scholars in recent years, his thinking about hydrology has been neglected, despite being relatively broad in extent, including as it does papers on the 'raising of vapours' and the formation of ice, as well as the separation of salt and fresh water. That list can now be extended still further following the discovery of a previously unpublished letter of Leibniz's on the causes of the devastating Lombardy flood of October and November 1705. This letter, which will be the focus of our paper, reveals the depth of Leibniz's understanding of key hydrological processes. In it, he considers various mechanisms for the flood, such as heavy rains on high ground, underwater earthquakes, and a mountain collapse. Over the course of the paper we examine each of these mechanisms in depth, and show that Leibniz was in the vanguard of hydrological thinking. We also show that the letter contains one of the first scholarly attempts to apply aspects of the still-forming notion of the hydrological cycle to account for a flood event.

  4. Of responsible research-Exploring the science-society dialogue in undergraduate training within the life sciences.

    PubMed

    Almeida, Maria Strecht; Quintanilha, Alexandre

    2017-01-02

    We explore the integration of societal issues in undergraduate training within the life sciences. Skills in thinking about science, scientific knowledge production and the place of science in society are crucial in the context of the idea of responsible research and innovation. This idea became institutionalized and it is currently well-present in the scientific agenda. Developing abilities in this regard seems particularly relevant to training in the life sciences, as new developments in this area somehow evoke the involvement of all of us citizens, our engagement to debate and take part in processes of change. The present analysis draws from the implementation of a curricular unit focused on science-society dialogue, an optional course included in the Biochemistry Degree study plan offered at the University of Porto. This curricular unit was designed to be mostly an exploratory activity for the students, enabling them to undertake in-depth study in areas/topics of their specific interest. Mapping topics from students' final papers provided a means of analysis and became a useful tool in the exploratory collaborative construction of the course. We discuss both the relevance and the opportunity of thinking and questioning the science-society dialogue. As part of undergraduate training, this pedagogical practice was deemed successful. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):46-52, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  5. Climate Change Concepts and POGIL: Using climate change to teach general chemistry

    NASA Astrophysics Data System (ADS)

    King, D. B.; Lewis, J. E.; Anderson, K.; Latch, D.; Sutheimer, S.; Webster, G.; Middlecamp, C.; Moog, R.

    2013-12-01

    Climate change is a topic that can be used to engage students in a variety of courses and disciplines. Through an NSF-funded project, we have written a set of in-class POGIL (Process Oriented Guided Inquiry Learning) activities that use climate change topics to teach general chemistry concepts. POGIL is a pedagogical approach that uses group activities to teach content and process skills. In these group activities an initial model and a series of critical thinking questions are used to guide students through the introduction to or application of course content. Students complete the activities on their own, with the faculty member as a facilitator of learning, rather than a provider of information. Through assigned group roles and intentionally designed activity structure, process skills, such as teamwork, communication, and information processing, are developed during completion of the activity. While POGIL activities were initially developed for chemistry courses, this approach has now been used to create materials for use in other fields, such as biology, math, engineering and computer science. An additional component of this project is the incorporation of questions that relate to socio-scientific issues, e.g., the economic and social effects of climate change policies. The goal is for students to use evidence-based arguments in situations where opinion-based arguments are common. Key components (i.e., models and the corresponding critical thinking questions) of one activity will be presented. We will also report preliminary feedback based on initial classroom testing of several of the activities.

  6. Thinking in clinical nursing practice: a study of critical care nurses' thinking applying the think-aloud, protocol analysis method.

    PubMed

    Han, Kyung-Ja; Kim, Hesook Suzie; Kim, Mae-Ja; Hong, Kyung-Ja; Park, Sungae; Yun, Soon-Nyoung; Song, Misoon; Jung, Yoenyi; Kim, Haewon; Kim, Dong-Oak Debbie; Choi, Heejung; Kim, Kyungae

    2007-06-01

    The purpose of the paper is to discover the patterns and processes of decision-making in clinical nursing practice. A set of think-aloud data from five critical care nurses during 40 to 50 minutes of caregiving in intensive care units were obtained and analyzed by applying the procedures recommended by Ericsson and Simon for protocol analysis. Four thinking processes before acting were identified to constitute various sorts of thoughts in which the nurses were engaged during patient care: reviewing, validation, consideration, rationalization, and action. In addition, three patterns of sequential streaming of thinking (short, intermediate, long) were identified to reveal various ways the nurses dealt with clinical situations involving nursing tasks and responsibilities. This study specifies the initial categories of thoughts for each of the processes and various patterns with which these processes are sequentially combined, providing insights into the ways nurses think about problems and address their concerns. The findings suggest that the thinking in clinical practice involves more than focused decision-making and reasoning, and needs to be examined from a broader perspective.

