Arctic Climate Connections Curriculum: A Model for Bringing Authentic Data into the Classroom
ERIC Educational Resources Information Center
Gold, Anne U.; Kirk, Karin; Morrison, Deb; Lynds, Susan; Sullivan, Susan Buhr; Grachev, Andrey; Persson, Ola
2015-01-01
Science education can build a bridge between research carried out by scientists and relevant learning opportunities for students. The Broader Impact requirements for scientists by funding agencies facilitate this connection. We propose and test a model curriculum development process in which scientists, curriculum developers, and classroom…
Shin, Soo Yeon; Parker, Loran Carleton; Adedokun, Omolola; Mennonno, Ann; Wackerly, Amy; SanMiguel, Sandra
2015-01-01
This study examined to what extent a curriculum module that uses animal and human health scientists and science concepts to portray science and scientists in a relevant and authentic manner could enhance elementary students’ aspiration for science careers, attitudes to science, positive perceptions of scientists, and perceived relevance of science. The curriculum was developed by a research-based university program and has been put into practice in two early elementary classrooms in an urban school in the Midwest. An attitudinal rating survey and the Draw-A-Scientist Test (DAST) were used to assess pre to post changes in student attitudes toward science, perceptions of scientists, perceived relevance of science, and aspiration for science careers. Findings indicated that the implementation of this curriculum contributed positively to student attitudes toward science, decreased students’ stereotypical images of scientists, and increased student aspirations to become a scientist. PMID:26726271
Translating Current Science into Materials for High School via a Scientist-Teacher Partnership
NASA Astrophysics Data System (ADS)
Brown, Julie C.; Bokor, Julie R.; Crippen, Kent J.; Koroly, Mary Jo
2014-04-01
Scientist-teacher partnerships are a unique form of professional development that can assist teachers in translating current science into classroom instruction by involving them in meaningful collaborations with university researchers. However, few reported models aim to directly alter science teachers' practices by supporting them in the development of curriculum materials. This article reports on a multiple case study of seven high school science teachers who attended an ongoing scientist-teacher partnership professional development program at a major Southeastern research university. Our interest was to understand the capacity of this professional development program for supporting teachers in the transfer of personal learning experiences with advanced science content and skills into curriculum materials for high school students. Findings indicate that, regardless of their ultimate success constructing curriculum materials, all cases considered the research grounded professional development supports beneficial to their professional growth with the exception of collective participation. Additionally, the cases also described how supports such as professional recognition and transferability served as affordances to the process of constructing these materials. However, teachers identified multiple constraints, including personal learning barriers, their classroom context, and the cost associated with implementing some of their curriculum ideas. Results have direct implications for future research and the purposeful design of professional development experiences through scientist-teacher partnerships.
ERIC Educational Resources Information Center
Robinson, Ann; Adelson, Jill L.; Kidd, Kristy A.; Cunningham, Christine M.
2018-01-01
Guided by the theoretical framework of curriculum as a platform for talent development, this quasi-experimental field study investigated an intervention focused on engineering curriculum and curriculum based on a biography of a scientist through a comparative design implemented in low-income schools. Student outcome measures included science…
NASA Astrophysics Data System (ADS)
Larson, Teresa
2011-12-01
This self-study examines my experiences with implementing an inquiry-based version of a chemistry course (Chemistry 299) designed for elementary education majors. The inquiry-based curriculum design and teaching strategies that I implement in Chemistry 299 is the focus of this study. Since my previous education and professional experiences were in the physical sciences, I position myself in this study as a scientist who engages in self-study as a form of professional development for the purpose of developing an inquiry-based curriculum and instructional practices. My research provides an inside perspective of the curriculum development process. This process involves implementing the inquiry-oriented ideas and knowledge I acquired in my graduate studies to design the curriculum and influence my teaching practice. My analysis of the curriculum and my instruction is guided by two questions: What are the strengths and weaknesses of the inquiry-based Chemistry 299 curriculum design? What does the process of developing my inquiry-based teaching practice entail and what makes is challenging? Schwab's (1973) The Practical 3: Translation into Curriculum serves as the theoretical framework for this study because of the emphasis Schwab places on combining theoretical and practical knowledge in the curriculum development process and because of the way he characterizes the curriculum. The findings in this study are separated into curriculum and instruction domains. First, the Chemistry 299 curriculum was designed to make the epistemological practices of scientists "accessible" to students by emphasizing epistemic development with respect to their ideas about scientific inquiry and science learning. Using student learning as a gauge for progress, I identify specific design elements that developed transferable inquiry skills as a means to support scientific literacy and pre-service teacher education. Second, the instruction-related findings built upon the insight I gained through my analysis of the curriculum. The data reveals four areas of inner conflict I dealt with throughout the study that related to underlying beliefs I held about science teaching and learning. The implications of the study position the Chemistry 299 curriculum in the field and speak to issues related to developing science courses for elementary education majors and professional development for scientists.
NASA Astrophysics Data System (ADS)
Gardiner, L. S.; Hatheway, B.; Rogers, J. D.; Casey, J. G.; Lackey, G.; Birdsell, D.; Brown, K.; Polmear, M.; Capps, S.; Rosenblum, J.; Sitterley, K.; Hafich, K. A.; Hannigan, M.; Knight, D.
2015-12-01
The AirWaterGas Teacher Professional Development Program, run by the UCAR Center for Science Education, brought together scientists and secondary science teachers in a yearlong program culminating in the development of curriculum related to the impacts of unconventional oil and gas development. Graduate students and research scientists taught about their research area and its relationship to oil and gas throughout three online courses during the 2015-16 school year, during which teachers and scientists engaged in active online discussions. Topics covered included climate change, oil and gas infrastructure, air quality, water quality, public health, and practices and policies relating to oil and gas development. Building upon their initial online interactions and a face-to-face meeting in March, teachers were paired with appropriate AirWaterGas team members as science advisors during a month-long residency in Boulder, Colorado. During the residency, graduate student scientists provided resources and feedback as teachers developed curriculum projects in collaboration with each other and UCAR science educators. Additionally, teachers and AirWaterGas researchers shared experiences on an oil and gas well site tour, and a short course on drilling methods with a drilling rig simulator. Here, we share lessons learned from both sides of the aisle, including initial results from program assessment conducted with the participating teachers.
NASA Astrophysics Data System (ADS)
Anderson, Dayle; Moeed, Azra
2017-05-01
Current curriculum demands require primary teachers to teach about the Nature of Science; yet, few primary teachers have had opportunity to learn about science as a discipline. Prior schooling and vicarious experiences of science may shape their beliefs about science and, as a result, their science teaching. This qualitative study describes the impact on teacher beliefs about science and science education of a programme where 26 New Zealand primary (elementary) teachers worked fulltime for 6 months alongside scientists, experiencing the nature of work in scientific research institutes. During the 6 months, teachers were supported, through a series of targeted professional development days, to make connections between their experiences working with scientists, the curriculum and the classroom. Data for the study consisted of mid- and end-of-programme written teacher reports and open-ended questionnaires collected at three points, prior to and following 6 months with the science host and after 6 to 12 months back in school. A shift in many teachers' beliefs was observed after the 6 months of working with scientists in combination with curriculum development days; for many, these changes were sustained 6 to 12 months after returning to school. Beliefs about the aims of science education became more closely aligned with the New Zealand curriculum and its goal of developing science for citizenship. Responses show greater appreciation of the value of scientific ways of thinking, deeper understanding about the nature of scientists' work and the ways in which science and society influence each other.
NASA Astrophysics Data System (ADS)
Halversen, C.; Weiss, E. L.; Pedemonte, S.
2016-02-01
Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, few high quality curriculum materials exist that address climate change in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8: The Ocean-Atmosphere Connection and Climate Change (OSS) addresses this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. OSS was developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified curriculum development team. Scientists were active partners throughout the entire development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. The goal was to focus strategically and effectively on core concepts within ocean and climate sciences that students should understand. OSS was designed in accordance with the latest research from the learning sciences and provides numerous opportunities for students to develop facility with science practices by "doing" science.Through hands-on activities, technology, informational readings, and embedded assessments, OSS deeply addresses a significant number of standards from the Next Generation Science Standards and is being used by many teachers as they explore the shifts required by NGSS. It also aligns with the Ocean Literacy and Climate Literacy Frameworks. OSS comprises 33 45-minute sessions organized into three thematic units, each driven by an exploratory question: (1) How do the ocean and atmosphere interact?; (2) How does carbon flow through the ocean, land, and atmosphere?; and (3) What are the causes and effects of climate change? The curriculum deliberately explores the ocean and climate as global systems and challenges students to use scientific evidence to make explanations about climate change.
The Oratorical Scientist: A Guide for Speechcraft and Presentation for Scientists
NASA Astrophysics Data System (ADS)
Lau, G. E.
2015-12-01
Public speaking organizations are highly valuable for individuals seeking to improve their skills in speech development and delivery. The methodology of such groups usually focuses on repetitive, guided practice. Toastmasters International, for instance, uses a curriculum based on topical manuals that guide their members through some number of prepared speeches with specific goals for each speech. I have similarly developed a public speaking manual for scientists with the intention of guiding scientists through the development and presentation of speeches that will help them hone their abilities as public speakers. I call this guide The Oratorical Scientist. The Oratorical Scientist will be a free, digital publication that is meant to guide scientists through five specific types of speech that the scientist may be called upon to deliver during their career. These five speeches are: The Coffee Talk, The Educational Talk, Research Talks for General Science Audiences, Research Talks for Specific Subdiscipline Audiences, and Taking the Big Stage (talks for public engagement). Each section of the manual focuses on speech development, rehearsal, and presentation for each of these specific types of speech. The curriculum was developed primarily from my personal experiences in public engagement. Individuals who use the manual may deliver their prepared speeches to groups of their peers (e.g. within their research group) or through video sharing websites like Youtube and Vimeo. Speeches that are broadcast online can then be followed and shared through social media networks (e.g. #OratoricalScientist), allowing a larger audience to evaluate the speech and to provide criticism. I will present The Oratorical Scientist, a guide for scientists to become better public speakers. The process of guided repetitive practice of scientific talks will improve the speaking capabilities of scientists, in turn benefitting science communication and public engagement.
Policy Analysis for Sustainable Development: The Toolbox for the Environmental Social Scientist
ERIC Educational Resources Information Center
Runhaar, Hens; Dieperink, Carel; Driessen, Peter
2006-01-01
Purpose: The paper seeks to propose the basic competencies of environmental social scientists regarding policy analysis for sustainable development. The ultimate goal is to contribute to an improvement of educational programmes in higher education by suggesting a toolbox that should be integrated in the curriculum. Design/methodology/approach:…
Restoration Science in New York Harbor: It takes a (large, diverse and engaged) village
NASA Astrophysics Data System (ADS)
Newton, R.; Birney, L.; Janis, S.; Groome, M.; Palmer, M.; Bone, E.; O'Neil, J. M.; Hill, J.; Dennison, W.; Malinowski, P.; Kohne, L.; Molina, M.; Moore, G.; Woods, N.
2015-12-01
The Curriculum + Community Enterprise for Restoration Science (CCE-RS) facilitates partnerships between scientists and middle school educators on ecological restoration and environmental monitoring projects. The educational model is designed to wrap around the student, including classroom instruction, field science, after-school programs and engagement with the student's community. Its pillars include: a teacher training fellowship at Pace University, student curriculum, a digital platform, afterschool and summer mentoring, and community exhibits. The digital platform includes a tablet app tailored to the project's field protocols and linked to a database shared across schools and partnering institutions. Through the digital platform, data is integrated into a single citizen-science monitoring project, teachers share curriculum and best practices, and students link directly to their peers at other schools. Curriculum development has been collaborative between scientists, science education specialists, and secondary school teachers. The CCE-RS is rooted in project-based learning: the New York Harbor School has engaged high school students in environmental monitoring and oyster restoration in the Harbor for about the last decade. The science partners (U. of Maryland and Columbia) have been working with students and other citizen scientists in outdoor science over about the last decade. Local partners in outside-the-classroom education include the New York Academy of Sciences, The River Project, which will provide field education services, and Good Shepherd Services, which provides after-school programming in schools serving primarily poor families. Scientists on the project engage directly with teachers and informal educators in curriculum development and citizen-science outreach. We present the lessons learned from our first cohort of Fellows, the pedagogical model, and the digital platform, which is extensible to other ecological restoration settings.
What do primary students know about science, scientists and how they do their work?
NASA Astrophysics Data System (ADS)
Bartels, Selina L.
The teaching of scientific literacy is the primary goal of elementary science education. Scientific literacy is composed of the overall understanding of what science is and how scientific knowledge is developed. The purpose of this study was to see if elementary students' understandings of science, scientists and how scientists do their work changes from grade one to grade five of elementary school. Furthermore, the study attempts to determine whether there is a difference in scientific literacy between students taught using a textbook curriculum versus a kit-based curriculum. The study draws on a sample of 338 students from 18 different classrooms situated in six different schools in both urban and suburban areas of a large Midwestern city. Students' understandings of science, scientists and how they do their work was measured through a valid and reliable oral protocol entitled Young Children's Views of Science (YCVS) (Lederman, J., Bartels, Lederman, & Ganankkan, 2014). The YCVS assesses students' understandings of the aspects of scientific inquiry (SI) and the nature of science (NOS) that young elementary students are able to understand. These aspects are; science, scientists, multiple methods, observation/inference, begins with a question, empirical, subjectivity, tentativeness and creativity. The YCVS was administered orally for grade one students, and a paper-and-pencil version was given to grades three and five. Results indicated that there are very few gains in NOS and SI understandings between grades one and five in the schools included in this study. None of the schools in this study made significant gains for all of the nine aspects measured in this study. Examining curriculum's affect on NOS and SI understandings, understanding of only one aspect was significantly impacted by curriculum differences. Subjectivity understanding was impacted by kit-based instruction. Overall, students' understandings of science, scientists and how they do their work did not significantly change from grade one to grade five regardless of what type of curriculum they followed. This study shows that students' scientific literacy is not being developed throughout elementary school. Therefore, the teaching of scientific literacy in an explicit and reflective manner should be the focus of preservice elementary school education.
A workshop on leadership for MD/PhD students
Ciampa, Erin j.; Hunt, Aubrey A.; Arneson, Kyle O.; Mordes, Daniel A.; Oldham, William M.; Vin Woo, Kel; Owens, David A.; Cannon, Mark D.; Dermody, Terence S.
2011-01-01
Success in academic medicine requires scientific and clinical aptitude and the ability to lead a team effectively. Although combined MD/PhD training programs invest considerably in the former, they often do not provide structured educational opportunities in leadership, especially as applied to investigative medicine. To fill a critical knowledge gap in physician-scientist training, the Vanderbilt Medical Scientist Training Program (MSTP) developed a biennial two-day workshop in investigative leadership. MSTP students worked in partnership with content experts to develop a case-based curriculum and deliver the material. In its initial three offerings in 2006, 2008, and 2010, the workshop was judged by MSTP student attendees to be highly effective. The Vanderbilt MSTP Leadership Workshop offers a blueprint for collaborative student-faculty interactions in curriculum design and a new educational modality for physician-scientist training. PMID:21841905
Next Generation Science Partnerships
NASA Astrophysics Data System (ADS)
Magnusson, J.
2016-02-01
I will provide an overview of the Next Generation Science Standards (NGSS) and demonstrate how scientists and educators can use these standards to strengthen and enhance their collaborations. The NGSS are rich in content and practice and provide all students with an internationally-benchmarked science education. Using these state-led standards to guide outreach efforts can help develop and sustain effective and mutually beneficial teacher-researcher partnerships. Aligning outreach with the three dimensions of the standards can help make research relevant for target audiences by intentionally addressing the science practices, cross-cutting concepts, and disciplinary core ideas of the K-12 science curriculum that drives instruction and assessment. Collaborations between researchers and educators that are based on this science framework are more sustainable because they address the needs of both scientists and educators. Educators are better able to utilize science content that aligns with their curriculum. Scientists who learn about the NGSS can better understand the frameworks under which educators work, which can lead to more extensive and focused outreach with teachers as partners. Based on this model, the International Ocean Discovery Program (IODP) develops its education materials in conjunction with scientists and educators to produce accurate, standards-aligned activities and curriculum-based interactions with researchers. I will highlight examples of IODP's current, successful teacher-researcher collaborations that are intentionally aligned with the NGSS.
Systemic Reform of Astronomy Curriculum in the Montgomery County Public Schools
NASA Astrophysics Data System (ADS)
Szesze, M.; Kahl, S.; Janney, D.
2002-09-01
In the Montgomery County Public Schools (MCPS), the science curriculum is undergoing a comprehensive systemic review in an effort to revise the system's curriculum and the entire instructional program. As a part of this overall effort, MCPS has developed a framework for the astronomy curriculum that includes a rationale, essential indicators, and blueprints. The school system is partnering with the NASA Goddard Space Flight Center to involve professional astronomers/space scientists as content advisors to ensure science content accuracy and currency. Through this partnership, many NASA developed educational materials have been made available to the school system to assist with the instructional sequences. This new policy has resulted in the development of a clear and coherent astronomy curriculum for grades K-8. The blueprint is written in the form of a set of indicators which identify the exact skills and knowledge that need to be taught at each grade level so that students will meet and exceed state, national, and international standards. Each blueprint also includes the enduring understandings and essential questions that students should focus on for that specific unit of study, a proposed instructional sequence, and assessment and differentiation ideas. Using these blueprints, teachers will create curriculum guides that include model lessons, model assignments, concept maps, resources, assessment samples, and strategies for differentiating the curriculum to meet the needs of a wide range of learners. In addition, a 45 hour certification training course is being developed to train in service teachers in a wide range of space science disciplines from seasons to cosmology. The course is being developed and will be taught by a team composed of space scientists and master educational trainers. Pilot testing of the curriculum and the training course will begin in Fall 2002.
NASA Astrophysics Data System (ADS)
Weiss, E.; Skene, J.; Tran, L.
2011-12-01
Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, there are few high quality curricula available to teachers that address these topics in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8 aims to address this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. The Ocean Sciences Sequence for Grades 6-8 is developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified GEMS (Great Explorations in Math & Science) curriculum development team. Scientists are active partners throughout the whole development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. As with all GEMS Sequences, the Ocean Sciences Sequence for Grades 6-8 is designed to provide significant scientific and educational depth, systematic assessments and informational readings, and incorporate new learning technologies. The goal is to focus strategically and effectively on the core concepts within ocean and climate sciences that students need to understand. This curriculum is designed in accordance with the latest research from the learning sciences, and provides numerous opportunities for students to develop inquiry skills and abilities as they learn about the practice of science through hands-on activities. The Ocean Sciences Sequence for Grades 6-8 addresses in depth a significant number of national, state, and district standards and benchmarks. It aligns with the Ocean Literacy and Climate Literacy Frameworks, as well as multiple core ideas in the new National Academy of Sciences Framework for K-12 Science Education. In brief, the curriculum comprises 33 45-minute sessions organized into three thematic units that are each driven by an exploratory question: Unit 1 (11 sessions)-How do the ocean and atmosphere interact?; Unit 2 (8 sessions)-How does carbon flow through the ocean, land, and atmosphere?; and Unit 3 (12 sessions)-What are the causes and effects of climate change? The curriculum deliberately explores the ocean and climate as global systems, and challenges students to use scientific evidence to make explanations about climate change. The Ocean Sciences Sequence for Grades 6-8 is currently being classroom tested by teachers across the United States in a wide variety of classroom settings. Evaluation is also being undertaken to determine the efficacy of the sequence in addressing the curriculum's learning goals.
From World War to Woods Hole: The Use of Wartime Research Models for Curriculum Reform.
ERIC Educational Resources Information Center
Rudolph, John L.
2002-01-01
Considers the curriculum reform movement of the 1950s as an experiment in applying innovative research and development techniques perfected by scientists during World War II, tracing the development of newer methods of scientific analysis and examining how they were imported from military research to the field of education by a select group of…
Welch Science Process Inventory, Form D. Revised.
ERIC Educational Resources Information Center
Welch, Wayne W.
This inventory, developed for use with the Harvard Project Physics curriculum, consists of 135 two-choice (agree-disagree) items. Items cover perceptions of the role of scientists, the nature and functions of theories, underlying assumptions made by scientists, and other aspects of the scientific process. The test is suitable for high school…
A New Method for a Virtue-Based Responsible Conduct of Research Curriculum: Pilot Test Results.
Berling, Eric; McLeskey, Chet; O'Rourke, Michael; Pennock, Robert T
2018-02-03
Drawing on Pennock's theory of scientific virtues, we are developing an alternative curriculum for training scientists in the responsible conduct of research (RCR) that emphasizes internal values rather than externally imposed rules. This approach focuses on the virtuous characteristics of scientists that lead to responsible and exemplary behavior. We have been pilot-testing one element of such a virtue-based approach to RCR training by conducting dialogue sessions, modeled upon the approach developed by Toolbox Dialogue Initiative, that focus on a specific virtue, e.g., curiosity and objectivity. During these structured discussions, small groups of scientists explore the roles they think the focus virtue plays and should play in the practice of science. Preliminary results have shown that participants strongly prefer this virtue-based model over traditional methods of RCR training. While we cannot yet definitively say that participation in these RCR sessions contributes to responsible conduct, these pilot results are encouraging and warrant continued development of this virtue-based approach to RCR training.
ERIC Educational Resources Information Center
Brody, Michael
1995-01-01
This study sampled 268 people involved in natural resource research and management education from every state in the United States to determine what concepts, skills and affects should be included in the National Project WET (Water Education for Teachers) water and water resource curriculum framework. The analysis contains an 80-item curriculum…
Science-On Line: Partnership Approach for the Creation of Internet-based Classroom Resources.
ERIC Educational Resources Information Center
Hawkins, Isabel; Battle, Robyn
Research has been conducted which develops case studies on how to engage scientists in partnerships with teachers. Studies have focused on the Internet and the World Wide Web as potential conduits of research results to the classroom, particularly if scientists and teachers were involved in joint creation of Internet-based curriculum and lesson…
From Laboratories to Classrooms: Involving Scientists in Science Education
NASA Astrophysics Data System (ADS)
DeVore, E. K.
2001-12-01
Scientists play a key role in science education: the adventure of making new discoveries excites and motivates students. Yet, American science education test scores lag behind those of other industrial countries, and the call for better science, math and technology education is widespread. Thus, improving American science, math and technological literacy is a major educational goal for the NSF and NASA. Today, funding for research often carries a requirement that the scientist be actively involved in education and public outreach (E/PO) to enhance the science literacy of students, teachers and citizens. How can scientists contribute effectively to E/PO? What roles can scientists take in E/PO? And, how can this be balanced with research requirements and timelines? This talk will focus on these questions, with examples drawn from the author's projects that involve scientists in working with K-12 teacher professional development and with K-12 curriculum development and implementation. Experiences and strategies for teacher professional development in the research environment will be discussed in the context of NASA's airborne astronomy education and outreach projects: the Flight Opportunities for Science Teacher EnRichment project and the future Airborne Ambassadors Program for NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA). Effective partnerships with scientists as content experts in the development of new classroom materials will be described with examples from the SETI Institute's Life in the Universe curriculum series for grades 3-9, and Voyages Through Time, an integrated high school science course. The author and the SETI Institute wish to acknowledge funding as well as scientific and technical support from the National Science Foundation, the National Aeronautics and Space Administration, the Hewlett Packard Company, the Foundation for Microbiology, and the Combined Federated Charities.
Reflecting on MACOS: Why It Failed and What We Can Learn from Its Demise
ERIC Educational Resources Information Center
Fitchett, Paul G.; Russell, William Benedict
2012-01-01
The New Social Studies movement was an effort by social scientists to reform US social studies/history curriculum at all levels during the 1960s and early 1970s. In the end, more than 50 different projects attempting to revitalise social studies were developed. Many of the projects focused on inquiry-based teaching practices and curriculum.…
NASA Astrophysics Data System (ADS)
Ponners, Pamela Jones
Transmedia books are new and emerging technologies which are beginning to be used in current classrooms. Transmedia books are a traditional printed book that uses multiple media though the use of Quick Response (QR) codes and augmented reality (AR) triggers to access web-based technology. Using the transmedia book Skills That Engage Me students in kindergarten through second grade engage in curriculum designed to introduce science skills and careers. Using the modified Draw-a-Scientist Test (mDAST), observations and interviews, researchers analyzed pre and post data to describe changes students have about science and scientists. Future study may include the development and validation of a new instrument, Draw a Science Student, and examining the mDAST checklist with the intention of updating the parameters of what is considered positive and negative in relationship with work a scientist conducts.
ERIC Educational Resources Information Center
Houle, Meredith E.; Barnett, G. Michael
2008-01-01
The emerging field of urban ecology has the potential to engage urban youth in the practices of scientists by studying a locally relevant environmental problem. To this end, we are developing curriculum modules designed to engage students in learning science through the use of emerging information technology. In this paper, we describe the impact…
ERIC Educational Resources Information Center
Walcott, Phyllis B.
Four units focusing on 16 different Black scientists or inventors who have contributed to American life and research are presented. As part of an interdisciplinary high school science course, the units are designed to help students develop an understanding of and appreciation for the talents of the individuals studied, motivate minority students…
Diversity among Scientists-Inclusive Curriculum-Improved Science: An Upward Spiral.
ERIC Educational Resources Information Center
Rosser, Sue V.
1992-01-01
Explores how changing curriculum and teaching techniques may lead to different composition of pool of scientists who hold slightly modified theoretical perspective. Presents seven-stage spiral model for transforming mathematics and science teaching, in which each stage fuels change in next stage, moving toward more accessible, varied, and humane…
NASA Astrophysics Data System (ADS)
Becker, Tracy M.; Runyon, Cassandra; Cynthia, Hall; Britt, Daniel; Tracy Becker
2017-10-01
Through NASA’s Solar System Exploration Research Virtual Institute (SSERVI), the Center for Lunar and Asteroid Surface Science (CLASS) and the SSERVI Evolution and Environment of Exploration Destinations (SEEED) nodes have developed an interdisciplinary formal and informal hands-on curriculum to bring the excitement of space exploration directly to the students.With a focus on exploring asteroids, this 5-year effort has infused art with traditional STEM practices (creating STEAM) and provides teachers with learning materials to incorporate art, social studies, English language arts, and other courses into the lesson plans. The formal curricula being developed follows Next Generation Standards and incorporates effective and engaging pedagogical strategies, such as problem-based learning (PBL), design thinking, and document based questions, using authentic data and articles, some of which are produced by the SSERVI scientists. From the materials developed for the formal education component, we have built up a collection of informal activities of varying lengths (minutes to weeks-long programs) to be used by museums, girl and boy scouts, science camps, etc.The curricula are being developed by formal and informal educators, artists, storytellers, and scientists. The continual feedback between the educators, artists, and scientists enables the program to evolve and mature such that the material will be accessible to the students without losing scientific merit. Online components will allow students to interact with SSERVI scientists and will ultimately infuse ongoing, exciting research into the student’s lessons.Our Education & Public Engagement (EPE) program makes a strong effort to make educational material accessible to all learners, including those with visual or hearing impairments. Specific activities have been included or independently developed to give all students an opportunity to experience the excitement of the universe.
Williams, Makeda J.; Otero, Isabel V.; Harford, Joe B.
2013-01-01
The NCI Summer Curriculum on Cancer Prevention provides scientists and health care professionals training in principles and practices of cancer prevention and control, and molecular biology and genetics of cancer. Originally intended for U.S. scientists, the Curriculum’s enrollment of international scientists has increased steadily. The objective of the current study was to evaluate the Curriculum’s impact on knowledge, skills and career accomplishments of the international participants from low- and middle-income countries (LMIC). International participants from 1998 to 2009 completed questionnaires regarding knowledge, overall experience and accomplishments directly associated with the Curriculum. Almost all respondents agreed the Curriculum enhanced their knowledge and skills, prepared them to contribute to cancer control activities in their home countries and addressed specific needs and achieve research goals. The NCI Summer Curriculum on Cancer Prevention gives international participants a unique opportunity to enhance their knowledge and effectively contribute to cancer control activities in their home country. PMID:23355281
Malanson, Katherine; Jacque, Berri; Faux, Russell; Meiri, Karina F.
2014-01-01
This small-scale comparison case study evaluates the impact of an innovative approach to teacher professional development designed to promote implementation of a novel cutting edge high school neurological disorders curriculum. ‘Modeling for Fidelity’ (MFF) centers on an extended mentor relationship between teachers and biomedical scientists carried out in a virtual format in conjunction with extensive online educative materials. Four teachers from different diverse high schools in Massachusetts and Ohio who experienced MFF contextualized to a 6-week Neurological Disorders curriculum with the same science mentor were compared to a teacher who had experienced an intensive in-person professional development contextualized to the same curriculum with the same mentor. Fidelity of implementation was measured directly using an established metric and indirectly via student performance. The results show that teachers valued MFF, particularly the mentor relationship and were able to use it effectively to ensure critical components of the learning objectives were preserved. Moreover their students performed equivalently to those whose teacher had experienced intensive in-person professional development. Participants in all school settings demonstrated large (Cohen's d>2.0) and significant (p<0.0001 per-post) changes in conceptual knowledge as well as self-efficacy towards learning about neurological disorders (Cohen's d>1.5, p<0.0001 pre-post). The data demonstrates that the virtual mentorship format in conjunction with extensive online educative materials is an effective method of developing extended interactions between biomedical scientists and teachers that are scalable and not geographically constrained, facilitating teacher implementation of novel cutting-edge curricula. PMID:25551645
Malanson, Katherine; Jacque, Berri; Faux, Russell; Meiri, Karina F
2014-01-01
This small-scale comparison case study evaluates the impact of an innovative approach to teacher professional development designed to promote implementation of a novel cutting edge high school neurological disorders curriculum. 'Modeling for Fidelity' (MFF) centers on an extended mentor relationship between teachers and biomedical scientists carried out in a virtual format in conjunction with extensive online educative materials. Four teachers from different diverse high schools in Massachusetts and Ohio who experienced MFF contextualized to a 6-week Neurological Disorders curriculum with the same science mentor were compared to a teacher who had experienced an intensive in-person professional development contextualized to the same curriculum with the same mentor. Fidelity of implementation was measured directly using an established metric and indirectly via student performance. The results show that teachers valued MFF, particularly the mentor relationship and were able to use it effectively to ensure critical components of the learning objectives were preserved. Moreover their students performed equivalently to those whose teacher had experienced intensive in-person professional development. Participants in all school settings demonstrated large (Cohen's d>2.0) and significant (p<0.0001 per-post) changes in conceptual knowledge as well as self-efficacy towards learning about neurological disorders (Cohen's d>1.5, p<0.0001 pre-post). The data demonstrates that the virtual mentorship format in conjunction with extensive online educative materials is an effective method of developing extended interactions between biomedical scientists and teachers that are scalable and not geographically constrained, facilitating teacher implementation of novel cutting-edge curricula.
[Almost an autobiography: a study of social scientists in health based on the Lattes Curriculum].
do Nascimento, Juliana Luporini; Nunes, Everardo Duarte
2014-04-01
Among the various ways of adopting the biographical approach, we used the curriculum vitaes (CVs) of Brazilian researchers who work as social scientists in health as our research material. These CVs are part of the Lattes Platform of CNPq - the National Council for Scientific and Technological Development, which includes Research and Institutional Directories. We analyzed 238 CVs for this study. The CVs contain, among other things, the following information: professional qualifications, activities and projects, academic production, participation in panels for the evaluation of theses and dissertations, research centers and laboratories and a summarized autobiography. In this work there is a brief review of the importance of autobiography for the social sciences, emphasizing the CV as a form of "autobiographical practice." We highlight some results, such as it being a group consisting predominantly of women, graduates in social sciences, anthropology, sociology or political science, with postgraduate degrees. The highest concentration of social scientists is located in Brazil's southern and southeastern regions. In some institutions the main activities of social scientists are as teachers and researchers with great thematic diversity in research.
Taylor, Sara; Bennett, Katie M; Deignan, Joshua L; Hendrix, Ericka C; Orton, Susan M; Verma, Shalini; Schutzbank, Ted E
2014-05-01
Molecular diagnostics is a rapidly growing specialty in the clinical laboratory assessment of pathology. Educational programs in medical laboratory science and specialized programs in molecular diagnostics must address the training of clinical scientists in molecular diagnostics, but the educational curriculum for this field is not well defined. Moreover, our understanding of underlying genetic contributions to specific diseases and the technologies used in molecular diagnostics laboratories change rapidly, challenging providers of training programs in molecular diagnostics to keep their curriculum current and relevant. In this article, we provide curriculum recommendations to molecular diagnostics training providers at both the baccalaureate and master's level of education. We base our recommendations on several factors. First, we considered National Accrediting Agency for Clinical Laboratory Sciences guidelines for accreditation of molecular diagnostics programs, because educational programs in clinical laboratory science should obtain its accreditation. Second, the guidelines of several of the best known certifying agencies for clinical laboratory scientists were incorporated into our recommendations. Finally, we relied on feedback from current employers of molecular diagnostics scientists, regarding the skills and knowledge that they believe are essential for clinical scientists who will be performing molecular testing in their laboratories. We have compiled these data into recommendations for a molecular diagnostics curriculum at both the baccalaureate and master's level of education. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Encouraging Data Use in the Classroom-DLESE Workshop Evaluation Results
NASA Astrophysics Data System (ADS)
Lynds, S. E.; Buhr, S. M.; Ledley, T. S.
2005-12-01
For the last two years, the Data Services Team of the Digital Library for Earth Systems Education (DLESE) has offered annual workshops, bringing scientists, technology specialists, and education professionals together to develop ways of using scientific data in education. Teams comprised of representatives from each of five professional roles (scientist, curriculum developer, data provider, teacher, tool developer) worked on developing online educational units of the Earth Exploration Toolbook (EET--http://serc.carleton.edu/eet/). Workshop evaluation projects elicited a large amount of feedback from participants at both workshops. Consistently, the attendees most highly valued the opportunity to network with those of other professional roles and to collaborate on a real-world education project. Technology and science specialists emphasized their desire for a greater understanding of practical applications for scientific data in the classroom and what educators need for successful curricula. The evaluation project also revealed similarities in the limitations that many attendees reported in using online data. Technological barriers such as data format, bandwidth limitations, and proprietary data were all mentioned by participants regardless of professional role. This talk will discuss the barriers to and advantages of collaborations between scientists, technology specialists, and educators and the potential for this format to result in data-rich curriculum elements.
NASA Astrophysics Data System (ADS)
Thorolfsson, Meyvant; Finnbogason, Gunnar E.; Macdonald, Allyson
2012-11-01
In recent decades, a consensus has emerged among educators and scientists that all compulsory school students need good science education. The debate about its purpose and nature as a school subject in an emerging information society has not been as conclusive. To further understand this, it helps to examine how the science curriculum has transformed and what forces have shaped it as a core curricular area over time. This article sheds light on the transformation of the science curriculum for compulsory schools in Iceland in force from 1960 to 2010. Using criteria based on curriculum ideologies regarding the function of learners, instructors and subject matter in the learning process and the orientation of content and product versus process and development, it offers findings from content analysis of the intended science curriculum. The official curriculum was studied and conceptualised as it has evolved over time. The curriculum developers appear to have been striving for a compromise between conflicting views, resulting in what the authors of this article conceive as a 'kaleidoscopic quilt' of ideas over the period studied.
Contemporary Scientists Discuss the Need for Openness and Open-Mindedness in Science and Society
NASA Astrophysics Data System (ADS)
Mulhall, Pamela J.; Smith, Dorothy V.; Hart, Christina E.; Gunstone, Richard F.
2017-10-01
We report on findings from a qualitative study of Australian scientists whose work brings them into contact with the public. This research sought to understand how a school science curriculum could better represent the work of scientists today. We discuss the views expressed by our participant scientists about the importance of openness and open-mindedness in their work, including their engagement with the public. They described openness as an important characteristic of science. Our participants also see open-mindedness on the part of both scientists and members of the public as important for productive relationships. They see the development of such relationships as an essential facet of their work. The views expressed by these scientists provide a provocative insight into the ways in which contemporary scientists see their work and relationships with their communities. Their perspectives have important implications for approaches to teaching science in schools.
Using the Curriculum Vita To Study the Career Paths of Scientists and Engineers: An Assessment.
ERIC Educational Resources Information Center
Lane, Eliesh O'Neil; Dietz, James S.; Chompalov, Ivan; Bozeman, Barry; Park, Jongwon
The usefulness of the curriculum vita (CV) as a data source for examining the career paths of scientists and engineers was studied. CVs were obtained in response to an e-mail message sent to researchers working in the area of biotechnology who were funded by the National Science Foundation (55 responses) or listed as authors (industry only) in the…
Hydrogen Technology and Energy Curriculum (HyTEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagle, Barbara
The Lawrence Hall of Science of the University of California, Berkeley has collaborated with scientists and engineers, a local transit agency, school districts, and a commercial curriculum publisher to develop, field-test nationally, and publish a two-week curriculum module on hydrogen and fuel cells for high school science. Key partners in this project are the Schatz Energy Research Center (SERC) of Humboldt State University, the Alameda-Contra Costa Transit District (AC Transit), FilmSight Productions, Lab-Aids, Inc., and 32 teachers and 2,370 students in field-test classrooms in California, Connecticut, Ohio, New York, South Carolina, and Washington. Field-test teachers received two to three daysmore » of professional development before teaching the curriculum and providing feedback used for revision of the curriculum. The curriculum, titled Investigating Alternative Energy: Hydrogen and Fuel Cells and published by Lab-Aids, Inc., includes a teachers guide (with lesson plans, resources, and student handout pages), two interactive computer animations, a video, a website, and a laboratory materials kit. The project has been disseminated to over 950 teachers through awareness workshops at state, regional, and national science teacher conferences.« less
Impact of a Scientist-Teacher Collaborative Model on Students, Teachers, and Scientists
NASA Astrophysics Data System (ADS)
Shein, Paichi Pat; Tsai, Chun-Yen
2015-09-01
Collaborations between the K-12 teachers and higher education or professional scientists have become a widespread approach to science education reform. Educational funding and efforts have been invested to establish these cross-institutional collaborations in many countries. Since 2006, Taiwan initiated the High Scope Program, a high school science curriculum reform to promote scientific innovation and inquiry through an integration of advanced science and technology in high school science curricula through partnership between high school teachers and higher education scientists and science educators. This study, as part of this governmental effort, a scientist-teacher collaborative model (STCM) was constructed by 8 scientists and 4 teachers to drive an 18-week high school science curriculum reform on environmental education in a public high school. Partnerships between scientists and teachers offer opportunities to strengthen the elements of effective science teaching identified by Shulman and ultimately affect students' learning. Mixed methods research was used for this study. Qualitative methods of interviews were used to understand the impact on the teachers' and scientists' science teaching. A quasi-experimental design was used to understand the impact on students' scientific competency and scientific interest. The findings in this study suggest that the use of the STCM had a medium effect on students' scientific competency and a large effect on students' scientific individual and situational interests. In the interviews, the teachers indicated how the STCM allowed them to improve their content knowledge and pedagogical content knowledge (PCK), and the scientists indicated an increased knowledge of learners, knowledge of curriculum, and PCK.
NASA Astrophysics Data System (ADS)
Barbosa, A.; Robertson, W. H.
2013-12-01
In the 2012, the National Research Council (NRC) of the National Academies' reported that one of the major issues associated with the development of climate change curriculum was the lack of interdisciplinary materials that also promoted a correlation between science standards and content. Therefore, in order to respond to this need, our group has developed an interdisciplinary climate change curriculum that has had as its fundamental basis the alignment with the guidelines presented by the Next Generation Science Standards (NGSS) and the ones presented by the international document entitled The Earth Charter. In this regards, while the alignment with NGSS disciplinary core ideas, cross-concepts and students' expectations intended to fulfill the need for the development of climate change curriculum activities that were directly associated with the appropriate set of NGSS guidelines, the alignment with The Earth Charter document intended to reinforce the need the for the integration of sociological, philosophical and intercultural analysis of the theme 'climate change'. Additionally, our curriculum was also developed as part of a collaborative project between climate scientists and engineers, who are responsible for the development of a Regional Arctic Simulation Model (RASM). Hence, another important curriculum constituent was the feedback, suggestions and reviews provided by these professionals, who have also contributed to these pedagogical materials' scientific accuracy by facilitating the integration of datasets and visualizations developed by RASM. Furthermore, our group has developed a climate change curriculum for two types of audience: high school and early undergraduate students. Each curriculum unit is divided into modules and each module contains a set of lesson plans. The topics selected to compose each unit and module were designated according to the surveys conducted with scientists and engineers involved with the development of the climate change simulation model. Inside each module, we have provided a description of the general topic being addressed, the appropriate grade levels, students' required prior knowledge, the correspondent NGSS topics, disciplinary core ideas and students' performance expectations, purpose of the activities, and lesson plan activities. Each lesson plan activity is composed by the following: an introductory text that aims at explaining the topic, activities description (classroom tasks and optional classroom activities), time frame, materials, assessment, additional readings and online resources (scientific journals, online simulation models, and books). Each module presents activities and discussions that incorporate historical, philosophical, sociological and/or scientific perspectives on the topics being addressed. Moreover, the activities and lesson plans designed to compose our curriculum have the potential of being used either individually or together, according to the teacher and topic of interest, at the same time that each unit can also be used as a full semester course.
Integrating the history of science into a middle school science curriculum
NASA Astrophysics Data System (ADS)
Huybrechts, Jeanne Marie
This study examined the effect of incorporating the history of science into a middle school physical science curriculum on student attitudes toward science and the work of scientists. While there is wide support for including some science history in middle school science lessons within both the science and science-education communities, there is little curriculum designed to meet that objective. A series of five lessons was written specifically for the study. Each lesson included a brief biography of a scientist whose work was of historical significance, and a set of directions for duplicating one or more of the experiments done by that scientist. A thirty-question, Likert scale survey of the attitudes of middle school students toward science and the work of scientists was also written for this study. The survey was administered to two groups of students in a single middle school: One group---the experimental group---subsequently used the science history curriculum; the second (control) group did not. The same attitude survey was readministered to both groups of students after study of the science-history curriculum was completed. The results of the study indicate that there was no statistically significant difference between the pretest and posttest scores of either the experimental or control group students. Further analysis was done to determine whether there were differences between the pretest and posttest scores of boys and girls, or between "regular" or "honors" students. In both cases no statistically significant difference was found.
Canfield, Caitlin; Angove, Rebekah; Boselovic, Joseph; Brown, Lisanne F.; Gauthe, Sharon; Bui, Tap; Gauthe, David; Bogen, Donald; Denham, Stacey; Nguyen, Tuan; Lichtveld, Maureen Y.
2017-01-01
Background The Transdisciplinary Research Consortium for Gulf Resilience on Women’s Health (GROWH) addresses reproductive health disparities in the Gulf Coast by linking communities and scientists through community-engaged research. Funded by the National Institutes of Environmental Health Sciences, GROWH’s Community Outreach and Dissemination Core (CODC) seeks to utilize community-based participatory research (CBPR) and other community-centered outreach strategies to strengthen resilience in vulnerable Gulf Coast populations. The CODC is an academic-community partnership comprised of Tulane University, Mary Queen of Vietnam Community Development Corporation, Bayou Interfaith Shared Community Organizing, and the Louisiana Public Health Institute (LPHI). Methods Alongside its CODC partners, LPHI collaboratively developed, piloted and evaluated an innovative CBPR curriculum. In addition to helping with curriculum design, the CODC’s community and academic partners participated in the pilot. The curriculum was designed to impart applied, practical knowledge to community-based organizations and academic researchers on the successful formulation, execution and sustaining of CBPR projects and partnerships within the context of environmental health research. Results The curriculum resulted in increased knowledge about CBPR methods among both community and academic partners as well as improved relationships within the GROWH CODC partnership. Conclusion The efforts of the GROWH partnership and curriculum were successful. This curriculum may serve as an anchor for future GROWH efforts including: competency development, translation of the curriculum into education and training products, community development of a CBPR curriculum for academic partners, community practice of CBPR, and future environmental health work. PMID:28890934
Bringing Data Science, Xinformatics and Semantic eScience into the Graduate Curriculum
NASA Astrophysics Data System (ADS)
Fox, P.
2012-04-01
Recent advances in acquisition techniques quickly provide massive amount of complex data characterized by source heterogeneity, multiple modalities, high volume, high dimensionality, and multiple scales (temporal, spatial, and function). In turn, science and engineering disciplines are rapidly becoming more and more data driven with goals of higher sample throughput, better understanding/modeling of complex systems and their dynamics, and ultimately engineering products for practical applications. However, analyzing libraries of complex data requires managing its complexity and integrating the information and knowledge across multiple scales over different disciplines. Attention to Data Science is now ubiquitous - The Fourth Paradigm publication, Nature and Science special issues on Data, and explicit emphasis on Data in national and international agency programs, foundations (Keck, Moore) and corporations (IBM, GE, Microsoft, etc.). Surrounding this attention is a proliferation of studies, reports, conferences and workshops on Data, Data Science and workforce. Examples include: "Train a new generation of data scientists, and broaden public understanding" from an EU Expert Group, "…the nation faces a critical need for a competent and creative workforce in science, technology, engineering and mathematics (STEM)...", "We note two possible approaches to addressing the challenge of this transformation: revolutionary (paradigmatic shifts and systemic structural reform) and evolutionary (such as adding data mining courses to computational science education or simply transferring textbook organized content into digital textbooks).", and "The training programs that NSF establishes around such a data infrastructure initiative will create a new generation of data scientists, data curators, and data archivists that is equipped to meet the challenges and jobs of the future." Further, interim report of the International Council for Science's (ICSU) Strategic Coordinating Committee on Information and Data (SCCID), features this excerpt from section 4.2.4 Data scientists and professionals: "An unfortunate state in the recognition of data science, is that there is a lack of appreciation of the need for a set of professional knowledge in skill in key areas, many of which have not been emphasized to date, e.g. professional approaches to the management of data over its lifecycle. As such, the effort required to be a data scientists is not valued sufficiently by the remainder of the scientific community." SCCID Recommendation 6 reads: "We recommend the development of education at university level in the new and vital field of data science. The curriculum included in appendix D can be used as a starting point for curriculum development. Appendix D. is entitled "Example curriculum for data science" and explicitly uses the "Curriculum for Data Science taught at Rensselaer Polytechnic Institute, USA" . This contribution will present relevant curriculum offerings at the Rensselaer Polytechnic Institute. http://tw.rpi.edu/web/Courses
Adventures in Science and Math.