  7. Students' science process skill and analytical thinking ability in chemistry learning

    NASA Astrophysics Data System (ADS)

    Irwanto, Rohaeti, Eli; Widjajanti, Endang; Suyanta

    2017-08-01

    Science process skill and analytical thinking ability are needed in chemistry learning in 21st century. Analytical thinking is related with science process skill which is used by students to solve complex and unstructured problems. Thus, this research aims to determine science process skill and analytical thinking ability of senior high school students in chemistry learning. The research was conducted in Tiga Maret Yogyakarta Senior High School, Indonesia, at the middle of the first semester of academic year 2015/2016 is using the survey method. The survey involved 21 grade XI students as participants. Students were given a set of test questions consists of 15 essay questions. The result indicated that the science process skill and analytical thinking ability were relatively low ie. 30.67%. Therefore, teachers need to improve the students' cognitive and psychomotor domains effectively in learning process.

  8. What if Indigenous Knowledge Contradicts Accepted Scientific Findings?--The Hidden Agenda: Respect, Caring and Passion towards Aboriginal Research in the Context of Applying Western Academic Rules

    ERIC Educational Resources Information Center

    Witt, Norbert

    2007-01-01

    The statement in the title, what if Indigenous Knowledge contradicts accepted scientific findings (Fowler, 2000), is an expression of the dilemma people who research Indigenous Knowledge think they find themselves in when they are confronted with different interpretations of what it means to be human, or, as I may summarize it, with different…

  9. Component Technology for High-Performance Scientific Simulation Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epperly, T; Kohn, S; Kumfert, G

    2000-11-09

    We are developing scientific software component technology to manage the complexity of modem, parallel simulation software and increase the interoperability and re-use of scientific software packages. In this paper, we describe a language interoperability tool named Babel that enables the creation and distribution of language-independent software libraries using interface definition language (IDL) techniques. We have created a scientific IDL that focuses on the unique interface description needs of scientific codes, such as complex numbers, dense multidimensional arrays, complicated data types, and parallelism. Preliminary results indicate that in addition to language interoperability, this approach provides useful tools for thinking about themore » design of modem object-oriented scientific software libraries. Finally, we also describe a web-based component repository called Alexandria that facilitates the distribution, documentation, and re-use of scientific components and libraries.« less

  10. Nurses' reported thinking during medication administration.

    PubMed

    Eisenhauer, Laurel A; Hurley, Ann C; Dolan, Nancy

    2007-01-01

    To document nurses' reported thinking processes during medication administration before and after implementation of point-of-care technology. Semistructured interviews and real-time tape recordings were used to document the thinking processes of 40 nurses practicing in inpatient care units in a large tertiary care teaching hospital in the northeastern US. Content analysis resulted in identification of 10 descriptive categories of nurses' thinking: communication, dose-time, checking, assessment, evaluation, teaching, side effects, work arounds, anticipating problem solving, and drug administration. Situations requiring judgment in dosage, timing, or selection of specific medications (e.g., pain management, titration of antihypertensives) provided the most explicit data about nurses' use of critical thinking and clinical judgment. A key element was nurses' constant professional vigilance to ensure that patients received their appropriate medications. Nurses' thinking processes extended beyond rules and procedures and were based on patient data and interdisciplinary professional knowledge to provide safe and effective care. Identification of thinking processes can help nurses to explain the professional expertise inherent in medication administration beyond the technical application of the "5 rights."

  11. Teaching thoughtful practice: narrative pedagogy in addictions education.

    PubMed

    Vandermause, Roxanne K; Townsend, Ryan P

    2010-07-01

    Preparing practitioners for this rapidly changing and demanding health care environment is challenging. A surge in knowledge development and scientific advancement has placed a priority on technical skill and a focus on content driven educational processes that prepare students for evidence-based practice. However, the most difficult health care scenarios require thinking-in-action and thoughtfulness as well as didactic knowledge. It is our contention that interpretive educational methods, like narrative pedagogy, will promote judgment-based practice that includes use of evidence and delivery of thoughtful care. In this article, we describe and interpret a narrative approach to addictions content and teaching thoughtful practice. We present our pedagogical process, including observations and field notes, to show how interpretive pedagogies can be introduced into nursing curricula. By presenting this process, the reader is invited to consider interpretive methods as a way to inspire and habituate thoughtful practice and judgment-based care. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Connecting Knowledge, Belief, Values and Action: Informing Climate Literacy by Using Autobiographies to Articulate Environmental Worldviews

    NASA Astrophysics Data System (ADS)

    Owens, M. A.