ERIC Educational Resources Information Center
Jones, Tom B.
This volume presents historical sketches of events and scientists. Produced for use by teachers using the MINNEMAST curriculum materials, the material is intended to exhibit the roles of processes in science throughout history. The seven stories included concern Anaxagoras, Achimedes, Napier, the development of the telescope and microscope, Louis…
The Teaching of Crystallography to Materials Scientists and Engineers.
ERIC Educational Resources Information Center
Wuensch, Bernhardt J.
1988-01-01
Provides a framework of the disciplines of materials science and engineering as they have developed. Discusses the philosophy, content, and approach to teaching these courses. Indicates the range of crystallographic topics contained in the materials science and engineering curriculum at the Massachussetts Institute of Technology. (CW)
Solomon, Mildred Z; Vannier, David; Chowning, Jeanne Ting; Miller, Jacqueline S; Paget, Katherine F
2016-01-01
A belief that high school students have the cognitive ability to analyze and assess moral choices and should be encouraged to do so but have rarely been helped to do so was the motivation for developing Exploring Bioethics, a six-module curriculum and teacher guide for grades nine through twelve on ethical issues in the life sciences. A multidisciplinary team of bioethicists, science educators, curriculum designers, scientists, and high school biology teachers worked together on the curriculum under a contract between the National Institutes of Health and Education Development Center, a nonprofit research and development organization with a long history of innovation in science education. At the NIH, the Department of Bioethics within the Clinical Center and the Office of Science Education within the Office of the Director guided the project.Our overarching goal for Exploring Bioethics was to introduce students to bioethics as a field of inquiry and to enable them to develop ethical reasoning skills so they could move beyond "gut reactions" to more nuanced positions. © 2016 The Hastings Center.
Contemporary Scientists Discuss the Need for Openness and Open-Mindedness in Science and Society
ERIC Educational Resources Information Center
Mulhall, Pamela J.; Smith, Dorothy V.; Hart, Christina E.; Gunstone, Richard F.
2017-01-01
We report on findings from a qualitative study of Australian scientists whose work brings them into contact with the public. This research sought to understand how a school science curriculum could better represent the work of scientists today. We discuss the views expressed by our participant scientists about the importance of openness and…
Becoming Explorers, Writers, and Scientists.
ERIC Educational Resources Information Center
Active Learner: A Foxfire Journal for Teachers, 2000
2000-01-01
A power company and a New Jersey elementary school arranged for field trips to a local swamp. Encouraged by two teachers, student and parent interest increased to the point where an integrated "Greenswamp Curriculum" developed around the study of habitats. Eventually, benches, planter boxes, an overlook, and an indoor classroom were constructed at…
Deep Space Detectives: Searching for Planets Suitable for Life
ERIC Educational Resources Information Center
Pallant, Amy; Damelin, Daniel; Pryputniewicz, Sarah
2013-01-01
This article describes the High-Adventure Science curriculum unit "Is There Life in Space?" This free online investigation, developed by The Concord Consortium, helps students see how scientists use modern tools to locate planets around distant stars and explore the probability of finding extraterrestrial life. This innovative curriculum…
Colby, Margaret; Hecht, Michael L.; Miller-Day, Michelle; Krieger, Janice L.; Syvertsen, Amy K.; Graham, John W.; Pettigrew, Jonathan
2014-01-01
A central challenge facing twenty-first century community-based researchers and prevention scientists is curriculum adaptation processes. While early prevention efforts sought to develop effective programs, taking programs to scale implies that they will be adapted, especially as programs are implemented with populations other than those with whom they were developed or tested. The principle of cultural grounding, which argues that health message adaptation should be informed by knowledge of the target population and by cultural insiders, provides a theoretical rational for cultural regrounding and presents an illustrative case of methods used to reground the keepin’ it REAL substance use prevention curriculum for a rural adolescent population. We argue that adaptation processes like those presented should be incorporated into the design and dissemination of prevention interventions. PMID:22961604
Colby, Margaret; Hecht, Michael L; Miller-Day, Michelle; Krieger, Janice L; Syvertsen, Amy K; Graham, John W; Pettigrew, Jonathan
2013-03-01
A central challenge facing twenty-first century community-based researchers and prevention scientists is curriculum adaptation processes. While early prevention efforts sought to develop effective programs, taking programs to scale implies that they will be adapted, especially as programs are implemented with populations other than those with whom they were developed or tested. The principle of cultural grounding, which argues that health message adaptation should be informed by knowledge of the target population and by cultural insiders, provides a theoretical rational for cultural regrounding and presents an illustrative case of methods used to reground the keepin' it REAL substance use prevention curriculum for a rural adolescent population. We argue that adaptation processes like those presented should be incorporated into the design and dissemination of prevention interventions.
Technology Needs for Teachers Web Development and Curriculum Adaptations
NASA Technical Reports Server (NTRS)
Carroll, Christy J.
1999-01-01
Computer-based mathematics and science curricula focusing on NASA inventions and technologies will enhance current teacher knowledge and skills. Materials and interactive software developed by educators will allow students to integrate their various courses, to work cooperatively, and to collaborate with both NASA scientists and students at other locations by using computer networks, email and the World Wide Web.
Understanding Modelling in Technology and Science: The Potential of Stories from the Field
ERIC Educational Resources Information Center
France, Bev; Compton, Vicki J.; Gilbert, John K.
2011-01-01
This paper tells the story of how two biotechnologists used models, one working as a technologist and the other as a scientist. These stories were collected during the development of the key ideas about the nature of technology and technological knowledge during the latest curriculum development in New Zealand. Their stories of how and why they…
ERIC Educational Resources Information Center
Shin, Soo Yeon; Parker, Loran Carleton; Adedokun, Omolola; Mennonno, Ann; Wackerly, Amy; San Miguel, Sandra
2015-01-01
This study examined to what extent a curriculum module that uses animal and human health scientists and science concepts to portray science and scientists in a relevant and authentic manner could enhance elementary students' aspiration for science careers, attitudes to science, positive perceptions of scientists, and perceived relevance of…
Evaluating virtual STEM mentoring programs: The SAGANet.org experience
NASA Astrophysics Data System (ADS)
Som, S. M.; Walker, S. I.; Miller, E.; Anbar, M.; Kacar, B.; Forrester, J. H.
2014-12-01
Many school districts within the United States continue to seek new ways of engaging students within Science, Technology, Engineering, and Mathematics (STEM) disciplines. SAGANet.org, a web-based 501c3 Astrobiology outreach initiative, works with a number of schools, partnering K-12 students and their families with professional scientist mentors from around the world to teach and inspire students using virtual technology platforms. Current programs include two mentoring partnerships: pairing scientist-mentors with at-risk youth at the Pittsburg Community School in Pittsburg CA, and pairing scientist-mentors with families from the Kyrene del Cielo Elementary School in Chandler AZ. These programs represent two very different models for utilizing the virtual media platform provided by SAGANet.org to engage K-12 students and their families in STEM. For the former, scientists mentor the students of the Pittsburg School as part of the formal in-class curriculum. For the latter, scientists work with K-5 students and their families through Cielo's Science & Engineering Discovery Room to develop a science project as part of an informal learning experience that is independent of the formal curriculum. In this presentation, we (1) discuss the challenges and successes of engaging these two distinct audiences through virtual media, (2) present the results of how these two very-different mentoring partnership impact K-12 students science self-efficacy, interest in science, and STEM career awareness, and (3) share the impact of the mentoring experience on the mentor's confidence and self-efficacy with communicating science to the public.
NASA Astrophysics Data System (ADS)
Bianchini, Julie A.; Whitney, David J.; Breton, Therese D.; Hilton-Brown, Bryan A.
2002-01-01
This study examined the perceptions and self-reported practices of 18 scientists participating in a yearlong seminar series designed to explore issues of gender and ethnicity in science. Scientists and seminar were part of the Promoting Women and Scientific Literacy project, a curriculum transformation and professional development initiative undertaken by science, science education, and women's studies faculty at their university. Researchers treated participating scientists as critical friends able to bring clarity to and raise questions about conceptions of inclusion in science education. Through questionnaires and semistructured interviews, we explored their (a) rationales for differential student success in undergraduate science education; (b) self-reports of ways they structure, teach, and assess courses to promote inclusion; and (c) views of androcentric and ethnocentric bias in science. Statistical analysis of questionnaires yielded few differences in scientists' views and reported practices by sex or across time. Qualitative analysis of interviews offered insight into how scientists can help address the problem of women and ethnic minorities in science education; constraints encountered in attempts to implement pedagogical and curricular innovations; and areas of consensus and debate across scientists and science studies scholars' descriptions of science. From our findings, we provided recommendations for other professional developers working with scientists to promote excellence and equity in undergraduate science education.
Community-based science education for fourth to sixth graders: Influences of a female role model
NASA Astrophysics Data System (ADS)
Acklie, Deanna S.
Women in the United States are underrepresented in science related careers. The Wonderwise curriculum was designed to encourage young women to become more involved in science and science careers. The Wonderwise kits have won numerous awards for quality science curriculum for formal educational environments. In 2000 the kits were adapted and new kits were developed to meet the needs of a nonformal Teaming environment (i.e., 4-H). The kits contain a video field trip with a featured female scientist demonstrating her work, an activity guidebook with five activities based on this scientist's work, and a CD-Rom serving as an additional resource. This study contributes to our understanding of a group of 4H youth who used the Wonderwise curriculum. It describes their view on science, their perspective about people who do science, the importance of role models within their lives, and their career visions. This study was a multi-method case study design. The subjects were youth ages 9--11 involved in 4H events in a three state area. Events such as overnight camps, day camps, special events and after school programs featuring the Wonderwise curriculum were used as sites for this study. The subjects studied in the Wonderwise 4-H project were primarily female youth who had some interest in science. Nearly half were Caucasian; the remainder were Hispanic, African American and Native American. The 25 youth involved in this study took part in a semi-structure interview process including four research methodologies: open-ended questions, drawing or writing a story about the featured scientist, a card sort activity and a relationship map drawn by the youth. Youths' prior experiences in formal, informal and nonformal settings impacted how they made sense of and incorporated Wonderwise experiences in their frame of reference. Through the experiential learning process youth experienced science activities and connected to individuals with science backgrounds, particularly those individuals within their relationship network such family members, and teachers who "do" science. Girls within this study related to and identified with the female role models presented in the Wonderwise 4-H curriculum. Native American youth related to a Native American scientist based on a similarity in culture.
Bringing Exoplanet Habitability Investigations to High School
NASA Astrophysics Data System (ADS)
Woody, M. A.; Sohl, L. E.
2016-12-01
Habitability, a.k.a. habitat suitability, is a topic typically discussed in Biology class. We present here a curriculum unit that introduces the topic in a Physics classroom, allowing students to engage in cutting-edge science and re-framing an otherwise "typical" unit. Unit development was made possible by the Climate Change Research Initiative (CCRI) at the NASA Goddard Institute for Space Studies, a year-long program that partners a scientist-mentor with a high school educator to engage in research and curriculum development. At its core, habitability is a temperature-dependent quality that is introduced and explored during the Energy unit. Students conducted a research project with the goal of determining the habitability state for a chosen exoplanet. Classroom implementation was modeled after the scientist-mentor's actual research plan, with content and resources for lesson activities also contributed by the scientist. Students first engaged in discussion of 5 basic habitability factors and explored these variables through climate modeling software. Students then chose an exoplanet to examine through the lens of those habitability factors, an activity that required them to perform authentic research on the exoplanet and its host star. Students also developed hypotheses about factors beyond currently available mission data, such as atmospheric composition and surface albedo of their exoplanet. They then used the modeling software to collect data, test hypotheses, and draw conclusions. Lastly, students communicated their findings in a poster session and presentation at the high school's annual science symposium. This scientist/educator partnership had a strongly positive impact on the high school students involved. By bringing actual science and research practices to the classroom, the students were not only more actively engaged with the required Physics course content, but also gained a better understanding of how scientific research is done.
NASA Astrophysics Data System (ADS)
Hatheway, B.
2013-12-01
After three years of running a climate science professional development program for secondary teachers, project staff from UCAR and UNC-Greeley have learned the benefits of ample time for interaction between teachers and scientists, informal educators, and their peers. This program gave us the opportunity to develop and refine strategies that leverage teacher-scientist partnerships to improve teachers' ability to teach climate change. First, we prepared both teachers and scientists to work together. Each cohort of teachers took an online course that emphasized climate change content and pedagogy and built a learning community. Scientists were recruited based on their enthusiasm for working with teachers and coached to present materials in an accessible way. Second, the teachers and scientists collaborated during a four-week summer workshop at UCAR. During the workshop, teachers met with a wide range of climate and atmospheric scientists to learn about research, selected a specific scientist's research they would like to adapt for their classrooms, and developed and refined activities based on that research. The program includes strong mentoring from a team of science educators, structured peer feedback, and ample opportunity to interact with the scientists by asking questions, accessing data, or checking resources. This new model of professional development fosters teacher-scientist partnerships. By the end of the four-week workshop, the teachers have built customized activities based on the cutting-edge research being conducted by participating scientists, developed plans to implement and assess those activities, and further strengthened the learning-community that they will rely on for support during the following academic year. This session will provide information about how this model, which differs from the more common model of engaging teachers in research under the direction of scientists, was successful and accomplished positive outcomes for both the teachers and scientists who participated. Lessons learned that will improve this model will also be discussed.
Life: Here? There? Elsewhere? The Search for Life on Venus and Mars. Life in the Universe Series.
ERIC Educational Resources Information Center
1996
This classroom kit, designed by curriculum developers working with teachers and scientists from the SETI (Search for Extraterrestrial Intelligence) Institute, helps teachers guide students in the exploration of life through the multidisciplinary sciences of paleontology and exobiology. It reflects the real-life methods of science: making…
Tracking Progress toward the School Readiness Goal.
ERIC Educational Resources Information Center
Engel, Penelope
1991-01-01
We need to develop better forms of school readiness assessment that do not encourage tracking, narrowing the curriculum, or kindergarten retention. This article describes three examples of work-in-progress from the state of Georgia, a test publisher (CTB Macmillan/McGraw-Hill), and a research scientist, Samuel Meisels. Includes seven references.…
Integrating Science in Applied Psychology Programs: A Student-Operated Journal
ERIC Educational Resources Information Center
Antonius, Daniel; Brown, Adam D.; Todman, McWelling; Safran, Jeremy D.
2007-01-01
As a requirement of APA accreditation, many PhD programs in applied psychology subscribe to some variant of the scientist-practitioner model. However, critics have argued that integrating science into an applied psychology curriculum may be too challenging a task. This article describes the development of The New School Psychology Bulletin, a…
Earth Science Education for the 21st Century: A Planning Guide.
ERIC Educational Resources Information Center
American Geological Inst., Alexandria, VA.
In response to the growing national concern about precollege science education, this guide was developed to assist school administrators, curriculum planners, teachers, and scientists in incorporating earth science in K-12 science curricula. The guide is divided into four main sections that provide a framework for planning and implementing earth…
Forces of the Wild. Nature. Teacher's Guide.
ERIC Educational Resources Information Center
Brown, Jordan
This curriculum guide was developed for use with public television's Nature series. The materials in the guide are designed to help students actively participate in the study and experience of nature. Students are encouraged to view the programs as a scientist would, observing natural phenomena and drawing conclusions. Each lesson in the Teacher's…
Helping Students Understand Real Capacitors: Measuring Efficiencies in a School Laboratory
ERIC Educational Resources Information Center
Carvalho, Paulo Simeao; Sampaio e Sousa, Adriano
2008-01-01
A recent reform in the Portuguese secondary school curriculum reintroduced the study of capacitors. Thus we decided to implement some experimental activities on this subject with our undergraduate students in physics education courses. A recent announcement of a new kind of capacitor being developed by a team of scientists at Massachusetts…
Learning about Seasons: A Guide for Teachers and Curriculum Developers
ERIC Educational Resources Information Center
Sneider, Cary; Bar, Varda; Kavanagh, Claudine
2011-01-01
The video "A Private Universe" evokes surprise and dismay among educators and scientists by demonstrating that even the brightest students fail to grasp a seemingly simple and fundamental concept--the reason for seasons. This literature review describes the findings of 41 studies that collectively illustrate why the concept proves difficult to…
Coordinating an IPLS class with a biology curriculum: NEXUS/Physics
NASA Astrophysics Data System (ADS)
Redish, Edward
2014-03-01
A multi-disciplinary team of scientists has been reinventing the Introductory Physics for Life Scientists (IPLS) course at the University of Maryland. We focus on physics that connects elements common to the curriculum for all life scientists - molecular and cellular biology - with building general scientific competencies, such as mathematical modeling, reasoning from core principles, and multi-representation translation. The prerequisites for the class include calculus, chemistry, and biology. In addition to building the basic ideas of the Newtonian framework, electric currents, and optics, our prerequisites allow us to include topics such as atomic interactions and chemical bonding, random motion and diffusion, thermodynamics (including entropy and free energy), and spectroscopy. Our chemical bonding unit helps students link the view of energy developed in traditional macroscopic physics with the idea of chemical bonding as a source of energy presented in their chemistry and biology classes. Education research has played a central role in our design, as has a strong collaboration between our Discipline-Based Education and the Biophysics Research groups. These elements permit us to combine modern pedagogy with cutting-edge insights into the physics of living systems. Supported in part by a grant from HHMI and the US NSF grant #1122818/.
Assessing Teachers' Comprehension of What Matters in Earth Science
NASA Astrophysics Data System (ADS)
Penuel, W. R.; Kreikemeier, P.; Venezky, D.; Blank, J. G.; Davatzes, A.; Davatzes, N.
2006-12-01
Curricular standards developed for individual U.S. States tell teachers what they should teach. Most sets of standards are too numerous to be taught in a single year, forcing teachers to make decisions about what to emphasize in their curriculum. Ideally, such decisions would be based on what matters most in Earth science, namely, the big ideas that anchor scientific inquiry in the field. A measure of teachers' ability to associate curriculum standards with fundamental concepts in Earth science would help K-12 program and curriculum developers to bridge gaps in teachers' knowledge in order to help teachers make better decisions about what is most important to teach and communicate big ideas to students. This paper presents preliminary results of an attempt to create and validate a measure of teachers' comprehension of what matters in three sub-disciplines of Earth science. This measure was created as part of an experimental study of teacher professional development in Earth science. It is a task that requires teachers to take their state's curriculum standards and identify which standards are necessary or supplemental to developing students' understanding of fundamental concepts in the target sub-disciplines. To develop the task, a team of assessment experts and educational researchers asked a panel of four Earth scientists to identify key concepts embedded within middle school standards for the state of Florida. The Earth science panel reached a consensus on which standards needed to be taught in order to develop understanding of those concepts; this was used as a basis for comparison with teacher responses. Preliminary analysis of the responses of 44 teachers who participated in a pilot validation study identified differences between teachers' and scientists' maps of standards to big ideas in the sub-disciplines. On average, teachers identified just under one-third of the connections seen by expert Earth scientists between the concepts and their state standards. Teachers with higher levels of agreement also had a higher percentage of standards identified that were "off-grade," meaning that they saw connections to standards that they were not themselves required to teach but that nonetheless were relevant to developing student understanding of a particular concept. This result is consistent with the premise that to make good decisions about what to teach, teachers need to be able to identify relevant standards from other grade levels that are connected to the big ideas of a discipline (Shulman, 1986, Educ. Res. 15:4-14).
Integration of Basic and Clinical Science in the Psychiatry Clerkship.
Wilkins, Kirsten M; Moore, David; Rohrbaugh, Robert M; Briscoe, Gregory W
2017-06-01
Integration of basic and clinical science is a key component of medical education reform, yet best practices have not been identified. The authors compared two methods of basic and clinical science integration in the psychiatry clerkship. Two interventions aimed at integrating basic and clinical science were implemented and compared in a dementia conference: flipped curriculum and coteaching by clinician and physician-scientist. The authors surveyed students following each intervention. Likert-scale responses were compared. Participants in both groups responded favorably to the integration format and would recommend integration be implemented elsewhere in the curriculum. Survey response rates differed significantly between the groups and student engagement with the flipped curriculum video was limited. Flipped curriculum and co-teaching by clinician and physician-scientist are two methods of integrating basic and clinical science in the psychiatry clerkship. Student learning preferences may influence engagement with a particular teaching format.
NASA Astrophysics Data System (ADS)
Carlone, Heidi Berenson
2000-10-01
For over three decades, the gender gap in science and science education has received attention from teachers, policy makers, and scholars of various disciplines. During this time, feminist scholars have posited many reasons why the gender gap in science and science education exists. Early feminist discourse focused on girls' "deficits," while more recent work has begun to consider the problems with science and school science in the quest for a more gender inclusive science. Specifically, feminist scholars advocate a transformation of both how students learn science and the science curriculum that students are expected to learn. This study was designed to examine more deeply this call for a changed science curriculum and its implications for girls' participation, interest, and scientist identities. If we reinvisioned ways to "do" science, "learn" science, and "be a scientist" in school science, would girls come to see science as something interesting and worth pursuing further? This question framed my ethnographic investigation. I examined the culturally produced meanings of "science" and "scientist" in two high school physics classrooms (one traditional and one non-traditional class framed around real-world themes), how these meanings reproduced and contested larger sociohistorical (and prototypical) meanings of science and scientist, and how girls participated within and against these meanings. The results complicate the assumption that a classroom that enacts a non-traditional curriculum is "better" for girls. This study explained how each classroom challenged sociohistorical legacies of school science in various "spaces of possibility" and how prototypical meanings pushed the potential of these spaces to the margins. Girls in the traditional physics class generally embraced prototypical meanings because they could easily access "good student" identities. Girls in the non-traditional class, though attracted to alternative practices, struggled with the conflicting promoted student identities that did not allow them easy access to "good student" identities. In neither class were girls' perceptions of what it meant to do science and be a scientist challenged. And, in neither class did girls connect to a legitimate scientist identity. These findings leave unanswered the question of whether changes in pedagogy and curriculum alone will produce more gender fair school science.
Students as Citizen Scientists - Earth Conservation Corps
This document has an overview of the student workshops on water quality monitoring used to generate citizen scientists. It also includes the main components of the curriculum and contact information for the Earth Conservation Corps to interested parties.
Teaching method validation in the clinical laboratory science curriculum.
Moon, Tara C; Legrys, Vicky A
2008-01-01
With the Clinical Laboratory Improvement Amendment's (CLIA) final rule, the ability of the Clinical Laboratory Scientist (CLS) to perform method validation has become increasingly important. Knowledge of the statistical methods and procedures used in method validation is imperative for clinical laboratory scientists. However, incorporating these concepts in a CLS curriculum can be challenging, especially at a time of limited resources. This paper provides an outline of one approach to addressing these topics in lecture courses and integrating them in the student laboratory and the clinical practicum for direct application.
The PISCES Project: How Teacher-Scientist Partners can Enhance Elementary Science Instruction
NASA Astrophysics Data System (ADS)
Reif, C.; Oechel, W.
2003-12-01
The PISCES Project (Partnerships Involving the Scientific Community in Elementary Schools www.sdsa.org/pisces) is an innovative program that brings high quality standards-based elementary science curriculum and hands-on laboratory materials into San Diego County's classrooms. The project is funded by the NSF Graduate Teaching Fellows in K-12 Education (GK-12) program. The project was designed and is administered through cooperation among faculty at San Diego State University and the Science Department of the San Diego County Office of Education. Undergraduate and graduate students enrolled in science programs in San Diego area universities including San Diego State University, California State University San Marcos, and University of California San Diego partner with elementary school teachers. Through this partnership, the scientist brings scientific expertise to the classroom while the teacher delivers the lesson using current pedagogic methods. This is accomplished during a 3 month partnership in which the scientist joins the teacher in the classroom a few days each week to complete professional kit-based curriculum such as that available from FOSS (Full Option Science System) and STC (Science and Technology for Children). The teachers remain in the program for two years during which they have continuous access to the kit-based curriculum as well as two to three partnership cycles. Teachers receive assistance outside of the classroom as well attending professional development institutes three times a year to establish and maintain effective science teaching methods. The San Diego Science Alliance and other community and industry supporters provide the additionalfunding necessary to provide this teacher professional development Currenty, PISCES is present in over 40 schools and is able to provide partnerships to over 100 classrooms each year. In addition to the work done in San Diego, the project has expanded to Barrow, Alaska with plans to expand to La Paz, Mexico where there are SDSU climate research stations. San Diego and Alaska scientists travel to Barrow twice a year to participate in an intense, month-long science instruction partnership. PISCES collects a variety of data including student work, science attitude surveys, interviews with students and teachers, video, as well as science content knowledge. The students find themselves enjoying science and are deeply impacted by the presence of an actual scientist in their classroom. As PISCES enters its fifth year, it is evident that the combination of continuous support inside and outside of the classroom is successful in developing teacher engagement in science instruction.
GoNorth! - An Adventure Learning Case Study
NASA Astrophysics Data System (ADS)
Porsild, M.; Doering, A.; Pregont, P.
2008-12-01
GoNorth! is an adventure learning series developed at the University of Minnesota in collaboration with NOMADS Online Expeditions. GoNorth! uses real-time experiences of dogsled expeditions on a multimedia saturated website at http://www.PolarHusky.com to motivate and engage millions of K-12 students and teachers. The program is free and research (Doering & Veletsianos, 2007) shows that it can be adopted by any teacher who signs up to use the program. It is currently utilized in 3400+ classrooms across the 50 US States and in 29 countries worldwide. Research (Doering & Veletsianos, 2007; 2008) notes that students working with GoNorth! are excited, motivated, and eager to engage with authentic tasks, solve real-world problems, collaborate with colleagues and experts, and initiate actions in their own community. Our team of educators, scientists and explorers circumnavigate the Arctic traveling by dog team to a new Arctic locale every year. Driven by an environmental question of particular relevance to the given Arctic region, each year a comprehensive natural and social science GoNorth! Curriculum & Activity Guide (450+ pages) is developed reflecting the expedition's current Arctic locale and its indigenous culture. The associated online learning environment delivers comprehensive resources about the region of travel, collaborative opportunities, live field updates and field research findings synched real-time to the curriculum. Field research relevant to understanding patterns of climate change and polar science is conducted with independent researchers featured as "Cool GoNorth! Scientists." Collaborations span from scientists at NASA and the United States Department of Agriculture to student observers in pan-Arctic communities as part of the NSF-supported initiative "What Is Climate Change to You?." This scientific research and fieldwork in turn coincides with the curriculum. The result is a community of learners on the Internet gaining knowledge from Arctic peoples, subject matter experts, scientists and from each other. As we profile GoNorth! this presentation is your opportunity to experience the implementation of the principles that make up an adventure learning program-highlighting both challenges and rewards of using the adventure learning framework.
A workshop on leadership for senior MD–PhD students
Meador, Catherine B.; Parang, Bobak; Musser, Melissa A.; Haliyur, Rachana; Owens, David A.; Dermody, Terence S.
2016-01-01
Leadership skills are essential for a successful career as a physician-scientist, yet many MD–PhD training programs do not offer formal training in leadership. The Vanderbilt Medical Scientist Training Program (MSTP) previously established a 2-day leadership workshop that has been held biennially since 2006 for students in the first and second years of the graduate school portion of combined MD and PhD training (G1/G2 students). Workshop attendees have consistently rated this workshop as a highly effective experience. However, opportunities for structured training in leadership competencies during the subsequent 3–5 years of MD–PhD training are limited. Given the success of the G1/G2 leadership workshop and the need for continuity in this model of leadership training, we developed a half-day workshop for MSTP students in the clinical years of medical school (M3/M4 students) to foster continued training in leadership. Our workshop curriculum, based in part on original cases drafted by Vanderbilt MSTP students, provides concrete strategies to manage conflict and navigate leadership transitions in the physician-scientist career path. The curriculum emphasizes both short-term competencies, such as effective participation as a member of a clinical team, and long-term competencies, such as leadership of a research team, division, or department. Our inaugural senior leadership workshop, held in August, 2015, was judged by student participants to be well organized and highly relevant to leadership concepts and skills. It will be offered biennially in our training curriculum for M3 and M4 MSTP students. PMID:27499363
A workshop on leadership for senior MD-PhD students.
Meador, Catherine B; Parang, Bobak; Musser, Melissa A; Haliyur, Rachana; Owens, David A; Dermody, Terence S
2016-01-01
Leadership skills are essential for a successful career as a physician-scientist, yet many MD-PhD training programs do not offer formal training in leadership. The Vanderbilt Medical Scientist Training Program (MSTP) previously established a 2-day leadership workshop that has been held biennially since 2006 for students in the first and second years of the graduate school portion of combined MD and PhD training (G1/G2 students). Workshop attendees have consistently rated this workshop as a highly effective experience. However, opportunities for structured training in leadership competencies during the subsequent 3-5 years of MD-PhD training are limited. Given the success of the G1/G2 leadership workshop and the need for continuity in this model of leadership training, we developed a half-day workshop for MSTP students in the clinical years of medical school (M3/M4 students) to foster continued training in leadership. Our workshop curriculum, based in part on original cases drafted by Vanderbilt MSTP students, provides concrete strategies to manage conflict and navigate leadership transitions in the physician-scientist career path. The curriculum emphasizes both short-term competencies, such as effective participation as a member of a clinical team, and long-term competencies, such as leadership of a research team, division, or department. Our inaugural senior leadership workshop, held in August, 2015, was judged by student participants to be well organized and highly relevant to leadership concepts and skills. It will be offered biennially in our training curriculum for M3 and M4 MSTP students.
Debating science policy in the physics classroom.
NASA Astrophysics Data System (ADS)
Mayer, Shannon
2010-03-01
It is critically important that national and international science policy be scientifically grounded. To this end, the next generation of scientists and engineers will need to be technically competent, effective communicators of science, and engaged advisors in the debate and formulation of science policy. We describe three science policy debates developed for the physics classroom aimed at encouraging students to draw connections between their developing technical expertise and important science policy issues. The first debate considers the proposal for a 450-megawatt wind farm on public lands in Nantucket Sound and fits naturally into the curriculum related to alternative forms of energy production. The second debate considers national fuel-economy standards for sport-utility vehicles and can be incorporated into the curriculum related to heat engines. The third debate, suitable for the curriculum in optics, considers solid state lighting and implications of recent United States legislation that places stringent new energy-efficiency and reliability requirements on conventional lighting. The technical foundation for each of these debates fits naturally into the undergraduate physics curriculum and the material is suitable for a wide range of physics courses, including general science courses for non-majors.
Kover, Paula X; Hogge, Emily S
2017-10-01
The official school regulator in England (OFSTED) recently reported that the delivery of science lessons has been significantly diminished in many primary schools. There is concern that the lack of good quality science in school can reduce the recruitment of young scientists, and the level of science literacy among the general public. We believe university scientists and undergraduate students can have a significant impact in the delivery of science in primary schools. However, a relatively small proportion of scientists engage with young children to improve curricular primary school science education. Here, we argue that long term engagement with primary schools can produce significant impact for the scientist's research, schools, and society. As an example, we describe our experience developing teaching materials for the topic of "Evolution and inheritance"; highlighting possible pitfalls and perceived benefits, in hope of encouraging and facilitating other scientists to engage with primary schools. Copyright © 2017 Elsevier Ltd. All rights reserved.
Florence Bascom and the Exclusion of Women From Earth Science Curriculum Materials
ERIC Educational Resources Information Center
Arnold, Lois
1975-01-01
Numerous excerpts from present day earth science curriculum materials reveal sexual discrimination. In addition, studies of photographs included in the materials reveal a high male dominance. The significant contributions of one earth scientist, Florence Bascom, are remembered. (CP)
The Development and Assessment of Particle Physics Summer Program for High School Students
NASA Astrophysics Data System (ADS)
Prefontaine, Brean; Kurahashi Neilson, Naoko, , Dr.; Love, Christina, , Dr.
2017-01-01
A four week immersive summer program for high school students was developed and implemented to promote awareness of university level research. The program was completely directed by an undergraduate physics major and included a hands-on and student-led capstone project for the high school students. The goal was to create an adaptive and shareable curriculum in order to influence high school students' views of university level research and what it means to be a scientist. The program was assessed through various methods including a survey developed for this program, a scientific attitudes survey, weekly blog posts, and an oral exit interview. The curriculum included visits to local laboratories, an introduction to particle physics and the IceCube collaboration, an introduction to electronics and computer programming, and their capstone project: planning and building a scale model of the IceCube detector. At the conclusion of the program, the students participated an informal outreach event for the general public and gave an oral presentation to the Department of Physics at Drexel University. Assessment results and details concerning the curriculum and its development will be discussed.
Patel, Sanjai; DeMaine, Sophie; Heafield, Joshua; Bianchi, Lynne; Prokop, Andreas
2017-10-01
Science communication is becoming an increasingly important part of a scientist's remit, and engaging with primary and secondary schools is one frequently chosen strategy. Here we argue that science communication in schools will be more effective if based on good understanding of the realities of school life, which can be achieved through structured participation and/or collaboration with teachers. For example, the Manchester Fly Facility advocates the use of the fruit fly Drosophila as an important research strategy for the discovery processes in the biomedical sciences. To communicate this concept also in schools, we developed the 'droso4schools' project as a refined form of scientist-teacher collaboration that embraces the expertise and interests of teachers. Within this project, we place university students as teaching assistants in university partner schools to collaborate with teachers and develop biology lessons with adjunct support materials. These lessons teach curriculum-relevant biology topics by making use of the profound conceptual understanding existing in Drosophila combined with parallel examples taken from human biology. By performing easy to implement experiments with flies, we bring living organisms into these lessons, thus endeavouring to further enhance the pupil's learning experience. In this way, we do not talk about flies but rather work with flies as powerful teaching tools to convey mainstream curriculum biology content, whilst also bringing across the relevance of Drosophila research. Through making these lessons freely available online, they have the potential to reach out to teachers and scientists worldwide. In this paper, we share our experiences and strategies to provide ideas for scientists engaging with schools, including the application of the droso4schools project as a paradigm for long-term school engagement which can be adapted also to other areas of science. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Mathematical and Scientific Foundations for an Integrative Engineering Curriculum.
ERIC Educational Resources Information Center
Carr, Robin; And Others
1995-01-01
Describes the Mathematical and Scientific Foundations of Engineering curriculum which emphasizes the mathematical and scientific concepts common to all engineering fields. Scientists and engineers together devised topics and experiments that emphasize the relevance of theory to real-world applications. Presents material efficiently while building…
NASA Astrophysics Data System (ADS)
Smith, M. C.; Smith, M. J.; Lederman, N.; Southard, J. B.; Rogers, E. A.; Callahan, C. N.
2002-12-01
Project CUES is a middle-school earth systems science curriculum project under development by the American Geological Institute (AGI) and funded by the National Science Foundation (ESI-0095938). CUES features a student-centered, inquiry pedagogy and approaches earth science from a systems perspective. CUES will use the expanded learning cycle approach of Trowbridge and Bybee (1996), known as the 5E model (engage-explore-explain-elaborate-evaluate). Unlike AGI's Investigating Earth Systems (IES) curriculum modules, CUES will include a single hard-bound textbook, and will take one school-year to complete. The textbook includes a prologue that addresses systems concepts and four main units: Geosphere, Hydrosphere, Atmosphere, and Biosphere. Each eight-week unit takes students through a progression from guided inquiry to open-ended, student-driven inquiry. During first 4 to 5 weeks of each unit, students explore important earth science phenomena and concepts through scripted investigations and narrative reading passages written by scientists as "inquiry narratives". The narratives address the development of scientific ideas and relay the personal experiences of a scientist during their scientific exploration. Aspects of the nature of science will be explicitly addressed in investigations and inquiry narratives. After the guided inquiry, students will develop a research proposal and conduct their own inquiry into local or regional scientific problems. Each unit culminates with a science conference at which students present their research. CUES will be the first NSF-funded, comprehensive earth systems textbook for middle school that is based on national standards. CUES will be pilot tested in 12 classrooms in January 2003, with a national field test of the program in 50 classrooms during the 2003-2004 school year.
NASA Technical Reports Server (NTRS)
Tarter, Jill; Backus, Peter
1995-01-01
Curriculum materials based on the search for extraterrestrial intelligence (SETI) were developed for grades 3 through 9 science classes. The project was supported in part by NASA. Six teacher's guides, plus ancillary visuals, addressing topics in astronomy, biology, chemistry, geosciences, and physics as well as mathematics, social sciences, and language arts, were designed by a team of teachers, scientists. curriculum developers, and artists. First drafts were piloted by 10 design team teachers; revised drafts were field tested by 109 teachers in 30 states. Extensive feedback from these teachers and their students and reviews by scientists were used to revise materials prior to submission to the publisher. The field test teachers overall ranking of all guides (data from individual lesson feedback forms) was 431 on a one low to five high scale; 85% found the content appropriate to course and grade level and 75% indicated they had no reservations about using the materials again or recommending them to colleagues. The ratio of liked to disliked student responses (from 1305 student letters) was 70:30. Most recommendations from the teachers, students, and science reviewers were incorporated in the final versions for the guides, published by Libraries Unlimited/Teacher Ideas Press, 1995.
NASA Astrophysics Data System (ADS)
Scogin, Stephen C.
2016-06-01
PlantingScience is an award-winning program recognized for its innovation and use of computer-supported scientist mentoring. Science learners work on inquiry-based experiments in their classrooms and communicate asynchronously with practicing plant scientist-mentors about the projects. The purpose of this study was to identify specific factors contributing to the program's effectiveness in engaging students. Using multiple data sources, grounded theory (Strauss and Corbin in Basics of qualitative research. Sage, Newbury Park, 1990) was used to develop a conceptual model identifying the central phenomenon, causal conditions, intervening conditions, strategies, contexts, and student outcomes of the project. Student motivation was determined to be the central phenomenon explaining the success of the program, with student empowerment, online mentor interaction, and authenticity of the scientific experiences serving as causal conditions. Teachers contributed to student motivation by giving students more freedom, challenging students to take projects deeper, encouraging, and scaffolding. Scientists contributed to student motivation by providing explanations, asking questions, encouraging, and offering themselves as partners in the inquiry process. Several positive student outcomes of the program were uncovered and included increased positivity, greater willingness to take projects deeper, better understanding of scientific concepts, and greater commitments to collaboration. The findings of this study provide relevant information on how to develop curriculum, use technology, and train practitioners and mentors to utilize strategies and actions that improve learners' motivation to engage in authentic science in the classroom.
NASA Astrophysics Data System (ADS)
Hemmingsen, Maree; Winkler, Stefan
2015-04-01
Outreach has become an important undertaking for many tertiary institutions and government agencies. Quite often universities and other tertiary institutions view outreach solely as a tool for the recruitment of future students or as a cost-effective way of meeting governmental obtruded institutional obligations towards community engagement. But for every serious scientist outreach should have an importance beyond that. Competent scientists value the opportunities that an effective outreach programme brings, to inform others of the significance of their particular discipline within the wider framework of science. In this context, glacial geomorphology and related fields of research constitute no exception. Although outreach activities seem to be becoming increasingly popular among scientists in New Zealand, there is still a lack of understanding of what is actually useful for the end user. Often what scientists assume will be useful for school is not. An effective outreach programme needs to be aligned to and represent the school curriculum, regardless of the fact that this may not always be the main focus of the scientist. The most successful resources are those which are developed in collaboration with teachers, by practitioners with an ability to develop outreach activities appropriate for "real" school life with all its restrictions. Sadly, all too often academics and scientists assume they know what schools want and what is important. We cannot stress highly enough that the resources produced need to be accessible to the teachers, who often lack a deep enough scientific background or do not have an appropriate confidence in their own scientific knowledge as well as meet the needs of their students. Frequently educators report their frustration when they cannot properly access resources or run simulations because of IT incompatibility or limited supportive guidance. Geomorphology and its individual sub-disciplines like e.g. glacial geomorphology has an excellent opportunity to become increasingly implemented in outreach programmes. Geomorphologists can promote their subject as well as demonstrate the importance of geomorphology across countless scientific and engineering disciplines. Within the New Zealand secondary school's curriculum there are, for example, several opportunities where "landforms" are the topics of scientific teaching, providing an excellent opportunity for (glacial) geomorphological outreach. The morpho-memory resource presented here incorporates and utilises a number of educational principles. Its competitive character links it to "edutainment" which has successfully been applied in self directed and instructional museum programmes and popular science, enhancing the active engagement ("interaction") and acceptance by students in preference to more traditional methods. Another principle easily integrated is "visualisation", i.e. combining textual or numerical information with supportive visual information to enhance both understanding and deep memorisation. Evidence of the success of morpho-memory was already demonstrated empirically when used in the context of university block seminars and field trips. And updated and specifically version targeting the New Zealand curriculum for years 11 to 13 has now been developed and is currently supplied to a considerable number of schools for practical application and subsequent evaluation. Strength of our resource is that its concept easily allows for any future adjustment to individual requirements because the actual level of information provided as well as the selection of features/processes displayed can quickly be modified following teacher's feedback and practical experience. Summarising, this outreach resource also helps to highlight (glacial) geomorphology as an essential topic within the broad field of geosciences/earth system science, giving it the focus it deserves.
History of Science in the Physics Curriculum: A Directed Content Analysis of Historical Sources
NASA Astrophysics Data System (ADS)
Seker, Hayati; Guney, Burcu G.
2012-05-01
Although history of science is a potential resource for instructional materials, teachers do not have a tendency to use historical materials in their lessons. Studies showed that instructional materials should be adaptable and consistent with curriculum. This study purports to examine the alignment between history of science and the curriculum in the light of the facilitator model on the use of history of science in science teaching, and to expose possible difficulties in preparing historical materials. For this purpose, qualitative content analysis method was employed. Codes and themes were defined beforehand, with respect to levels and their sublevels of the model. The analysis revealed several problems with the alignment of historical sources for the physics curriculum: limited information about scientists' personal lives, the difficulty of linking with content knowledge, the lack of emphasis on scientific process in the physics curriculum, differences between chronology and sequence of topics, the lack of information about scientists' reasoning. Based on the findings of the analysis, it would be difficult to use original historical sources; educators were needed to simplify historical knowledge within a pedagogical perspective. There is a need for historical sources, like Harvard Case Histories in Experimental Science, since appropriate historical information to the curriculum objectives can only be obtained by simplifying complex information at the origin. The curriculum should leave opportunities for educators interested in history of science, even historical sources provides legitimate amount of information for every concepts in the curriculum.
Donovan, D A; Atkins, L J; Salter, I Y; Gallagher, D J; Kratz, R F; Rousseau, J V; Nelson, G D
2013-06-01
We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life sciences context. While some approaches were easily adapted, others provided significant challenges. Among these challenges were: representations of energy, introducing definitions, the placement of Scientists' Ideas, and the replicability of data. In modifying the curriculum to address these challenges, we have come to see them as speaking to deeper differences between the disciplines, namely that introductory physics--for example, Newton's laws, magnetism, light--is a science of pairwise interaction, while introductory biology--for example, photosynthesis, evolution, cycling of matter in ecosystems--is a science of linked processes, and we suggest that this is how the two disciplines are presented in introductory classes. We illustrate this tension through an analysis of our adaptations of the physics curriculum for instruction on the cycling of matter and energy; we show that modifications of the physics curriculum to address the biological framework promotes strong gains in student understanding of these topics, as evidenced by analysis of student work.
Interdisciplinary Graduate Training in Polar Environmental Change: Field-based learning in Greenland
NASA Astrophysics Data System (ADS)
Virginia, R. A.; Holm, K.; Whitecloud, S.; Levy, L.; Kelly, M. A.; Feng, X.; Grenoble, L.
2009-12-01
The objective of the NSF-funded Integrative Graduate Education Research Traineeship (IGERT) program at Dartmouth College is to develop a new cohort of environmental scientists and engineers with an interdisciplinary understanding of polar regions and their importance to global environmental change. The Dartmouth IGERT challenges Ph.D. students to consider the broader dimensions of their research and to collaborate with scientists from other disciplines, educators, and policy makers. IGERT students will focus on research questions that are relevant to the needs of local people experiencing climate change and on understanding the ethical responsibilities and benefits of conducting research in partnership with northern residents and institutions. Seven Ph.D. students from the departments of Earth Sciences, Engineering, and Ecology and Evolutionary Biology at Dartmouth College make up the first IGERT cohort for the five-year program. The Dartmouth IGERT curriculum will focus on three main components of polar systems responding to recent climate change: the cryosphere, terrestrial ecosystems, and biogeochemical cycles. The integrating experience of the core curriculum is the Greenland Field Seminar that will take place in Kangerlussuaq (terrestrial and aquatic systems), Summit Camp (snow and ice) and Nuuk, Greenland (human dimensions of change). In Nuuk, IGERT students will share their science and develop partnerships with students, educators, and policy makers at the University of Greenland, the Inuit Circumpolar Council (ICC), and other Greenlandic institutions. In summer 2009 the authors conducted preliminary fieldwork near Kangerlussuaq, Greenland to develop aspects of the science curriculum for the 2010 Greenland Field Seminar and to explore research topics for IGERT Fellows (Levy and Whitecloud). Examples of results presented here are designed to develop field-based learning activities. These include soil and vegetation relationships as a function of aspect, stable isotope ratios and hydrochemistry of lake waters, mapping of past glacial extents and sampling for berylium-10 surface exposure dating. Two IGERT investigators (Virginia and Grenoble) worked with colleagues in Nuuk (Holm) to develop the human dimensions curriculum including the recent political changes in Greenland, the role of traditional ecological knowledge in resource management and environmental research, and the interrelations between language, climate and subsistence lifestyles.
Real Science, Real Learning: Bridging the Gap Between Scientists, Educators and Students
NASA Astrophysics Data System (ADS)
Lewis, Y.
2006-05-01
Today as never before, America needs its citizens to be literate in science and technology. Not only must we only inspire a new generation of scientists and engineers and technologists, we must foster a society capable of meeting complex, 21st-century challenges. Unfortunately, the need for creative, flexible thinkers is growing at a time when our young students are lagging in science interest and performance. Over the past 17 years, the JASON Project has worked to link real science and scientists to the classroom. This link provide viable pipeline to creating the next generation scientists and researchers. Ultimately, JASON's mission is to improve the way science is taught by enabling students to learn directly from leading scientists. Through partnerships with agencies such as NOAA and NASA, JASON creates multimedia classroom products based on current scientific research. Broadcasts of science expeditions, hosted by leading researchers, are coupled with classroom materials that include interactive computer-based simulations, video- on-demand, inquiry-based experiments and activities, and print materials for students and teachers. A "gated" Web site hosts online resources and provides a secure platform to network with scientists and other classrooms in a nationwide community of learners. Each curriculum is organized around a specific theme for a comprehensive learning experience. It may be taught as a complete package, or individual components can be selected to teach specific, standards-based concepts. Such thematic units include: Disappearing Wetlands, Mysteries of Earth and Mars, and Monster Storms. All JASON curriculum units are grounded in "inquiry-based learning." The highly interactive curriculum will enable students to access current, real-world scientific research and employ the scientific method through reflection, investigation, identification of problems, sharing of data, and forming and testing hypotheses. JASON specializes in effectively applying technology in science education by designing animated interactive visualizations that promote student understanding of complex scientific concepts and systems (Rieber, 1990, 1996). JASON's experience in utilizing the power of simulation technology has been widely recognized for its effectiveness in exciting and engaging students in science learning by independent evaluations of JASON's multimedia science curriculum (Ba et al., 2001; Goldenberg et al., 2003). The data collected indicates that JASON's science products have had a positive impact on students' science learning, have positively influenced their perceptions of scientists and of becoming scientists, and have helped diverse students grasp a deeper understanding of complex scientific content, concepts and technologies.
The National Reading Curriculum's Oobleck
ERIC Educational Resources Information Center
Venable, James W.
2006-01-01
Public elementary school teachers are in the fourth year of a mandated "national reading curriculum." A group of federally appointed experimental research scientists, known as the National Reading Panel (NRP), created a report, which is now the cornerstone for the Reading First document and a crucial underpinning of No Child Left Behind…
Curriculum Integration = Course Disintegration: What Does This Mean for Anatomy?
ERIC Educational Resources Information Center
Bolender, David L.; Ettarh, Rajunor; Jerrett, David P.; Laherty, Richard F.
2013-01-01
Many basic scientists including anatomists are currently involved in decisions related to revisions of the undergraduate medical curriculum. Integration is a common theme in many of these decisions. As described by Harden, integration can occur along a multistep continuum from independent, discipline-based courses to a completely interdisciplinary…
Survey Development for Assessing Learning Identity in an ISLE Classroom
NASA Astrophysics Data System (ADS)
Li, Sissi L.; Roth, Jennifer A.; Demaree, Dedra
2010-10-01
Innovative STEM curricula such as the ISLE (Investigative Science Learning Environment) curriculum [1] are centered on active engagement in social learning processes as a means to achieve curricular goals. Classroom practices are highly interactive to facilitate students' development of authentic scientist abilities. To the students, these classroom practices often seem very different from their previous learning experiences in terms of behavioral expectations, attitude, and what it means to learn. Consequently, students must modify their identity as learners in addition to physics conceptual understanding in order to participate productively in this learning environment. Using a survey we developed, we want to assess their 1) expectations of student and teacher roles, 2) self efficacy towards skills supported in ISLE and 3) attitudes towards social learning as well as how these change as a result of their experience in this curriculum. We will discuss the development, validation and preliminary findings of the survey.
ERIC Educational Resources Information Center
Goodger, Bev
2013-01-01
An opportunity for teachers to join 80 outstanding biological sciences undergraduates in a series of practical sessions and lectures at the 2010 Gatsby Plant Science Summer School has inspired the development of teaching and learning resources for use in schools. Plant scientists have a crucial role to play in society and it is hoped that the…
ERIC Educational Resources Information Center
Rogge, Corina E.; Bezur, Aniko
2012-01-01
Photography is one of the few fine art forms that were initially developed by scientists such as Herschel and Talbot; however, in the modern chemistry curriculum, photography has become divorced from its scientific beginnings and resides in the studio arts department of most universities. An upper-level undergraduate experiment is described in…
ERIC Educational Resources Information Center
Falk, Hedda; Yarden, Anat
2009-01-01
Adapted primary literature (APL) is a novel text genre that retains the authentic characteristics of primary literature. Learning through APL represents an educational intervention with an authentic scientific context. In this case study, we analyzed the 80-min discourse developed during the enactment of an article from an APL-based curriculum in…
ERIC Educational Resources Information Center
Campbell, Ashley
2012-01-01
Engaging students in the study of genetics is essential to building a deep understanding of heredity, a core idea in the life sciences (NRC 2012). By integrating into the curriculum the stories of famous scientists who studied genetics (e.g., Mendel, Franklin, Watson, and Crick), teachers remind their students that science is a human endeavor.…
The Unsolved Mysteries of Atmospheric Chemistry for High School Students and Teachers
NASA Astrophysics Data System (ADS)
Simonich, S. L.
2011-12-01
The grant "CAREER: New Molecular Markers of Asian Air Emissions - Anthropogenic Semi-Volatile Organic Compounds" (ATM-0239823) was funded by NSF from 2003-2008. The CAREER proposal described the integration of research and outreach education activities in the field of atmospheric chemistry, specifically atmospheric measurements and atmospheric transport. The primary objective of the research was to identify anthropogenic semi-volatile organic compounds (SOCs) that could be used as molecular markers for Asian air emissions and trans-Pacific atmospheric transport. The outreach education activity was integrated with the research by developing curriculum to introduce underrepresented minority high school students, and their teachers, to atmospheric chemistry and atmospheric measurements through Oregon State University's National Institute of Environmental Health Sciences funded Hydroville Curriculum Project (http://www.hydroville.org/iaq_resources). A curriculum was developed to allow students to assume the role of "Air Quality Scientist" and measure air temperature, air flow, relative humidity, CO, CO2, O3, and volatile organic compounds in out-door and in-door air. The students gained an understanding of atmospheric transport and compared measured concentrations to recommended guidelines. In addition, the outreach education activities included the development of the "Unsolved Mysteries of Human Health" website (http://www.unsolvedmysteries.oregonstate.edu/), including a specific module on the research conducted under the CAREER grant (http://www.unsolvedmysteries.oregonstate.edu /Gas-Chromatography-Mass-Spectrometry-Overview). The PI of the CAREER proposal, Dr. Staci Massey Simonich, is now a full professor at Oregon State University. To date, she has published over 50 peer-review journal articles, as well as mentored 9 undergraduate students, 20 graduate students, 3 post-doctoral scholars, and 3 international visiting scientists in her laboratory.
NASA Astrophysics Data System (ADS)
Gold, A. U.; Sullivan, S. B.; Smith, L. K.; Lynds, S. E.
2014-12-01
The need for robust scientific and especially climate literacy is increasing. Funding agencies mandate that scientists make their findings and data publically available. Ideally, this mandate is achieved by scientists and educators working together to translate research findings into common knowledge. The Cooperative Institute for Research in Environmental Sciences (CIRES) is the largest research institute at the University of Colorado and home institute to over 500 scientists. CIRES provides an effective organizational infrastructure to support its scientists in broadening their research impact. Education specialists provide the necessary experience, connections, logistical support, and evaluation expertise to develop and conduct impactful education and outreach efforts. Outreach efforts are tailored to the project needs and the scientists' interests. They span from deep engagement efforts with a high time commitment by the scientist thus a high dosage to short presentations by the scientists that reach many people without stimulating a deep engagement and have therefore a low dosage. We use three examples of current successful programs to showcase these different engagement levels and report on their impact: i) deep transformative and time-intensive engagement through a Research Experience for Community College students program, ii) direct engagement during a teacher professional development workshop centered around a newly developed curriculum bringing authentic climate data into secondary classrooms, iii) short-time engagement through a virtual panel discussion about the state of recent climate science topics, the recordings of which were repurposed in a Massive Open Online Course (MOOC). In this presentation, we discuss the challenges and opportunities of broader impacts work. We discuss successful strategies that we developed, stress the importance of robust impact evaluation, and summarize different avenues of funding outreach efforts.
Educating Students on the Need to Protect Authentic Science in Public Policy
NASA Astrophysics Data System (ADS)
Grifo, F.; McCarthy, M.; Langlais, C.
2008-12-01
Scientists have an important responsibility to be sure their students are aware of the ways in which their research results can be politicized and misused. Political interference in science has penetrated deeply into the culture and practices of federal agencies. The persistent and energetic engagement of scientists is critical to ensuring the government meets its obligation to serve the public interest. To foster thoughtful discussions about the proper role of science in federal policy making, the Union of Concerned Scientists (UCS) has created a Scientific Integrity Curriculum Guide to help graduate, undergraduate and advanced high school instructors teach this complex subject. The guide is a fully developed lesson plan that teachers in both scientific and non-scientific disciplines can tailor to suit their needs. It provides lecture slides, worksheets, homework assignments, essay suggestions, and links to other resources. Educating the next generation of scientists is essential because significant and long-lasting reforms require the support of a well- informed scientific community.
NASA Technical Reports Server (NTRS)
1990-01-01
Johnson High School, Huntsville, Alabama started an international magnet program in 1987. One of the courses in the curriculum was in space science. They appealed to Marshall Space Flight Center (MSFC) when they couldn't find a suitable textbook, nor locate other classes in space science to provide a guideline. MSFC agreed to help and placed the school under an official 'Adopt-A-School' program. MSFC's chief scientist and others at the space center helped prepare a very comprehensive space science program. Examples of the subjects covered include problems of space travel, materials processing in space, technology utilization, robotics, space colonization, etc. MSFC followed up by working with Johnson High to determine if the curriculum is generally usable and workable. If it is, MSFC may make it available to other schools. MSFC not only developed the space science curriculum; they continue to support the program by sponsoring hands- on activities and tours of space research facilities.
Developing School-Scientist Partnerships: Lessons for Scientists from Forests-of-Life
NASA Astrophysics Data System (ADS)
Falloon, Garry; Trewern, Ann
2013-02-01
The concept of partnerships between schools and practicing scientists came to prominence in the United States in the mid 1980s. The call by government for greater private sector involvement in education to raise standards in science achievement saw a variety of programmes developed, ranging from short-term sponsorships through to longer-term, project-based interactions. Recently, school-scientist partnerships (SSPs) have been rekindled as a means of assisting schools to motivate and inspire students in science, improve levels of teachers' science knowledge, and increase awareness of the type and variety of career opportunities available in the sciences (Rennie and Howitt, 2009). This article summarises research that used an interpretive case study method to examine the performance of a two-year SSP pilot between a government-owned science research institute, and 200 students from two Intermediate (years 7 and 8) schools in New Zealand. It explored the experiences of scientists involved in the partnerships, and revealed difficulties in bridging the void that existed between the outcomes-driven, commercially-focused world of research scientists, and the more process-oriented, tightly structured, and conservative world of teachers and schools. Findings highlight the pragmatic realities of establishing partnerships, from the perspective of scientists. These include acute awareness of the nature of school systems, conventions and environments; the science, technological and pedagogical knowledge of teachers; teacher workload issues and pressures, curriculum priorities and access to science resources. The article identifies areas where time and effort should be invested to ensure successful partnership outcomes.
ERIC Educational Resources Information Center
Scogin, Stephen C.
2016-01-01
"PlantingScience" is an award-winning program recognized for its innovation and use of computer-supported scientist mentoring. Science learners work on inquiry-based experiments in their classrooms and communicate asynchronously with practicing plant scientist-mentors about the projects. The purpose of this study was to identify specific…
Physician as Scientist: Preparation, Performance, and Prospects
ERIC Educational Resources Information Center
Castle, William B.
1976-01-01
Greatly modifying the present medical curriculum for the future physician-scientist is not recommended. The value of his having a PhD is questioned and the importance of his working in a hospital-based clinical department is stressed. The author contends that emphasizing the interrelationship between basic and applied research will increase public…
The scientist's education and a civic conscience.
Donald, Kelling J; Kovac, Jeffrey
2013-09-01
A civic science curriculum is advocated. We discuss practical mechanisms for (and highlight the possible benefits of) addressing the relationship between scientific knowledge and civic responsibility coextensively with rigorous scientific content. As a strategy, we suggest an in-course treatment of well known (and relevant) historical and contemporary controversies among scientists over science policy or the use of sciences. The scientific content of the course is used to understand the controversy and to inform the debate while allowing students to see the role of scientists in shaping public perceptions of science and the value of scientific inquiry, discoveries and technology in society. The examples of the activism of Linus Pauling, Alfred Nobel and Joseph Rotblat as scientists and engaged citizens are cited. We discuss the role of science professors in informing the social conscience of students and consider ways in which a treatment of the function of science in society may find, coherently, a meaningful space in a science curriculum at the college level. Strategies for helping students to recognize early the crucial contributions that science can make in informing public policy and global governance are discussed.
ERIC Educational Resources Information Center
Chatila, Hanadi
2016-01-01
The preparation of scientifically literate citizens able to use science in their daily life is becoming a major goal in science education. In light of this, Boujaoude (2002) developed a framework to investigate the balance of scientific literacy themes within the Lebanese school science curriculum. He reported the neglect of "science as a way…
ERIC Educational Resources Information Center
Ahmad, Iftikhar
2017-01-01
Purpose: The purpose of this article is to chronicle paradigm shifts in American political science during the twentieth century and their influence on political scientists' perspectives on pre-collegiate citizenship education curriculum. Methodology: The research questions explored in this article are concerned with the history of political…
NASA Astrophysics Data System (ADS)
Ledley, T. S.; Dahlman, L.; McAuliffe, C.; Domenico, B.; Taber, M. R.
2006-12-01
The International Polar Year is an opportunity to simultaneously increase our scientific understanding of the polar regions and to engage the next generation of Earth scientists and socially responsible citizens. However, building the bridge between the scientific community who conduct the research and the education community who convey that information to students requires specific and continuing efforts. The Earth Exploration Toolbook (EET, http://serc.carleton.edu/eet) and the accompanying spectrum of activities encompassing development of materials that can provide access and understanding of IPY data and knowledge, and teacher professional development to facilitate the effective use of these materials with students can help build that bridge. The EET is an online resource that provides an easy way for educators to learn how to use Earth science datasets and data analysis tools to convey science concepts. Modules (called chapters) in the EET provide step-by-step instructions for accessing and analyzing these datasets within compelling case studies, and provide pedagogical information to help the educator use the data with their students. New EET chapters, featuring IPY data, can be developed through the use of an EET chapter template that standardizes the content and structure of the chapter. The initiation of new chapters can be facilitated through our Data in Education Workshops (previously DLESE Data Services Workshops, http://swiki.dlese.org/2006- dataservicesworkshop/). During these workshops IPY data providers, analysis tool specialists, IPY scientists, curriculum developers, and educators participate on teams of 5-6 members to create an outline of a new EET chapter featuring the IPY data and analysis tools represented on the team. New chapters will be completed by a curriculum developer following the workshop. Use of the IPY EET chapters will be facilitated by a range of professional development activities ranging from two 2-hour telecon-online workshops over the period of a month, to a year long professional development program that includes telecon-online workshops, a two-week summer workshop, follow-up online discussions and one-day meetings. In this paper we will discuss the EET and the spectrum of activities that can facilitate building a bridge between the IPY scientific community and future scientists and socially responsible citizens.
NASA Astrophysics Data System (ADS)
Johnson, R. M.; Barnes, T.; Bergman, J.; Carbone, L.; Eastburn, T.; Foster, S.; Gardiner, L.; Genyuk, J.; Henderson, S.; Lagrave, M.; Munoz, R.; Russell, R.; Araujo-Pradere, E.; Metcalfe, T.; Mastie, D.; Pennington, P.
2005-05-01
The intellectual divisions common among scientists involved in research in specific disciplines are frequently not shared by the broader community of learners. For example, in K-12 education, the Earth sciences and the space sciences have generally been taught in an integrated approach, until opportunities for more advanced courses become available at the higher grade levels in some fortunate school districts. When scientists involved in EPO activities retain a perspective limited to their particular science mission, rather than stepping back to a broader perspective that places the research in a larger context, they risk limiting the usefulness of these activities to a broad cross-section of learners that seek to learn in a contextual framework. The re-integration of Earth and space sciences within NASA's Science Mission Directorate provides an opportunity to more systematically take advantage of the fact that Earth is one of many examples of possible planetary evolution scenarios presented in our solar system and beyond. This development should encourage integration of research across the SMD into a broader context that encourages the development of higher learning skills and a systems thinking approach. At the National Center for Atmospheric Research, the interdisciplinary nature of the research problems we address requires an approach that integrates Earth and space science, and we parallel this in our education and outreach activities, ranging from our exhibits on climate change to our professional development workshops and online courses to our websites and curriculum development efforts. The Windows to the Universe project (http://www.windows.ucar.edu), initiated at the University of Michigan with support from NASA in 1995 and now developed and maintained at the University Corporation for Atmospheric Research, has maintained this integrated approach from its inception with great success - leading to over 6 million users of our English and Spanish language content, curriculum activities, and interactives from around the world in 2004. An exciting new web-based development interface utilizing templates and an image database allows scientists from around the world to collaborate with the Windows to the Universe team, becoming remote developers on the website. This approach has proven to work effectively for scientists eager to efficiently get their science research results out to the public, taking advantage of their specialized expertise and yet not requiring them to become specialists in informal or formal K-12 education.
NASA Astrophysics Data System (ADS)
Ibrahim, Alaa; Ahmed, Yasmin
2015-04-01
Fulfilling the broader impact of a research project in Earth and environmental sciences is an excellent opportunity for educational and outreach activities that connect scientists and society and enhance students and community engagement in STEM fields in general and in Earth, space, and environmental sciences in particular. Here we present the experience developed in this endeavor as part of our Partnerships for Enhanced Engagement in Research (PEER) project sponsored by USAID/NSF/NAS. The project introduced educational and outreach activities that included core curriculum course development for university students from all majors, community-based learning projects, citizen science and outreach programs to school students and community members. Through these activities, students worked with the project scientists on a variety of activities that ranged from citizen science and undergraduate research to run mass experiments that measure the quality of air, drinking water, and ultraviolet level in greater Cairo, Egypt, to community awareness campaigns through the production of short documentaries and communicating them with stakeholders and target groups, including schools and TV stations. The activities enhanced students learning and the public awareness on climate change and the underlying role of human activities. It also connected effectively the project scientists with college and university students a well as the wider segments of the society, which resulted in a host of benefits including better scientific literacy and appreciation to the role of scientists, promoting scientists as role models, sharing the values of science, and motivating future generations to puruse a career in science This work is part of the PEER research project 2-239 sponsored by USAID/NSF/NAS Project Link (at National Academies website): http://sites.nationalacademies.org/PGA/dsc/peerscience/PGA_084046.htm website: http://CleanAirEgypt.org Links to cited work: Core Curriculum Course: http://bit.ly/FutureLife Citizen Science Project: Quality of Air, Drinking Water, and U.V. Level in Greater Cairo: Map 1: http://bit.ly/AirWaterLightMap1 Map 2: http://bit.ly/AirWaterLightMap2 Short Documentaries Student Projects: https://vimeo.com/science2society/videos Project video: https://vimeo.com/100427525
NASA Astrophysics Data System (ADS)
Ibrahim, A. I.; Tutwiler, R.; Zakey, A.; Shokr, M. E.; Ahmed, Y.; Jereidini, D.; Eid, M.
2014-12-01
Fulfilling the broader impact of a research project in Earth and environmental sciences is an excellent opportunity for educational and outreach activities that connect scientists and society and enhance students and community engagement in STEM fields in general and in Earth, space, and environmental sciences in particular. Here we present the experience developed in this endeavor as part of our Partnerships for Enhanced Engagement in Research (PEER) project sponsored by USAID/NSF/NAS. The project introduced educational and outreach activities that included core curriculum course development for university students from all majors, community-based learning projects, citizen science and outreach programs to school students and community members. Through these activities, students worked with the project scientists on a variety of activities that ranged from citizen science and undergraduate research to run mass experiments that measure the quality of air, drinking water, and ultraviolet level in greater Cairo, Egypt, to community awareness campaigns through the production of short documentaries and communicating them with stakeholders and target groups, including schools and TV stations. The activities enhanced students learning and the public awareness on climate change and the underlying role of human activities. It also connected effectively the project scientists with college and university students a well as the wider segments of the society, which resulted in a host of benefits including better scientific literacy and appreciation to the role of scientists, promoting scientists as role models, sharing the values of science, and motivating future generations to puruse a career in science Note: This presentation is a PEER project sponsored by USAID/NSF/NAS Project Link (at National Academies website): http://sites.nationalacademies.org/PGA/dsc/peerscience/PGA_084046.htmwebsite: http://CleanAirEgypt.orgLinks to cited work: Core Curriculum Course: http://bit.ly/FutureLife Citizen Science Project: Quality of Air, Drinking Water, and U.V. Level in Greater Cairo: Map 1: http://bit.ly/AirWaterLightMap1 Map 2: http://bit.ly/AirWaterLightMap2 Short Documentaries Student Projects: https://vimeo.com/science2society/videos Project video: http://CleanAirEgypt.org
Rethinking knowledge and pedagogy in dental education.
Whipp, J L; Ferguson, D J; Wells, L M; Iacopino, A M
2000-12-01
Dentistry as a profession has often been considered both art and science. Traditional dental education has attempted to address both; however, in many places only the science of dentistry is emphasized. The move toward competency-based curricula in dental education requires an expansion of what constitutes meaningful knowledge in the curriculum and what pedagogies best support that curriculum. The scientific and technical knowledge considered foundational to clinical practice is not sufficient to teach competencies associated with the art of dentistry. Habermas, a social scientist, offers a way of looking beyond technical knowledge to consider two other forms of knowledge: practical and emancipatory. Pedagogy that supports development of practical and emancipatory knowledge includes problem-based learning and case methods, heuristics, reflective practica, journals, storytelling, and performance-based assessment methods. These important teaching strategies are being integrated into various dental curricula including a new competency-based dental curriculum at Marquette University's School of Dentistry. It will be critical for dental educators to continue developing these methods to provide efficient and effective education for future practitioners in both the art and science of dentistry.
Spaceship Earth: A partnership in curriculum writing
NASA Technical Reports Server (NTRS)
Lindstrom, Marilyn M.
1993-01-01
As the Apollo astronauts left Earth to venture onto the surface of another planetary body, they saw their home planet in a new global perspective. Unmanned NASA missions have given us a closer look at all the other planets in our solar system and emphasized the uniqueness of Earth as the only place in our solar system that can sustain life as we know it. Spaceship Earth is a new science curriculum which was developed to help students and teachers to explore the Earth, to see it in the global perspective, and to understand the relationships among life, the planet, and the sun. Astronaut photographs, especially shuttle pictures, are used as groundbased studies to help students to understand global Earth Science and integrate various aspects of physical, life, and social science. The Spaceship Earth curriculum was developed at by a team of JSC scientists working in collaboration with teachers from local school districts. This project was done under the auspices of Partner-In-Space, a local non-profit organization dedicated to improving science education and our general knowledge of space. The team met once a month for a year then assembled the curriculum during the summer. The project is now in the testing stage as the teachers try it out in their classrooms. It was supported by the Texas Education Agency and will be offered by the State of Texas as a supplemental curriculum for statewide use. Because the curriculum was developed by teachers, it is self contained and the lessons are easy to implement and give students concrete experiences. The three sub-units follow in a logical order, but may be used independently. If they are used separately, they may be tied together by the teacher returning to the basic theme of the global Earth as each unit is completed.
Scientist or science-stuffed? Discourses of science in North American medical education.
Whitehead, Cynthia
2013-01-01
The dominance of biomedical science in medical education has been contested throughout the past century, with recurring calls for more social science and humanities content. The centrality of biomedicine is frequently traced back to Abraham Flexner's 1910 report, 'Medical Education in the United States and Canada'. However, Flexner advocated for a scientist-doctor, rather than a curriculum filled with science content. Examination of the discourses of science since Flexner allows us to explore the place of various knowledge forms in medical education. A Foucauldian critical discourse analysis was performed, examining the discourses of scientific medicine in Flexner's works and North American medical education articles in subsequent decades. Foucault's methodological principles were used to identify statements, keywords and metaphors that emerged in the development of the discourses of scientific medicine, with particular attention to recurring arguments and shifts in the meaning and use of terms. Flexner's scientist-doctor was an incisive thinker who drew upon multiple forms of knowledge. In the post-Flexner medical education reforms, the perception of science as a discursive object embedded in the curriculum became predominant over that of the scientist as the discursive subject who uses science. Science was then considered core curricular content and was discursively framed as impossibly vast. A parallel discourse, one of the insufficiency of biomedical science for the proper training of doctors, has existed over the past century, even as the humanities and social sciences have remained on the margins in medical school curricula. That discourses of scientific medicine have reinforced the centrality of biomedicine in medical education helps to explain the persistent marginalisation of other important knowledge domains. Medical educators need to be aware of the effects of these discourses on understandings of medical knowledge, particularly when contemplating curricular reform. © Blackwell Publishing Ltd 2013.
"I Do and I Understand?" Practical Work and Laboratory Use in United Kingdom Schools
ERIC Educational Resources Information Center
Toplis, Rob; Allen, Michael
2012-01-01
This paper provides a critical review of the changes to the role of practical work in the science curriculum in England over the last forty years. The science curriculum over this period appears to place an emphasis on an approach to practical enquiry that suggests school students can act like "real" scientists. This paper provides a…
ERIC Educational Resources Information Center
Shamas-Brandt, Ellen
2012-01-01
Early childhood is a ripe time for students to begin learning science, but due to certain constraints, this instruction is not happening as frequently as it should. This mixed-methods, multiple case study examined how two teachers implemented an early childhood science curriculum, the "Young Scientist Series." The teacher participants…
ERIC Educational Resources Information Center
Voluntary Services Overseas, Castries (St. Lucia).
This resource booklet is designed to supplement standard textbooks used in a science curriculum. The material serves as a syllabus for Year One and Year Two in the secondary science curriculum. Some of the topics presented in this general science syllabus include being a scientist, looking at living things, solvents and solutions, energy,…
NASA Technical Reports Server (NTRS)
Allen, J. S.; Tobola, K. W.; Lindstrom, M. L.
2003-01-01
Activities by NASA scientists and teachers focus on integrating Planetary Science activities with existing Earth science, math, and language arts curriculum. The wealth of activities that highlight missions and research pertaining to the exploring the solar system allows educators to choose activities that fit a particular concept or theme within their curriculum. Most of the activities use simple, inexpensive techniques that help students understand the how and why of what scientists are learning about comets, asteroids, meteorites, moons and planets. With these NASA developed activities students experience recent mission information about our solar system such as Mars geology and the search for life using Mars meteorites and robotic data. The Johnson Space Center ARES Education team has compiled a variety of NASA solar system activities to produce an annotated thematic outline useful to classroom educators and informal educators as they teach space science. An important aspect of the outline annotation is that it highlights appropriate science content information and key science and math concepts so educators can easily identify activities that will enhance curriculum development. The outline contains URLs for the activities and NASA educator guides as well as links to NASA mission science and technology. In the informal setting educators can use solar system exploration activities to reinforce learning in association with thematic displays, planetarium programs, youth group gatherings, or community events. Within formal education at the primary level some of the activities are appropriately designed to excite interest and arouse curiosity. Middle school educators will find activities that enhance thematic science and encourage students to think about the scientific process of investigation. Some of the activities offered are appropriate for the upper levels of high school and early college in that they require students to use and analyze data.
NASA Astrophysics Data System (ADS)
Wright, Laura J.
This study examines students' sense making practices in a middle school science class from a discourse analytic perspective. Using Mediated Discourse Analysis (MDA) (Scollon 1998, 2001) and interactional sociolinguistics (Gumperz 1999, 2001, Schiffrin 1994), my research seeks to enrich findings from recent sociocultural studies of science classrooms that focus on doing, talking and writing science (Roth 2005, Kress, et al. 2002, Halliday & Martin 1993, Lemke 1990). Within a middle school science classroom, these fundamental activities form a nexus of practice (Scollon 1998, 2001) basic to science literacy (AAAS 1989) and reflective of the work of practicing scientists. Moreover, students' engagement in these practices provides insight into the cultural production and reproduction of science and scientist. I first examine how the students' curriculum text encourages these three scientific practices and then trace students' uptake; that is, how they subsequently do, talk, and write science throughout the course of the unit. I argue that learning science with this curriculum unit requires students to resemiotize (Iedema 2001, 2003) first hand experience so they can represent their knowledge cohesively and coherently in evaluable forms. Ultimately, students must transform language from the curriculum text and their teacher into action in their laboratory activities and action in their laboratory activities into language. In addition, I show how students are apprenticed to the conventionalized practices and voices (Bakhtin 1986) of science (i.e. the scientific register), and how their figures of personhood (Agha 2005) reflect the development of their scientific identities. Overall, I argue that the microanalytic methods I use illuminate how students draw upon curricular resources to become scientifically literate and develop scientific identities.
NASA Astrophysics Data System (ADS)
St John, K. K.; Jones, M. H.; Leckie, R. M.; Pound, K. S.; Krissek, L. A.
2013-12-01
The context for understanding modern global climate change lies in the records of Earth's past. This is demonstrated by decades of paleoclimate research by scientists in organizations such as IODP and ANDRILL, yet making that science accessible to educators has been a long-standing challenge. Furthermore, content transfer is not enough; in science education, addressing how we know is as important as addressing what we know about science. To that end, our initial NSF-CCLI/TUES objective of Teaching Anchor Concepts of Climate Change (NSF #0737335) was to put authentic data and published case studies of past climate change at students' fingertips in a series of 7 multipart inquiry-based exercise modules for undergraduate classroom and lab use. After 4 years of funding (incl. 2 no-cost extensions) we surpassed our project objective and established an avenue for sustainability that is proving successful. The purpose of this presentation is to share (1) the process by which we developed the curriculum and (2) the strategies used to ensure sustainability. The curriculum development process reflected many of the same successful strategies used in scientific research. It drew on the knowledge and skills of the team; it was collaborative, iterative, and primarily distributive, yet at times directive. The team included paleoclimate researchers and educators from a broad range of undergraduate institutions. We evaluated published data from scientific reports and peer-reviewed journal articles, and used these as the foundation for writing curriculum that was data-rich and inquiry-based. In total 14 multipart exercise modules were developed. The feedback from early and frequent meeting presentations, from formative evaluation by students in courses and by faculty in workshops, and from peer-review by paleoclimate scientists and undergraduate educators helped us fine-tune the materials to the needs of the education and paleoclimate science communities. It additionally helped us develop detailed instructor guides to accompany each module. After careful consideration of dissemination options, we choose to publish the full suite of exercise modules as a commercially-available book, Reconstructing Earth's Climate History, while also providing open online access to a subset of modules. Its current use in undergraduate paleoclimatology courses, and the availability of select modules for use in other courses demonstrate that creative, hybrid options can be found for lasting dissemination, and thus sustainability. In achieving our goal of making science accessible, we believe we have followed a curriculum development process and sustainability path that can be used by others to meet needs in earth, ocean, and atmospheric science education. Next steps for REaCH include exploration of its use in blended learning classrooms, and at minority serving institutions.
NASA Astrophysics Data System (ADS)
Nieser, K.; Carlson, C.; Bering, E. A.; Slagle, E.
2012-12-01
Part of preparing the next generation of STEM researchers requires arming these students with the requisite literacy and research skills they will need. In a unique collaboration, the departments of Physics (ECE) and Psychology at the University of Houston have teamed up with NASA in a grant to develop a supplemental curriculum for elementary (G3-5) and middle school (G6-8) science teachers called Mars Rover. During this six week project, students work in teams to research the solar system, the planet Mars, design a research mission to Mars, and create a model Mars Rover to carry out this mission. Targeted Language Arts skills are embedded in each lesson so that students acquire the requisite academic vocabulary and research skills to enable them to successfully design their Mars Rover. Students learn academic and scientific vocabulary using scientifically based reading research. They receive direct instruction in research techniques, note-taking, summarizing, writing and other important language skills. The interdisciplinary collaboration empowers students as readers, writers and scientists. After the curriculum is completed, a culminating Mars Rover event is held at a local university, bringing students teams in contact with real-life scientists who critique their work, ask questions, and generate excite about STEM careers. Students have the opportunity to showcase their Mars Rover and to orally demonstrate their knowledge of Mars. Students discover the excitement of scientific research, STEM careers, important research and writing tools in a practical, real-life setting.
NASA Astrophysics Data System (ADS)
Strang, C.; Lemus, J.; Schoedinger, S.
2006-12-01
Ocean sciences were idiosyncratically left out of the National Science Education Standards and most state standards, resulting in a decline in the public's attention to ocean issues. Concepts about the ocean are hardly taught in K-12 schools, and hardly appear in K-12 curriculum materials, textbooks, assessments or standards. NGS, COSEE, NMEA, NOAA, the US Commission on Ocean Policy, the Pew Ocean Commission have all urgently called for inclusion of the ocean in science standards as a means to increase ocean literacy nationwide. There has never been consensus, however, about what ocean literacy is or what concepts should be included in future standards. Scientists interested in education and outreach activities have not had a framework to guide them in prioritizing the content they present or in determining how that content fits into the context of what K-12 students and the public need to know about science in general. In 2004, an on-line workshop on Ocean Literacy Through Science Standards began the process of developing consensus about what that framework should include. Approximately 100 ocean scientists and educators participated in the workshop, followed by a series of meetings and extensive review by leading scientists, resulting in a series of draft documents and statements. The importance of community-wide involvement and consensus was reinforced through circulation of the draft documents for public comment April -May, 2005. The community agreed on an Ocean Literacy definition, tagline, seven ocean principles, 44 concepts and a matrix aligning the concepts to the National Science Education Standards (NSES). The elements are described in more detail in the final Ocean Literacy brochure. Broad ownership of the resulting documents is a tribute to the inclusiveness of the process used to develop them. The emerging consensus on Ocean Literacy has become an instrument for change, and has served as an important tool guiding the ocean sciences education efforts of scientists, educators, and most importantly, has provided a common language for scientists and educators working together. In this past year, a similar community-wide effort has been mounted to develop an "Ocean Literacy Scope and Sequence" to serve as a critical companion to "Ocean Literacy: The Essential Principles of Ocean Sciences Grades K-12." The Scope and Sequence shows how the principles and concepts develop and build in logical and developmentally sound learning progressions across grade spans K-12. This document will provide further guidance to teachers, curriculum developers, textbook writers, and ocean scientists, as to what concepts about the ocean are appropriate to introduce at various grade spans. It will show the relationship between the new discoveries of cutting edge science and the basic science concepts on which they are built and which students are accountable to understand. Those concerned about science education and about the future health of the ocean must be poised to influence the development of science standards by local educational agencies, state departments of education and professional societies and associations. In order to be effective, we must have tools, products, documents, web sites that contain agreed upon science content and processes related to the ocean.
Bringing Space Scientists, Teachers, and Students Together With The CINDI E/PO Program
NASA Astrophysics Data System (ADS)
Urquhart, M.; Hairston, M.
2007-12-01
We will report on the activities, challenges, and successes of the ongoing collaboration between the William B. Hanson Center for Space Sciences (CSS) and the Department of Science/Mathematics Education (SME) at the University of Texas at Dallas. At the core of our partnership is the Education and Public Outreach program for the Coupled Ion / Neutral Dynamics Investigation (CINDI) instrument. CINDI is a NASA-funded program on the Air Force's Communication / Navigation Outage Forecast Satellite (C/NOFS) which will be launched in summer 2008. The CSS faculty and research scientists and the SME faculty and students have created a dynamic program that brings scientists and K-12 teachers together. Our activities include middle and high school curriculum development, teachers workshops, graduate course work for teachers, creation of the popular "Cindi in Space" educational comic book, and bringing K-12 teachers and students to work and/or visit with the CINDI scientists. We will present the outcomes of this collaborative effort as well as our recent experience of having a physics teacher from a local high school as our Teacher in Residence at CSS in summer 2007.
The Messy Nature of Science: Famous Scientists Can Help Clear Up
ERIC Educational Resources Information Center
Sinclair, Alex; Strachan, Amy
2016-01-01
Having embraced the inclusion of evolution in the National Curriculum for primary science in England and briefly bemoaned the omission of any physics in key stage 1 (ages 5-7), it was time to focus on the biggest change, that of working scientifically. While the authors were aware of the non-statutory suggestions to study famous scientists such as…
NASA Astrophysics Data System (ADS)
Walsh, Elizabeth Mary; McGowan, Veronica Cassone
2017-01-01
Science education trends promote student engagement in authentic knowledge in practice to tackle personally consequential problems. This study explored how partnering scientists and students on a social media platform supported students' development of disciplinary practice knowledge through practice-based learning with experts during two pilot enactments of a project-based curriculum focusing on the ecological impacts of climate change. Through the online platform, scientists provided feedback on students' infographics, visual argumentation artifacts that use data to communicate about climate change science. We conceptualize the infographics and professional data sets as boundary objects that supported authentic argumentation practices across classroom and professional contexts, but found that student generated data was not robust enough to cross these boundaries. Analysis of the structure and content of the scientists' feedback revealed that when critiquing argumentation, scientists initiated engagement in multiple scientific practices, supporting a holistic rather than discrete model of practice-based learning. While traditional classroom inquiry has emphasized student experimentation, we found that engagement with existing professional data sets provided students with a platform for developing expertise in systemic scientific practices during argument construction. We further found that many students increased the complexity and improved the visual presentation of their arguments after feedback.
ERIC Educational Resources Information Center
Collins, Allan
2017-01-01
This important contribution to the future of education, by bestselling author and renowned cognitive scientist Allan Collins, proposes a school curriculum that will fit the needs of our modern era. Offering guidelines for deciding what is important to learn in order to become a knowledgeable person, a good citizen, a thoughtful worker, and a…
The Science Curriculum; The Decline of Expertise and the Rise of Bureaucratise
ERIC Educational Resources Information Center
Fensham, Peter J.
2013-01-01
The content for the school science curriculum has always been an interplay or contest between the interests of a number of stakeholders, who have an interest in establishing it at a new level of schooling or in changing its current form. For most of its history, the interplay was dominated by the interests of academic scientists, but in the 1980s…
Education and training of future wetland scientists and managers
Wilcox, D.A.
2008-01-01
Wetland science emerged as a distinct discipline in the 1980s. In response, courses addressing various aspects of wetland science and management were developed by universities, government agencies, and private firms. Professional certification of wetland scientists began in the mid-1990s to provide confirmation of the quality of education and experience of persons involved in regulatory, management, restoration/construction, and research involving wetland resources. The education requirements for certification and the need for persons with specific wetland training to fill an increasing number of wetland-related positions identified a critical need to develop curriculum guidelines for an undergraduate wetland science and management major for potential accreditation by the Society of Wetland Scientists. That proposed major contains options directed toward either wetland science or management. Both options include required basic courses to meet the general education requirements of many universities, required upper-level specialized courses that address critical aspects of physical and biological sciences applicable to wetlands, and a minimum of four additional upper-level specialized courses that can be used to tailor a degree to students' interests. The program would be administered by an independent review board that would develop guidelines and evaluate university applications for accreditation. Students that complete the required coursework will fulfill the education requirements for professional wetland scientist certification and possess qualifications that make them attractive candidates for graduate school or entry-level positions in wetland science or management. Universities that offer this degree program could gain an advantage in recruiting highly qualified students with an interest in natural resources. Alternative means of educating established wetland scientists are likewise important, especially to provide specialized knowledge and experience or updates related to new management discoveries, policies, and regulations. ?? 2008 The Society of Wetland Scientists.
Engaging Scientists in NASA Education and Public Outreach: K - 12 Formal Education
NASA Astrophysics Data System (ADS)
Bartolone, Lindsay; Smith, D. A.; Eisenhamer, B.; Lawton, B. L.; Universe Professional Development Collaborative, Multiwavelength; NASA Data Collaborative, Use of; SEPOF K-12 Formal Education Working Group; E/PO Community, SMD
2014-01-01
The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community through a coordinated effort to enhance the coherence and efficiency of SMD-funded E/PO programs. The Forums foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present opportunities for the astronomy community to participate in collaborations supporting the NASA SMD efforts in the K - 12 Formal Education community. Members of the K - 12 Formal Education community include classroom educators, homeschool educators, students, and curriculum developers. The Forums’ efforts for the K - 12 Formal Education community include a literature review, appraisal of educators’ needs, coordination of audience-based NASA resources and opportunities, professional development, and support with the Next Generation Science Standards. Learn how to join in our collaborative efforts to support the K - 12 Formal Education community based upon mutual needs and interests.
The Great Diseases Project: A Partnership between Tufts Medical School and the Boston Public Schools
Jacque, Berri; Malanson, Katherine; Bateman, Kathleen; Akeson, Bob; Cail, Amanda; Doss, Chris; Dugan, Matt; Finegold, Brandon; Gauthier, Aimee; Galego, Mike; Roundtree, Eugene; Spezzano, Lawrence; Meiri, Karina F
2013-01-01
Medical schools, although the gatekeepers of much biomedical education and research, rarely engage formally with K-12 educators to influence curriculum content or professional development. This segregation of content experts from teachers creates a knowledge gap that limits inclusion of current biomedical science into high school curricula, impacting both public health literacy and the biomedical pipeline. The authors describe how, in 2009, scientists from Tufts Medical School and Boston public school teachers established a partnership of formal scholarly dialog to create 11th–12th grade high school curricula about critical health-related concepts, with the goal of increasing scientific literacy and influencing health-related decisions. The curricula are based on the great diseases (infectious diseases, neurological disorders, metabolic disease, and cancer). Unlike most health science curricular interventions that provide circumscribed activities, the curricula are comprehensive, each filling one full term of in-class learning and providing extensive real-time support for the teacher. In this article, the authors describe how they developed and implemented the infectious disease curriculum, and its impacts. The high school teachers and students showed robust gains in content knowledge and critical thinking skills, while the Tufts scientists increased their pedagogical knowledge and appreciation for health-related science communication. The results show how formal interactions between medical schools and K-12 educators can be mutually beneficial. PMID:23524931
The Role of Standards-Based Education in Fostering Scientific Literacy in the Geosciences
NASA Astrophysics Data System (ADS)
Moosavi, S. C.
2008-12-01
Societal controversy over the content taught in K-12 science classrooms continues at a time of increasing demand for teacher and school accountability enacted through legislative mandates such as the No Child Left Behind Law. As teachers are held increasingly to nationally-inspired state standards, building blocks for future controversy are being built via inclusion of social and environmental policy agendas related to diversity, multiculturalism and environmental stewardship into these same science standards. While the authors' attempts to include such policies are well intended, they undermine the narrow answer to the question, "What is science?" leaving the door open to inclusion of pseudo-scientific content into the science curriculum in compliance with the perceived mandate of the standards. Disparate interpretation of the language and intent of the standards between that written by scientists, science educators and policy makers relative to that of the teachers, school administrators and parents tasked to implement and work within these standards leaves room for inclusion of much content that most scientists would object to. The resulting controversy and confusion have the potential to undermine public confidence in the scientific community's opinions on geoscience issues precisely at the time that full societal engagement is necessary to deal with climate change and other major environmental challenges. Results from this study suggest using the standards to mandate opening the scientific curriculum to political and social agendas, even under the guise of diversity, multiculturalism and environmental awareness, has created a whole raft of unintended consequences. These same mandates can be interpreted by the general public as also opening the curriculum to other views of science ranging from traditional religious and cultural views to intelligent design and alternative ways of knowing, thereby undermining scientific literacy in the general population. Educational standards under development must receive greater vetting and interpretation from non-education specialists and scientists along with input from legal experts to insure that proposed standards remain focused on objective scientific content rather than becoming a vehicle for inclusion of pseudo-science. The public's ability and willingness to trust and utilize scientific opinion and findings must be cultivated through careful crafting of the curricular standards teachers are asked to implement. Engagement of a broader spectrum of the scientific community with the development and oversight of such standards offers opportunities to change both how the public is prepared to utilize science and how scientists share their expertise with the bulk of society.
Dickersin, K; Braun, L; Mead, M; Millikan, R; Wu, A M; Pietenpol, J; Troyan, S; Anderson, B; Visco, F
2001-12-01
To develop and implement Project LEAD (leadership, education, and advocacy development), a science course for breast cancer activists. Students were breast cancer activists and other consumers, mainly affiliated with advocacy organizations in the United States of America. Project LEAD is offered by the National Breast Cancer Coalition; the course takes place over 5 days and is offered 4 times a year, in various cities in the United States of America. The Project LEAD curriculum has developed over 5 years to include lectures, problem-based study groups, case studies, interactive critical appraisal sessions, a seminar by an 'expert' scientist, role play, and homework components. A core faculty has been valuable for evaluating and revising the course and has proved necessary to provide consistent high quality teaching. Course evaluations indicated that students gained critical appraisal skills, enhanced their knowledge and developed confidence in selected areas of basic science and epidemiology. Project LEAD comprises a unique curriculum for training breast cancer activists in science and critical appraisal. Course evaluations indicate that students gain confidence and skills from the course.
Integrative Curriculum Development in Nuclear Education and Research Vertical Enhancement Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egarievwe, Stephen U.; Jow, Julius O.; Edwards, Matthew E.