    2011-12-01

    Climate literacy is evolving as a specific subset of science and environmental literacy. Through a longitudinal analysis of environmental autobiographies of an internationally and religiously diverse group of environmental sciences majors at a Historically Black College or University (HBCU) in the southern U.S., this presentation will explore: 1) sources and impact of religious beliefs on students' environmental worldview; 2) conflicts between religious, community and scientific values; and 3) navigating the tensions between trust in a religious deity as well as scientific methods and processes. Lester Milbrath states that "beliefs empower and deceive us." The media, as well as significant people and institutions, including religious institutions, socialize us and contribute to individual and societal worldviews. "We so thoroughly accept our culture's beliefs about how the world works that we hardly ever think about them even though they underlie everything we think and do." Beliefs, attitudes, and values comprise an important component of environmental literacy, a praxis-oriented concept from the field of environmental education, which is defined as: [T]he capacity to perceive and interpret the relative health of environmental systems and take appropriate action to maintain, restore, or improve the health of those systems . . . Environmental literacy should be defined in terms of observable behaviors. (Disinger and Roth 1992, 2). Environmental literacy draws upon six areas: environmental sensitivity; knowledge; skills; beliefs, attitudes and values; personal investment and responsibility; and active involvement. It involves particular ways of thinking, acting, and valuing (Roth 1992). Religious beliefs, or lack thereof, shape worldviews, thereby influencing individual and societal environmental and more specifically, climate literacy. For example, Western Christianity espouses a hierarchical anthropocentric worldview, putting God infinitely above human beings, and human beings above nature. The creation stories of Genesis have been used both implicitly and explicitly to justify domination and exploitation of the earth and its resources. Autobiographies may be used as a reflective pedagogical tool to help students to identify various components of their respective environmental worldviews that may influence their overall environmental and climate literacy. Narrative responses to guiding questions prompt students to reflect on beliefs, trust, and values. This research will inform the development of culturally relevant and scientifically sound approaches to climate change education.

  13. Study on lean thinking among MSMEs in the Machine tool sector in India

    NASA Astrophysics Data System (ADS)

    Priyaadarshini, R. G.; Sathish Kumar, V. R.; Aishwarya Rajlakshmi, S.

    2018-02-01

    In the era of stiff competition and customer expectations, manufacturing organizations across the world are struggling hard to minimize their costs and maximise their performance. Micro, Small and Medium enterprises (MSMEs), who are dependent on large corporate for business and support have a tall task of keeping pace quality in processes and output. They are in the constant vigil to adopt new systems and practices so that they can minimise their cost and maximize the productivity. This study has been conducted in the machine tool sector of Coimbatore, India; which houses more than 9000 companies and offers employment to over one lakh employees. They have a tremendous pressure to use scientific processes to increase their product quality and productivity. While Lean manufacturing has been the thrust to improve the competitiveness among MSMEs in India, this study has attempted to understand their attitude towards lean management and understand the extent to which companies practice lean tools and practices. It has been found that most of the organizations in the study possess a culture of lean thinking and possess the support of top management and employees also towards the initiative. It is also seen that the organizations that incorporated lean in their daily operations have been able to scale up their productivity.

  14. Promoting Scientific Thinking and Conceptual Change about Alternative Explanations of Climate Change and Other Controversial Socio-scientific Topics

    NASA Astrophysics Data System (ADS)

    Lombardi, D.; Sinatra, G. M.