Using a vertical education enhancement model, a Nuclear Education and Research Vertical Enhancement (NERVE) program was developed. The NERVE program is aimed at developing nuclear engineering education and research to 1) enhance skilled workforce development in disciplines relevant to nuclear power, national security and medical physics, and 2) increase the number of students and faculty from underrepresented groups (women and minorities) in fields related to the nuclear industry. The program uses multi-track training activities that vertically cut across the several education domains: undergraduate degree programs, graduate schools, and post-doctoral training. In this paper, we present the results of an integrativemore » curriculum development in the NERVE program. The curriculum development began with nuclear content infusion into existing science, engineering and technology courses. The second step involved the development of nuclear engineering courses: 1) Introduction to Nuclear Engineering, 2) Nuclear Engineering I, and 2) Nuclear Engineering II. The third step is the establishment of nuclear engineering concentrations in two engineering degree programs: 1) electrical engineering, and 2) mechanical engineering. A major outcome of the NERVE program is a collaborative infrastructure that uses laboratory work, internships at nuclear facilities, on-campus research, and mentoring in collaboration with industry and government partners to provide hands-on training for students. The major activities of the research and education collaborations include: - One-week spring training workshop at Brookhaven National Laboratory: The one-week training and workshop is used to enhance research collaborations and train faculty and students on user facilities/equipment at Brookhaven National Laboratory, and for summer research internships. Participants included students, faculty members at Alabama A and M University and research collaborators at BNL. The activities include 1) tour and introduction to user facilities/equipment at BNL that are used for research in room-temperature semiconductor nuclear detectors, 2) presentations on advances on this project and on wide band-gap semiconductor nuclear detectors in general, and 3) graduate students' research presentations. - Invited speakers and lectures: This brings collaborating research scientist from BNL to give talks and lectures on topics directly related to the project. Attendance includes faculty members, researchers and students throughout the university. - Faculty-students team summer research at BNL: This DOE and National Science Foundation (NSF) program help train students and faculty members in research. Faculty members go on to establish research collaborations with scientists at BNL, develop and submit research proposals to funding agencies, transform research experience at BNL to establish and enhance reach capabilities at home institution, and integrate their research into teaching through class projects and hands-on training for students. The students go on to participate in research work at BNL and at home institution, co-author research papers for conferences and technical journals, and transform their experiences into developing senior and capstone projects. - Grant proposal development: Faculty members in the NERVE program collaborate with BNL scientists to develop proposals, which often help to get external funding needed to expand and sustain the continuity of research activities and supports for student's wages and scholarships (stipends, tuition and fees). - Faculty development and mentoring: The above collaboration activities help faculty professional development. The experiences, grants, joint publications in technical journals, and supervision of student's research, including thesis and dissertation research projects, contribute greatly to faculty development. Senior scientists at BNL and senior faculty members on campus jointly mentor junior faculty members to enhance their professional growth. - Graduate thesis and dissertation research: Brookhaven National Laboratory provides unique opportunities and outstanding research resources for the NERVE program graduate research. Scientists from BNL serve in master's degree thesis and PhD dissertation committees, where they play active roles in the supervision of the research. (authors)« less
NASA Astrophysics Data System (ADS)
Schuster, D. A.; Thomas, C. W.; Smith, J. S.; Wood, E. J.; Filippelli, G. M.
2007-12-01
The importance of K-12 educational programs and resources that seek to share the science of climate change has recently come into focus. During the fall 2006 AGU meeting, we presented the conceptual framework used to guide both the curriculum and year-one programs of Students as Mentors and Owners of Geoscience and Environmental Education: The Global Warming Road Show. Currently this dynamic, three-phase, tiered mentoring program selects and empowers a diverse population of 11th and 12th grade students from a large urban high school in the Midwest to teach a curriculum on climate change to 7th graders from a local feeder school. In December 2007 we will complete year-one of the program and will present an overview of 1) students' conceptual representations of climate change, 2) the most recent curriculum and programs, and 3) the ongoing program evaluation. We will synthesize these three areas and reflect on how to improve upon year-two of both the curriculum and the program. During various stages of the program, students have constructed concept maps, written in journals, created lesson plans, and participated in focus group interviews. These materials are being analyzed to provide a brief overview of high school students' initial conceptualizations of climate change. During the intensive 2007 summer workshop, these 11th and 12th grade students were supported by university scientists and science educators, secondary science teachers, and museum educators as they attempted to better understand climate change and as they reflected on how to effectively teach this topic to 7th graders. During the fall semester of 2007, the workshop graduates are scheduled to teach 25 to 30 7th graders a five week climate unit. The program will culminate with the 11th and 12th grade student-mentors working with the 7th graders to create a "Road Show," which will be presented to other 7th and 8th graders within the same school district. To ensure that this program is current, a team of scientists and science educators supplemented and further developed a well known and tested 15-year-old curriculum (Great Explorations in Math and Science, 1990) with recent data and analysis focusing on key concepts of climate change. The updated curriculum was structured using two driving questions: - How do we know the earth has experienced climate change in the past, including the ice ages and the age of the dinosaurs? - How do we know that humans have an impact on climate? Science educators and scientists also worked together to create templates that prompted the 11th and 12th grade students to first reflect on their understandings of climate change and then on how they would teach their younger peers. As students work with experiments, data sets, and news-media articles, they are also prompted to reflect on discrepancies between primary science sources and secondary media sources (Drake and Nelson, 2005). An evaluation team observed the summer workshops, administered surveys, reviewed the adapted curriculum, and participated in planning sessions. The evaluators are in the process of analyzing these multiple indicators to examine the extent to which the program aligns with its stated goals. The initial formative evaluation findings suggest that students were active participants in the workshop and that they enjoyed their experience. Areas of year-two development include improved communication and collaboration between university and secondary school units.
NASA Astrophysics Data System (ADS)
Sigman, M.; Anderson, A.; Deans, N. L.; Dublin, R.; Dugan, D.; Matsumoto, G. I.; Warburton, J.
2012-12-01
Alaska marine ecosystem-based professional development workshops have proven to be a robust context for engaging scientists from a variety of disciplines in overcoming barriers to communication and collaboration among scientists and educators. Scientists came away from scientist-teacher workshops with effective K-12 outreach strategies as well as a deeper understanding about how to contribute meaningfully to K-12 education. The establishment of the Alaskan Center for Ocean Sciences Education Excellence (COSEE-AK) in 2009 was the catalyst for a series of professional development workshops related to the North Pacific Research Board's (NPRB) marine focus areas (Bering Sea/Aleutian Islands, Gulf of Alaska, and Arctic Ocean) for Integrated Ecosystem Research Programs (IERPs). During 2010-2012, COSEE-AK and NPRB partnered with the Arctic Research Consortium of the U.S. (ARCUS), the Alaska Ocean Observing System (AOOS), and the Monterey Bay Aquarium Research Institute (MBARI) to support a five-day professional development workshop focused on each ecosystem. The workshops brought together three types of participants: 1) Alaska-focused marine ecosystem scientists; 2) rural Alaskan teachers living within each ecosystem; and 3) teachers from outside Alaska who had research experiences with scientists in the ecosystem. Over the course of the workshops, we developed a workshop model with four objectives: 1) to increase the science content knowledge of educators and their ability to teach ecosystem science; 2) to provide the scientists an opportunity to have broader impacts from their research on educators and Alaska Native and rural students; 3) to increase the knowledge and skills of educator and scientist participants to provide effective learning experiences for K-12 students; and 4) to facilitate the collaborative development of lesson plans. A total of 28 scientists and 41 educators participated in the three workshops. The success of the workshop for the educators was evaluated by pre- and post-workshop surveys of their perceived increase in content knowledge in specific topics and increased confidence in teaching those topics. The experiences of the scientists were evaluated based on recorded one-on-one interviews. Preliminary results indicate that the Arctic Ocean workshop was the most successful of the three in meeting the workshop objectives for both teacher and scientist participants. The gain in teachers' level of knowledge and confidence was significant for five scientific topics. Scientists reported gains in their understanding of K-12 education, working with teachers, lesson plan design, and how to make their science relevant to Alaska Native students and communities. A comparison of scientists responses from all three workshops indicate that the factors unique to the Arctic Ocean Workshop which contributed to meeting the workshop objectives in terms of scientist engagement were: 1) the sustained involvement of the scientists throughout the workshop, 2) an effective ratio of scientists to teachers (1:1), with flexibility for smaller group work), and 3) the involvement of Alaska Native scientists, educators, and community members in the collaborative work. The lesson plans have been posted to the ARCUS (http://www.polartrec.com) and MBARI (http://www.mbari/earth) websites.
The Henry Cecil Ranson McBay Chair in Space Science
NASA Technical Reports Server (NTRS)
Bota, Kofi B.; King, James, Jr.
1999-01-01
The goals and objectives of the Henry Cecil Ransom McBay Chair in Space Sciences were to: (1) provide leadership in developing and expanding Space Science curriculum; (2) contribute to the research and education endeavors of NASA's Mission to Planet Earth program; (3) expand opportunities for education and hands-on research in Space and Earth Sciences; (4) enhance scientific and technological literacy at all educational levels and to increase awareness of opportunities in the Space Sciences; and (5) develop a pipeline, starting with high school, of African American students who will develop into a cadre of well-trained scientists with interest in Space Science Research and Development.
Jones, Nancy L.; Peiffer, Ann M.; Lambros, Ann; Eldridge, J. Charles
2013-01-01
Purpose A process evaluation was conducted to assess whether the newly developed Problem-Based Learning (PBL) curriculum designed to teach professionalism and ethics to biomedical graduate students was achieving its objectives. The curriculum was chosen to present realistic cases and issues in the practice of science, to promote skill development and to acculturate students to professional norms of science. Method The perception to which the objectives for the curriculum and courses were being reached was assessed using 5-step Likert-scaled questions, open-ended questions and interviews of students and facilitators. Results Process evaluation indicated that both facilitators and students perceived course objectives were being met. For example, active learning was preferred over lectures; both faculty and students percieved that the curriculum increased their understanding of norms, role obligations, and responsibilities of professional scientists; their ability to identify ethical situations was increased; skills in moral reasoning and effective group work were developed. Conclusions Information gathered was used to improve course implementation and instructional material. For example, a negative perception as an “ethics” course was addressed by redesigning case debriefing activities that reinforced learning objectives and important skills. Cases were refined to be more engaging and relevant for students, and facilitators were given more specific training and resources for each case. The PBL small group strategy can stimulate an environment more aware of ethical implications of science and increase socialization and open communication about professional behavior. PMID:20663754
A Scientist's Guide to Achieving Broader Impacts through K-12 STEM Collaboration.
Komoroske, Lisa M; Hameed, Sarah O; Szoboszlai, Amber I; Newsom, Amanda J; Williams, Susan L
2015-03-01
The National Science Foundation and other funding agencies are increasingly requiring broader impacts in grant applications to encourage US scientists to contribute to science education and society. Concurrently, national science education standards are using more inquiry-based learning (IBL) to increase students' capacity for abstract, conceptual thinking applicable to real-world problems. Scientists are particularly well suited to engage in broader impacts via science inquiry outreach, because scientific research is inherently an inquiry-based process. We provide a practical guide to help scientists overcome obstacles that inhibit their engagement in K-12 IBL outreach and to attain the accrued benefits. Strategies to overcome these challenges include scaling outreach projects to the time available, building collaborations in which scientists' research overlaps with curriculum, employing backward planning to target specific learning objectives, encouraging scientists to share their passion, as well as their expertise with students, and transforming institutional incentives to support scientists engaging in educational outreach.
2011-01-01
Unrestricted, open access to scholarly scientific literature provides an opportunity for chemistry educators to go beyond the textbook, introducing students to the real work of scientists. Despite the best efforts of textbook authors to provide information about recent research results, textbooks are not a substitute for learning to use the primary literature. Chemical educators can use open access articles to develop research-related skills, to foster curiosity, and to cultivate the next generation of scientists. It is becoming increasingly important for chemical educators to teach undergraduates how online journals are changing the nature of chemical research. Some institutions can not afford online subscription costs, and open access journals can be an important resource to provide practical experience. Open access publications eliminate the barriers to the central work of scientists providing chemistry educators (whether at well-endowed or economically limited colleges) with the key resources for enhancing student learning through current, relevant research. PMID:21470429
Increasing Participation in the Earth Sciences A 35 year Journey
NASA Astrophysics Data System (ADS)
Blueford, J. R.
2006-12-01
In the 1970's the fact that woman and ethnic minorities men made up approximately10% of the workforce in the geosciences created concern. Determining ways to increase the participation became a topic of discussion amongst many of the geosciences agencies in the United States. Many created scholarships and work opportunities for students. One of the most successful projects was the MPES (Minority Participation in the Earth Science) Program implemented by the U.S. Geological Survey. A key factor in its success was its outreach programs which used employees to work in elementary schools to get children excited about earth sciences. Successive years added teacher workshops and developing career day presentations to help school districts increase the awareness of the earth sciences. However, cutbacks prevented the continuation of these programs, but from the ashes a new non-profit organization of scientists, the Math Science Nucleus, developed curriculum and implementation strategies that used Earth Sciences as a core content area. Using the power of the internet, it provided teachers and parents around the world content driven curriculum. The Integrating Science, Math, and Technology Reference Curriculum is used around the world to help teachers understand how children learn science content.
NASA Astrophysics Data System (ADS)
Walsh, E.; McGowan, V. C.
2015-12-01
The Next Generation Science Standards promote a vision in which learners engage in authentic knowledge in practice to tackle personally consequential science problems in the classroom. However, there is not yet a clear understanding amongst researchers and educators of what authentic practice looks like in a classroom and how this can be accomplished. This study explores these questions by examining interactions between scientists and students on a social media platform during two pilot enactments of a project-based curriculum focusing on the ecological impacts of climate change. During this unit, scientists provided feedback to students on infographics, visual representations of scientific information meant to communicate to an audience about climate change. We conceptualize the feedback and student work as boundary objects co-created by students and scientists moving between the school and scientific contexts, and analyze the structure and content of the scientists' feedback. We find that when giving feedback on a particular practice (e.g. argumentation), scientists would provide avenues, critiques and questions that incorporated many other practices (e.g. data analysis, visual communication); thus, scientists encouraged students to participate systemically in practices instead of isolating one particular practice. In addition, scientists drew attention to particular habits of mind that are valued in the scientific community and noted when students' work aligned with scientific values. In this way, scientists positioned students as capable of participating "scientifically." While traditionally, incorporating scientific inquiry in a classroom has emphasized student experimentation and data generation, in this work, we found that engaging with scientists around established scientific texts and data sets provided students with a platform for developing expertise in other important scientific practices during argment construction.
The Challenge of Writing for Publication: Implications for Teaching-Learning Nursing.
Yancey, Nan Russell
2016-10-01
Disseminating new scientific knowledge through publication is critical for any discipline, including nursing. The challenge for nurse faculty is preparing emerging nurses with the skills, enthusiasm, and disposition to fully assume professional roles as nurse scientists and scholars, including that of author. Exploring how students learn to write for publication and barriers to writing for publication, recommendations are offered for teaching-learning as a guide to faculty in planning programs, developing curriculum, and identifying teaching-learning strategies. © The Author(s) 2016.
ERIC Educational Resources Information Center
Taber, Keith S.; Billingsley, Berry; Riga, Fran; Newdick, Helen
2011-01-01
Scientists hold a wide range of beliefs on matters of religion, although popular media coverage in the UK commonly suggests that atheism is a core commitment for scientists. Considering the relationship between religion and science is a recommended topic in the English National Curriculum for lower secondary pupils (11-14 year-olds), and it is…
NASA Astrophysics Data System (ADS)
Williams, N. A.; Morris, J. N.; Simms, M. L.; Metoyer, S.
2007-12-01
The Advancing Geospatial Skills in Science and Social Sciences (AGSSS) program, funded by NSF, provides middle and high school teacher-partners with access to graduate student scientists for classroom collaboration and curriculum adaptation to incorporate and advance skills in spatial thinking. AGSSS Fellows aid in the delivery of geospatially-enhanced activities utilizing technology such as geographic information systems, remote sensing, and virtual globes. The partnership also provides advanced professional development for both participating teachers and fellows. The AGSSS program is mutually beneficial to all parties involved. This successful collaboration of scientists, teachers, and students results in greater understanding and enthusiasm for the use of spatial thinking strategies and geospatial technologies. In addition, the partnership produces measurable improvements in student efficacy and attitudes toward processes of spatial thinking. The teacher partner training and classroom resources provided by AGSSS will continue the integration of geospatial activities into the curriculum after the project concludes. Time and resources are the main costs in implementing this partnership. Graduate fellows invest considerable time and energy, outside of academic responsibilities, to develop materials for the classroom. Fellows are required to be available during K-12 school hours, which necessitates forethought in scheduling other graduate duties. However, the benefits far outweigh the costs. Graduate fellows gain experience in working in classrooms. In exchange, students gain exposure to working scientists and their research. This affords graduate fellows the opportunity to hone their communication skills, and specifically allows them to address the issue of translating technical information for a novice audience. Teacher-partners and students benefit by having scientific expertise readily available. In summation, these experiences result in changes in teacher/student perceptions of science and scientists. Evidence of the aforementioned changes are provided through external evaluation and results obtained from several assessment tools. The program also utilizes an internal evaluator to monitor participants thoughts and opinions on the previous years' collaboration. Additionally, graduate fellows maintain a reflective journal to provide insight into experiences occurring both in-class and among peers. Finally, student surveys administered prior to and concluding the academic year assess changes in student attitudes and self-perception of spatial thinking skills.
NASA Astrophysics Data System (ADS)
Fennell, T.; Ellins, K. K.; Morris, M.; Christeson, G.
2003-12-01
The K-12 science teacher is always seeking ways of improving and updating their curriculum by integrating the latest research into their most effective classroom activities. However, the daily demands of delivering instruction to large numbers of students coupled with the rapid advances in some fields of science can often overwhelm this effort. The NSF-sponsored Cataclysms and Catastrophes curriculum, developed by scientists from the The University of Texas at Austin Institute for Geophysics (UTIG) and Bureau of Economic Geology (BEG), middle and high school teachers, and UT graduate students (NSF GK-12 fellows) working together through the GK-12 program, is a textbook example of how universities can facilitate this quest, benefiting education at both K-12 and university levels. In 1992, "The Great K-T Extinction Debate" was developed as an activity in the Planet Earth class at the Liberal Arts and Science Academy of Austin as an interdisciplinary approach to science. Taking advantage of the media attention generated by the impact scenario for the K-T extinction, the activity consists of students participating in a simulated senate hearing on the potential causes of the K-T extinction and their implications for society today. This activity not only exposes students to the wide range of science involved in understanding mass extinctions, but also to the social, political and economic implications when this science is brought into the public arena and the corresponding use of data in decision making and disaster preparedness. While "The Great K-T Extinction Debate" was always a popular and effective activity with students, it was in desperate need of updating to keep pace with the evolving scientific debate over the cause of the K-T extinction and the growing body of impact evidence discovered over the past decade. By adding two inquiry-based learning activities that use real geophysical data collected by scientists studying the buried Chicxulub feature as a culmination to the classroom debate, we developed a curriculum module on Asteroids Impacts for the Cataclysms and Catastrophes project. This approach proved to be the ideal way to update the existing Planet Earth curriculum and to provide students with opportunities to use cutting-edge, hands-on geophysical and computer techniques to understand the most up-to-date science concerning the K-T extinction event.
Improving climate change knowledge in the Northern Rocky Mountains, USA.
NASA Astrophysics Data System (ADS)
Fagre, D. B.
2007-12-01
There are many challenges to involving authentic scientists in classroom and media communications and one is the willingness of scientists to participate. The reticence of scientists to be involved has various roots but one solution is to partner with individuals and institutions experienced in outreach. At Glacier National Park, USGS scientists have worked closely with the Crown of the Continent Research and Learning Center, part of a U.S. National Park Service initiative to improve science-based decisionmaking. The controversial topic of global warming has been embraced as a science theme and research results have been crafted into compact messages for various audiences. The interpretive staff developed a core curriculum on climate change and receive annual training directly from scientists on the most recent research. The interpretive staff interact directly while leading hikes, giving campfire talks, and at visitor centers with many of the 2.2 million visitors each year who are generally more receptive while on vacation than during busy daily lives. Wayside exhibits along the Going-to- the-Sun Road explain climate change and melting glaciers, free brochures describe other aspects of climate change, electronic kiosks have short movies, and a newsletter handout at the entrance station has a science feature in it. To aid this effort, scientists have worked harder at developing compelling graphics, creating animations, serving more media-savvy materials on websites, and providing CDs with scientific data and backup materials. A website developed for serving historic and current photographs of glaciers has been so popular with the media that it has received as many as 8,000 hits in a day. Active participation by scientists in network newscasts and documentaries may involve up to 2 days of hiking TV crews into the backcountry and much effort in reviewing scripts and confirming information. This is essential to keeping credible information going to the public despite the considerable time investments by scientists. Articles in the print media are facilitated by maintaining a photograph/graphic database of research activities but working directly with reporters is still the critical link. Finally, new approaches have been explored by collaborating with artists to take science messages to different audiences.
Dickersin, Kay; Braun, Lundy; Mead, Margaret; Millikan, Robert; Wu, Anna M.; Pietenpol, Jennifer; Troyan, Susan; Anderson, Benjamin; Visco, Frances
2008-01-01
Objective To develop and implement Project LEAD (leadership, education, and advocacy development), a science course for breast cancer activists. Population Students were breast cancer activists and other consumers, mainly affiliated with advocacy organizations in the United States of America. Setting Project LEAD is offered by the National Breast Cancer Coalition; the course takes place over 5 days and is offered 4 times a year, in various cities in the United States of America. Results The Project LEAD curriculum has developed over 5 years to include lectures, problem‐based study groups, case studies, interactive critical appraisal sessions, a seminar by an ‘expert’ scientist, role play, and homework components. A core faculty has been valuable for evaluating and revising the course and has proved necessary to provide consistent high quality teaching. Course evaluations indicated that students gained critical appraisal skills, enhanced their knowledge and developed confidence in selected areas of basic science and epidemiology. Conclusions Project LEAD comprises a unique curriculum for training breast cancer activists in science and critical appraisal. Course evaluations indicate that students gain confidence and skills from the course. PMID:11703495
NASA Astrophysics Data System (ADS)
Passow, M. J.
2017-12-01
"Earth2Class" (E2C) is a unique program offered through the Lamont-Doherty Earth Observatory of Columbia University. It connects research scientists, classroom teachers, middle and high school students, and others in ways that foster broader outreach of cutting-edge discoveries. One key component are Saturday workshops offered during the school year. These provide investigators with a tested format for sharing research methods and results. Teachers and students learn more about "real"science than what is found in textbooks. They discover that Science is exciting, uncertain, and done by people not very different from themselves. Since 1998, we have offered more than 170 workshops, partnering with more than 90 LDEO scientists. E2C teachers establishe links with scientists that have led to participation in research projects, the LDEO Open House, and other programs. Connections developed between high school students and scientists resulted in authentic science research experiences. A second key component of the project is the E2C website, https://earth2class.org/site/. We provide archived versions of monthly workshops. The website hosts a vast array of resources geared to support learning Earth Science and other subjects. Resources created through an NSF grant to explore strategies which enhance Spatial Thinking in the NYS Regents Earth Science curriculum are found at https://earth2class.org/site/?page_id=2957. The site is well-used by K-12 Earth Science educators, averaging nearly 70k hits per month. A third component of the E2C program are week-long summer institutes offering opportunities to enhance content knowledge in weather and climate; minerals, rocks, and resources; and astronomy. These include exploration of strategies to implement NGSS-based approaches within the school curriculum. Participants can visit LDEO lab facilities and interact with scientists to learn about their research. In the past year, we have begun to create a "satellite" E2C program at UFVJM (Universidade Federal dos Vales do Jequinhonha e Mucuri) in Diamantina, Minas Gerais, Brasil. The https://earth2class.org/site/?p=12652 page provides a platform to create similar postings of workshops and educational resources for the Brazilian audience. E2C can serve as a model for similar programs at other institutions.
In the Footsteps of Roger Revelle: Seagoing Oceanography for Middle School Science
NASA Astrophysics Data System (ADS)
Brice, D.; Foley, S.; Knox, R. A.; Mauricio, P.
2007-12-01
Now in its fourth year, "In the Footsteps of Roger Revelle" (IFRR) is a middle school science education program that draws student interest, scientific content and coherence with National Science Standards from real-time research at sea in fields of physical science. As a successful collaboration involving Scripps Institution of Oceanography (SIO), Woods Hole Oceanographic Institution (WHOI), National Oceanic and Atmospheric Administration (NOAA), Office of Naval Research (ONR), National Science Foundation (NSF), San Diego County Office of Education (SDCOE), and San Marcos Middle School (SMMS), IFRR brings physical oceanography and related sciences to students at the San Marcos Middle School in real-time from research vessels at sea using SIO's HiSeasNet satellite communication system. With their science teacher on the ship as an education outreach specialist or ashore guiding students in their interactions with selected scientists at sea, students observe shipboard research being carried out live via videoconference, daily e-mails, interviews, digital whiteboard sessions, and web interaction. Students then research, design, develop, deploy, and field-test their own data-collecting physical oceanography instruments in their classroom. The online interactive curriculum encourages active inquiry with intellectually stimulating problem-solving, enabling students to gain critical insight and skill while investigating some of the most provocative questions of our time, and seeing scientists as role- models. Recent science test scores with IFRR students have shown significant increases in classes where this curriculum has been implemented as compared to other classes where the traditional curriculum has been used. IFRR has provided students in the San Diego area with a unique opportunity for learning about oceanographic research, which could inspire students to become oceanographers or at least scientifically literate citizens - a benefit for a country that depends increasingly on technically proficient personnel, and a benefit for society at large.
NASA Astrophysics Data System (ADS)
Turrin, M.; Kenna, T. C.
2014-12-01
The new NGSS provide an important opportunity for scientists to develop curriculum that links the practice of science to research-based data in order to improve understanding in areas of science that are both complex and confusing. Our curriculum focuses in particular on the fate and transport of anthropogenic radionuclides. Radioactivity, both naturally occurring and anthropogenic, is highly debated and largely misunderstood, and for large sections of the population is a source of scientific misunderstanding. Developed as part of the international GEOTRACES project which focuses on identifying ocean processes and quantifying fluxes that control the distributions of selected trace elements and isotopes in the ocean, and on establishing the sensitivity of these distributions to changing environmental conditions, the curriculum topic fits nicely into the applied focus of NGSS with both environmental and topical relevance. Our curriculum design focuses on small group discussion driven by questions, yet unlike more traditional curriculum pieces these are not questions posed to the students, rather they are questions posed by the students to facilitate their deeper understanding. Our curriculum design challenges the traditional question/answer memorization approach to instruction as we strive to develop an educational approach that supports the practice of science as well as the NGSS Cross Cutting Concepts and the Science & Engineering Practices. Our goal is for students to develop a methodology they can employ when faced with a complex scientific issue. Through background readings and team discussions they identify what type of information is important for them to know and where to find a reliable source for that information. Framing their discovery around key questions such as "What type of radioactive decay are we dealing with?", "What is the potential half-life of the isotope?", and "What are the pathways of transport of radioactivity?" allows students to evaluate a given condition, to predict an outcome and to better judge the seriousness of an overall situation. While the problem solving skills students are taught are built around a specific case study, they can be broadly applied to a much wider range of topics, areas of study, and other aspects of their lives as new challenges arise, fitting the goals of NGSS.
From outreach to inreach: Connecting young learners with the world of emerging science
NASA Astrophysics Data System (ADS)
Buell, James
Agencies that fund scientific research have called increasingly in recent years for the projects they support to contribute to broader social and educational impacts. However, the means by which these projects might best utilize their own resources to support educational outcomes for young learners have received relatively little attention. This dissertation explores how a scientific research project developed a summer 2008 science education workshop for high school students, situates the case within a larger context of leading-edge scientific research projects having public education aims, and considers ways in which carefully structured learner-scientist interactions may contribute to young students' meaningful learning of science. The research questions are: 1. How did scientists and educators in a university research project come to design an intensive educational activity on the topic of their research, for an audience of high school students? 2. What were the distinguishing features of this educational activity? 3. How did the students learn and remember from this experience? The research takes shape as a design-oriented case study, tracing the development of the education initiative from its beginnings through its impact on learners. The first research question is explored through the technique of "design narrative" (Barab et al., 2008), to trace the development of ideas that culminated in the workshop curriculum through a series of six design episodes that occurred over a four-year span. The second question is investigated through qualitative analysis of workshop documents and post-workshop interviews with organizers and learners, and through comparison of the workshop curriculum with various sorts of "research-science-meets-school-science" (RSMSS) outreach that have been reported in recent science education literature. The third question is explored through analysis of the workshop's memorability, as evidenced by comments made by learners in interviews four months after the workshop. Findings relating to the first question indicate that tensions and contradictions between the project's primary research role and its secondary educational aims were important factors in shaping the curriculum of the 2008 summer education workshop. Investigation of the second question revealed ways in which the 2008 curriculum differed from the various forms of RSMSS outreach previously reported, and led to a conclusion that the form of curriculum exhibited by the workshop merits consideration as "Inreach" rather than outreach. Investigation of the third question revealed that at a distance of four months, learners continued to recall episodic aspects and substantive knowledge from the workshop in detail. Analysis of this set of findings suggests ways in which features of the workshop curriculum enhanced its memorability by students. A separate chapter considers how design features of the 2008 curriculum relate to principles for learning that are drawn from the literature of science education. In the concluding chapter, the study's findings are considered with regard to how they might strengthen efforts by scientific research projects to develop and deliver forms of educational involvement that are both meaningful for students and supportable within the means of the projects themselves. In addition, consideration is given to ways in which the findings from this research might spur further investigation in subsequent design-based research that overcomes limitations inherent in a single-case study.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-28
... curriculum with pre- and post-test self-report measures. Surveys also will be administered to teachers after... increasing scientific literacy and stimulating interest in scientific careers. In order to test the...
In the Footsteps of Roger Revelle: a Partnership between SIO, ONR and Middle School Science Students
NASA Astrophysics Data System (ADS)
Brice, D.; Appelgate, T. B.; Foley, S.; Knox, R. A.; Mauricio, P.
2010-12-01
Now in its seventh year, “In the Footsteps of Roger Revelle” (IFRR) is a middle school science education program that draws student interest, scientific content and coherence with National Science Standards from real-time research at sea in fields of physical science. As a successful collaboration involving Scripps Institution of Oceanography (SIO), National Science Foundation (NSF),Office of Naval Research (ONR), and San Marcos Middle School (SMMS), IFRR brings physical oceanography and related sciences to students at the San Marcos Middle School in real-time from research vessels at sea using SIO's HiSeasNet satellite communication system. With a generous grant from ONR, students are able to tour the SIO ships and spend a day at sea doing real oceanographic data collection and labs. Through real-time and near-realtime broadcasts and webcasts, students are able to share data with scientists and gain an appreciation for the value of biogeochemical research in the field as it relates to their classroom studies. The primary impact on these students is an appreciation of ocean science as it relates to their lives. Interaction with scientists and researchers as well as crew members gives students insights into not only possible career paths, but the vital importance of cutting edge oceanographic research on our society. With their science teacher on the ship as an education outreach specialist or ashore guiding students in their interactions with selected scientists at sea, students observe shipboard research being carried out live via videoconference, Skype, daily e-mails, interviews, digital whiteboard sessions, and web interaction. Students then research, design, develop, deploy, and field-test their own data-collecting physical oceanography instruments in their classroom. The online interactive curriculum encourages active inquiry with intellectually stimulating problem- solving, enabling students to gain critical insight and skill while investigating some of the most provocative questions of our time, and seeing scientists as role-models. Over the last seven years science test scores with IFRR students have shown significant increases in classes where this curriculum has been implemented as compared to other classes where the traditional curriculum has been used. IFRR has provided students in the San Diego area with a unique opportunity for learning about oceanographic research, which could inspire students to become oceanographers or at least scientifically literate citizens, a benefit for a country that depends increasingly on technically proficient personnel, and a benefit for society at large.
Handbook of applied mathematics for engineers and scientists
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtz, M.
1991-12-31
This book is intended to be reference for applications of mathematics in a wide range of topics of interest to engineers and scientists. An unusual feature of this book is that it covers a large number of topics from elementary algebra, trigonometry, and calculus to computer graphics and cybernetics. The level of mathematics covers high school through about the junior level of an engineering curriculum in a major univeristy. Throughout, the emphasis is on applications of mathematics rather than on rigorous proofs.
A Scientist's Guide to Achieving Broader Impacts through K–12 STEM Collaboration
Komoroske, Lisa M.; Hameed, Sarah O.; Szoboszlai, Amber I.; Newsom, Amanda J.; Williams, Susan L.
2015-01-01
The National Science Foundation and other funding agencies are increasingly requiring broader impacts in grant applications to encourage US scientists to contribute to science education and society. Concurrently, national science education standards are using more inquiry-based learning (IBL) to increase students’ capacity for abstract, conceptual thinking applicable to real-world problems. Scientists are particularly well suited to engage in broader impacts via science inquiry outreach, because scientific research is inherently an inquiry-based process. We provide a practical guide to help scientists overcome obstacles that inhibit their engagement in K–12 IBL outreach and to attain the accrued benefits. Strategies to overcome these challenges include scaling outreach projects to the time available, building collaborations in which scientists’ research overlaps with curriculum, employing backward planning to target specific learning objectives, encouraging scientists to share their passion, as well as their expertise with students, and transforming institutional incentives to support scientists engaging in educational outreach. PMID:26955078
A Transdisciplinary Training Program for Behavioral Oncology and Cancer Control Scientists
McDaniel, Anna M.; Champion, Victoria L.; Kroenke, Kurt
2008-01-01
Transdisciplinary health research training has been identified as a major initiative to achieve the vision for research teams of the future as articulated in the NIH Roadmap for Medical Research. To address the need for scientists who can integrate diverse scientific approaches and work in transdisciplinary teams to solve complex health problems, Indiana University has designed an innovative training program that will provide the didactic and research experiences to enable trainees to establish productive careers in behavioral oncology and cancer control research. Development of a successful transdisciplinary training program requires mentorship, research, and a specialized curriculum that encompass a broad range of disciplines. The program capitalizes on a unique set of existing and emerging training opportunities resulting from the collaborative activities of the Indiana University (IU) Simon Cancer Center, the IU Schools of Nursing and Medicine, and multiple research institutes and academic centers located in Indiana and neighboring states. PMID:18501750
NASA Astrophysics Data System (ADS)
Quinn, Helen
2016-03-01
I make a distinction between science outreach work and science education work, and my stress in this talk will be on the latter, though I have done both. Using my own career in physics and education as an example, as well as some examples of the contributions of other physicists, I will discuss the variety of ways in which scientists can contribute to science education at the pre-college level. I will argue for the need for more scientists to undertake this work as a serious professional commitment. In order to do so effectively a scientist must take the time to learn about science education and research on learning, and about how the education systems and policies that one is trying to impact function and are controlled. While working with individual teachers and/or their students provides a valuable service to those individuals, working at the State and National policy level, or with those developing curriculum materials, professional development for teachers and assessment strategies aligned to the broadly adopted Next Generation Science Standards can have much broader impacts. These standards have been adopted by over 14 states and have strongly influenced the science standards of a number of others. I will talk about my role in developing the vision of ``three-dimensional'' science education embodied in those standards, explain the fundamental components of that vision, and discuss the work that still needs to be done to realize that vision over the coming years.
Using a Web-based GIS to Teach Problem-based Science in High School and College
NASA Astrophysics Data System (ADS)
Metzger, E.; Lenkeit Meezan, , K. A.; Schmidt, C.; Taketa, R.; Carter, J.; Iverson, R.
2008-12-01
Foothill College has partnered with San Jose State University to bring GIS web mapping technology to the high school and college classroom. The project consists of two parts. In the first part, Foothill and San Jose State University have teamed up to offer classes on building and maintaining Web based Geographic Information Systems (GIS). Web-based GIS such as Google Maps, MapQuest and Yahoo Maps have become ubiquitous, and the skills to build and maintain these systems are in high demand from many employers. In the second part of the project, high school students will be able to learn about Web GIS as a real world tool used by scientists. The students in the Foothill College/San Jose State class will build their Web GIS using scientific data related to the San Francisco/San Joaquin Delta region, with a focus on watersheds, biodiversity and earthquake hazards. This project includes high school level curriculum development that will tie in to No Child Left Behind and National Curriculum Standards in both Science and Geography, and provide workshops for both pre-and in- service teachers in the use of Web GIS-driven course material in the high school classroom. The project will bring the work of professional scientists into any high school classroom with an internet connection; while simultaneously providing workforce training in high demand technology based jobs.
NASA Astrophysics Data System (ADS)
Schmidt, C. M.; Hall, S. R.; Walker, B.; Paul, J.
2017-12-01
Existing STEM retention and diversity programs have identified access to field and professional experiences as critical to helping students identify as scientists, form networks, and gain important skills necessary for employment. This program reimagines the traditional geology field course as a professional development experience for students at 2-year and 4-year institutions interested in environmental careers. Students participate in a summer field course in the Sierra Nevada of California, during which time they complete geology, geomorphology, hydrology, and ecology field projects designed to compliment the curriculum of Environmental Geoscience, Environmental Science, and Environmental Studies programs. During the course students interact with local professionals in the environmental sector and work to earn badges based on the skills demonstrated during field projects. Badges create transparent documentation of skill mastery for students and provide a new way for students to understand and market their skills and competencies to potential employers. We will report on the curriculum development, implementation and assessment of the first cohort of students to participate in the program. Preliminary results of formative and summative assessments and their implications for student success and program design will be addressed.
NASA Astrophysics Data System (ADS)
Toupin, C.; Bean, J. R.; Gavenus, K.; Johnson, H.; Toupin, S.
2017-12-01
With the copious amount of science and pseudoscience reported on by non-experts in the media, it is critical for educators to help students develop into scientifically literate citizens. One of the most direct ways to help students develop deep scientific understanding and the skills to critically question the information they encounter is to bring science into their daily experiences and to contextualize scientific inquiry within the classroom. Our work aims to use a systems-based models approach to engage students in science, in both formal and informal contexts. Using the Understanding Global Change (UGC) and the Understanding Science models developed at the Museum of Paleontology at UC Berkeley, high school students from Arizona were tasked with developing a viable citizen science program for use at the Center for Alaskan Coastal Studies in Homer, Alaska. Experts used the UGC model to help students define why they were doing the work, and give context to the importance of citizen science. Empowered with an understanding of the scientific process, excited by the purpose of their work and how it could contribute to the scientific community, students whole-heartedly worked together to develop intertidal monitoring protocols for two locations while staying at Peterson Bay Field Station, Homer. Students, instructors, and scientists used system models to communicate and discuss their understanding of the biological, physical, and chemical processes in Kachemak Bay. This systems-based models approach is also being used in an integrative high school physics, chemistry, and biology curriculum in a truly unprecedented manner. Using the Understanding Global Change framework to organize curriculum scope and sequence, the course addresses how the earth systems work, how interdisciplinary science knowledge is necessary to understand those systems, and how scientists and students can measure changes within those systems.
Development of a biophotonics technician-training program: directions for the 21st Century
NASA Astrophysics Data System (ADS)
Shackelford, James F.; Gellman, Joel; Vasan, Srini; Hall, Robert A.; Goodwin, Don E.; Molinaro, Marco; Matthews, Dennis
2005-06-01
Albuquerque Technical Vocational Institute (TVI) is collaborating with the National Science Foundation (NSF) funded Center for Biophotonics Science and Technology (CBST) headquartered at the University of California, Davis in order to develop a biophotonics curriculum for community colleges nationwide. TVI began the formal collaboration to bring about critically needed training and education that will ultimately create new jobs and employment opportunities in the field of biophotonics. "Biophotonics" is the science of generating and harnessing light to detect, image and manipulate biological materials. CBST chose TVI as a partner because of the Institute's current high-level photonics and biotechnology programs. In addition, TVI is a part of the "Albuquerque Model" that involves exposure to photonics education from the middle school level through graduate education at the University of New Mexico. Three middle schools feed into the West Mesa High School Photonics Academy, whose students then move on to TVI for advanced training. CBST brings together scientists, industry, educators and the community to research and develop applications for biophotonics. Roughly 100 researchers-including physical scientists, life scientists, physicians and engineers from UC Davis, Lawrence Livermore National Laboratory, UC Berkeley, UC San Francisco, Alabama A&M University, Stanford University, University of Texas at San Antonio, Fisk University and Mills College-are collaborating in this rapidly developing area of research. Applications of biophotonics range from using light to image or selectively treat tumors, to sequencing DNA and identifying single biomolecules within cells.
Scientists Involved in K-12 Education
NASA Astrophysics Data System (ADS)
Robigou, V.
2004-12-01
The publication of countless reports documenting the dismal state of science education in the 1980s, and the Third International Mathematics and Science Study (TIMMS) report (1996) called for a wider involvement of the scientific community in K-12 education and outreach. Improving science education will not happen without the collaboration of educators and scientists working in a coordinated manner and it requires a long-term, continuous effort. To contribute effectively to K-12 education all scientists should refer to the National Science Education Standards, a set of policies that guide the development of curriculum and assessment. Ocean scientists can also specifically refer to the COSEE recommendations (www.cosee.org) that led to the creation of seven regional Centers for Ocean Sciences Education Excellence. Scientists can get involved in K-12 education in a multitude of ways. They should select projects that will accommodate time away from their research and teaching obligations, their talent, and their interest but also contribute to the education reform. A few examples of effective involvement are: 1) collaborating with colleagues in a school of education that can lead to better education of all students and future teachers, 2) acting as a resource for a national program or a local science fair, 3) serving on the advisory board of a program that develops educational material, 4) speaking out at professional meetings about the value of scientists' involvement in education, 5) speaking enthusiastically about the teaching profession. Improving science education in addition to research can seem a large, overwhelming task for scientists. As a result, focusing on projects that will fit the scientist's needs as well as benefit the science reform is of prime importance. It takes an enormous amount of work and financial and personnel resources to start a new program with measurable impact on students. So, finding the right opportunity is a priority, and stepping-in pre-existing programs to contribute right away without having to re-invent the wheel is a good approach. Education and outreach sessions are expanding at professional, scientific meetings such as AGU, and provide an excellent start for those in search of new educational experiences. Contacting a regional COSEE is also a very effective way to get involved.
NASA Astrophysics Data System (ADS)
Glen, Nicole J.; Dotger, Sharon
2013-10-01
This qualitative study examined the connections between elementary teachers’ conceptions of how scientists use writing and how the teachers used writing during science lessons. Data collected included lesson observations, interviews, handouts to students, and curriculum resources. The findings revealed that teachers in this study thought scientists write for several purposes: the presentation of data, observations, experiences, procedures, and facts. The teachers used writing tasks that mirrored this with their students. The teachers also had a limited definition of creativity in writing, and when they had students write creatively in science it was to add in fictional elements. Implications of this study include providing teachers with better models for how and why scientists write, including these models in more inquiry-based science lessons, and directly relating concepts of nature of science to elementary science writing.
ERIC Educational Resources Information Center
Wigston, David L.
1970-01-01
Discusses the relationship between chemisty and biology in the science curriculum. Points out the differences in perception of the disciplines, which the physical scientists favoring reductionism. Suggests that biology departments offer a special course for chemistry students, just as the chemistry departments have done for biology students.…
NIH Clinical Center: There’s No Other Hospital Like It | NIH MedlinePlus the Magazine
... scientists. The innovative curriculum includes courses in pharmacology, principles and practice of clinical research, and bioethics. Recently, the NIH Clinical Center launched the Sabbatical in Clinical Research Management program for clinical investigators, healthcare managers and administrators, ...
ERIC Educational Resources Information Center
Roland, Sarah; Bahr, Michele; Olendzenski, Lorraine; Patterson, David J.
2005-01-01
Scientists at the Marine Biological Laboratory in Woods Hole, Massachusetts, have created micro*scope, a free, searchable knowledge environment for exploring the microbial world. Microbiology can easily be incorporated into the curriculum, because microbial communities are easy to access. Organisms grow quickly, making certain arrays of…
Community-Wide Education Outreach for the Ridge2000 Research Program
NASA Astrophysics Data System (ADS)
Goehring, E.
2004-12-01
Ridge2000 is a multidisciplinary NSF sponsored research initiative to explore Earth's spreading ridge system as an integrated whole. The Ridge2000 community is comprised of scientists from universities and research institutions across the country. Building on existing exemplary outreach efforts (e.g., REVEL, Dive&Discover, Volcanoes of the Deep Sea IMAX), Ridge2000 education outreach has begun to develop community-wide education offerings - programs to which Ridge2000 scientists and others may contribute. Community-wide efforts offer the advantages of serving larger audiences of scientists as well as educators and students and providing avenues for scientists interested in education outreach but with limited time or experience. Coordination of researchers' educational efforts also better leverages the resources of the funding agency - NSF. Here we discuss an exciting Ridge2000 pilot program called SEAS - Student Experiments At Sea. SEAS is a web-based program for middle and high school students to learn science by doing science. SEAS students study the exciting, relatively unexplored world of hydrothermal vents and learn to ask questions about this environment just as researchers do. SEAS goes beyond "follow-along" outreach by inviting students to participate in research through formal proposal and report competitions. The program was concept-tested during the 2003-2004 academic year, with 14 pilot teachers and approximately 800 students. Five student experiments were conducted at sea, with data posted to the website during the cruise. Student reports as well as scientist comments are posted there as well (http://www.ridge2000.org/SEAS/). It was an exciting year! Over 20 Ridge2000 scientists contributed their time and expertise to the SEAS program in its first year. Scientists are invited to contribute in a variety of ways, all of which help satisfy the requirement's of NSF's Broader Impacts Criterion. They may help develop curriculum topics, consult on experimental design, review student proposals and final reports, and/or host student experiments during a research cruise. Many contributions require less than a day's effort. By sharing the load, no one scientist is burdened, nor expected to contribute additional funding. Even better, the Ridge2000 office assumes responsibility for the program development, funding, evaluation and dissemination. When we work together, the possibilities are endless.
NASA Astrophysics Data System (ADS)
McNeal, K.; Libarkin, J. C.; Ledley, T. S.; Gold, A. U.; Lynds, S. E.; Haddad, N.; Ellins, K.; Dunlap, C.; Bardar, E. W.; Youngman, E.