    2013-12-01

    Critical evaluation and plausibility reappraisal of scientific explanations have been underemphasized in many science classrooms (NRC, 2012). Deep science learning demands that students increase their ability to critically evaluate the quality of scientific knowledge, weigh alternative explanations, and explicitly reappraise their plausibility judgments. Therefore, this lack of instruction about critical evaluation and plausibility reappraisal has, in part, contributed to diminished understanding about complex and controversial topics, such as global climate change. The Model-Evidence Link (MEL) diagram (originally developed by researchers at Rutgers University under an NSF-supported project; Chinn & Buckland, 2012) is an instructional scaffold that promotes students to critically evaluate alternative explanations. We recently developed a climate change MEL and found that the students who used the MEL experienced a significant shift in their plausibility judgments toward the scientifically accepted model of human-induced climate change. Using the MEL for instruction also resulted in conceptual change about the causes of global warming that reflected greater understanding of fundamental scientific principles. Furthermore, students sustained this conceptual change six months after MEL instruction (Lombardi, Sinatra, & Nussbaum, 2013). This presentation will discuss recent educational research that supports use of the MEL to promote critical evaluation, plausibility reappraisal, and conceptual change, and also, how the MEL may be particularly effective for learning about global climate change and other socio-scientific topics. Such instruction to develop these fundamental thinking skills (e.g., critical evaluation and plausibility reappraisal) is demanded by both the Next Generation Science Standards (Achieve, 2013) and the Common Core State Standards for English Language Arts and Mathematics (CCSS Initiative-ELA, 2010; CCSS Initiative-Math, 2010), as well as a society that is equipped to deal with challenges in a way that is beneficial to our national and global community.

  15. How to prepare and deliver a scientific presentation. Teaching course presentation at the 21st European Stroke Conference, Lisboa, May 2012.

    PubMed

    Alexandrov, Andrei V; Hennerici, Michael G

    2013-01-01

    A scientific presentation is a professional way to share your observation, introduce a hypothesis, demonstrate and interpret the results of a study, or summarize what is learned or to be studied on the subject. PRESENTATION METHODS: Commonly, presentations at major conferences include podium (oral, platform), poster or lecture, and if selected one should be prepared to Plan from the start (place integral parts of the presentation in logical sequence); Reduce the amount of text and visual aids to the bare minimum; Elucidate (clarify) methods; Summarize results and key messages; Effectively deliver; Note all shortcomings, and Transform your own and the current thinking of others. We provide tips on how to achieve this. PRESENTATION RESULTS: After disclosing conflicts, if applicable, start with a brief summary of what is known and why it is required to investigate the subject. State the research question or the purpose of the lecture. For original presentations follow a structure: Introduction, Methods, Results, Conclusions. Invest a sufficient amount of time or poster space in describing the study methods. Clearly organize and deliver the results or synopsis of relevant studies. Include absolute numbers and simple statistics before showing advanced analyses. Remember to present one point at a time. Stay focused. Discuss study limitations. In a lecture or a podium talk or when standing by your poster, always think clearly, have a logical plan, gain audience attention, make them interested in your subject, excite their own thinking about the problem, listen to questions and carefully weigh the evidence that would justify the punch-line. Rank scientific evidence in your presentation appropriately. What may seem obvious may turn erroneous or more complex. Rehearse your presentation before you deliver it at a conference. Challenge yourself to dry runs with your most critically thinking colleagues. When the time comes, ace it with a clear mind, precise execution and fund of knowledge. Copyright © 2013 S. Karger AG, Basel.

  16. Taking Another Look at the Data Management Life Cycle: Deconstruction, Agile, and Community

    NASA Astrophysics Data System (ADS)

    Young, J. W.; Lenhardt, W. C.; Parsons, M. A.; Benedict, K. K.

    2014-12-01

    The data life cycle has figured prominently in describing the context of digital scientific data stewardship and cyberinfractructure in support of science. There are many different versions of the data life cycle, but they all follow a similar basic pattern: plan, collect, ingest, asses, preserve, discover, and reuse. The process is often interpreted in a fairly linear fashion despite it being a cycle conceptually. More recently at GeoData 2014 and elsewhere, questions have been raised about the utility of the data life cycle as it is currently represented. We are proposing to the community a re-examination of the data life cycle using an agile lens. Our goal is not to deploy agile methods, but to use agile principles as a heuristic to think about how to incorporate data stewardship across the scientific process from proposal stage to research and beyond. We will present alternative conceptualizations of the data life cycle with a goal to solicit feedback and to develop a new model for conceiving and describing the overall data stewardship process. We seek to re-examine past assumptions and shed new light on the challenges and necessity of data stewardship. The ultimate goal is to support new science through enhanced data interoperability, usability, and preservation.