2015-12-01
Instructors must have on hand appropriate assessments that align with their teaching and learning goals in order to provide evidence of student learning. We have worked with curriculum developers and scientists to develop the Climate Concept Inventory (CCI), which meets goals of the EarthLabs Climate on-line curriculum. The developed concept inventory includes 19 content-driven multiple choice questions, six affective-based multiple choice questions, one confidence question, three open-ended questions, and eight demographic questions. Our analysis of the instrument applies item response theory and uses item characteristic curves. We have assessed over 500 students in nearly twenty high school classrooms in Mississippi and Texas that have engaged in the implementation of the EarthLabs curriculum and completed the CCI. Results indicate that students had pre-post gains on 9 out of 10 of the content-based multiple choice questions with positive gains in answer choice selection ranging from 1.72% to 42%. Students significantly reported increased confidence with 15% more students reporting that they were either very or fairly confident with their answers. Of the six affective questions posed, 5 out of 6 showed significant shifts towards gains in knowledge, awareness, and information about Earth's climate system. The research has resulted in a robust and validated climate concept inventory for use with advanced high school students, where we have been able to apply its use within the EarthLabs project.
NASA Technical Reports Server (NTRS)
Williams, L., Jr.
1978-01-01
The applicability of the tele-conference method of curriculum sharing as well as the sharing of scientific research results between universities and industrial organizations was evaluated in relation to other techniques and methods. Ten universities cooperated with NC A&T State University in an effort to increase the number of minority scientists and engineers in the USA via the utilization of the communication features of satellites. Research activities, experiments and studies in curriculum sharing are described as well as the techniques, interconnections and equipment utilized. Suggested methods and recommendations for a continuation of innovative applications of satellite technology in higher education at NC A&T State University are included.
An innovative portfolio of research training programs for medical students.
Zier, Karen; Wyatt, Christina; Muller, David
2012-12-01
Medical student education continues to evolve, with an increasing emphasis on evidence-based decision making in clinical settings. Many schools are introducing scholarly programs to their curriculum in order to foster the development of critical thinking and analytic skills, encourage self-directed learning, and develop more individualized learning experiences. In addition, participation in rigorous scholarly projects teaches students that clinical care and research should inform each other, with the goal of providing more benefit to patients and society. Physician-scientists, and physicians who have a better appreciation of science, have the potential to be leaders in the field who will deliver outstanding clinical care, contribute new knowledge, and educate their patients.
Adult-Rated Oceanography Part 2: Examples from the Trenches
NASA Astrophysics Data System (ADS)
Torres, M. E.; Collier, R.; Cowles, S.
2004-12-01
We will share experiences and specific examples from an ongoing Ocean Science and Math Collaborative Project between OSU faculty and Community College instructors from the Oregon system of adult education and workforce development. The participants represent such diverse instructional programs as workforce training, workplace education (cannery workers), adult basic education, adult secondary education (GED preparation), English to Speakers of Other Languages, Family Literacy, and Tribal Education (Confederated Tribes of the Siletz Indians). This collaborative project is designed to integrate ocean sciences into the science, math, and critical thinking curriculum through the professional development activities of adult educators. Our strategy is to tailor new and existing ocean science resources to the needs of adult education instructors. This project provides a wide range of opportunities in time and effort for scientist involvement. Some scientists have chosen to participate in short interviews or conversations with adult educators, which give added value through real-world connections in the context of the larger project. Other participating scientists have made larger time investments, which include presentations at workshops, hosting teacher-at-sea opportunities and leading project planning and implementation efforts. This project serves as an efficient model for scientists to address the broader impact goals of their research. It takes advantage of a variety of established educational outreach resources funded through NSF (e.g. the national COSEE network and GeoEducation grants), NOAA (e.g. SeaGrant education and Ocean Explorer) as well as State and Federal adult education programs (e.g. The National Institute for Literacy Science and Numeracy Special Collection). We recognize the value and creativity inherent in these resources, and we are developing a model to "tune" their presentation, as well as their connection to new oceanographic research, in a manner that fits the needs of the adult education community.
Scientific Ethics in Chemical Education
NASA Astrophysics Data System (ADS)
Kovac, Jeffrey
1996-10-01
Scientific ethics is a subset of professional ethics, the special rules of conduct adhered to by people engaged in those pursuits called professions. It is distinct from, but consistent with, both ordinary morality and moral theory. The codes of professional ethics derive from the two bargains that define a profession: the internal code of practice and the external bargain between the profession and society. While the informal code of professional conduct is well understood by working scientists, it is rarely explicitly included in the chemistry curriculum. Instead, we have relied on informal methods to teach students scientific ethics, a strategy that is haphazard at best. In this paper I argue that scientific ethics can and must be taught as part of the chemistry curriculum and that this is the best done through the case-study method. Many decisions made by working scientists have both a technical and an ethical component. Students need to learn how to make good decisions in professional ethics. The alternative is, at best, sloppy science and, at worst, scientific misconduct.
Moral Values and Science Teaching: A Malaysian School Curriculum Initiative
NASA Astrophysics Data System (ADS)
Tan, Sok Khim
Implicit in teaching science has been the teaching of a set of values. However, its presence has remained unacknowledged because of assumptions made that its products are value-free and that work of science involves positive values. Malaysian schools have introduced a set of noble values to be taught as a subject called moral education while at the same time expecting all subjects, including the sciences to actively inculcate these noble values in their lessons. A search for values related to science included studies from science education curriculums, studies by scientists and philosophers of science, feminist and Indian critics of science. These values could be categorized into four categories representing epistemological values, supporting values, societal and moral values and power-oriented values. While some categories compliment each other, others are in contention. This paper argues for the inclusion of societal and moral values in the science classrooms. A compassionate scientist should be a reality. The task for Malaysian science educators is to find a way to raise awareness of these values.
Developing `Butterfly Warriors': a Case Study of Science for Citizenship
NASA Astrophysics Data System (ADS)
Chen, Junjun; Cowie, Bronwen
2013-12-01
Given worldwide concern about a decline in student engagement in school science and an increasing call for science for citizenship in New Zealand Curriculum, this study focused on a butterfly unit that investigated how students in a year-4 primary classroom learnt about New Zealand butterflies through thinking, talking, and acting as citizen scientists. The butterfly unit included five lessons. The researchers observed the lessons and interviewed students and the classroom teacher. The students completed a unit evaluation survey after the unit. Findings indicate that the students enjoyed and were interested in activities such as reading about butterflies, learning and using new vocabulary, drawing butterfly life cycles, as well as hunting, tagging and releasing butterflies and publishing the data they had collected on a dedicated website. Through their participation in the unit, students had opportunities to act locally and globally, and to `see themselves' in science through `being there' experience. Units like this have the potential to develop students' interest for longer-term engagement in science, even those students who may never envision themselves as professional scientists.
NASA Astrophysics Data System (ADS)
Robinson-Hill, Rona M.
What affect does female participation in the Training Future Scientist (TFS) program based on Vygotsky's sociocultural theory and Maslow's Hierarchies of Needs have on female adolescents' achievement levels in science and their attitude toward science and interest in science-based careers? The theoretical framework for this study was developed through a constructivist perspective, using dialogic engagement, coinciding with Lev Vygotsky's sociocultural learning theory. This action research project used mixed methods research design, targeted urban adolescent females who were members of Boys & Girls Club of Greater St. Louis (BGCGSTL) after-school program. The data collection measures were three qualitative instruments (semi-structured interviews, reflective journal entries and attitudinal survey open-ended responses) and two quantitative instruments (pre-test and posttests over the content from the Buckle-down Curriculum and attitudinal survey scaled responses). The goal was to describe the impact the Training Future Scientist (TFS) after-school program has on the girls' scientific content knowledge, attitude toward choosing a science career, and self-perception in science. Through the TFS after-school program participants had access to a secondary science teacher-researcher, peer leaders that were in the 9th--12th grade, and Science, Technology, Engineering and Math (STEM) role models from Washington University Medical School Young Scientist Program (YSP) graduate and medical students and fellows as volunteers. The program utilized the Buckle-down Curriculum as guided, peer-led cooperative learning groups, hands-on labs and demonstrations facilitated by the researcher, trained peer leaders and/or role models that used constructivist science pedagogy to improve test-taking strategies. The outcomes for the TFS study were an increase in science content knowledge, a positive trend in attitude change, and a negative trend in choosing a science career. Keywords: informal science programs, urban girls, self-efficacy, cooperative learning, peer learning, female adolescents, and after-school urban education This dissertation study was funded by two grants, the 2013 spring dissertation grant from the University of Missouri St. Louis and a philanthropic grant from Dr. Courtney Crim.
A method of developing and introducing case-based learning to a preclinical veterinary curriculum.
Crowther, Emma; Baillie, Sarah
2016-01-01
Case-based learning (CBL) has been introduced as part of a major review of the veterinary curriculum at the University of Bristol. The initial aim was to improve integration between all first year subjects, i.e., basic science disciplines (anatomy, physiology, and biochemistry), animal management, and professional studies, while highlighting the relevance by providing clinical context. The CBL was delivered as whole class sessions in a lecture theatre, as small group teaching facilities were not readily available, co-facilitated by two to four basic scientists and clinicians. Active learning tasks were included by using an audience response system and encouraging discussion. A case template was developed in PowerPoint and then populated by basic science and clinical staff in an iterative design process. Comments from a student focus group informed the design of the case sessions. Feedback collected from students via a survey after the first three cases suggested that CBL was well received and assisted students in integrating material taught in the first year units and was used to further improve the ongoing case design. The project team developed eight cases for Year 1 and is implementing CBL in various formats throughout the curriculum. There was a considerable time commitment in developing each case; however, the use of readily available software and the large group format overcame limitations, including resourcing small group sessions. This article reports a model that could be successfully adapted by other institutions wishing to use CBL to provide clinical context and promote integration of the basic sciences. © 2015 American Association of Anatomists.
Lewitt, Moira S; Ehrenborg, Ewa; Scheja, Max; Brauner, Annelie
2010-01-01
Interprofessional education (IPE) involving undergraduate health professionals is expected to promote collaboration in their later careers. The role of IPE between doctors and biomedical scientists has not been explored at the undergraduate level. Our aim was to introduce IPE sessions for medical and biomedical students in order to identify the benefits and barriers to these groups learning together. Medical and biomedical students together discussed laboratory results, relevant literature, and ideas for developing new diagnostic tools. The programme was evaluated with questionnaires and interviews. While there was general support for the idea of IPE, medical and biomedical students responded differently. Biomedical students were more critical, wanted more explicit learning objectives and felt that their professional role was often misunderstood. The medical students were more enthusiastic but regarded the way the biomedical students communicated concerns about their perceived role as a barrier to effective interprofessional learning. We conclude that stereotyping, which can impede effective collaborations between doctors and biomedical scientists, is already present at the undergraduate level and may be a barrier to IPE. Effective learning opportunities should be supported at the curriculum level and be designed to specifically enable a broad appreciation of each other's future professional roles.
Improving together: collaborative learning in science communication, ClimateSnack case study
NASA Astrophysics Data System (ADS)
Heuzé, C.; Reeve, M. A.
2016-02-01
Most scientists today recognize that science communication is an important part of the scientific process, yet science writing and communication are often taught outside the normal academic schedule. If universities offer such courses, they are generally intensive but short-term: the participants rarely complete a science communication course with an immediate and pressing need to apply these skills. So the skills fade, stalling real progress in science communication. Continuity is key to success! Whilst waiting for the academic system to truly integrate science communication, other methods can be tested. ClimateSnack / SciSnack is a new approach that aims to motivate scientists to develop their communication skills. It adopts a collaborative learning framework where scientists voluntarily form writing groups that meet regularly at different institutes around the world. The members of the groups learn, discuss and improve together. The participants produce short posts, which are published online, where they are further discussed and improved by the global ClimateSnack community. This way, the participants learn and cement basic science communication skills. These skills are transferrable, and can be applied both to scientific articles and broader science media. Some writing groups are highly productive, while others exist no more. The reasons for success are here investigated with respect to issues both internal and external to the different groups, in particular leadership strategies. Possible further development, in particular using the online community, is suggested. ClimateSnack is one solution to fill the critical gap left by a lack of adequate teaching in early-career scientists' curriculum.
Building Capacity for Actionable Science and Decision Making in Alaska
NASA Astrophysics Data System (ADS)
Timm, K.; Kettle, N.; Buxbaum, T. M.; Trainor, S.; Walsh, J. E.; York, A.
2017-12-01
Investigations of the processes for developing actionable science and supporting partnerships between researchers and practitioners has received increasing attention over the past decade. These studies highlight the importance of leveraging existing relationships and trust, supporting iterative interactions, and dedicating sufficient financial and human capital to the development of usable climate science. However, significant gaps remain in our understanding of how to build capacity for more effective partnerships. To meet these ends, the Alaska Center for Climate Assessment and Policy (ACCAP) is developing a series of trainings for scientists and practitioners to build capacity for producing actionable science. This process includes three phases: scoping and development, training, and evaluation. This presentation reports on the scoping and development phase of the project, which draws on an extensive web-based search of past and present capacity building and training activities, document analysis, and surveys of trainers. A synthesis of successful formats (e.g., training, placements, etc.), curriculum topics (e.g., climate science, interpersonal communication), and approaches to recruitment and curriculum development will be outlined. We then outline our approach for co-developing trainings in three different sectors, which engages other boundary organizations to leverage trust and exiting network connections to tailor the training activities. Through this effort we ultimately seek to understand how the processes and outcomes for co-developing trainings in actionable science vary across sectors and their implications for building capacity.
THE MAN MADE WORLD, TEACHER'S MANUAL.
ERIC Educational Resources Information Center
Commission on Engineering Education, Washington, DC.
THIS TEACHER'S MANUAL FOR THE ENGINEERING CONCEPTS CURRICULUM PROJECT'S HIGH SCHOOL COURSE, "THE MAN MADE WORLD," IS THE THIRD DRAFT OF THE EXPERIMENTAL VERSION. THE MATERIAL WRITTEN BY ENGINEERS, SCIENTISTS, AND EDUCATORS, EMPHASIZES ENGINEERING--MAN'S APPLICATION OF SCIENTIFIC PRINCIPLES TO THE CONTROL AND UTILIZATION OF HIS ENVIRONMENT.…
Epistemological undercurrents in scientists' reporting of research to teachers
NASA Astrophysics Data System (ADS)
Glasson, George E.; Bentley, Michael L.
2000-07-01
Our investigation focused upon how scientists, from both a practical and epistemological perspective, communicated the nature and relevance of their research to classroom teachers. Six scientists were observed during presentations of cutting-edge research at a conference for science teachers. Following the conference, these scientists were interviewed to discern how each perceived the nature of science, technology, and society in relation to his particular research. Data were analyzed to determine the congruence and/or dissimilarity in how scientists described their research to teachers and how they viewed their research epistemologically. We found that a wide array of scientific methodologies and research protocols were presented and that all the scientists expressed links between their research and science-technology-society (STS) issues. When describing their research during interviews, the scientists from traditional content disciplines reflected a strong commitment to empiricism and experimental design, whereas engineers from applied sciences were more focused on problem-solving. Implicit in the data was a commitment to objectivity and the tacit assumption that science may be free of values and ethical assumptions. More dialogue is recommended between the scientific community, science educators, and historians/philosophers of science about the nature of science, STS, and curriculum issues.
Preparing Earth Data Scientists for 'The Sexiest Job of the 21st Century'
NASA Technical Reports Server (NTRS)
Kempler, Steven
2014-01-01
What Exactly do Earth Data Scientists do, and What do They Need to Know, to do It? There is not one simple answer, but there are many complex answers. Data Science, and data analytics, are new and nebulas, and takes on different characteristics depending on: The subject matter being analyzed, the maturity of the research, and whether the employed subject specific analytics is descriptive, diagnostic, discoveritive, predictive, or prescriptive, in nature. In addition, in a, thus far, business driven paradigm shift, university curriculums teaching data analytics pertaining to Earth science have, as a whole, lagged behind, andor have varied in approach.This presentation attempts to breakdown and identify the many activities that Earth Data Scientists, as a profession, encounter, as well as provide case studies of specific Earth Data Scientist and data analytics efforts. I will also address the educational preparation, that best equips future Earth Data Scientists, needed to further Earth science heterogeneous data research and applications analysis. The goal of this presentation is to describe the actual need for Earth Data Scientists and the practical skills to perform Earth science data analytics, thus hoping to initiate discussion addressing a baseline set of needed expertise for educating future Earth Data Scientists.
Cross-Cultural Collaboration in Earth Science Education
NASA Astrophysics Data System (ADS)
Sparrow, E. B.; Stephens, S.; Gordon, L. S.; Kopplin, M. R.
2006-12-01
Alaskan Native elders, other local experts, scientists and educators worked collaboratively in providing professional development science workshops and follow-up support for K-12 teachers. Cognizant of the commonalities between western science and Native knowledge, the Observing Locally Connecting Globally (OLCG) program blended GLOBE Earth science measurements, traditional knowledge and best teaching practices including culturally responsive science curriculum, in engaging teachers and students in climate change research. Native observations and knowledge were used to scaffold some local environmental studies undertaken by Alaskan teachers and their students. OLCG partnered with the Project Jukebox of the University of Alaska Fairbanks Oral History Program to produce digitized interviews of Native experts and a scientist on climate change. Sample interviews for students to use in asking Native experts about their observations and knowledge on environmental changes as well as other educational materials have been posted on the program website http://www.uaf.edu/olcg. Links to the climate change interviews, the Alaska Cultural Standards for Schools, Teachers and Students, and other relevant resource materials have also been included in the website. Results of pre- and post-institute assessment showed an increase in teacher comfort level with teaching science and integrating Native knowledge in the classroom. Teacher journals indicated the program's positive influence on their math and science teaching methods and curriculum. Student attitude and achievement assessments showed a significant increase in post-test (end of school year) scores from pre-test (beginning of the school year) scores. Other lessons learned from this project will also be presented.
NASA Astrophysics Data System (ADS)
Davis, J. B.; Rigsby, C. A.; Muston, C.; Robinson, Z.; Morehead, A.; Stellwag, E. J.; Shinpaugh, J.; Thompson, A.; Teller, J.
2010-12-01
Graduate students and faculty at East Carolina University are working with area high schools to address the common science and mathematics deficiencies of many high school students. Project RaN (Reasoning about Nature), an interdisciplinary science/math/education research project, addresses these deficiencies by focusing on the history of science and the relationship between that history and modern scientific thought and practice. The geological sciences portion of project RaN has three specific goals: (1) to elucidate the relationships among the history of scientific discovery, the geological sciences, and modern scientific thought; (2) to develop, and utilize in the classroom, instructional modules that are relevant to the modern geological sciences curriculum and that relate fundamental scientific discoveries and principles to multiple disciplines and to modern societal issues; and (3) to use these activity-based modules to heighten students’ interest in science disciplines and to generate enthusiasm for doing science in both students and instructors. The educational modules that result from this linkage of modern and historical scientific thought are activity-based, directly related to the National Science Standards for the high school sciences curriculum, and adaptable to fit each state’s standard course of study for the sciences and math. They integrate historic sciences and mathematics with modern science, contain relevant background information on both the concept(s) and scientist(s) involved, present questions that compel students to think more deeply (both qualitatively and quantitatively) about the subject matter, and include threads that branch off to related topics. Modules on topics ranging from the density to cladistics to Kepler’s laws of planetary motion have been developed and tested. Pre- and post-module data suggest that both students and teachers benefit from these interdisciplinary historically based classroom experiences.
Otero, Isabel V; Williams, Makeda; Harford, Joe B
2012-06-01
The NCI Summer Curriculum in Cancer Prevention (SCCP) has provided interdisciplinary training in cancer prevention and control to cancer health-care professionals, including nurses, physicians, and scientists, since 1986. It has trained over 1,200 participants, 256 of them from Ireland and Northern Ireland through two summer courses: a 4-week course on Principles and Practice of Cancer Prevention and Control (PP) and 1-week on Molecular Prevention (MP). This report is our attempt to measure achievements and level of satisfaction among alumni from the island of Ireland upon return to their home institution. A questionnaire was developed to assess this. Our analysis found statistically significant differences in the types of accomplishments reported among respondents of the MP and PP courses as well as statistically significant differences in their level of satisfaction. More data are needed to better explain the differences observed as well as level of resources available to alumni upon their return home.
P3: a practice focused learning environment
NASA Astrophysics Data System (ADS)
Irving, Paul W.; Obsniuk, Michael J.; Caballero, Marcos D.
2017-09-01
There has been an increased focus on the integration of practices into physics curricula, with a particular emphasis on integrating computation into the undergraduate curriculum of scientists and engineers. In this paper, we present a university-level, introductory physics course for science and engineering majors at Michigan State University called P3 (projects and practices in physics) that is centred around providing introductory physics students with the opportunity to appropriate various science and engineering practices. The P3 design integrates computation with analytical problem solving and is built upon a curriculum foundation of problem-based learning, the principles of constructive alignment and the theoretical framework of community of practice. The design includes an innovative approach to computational physics instruction, instructional scaffolds, and a unique approach to assessment that enables instructors to guide students in the development of the practices of a physicist. We present the very positive student related outcomes of the design gathered via attitudinal and conceptual inventories and research interviews of students’ reflecting on their experiences in the P3 classroom.
Scientific Training in the Era of Big Data: A New Pedagogy for Graduate Education.
Aikat, Jay; Carsey, Thomas M; Fecho, Karamarie; Jeffay, Kevin; Krishnamurthy, Ashok; Mucha, Peter J; Rajasekar, Arcot; Ahalt, Stanley C
2017-03-01
The era of "big data" has radically altered the way scientific research is conducted and new knowledge is discovered. Indeed, the scientific method is rapidly being complemented and even replaced in some fields by data-driven approaches to knowledge discovery. This paradigm shift is sometimes referred to as the "fourth paradigm" of data-intensive and data-enabled scientific discovery. Interdisciplinary research with a hard emphasis on translational outcomes is becoming the norm in all large-scale scientific endeavors. Yet, graduate education remains largely focused on individual achievement within a single scientific domain, with little training in team-based, interdisciplinary data-oriented approaches designed to translate scientific data into new solutions to today's critical challenges. In this article, we propose a new pedagogy for graduate education: data-centered learning for the domain-data scientist. Our approach is based on four tenets: (1) Graduate training must incorporate interdisciplinary training that couples the domain sciences with data science. (2) Graduate training must prepare students for work in data-enabled research teams. (3) Graduate training must include education in teaming and leadership skills for the data scientist. (4) Graduate training must provide experiential training through academic/industry practicums and internships. We emphasize that this approach is distinct from today's graduate training, which offers training in either data science or a domain science (e.g., biology, sociology, political science, economics, and medicine), but does not integrate the two within a single curriculum designed to prepare the next generation of domain-data scientists. We are in the process of implementing the proposed pedagogy through the development of a new graduate curriculum based on the above four tenets, and we describe herein our strategy, progress, and lessons learned. While our pedagogy was developed in the context of graduate education, the general approach of data-centered learning can and should be applied to students and professionals at any stage of their education, including at the K-12, undergraduate, graduate, and professional levels. We believe that the time is right to embed data-centered learning within our educational system and, thus, generate the talent required to fully harness the potential of big data.
Growing scientists: A partnership between a university and a school district
NASA Astrophysics Data System (ADS)
Woods, Teresa Marie
Precollege science education in the United States has virtually always been influenced by university scientists to one degree or another. Partnership models for university scientist---school district collaborations are being advocated to replace outreach models. Although the challenges for such partnerships are well documented, the means of fostering successful and sustainable science education partnerships are not well studied. This study addresses this need by empirically researching a unique scientist-educator partnership between a university and a school district utilizing case study methods. The development of the partnership, emerging issues, and multiple perspectives of participants were examined in order to understand the culture of the partnership and identify means of fostering successful science education partnerships. The findings show the partnership was based on a strong network of face-to-face relationships that fostered understanding, mutual learning and synergy. Specific processes instituted ensured equity and respect, and created a climate of trust so that an evolving common vision was maintained. The partnership provided synergy and resilience during the recent economic crisis, indicating the value of partnerships when public education institutions must do more with less. High staff turnover, however, especially of a key leader, threatened the partnership, pointing to the importance of maintaining multiple-level integration between institutions. The instrumental roles of a scientist-educator coordinator in bridging cultures and nurturing the collaborative environment are elucidated. Intense and productive collaborations between teams of scientists and educators helped transform leading edge disciplinary science content into school science learning. The innovative programs that resulted not only suggest important roles science education partnerships can play in twenty-first century learning, but they also shed light on the processes of educational innovation itself. Further, the program and curriculum development revealed insights into areas of teaching and learning. Multiple perspectives of participants were considered in this study, with student perspectives demonstrating the critical importance of investigating student views in future studies. When educational institutions increasingly need to address a diverse population, and scientists increasingly want to recruit diverse students into the fields of science, partnerships show promise in creating a seamless K-20+ continuum of science education.
Recycling of Waste Acetone by Fractional Distillation
ERIC Educational Resources Information Center
Weires, Nicholas A.; Johnston, Aubrey; Warner, Don L.; McCormick, Michael M.; Hammond, Karen; McDougal, Owen M.
2011-01-01
Distillation is a ubiquitous technique in the undergraduate organic chemistry curriculum; the technique dates back to ca. 3500 B.C.E. With the emergence of green chemistry in the 1990s, the importance of emphasizing responsible waste management practices for future scientists is paramount. Combining the practice of distillation with the message…
Geropsychology Training in a Specialist Geropsychology Doctoral Program
ERIC Educational Resources Information Center
Qualls, Sara Honn; Segal, Daniel L.; Benight, Charles C.; Kenny, Michael P.
2005-01-01
The first PhD specialty program in Geropsychology that launched in fall, 2004 at CU-Colorado Springs is described. Consistent with a scientist-practitioner model, the curriculum sequence builds systematically from basic to complex knowledge and skills across the domains of scientific psychology, research methodology, general clinical,…
ERIC Educational Resources Information Center
Loper, Suzanna; Baker, Josey
2009-01-01
In this article, the authors present a sequence of activities from a curriculum about light for third and fourth graders that supports students in learning to disagree like scientists. This sequence of activities helps students discuss reasons for the discrepancies in their data, use the language of argumentation in classroom discourse, and get a…
ERIC Educational Resources Information Center
Science and Children, 1989
1989-01-01
Describes an underwater expedition which will allow students to participate in activities without being physically present. Provides a list of participating museums and examples of activities from curriculum materials which include a poster, bathymetric map, and 25 lessons. (RT)
A Research Proposal to Evaluate the Merits of Writing across the Curriculum
ERIC Educational Resources Information Center
Dana, Heather; Hancock, Carol; Phillips, JoDee
2011-01-01
Students live in an information and knowledge management economy in which the dissemination and analysis of information requires intellectual, technical and interpersonal skills. As a direct response to higher education's challenge to produce more engineers, scientists, and business professionals, universities have increased the numbers of…
ERIC Educational Resources Information Center
Scogin, Stephen C.; Stuessy, Carol L.
2015-01-01
Next Generation Science Standards (NGSS) call for integrating knowledge and practice in learning experiences in K-12 science education. "PlantingScience" (PS), an ideal curriculum for use as an NGSS model, is a computer-mediated collaborative learning environment intertwining scientific inquiry, classroom instruction, and online…
Arab Contributions to World Knowledge: A Contemporary Curriculum Imperative
ERIC Educational Resources Information Center
Al-Hazza, Tami Craft; Lucking, Robert
2015-01-01
American K-12 school curricula are often bereft of acknowledgements of the historical contributions of Arab societies to our present-day intellectual heritage, an oversight most apparent in the sciences. Teachers in a thriving democracy are obliged to introduce contemporary scholarship that reflects the contributions of Arab scientists between the…
Transformational Play: Using Games to Position Person, Content, and Context
ERIC Educational Resources Information Center
Barab, Sasha A.; Gresalfi, Melissa; Ingram-Goble, Adam
2010-01-01
Videogames are a powerful medium that curriculum designers can use to create narratively rich worlds for achieving educational goals. In these worlds, youth can become scientists, doctors, writers, and mathematicians who critically engage complex disciplinary content to transform a virtual world. Toward illuminating this potential, the authors…
Teaching the Human Dimension of Science
ERIC Educational Resources Information Center
Farland-Smith, Donna; McComas, William
2009-01-01
Teachers have the important responsibility of providing students with accurate and engaging science content while also helping them establish authentic views of scientists. Though there are numerous curriculum materials to assist in the teaching of science content, the authors have found that methods and materials to teach science as a human…
Brownell, Sara E.; Hekmat-Scafe, Daria S.; Singla, Veena; Chandler Seawell, Patricia; Conklin Imam, Jamie F.; Eddy, Sarah L.; Stearns, Tim; Cyert, Martha S.
2015-01-01
We present an innovative course-based undergraduate research experience curriculum focused on the characterization of single point mutations in p53, a tumor suppressor gene that is mutated in more than 50% of human cancers. This course is required of all introductory biology students, so all biology majors engage in a research project as part of their training. Using a set of open-ended written prompts, we found that the course shifts student conceptions of what it means to think like a scientist from novice to more expert-like. Students at the end of the course identified experimental repetition, data analysis, and collaboration as important elements of thinking like a scientist. Course exams revealed that students showed gains in their ability to analyze and interpret data. These data indicate that this course-embedded research experience has a positive impact on the development of students’ conceptions and practice of scientific thinking. PMID:26033869
A Hands-on Physical Analog Demonstration of Real-Time Volcano Deformation Monitoring with GNSS/GPS
NASA Astrophysics Data System (ADS)
Jones, J. R.; Schobelock, J.; Nguyen, T. T.; Rajaonarison, T. A.; Malloy, S.; Njinju, E. A.; Guerra, L.; Stamps, D. S.; Glesener, G. B.
2017-12-01
Teaching about volcano deformation and how scientists study these processes using GNSS/GPS may present some challenge since the volcanoes and/or GNSS/GPS equipment are not quite accessible to most teachers. Educators and curriculum materials specialists have developed and shared a number of activities and demonstrations to help students visualize volcanic processes and ways scientist use GNSS/GPS in their research. From resources provided by MEDL (the Modeling and Educational Demonstrations Laboratory) in the Department of Geosciences at Virginia Tech, we combined multiple materials and techniques from these previous works to produce a hands-on physical analog model from which students can learn about GNSS/GPS studies of volcano deformation. The model functions as both a qualitative and quantitative learning tool with good analogical affordances. In our presentation, we will describe multiple ways of teaching with the model, what kinds of materials can be used to build it, and ways we think the model could be enhanced with the addition of Vernier sensors for data collection.
NASA Astrophysics Data System (ADS)
Hagan, Wendy L.
Project G.R.O.W. is an ecology-based research project developed for high school biology students. The curriculum was designed based on how students learn and awareness of the nature of science and scientific practices so that students would design and carry out scientific investigations using real data from a local coastal wetland. This was a scientist-teacher collaboration between a CSULB biologist and high school biology teacher. Prior to implementing the three-week research project, students had multiple opportunities to practice building requisite skills via 55 lessons focusing on the nature of science, scientific practices, technology, Common Core State Standards of reading, writing, listening and speaking, and Next Generation Science Standards. Project G.R.O.W. culminated with student generated research papers and oral presentations. Outcomes reveal students struggle with constructing explanations and the use of Excel to create meaningful graphs. They showed gains in data organization, analysis, teamwork and aspects of the nature of science.
NASA Astrophysics Data System (ADS)
Nicholas, K. A.
2014-12-01
A hallmark of science in the Anthropocene is the increasing use of synthesis efforts to distill ever-growing data into the best available scientific knowledge. Thousands of scientists contribute substantial amounts of time towards these efforts, with the aim of producing authoritative work as a basis for informing both further research priorities and policy decisions. Organizations such as the IPCC are increasing their efforts to disseminate their scientific findings to broader audiences, for example, using text and video summaries targeted for policymakers. However, the results of such synthesis efforts have rarely been disseminated further back in the pipeline, in the classrooms where scientific literacy is shaped. Here, I will describe an emerging initiative to develop a program to translate state-of-the-art scientific synthesis findings into a modular, flexible climate change curriculum. This initiative is envisioned to compliment rather than compete with existing curriculum development efforts. Examples from innovation labs in healthcare delivery and other fields will be used to demonstrate a model for how a small, interdisciplinary team of early-career experts can use their content and pedagogical knowledge to transform synthesis results into ready-to-use teaching materials. The benefits of such a curriculum include improved student learning through constructive alignment of thoughtfully designed teaching and learning activities and assessment activities to promote intended learning outcomes, as well as the real-world illustration of the method of scientific inquiry applied to socially relevant problems. The curriculum can also improve teaching experiences through increased efficiency in course preparation, and in sharing best practices with participating colleagues. Initial scoping will examine the needs of university teachers of climate change courses as the constituents of this curriculum, and possible support models to mainstream such efforts. Ultimately, using scientific syntheses as the basis for university curricula would help close the gap between research and classroom learning, promote increased scientific understanding, and help ensure that the resources devoted to scientific synthesis efforts are translated to broader benefits for society.
NASA Astrophysics Data System (ADS)
Slutskin, R. L.
2001-12-01
Earth and Space Science may be the neglected child in the family of high school sciences. In this session, we examine the strategies that Anne Arundel County Public Schools and NASA Goddard Space Flight Center used to develop a dynamic and highly engaging program which follows the vision of the National Science Education Standards, is grounded in key concepts of NASA's Earth Science Directorate, and allows students to examine and apply the current research of NASA scientists. Find out why Earth/Space Systems Science seems to have usurped biology and has made students, principals, and teachers clamor for similar instructional practices in what is traditionally thought of as the "glamorous" course.
Planetary Science Educational Materials for Out-of-School Time Educators
NASA Astrophysics Data System (ADS)
Barlow, Nadine G.; Clark, Joelle G.
2017-10-01
Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) is a five-year NASA-funded (NNX16AC53A) interdisciplinary and cross-institutional partnership to develop and disseminate STEM out-of-school time (OST) curricular and professional development units that integrate planetary science, technology, and engineering. The Center for Science Teaching and Learning (CSTL) and Department of Physics and Astronomy (P&A) at Northern Arizona University, the U.S. Geological Survey Astrogeology Science Center (USGS ASC), and the Museum of Science Boston (MoS) are partners in developing, piloting, and researching the impact of three out-of-school time units. Planetary scientists at USGS ASC and P&A have developed two units for middle grades youth and one for upper elementary aged youth. The two middle school units focus on greywater recycling and remote sensing of planetary surfaces while the elementary unit centers on exploring space hazards. All units are designed for small teams of ~4 youth to work together to investigate materials, engineer tools to assist in the explorations, and utilize what they have learned to solve a problem. Youth participate in a final share-out with adults and other youth of what they learned and their solution to the problem. Curriculum pilot testing of the two middle school units has begun with out-of-school time educators. A needs assessment has been conducted nationwide among educators and evaluation of the curriculum units is being conducted by CSTL during the pilot testing. Based on data analysis, the project is developing and testing four tiers of professional support for OST educators. Tier 1 meets the immediate needs of OST educators to teach curriculum and include how-to videos and other direct support materials. Tier 2 provides additional content and pedagogical knowledge and includes short content videos designed to specifically address the content of the curriculum. Tier 3 elaborates on best practices in education and gives guidance on methods, for example, to develop cultural relevancy for underrepresented students. Tier 4 helps make connections to other NASA or educational products that support STEM learning in out of school settings.
Advancing Climate Change Education: Student Engagement and Teacher Talk in the Classroom
NASA Astrophysics Data System (ADS)
Holthuis, N.; Saltzman, J.; Lotan, R.; Mastrandrea, M. D.; Diffenbaugh, P.; Gray, S.; Kloser, M.
2011-12-01
Stanford's Global Climate Change: Professional Development for K-12 Teachers is a unique collaboration between the Stanford School of Education and School of Earth Sciences to provide teacher professional development on the science of global climate change, pedagogical strategies, and curriculum materials. Scientists and education specialists developed a curriculum for middle and high school science classrooms. It addresses the fundamental issues of climate science, the impacts of climate change on society and on global resources, mitigation and adaptation strategies. This project documents in detail the full circle of curriculum development, teacher professional development, classroom implementation, analysis of student achievement data, and curriculum revision. Ongoing evaluation has provided understanding of the unique conditions and requirements of climate change education. In a sample of 750 secondary students in 25 Bay Area classrooms, we found statistically significant differences between post- (x=11.56, sd=4.75) and pre- (x=8.64, sd=4.58) test scores on standardized items and short open-ended essay questions. Through systematic classroom observations (300 observations in 25 classrooms), we documented student engagement and interactions, and the nature of teachers' talk in the classroom. We found that on average, 73.4% of the students were engaged, 14.4% were interacting with peers, and about 12.1% were disengaged. We also documented teacher talk (165 observations) and found that on the average, teachers delivered factual content and talked about classroom processes and spent less time on scientific argumentation, reasoning and/ or analysis. We documented significant differences in the quality of implementation among the teachers. Our study suggests that in addition to strengthening content knowledge and pedagogical content knowledge, professional development for teachers needs to include classroom management strategies, explicit modeling of collaborative work, and greater attention to the quality of teachers' questions and interactions with the students to enhance the quality of student talk and understanding. In our final year of the project, we will focus our observations more tightly on the nature of teacher and student talk to explore student understanding of climate change.
General Education Engagement in Earth and Planetary Science through an Earth-Mars Analog Curriculum
NASA Astrophysics Data System (ADS)
Chan, M. A.; Kahmann-Robinson, J. A.
2012-12-01
The successes of NASA rovers on Mars and new remote sensing imagery at unprecedented resolution can awaken students to the valuable application of Earth analogs to understand Mars processes and the possibilities of extraterrestrial life. Mars For Earthlings (MFE) modules and curriculum are designed as general science content introducing a pedagogical approach of integrating Earth science principles and Mars imagery. The content can be easily imported into existing or new general education courses. MFE learning modules introduce students to Google Mars and JMARS software packages and encourage Mars imagery analysis to predict habitable environments on Mars drawing on our knowledge of extreme environments on Earth. "Mars Mission" projects help students develop teamwork and presentation skills. Topic-oriented module examples include: Remote Sensing Mars, Olympus Mons and Igneous Rocks, Surface Sculpting Forces, and Extremophiles. The learning modules package imagery, video, lab, and in-class activities for each topic and are available online for faculty to adapt or adopt in courses either individually or collectively. A piloted MFE course attracted a wide range of non-majors to non-degree seeking senior citizens. Measurable outcomes of the piloted MFE curriculum were: heightened enthusiasm for science, awareness of NASA programs, application of Earth science principles, and increased science literacy to help students develop opinions of current issues (e.g., astrobiology or related government-funded research). Earth and Mars analog examples can attract and engage future STEM students as the next generation of earth, planetary, and astrobiology scientists.
NASA Astrophysics Data System (ADS)
Bertram, M. A.; Thompson, L.; Ackerman, T. P.
2012-12-01
The University of Washington is adapting a popular UW Atmospheric Sciences course on Climate and Climate Change for the high school environment. In the process, a STEM-focused teaching and learning community has formed. With the support of NASA Global Climate Change Education 20 teachers have participated in an evolving professional development program that brings those actively engaged in research together with high school teachers passionate about bringing a formal climate science course into the high school. Over a period of several months participating teachers work through the UW course homework and delve deeply into specific subject areas. Then, during a week-long summer institute, scientists bring their particular expertise (e.g. radiation, modeling) to the high school teachers through lectures or labs. Together they identify existing lectures, textbook material and peer-reviewed resources and labs available through the internet that can be used to effectively teach the UW material to the high school students. Through this process the scientists learn how to develop teaching materials around their area of expertise, teachers engage deeply in the subject matter, and both the university and high school teachers are armed with the tools to effectively teach a STEM-focused introductory course in climate science. To date 12 new hands-on modules have been completed or are under development, exploring ice-cores, isotopes, historical temperature trends, energy balance, climate models, and more. Two modules have been tested in the classroom and are ready for peer-review through well-respected national resources such as CLEAN or the National Earth Science Teachers Association; three others are complete and will be implemented in a high school classroom this year, and the remainder under various stages of development. The UWHS ATMS 211 course was piloted in two APES (Advanced Placement Environmental Science classrooms) in Washington State in 2011/2012. The high school course used the UW Atmospheric Sciences curriculum, exams, and textbook (The Earth System, 3rd edition, Kump, Kasting and Crane, 2010), and one of the hands-on modules. Communication with these instructors during the year helped us define assessment strategies and to identify challenges of bringing the material into the high school classroom. This knowledge will be shared with teachers during our summer 2012 workshop and will inform approaches to teaching the course in 2012/2013. Proposed formats for implementation include year-long courses, using the APES/Climate format of 2011/2012, a union of Oceanography and Climate content, or in the context of an engineering course. Our initial vision was for a stand-alone semester or year-long course in climate science, incorporating excel and data handling as a learning tool and a suite of hands-on learning opportunities. Yet, the creative approaches to implementation of a new course in the schools, together with the breadth and depth of the UW curriculum and the Kump et al. 2010 textbook, have resulted in diverse educational approaches for bringing climate science into the high school.
Arsenic-based Life: An active learning assignment for teaching scientific discourse.
Jeremy Johnson, R
2017-01-02
Among recent high profile scientific debates was the proposal that life could exist with arsenic in place of phosphorous in its nucleic acids and other biomolecules. Soon after its initial publication, scientists across diverse disciplines began to question this extraordinary claim. Using the original article, its claims, its scientific support, and the ensuing counterarguments, a two-day, active learning classroom exercise was developed focusing on the presentation, evaluation, and discussion of scientific argumentation and discourse. In this culminating assignment of a first semester biochemistry course, undergraduate students analyze the scientific support from the original research articles and then present and discuss multiple scientific rebuttals in a lively, civil classroom debate. Through this assignment, students develop a sense of skepticism, especially for the original arsenic-based life claims, and learn to clearly articulate their counterarguments with scientific support and critical reasoning. With its direct integration into first-semester biochemistry curriculum and the excitement surrounding arsenic based life, this assignment provides a robust, simple, and stimulating framework for introducing scientific discourse and active learning into the undergraduate molecular science curriculum. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):40-45, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.
Charles Darwin and Evolution: Illustrating Human Aspects of Science
NASA Astrophysics Data System (ADS)
Kampourakis, Kostas; McComas, William F.
2010-06-01
Recently, the nature of science (NOS) has become recognized as an important element within the K-12 science curriculum. Despite differences in the ultimate lists of recommended aspects, a consensus is emerging on what specific NOS elements should be the focus of science instruction and inform textbook writers and curriculum developers. In this article, we suggest a contextualized, explicit approach addressing one core NOS aspect: the human aspects of science that include the domains of creativity, social influences and subjectivity. To illustrate these ideas, we have focused on Charles Darwin, a scientist whose life, work and thought processes were particularly well recorded at the time and analyzed by scholars in the succeeding years. Historical facts are discussed and linked to core NOS ideas. Creativity is illustrated through the analogies between the struggle for existence in human societies and in nature, between artificial and natural selection, and between the division of labor in human societies and in nature. Social influences are represented by Darwin’s aversion of criticism of various kinds and by his response to the methodological requirements of the science of that time. Finally, subjectivity is discussed through Darwin’s development of a unique but incorrect source for the origin of variations within species.
The application of Legacy Cycles in the development of Earth Science curriculum
NASA Astrophysics Data System (ADS)
Ellins, K.; Abernathy, E.; Negrito, K.; McCall, L.
2009-04-01
The Institute for Geophysics in the Jackson School of Geosciences at The University of Texas at Austin actively contributes to K-12 education, including the development of rigorous Earth and Space Science curriculum designed for secondary school learning environments. Here we report on our efforts to apply an innovative new pedagogical approach, the Legacy Cycle, to scientific ocean drilling paleoclimate data from fossil corals collected offshore Barbados in 2006 and to the creation of a high school water resources education program for Texas high school students supported by a grant from the Texas Water Development Board. The Legacy Cycle makes use of the Internet and computer technology to engage students in extended inquiry learning. A series of inquiry activities are organized around a set of three driving questions, or challenges. Students mimic the work of scientists by generating ideas to address a given challenge, listening to multiple perspectives from experts on the topic, researching a set of sub-questions and revising their original ideas, testing their mettle with labs and quizzes, and finally composing a project or paper that answers the original challenge. The technology makes it easy for students to move through the challenges and the organizational framework since there are hyperlinks to each of the sections (and to reach the other challenges) at the bottom of each webpage. Students' final work is posted to the Internet for others to see, and in this way they leave behind their legacy. Our Legacy Cycle activities use authentic hydrologic, water quality, geochemical, geophysical data, as well as remotely sensed data such as is collected by satellites. They are aligned with the U.S. National Science Education Standards, the new Ocean, Climate and Earth Science Literacy Principles (in development), and the Texas Essential Knowledge and Skills for Earth and Space Science. The work represents a collaboration involving teachers from The University of Texas' UTeach program, the NSF-sponsored Texas Earth and Space Science (TXESS) Revolution program of teacher professional development, and the Texas Regional Collaboratives for Excellence in Science and Mathematics Teaching, and scientists from the Institute for Geophysics, the Lamont-Doherty Earth Observatory and the Texas Water Development Board.
Speaking of climate change: From what we know to how we know it (Invited)
NASA Astrophysics Data System (ADS)
Holthuis, N.
2013-12-01
Researchers have found that a deficit model of knowledge doesn't fully explain why some people continue to deny that climate change is happening or that human activity is to blame. Recent work in science education has focused our attention on the need to go beyond simply communicating what we know about climate change to how we know it. That is, allowing and encouraging students to grapple with the processes that scientists have gone through to make their claims builds deeper understanding of why the consensus around climate change is strong, where uncertainties remain, and how to think about implications for society and themselves. This suggests that teachers need to provide scaffolding that builds not only students' understanding of how climate systems work or the causes and effects of climate change but also their capacity to evaluate the scientific evidence behind these claims. What is the evidence for anthropogenic climate change? What data are missing or currently being collected? How sure are scientists about their claims? What claim can be made from a particular set of data? And conversely, what claim cannot be made given these data? Climate change education provides not only an excellent opportunity to integrate science content with such scientific practices, but also an imperative to do so. In this study, we explore how students and teachers may engage collectively in this process of argumentation in order to arrive at a conclusion or claim supported by evidence. We take the position that learning to construct and evaluate arguments involves growth in scientific practices and meta-procedural (epistemic) knowledge This work was conducted over the course of three years through the NASA-funded Stanford Global Climate Change project. Scientists and educators provided teacher professional development on the science of global climate change, pedagogical strategies, and curriculum materials that emphasize both what we know about climate change and we how know it. We conducted an in-depth study of the classrooms of the participating teachers, focusing on the following research questions: 1) What did students learn about climate change and to what extent have their opinions shifted after experiencing this climate change curriculum? 2) How do teachers and students talk about how we know about climate change? 3) What classroom conditions support such talk? Our results show statistically significantly gains from pre to post in students' content knowledge and a shift in their opinions. These gains are positively related to the percentage of students engaged and interacting with one another or with the teacher. Through classroom observations and video recordings, we identify how teachers and students talk about how we know about climate change and we discuss how that talk can be supported by classroom implementation, the curriculum, and professional development.
Young Researchers Engaged in Educational Outreach to Increase Polar Literacy
NASA Astrophysics Data System (ADS)
Raymond, M.; Baeseman, J.; Xavier, J.; Kaiser, B.; Vendrell-Simon, B.
2008-12-01
The Association of Polar Early Career Scientists (APECS) grew out of the 4th International Polar Year (IPY-4) 2007-08 and is an international and interdisciplinary organization of over 1200 undergraduate and graduate students, postdoctoral researchers, early faculty members, educators and others with interests in Polar Regions and the wider cryosphere from more than 40 countries. Our aims are to stimulate interdisciplinary and international research collaborations, and develop effective future leaders in polar research, education and outreach. As potentially one of the major legacies of IPY-4, APECS members have been at the forefront of increasing scientific knowledge and public interest in the polar regions, centered around global climate change, and enhancing scientific understanding, media attention, primary and secondary school (K-12) educational programs, undergraduate institutions, and public literacy campaigns. Research and Educational Outreach activities by APECS members during IPY-4 have improved both our understanding and the communication of all aspects of the Polar Regions and the importance of their broader global connections. APECS National Committees have run Polar Contests where young researchers partnered with teachers and students to develop curriculum and activities to share their research, have participated in many field based communication exchanges and are mentoring youth to pursue careers in science, and enhancing the public perception of scientists through photo, video and museum exhibits. In cooperation with the IPY Teachers Network and the IPY IPO, APECS is developing a polar education resource book that will feature education and outreach activities by young researchers, as well as provide examples of classroom activities for teachers to incorporate polar literacy into their curriculum and a How-To guide for researchers interested in conducting education and outreach. As young researchers interactively share their excitement and experiences in deepening our understanding of the polar regions, a new generation of polar literate people emerges and society benefits from more knowledge of the rapidly changing polar regions that have a critical and inherent global connection.
Providing a Continuum of Leadership in Polar Science - An IPY Legacy
NASA Astrophysics Data System (ADS)
Baeseman, J.
2008-12-01
The Association of Polar Early Career Scientists (APECS) grew out of the 4th International Polar Year (IPY-4) 2007-08 and is an international and interdisciplinary organization of over 1200 undergraduate and graduate students, postdoctoral researchers, early faculty members, educators and others with interests in Polar Regions and the wider cryosphere from more than 40 countries. Our aims are to stimulate interdisciplinary and international research collaborations, and develop effective future leaders in polar research, education and outreach. As potentially one of the major legacies of IPY-4, APECS members have been at the forefront of increasing scientific knowledge and public interest in the polar regions, centered around global climate change, and enhancing scientific understanding, media attention, primary and secondary school (K-12) educational programs, and public literacy campaigns. Research and Educational Outreach activities by APECS members during IPY-4 have improved both our understanding and the communication of all aspects of the Polar Regions and the importance of their broader global connections. APECS National Committees have run Polar Contests where young researchers partnered with teachers and students to develop curriculum and activities to share their research, have participated in many field based communication exchanges and are mentoring youth to pursue careers in science, and enhancing the public perception of scientists through photo, video and museum exhibits. In cooperation with the IPY Teachers Network and the IPY IPO, APECS is developing a polar education resource book that will feature education and outreach activities by young researchers, as well as provide examples of classroom activities for teachers to incorporate polar literacy into their curriculum and a 'how to' guide for researchers interested in conducting education and outreach. As young researchers share their excitement and experiences in deepening our understanding of the polar regions, a new generation of polar literate people emerges and society benefits from more knowledge of the rapidly changing polar regions that have a critical and inherent global connection.
NASA Astrophysics Data System (ADS)
Caplan, B.; Morrison, A.; Moore, J. C.; Berkowitz, A. R.
2017-12-01
Understanding water is central to understanding environmental challenges. Scientists use `big data' and computational models to develop knowledge about the structure and function of complex systems, and to make predictions about changes in climate, weather, hydrology, and ecology. Large environmental systems-related data sets and simulation models are difficult for high school teachers and students to access and make sense of. Comp Hydro, a collaboration across four states and multiple school districts, integrates computational thinking and data-related science practices into water systems instruction to enhance development of scientific model-based reasoning, through curriculum, assessment and teacher professional development. Comp Hydro addresses the need for 1) teaching materials for using data and physical models of hydrological phenomena, 2) building teachers' and students' comfort or familiarity with data analysis and modeling, and 3) infusing the computational knowledge and practices necessary to model and visualize hydrologic processes into instruction. Comp Hydro teams in Baltimore, MD and Fort Collins, CO are integrating teaching about surface water systems into high school courses focusing on flooding (MD) and surface water reservoirs (CO). This interactive session will highlight the successes and challenges of our physical and simulation models in helping teachers and students develop proficiency with computational thinking about surface water. We also will share insights from comparing teacher-led vs. project-led development of curriculum and our simulations.
Forging School-Scientist Partnerships: A Case of Easier Said than Done?
NASA Astrophysics Data System (ADS)
Falloon, Garry
2013-12-01
Since the early 1980s, a number of initiatives have been undertaken worldwide which have involved scientists and teachers working together in projects designed to support the science learning of students. Many of these have attempted to establish school-scientist partnerships. In these, scientists, teachers, and students formed teams engaged in mutually beneficial science-based activities founded on principles such as equal recognition and input, and shared vision, responsibility and risk. This article uses two partnership programmes run by a New Zealand Science Research Institute, to illustrate the challenges faced by scientists and teachers as they attempted to forge meaningful and effective partnerships. It argues that achieving the theorised position of a shared partnership space at the intersection of the worlds of scientists and teachers is problematic, and that scientists must instead be prepared to penetrate deeply into the world of the classroom when undertaking any such interactions. Findings indicate epistemological differences, curriculum and school systems and issues, and teacher efficacy and science knowledge significantly affect the process of partnership formation. Furthermore, it is argued that a re-thinking of partnerships is needed to reflect present economic and education environments, which are very different to those in which they were originally conceived nearly 30 years ago. It suggests that technology has an important role to play in future partnership interactions.
Preparing Earth Data Scientists for 'the sexiest job of the 21st century'
NASA Astrophysics Data System (ADS)
Kempler, S. J.
2014-12-01
What Exactly do Earth Data Scientists do, and What do They Need to Know, to do It? There is not one simple answer, but there are many complex answers. Data Science, and data analytics, are new and nebulas, and takes on different characteristics depending on: The subject matter being analyzed, the maturity of the research, and whether the employed subject specific analytics is descriptive, diagnostic, discoveritive, predictive, or prescriptive, in nature. In addition, in a, thus far, business driven paradigm shift, university curriculums teaching data analytics pertaining to Earth science have, as a whole, lagged behind, and/or have varied in approach. This presentation attempts to breakdown and identify the many activities that Earth Data Scientists, as a profession, encounter, as well as provide case studies of specific Earth Data Scientist and data analytics efforts. I will also address the educational preparation, that best equips future Earth Data Scientists, needed to further Earth science heterogeneous data research and applications analysis. The goal of this presentation is to describe the actual need for Earth Data Scientists and the practical skills to perform Earth science data analytics, thus hoping to initiate discussion addressing a baseline set of needed expertise for educating future Earth Data Scientists.
A Writing and Ethics Component for a Quantum Mechanics, Physical Chemistry Course
ERIC Educational Resources Information Center
Reilly, John T.; Strickland, Michael
2010-01-01
A writing-across-the-curriculum and ethics component is presented for a second-semester, physical chemistry course. The activity involves introducing ethical issues pertinent to scientists. Students are asked to read additional material, participate in discussions, and write essays and a paper on an ethical issue. The writing and discussion…
Art as an Avenue to Science Literacy: Teaching Nanotechnology through Stained Glass
ERIC Educational Resources Information Center
Duncan, Kimberly A.; Johnson, Chris; McElhinny, Kyle; Ng, Steve; Cadwell, Katie D.; Zenner Petersen, Greta M.; Johnson, Angela; Horoszewski, Dana; Gentry, Ken; Lisensky, George; Crone, Wendy C.
2010-01-01
Nanoscale science and engineering (NSE) and nanotechnology are emerging fields that have captured the attention of scientists and engineers, as well as mainstream media. However, the general public is relatively unaware of NSE, and schools (both K-12 and undergraduate institutions) rarely include nanotechnology as part of their curriculum. To help…
Using the QUAIT Model to Effectively Teach Research Methods Curriculum to Master's-Level Students
ERIC Educational Resources Information Center
Hamilton, Nancy J.; Gitchel, Dent
2017-01-01
Purpose: To apply Slavin's model of effective instruction to teaching research methods to master's-level students. Methods: Barriers to the scientist-practitioner model (student research experience, confidence, and utility value pertaining to research methods as well as faculty research and pedagogical incompetencies) are discussed. Results: The…
THE MAN MADE WORLD, LABORATORY MANUAL.
ERIC Educational Resources Information Center
Commission on Engineering Education, Washington, DC.
THIS LABORATORY MANUAL, THE COMPANION VOLUME TO THE STUDENT'S TEXT FOR THE "MAN MADE WORLD" HIGH SCHOOL COURSE, CONTAINS 31 EXPERIMENTS DEALING WITH THE THEORY, CIRCUITRY, AND OPERATION OF COMPUTERS, AND RELATED TECHNOLOGY. THE COURSE WAS WRITTEN BY SCIENTISTS, ENGINEERS, AND EDUCATORS, AND IS INTENDED AS A PART OF THE CULTURAL CURRICULUM FOR ALL…
Earth Science Content Guidelines Grades K-12.
ERIC Educational Resources Information Center
American Geological Inst., Alexandria, VA.
Teams of teachers, other science educators, and scientists selected from a national search for project writers have proposed using the following set of questions to guide the inclusion of earth science content into the kindergarten through grade 12 curriculum. The Essential Questions are organized in a K-12 sequence by six content areas: (1) Solid…
Adventure Learning as a Curricular Approach That Transcends Geographies and Connects People to Place
ERIC Educational Resources Information Center
Miller, Brant G.; Cox, Christopher J.; Hougham, R. Justin; Walden, Von P.; Eitel, Karla Bradley; Albano, Anthony D.
2015-01-01
Effectively communicating scientific research has taken on greater importance as climate change impacts the world we live in. It is increasingly incumbent upon the science and education communities to produce and deliver curriculum that is timely, accessible, and scientifically accurate. In the summer of 2012, scientists and educators worked…
Engage, Investigate, and Report: Enhancing the Curriculum with Scientific Inquiry
ERIC Educational Resources Information Center
Blake, Sally
2009-01-01
Young children are called natural scientists for good reason. Even infants investigate their surroundings, using their senses to look, touch, smell, hear, and taste. As children discover objects and situations that are puzzling or intriguing--things that provoke their curiosity--they begin looking for ways to find answers, all in an effort to…
A Comparison of Biology Majors' Written Arguments across the Curriculum
ERIC Educational Resources Information Center
Schen, Melissa
2013-01-01
Argumentation in science is the process of coordinating theory and evidence to justify conclusions. This practice is at the heart of scientific journal writing and communication, but little is known regarding the argument quality of college science majors, the future scientists. Studies on written arguments at the college level have focused…
Empowering Teachers to Teach Science in the Early Years in Mauritius
ERIC Educational Resources Information Center
Kamudu Applasawmy, B.; Naugah, J.; Maulloo, A. K.
2017-01-01
Children act as emergent scientists through active involvement with their environment and adults. Science forms an important component of early childhood education curriculum in Mauritius. Since 2015, The Rajiv Gandhi Science Centre (RGSC), has initiated a new project: empowering educators to teach science in pre-primary schools. One-day workshop…
Review article: the influence of psychology and human factors on education in anesthesiology.
Glavin, Ronnie; Flin, Rhona
2012-02-01
We look at the changing nature of medical education in the developed world with particular reference to those areas of the new curriculum frameworks which have introduced topics from the psychosocial realm. Research in the branch of psychology dealing with human factors has developed a useful body of working knowledge which applies to other industries where humans interact with the complex systems in which they function. Some findings are already being applied to facets of anesthesia performance, including situation awareness, effective teamwork, countermeasures against active errors and latent pathogens, and limitations of human performance. However, existing lessons and practices from industrial or military research may not translate directly into effective strategies for anesthesiologists. Collaborative studies between psychologists and clinicians should continue in order to provide the anesthetic curriculum with an effective body of knowledge for each role of the anesthesiologist. Although individual anesthesiologists have made important contributions in this field, such material has not been formally incorporated into the curricula serving anesthesiologists in the developed world. There is a gap between the human factors psychologists now know and the human factors anesthesiologists need to know. As that gap closes, anesthesiologists may come to think more like human factor psychologists as well as biomedical scientists.
Professional development by scientists and teachers' understanding of the nature of science
NASA Astrophysics Data System (ADS)
Schuster, Dwight A.
The educational literature suggests that the success of professional development is contingent upon both a professional developer's presentation of the curriculum and his/her comprehension of the complex interactions that occur between instructor and the adult learner. While these suggestions appear forthright and logical, very little research has been conducted to demarcate how professional development approaches defined by these notions impact teacher knowledge. This study investigates the effects of scientist-delivered teacher professional development on teachers' understanding of the nature of science. Using a mixed-method comparative case study, my goal was to build theory focusing specifically on two dimensions of professional development: the pedagogical approaches used by the scientist-instructors and their views/treatment of teachers as professionals or as technicians. Seven credit-bearing summer courses from multiple scientific disciplines were studied, and each course shared a number of important features (duration, general format, teacher recruitment and admission, location, number of participants, etc.); consequently, they comprise a unique dataset for comparative research on science teacher professional development. A wide variety of data collection approaches were used, including interviews, questionnaires, a VNOS instrument, and systematic classroom observation by ten trained observers (each course was continuously observed by at least two observers). Analysis shows that teachers were more likely to experience change in their views about the nature of science in courses in which they were treated as professionals, compared to courses in which they were treated as technicians. It also shows that syllabi and participant reports tend to overstate the use of inquiry methods when reviewed in the light of close classroom observation. By recognizing and defining professional development contexts that build teachers' knowledge, this study suggests how university-based professional development for science educators can be improved, helping to actualize the collaborative relationships that need to exist between staff developers and discipline specialists. In conclusion, I use the findings from this study to expand the current literature and suggest how improved university-based professional development contexts can be created.
NASA Astrophysics Data System (ADS)
Lea, P. D.; Urquhart, J.
2010-12-01
The title quote, from a senior geoscience major, illustrates one of the important aspects of service learning. The associated authentic research experiences benefit not only learning of geoscience concepts, but also students’ perceptions of the role of science in society. For the past two years, a wide-ranging study of water-quality dynamics in the Androscoggin Lake watershed of Maine has engaged (1) introductory students and non-science majors in spring-semester courses, (2) upper-level geoscience majors in fall-semester courses, and (3) seniors undertaking independent summer research. The overall focus of the research is to understand nutrient loading to Androscoggin Lake, which receives back-flooded water from the industrialized Androscoggin River, as well as from agricultural lands in the connecting Dead River valley. Stakeholders include the local lake association, the state DEP, pulp-mill and wastewater-plant operators, and local farmers. A key element in the project is the role adopted by the student researchers vis-à-vis policy options. Following the taxonomy of Pielke (2007, The Honest Broker: Cambridge University Press), students doing service learning may serve as issue advocates, seeking to provide scientific support for the policy positions of community partners. In contrast, we have adopted explicitly the position of honest brokers who seek to understand and communicate the workings of this complex system without advocating specific policy solutions. This approach has facilitated buy-in from a larger range of stakeholders, and encouraged students to address choices in the roles and responsibilities of scientists in policy decisions—a valuable perspective for future scientists and non-scientists alike. In service-learning courses, groups of 3 to 5 students engage in a variety of sub-projects, such as lake-bottom sediment studies, nutrient sampling in streams and lakes, developing rating curves for streamflow, and calculating phosphorus fluxes during runoff events. Engaging students year-round has a number of benefits, including continuity with community partners, being able to assess seasonal controls in water-quality dynamics and to capture significant runoff events, and exposing students to different aspects of the complex system over time. Supporting such student engagement is costly in terms of instructor time, especially for introductory students, who collect enough data to feel “ownership” but are provided with additional data so as to have an adequate basis for conclusions relevant to stakeholders. Strategies for providing these additional data include (1) regular (e.g., weekly) “snapshot sampling” by undergraduate interns, and (2) automated dataloggers and samplers obtained from external funding for curriculum development. Students assume increasing independence and time commitment to the project as they progress through the curriculum, building upon their prior experiences. Along the way, they learn authentic lessons both on how scientific knowledge is developed, and on how that knowledge is communicated to the benefit of diverse stakeholders in the community.
NASA Astrophysics Data System (ADS)
Lekkas, Efthymis; Andreadakis, Emmanouil; Nomikou, Paraskevi; Antoniou, Varvara; Kapourani, Eleni; Papaspyropoulos, Konstantinos
2017-04-01
Environmental issues, disasters and crises have been showing an increasing complexity and interconnections in every level and aspect, thus requiring a holistic approach from simple problem solving to emergency management. Recent challenges include geographical and affected population escalation, complex or cascading disasters and interconnection of regional conflicts to transboundary social, political and environmental impact. One of the issues concerning the traditional management is competition or even antagonism between organizations, services and disciplines, from science to operations. In this context, a postgraduate program answering to these issues was designed in Greece, applying multidisciplinarity, crossdisciplinarity and interdisiplinarity, from teaching staff and tutors, to students, objects and fields of knowledge and research. The program offers a curriculum of lessons and disciplines integrating science, humanities, legislation, institutions and operations. Geosciences carry an inherent interdisciplinarity culture and a long tradition in the research of environment and disasters, along with their familiarity with the complexity of such issues. That is why the program "Environmental, Disaster and Crisis Management Strategies" was organized by the Department of Geology and Geoenvironment of the National and Kapodistrian University of Athens, but involves social scientists, emergency operators, medical scientists etc. The program aims at the diffusion of basic principles and tools of all related disciplines and develops a common ground and a communication language with the least barriers, and the building of trust and understanding between all parties involved. The curriculum is designed so that professionals of all disciplines and industries are able to attend without interrupting their other activities, while pursuing their personal scientific and professional educational goals and interests through selection of lessons and thesis subject. As a result, admitted students come, in a large percentage, from services and authorities involved in environmental, disaster and crisis management issues (for example fire service, police, armed forces, ministries, local administration etc) apart from graduate students continuing their studies. An added value of the program has been observed the development of a critical mass of personnel of these organizations and young scientists with increased connectivity, extending from simple acquaintance to cooperation and trust and synergy development of the services themselves. This is a promising condition for a more effective risk and emergency management in a context of ethical and responsible practices. The curriculum comprises live or online lectures, asynchronous education with exercises and essay writing, seminars on tools such as related GIS and SPSS applications, and applied field exercises on both scientific and emergency management subjects. The program completed the second year of function, and was upgraded after internal and external evaluation, to adjust to new fields, ideas and challenges and include students' suggestions. More than one hundred students have graduated so far, and another 350 are currently attending. The program, which originally available in Greek, is going to be available in English starting September 2017, and is open for applications, and presented at: http://www.edcm.edu.gr
Using citizen science to bridge taxonomic discovery with education and outreach.
von Konrat, Matt; Campbell, Thomas; Carter, Ben; Greif, Matthew; Bryson, Mike; Larraín, Juan; Trouille, Laura; Cohen, Steve; Gaus, Eve; Qazi, Ayesha; Ribbens, Eric; Livshultz, Tatyana; Walker, Taylor J; Suwa, Tomomi; Peterson, Taylor; Rodriguez, Yarency; Vaughn, Caitlin; Yang, Christina; Aburahmeh, Selma; Carstensen, Brian; de Lange, Peter; Delavoi, Charlie; Strauss, Kalman; Drag, Justyna; Aguero, Blanka; Snyder, Chris; Martinec, Joann; Smith, Arfon
2018-02-01
Biological collections are uniquely poised to inform the stewardship of life on Earth in a time of cataclysmic biodiversity loss. Efforts to fully leverage collections are impeded by a lack of trained taxonomists and a lack of interest and engagement by the public. We provide a model of a crowd-sourced data collection project that produces quality taxonomic data sets and empowers citizen scientists through real contributions to science. Entitled MicroPlants, the project is a collaboration between taxonomists, citizen science experts, and teachers and students from universities and K-12. We developed an online tool that allows citizen scientists to measure photographs of specimens of a hyper-diverse group of liverworts from a biodiversity hotspot. Using the MicroPlants online tool, citizen scientists are generating high-quality data, with preliminary analysis indicating non-expert data can be comparable to expert data. More than 11,000 users from both the website and kiosk versions have contributed to the data set, which is demonstrably aiding taxonomists working toward establishing conservation priorities within this group. MicroPlants provides opportunities for public participation in authentic science research. The project's educational component helps move youth toward engaging in scientific thinking and has been adopted by several universities into curriculum for both biology and non-biology majors.
Students on Ice: International Polar Year Expeditions
NASA Astrophysics Data System (ADS)
Green, G.
2006-12-01
The Students on Ice program has been introducing and connecting the next generation of Polar researchers and scientists to the Arctic and Antarctic Regions since 1999. To date, approximately 600 international high school and university students have participated on these powerful and award-winning educational expeditions. Traveling through the Antarctic and Arctic on ice-class vessels, the students connect with an international educational team, consisting of Polar scientists, educators, researchers and lecturers, and gain valuable first hand information through a variety of different educational formats. Students participate in lectures, seminars, group discussions, `hands-on' science experiments, and experience once-in-a-lifetime opportunities to view rare wildlife, and to visit remote locations of historic, cultural, and scientific significance. In celebration of the upcoming International Polar Years (IPY), Students on Ice is launching nine unique IPY youth expeditions between 2007 and 2009. Intended for high school students, university students, and interested educators, these expeditions are officially endorsed by the International Polar Year Joint Committee. The goals of the SOI-IPY youth expeditions, include raising awareness and understanding about Polar and environmental issues, development of Polar curriculum and resources, inspiring the next generation of scientists and researchers, and promoting the IPY to millions of youth around through outreach, media and partnership activities.
NASA Astrophysics Data System (ADS)
Fatland, D. R.
2008-12-01
I ran an extended (18 session) workshop during the 2007-2008 school year at a public Montessori elementary in Boulder Colorado. A reprise is running this year that extends to middle school students. The curriculum emphasis was on physical and environmental science, assembled in part using synoptic principles drawn from the National Research Council report "How People Learn". The curriculum was driven by story lines that began and ended in the students' zone of comprehension, in the interim extending through proximal development to open-ended inquiry. The workshop had four distinct purposes: i) Provide students an opportunity to problem-solve, ii) Break barriers between classroom learning and field science, iii) Determine what does and does not work with students at this age, iv) Begin building an alternative outreach path for professional scientists, specifically to avoid one-off presentation ('magic show') syndrome. New technology was incorporated in the workshop as needed--from thermochrons to virtual globes--but this was de- emphasized to keep focus on the subject matter. Data played a much stronger role particularly during early sessions where students were divided into 'phenomena' and 'scientist' groups in order to see both sides of the inquiry process. I present here workshop results, successes and failures, with two emphases: First on the idea that data can be an excellent way to build metacognitive skills in students around age 10. Second that-- with all due credit to Marshall McLuhan--the medium best serves by staying out of the way of the message.
NASA Astrophysics Data System (ADS)
Tarter, Jill
The search for extraterrestrial intelligence (SETI) could succeed tomorrow, decades from now, or never. The nature of this scientific exploration is such that we cannot predict success on any timescale; we only know that if we do not search, we cannot succeed. Having spent my scientific career in this field, I know perhaps better than anyone that the researchers of tomorrow may hold the key. Thus I have an enormous and vested interest in trying to educate the next generation of scientists. Because SETI excites such enthusiasm in young and old alike, I have an excellent opportunity to capture hearts and minds and leverage this interest into science education at many levels. Astrobiology is the new banner for inter- and cross-disciplinary investigations aimed at answering the big question "Are we alone?" The story of cosmic evolution is one that scientists at the SETI Institute have been telling for decades. We have used it as the framework for developing supplementary materials for elementary and middle schools called Life In The Universe. Currently we are tackling a year-long curriculum called Voyages Through Time for ninth grade students. This curriculum is delivered on CD-ROM and supported by the web. It focuses on evolution as a theme and stresses the contributions made from all the traditionally isolated branches of science --- and by the way, it's fun! I am a product of the post-Sputnik era and the American emphasis on science and engineering education. In the New York City bedroom community where I grew up, every school bond issue passed at every election. So I am appalled at the difficulties, the impecuniousness, and bureaucratic nonsense our pilot and field test teachers encounter on a daily basis. I am also overjoyed that even under such unreasonable conditions, I meet enthusiastic teachers who care about their students and are dedicated to helping them achieve the best possible education. Not all students will become scientists, nor should they. However, in partnership with the dedicated teachers out there, I think I can help promote the critical thinking skills and scientific literacy of the next generation of voters. Hopefully, I can also help train my replacement to be a better scientist, capable of seizing all the opportunities generated by advances in technology and our improved understanding of the universe to craft search strategies with greater probability of success than those I have initiated.
NASA Astrophysics Data System (ADS)
Yamamoto, Karen Kina
This study examines the dynamics of survival and growth of curricular and instructional innovations. It focuses on the Foundational Approaches in Science Teaching (FAST) project, a long-term survivor of reform in science education. Key questions guiding this study include: (1) How did the FAST project survive over the past 30 years? (2) What elements are essential for long-term survival and growth of an innovative science program? (3) Why did the project continue to survive amidst several waves of educational reform? The core of my conceptual framework is that the odds of survival and growth of curricular and instructional innovations are increased by the extent to which resources, theory-based curriculum development processes, and professional development strategies are not only incorporated into but also interdependent within a project. With this framework as a guide, the main methods of data collection were document analysis, interviews, and observations. FAST, developed by the University of Hawaii's Curriculum Research and Development Group (CRDG), consists of a sequential and interdisciplinary middle and high school science program for students in grades 6-10. According to the results of this study, the project was able to survive by receiving constant organizational support from CRDG and a steady source of State funding through the university since 1966; it also retained a relatively small but stable staff of highly qualified project personnel. Formulated on a discipline-based theory that values development of students' intellectual capacities as the platform for curriculum research, design, and development, the FAST project translated this vision of science education into key elements of an innovative program that survived and thrived: (1) an interdisciplinary program consisting of physical, biological, and earth sciences; inquiry as content and process; history and philosophy of science; and links between and among sciences, technology, and society; and (2) teaching and learning strategies that model a community of practicing scientists. This study also identified the main elements of professional development strategies essential for an innovative project's survival and growth: linking curriculum development to required pre-implementation inservice training, engaging project personnel in both of these phases recruiting, training a cadre of experienced FAST teachers as inservice trainers, and providing follow-up professional development seminars. In conclusion, the FAST project survived mainly because the longevity of its leaders gave stability and continuity to the project. Against many odds such as limited financial resources and a small number of staff positions relative to the project's scope, the leaders managed with whatever resources were available to link theory-based curriculum development with professional development and, thereby, increase the project's chances for survival and growth.
Bringing Planetary Data into Learning Environments: A Community Effort
NASA Astrophysics Data System (ADS)
Shipp, S.; Higbie, M.; Lowes, L.
2005-12-01
Recognizing the need to communicate scientific findings, and the power of using real planetary data in educational settings to engage students in Earth and space science in meaningful ways, the South Central Organization of Researchers and Educators and the Solar System Exploration Education Forum, part of NASA's Science Mission Directorate's Support Network, have established the Planetary Data in Education (PDE) Initiative. The Initiative strives to: 1) Establish a collaborative community of educators, education specialists, curriculum developers, tool developers, learning technologists, scientists, and data providers to design and develop educationally appropriate products; 2) Build awareness in the broader educational and scientific community of existing programs, products, and resources; 3) Address issues hindering the effective use of planetary data in formal and informal educational settings; and 4) Encourage partnerships that leverage the community's expertise The PDE community has hosted two conferences exploring issues in using data in educational settings. The community recognizes that data are available through venues such as the Planetary Data Systems (PDS), but not in a format that the end-user in a formal or informal educational setting can digest; these data are intended for the scientific audience. Development of meaningful educational programs using planetary data requires design of appropriate learner interfaces and involvement of data providers, product developers, learning technologists, scientists, and educators. The PDE community will participate in the development of Earth Exploration Toolbooks during the DLESE Data Services Workshop and will host a workshop in the summer of 2006 to bring together small groups of educators, data providers, and learning technologists, and scientists to design and develop products that bring planetary data into educational settings. In addition, the PDE community hosts a Web site that presents elements identified as needed by the community, including examples of planetary data use in education, recommendations for program development, links to data providers, opportunities for collaboration, pertinent research, and a Web portal to access educational resources using planetary data on the DLESE Web site.
The Stories of Inventions: An Interdisciplinary, Project-Based Unit for U.S. History Students
ERIC Educational Resources Information Center
Nargund-Joshi, Vanashri; Bragg, John
2017-01-01
During the second industrial revolution (1870-1914), scientists moved away from trial-anderror methods to more systematically apply the principles of chemistry, physics, and biology (Mokyr 1998). The authors chose this period as the foundation of a project-based learning (PBL) unit integrated with the ninth-grade U.S. history curriculum (Thomas…
A Comparison of Student Outcomes in Various Earth Science Courses Taught by Seventeen Iowa Teachers.
ERIC Educational Resources Information Center
Schirner, Silas Wesley
The effects of the type of earth science course (Earth Science Curriculum Project (ESCP) and non-ESCP), the directness or indirectness of teacher-pupil interaction in various teaching activities (I/D ratio), and the teacher's philosophical orientation (T/NT ratio) on various student outcomes such as understanding of science and scientists;…
Biology...Its People and Its Papers.
ERIC Educational Resources Information Center
Baumel, Howard B.; Berger, J. Joel
This publication contains a collection of research papers designed to be used as a supplement to the textbook in a high school biology class. The material can be used to enrich the curriculum by stimulating critical thinking and by making high school students aware of the ways in which scientists work. Some of the papers have been condensed or…
Using Historical Knowledge to Reason about Contemporary Political Issues: An Expert-Novice Study
ERIC Educational Resources Information Center
Shreiner, Tamara L.
2014-01-01
People often justify history's place in the curriculum by its relationship to citizenship, yet there is little research to help educators picture how people use historical knowledge for civic purposes. This expert-novice study used the think-aloud method to examine how eight political scientists and eight high school students employed…
ERIC Educational Resources Information Center
American Association of Physics Teachers (NJ1), 2009
2009-01-01
Physics First represents an organizational alternative to the traditional high school science sequence. It calls for a re-sequencing of high school courses so that students study physics before chemistry and biology. The purpose of this pamphlet is to provide: (1) Basic information and rationale for the Physics First curriculum; (2) Strategies for…
Attitudes of Early Adolescents toward Science, Women in Science, and Science Careers.
ERIC Educational Resources Information Center
Erb, Thomas Owen
The study described is part of a larger project, Career Oriented Modules to Explore Topics in Science (COMETS), designed to integrate career education into the science curriculum. This study aimed to determine the attitudes of male and female students aged 10-16 toward scientists, science, women in science, careers in technical fields, and careers…
STEM Policy and Science Education: Scientistic Curriculum and Sociopolitical Silences
ERIC Educational Resources Information Center
Gough, Annette
2015-01-01
This essay responds to the contribution of Volny Fages and Virginia Albe, in this volume, to the field of research in science education, and places it in the context of the plethora of government and industry policy documents calling for more Science, Technology, Engineering and Mathematics (STEM) education in schools and universities and the…
ERIC Educational Resources Information Center
Cohen, Edward Charles
2013-01-01
Design based research was utilized to investigate how students use a greenhouse effect simulation in order to derive best learning practices. During this process, students recognized the authentic scientific process involving computer simulations. The simulation used is embedded within an inquiry-based technology-mediated science curriculum known…
ERIC Educational Resources Information Center
Anderson, Dayle; Moeed, Azra
2017-01-01
Current curriculum demands require primary teachers to teach about the Nature of Science; yet, few primary teachers have had opportunity to learn about science as a discipline. Prior schooling and vicarious experiences of science may shape their beliefs about science and, as a result, their science teaching. This qualitative study describes the…
Preparing a Data Scientist: A Pedagogic Experience in Designing a Big Data Analytics Course
ERIC Educational Resources Information Center
Asamoah, Daniel Adomako; Sharda, Ramesh; Hassan Zadeh, Amir; Kalgotra, Pankush
2017-01-01
In this article, we present an experiential perspective on how a big data analytics course was designed and delivered to students at a major Midwestern university. In reference to the "MSIS 2006 Model Curriculum," we designed this course as a level 2 course, with prerequisites in databases, computer programming, statistics, and data…
Interactive Video, The Next Step
NASA Astrophysics Data System (ADS)
Strong, L. R.; Wold-Brennon, R.; Cooper, S. K.; Brinkhuis, D.
2012-12-01
Video has the ingredients to reach us emotionally - with amazing images, enthusiastic interviews, music, and video game-like animations-- and it's emotion that motivates us to learn more about our new interest. However, watching video is usually passive. New web-based technology is expanding and enhancing the video experience, creating opportunities to use video with more direct interaction. This talk will look at an Educaton and Outreach team's experience producing video-centric curriculum using innovative interactive media tools from TED-Ed and FlixMaster. The Consortium for Ocean Leadership's Deep Earth Academy has partnered with the Center for Dark Energy Biosphere Investigations (C-DEBI) to send educators and a video producer aboard three deep sea research expeditions to the Juan de Fuca plate to install and service sub-seafloor observatories. This collaboration between teachers, students, scientists and media producers has proved a productive confluence, providing new ways of understanding both ground-breaking science and the process of science itself - by experimenting with new ways to use multimedia during ocean-going expeditions and developing curriculum and other projects post-cruise.
ERIC Educational Resources Information Center
Shawer, Saad F.
2010-01-01
This qualitative study aimed to explore teacher curriculum approaches and the strategies attached to each approach because they influence the taught curriculum, teacher development and student learning. The study was therefore grounded in teacher curriculum development, curriculum implementation, teacher development, student cognitive and…
NASA Astrophysics Data System (ADS)
Yarker, M. B.; Stanier, C. O.; Forbes, C.; Park, S.
2011-12-01
As atmospheric scientists, we depend on Numerical Weather Prediction (NWP) models. We use them to predict weather patterns, to understand external forcing on the atmosphere, and as evidence to make claims about atmospheric phenomenon. Therefore, it is important that we adequately prepare atmospheric science students to use computer models. However, the public should also be aware of what models are in order to understand scientific claims about atmospheric issues, such as climate change. Although familiar with weather forecasts on television and the Internet, the general public does not understand the process of using computer models to generate a weather and climate forecasts. As a result, the public often misunderstands claims scientists make about their daily weather as well as the state of climate change. Since computer models are the best method we have to forecast the future of our climate, scientific models and modeling should be a topic covered in K-12 classrooms as part of a comprehensive science curriculum. According to the National Science Education Standards, teachers are encouraged to science models into the classroom as a way to aid in the understanding of the nature of science. However, there is very little description of what constitutes a science model, so the term is often associated with scale models. Therefore, teachers often use drawings or scale representations of physical entities, such as DNA, the solar system, or bacteria. In other words, models used in classrooms are often used as visual representations, but the purpose of science models is often overlooked. The implementation of a model-based curriculum in the science classroom can be an effective way to prepare students to think critically, problem solve, and make informed decisions as a contributing member of society. However, there are few resources available to help teachers implement science models into the science curriculum effectively. Therefore, this research project looks at strategies middle school science teachers use to implement science models into their classrooms. These teachers in this study took part in a week-long professional development designed to orient them towards appropriate use of science models for a unit on weather, climate, and energy concepts. The goal of this project is to describe the professional development and describe how teachers intend to incorporate science models into each of their individual classrooms.
NASA Astrophysics Data System (ADS)
Kolářová, Lucie; Rálišová, Ema
2017-01-01
The advancements in nanotechnology especially in medicine and in developing new materials offer interesting possibilities for our society. It is not only scientists and engineers who need a better understanding of these new technologies but it is also important to prepare the young people and the general public on impact of nanotechnology on their life. Knowledge from this field likewise provides the opportunities to engage and motivate high school students for the study of science. Although, the concepts of nanoscience and nanotechnology are not a part of Czech high school physics curriculum they can be successfully integrated into regular curriculum in appropriate places. Because it is an interdisciplinary field, it also provides an opportunity for the interdisciplinary connections of physics, chemistry and biology. Many concepts for understanding the nanoworld can be shown by the simple activities and experiments and it is not a problem to demonstrate these experiments in each classroom. This paper presents the proposal for integration of the concepts of nanoscience and nanotechnologies into the high school physics curriculum, and the involvement of some of these concepts into the instructional program for middle and high school students which was realized in interactive science museum Fort Science in Olomouc. As a part of the program there was a quantitative questionnaire and its goal was to determine the effectiveness of the program and how students are satisfied with it.
Storm Peak Laboratory 5th-6th Grade Climate and Weather Program
NASA Astrophysics Data System (ADS)
McCubbin, I. B.; Hallar, A. G.
2008-12-01
Storm Peak Laboratory (SPL) has created a place-based elementary school program, which has been implemented at five elementary schools in Northwest Colorado. Real understanding, not factual recall, is the primary goal and developing a desire to be lifelong learners in science is a secondary goal. The specific objectives of the program include the following: 1) Develop a weather and climate curriculum that teaches skills required by Colorado Student Assessment Program (CSAP). 2) Provide a hands-on place-based educational experience where students have an opportunity to use scientific equipment. 3) Provide students a three-day program that consists of an introduction, field program, and follow-up to help students grasp concepts and apply them to other school studies. 4) Provide all participating students with understanding of climate and weather 5) Build foundations for students to understand climate change. 6) Disseminate to alpine regions across the Western US, potentially impacting thousands of students that will experience the impacts of climate change during their lifetime. The SPL program spans three days for each school and includes five elementary schools. During the first day, a scientist and educators from SPL visit each classroom for two hours to introduce the concepts of climate and weather as well as teach students how to use scientific equipment. During the field program on the second day, students measure and record information about temperature, pressure, relative humidity, wind speed, and particle concentration while they travel to SPL via the gondola and chair lifts (in winter) or 4WD Suburbans (in fall). Once at the laboratory, students will meet with both SPL scientists and educators to tour the facility, discuss SPL research activities, and explore application of these activities to their curriculum. An alternative winter snowshoe program at the top of the gondola is offered to students who do not ski, where students have a program on snow science. At the end of the day each student has a data sheet with measurements recorded from 5 locations of different elevations to take back to the classroom. Following the field trip, SPL scientists and educators visit the school for a follow-up to help children grasp concepts, represent their data set collected in graphical formats, answer questions, and evaluate students" learning. Currently, approximately 250 students annually participate in the SPL 5th and 6th grade climate education program.
NASA Astrophysics Data System (ADS)
Ali, N. A.; Paglierani, R.; Raftery, C. L.; Romero, V.; Harper, M. R.; Chilcott, C.; Peticolas, L. M.; Hauck, K.; Yan, D.; Ruderman, I.; Frappier, R.
2015-12-01
The Multiverse education group at UC Berkeley's Space Sciences Lab created the NASA-funded "Five Stars Pathway" model in which five "generations" of girls and women engage in science together in an afterschool setting, with each generation representing one stage in the pathway of pursuing a career in science, technology, engineering, or math (STEM). The five stages are: elementary-age students, middle-school-age students, undergraduate-level college students, graduate-level college students and professional scientists. This model was field-tested at two Girls Inc. afterschool locations in the San Francisco Bay Area and distributed to Girls Inc. affiliates and other afterschool program coordinators nationwide. This presentation will explore some of the challenges and success of implementing a multigenerational STEM model as well as distributing the free curriculum for interested scientists and college students to use with afterschool programs.
NASA Astrophysics Data System (ADS)
Gutierrez, B.; Fordham, M.; Lopes-Pocknett, R.; Wyman, K.; Stringer, C.; Green, G.; Tobey, Q.; Rassman, J.; Mills, E., Jr.
2014-12-01
Over the past three years, we have developed and implemented a collaborative summer science program for Mashpee Wampanoag youth that engages tribal elders, parents, educators, and local scientists to connect tribal youth with the ecology and geology of their traditional homelands. This collaboration, called Native Youth in Science: Preserving our Homeland (POH), involves the Mashpee Wampanoag Education and Natural Resource Departments, an experienced team of tribal elders and scientists from the U.S. Geological Survey's Woods Hole Coastal and Marine Science Center Waquoit Bay National Estuarine Research Reserve, U.S. Forest Service, and NOAA National Marine Fisheries. The team has developed and implemented a curriculum that stresses the ancestral relationships of Wampanoag people to their land. Through hands-on activities at locations of cultural significance, our efforts focus on presenting topics in environmental science from both western science and Wampanoag perspectives to 5th-8th grade students from the Wampanoag Tribe. Overarching themes focus on local land use history and its impact on traditional food sources such as shellfish and herring. Lessons typically address hydrology, water quality, fish and shellfish biology, botany, and local geology. To present these topics, scientists are paired with Wampanoag Tribe culture keepers to develop lessons that present science topics side-by-side with cultural knowledge. The primary goals of POH are to (a) connect and reinforce science concepts learned in conventional school settings for tribal youth; (b) demonstrate the use of science as a tool for understanding and preserving the ecosystems and homelands of the Mashpee Wampanoag Tribe; and (c) how indigenous traditional ecological knowledge (TEK) and western science complement each other. In the long-term, this program begins to prepare tribal students for more advanced programs supporting their pursuit of higher education.
Soil 4 Youth: Charting New Territory in Canadian High School Soil Science Education
ERIC Educational Resources Information Center
Krzic, Maja; Wilson, Julie; Basiliko, Nathan; Bedard-Haughn, Angela; Humphreys, Elyn; Dyanatkar, Saeed; Hazlett, Paul; Strivelli, Rachel; Crowley, Chris; Dampier, Lesley
2014-01-01
As global issues continue to place increasing demands on soil resources, the need to provide soil science education to the next generation of soil scientists and the general public is becoming more imminent. In many countries around the world, including Canada, soil is either not included in the high school curriculum or it is not covered in…
ERIC Educational Resources Information Center
Commission on Engineering Education, Washington, DC.
THIS STUDENTS' MANUAL FOR THE ENGINEERING CONCEPTS CURRICULUM PROJECT'S (ECCP) HIGH SCHOOL COURSE, "THE MAN MADE WORLD," IS THE THIRD DRAFT OF THE EXPERIMENTAL VERSION. THE MATERIAL WRITTEN BY SCIENTISTS, ENGINEERS, AND EDUCATORS, EMPHASIZES THE THEORIES AND TECHNIQUES WHICH CONTRIBUTE TO OUR TECHNOLOGICAL CIVILIZATION. RESOURCES OF THE MAN-MADE…
ERIC Educational Resources Information Center
Baek, Hamin
2013-01-01
In the past decade, there has been a growing interest in scientific practices as a reform focus in K-12 science education of the United States. In this context, scientific practices refer to practices that have family resemblance to scientists' professional practices and simultaneously are pedagogically accessible and useful to students. In…
Save the Penguins: Teaching the Science of Heat Transfer through Engineering Design
ERIC Educational Resources Information Center
Schnittka, Christine; Bell, Randy; Richards, Larry
2010-01-01
Engineers, scientists, and environmental groups around the globe are hard at work finding solutions to mitigate or halt global warming. One major goal of the curriculum described here, Save the Penguins, is to help students recognize that what we do at home can affect how penguins fare in the Southern Hemisphere. In addition, students learn how…
A History of the Liberal Arts Computer Science Consortium and Its Model Curricula
ERIC Educational Resources Information Center
Bruce, Kim B.; Cupper, Robert D.; Scot Drysdale, Robert L.
2010-01-01
With the support of a grant from the Sloan Foundation, nine computer scientists from liberal arts colleges came together in October, 1984 to form the Liberal Arts Computer Science Consortium (LACS) and to create a model curriculum appropriate for liberal arts colleges. Over the years the membership has grown and changed, but the focus has remained…
The Concept Currency of K-12 Science Textbooks Relative to Earth Science Concepts.
ERIC Educational Resources Information Center
Janke, Delmar Lester
This study was undertaken to determine the degree of agreement between science textbooks and scholars in earth science relative to earth science concepts to be included in the K-12 science curriculum. The study consisted of two phases: (1) the identification of a sample of earth science concepts rated by earth scientists as important for inclusion…
ERIC Educational Resources Information Center
Harris, Christopher J.; Penuel, William R.; D'Angelo, Cynthia M.; DeBarger, Angela Haydel; Gallagher, Lawrence P.; Kennedy, Cathleen A.; Cheng, Britte Haugen; Krajcik, Joseph S.
2015-01-01
The "Framework for K-12 Science Education" (National Research Council, 2012) sets an ambitious vision for science learning by emphasizing that for students to achieve proficiency in science they will need to participate in the authentic practices of scientists. To realize this vision, all students will need opportunities to learn from…
ERIC Educational Resources Information Center
Ellwood, Robin B.