  17. Scientific Skills as Core Competences in Medical Education: What do medical students think?

    NASA Astrophysics Data System (ADS)

    Ribeiro, Laura; Severo, Milton; Pereira, Margarida; Amélia Ferreira, Maria

    2015-08-01

    Background: Scientific excellence is one of the most fundamental underpinnings of medical education and its relevance is unquestionable. To be involved in research activities enhances students' critical thinking and problem-solving capacities, which are mandatory competences for new achievements in patient care and consequently to the improvement of clinical practice. Purposes: This work aimed to study the relevance given by Portuguese medical students to a core of scientific skills, and their judgment about their own ability to execute those skills. Methods: A cross-sectional study was conducted on students attending the first, fourth and sixth years of medical course in the same period. An assessment istrument, exploring the importance given by Portuguese medical students to scientific skills in high school, to clinical practice and to their own ability to execute them, was designed, adapted and applied specifically to this study. Results: Students' perceptions were associated with gender, academic year, previous participation in research activities, positive and negative attitudes toward science, research integration into the curriculum and motivation to undertake research. The viewpoint of medical students about the relevance of scientific skills overall, and the ability to execute them, was independently associated with motivation to be enrolled in research. Conclusions: These findings have meaningful implications in medical education regarding the inclusion of a structural research program in the medical curriculum. Students should be aware that clinical practice would greatly benefit from the enrollment in research activities. By developing a solid scientific literacy future physicians will be able to apply new knowledge in patient care.

  18. Metacognitions in desire thinking: a preliminary investigation.

    PubMed

    Caselli, Gabriele; Spada, Marcantonio M

    2010-10-01

    Desire thinking is defined as a voluntary thinking process orienting to prefigure images, information and memories about positive target-related experience. Recent research has highlighted the role of desire thinking in the maintenance of addictive, eating and impulse control disorders. Currently little is known about metacognitions in desire thinking. To investigate: (1) the presence and content of desire thinking during a desire experience; (2) the presence of metacognitive beliefs in desire thinking; (3) the goal of desire thinking; (4) attentional focus during desire thinking; and (5) the impact of desire thinking on craving. Twenty-four individuals with a diagnosis of either alcohol abuse, bulimia nervosa, pathological gambling or smoking dependence were assessed using a semi-structured interview. Findings indicated that participants engaged in desire thinking and endorsed both positive and negative metacognitive beliefs about this process. The goal of desire thinking was to regulate internal states. Participants also reported that during a desire experience their attentional focus was continuously shifting between internal state and external context and that engaging in desire thinking increased craving. These findings provide preliminary evidence that metacognitions play a role in desire thinking.

  19. Is Your Gut Conscious? Is an Extraterrestrial?

    NASA Astrophysics Data System (ADS)

    Vos Post, Jonathan

    2011-10-01

    This paper speculates on questions intending to be taken scientifically rather than metaphysically: "Can the human gut (enteric nervous system) be conscious?"; "Can your immune system think?"; "Could consciousness be coded in DNA?"; "What do we mean when asserting that an Extraterrestrial is Thinking, or is Conscious? We explore through reference to theory, experiment, and computational models by Christof Koch (Caltech), Barbara Wold (Caltech), and Stuart Kauffman (University of Calgary, Tampere University of Technology, Santa Fe Institute). We use a tentative new definition of thinking, designed to be applicable for humans, cetecea, corvids, artificial intelligences, and extraterrestrial intelligences of any substrate (i.e. Life as We Do Not Know It): "Thinking is the occurrence, transformation, and storage in a mind or brain (or simulation thereof) of information-bearing structures (representations) of one kind or another, such as thoughts, concept, percepts, ideas, impressions, notions, rules, schemas, images, phantasms, or subpersonal representations." We use the framework for Consciousness developed by Francis Crick and Christof Koch. We try to describe scientific goals, but discuss Philosophy sufficient to avoid naïve philosophical category errors (thus are careful not to conflate thought, consciousness, and language) Penrose, Hameroff, and Kauffman speculate (differently) that CNS consciousness is a macroscopic quantum phenomenon. Might intestinal, immune system, or genetic regulatory network dynamics exhibit emergent cooperative quantum effects? The speculations are in the context of Evolution by Natural Selection, presumed to operate throughout the Cosmos, and recent work in the foundations of Computational Biology and Quantum Mechanics.

  20. The Cognitive Spiral: Creative Thinking and Cognitive Processing.

    ERIC Educational Resources Information Center

    Ebert, Edward S., II

    1994-01-01

    The lack of a common understanding of the construct of creative thinking is noted, and the cognitive spiral model is presented, which conceptualizes creative thinking as an integral component of all cognitive processing. This article details the synthesis of a definition and the structure of a model of cognitive processing. (Author/DB)

Top