2013-01-01
This research investigated how student social interactions within two approaches to an inquiry-based science curriculum could be related to student motivation and achievement outcomes. This qualitative case study consisted of two cases, Off-Campus and On-Campus, and used ethnographic techniques of participant observation. Research participants…
A model of professional development for urban teachers
NASA Astrophysics Data System (ADS)
Narasimhan, C.
Over the past five years, DePaul University has established a network of urban teachers who are focused on linking the learning of fundamental concepts of physics, chemistry, and biology to relevant and current discoveries in space science. One component of this effort has been a series of annual space science symposia for Chicago-area teachers. These symposia are mixtures of space science presentations by national and local scientists and discussions in areas such as curriculum and professional development, NASA resources, and communication. Since the first symposium, planning has been done in partnership with a small group of teachers who have moved into leadership positions in advancing space science in the Chicago area. This presentation will describe the evolution of the annual symposium as a professional development activity and give the results of a recent assessment project designed to measure the impact of these symposia on Chicago teachers and their classroom practices.
Frontier Fields: A Cost-Effective Approach to Bringing Authentic Science to the Education Community
NASA Astrophysics Data System (ADS)
Eisenhamer, B.; Lawton, B.; Summers, F.; Ryer, H.
2015-11-01
For more than two decades, the Hubble EPO program has sought to bring the wonders of the universe to the education community and the public, and to engage audiences in the adventure of scientific discovery. Program components include standards-based, curriculum-support materials, exhibits and exhibit components, and professional development workshops. The main underpinnings of the program's infrastructure are scientist-educator development teams, partnerships, and an embedded program evaluation component. The Space Telescope Science Institute's Office of Public Outreach is leveraging this existing infrastructure to bring the Frontier Fields science program to the education community in a cost-effective way. Frontier Fields observations and results have been, and will continue to be, embedded into existing product lines and professional development offerings. We also are leveraging our new social media strategy to bring the science program to the public in the form of an ongoing blog.
Earth Science for Educators: Preparing 7-12 Teachers for Standards-based, Inquiry Instruction
NASA Astrophysics Data System (ADS)
Sloan, H.
2002-05-01
"Earth Science for Educators" is an innovative, standards-based, graduate level teacher education curriculum that presents science content and pedagogic technique in parallel. The curriculum calls upon the resources and expertise of the American Museum of Natural History (AMNH) to prepare novice New York City teachers for teaching Earth Science. One of the goals of teacher education is to assure and facilitate science education reform through preparation of K-12 teachers who understand and are able to implement standard-based instruction. Standards reflect not only the content knowledge students are expected to attain but also the science skills and dispositions towards science they are expected to develop. Melding a list of standards with a curriculum outline to create inquiry-based classroom instruction that reaches a very diverse population of learners is extremely challenging. "Earth Science for Educators" helps novice teachers make the link between standards and practice by constantly connecting standards with instruction they receive and activities they carry out. Development of critical thinking and enthusiasm for inquiry is encouraged through engaging experience and contact with scientists and their work. Teachers are taught Earth systems science content through modeling of a wide variety of instruction and assessment methods based upon authentic scientific inquiry and aimed at different learning styles. Use of fieldwork and informal settings, such as the Museum, familiarizes novice teachers with ways of drawing on community resources for content and instructional settings. Metacognitive reflection that articulates standards, practice, and the teachers' own learning experience help draw out teachers' insights into their students' learning. The innovation of bring science content together with teaching methods is key to preparing teachers for standards-based, inquiry instruction. This curriculum was successfully piloted with a group of 28 novice teachers as part of the AMNH-City University of New York partnership and the CUNY Teaching Opportunity Program Scholarship. Reactions and feedback from program coordinators and teachers have been extremely positive during the year and a half since its implementation.
Educating the next generation of SETI scientists: Voyages through time
NASA Astrophysics Data System (ADS)
DeVore, Edna; Tarter, Jill; Fisher, Jane; O'Sullivan, Kathleen; Pendleton, Yvonne; Taylor, Sam; Burke, Margaret
2003-08-01
The search for extraterrestrial intelligence (SETI) could succeed tomorrow, or not for many generations, or never. SETI scientists are very cognizant of the need to train the next generation of researchers who can carry on this vast scientific exploration. Previously, the SETI Institute has met this challenge by developing supplementary teacher's guides for elementary and middle schools called "Life In the Universe" and published by Teacher Ideas Press. Currently, we are engaged in a far more challenging project that is funded primarily by the National Science Foundation (NSF). The SETI Institute is creating a year long, interdisciplinary, high school science curriculum called "Voyages Through Time: Everything Evolves". We are using the theme of evolution to weave a panoramic vista for students that begins with the origin of the universe, encompasses our own origin and evolution, and looks at the evolution of technology and our possible future. By integrating different scientific and technical disciplines to explore how we answer fundamentally important questions, we hope to excite and motivate high school students with the opportunities offered by the way science is practiced today. We invite them to plan a future in which they help to enrich the answers to the big questions: Where did I come from? Where am I going? is anybody else out there? Voyages Through Time consists of six modules on CD-ROMs for teachers and students that have been extensively tested both regionally and nationally. Publication is expected in 2003. The partners in the development of this curriculum are the SETI Institute, NASA Ames Research Center, California Academy of Sciences, and San Francisco State University. Voyages Through Time is funded by the NSF (IMD # 9730693) with additional support from NASA, Hewlett Packard Company, The Foundation for Microbiology, and the Federated Charitable Campaign. For further information, visit: http://www.seti.org/education/Welcome.html.
NASA Astrophysics Data System (ADS)
Fisher, J. A.; Brewer, C.; O'Brien, G.
2017-12-01
Computing and programming are rapidly becoming necessary skills for earth and environmental scientists. Scientists in both academia and industry must be able to manipulate increasingly large datasets, create plots and 3-D visualisations of observations, and interpret outputs from complex numerical models, among other tasks. However, these skills are rarely taught as a compulsory part of undergraduate earth science curricula. In 2016, the School of Earth & Environmental Sciences at the University of Wollongong began a pilot program to integrate introductory programming and modelling skills into the required first-year core curriculum for all undergraduates majoring in earth and environmental science fields. Using Python, a popular teaching language also widely used by professionals, a set of guided exercises were developed. These exercises use interactive Jupyter Notebooks to introduce students to programming fundamentals and simple modelling problems relevant to the earth system, such as carbon cycling and population growth. The exercises are paired with peer review activities to expose students to the multitude of "correct" ways to solve computing problems. In the last weeks of the semester, students work in groups to creatively adapt their new-found skills to selected problems in earth system science. In this presentation, I will report on outcomes from delivering the new curriculum to the first two cohorts of 120-150 students, including details of the implementation and the impacts on both student aptitude and attitudes towards computing. While the first cohort clearly developed competency, survey results suggested a drop in student confidence over the course of the semester. To address this confidence gap for the second cohort, the in-class activities are now being supplemented with low-stakes open-book review quizzes that provide further practice with no time pressure. Research into the effectiveness of these review quizzes is ongoing and preliminary findings will be discussed, along with lessons learned in the process and plans for the future.
Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston
NASA Astrophysics Data System (ADS)
Chen, R. F.; Pelletier, P.; Dorsen, J.; Douglas, E. M.; Pringle, M. S.; Karp, J.
2009-12-01
Inquiry-based, hands-on, graduate content courses have been developed specifically for Boston Public School middle school teachers of Earth Science. Earth Science I: Weather and Water and Earth Science II: The Solid Earth--Earth History and Planetary Systems have been taught a total of seven times to over 120 teachers. Several key attributes to these successful courses have been identified, including co-instruction by a university professor and a high school and a middle school teacher that are familiar with the Boston curriculum, use of hands-on activities that are closed related to those used in the Boston curriculum, pre- and post-course local field trips, and identification of key learning objectives for each day. This model of professional development was developed over several years in all disciplines (Earth Science, Physics, Biology, Chemistry) by the Boston Science Partnership (BSP), an NSF-funded Math Science Partnership program. One of the core strategies of the BSP is these Contextualized Content Courses (CCC), graduate level, lab-based courses taught at either UMass Boston or Northeastern University during summer intensive or semester formats. Two of the eleven courses developed under the grant are Earth Science I & II. This presentation shares the model of the CCC, the impact on teacher participants, the value of these courses for the professor, and lessons learned for successful professional development. Findings about the courses’ impact and effectiveness come from our external evaluation by the Program Evaluation Research Group (PERG). The combination of content and modeling good instructional practices have many positive outcomes for teachers, including increased self-efficacy in science understanding and teaching, positive impacts on student achievement, and teacher shifts from more traditional, more lecture-based instructional models to more inquiry approaches. STEM faculty members become involved in science education and learn and practice new instructional strategies. The teacher co-instructors hold leadership roles for their peers and gain university teaching experience. The participants have a course that is content rich and tailored for their needs in the classroom. Earth scientists develop a “broader impact” for their science by increasing climate and earth science literacy for teachers who, in turn, reach 100s to 1000s of students every year, possibly stimulating interest for students becoming future earth scientists, but at the very least, increasing the public appreciation for earth science.
Sharing is Winning: Cooperative Learning about Atmospheric Composition Change
NASA Astrophysics Data System (ADS)
Schuepbach, E.
2010-09-01
This contribution presents evolving good practice in disseminating the body of know-how, skills and competencies within the networked community of atmospheric scientists as established in ACCENT. The promotion of early-career scientists, and encouraging the next generation to move into the field were among the key issues addressed by the "Training and Education" programme in the European Network of Excellence in Atmospheric Composition Change (ACCENT). Dissemination avenues include a virtual knowledge train carrying the wealth of high-quality scientific learning material developed with experts involved in the ACCENT network. Learning opportunities on current research in atmospheric composition change in Europe were also created during face-to-face training workshops. Real-life examples of pressing air quality issues were addressed in meetings with stakeholder groups that offered opportunities for mutual learning in inspiring partnerships. In order to increase the expertise in atmospheric composition change across Europe, activities were organized with the general public (e.g., Café Scientifique), where the participating early-career scientists were confronted with questions from lay people. For interested teachers, didactic translations of compact overviews on air quality science topics developed in ACCENT offer links with the typical European science curriculum and go beyond school book content. Some of the educational events, methods and tools are described in a booklet published in 2009 ("We Care for Clean Air!", ISBN 978-88-95665-01-6). The electronic version and all training material can be downloaded from www.accent-network.org/portal/education - a valuable resource for teachers and learners around the globe.
The McBride Honors Program in Public Affairs for Scientists and Engineers
NASA Astrophysics Data System (ADS)
Harrison, W. J.; Miller, R. L.; Olds, B. M.; Sacks, A. B.
2006-12-01
The McBride Honors Program in Public Affairs at The Colorado School of Mines (CSM), instituted in 1978, is an award-winning exemplar in the liberal arts which provides a select number of CSM engineering students an opportunity to cross the boundaries of their technical expertise in engineering and applied science, and to gain the understanding and appreciation of the contexts in which engineering and applied science and all human systems reside, and specifically to explore and integrate the social, cultural, ethical and environmental implications of their future professional judgments and their roles as citizens in varied and complex settings. The 27 semester-hour program of seminars, courses, and off-campus activities features small seminars; a cross-disciplinary approach; and opportunities for one-on-one faculty tutorials, instruction and practice in oral and written communication, a Washington, D.C. public policy seminar, a practicum experience (internship or foreign study). Circumstances external to the McBride Program itself, which include the development and growth of the field of Public Affairs nationally and the persistence of legacy courses, have created the need to revitalize and refocus the historically cross-departmental Program. A recent curriculum reform effort has achieved a more thoroughly interdisciplinary learning experience to educate engineers and scientists who, as called for in the National Academy of Engineering's The Engineer of 2020 "will assume leadership positions from which they can serve as positive influences in the making of public policy and in the administration of government and industry". In this presentation we showcase best practices in curriculum reform, exemplified by a seminar in National policy analysis where students and faculty have recently investigated federal science funding decisions in support of natural hazards including earthquakes, tsunamis, wildland fires, and pandemic disease.
NASA Astrophysics Data System (ADS)
Nanez-James, S. E.; Sager, W.
2016-02-01
Research published in 2013 showed that TAMU Massif, the largest mountain in the Shatsky Rise oceanic plateau, located approximately 1500 kilometers east of Japan, is the "World's Largest Single Volcano." This claim garnered widespread public interest and wonder concerning how something so big could remain so mysterious in the 21st century. This disconnect highlights the fact that oceans are still widely unexplored, especially the middle of the deep ocean. Because there is so much interest in TAMU Massif, a diverse outreach team lead by chief scientist Dr. William Sager from the University of Houston in partnership with the Texas State Aquarium and the Schmidt Ocean Institute (SOI) conducted a multifaceted ship-to-shore outreach project that included secondary school students, formal and informal educators, university students and professors, the aquarium and museum audience, and the general public. The objective was to work in conjunction with SOI and various other partners, including the Texas Regional Collaborative, the Aquarium of the Pacific, and the Houston Museum of Natural Science, to promote science and ocean literacy while inspiring future scientists - especially those from underserved and underrepresented groups - through ocean connections. Participants were connected through live ship-to-shore distance learning broadcasts of ongoing marine research and discovery of TAMU Massif aboard the R/V Falkor, allowing audiences to participate in real-time research and apply real world science to curriculum in the classrooms. These ship-to-shore presentations connected to existing curriculums and standards, lessons, and career interests of the students and educators with special teacher events and professional development workshops conducted from aboard the R/V Falkor.
A new program in earth system science education
NASA Technical Reports Server (NTRS)
Huntress, Wesley; Kalb, Michael W.; Johnson, Donald R.
1990-01-01
A program aimed at accelerating the development of earth system science curricula at the undergraduate level and at seeding the establishment of university-based mechanisms for cooperative research and education among universities and NASA has been initiated by the Universities Space Research Association (USRA) in conjunction with NASA. Proposals were submitted by 100 U.S. research universities which were selected as candidates to participate in a three-year pilot program to develop undergraduate curricula in earth system science. Universities were then selected based upon peer review and considerations of overall scientific balance among proposed programs. The program will also aim to integrate a number of universities with evolving earth system programs, linking them with a cooperative curriculum, shared faculty, and NASA scientists in order to establish a stronger base for earth systems related education and interdisciplinary research collaboration.
NASA Astrophysics Data System (ADS)
Haddad, A.; Turner, M.; Samuelson, L.; Scientific Team of IODP Expedition 336: Mid-Atlantic Ridge Microbiology
2011-12-01
Cutting edge science is so exciting to elementary-level students with special needs that they are constantly asking for more! We drew on this enthusiasm and developed an interaction between special needs students and scientists performing cutting edge research on and below the ocean floor with the goal of teaching them state-mandated curricula. While on board the JOIDES Resolution during IODP Expedition 336: Mid-Atlantic Ridge Microbiology (Fall 2011), scientists interacted with several special needs classrooms in the Phoenix, Arizona metro area via weekly activities, blogs, question-and-answer sessions and Skype calls revolving around ocean exploration. All interactions were developed to address Arizona Department of Education curriculum standards in reading, writing, math and science and tailored to the learning needs of the students. Since the usual modalities of teaching (lecturing, Powerpoint presentations, independent reading) are ineffective in teaching students with special needs, we employed as much hands-on, active student participation as possible. The interactions were also easily adaptable to include every student regardless of the nature of their special needs. The effectiveness of these interactions in teaching mandated standards was evaluated using pre- and post-assessments and are presented here. Our goal is to demonstrate that special needs students benefit from being exposed to real-time science applications.
Sense and Sensibility: The Case for the Nationwide Inclusion of Engineering in the K-12 Curriculum
NASA Technical Reports Server (NTRS)
Lindberg, Robert E.; Pinelli, Thomas E.; Batterson, James G.
2008-01-01
The competitive status of the United States is inextricably linked to innovation just as innovation is inseparable from science, technology, engineering, and mathematics. To stay competitive in innovation requires that the United States produce a 21st century workforce complete with requisite education, training, skills, and motivation. If we accept a priori that science, technology, engineering, and mathematics education are crucial to competitiveness and innovation and that, in terms of innovation, mathematics, science, and engineering are interdependent, why are mathematics and science uniformly ubiquitous in the K-12 curriculum while engineering is conspicuously absent? We are passionate in our belief that the uniform addition of engineering to the K-12 curriculum will help ensure that the nation has "the right" 21st Century workforce. Furthermore, we believe that a nationwide effort, led by a coalition of engineering academics, practitioners, and societies is required to turn this goal into reality. However, accomplishing this goal necessitates, as we are reminded by the title of Jane Austen's timeless novel, "Sense and Sensibility", a workable solution that seeks the "middle ground" between passion and reason. We begin our paper by making two essential points: Engineers are not scientists. Engineering exists separate from science, has its own specialized knowledge community apart from science, and it is largely responsible for many of the most significant advancements and improvements in the quality of our life. Our workable solution requires that K-12 education, nationwide, accommodate the inclusion of engineering as a stand alone curriculum and we offer three reasons to support our position: (1) workforce development, (2) stimulating interest in STEM (science, technology, engineering, and mathematics) courses and careers, and (3) creating a technologically literate society. We conclude with some thoughts on how this important goal can be accomplished.
Norland, Ryan; Muchnick, Matthew; Harmon, Zachary; Chin, Tiffany; Kakar, Rumit Singh
2016-04-01
As rehabilitation specialists, physical therapists must continue to stay current with advances in technologies to provide appropriate rehabilitation protocols, improve patient outcomes, and be the preferred clinician of choice. To accomplish this vision, the physical therapy profession must begin to develop a culture of lifelong learning at the early stages of education and clinical training in order to embrace cutting-edge advancements such as stem cell therapies, tissue engineering, and robotics, to name a few. The purposes of this article are: (1) to provide a current perspective on faculty and graduate student awareness of regenerative rehabilitation concepts and (2) to advocate for increased integration of these emerging technologies within the doctor of physical therapy (DPT) curriculum. An online survey was designed to gauge awareness of principles in regenerative rehabilitation and to determine whether the topic was included and assessed in doctoral curricula. The survey yielded 1,006 responses from 82 DPT programs nationwide and indicated a disconnect in familiarity with the term "regenerative rehabilitation" and awareness of the inclusion of this material in the curriculum. To resolve this disconnect, the framework of the curriculum can be used to integrate new material via guest lecturers, interdisciplinary partnerships, and research opportunities. Successfully mentoring a generation of clinicians and rehabilitation scientists who incorporate new medical knowledge and technology into their own clinical and research practice depends greatly on sharing the responsibility among graduate students, professors, the American Physical Therapy Association (APTA), and DPT programs. Creating an interdisciplinary culture and integrating regenerative medicine and rehabilitation concepts into the curriculum will cultivate individuals who will be advocates for interprofessional behaviors and will ensure that the profession meets the goals stated in APTA Vision 2020. © 2016 American Physical Therapy Association.
UTIG's Contributions to Seismology in K-12 Classrooms
NASA Astrophysics Data System (ADS)
Ellins, K. K.
2004-12-01
The University of Texas Institute for Geophysics (UTIG) conducts research in many areas of seismology, including the study of earthquakes, the structure of Earth's interior and targeted geologic settings, and the development of methods to monitor nuclear explosions. In addition, UTIG scientists engage in educational outreach that takes seismology and its applications into K-12 classrooms. Activities include (1) the development of standards-aligned, inquiry-based curriculum materials that use real seismic data to convey concepts in earthquake seismology and which introduce modern technologies based on the principles of seismology; (2) a year-long teacher professional development institute that incorporates seismology and teacher workshops at which scientists, GK-12 Fellows and teachers team up to deliver science content and learning activities; and (3) a "Teacher in the Field" program through which teachers have participated in marine geophysical cruises to study tectonic processes in the Bransfield Strait, Hess Deep, Terror Rift in the Ross Sea, the southeastern Caribbean, and the Blanco Fracture Zone. UTIG has supported these efforts through grants from the NSF and state agencies, and by partnering with other programs and organizations. For example, teacher workshops were organized around public lectures by IRIS/SSA Distinguished Speakers Roger Bilham (Global Death and Construction: Earthquakes on an Urban Planet) and David Wald (Rapid Earthquake Information: Citizen Science and New Tools for Emergency Response) and presented as part of The University of Texas Environmental Science Institute Outreach Lecture Series.
NASA Astrophysics Data System (ADS)
Denning, S.; Burt, M. A.; Jones, B.
2015-12-01
Since 2006, the Center for Multiscale Modeling of Atmospheric Processes (CMMAP) has sponsored a fertile collaboration among researchers in many fields, graduate and undergraduate student, K-12 teachers, science outreach professionals, and evaluators. This collaboration included groundbreaking work in climate modeling, ecology, political science, sociology, psychology, and English. At the undergraduate level, we engaged more than 80 faculty in 26 Departments at a major public university who now teach one another's content in dozens of classes. Hundreds of English Composition students learned about climate change while developing basic writing skills. We also worked very closely with public schools to develop and test curriculum enhancement kits for teaching standards-aligned climate science in K-12 classrooms and built a successful series of Professional Development workshops for teachers at three different grade levels. Nearly 200,000 students participated in these programs in public schools and millions of individuals around the world used our web-based tools. The success of this collaborative program is apparent in traditional metrics and assessments of content knowledge. Equally important, the sustained interaction with education professionals had a substantial impact on the climate scientists and faculty involved in the program, and on our graduate students. We outline some of the key elements that made CMMAP's program successful, and offer suggestions for other institutions seeking to enhance climate literacy.
Learner-Driven EFL Curriculum Development at the Classroom Level
ERIC Educational Resources Information Center
Shawer, Saad; Gilmore, Deanna; Banks-Joseph, SusanRae
2009-01-01
This qualitative study examines the learner-directed motives that cause English as a Foreign Language (EFL) teachers to approach curriculum differently, as curriculum-transmitters, curriculum-developers, or curriculum-makers. This study's conceptual framework was grounded in teacher curriculum development, curriculum implementation,…
NASA Astrophysics Data System (ADS)
Lewis, J. C.; Cooper, S. K.; Hovan, S. A.; Leckie, R. M.; White, L. D.
2017-12-01
The U.S. is facing challenges in attracting, retaining and diversifying the workforce in the geosciences. A likely contributing factor is the homogeneity of the pool of mentors/role models available both within the workforce and in the U.S. professoriate. Another probable factor is "exposure gaps" among U.S. student populations; i.e., differing access to engaging facets of science, technology, engineering and mathematics (STEM). In response, we organized an 18-day School of Rock workshop onboard the International Ocean Discovery Program (IODP) drilling vessel JOIDES Resolution during a July 2017 transit in the western Pacific. Our objectives were diversity driven, focusing on measures to broaden participation at all levels (i.e., K-12, undergraduate and beyond) in innovative ways (e.g., from place-base curriculum to longitudinal peer mentoring through extracurricular STEM communities). To accomplish this, we designed a recruiting scheme to attract pairs of participants, specifically a teacher from a diverse community and a nearby early-career scientist with an interest in IODP science. By partnering in this way we sought to foster connections that might not naturally emerge, and therein to establish new mechanisms for increased engagement, broader recruitment, enhanced support, and improved retention of students from underrepresented communities in STEM education. We report on initial workshop outcomes that include new curriculum proposals, nascent funding proposals, and innovative connections among secondary educators and early-career scientists. Survey results of our participants gauge the expected impacts of the workshop on perceptions and on plans for future actions aimed at broadening participation.
Wilkerson, L; Abelmann, W H
1993-03-01
The Harvard-MIT Program in Health Sciences and Technology (HST) is a flexible, preclinical curriculum, taught by members of the faculties of both Harvard University and the Massachusetts Institute of Technology, that stresses a rigorous, scientific, quantitative approach, small classes (usually fewer than 50 students), and student-faculty interaction. The program is aimed at students with strong backgrounds in quantitative and biological sciences who are interested in careers as physician-scientists. The first 234 students of the program, who graduated between 1975 and 1985, were asked to participate in a 1990 follow-up study by completing a four-page questionnaire and submitting curricula vitae and lists of publications, if available. Data were analyzed quantitatively and qualitatively. Of the 234 graduates, 211 (90%) responded. Sixty-three (30%) had received both MD and PhD degrees. The graduates were twice as likely to describe their primary professional roles as academic than as clinical practice; 94 held full-time faculty positions at 50 medical schools. The 154 (73%) in research spent an average of 51% of their time on this activity. According to the 179 graduates (85%) who stated that they would choose HST again, the most frequently mentioned reasons were the quantitative approach that emphasized integration of basic science and clinical practice (49%) and the small class size (37%). The HST MD curriculum, with its emphasis on basic science and research experience, has been successful in preparing carefully selected students for careers as physician-scientists, without necessarily requiring the completion of a PhD degree.
Enrichment of Science Education Using Real-time Data Streams
NASA Astrophysics Data System (ADS)
McDonnell, J. M.; de Luca, M. P.
2002-12-01
For the past six years, Rutgers Marine and Coastal Sciences (RMCS) has capitalized on human interest and fascination with the ocean by using the marine environment as an entry point to develop interest and capability in understanding science. This natural interest has been used as a springboard to encourage educators and their students to use the marine environment as a focal point to develop basic skills in reading, writing, math, problem-solving, and critical thinking. With the selection of model science programs and the development of collaborative school projects and Internet connections, RMCS has provided a common ground for scientists and educators to create interesting and meaningful science learning experiences for classroom application. Student exposure to the nature of scientific inquiry also prepares them to be informed decision-makers and citizens. Technology serves as an educational tool, and its usefulness is determined by the quality of the curriculum content and instructional strategy it helps to employ. In light of this, educational issues such as curriculum reform, professional development, assessment, and equity must be addressed as they relate to technology. Efforts have been made by a number of organizations to use technology to bring ocean science education into the K-12 classroom. RMCS has used he Internet to increase (1) communication and collaboration among students and teacher, (2) the range of resources available to students, and (3) opportunities for students and educators to present their ideas and opinions. Technology-based educational activities will be described.
NASA Astrophysics Data System (ADS)
Daniel, J. C.; Hogue, T. S.; Moldwin, M. B.; Nonacs, P.
2012-12-01
A National Science Foundation Graduate Teaching Fellows in K- 12 Education program at UCLA (SEE-LA; http://measure.igpp.ucla.edu/GK12-SEE-LA/ ) partners UCLA faculty and graduate students (fellows) with urban middle and high school science teachers and their students to foster programs of science and engineering exploration that bring the environment of Los Angeles into the classroom. UCLA science and engineering graduate fellows serve as scientists-in-residence at four partner schools to integrate inquiry-based science lessons, facilitate advancements in science content teaching, and ultimately, to improve their own science communication skills. As part of their fellowship, graduate students are required to develop three "major" lessons, including one based on their PhD research at UCLA. During the first four years of the project, the SEE-LA fellows have developed a range of research-based activities, including lessons on sustainable fisheries, ecosystems and remote sensing, earthquakes, urban water quality including invertebrate observations, and post-fire soil chemistry, among others. This presentation will provide an overview of the SEE-LA GK-12 program and development of research lessons that also address California State Science Standards. We also discuss potential sustainability of GK-12 type outreach and education programs. The SEE-LA program has provided development of graduate student communication and teaching skills while also contributing significantly to the integration of science education into K-12 curriculum in Los Angeles schools.
Mission EarthFusing GLOBE with NASA Assets to Build SystemicInnovation in STEM Education
NASA Astrophysics Data System (ADS)
Czajkowski, K. P.; Garik, P.; Padgett, D.; Darche, S.; Struble, J.; Adaktilou, N.
2016-12-01
Mission Earth is a project funded through the NASA CAN that is developing a systematic embedding of NASA assets that is being implemented by a partnership of organizations across the US. Mission Earth brings together scientists and science educators to develop a K-12 "Earth as a system" curriculum progression following research-based best practices. GLOBE and NASA assets will be infused into the curricula of schools along the K-12 continuum, leveraging existing partnerships and networks and supported through state departments of education and targeting underrepresented groups, as a systemic, effective, and sustainable approach to meeting NASA's science education objectives. This presentation will discuss plans for the Mission Earth project and successes and lessons learned in the first year. Mission Earth is developing curricular materials to support vertically integrated learning progressions. It develops models of professional development utilizing sustainable infrastructures. It will support STEM careers focusing on career technical education (CTE). And, it will engage undergraduate education majors through pre-service courses and engineering students through engineering challenges.
Developing Resources for Teaching Ethics in Geoscience
NASA Astrophysics Data System (ADS)
Mogk, David W.; Geissman, John W.
2014-11-01
Ethics education is an increasingly important component of the pre-professional training of geoscientists. Geoethics encompasses the values and professional standards required of geoscientists to work responsibly in any geoscience profession and in service to society. Funding agencies (e.g., the National Science Foundation, the National Institutes of Health) require training of graduate students in the responsible conduct of research; employers are increasingly expecting their workers to have basic training in ethics; and the public demands the highest standards of ethical conduct by scientists. However, there is currently no formal course of instruction in ethics in the geoscience curriculum, and few faculty members have the experience, resources, and sometimes willingness required to teach ethics as a component of their geoscience courses.
NASA Astrophysics Data System (ADS)
Wragg, Regina E.
This dissertation presents my explorations in both molecular biology and science education research. In study one, we determined the ADIPOQ and ADIPORI genotypes of 364 White and 148 Black BrCa patients and used dominant model univariate logistic regression analyses to determine individual SNP and haplotype associations with tumor or patient characteristics in a case-case comparison. We found twelve associations between individual SNPs and patient or tumor characteristics that impact BrCa prognosis. For example, the ADIPOQ rs1501299 C allele was associated with ER+ tumors (OR=4.73, p=0.001) among White women >50 years of age at their time of diagnosis. Also, the A allele was more frequent in the Black patient population among whom more aggressive subtypes are common. Similarly, the ADIPORI rs12733285 T allele was associated with both PR+ and ER+ tumors. (OR=2.18 p=0.001; OR=1.88 p=0.019, respectively). Our data suggest that several polymorphisms individually or as specific ADIPOQ and ADIPOR1 haplotypes are associated with tumor characteristics that impact prognosis in BrCa patients. Thus, genotyping additional groups of patients for these SNPs could offer insight into the involvement of adiponectin signaling allele variance in BrCa outcomes. In our second study, we examined 1) how teachers' beliefs about themselves and their students influence the fidelity of implementation of their enactment of a technology-rich curriculum, and 2) how professional development support during the enactment leads to changes in teacher beliefs. From the analysis of two teachers' experiences through interviews, surveys, journal entries, and video recordings of their enactments, several different themes were identified. For example, teachers' beliefs regarding students' ability to learn using the curriculum influenced the fidelity of implementation and student learning. These observations led to the development of a model of professional development that would promote faithful implementation. This model included teaching of content knowledge, practice with the technology, modeling of classroom management skills, and reflective feedback of enactments in formal and informal environments. The implications of these findings are discussed in relation to professional development programs and curriculum designs seeking to institutionalize the practices of scientists in schools with a high level of fidelity of implementation.
Introduction of a Science Policy Course at the University of Oklahoma
NASA Astrophysics Data System (ADS)
Mishra, S.; Parsons, D.
2012-12-01
In modern society, science and policy are two processes that have a symbiotic relationship to each other; wherein policy dictates the direction of science while science shapes the future of policy. Although the policy side is often ignored in scientific environments, the rate of scientific advancement is heavily influenced by policy. Science policy is very different from the conduct of science itself and future scientists need to be aware of the issues and factors that dictate the present and future direction of science. Based on the intricate relationship between science and policy, it is essential to introduce an overview of the policy process to future scientists and decision makers. In the context of climate change, policy implications are extensive and critical owing to their large socio-economic impacts. Hence, knowledge of the policy process is even more relevant to earth scientists. In this regard, the proposal to start an introductory course in science policy is currently being discussed in the department of Meteorology at the University of Oklahoma. If such a course is approved, an interactive graduate level class will be introduced for students pursuing a career in science. Such a course will be cross- disciplinary and will be offered to a wide audience across the university. Since the American Meteorological Society's (AMS) Summer Policy Colloquium has been a very successful program in educating scientists about the policy process, a format similar to the colloquium may be adopted. The primary topics will include the understanding of policy fundamentals, effective communication, ethics and integrity in the conduct of scientific research, executive leadership in science and the responsibilities of a scientific leader, impact of science on globalization and international diplomacy, etc. The AMS policy program office will be consulted to help design the course curriculum. An overview of the steps involved in introducing the class will be presented at the meeting along with the latest course curriculum.
NASA Astrophysics Data System (ADS)
Aubele, J. C.; Stanley, J.; Grochowski, A.; Jones, K.; Aragon, J.
2006-12-01
Learning opportunities can be exceptionally successful when linked to national, newsworthy events. Planetary missions are particularly exciting in engaging teachers, and their students, because they combine the human "stories" of scientists and engineers with cutting-edge technology and new science. Planetary suface missions, such as the Mars Exploration Rover (MER) mission, return beautiful and human-scale images that can virtually transport the viewer to another world. The MER mission allows children and adults to participate in the exploration of one of our nearest neighbors in space. New discoveries in the natural history of Mars have been used as the basis of a new integrated curriculum created by Museum and class-room educators designed to serve informal (family learning) and formal (classroom) audiences. The curriculum uses Mars and the MER mission as a "hook" to teach a wide range of topics that relate to all of the sciences, mathematics, social studies (history and exploration), science and society, career readiness, language and literacy, and visual arts. The curriculum, entitled "Making Tracks on Mars: Teacher Resource and Activity Guide," includes the following key features that have contributed to its success and usefulness: (1) basic information about Mars, Mars missions, and the MER mission providing teachers with the knowledge they may lack; (2) activities that follow a standardized format and include necessary information, pre-lesson preparation and post-lesson closure and extensions, and all information and/or images needed; (3) activities that cross the curriculum and can be used to address many different standards; (4) relevant state and national standards listed for each activity; (5) annotated MER image file and PowerPoint presentation for easy classroom use; (6) lists of additional Mars-related resources; (7) emphasis on local connections to the mission to enable teachers and students to feel personally connected; (8) elementary through high school classroom teachers as co-authors and co-developers of the curriculum; (9) evaluation and assessement by "pilot program" teachers; and (10) collaboration and partnership with other local and regional science education providers, such as SCORE, which provided partial funding and dissemination support, and NM MESA, a statewide organization of teachers.
ERIC Educational Resources Information Center
Rioseco, Marilu
This paper reports on the dilution effect of the ozone layer which jeopardizes a section of land in Chile from 53 degrees South latitude to 33 degrees South and the necessity of preparing the population for the possible ecological consequences of an increase in ultraviolet radiation. Scientists in Chile assume part of this task by studying the…
ERIC Educational Resources Information Center
Farland-Smith, Donna; Tiarani, Vinta
2016-01-01
Over the last fifteen years, engineering has made its way into science curriculum at all levels, elementary, middle, and high school. A need to analyze students' perception the field of engineering is warranted. Previous techniques for studying representations of scientists and build on what researchers in the science field have learned from…
Buns, Scissors and Strawberry Laces--A Model of Science Education?
ERIC Educational Resources Information Center
Walsh, Ed; Edwards, Rebecca
2009-01-01
Models are included in the science National Curriculum because modelling is a key tool for scientists and an integral part of how science works. Modelling is explicitly referred to in the Programmes of Study for Science at Key Stage 3 and 4 (age 11-16) and in Assessing Pupil's Progress (APP). Pupils need to learn how to use models because they are…
ERIC Educational Resources Information Center
Staples, Hilary
2005-01-01
Biomimicry is an interdisciplinary science in which scientists look for solutions to human needs in nature. It endeavors to discover answers from the molecular, or material level, all the way up to the interrelationships, or systems level. The purpose of this review of the literature is to demonstrate the need and potential application of this new…
NASA Astrophysics Data System (ADS)
Goehring, L.
2004-12-01
SEAS is a pilot program for middle and high school students who want to learn science by doing science. SEAS students study the deep sea hydrothermal vent environment and learn to ask questions about this exciting, relatively unexplored world, just as researchers do. SEAS students also learn how to answer their own questions through the process of scientific investigation. With the SEAS program, students have the opportunity to participate in the actual discovery process, along side deep-sea researchers. SEAS builds upon the successes of programs like Dive&Discover and Extreme2000, which demonstrated the capability deep-sea scientists have in engaging students with live research. SEAS extends this concept by inviting students to participate in deep-sea research through formal proposal and report competitions. SEAS challenges students to higher levels of achievement. A curriculum, developed by teachers expert in the translation of scientific inquiry in the classroom, prepares students to participate. SEAS was concept-tested during the 2003-2004 school year, with 14 pilot teachers and approximately 800 students. Twenty Ridge2000 scientists contributed their time and expertise to the SEAS program in its first year. Five student proposals were selected and conducted at sea in April during a Ridge2000 research cruise to the East Pacific Rise. All results were posted to the SEAS website (http://www.ridge2000.org/SEAS/) during the cruise, and students were invited to analyze data for their final reports. Final student reports, along with scientists comments were also posted. During the 2004-2005 school year, SEAS will be evaluated for its impact on student learning and attitudes toward science. The benefits of SEAS to the Ridge2000 scientific community are many. Scientists are invited to contribute in a variety of ways, all of which help satisfy the requirement of NSFs Broader Impacts Criterion. They may contribute time and expertise by answering student questions and reviewing student proposals and reports. They may choose to host the student research on their cruise. By sharing the load, no one scientist is burdened, nor expected to contribute additional funding. The Ridge2000 Program oversees the development, execution and dissemination of SEAS, helping make outreach efficient and easy for scientists.
"Teaching Physics as one of the humanities": The history of (harvard) project Physics, 1961-1970
NASA Astrophysics Data System (ADS)
Meshoulam, David
In the United States after World War II, science had come to occupy a central place in the minds of policy makers, scientists, and the public. Negotiating different views between these groups proved a difficult task and spilled into debates over the role and scope of science education. To examine this process, this dissertation traces the history of Harvard Project Physics (HPP), a high-school physics curriculum from the 1960s that incorporated a humanistic and historical approach to teaching science. The narrative begins with the rise of General Education in the 1940s. Under the leadership of Harvard president James Conant, faculty at Harvard developed several Natural Science courses that connected science to history as a way to teach students about science and its relationship to culture. By the late 1950s this historical approach faced resistance from scientists who viewed it as misrepresenting their disciplines and called for students to learn specialized subject matter. With the support of the National Science Foundation (NSF), in the early 1960s scientists' vision of science education emerged in high-school classrooms across the country. By the mid 1960s, with the passage of the Civil Rights Act, the Elementary and Secondary Education Act, and the Daddario Amendment to the NSF, the political and education landscape began to change. These laws transformed the goals of two of the NSF and the Office of Education (USOE). These organizations faced demands to work together to develop projects that would speak to domestic concerns over equity and diversity. Their first joint educational venture was HPP. In order to succeed, HPP had to speak to the needs of disciplinary-minded scientists at the NSF, equity-minded educators at the USOE, and results-focused politicians in Congress. This work argues that HPP succeeded because it met the needs of these various stakeholders regarding the roles of science and education in American society.
Connecting Alaskan Youth, Elders, and Scientists in Climate Change Research and Community Resilience
NASA Astrophysics Data System (ADS)
Spellman, K.; Sparrow, E.
2017-12-01
Integrated science, technology, engineering and math (STEM) solutions and effective, relevant learning processes are required to address the challenges that a changing climate presents to many Arctic communities. Learning that can both enhance a community's understanding and generate new knowledge about climate change impacts at both local and continental scales are needed to efficiently build the capacity to navigate these changes. The Arctic and Earth STEM Integrating GLOBE and NASA (SIGNs) program is developing a learning model to engage Alaskan rural and indigenous communities in climate change learning, research and action. Youth, elders, educators, community leaders and scientists collaborate to address a pressing local climate change concern. The program trains teams of educators and long-time community members on climate change concepts and environmental observing protocols in face-to-face or online workshops together with Arctic and NASA subject matter experts. Community teams return to their community to identify local data or information needs that align with their student's interests and the observations of local elders. They deepen their understanding of the subject through culturally responsive curriculum materials, and collaborate with a scientist to develop an investigation with their students to address the identified need. Youth make observations using GLOBE (Global Learning and Observations to Benefit the Environment) protocols that best fit the issue, analyze the data they have collected, and utilize indigenous or knowledge, and NASA data to address the issue. The use of GLOBE protocols allow for communities to engage in climate change research at both local and global scales, as over 110 nations worldwide are using these standardized protocols. Teams work to communicate their investigation results back to their community and other scientists, and apply their results to local stewardship action or climate adaptation projects. In this presentation, we report the progress of community teams currently engaged in this program from throughout Alaska.
ERIC Educational Resources Information Center
Wang, Victor C. X.
2010-01-01
Developing curriculum(s) requires instructors to take into several factors. These factors can be viewed as critical components of curriculum development for career and technical education (CTE) instructors. Without adequately addressing critical components such as curriculum history, curriculum theory, curriculum philosophies, curriculum…
NASA Astrophysics Data System (ADS)
Singer, J.; Ryan, J. G.
2014-12-01
For the past three decades, the National Science Foundation's (NSF) Division of Undergraduate Education (DUE) has administered a succession of programs intended to improve undergraduate STEM education for all students. The IUSE (Improving Undergraduate STEM Education) program is the latest program in this succession, and reflects an expanded, NSF-wide effort to make sustainable improvements in STEM education on a national scale. The origins and thinking behind IUSE can be in part traced back to precursor programs including: ILI (Instrumentation and Laboratory Improvement), CCD (Course and Curriculum Development), UFE (Undergraduate Faculty Enhancement), CCLI (Course, Curriculum and Laboratory Improvement), and TUES (Transforming Undergraduate Education in STEM), all of which sought to support faculty efforts to investigate and improve curriculum and instructional practice in undergraduate STEM education, and to disseminate effective STEM educational practices for broad adoption. IUSE, like its predecessor programs, is open to all STEM fields, and as such is intended to support improvements in geoscience education, spanning the atmospheric, ocean, and Earth sciences, as well as in environmental science, GIS science, climate change and sustainability/resilience. An emphasis on discipline-based research on learning that had origins in the CCLI and TUES programs is a new priority area in IUSE, with the ambition that projects will take advantage of the integrated expertise of domain scientists, educational practioners, and experts in learning science. We trace and describe the history of undergraduate education efforts with an emphasis placed on the recently introduced IUSE program. Understanding the origin of DUE's IUSE program can provide insights for faculty interested in developing proposals for submission and gain a greater appreciation of trends and priorities within the division.
Where the Wild Microbes Are: Education and Outreach on Sub-Seafloor Microbes
NASA Astrophysics Data System (ADS)
Cooper, S. K.; Kurtz, K.; Orcutt, B.; Strong, L.; Collins, J.; Feagan, A.
2014-12-01
Sub-seafloor microbiology has the power to spark the imaginations of children, students and the general public with its mysterious nature, cutting-edge research, and connections to the search for extraterrestrial life. These factors have been utilized to create a number of educational and outreach products to bring subsurface microbes to non-scientist audiences in creative and innovative ways. The Adopt a Microbe curriculum for middle school students provides hands-on activities and investigations for students to learn about microbes and the on-going research about them, and provides opportunities to connect with active expeditions. A new series of videos engages non-scientists with stories about research expeditions and the scientists themselves. A poster and associated activities explore the nature of science using a microbiologist and her research as examples. A new e-book for young children will engage them with age-appropriate text and illustrations. These projects are multidisciplinary, involve science and engineering practices, are available to all audiences and provide examples of high level and meaningful partnerships between scientists and educators and the kinds of products that can result. Subseafloor microbiology projects such as these, aimed at K-12 students and the general public, have the potential to entice the interest of the next generation of microbe scientists and increase general awareness of this important science.
School-Based Curriculum Development in Scotland: Curriculum Policy and Enactment
ERIC Educational Resources Information Center
Priestley, Mark; Minty, Sarah; Eager, Michelle
2014-01-01
Recent worldwide trends in curriculum policy have re-emphasised the role of teachers in school-based curriculum development. Scotland's Curriculum for Excellence is typical of these trends, stressing that teachers are agents of change. This paper draws upon empirical data to explore school-based curriculum development in response to Curriculum for…
Mathematics and evolutionary biology make bioinformatics education comprehensible.
Jungck, John R; Weisstein, Anton E
2013-09-01
The patterns of variation within a molecular sequence data set result from the interplay between population genetic, molecular evolutionary and macroevolutionary processes-the standard purview of evolutionary biologists. Elucidating these patterns, particularly for large data sets, requires an understanding of the structure, assumptions and limitations of the algorithms used by bioinformatics software-the domain of mathematicians and computer scientists. As a result, bioinformatics often suffers a 'two-culture' problem because of the lack of broad overlapping expertise between these two groups. Collaboration among specialists in different fields has greatly mitigated this problem among active bioinformaticians. However, science education researchers report that much of bioinformatics education does little to bridge the cultural divide, the curriculum too focused on solving narrow problems (e.g. interpreting pre-built phylogenetic trees) rather than on exploring broader ones (e.g. exploring alternative phylogenetic strategies for different kinds of data sets). Herein, we present an introduction to the mathematics of tree enumeration, tree construction, split decomposition and sequence alignment. We also introduce off-line downloadable software tools developed by the BioQUEST Curriculum Consortium to help students learn how to interpret and critically evaluate the results of standard bioinformatics analyses.
Mathematics and evolutionary biology make bioinformatics education comprehensible
Weisstein, Anton E.
2013-01-01
The patterns of variation within a molecular sequence data set result from the interplay between population genetic, molecular evolutionary and macroevolutionary processes—the standard purview of evolutionary biologists. Elucidating these patterns, particularly for large data sets, requires an understanding of the structure, assumptions and limitations of the algorithms used by bioinformatics software—the domain of mathematicians and computer scientists. As a result, bioinformatics often suffers a ‘two-culture’ problem because of the lack of broad overlapping expertise between these two groups. Collaboration among specialists in different fields has greatly mitigated this problem among active bioinformaticians. However, science education researchers report that much of bioinformatics education does little to bridge the cultural divide, the curriculum too focused on solving narrow problems (e.g. interpreting pre-built phylogenetic trees) rather than on exploring broader ones (e.g. exploring alternative phylogenetic strategies for different kinds of data sets). Herein, we present an introduction to the mathematics of tree enumeration, tree construction, split decomposition and sequence alignment. We also introduce off-line downloadable software tools developed by the BioQUEST Curriculum Consortium to help students learn how to interpret and critically evaluate the results of standard bioinformatics analyses. PMID:23821621
ERIC Educational Resources Information Center
Menard, Sharon L.
This packet of resource materials contains four sections: curriculum activities, a career guide for women, a role models list, and an annotated bibliography. These materials deal with women in science and mathematics and cover primary through high school educational levels. Skill Activities are outlined for use at various (K-12) levels which were…
Interstellar Molecules in K-12 Education
NASA Astrophysics Data System (ADS)
Kuiper, T. B. H.; Hofstadter, M. D.; Levin, S. M.; MacLaren, D.
2006-12-01
The Lewis Center for Educational Research (LCER) and the Jet Propulsion Laboratory (JPL) collaborate in a K-12 educational project in which students conduct observations for several research programs led by radio astronomers. The Goldstone-Apple Valley Radio Telescope (GAVRT) program provides participating teachers with curriculum elements, based on the students' observing experiences, which support national and state academic standards. The current program is based on 2.2-GHz and 8.4-GHz radiometric observations of variable sources. The research programs monitor Jupiter, Uranus, and a selected set of quasars. The telescope is a decommissioned NASA Deep Space Network antenna at Goldstone, California. In the next three years, a second telescope will be added. This telescope will at least operate at the above frequencies as well as 6 GHz and 12 GHz. Possibly, it will operate in a continuous band from 1.2 GHz to 14 GHz. In either case, the telescope will be able to observe at least the 6.6-GHz and 12.2-GHz methanol maser lines. The success of the GAVRT program depends critically on the participation of scientists committed to the research who have the ability and enthusiasm for interacting with K-12 students, typically through teleconferences. The scientists will initially work with the LCER staff to create curriculum elements around their observing program.
Improvement in Student Science Proficiency Through InSciEd Out
Sonju, James D.; Leicester, Jean E.; Hoody, Maggie; LaBounty, Thomas J.; Frimannsdottir, Katrin R.; Ekker, Stephen C.
2012-01-01
Abstract Integrated Science Education Outreach (InSciEd Out) is a collaboration formed between Mayo Clinic, Winona State University, and Rochester Public Schools (MN) with the shared vision of achieving excellence in science education. InSciEd Out employs an equitable partnership model between scientists, teachers, education researchers, and the community. Teams of teachers from all disciplines within a single school experience cutting-edge science using the zebrafish model system, as well as current pedagogical methods, during a summer internship at the Mayo Clinic. Within the internship, the teachers produce new curriculum that directly addresses opportunities for science education improvement at their own school. Zebrafish are introduced within the new curriculum to support a living model of the practice of science. Following partnership with the InSciEd Out program and 2 years of implementation in the classroom, teacher-interns from a K–8 public school reported access to local scientific technology and expertise they had not previously recognized. Teachers also reported improved integration of other disciplines into the scientific curriculum and a flow of concepts vertically from K through 8. Students more than doubled selection of an Honors science track in high school to nearly 90%. 98% of students who took the Minnesota Comprehensive Assessments in their 5th and 8th grade year (a span that includes 2 years of InSciEd Out) showed medium or high growth in science proficiency. These metrics indicate that cooperation between educators and scientists can result in positive change in student science proficiency and demonstrate that a higher expectation in science education can be achieved in US public schools. PMID:23244687
Scientific writing and editing: a new role for the library.
Stephens, P A; Campbell, J M
1995-01-01
Traditional library instruction programs teach scientists how to find and manage information, but not how to report their research findings effectively. Since 1990, the William H. Welch Medical Library has sponsored classes on scientific writing and, since 1991, has offered a fee-based editing service for affiliates of the Johns Hopkins Medical Institutions. These programs were designed to fill an educational gap: Although formal instruction was offered to support other phases of the scientific communication process, the medical institutions had no central resource designed to help scientists develop and improve their writing skills. The establishment of such a resource at Welch has been well received by the community. Attendance at classes has grown steadily, and in 1993 a credit course on biomedical writing was added to the curriculum. The editing service, introduced in late 1991, has generated more requests for assistance than can be handled by the library's editor. This service not only extends the library's educational outreach but also generates a revenue stream. The Welch program in scientific writing and editing, or elements of it, could provide a model for other academic medical libraries interested in moving in this new direction. PMID:8547910
NASA Astrophysics Data System (ADS)
Offerdahl, E. G.; Prather, E. E.; Slater, T. F.
2003-12-01
As teachers strive to improve the way science is taught in the classroom, many are turning to the interdisciplinary science of astrobiology as a way integrate inquiry effectively in the science classroom. However, it is generally recognized that teachers do not often have easy access to understandable and usable cutting-edge science to enrich their science lessons. Through the generous support of the NASA Astrobiology Institute (NAI), middle and high school teachers have the opportunity to learn current and provocative scientific results within the context of astrobiology as well as receive training in pedagogically sound methods of incorporating astrobiology appropriately in the classroom. In Astrobiology for Teachers, a 15-week on-line distance learning course co-sponsored by NAI, the National Science Teachers Association (NSTA) Professional Development Institute, National Teachers Enhancement Network (NTEN), Montana State University, and the Department of Astronomy at University of Arizona, teachers engage in a virtual classroom facilitated by an integrated teaching team of educators and scientists using a standards-based, inquiry curriculum. The collaborative nature of the course encourages, demonstrates, and enhances a professional exchange among scientists and educators which, in turn, fosters implementation of innovative science teaching in today's classroom.
A Subject Matter Expert View of Curriculum Development.
NASA Astrophysics Data System (ADS)
Milazzo, M. P.; Anderson, R. B.; Edgar, L. A.; Gaither, T. A.; Vaughan, R. G.
2017-12-01
In 2015, NASA selected for funding the PLANETS project: Planetary Learning that Advances the Nexus of Engineering, Technology, and Science. The PLANETS partnership develops planetary science and engineering curricula for out of classroom time (OST) education settings. This partnership is between planetary science Subject Matter Experts (SMEs) at the US Geological Survey (USGS), curriculum developers at the Boston Museum of Science (MOS) Engineering is Everywhere (EiE), science and engineering teacher professional development experts at Northern Arizona University (NAU) Center for Science Teaching and Learning (CSTL), and OST teacher networks across the world. For the 2016 and 2017 Fiscal Years, our focus was on creating science material for two OST modules designed for middle school students. We have begun development of a third module for elementary school students. The first model teaches about the science and engineering of the availability of water in the Solar System, finding accessible water, evaluating it for quality, treating it for impurities, initial use, a cycle of greywater treatment and re-use, and final treatment of blackwater. This module is described in more detail in the abstract by L. Edgar et al., Water in the Solar System: The Development of Science Education Curriculum Focused on Planetary Exploration (233008) The second module involves the science and engineering of remote sensing in planetary exploration. This includes discussion and activities related to the electromagnetic spectrum, spectroscopy and various remote sensing systems and techniques. In these activities and discussions, we include observation and measurement techniques and tools as well as collection and use of specific data of interest to scientists. This module is described in more detail in the abstract by R. Anderson et al., Remote Sensing Mars Landing Sites: An Out-of-School Time Planetary Science Education Activity for Middle School Students (232683) The third module, described by R.G. Vaughan, Hazards in the Solar System: Out-of-School Time Student Activities Focused on Engineering Protective Space Gloves (262143), focuses on hazards in the Solar System and the engineering approach to designing space gloves to protect against those hazards.
Strategies for Engaging NASA Earth Scientists in K-12 Education and Public Outreach
NASA Technical Reports Server (NTRS)
Meeson, Blanche W.; Gabrys, Robert E.
2001-01-01
Engagement of the Earth Science research community in formal education at the kindergarten through high school level and in various aspects of informal education and in professional development of practitioners in related fields has been and continues to be a challenge. A range of approaches is being used and new ones are constantly being tried. Fundamental to our strategies is an understanding of the priorities, skills, academic experiences, motivation, rewards and work experiences of most scientists. It is within this context that efforts to engage a scientist in education efforts are attempted. A key strategy is to limit our requests to activities where the scientist's contribution of time and expertise can have the most impact. Don't waste the scientist's time! Time is one of their most prized resources, it is extremely valuable to you, and to them, we treat their time like a treasured resource. The clearer a scientist's role, their unique contribution and the finite nature of their effort, the more likely they are to participate. It is critical that commitments made to scientists are kept. If they want and can do more, great! Don't expect or assume more will be forthcoming. Another approach that we use is to create periodic venues that, among other things, serve to identify individuals who have an interest or inclination to con , tribute to education efforts. Once identified we strive to determine their interests so that we can make the best match between their interests and the needs of the education program or efforts. In this way, we try to make the best use of their time while engaging them in efforts which will be personally rewarding, and will further the overall education objectives. In addition, we try to make it easier for scientists to participate by providing focused training, such as development of their interviewing skills, and exposure to key concepts, knowledge and skills which are well known among educators but are not common knowledge among scientists. Another strategy with which we are still struggling is how to create and provide career meaningful rewards for individuals who demonstrate excellence in education equivalent to excellence in science. We do not yet have a yardstick to measure excellence in education nor is there a consensus among scientific peers that these two can be equivalent. None-the-less, methods to identify excellence in education, such as the peer review process, are being tried with some success. Use of solicitation and selection of educational efforts via a peer review process that is the same as for scientific research to identify unique, interesting and creative ideas has been somewhat effective. Furthermore, the application of the same peer review process to the output of an educational effort is used to validate and ensure the quality of this output. An example will be used to illustrate the application of some of these strategies to the development of a high school Earth and Space System Science curriculum created in partnership with a local county school system (Anne Arundel County, MD).
What Will Classroom Teachers Do With Shared Research Results?
NASA Astrophysics Data System (ADS)
Passow, M. J.; Weissel, J. K.; Cormier, M.; Newman, K. R.
2005-12-01
Scientists are passionate about the research problems they investigate, and wish to share their discoveries as widely as possible. Similarly, classroom teachers who are passionate about their subject can better foster student learning. One way to enhance such passions involves bringing teachers and scientists together to discuss cutting-edge discoveries and develop curricular materials based on the respective strengths of educators and investigators. Our presentation describes one example of this approach based on research about gas blowout structures offshore Virginia and North Carolina. Methane venting processes along continental margins may have important climatic, geotechnical, hazard, and resource implications. In 2000, shipboard surveys documented that large structures offshore VA-NC resulted from massive gas expulsion. Gas appears to be trapped in shelf edge deltas and stresses resulting from downslope creep is favoring its release. Scientists undertook a new expedition in 2004 to determine if there is present-day discharge of methane-rich fluids through the floors or walls of the blowouts or whether these seepage sites are relict features, and to gain insight into the origin of the vented methane. In July 2005, 12 teachers from New York and New Jersey met with the co-PIs (Weissel and Cormier), graduate student (Newman), and educational specialist (Passow) over a 2-day workshop to learn about how scientific problems are identified, how a research cruise is organized, what was learned through the measurements and analysis, and what might be possible significant impacts from such understandings. Based on what they learned, participants began development of classroom activities, Internet-based investigations, and constructed-response assessment items utilizing data and concepts from the project and other sources. The resulting curriculum units are designed for use in middle and high school chemistry, physics, earth science, and technology courses. Curricular units include "Using Real-Life Problems to Learn Scientific Principles," "Mapping the Unseen Floors," "Landslide or Not," and a board game based on conducting a scientific research cruise. Materials are available through www.earth2class.org. Over the following academic year, participants will continue to develop instructional materials, field-test them, and provide peer training through in-district and regional professional development opportunities. The scientists and educational specialist will provide support to ensure scientific accuracy and pedagogical soundness. The project will utilize DLESE as an additional effective dissemination and evaluation mechanism. In these ways, the scientists and core of educators may be able to share these discoveries with hundreds of teachers and thousands of students.
The DuPont Conference: Implications for the Chemical Technology Curriculum
NASA Astrophysics Data System (ADS)
Kenkel, John; Rutledge, Sue; Kelter, Paul B.
1998-05-01
Southeast Community College (SCC) hosted the first DuPont Conference for Chemical Technology Education at its Lincoln, Nebraska campus October 4-6, 1997. The conference brought together fourteen practicing chemists and chemistry technicians and five college and university faculty members for the express purpose of suggesting new laboratory activities that would help relate the real world of work to the education of chemical laboratory technicians in community colleges. Participants included seven men and seven women from DuPont, Procter & Gamble, Eastman Chemical, Eastman Kodak, Dow Chemical, Air Products and Chemicals, Monsanto, Union Carbide, the Nebraska Agriculture Laboratory, and the University of Nebraska Biological Process Development Facility, Department of Food Science. The conference, sponsored by the E. I. DuPont DeNemours & Company through a grant awarded to SCC in June 1997, was intended to help further the goals of the two major projects underway at SCC, funded by the National Science Foundation's Advanced Technological Education Program. These projects, dubbed "Assignment: Chemical Technology I and II", or ACT-I and ACT-II, are curriculum and materials development projects. The invited scientists had between 2 and 32 years of experience that ranged from bench work to management levels. Many are or have been active on the national scene as members and officers of the American Chemical Society's Division of Chemical Technicians and the ACS Committee on Technician Activities.
Strategies for Building a Reliable, Diverse Pipeline of Earth Data Scientists
NASA Astrophysics Data System (ADS)
Fowler, R.; Robinson, E.
2015-12-01
The grand challenges facing the geosciences are increasingly data-driven and require large-scale collaboration. Today's geoscience community is primarily self-taught or peer-taught as neither data science nor collaborative skills are traditionally part of the geoscience curriculum. This is not a sustainable model. By increasing understanding of the role of data science and collaboration in the geosciences, and Earth and space science informatics, an increased number of students pursuing STEM degrees may choose careers in these fields. Efforts to build a reliable pipeline of future Earth data scientists must incorporate the following: (1) improved communication: covering not only what data science is, but what a data scientist working in the geosciences does and the impact their work has; (2) effective identification and promotion of the skills and knowledge needed, including possible academic and career paths, the availability and types of jobs in the geosciences, and how to develop the necessary skills for these careers; (3) the employment of recruitment and engagement strategies that result in a diverse data science workforce, especially the recruitment and inclusion of underrepresented minority students; and (4) changing organizational cultures to better retain and advance women and other minority groups in data science. In this presentation we'll discuss strategies to increase the number of women and underrepresented minority students pursuing careers in data science, with an emphasis on effective strategies for recruiting and mentoring these groups, as well as challenges faced and lessons learned.
ERIC Educational Resources Information Center
Zernovoj, Alexander
2007-01-01
This study provides a complete review of discussion and development leading up to the current trends in Deaf Studies curriculum development, and also analyzes existing known curriculum (or curriculum-like) materials to help inform development of an ideal standards-based Deaf Studies curriculum. The common shared arguments identified in this…
The NASA Climate Change Research Initiative - A Scientist's Perspective
NASA Astrophysics Data System (ADS)
LeGrande, A. N.; Pearce, M. D.; Dulaney, N.; Kelly, S. M.
2017-12-01
For the last four years, I have been a lead mentor in the NASA GISS Climate Change Research Initiative (CCRI) program, a component in the NASA GSFC Office of Education portfolio. It creates a multidisciplinary; vertical research team including a NYC metropolitan teacher, graduate student, undergraduate student, and high school student. While the college and high school members of this research team function like a more traditional internship component, the teacher component provides a powerful, direct way to connect state-of-the art research with students in the classroom. Because the teacher internship lasts a full year, it affords a similar relationship with a teacher that normally only exists between a PhD student and scientist. It also provides an opportunity to train the teacher in using the extensive data archives and other information maintained on NASA's publicly available websites. This time and access provide PhD-level training in the techniques and tools used in my climate research to the high school teacher. The teacher then uses his/her own pedagogical expertise to translate these techniques into age/level appropriate lesson plans for the classroom aligned with current STEM education trends and expectations. Throughout the process, there is an exchange of knowledge between the teacher and scientist that is very similar to the training given to PhD level graduate students. The teacher's understanding of the topic and implementation of the tools is done under a very close collaboration with the scientist supervisor and the NASA Education Program Specialist. This vertical team model encourages collegial communication between teachers and learners from many different educational levels and capitalizes on the efficacy of near peer mentoring strategies. This relationship is important in building trust through the difficult, iterative process that results in the development of highly accurate and quality (continuously discussed and vetted) curriculum composed of science modules on very sophisticated STEM education topics tailored and customized for a high school student audience. This program has thus very meaningful broad impacts with a scientist being able to reach and inspire 150 or more students per year through the expert collaboration of the high school teacher to scientist partnership. PANELIST
The National Technical Association: A Hallmark for Access and Success
NASA Astrophysics Data System (ADS)
Jearld, A., Jr.
2017-12-01
Minority Technical Organizations (MTO) are under-utilized as a valuable resource that can help develop the next generation of scientists and engineers. For over 90 years, the National Technical Association (NTA) (www.ntaonline.org) has been the premiere technical association for scientists, engineers, architects, technologist, educators, and technical business entrepreneurs for people of color, offering professional development, mentoring and awards recognition to technical professionals. NTA and its partners are developing a diverse workforce by emphasizing enhanced access opportunities to skills development for youth among underrepresented STEM populations. Established in 1925 by Charles Summer Duke, the first African American to receive an engineering degree from Harvard University, NTA served as the model organization for more than 40 other minority technical organizations that began forming in the 1970's. NTA has served as consultants to the US government on the status of African Americans in science and engineering. The first technical organization to establish community based technical mentoring programs targeting minorities, NTA shares information and assists institutions in identifying minority talent. Members developed the first science and engineering curriculum at Historically Black Colleges and Universities (HBCU's), and are working to produce more students with geoscience degrees to ensure greater career placement with increased minority participation in the geosciences. NTA addresses the lack of access, support, and the need for networking through the longest running annual conference for technical practitioners of color. A hallmark of NTA has been access and success through inter-organizational collaborations with communities of scholars, highly experienced professionals and students to discuss the definition of what is successful geoscience education, research, and employment.
PUMAS: The On-line journal of Math and Science Examples for Pre-College Education
NASA Astrophysics Data System (ADS)
Trainer, Melissa G.; Kahn, Ralph A.
2015-11-01
PUMAS - “Practical Uses of Math And Science” - is an on-line collection of brief examples showing how math and science topics taught in K-12 classes can be used in interesting settings, including every day life. The examples are written primarily by scientists, engineers, and other content experts having practical experience with the material. They are aimed mainly at classroom teachers to enrich their presentation of math and science topics. The goal of PUMAS is to capture, for the benefit of pre-college education, the flavor of the vast experience that working scientists have with interesting and practical uses of math and science. There are currently over 80 examples in the PUMAS collection, and they are organized by curriculum topics and tagged with relevant grade levels and curriculum topic benchmarks. The published examples cover a wide range of subject matter: from demonstrating why summer is hot, to describing the fluid dynamics of a lava lamp, to calculating the best age to collect Social Security Benefits. The examples are available to all interested parties via the PUMAS web site: http://pumas.nasa.gov/.We invite the community to participate in the PUMAS collection. We seek scientists and scientific thinkers to provide innovative examples of practical uses for teachers to use to enrich the classroom experience, and content experts to participate in peer-review. We also seek teachers to review examples for originality, accuracy of content, clarity of presentation, and grade-level appropriateness. Finally, we encourage teachers to mine this rich repository for real-world examples to demonstrate the value of math in science in everyday life.
Meeting the Curriculum Needs for Different Career Paths in Laboratory Medicine
Smith, Brian R.
2008-01-01
There are a number of career paths in Laboratory Medicine and several clinical practice models for the discipline. This article summarizes the state of current training at the medical student and residency/post-graduate levels, emphasizing practice in the U.S., and the challenges of education in the discipline to meet the needs of diverse career paths. Data regarding effectiveness of current pedagogical Approaches are discussed along with a brief review of evolving didactic methodologies. The recently published curriculum in Laboratory Medicine (Clinical Pathology) by the Academy of Clinical Laboratory Physicians and Scientists is reviewed, including its major emphases and the importance of competency assessment. Finally, the future of Laboratory Medicine and Pathology and the need to train for that future is expanded upon. PMID:18410745
The Georgians Experience Astronomy Research in Schools (GEARS) High School Galaxy Unit
NASA Astrophysics Data System (ADS)
Higdon, Sarah; Higdon, J.; Aguilar, J.
2012-01-01
The Georgians Experience Astronomy Research in Schools (GEARS) project aims to provide a rigorous and inquiry-based astronomy curriculum to GA's public schools. Exposure to data mining and research activities using the astronomy archives can be the trigger for the next generation of scientists, and it improves a student's ability to solve problems. Students then consolidate their findings and improve their communication skills by writing scientific reports and creating video presentations. The GEARS curriculum has units on the solar system, life in the Universe, stars, galaxies and cosmology. Here we present some of the activities in the Galaxy Unit. The GEARS material is freely available. Please email shigdon_AT_georgiasouthern.edu if you would like more details. NASA Grant NNX09AH83A through the GADOE funds this project.
ERIC Educational Resources Information Center
Owoh, Titus M.
2016-01-01
This article describes the development of curriculum as it relates to vocational education in Nigeria Upper Basic Education Curriculum. The definition of Curriculum development was highlighted to reflect contemporary concepts of curriculum integration. Curriculum development was stressed to include the rudiments necessary in its stages of…
ERIC Educational Resources Information Center
Philippines Univ., Quezon City. Asian Inst. for Teacher Educators.
The Regional Planning Workshop on Teacher Education and Curriculum for Development had as its aim the preparation of guidelines for: 1) the development of modules for curriculum designers with reference to curriculum for development; 2) the development of modules for selected elements of the core curriculum of teacher education; and 3)…
Midwifery participatory curriculum development: Transformation through active partnership.
Sidebotham, Mary; Walters, Caroline; Chipperfield, Janine; Gamble, Jenny
2017-07-01
Evolving knowledge and professional practice combined with advances in pedagogy and learning technology create challenges for accredited professional programs. Internationally a sparsity of literature exists around curriculum development for professional programs responsive to regulatory and societal drivers. This paper evaluates a participatory curriculum development framework, adapted from the community development sector, to determine its applicability to promote engagement and ownership during the development of a Bachelor of Midwifery curriculum at an Australian University. The structures, processes and resulting curriculum development framework are described. A representative sample of key curriculum development team members were interviewed in relation to their participation. Qualitative analysis of transcribed interviews occurred through inductive, essentialist thematic analysis. Two main themes emerged: (1) 'it is a transformative journey' and (2) focused 'partnership in action'. Results confirmed the participatory curriculum development process provides symbiotic benefits to participants leading to individual and organisational growth and the perception of a shared curriculum. A final operational model using a participatory curriculum development process to guide the development of accredited health programs emerged. The model provides an appropriate structure to create meaningful collaboration with multiple stakeholders to produce a curriculum that is contemporary, underpinned by evidence and reflective of 'real world' practice. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sparrow, E. B.
2003-12-01
The GLOBE program has provided opportunities for environmental science research and education collaborations among scientists, teachers and K-12 students, and for cross-cultural enrichment nationally and abroad. In Alaska, GLOBE has also provided funding leverage in some cases, and a base for several other science education programs that share a common goal of increasing student interest, understanding, process skills and achievement in science, through involvement in ongoing research investigations. These programs that use GLOBE methodologies (standardized scientific measurements and learning activities developed by scientists and educators) are: Global Change Education Using Western Science and Native Knowledge also known as "Observing Locally, Connecting Globally" (OLCG); Alaska Earth System Science Education Alliance: Improving Understanding of Climate Variability and Its Relevance to Rural Alaska; Schoolyard Long Term Ecological Research; Alaska Rural Research Partnership; Alaska Partnership for Teacher Enhancement; Alaska Lake Ice and Snow Observatory Network; Alaska Boreal Forest Council Education Outreach; Calypso Farm and Ecology Center; Environmental Education Outreach; and also GLOBE Arctic POPs (persistent organic pollutants) a program that involves countries in the circumpolar North. The University of Alaska GLOBE Partnership has collaborated with the BLM Campbell Creek Science Center Globe Partnership in facilitating GLOBE Training Workshops and providing teacher support. GLOBE's extensive website including data entry, archive, analysis and visualization capabilities; GLOBE Teacher Guide, videos and other materials provided; excellent GLOBE science research and education staff, training support office, GLOBE help desk, alignment of GLOBE curriculum with national science education standards and GLOBE certification of teachers trained on even just one GLOBE investigation, have made it easier to implement GLOBE in the classroom. Using GLOBE, whole classes of students have engaged in and contributed data to science investigations. In Alaska, classes and individual students have conducted their own inquiry studies and have successfully presented their investigations and competed at science fairs and statewide high school science symposium and international conferences. Two students presented their research investigations at the GLOBE Learning Expedition in Croatia and four students presented their study at the GLOBE Arctic POPs Conference in Sweden. These students increased not only their understanding and knowledge of science but also in appreciation of people in other countries and their cultures. Friendships have also bloomed. The learning community in Alaska has expanded to include family and community members including Native elders (using OLCG), teachers, scientists and students from other countries. The following challenges remain: 1) getting funds to be able to provide GLOBE equipment and continuous support to GLOBE teachers and students throughout the year, 2) reaching teachers and students in remote areas, 3) rapid teacher turn-over rate in rural areas, 4) using inquiry-based pedagogies during GLOBE professional development workshops including the opportunity for teacher participants to conduct their own inquiries during the workshop, 5) time, school curriculum and national education requirement constraints, 6) involving school administrators, and more local scientists and community members, and 7) providing culturally relevant and responsive science education programs and life-long learning communities.
Student Cognitive and Affective Development in the Context of Classroom-Level Curriculum Development
ERIC Educational Resources Information Center
Shawer, Saad Fathy; Gilmore, Deanna; Banks-Joseph, Susan Rae
2008-01-01
This qualitative study examined the impact of teacher curriculum approaches (curriculum-transmitter/curriculum-developer/curriculum-maker) on student cognitive change (reading, writing, speaking, and listening abilities) and their affective change (motivation and interests). This study's conceptual framework was grounded in teacher curriculum…
Revitalizing a Curriculum for School-Age Learners
ERIC Educational Resources Information Center
Hayes, David, Ed.; Sharkey, Judy, Ed.
2008-01-01
At its core, a curriculum is what happens among learners and teachers in the classroom. TESOL's Language Curriculum Development Series describes how teachers, curriculum developers, and administrators have developed, adapted, or renewed a language curriculum. In doing so, they have responded creatively and realistically to learners' needs. The…
Deliberation and School-Based Curriculum Development--A Hong Kong Case Study
ERIC Educational Resources Information Center
Lam, Tak Shing John
2011-01-01
Background: Deliberative mode of curriculum development has been hailed as one effective way of developing school-based curriculum. Its participatory, egalitarian and discursive characteristics have helped to generate the much-needed synergy and ownership feeling among the curriculum team members that lead to curriculum success. Nevertheless there…
The Citizen/Teacher Curriculum Council: A Curriculum Development Involvement Strategy.
ERIC Educational Resources Information Center
Peters, Richard O.
In most school systems today, curriculum development is the work of specialists who function as consultants to classroom teachers, administrators, and school boards. An alternative is the Citizen/Teacher Curriculum Council (C/TCC) approach, which calls for direct involvement of community members and classroom teachers in curriculum development.…
Secondary students' use of social and natural world information in a land use decision context
NASA Astrophysics Data System (ADS)
Kumler, Laura M.
Many societal problems, including land use issues, are complex integrated human-ecological challenges that require an understanding of social and natural world connections. This dissertation investigates how secondary students perceive the social and natural world dimensions of land use, how they might act to support sustainable land use, and how Kaplan and Kaplan's (2008) Reasonable Person Model can inform teaching approaches to prepare students for such complex decisions and action-taking. The dissertation argues that subject compartmentalization in high schools adversely impacts students' abilities to use and to integrate information from various subjects to make a land use decision. Nine secondary science and social studies teachers and their students (n=500) participated in a quasi-experiment using pre- and posttests with treatment and comparison groups to gauge students' requests for social versus natural world information to make land use decisions. Students' self-reported actions and knowledge of actions to support sustainable land use were also measured. Additional data included classroom observations, teacher logs and interviews, and 52 student interviews. Results indicated that students requested social world over natural world information and preferred to consult with social scientists and stakeholders over natural scientists. Results also suggested that experiencing an integrated curriculum increased students' requests for natural world information relevant to the land use decision. Interestingly, this effect occurred even among social studies students whose teachers reported putting scant emphasis on the natural world curriculum content. Moreover, the type of course in which students experienced the curriculum predicted student information use. Finally, students were found to have a limited repertoire of land use actions and knowledge of actions and generally reported undertaking and thinking of individual actions such as recycling or trash pick-up rather than collective actions or political, consumer, or information-sharing actions. The curriculum had only a limited impact on students' actions and knowledge of actions, possibly because teachers did not engage students in actions. The concluding chapter discusses these results in the context of the Reasonable Person Model. The model suggests that cognitive needs, including mental model building, exploration, and meaningful participation, are mutually reinforcing and when provided for can enhance student learning outcomes.
ERIC Educational Resources Information Center
Gundem, Bjorg B.
This paper relates to a research project on the history and current practice of curriculum administration in Norway. An elaboration is provided on the changing high school system and the growing impact of curriculum scholarship on curriculum development. The discussion revolves around three objectives: (1) to determine if the newly formulated set…
NASA Astrophysics Data System (ADS)
Pearce, M. D.
2017-12-01
CCRI is a year-long STEM education program designed to bring together teams of NASA scientists, graduate, undergraduate and high school interns and high school STEM educators to become immersed in NASA research focused on atmospheric and climate changes in the 21st century. GISS climate research combines analysis of global datasets with global models of atmospheric, land surface, and oceanic processes to study climate change on Earth and other planetary atmospheres as a useful tool in assessing our general understanding of climate change. CCRI interns conduct research, gain knowledge in assigned research discipline, develop and present scientific presentations summarizing their research experience. Specifically, CCRI interns write a scientific research paper explaining basic ideas, research protocols, abstract, results, conclusion and experimental design. Prepare and present a professional presentation of their research project at NASA GISS, prepare and present a scientific poster of their research project at local and national research symposiums along with other federal agencies. CCRI Educators lead research teams under the direction of a NASA GISS scientist, conduct research, develop research based learning units and assist NASA scientists with the mentoring of interns. Educators create an Applied Research STEM Curriculum Unit Portfolio based on their research experience integrating NASA unique resources, tools and content into a teacher developed unit plan aligned with the State and NGSS standards. STEM Educators also Integrate and implement NASA unique units and content into their STEM courses during academic year, perform community education STEM engagement events, mentor interns in writing a research paper, oral research reporting, power point design and scientific poster design for presentation to local and national audiences. The CCRI program contributes to the Federal STEM Co-STEM initiatives by providing opportunities, NASA education resources and programing that improve STEM instruction, increase and sustain youth and public engagement in STEM, enhance STEM experience of undergraduate students, better serve groups under-represented groups in STEM fields and design graduate education for tomorrow's STEM workforce.
NASA Astrophysics Data System (ADS)
Brinker, R.; Cory, R. M.
2014-12-01
Next Generation Science Standards (NGSS) calls for students across grade levels to understand climate change and its impacts. To achieve this goal, the NSF-sponsored PolarTREC program paired an educator with scientists studying carbon cycling in the Arctic. The data collection and fieldwork performed by the team will form the basis of hands-on science learning in the classroom and will be incorporated into informal outreach sessions in the community. Over a 16-day period, the educator was stationed at Toolik Field Station in the High Arctic. (Toolik is run by the University of Alaska, Fairbanks, Institute of Arctic Biology.) She participated in a project that analyzed the effects of sunlight and microbial content on carbon production in Artic watersheds. Data collected will be used to introduce the following NGSS standards into the middle-school science curriculum: 1) Construct a scientific explanation based on evidence. 2) Develop a model to explain cycling of water. 3) Develop and use a model to describe phenomena. 4) Analyze and interpret data. 5) A change in one system causes and effect in other systems. Lessons can be telescoped to meet the needs of classrooms in higher or lower grades. Through these activities, students will learn strategies to model an aspect of carbon cycling, interpret authentic scientific data collected in the field, and conduct geoscience research on carbon cycling. Community outreach sessions are also an effective method to introduce and discuss the importance of geoscience education. Informal discussions of firsthand experience gained during fieldwork can help communicate to a lay audience the biological, physical, and chemical aspects of the arctic carbon cycle and the impacts of climate change on these features. Outreach methods will also include novel use of online tools to directly connect audiences with scientists in an effective and time-efficient manner.
NASA Astrophysics Data System (ADS)
Batchelor, R.; Haacker-Santos, R.; Pandya, R. E.
2012-12-01
To help young scientists succeed in our field we should not only model scientific methods and inquiry, but also train them in the art of scientific writing - after all, poorly written proposals, reports or journal articles can be a show stopper for any researcher. Research internships are an effective place to provide such training, because they offer a unique opportunity to integrate writing with the process of conducting original research. This presentation will describe how scientific communication is integrated into the SOARS program. Significant Opportunities in Atmospheric Research and Science (SOARS) is an undergraduate-to graduate bridge program that broadens participation in the geosciences. SOARS aims to foster the next generation of leaders in the atmospheric and related sciences by helping students develop investigative expertise complemented by leadership and communication skills. Each summer, interns (called protégés) attend a weekly seminar designed to help them learn scientific writing and communication skills. The workshop is organized around the sections of a scientific paper. Workshop topics include reading and citing scientific literature, writing an introduction, preparing a compelling abstract, discussing results, designing effective figures, and writing illuminating conclusions. In addition, protégés develop the skills required to communicate their research to both scientists and non-scientists through the use of posters, presentations and informal 'elevator' speeches. Writing and communication mentors guide protégés in applying the ideas from the workshop to the protégés' required summer scientific paper, poster and presentation, while a strong peer-review component of the program gives the protégés a taste of analyzing, critiquing and collaborating within a scientific forum. This presentation will provide practical tips and lessons learned from over ten years of scientific communications workshops within the SOARS program, including workshop structure, curriculum development, textbooks, reading materials and online resources, peer review and specialty seminars.
Climate change science education across schools, campuses, and centers: strategies and successes
NASA Astrophysics Data System (ADS)
Merrill, J.; Harcourt, P.; Rogers, M.; Buttram, J.; Petrone, C.; Veron, D. E.; Sezen-Barrie, A.; Stylinski, C.; Ozbay, G.
2016-02-01
With established partnerships in higher education, K-12, and informal science education communities across Delaware and Maryland, the NSF-funded MADE CLEAR project (Maryland Delaware Climate Change Education, Assessment, and Research) has instituted a suite of professional development strategies to bring climate change science into science education methods courses, K-12 classrooms, university lecture halls, and public park facilities. MADE CLEAR partners have provided consistent climate literacy topics (mechanisms, human contributions, local and global impacts, mitigation and adaptation) while meeting the unique needs of each professional community. In-person topical lectures, hands-on work with classroom materials, seed funding for development of new education kits, and on-line live and recorded sessions are some of the tools employed by the team to meet those needs and build enduring capacity for climate change science education. The scope of expertise of the MADE CLEAR team, with climate scientists, educators, learning scientists, and managers has provided not only PD tailored for each education audience, but has also created, fostered, and strengthened relationships across those audiences for long-term sustainability of the newly-built capacity. Specific examples include new climate change programs planned for implementation across Delaware State Parks that will be consistent with middle school curriculum; integration of climate change topics into science methods classes for pre-service teachers at four universities; and active K-12 and informal science education teams working to cooperatively develop lessons that apply informal science education techniques and formal education pedagogy. Evaluations by participants highlight the utility of personal connections, access to experts, mentoring and models for developing implementation plans.
Interdisciplinary innovations in biomedical and health informatics graduate education.
Demiris, G
2007-01-01
Biomedical and health informatics (BHI) is a rapidly growing domain that relies on the active collaboration with diverse disciplines and professions. Educational initiatives in BHI need to prepare students with skills and competencies that will allow them to function within and even facilitate interdisciplinary teams (IDT). This paper describes an interdisciplinary educational approach introduced into a BHI graduate curriculum that aims to prepare informatics researchers to lead IDT research. A case study of the "gerontechnology" research track is presented which highlights how the curriculum fosters collaboration with and understanding of the disciplines of Nursing, Engineering, Computer Science, and Health Administration. Gerontechnology is a new interdisciplinary field that focuses on the use of technology to support aging. Its aim is to explore innovative ways to use information technology and develop systems that support independency and increase quality of life for senior citizens. As a result of a large research group that explores "smart home" technologies and the use of information technology, we integrated this new domain into the curriculum providing a platform for computer scientists, engineers, nurses and physicians to explore challenges and opportunities with our informatics students and faculty. The interdisciplinary educational model provides an opportunity for health informatics students to acquire the skills for communication and collaboration with other disciplines. Numerous graduate and postgraduate students have already participated in this initiative. The evaluation model of this approach is presented. Interdisciplinary educational models are required for health informatics graduate education. Such models need to be innovative and reflect the needs and trends in the domains of health care and information technology.
Curriculum Development in Geomorphology.
ERIC Educational Resources Information Center
Gregory, Kenneth J.
1988-01-01
Examines the context of present curriculum development in geomorphology and the way in which it has developed in recent years. Discusses the content of the geomorphology curriculum in higher education and the consequences of curriculum development together with a consideration of future trends and their implications. (GEA)
NASA Astrophysics Data System (ADS)
Egger, A. E.
2014-12-01
Teachers provide foundational science experiences that spark interest in some students to pursue science and serve as an endpoint for others. For both groups, getting a glimpse into the culture of science is important to their futures as citizens, but this glimpse is not something all teachers are equipped to offer. Explicit instruction in the culture of science is generally not part of college-level science courses; to reach future teachers, it should be incorporated into the curriculum for pre-service teachers. I have incorporated readings from Visionlearning's peer-reviewed, freely available, web-based Process of Science series (http://www.visionlearning.com/en/library/Process-of-Science/49) into my class for pre-service middle-level and secondary science teachers. The readings describe the development of the culture and process of science using deeply embedded examples of scientists and their work. Students reflected on each reading by describing what they learned and something they will use in their future teaching. Responses were graded for thoughtfulness and completeness and later compiled. In general, students with more science courses had a better initial understanding of the culture of science and found the readings engaging stories that explained in more depth what they already knew. However, all students reported learning some fundamental aspects of the culture and nature of science. Most commonly, they learned scientific language, often words with both colloquial and scientific definitions: theory, hypothesis, law, uncertainty, error, confidence. Other learning gains were reported in defining the difference between scientific controversy and social controversy over science, interactions between historical events and the scientific enterprise, how much scientists work in groups and interact at meetings, and the role that funding plays in guiding research. On their own, students struggled to describe explicit ways to incorporate these concepts into their teaching, though many felt it was very important to do so. In follow-up discussions and activities, we developed strategies to promote bringing the culture of science explicitly into the middle-level and secondary science classroom. The readings gave them ideas and are a resource they and their students can continue to access.
NASA Astrophysics Data System (ADS)
Stwertka, C.; Blonquist, J.; Feener, D.
2010-12-01
A major communication gap exists between climate scientists, educators, and society. As a result, findings from climate research, potential implications of climate change, and possible mitigation strategies are not fully understood and accepted outside of the climate science community. A good way to begin bridging the gap is to teach climate science to students in public schools. TGLL (Think Globally, Learn Locally) is an NSF GK-12 program based at the University of Utah, which partners graduate students in the biological, geological and atmospheric sciences with middle and high school teachers in the Salt Lake City School District to improve the communication skills of Fellows and enhance inquiry-based science teaching and learning in the classroom. Each TGLL Fellow works in the same classroom(s) throughout the year, developing his or her scientific communication skills while providing teachers with content knowledge, resources, classroom support, and enhancing the experience of students such that science becomes an interesting and accessible tool for acquiring knowledge. The TGLL Fellows work closely as a group to develop inquiry-based teaching modules (a series of lessons) and a field trip that involve students in doing authentic science. Lessons are designed to apply national and Utah core curriculum concepts to broader scientific issues such as habitat alteration, pollution and disturbance, invasive species, and infectious disease, with the focus of the 2010-2011 school year being climate change. The TGLL Global Climate Change module contains lesson plans on climate temporal and spatial scales, temperature variation, energy balance, the carbon cycle, the greenhouse effect, climate feedback loops, anthropogenic climate change indicators, climate change consequences and impacts, and actions students can take to reduce greenhouse gas emissions. The capstone experience for the module is a “Backyard Climate Change” field trip to a local pristine canyon. Students will map and measure the carbon dioxide flux of various ecosystem components, measure the albedo of various surfaces, learn about micro-scale climates and atmospheric pollen transport, measure water and air quality, and observe habitat alteration. Through the module and fieldtrip, TGLL Fellows aim to build student and teacher knowledge about climate change and create lasting projects that are adapted into the core science curriculum.
Thoughts on the Role of the National Institute of Education in Curriculum Development.
ERIC Educational Resources Information Center
Carroll, John B.
Federal involvement in curriculum development has often been attended by failure to relate a specific curriculum to the total curriculum. The National Institute of Education (NIE) can have an important role in acting as a catalyst, coordinator, and financial supporter of curriculum development efforts, mainly by encouraging the establishment of…
A suggested outline for writing curriculum development journal articles: the IDCRD format.
Reznich, C B; Anderson, W A
2001-01-01
During the past decade, medical school and residency faculty have been active in developing and revising curricula for medical education programs. Many of these curriculum development efforts ultimately are published in peer-reviewed professional journals as articles or abstracts. Unlike research publications, no uniform format currently exists for reporting curriculum development efforts in the peer-reviewed literature. A suggested format for organizing curriculum development manuscripts consists of the introduction, development, curriculum, results, and discussion (IDCRD). Detailed descriptions of each section are discussed herein. The IDCRD manuscript outline is intended to provide useful guidance to medical educators in publishing their curriculum development efforts. Journal editors are encouraged to recognize the importance of providing uniform descriptions of curricula so that readers can benefit from the experience of others and replicate successful curriculum efforts.
Curriculum Development: Teacher Involvement in Curriculum Development
ERIC Educational Resources Information Center
Alsubaie, Merfat Ayesh
2016-01-01
In order for curriculum development to be effective and schools to be successful, teachers must be involved in the development process. An effective curriculum should reflect the philosophy, goals, objectives, learning experiences, instructional resources, and assessments that comprise a specific educational program ("Guide to curriculum…
ERIC Educational Resources Information Center
Brandon, Paul R.; Young, Donald B.; Shavelson, Richard J.; Jones, Rachael; Ayala, Carlos C.; Ruiz-Primo, Maria Araceli; Yin, Yue; Tomita, Miki K.; Furtak, Erin Marie
2008-01-01
Our project to embed formative student assessments in the Foundational Approaches in Science Teaching curriculum required a close collaboration between curriculum developers at the Curriculum Research & Development Group (CRDG) and assessment developers at the Stanford Educational Assessment Laboratory (SEAL). This was a new endeavor for each…
ERIC Educational Resources Information Center
du Preez, Petro; Simmonds, Shan
2014-01-01
Theoretical ambiguities in curriculum studies result in conceptual mayhem. Accordingly, they hinder the development of the complicated conversation on curriculum as a verb. This article aims to contribute to reconceptualizing curriculum studies as a dynamic social practice that aspires to thinking and acting with intelligences and sensitivity so…
NASA Astrophysics Data System (ADS)
Baek, Hamin
In the past decade, there has been a growing interest in scientific practices as a reform focus in K--12 science education of the United States. In this context, scientific practices refer to practices that have family resemblance to scientists' professional practices and simultaneously are pedagogically accessible and useful to students. In this study, I propose development of students' epistemic agency as an overarching goal for this practice-based approach to science learning. In particular, I argue that students' epistemologies, one dimension of epistemic agency, should be developed as a result of participating in practice-based science learning. The research within this dissertation focuses on studying the practice of scientific modeling. There is a body of prior studies on students' epistemological understandings about models and modeling. None have examined how students' epistemologies about modeling changes over time and why they change the way they do. This research aims to contribute to this body of work by investigating how three elementary students' epistemologies as deployed in their modeling practice, or, their epistemologies in modeling (EIMs) changed over time as a class of 5th-grade students (N=24) and their teacher, Mrs. M, and an intern teacher, Ms. H, enacted a model-based curriculum unit about evaporation and condensation and ways in which some of the curriculum events influenced the changes of their EIMs. To achieve these goals, I conducted a microgenetic analysis of the three focus students' EIMs from the models, utterances, and notes they made in nine modeling activities as part of their curriculum enactment, and analyzed ideas about modeling from some modeling-related curriculum events that preceded each modeling activity using a coding scheme I developed based on prior analytical frameworks and the data. Analysis indicates that the students attended to three main model features such as communicative features (e.g., labels, sentences, key, colors), microscopic/theoretical entities (e.g., water particles), and empirical data (e.g., percentage humidity) with varying epistemic ideas about modeling throughout the unit. The students began with nascent epistemic ideas that emphasize clarity and including many details, but as they gained more experience with modeling, they developed more advanced epistemic ideas related to providing a scientific explanation (mechanism) and making a model accurate and persuasive. The curriculum materials, teachers' instructions and scaffolding, and students' interactions played important roles in the development of the focus students' EIMs. These findings provide some insights into elementary students' epistemologies about modeling that can contribute to learning progression research for scientific modeling. First, this study suggests that we need to attend to epistemic ideas that elementary students have in common as a result of sharing a fairly homogeneous historically established sociocultural world in developing a learning progression for modeling. Second, by showing an intermediary state that elementary students had as they developed their epistemologies about modeling, this study provides an insight into a trajectory or mechanism of how students' epistemologies about modeling become increasingly sophisticated. I hope that this work contributes to the large effort to help students become more active and capable epistemic agents by learning science from engaging in scientific practices both for their present science learning and for their future life they will live as citizens in societies that will be increasingly populated with complicated, controversial socioscientific issues.
Effects of Verbal Behavior within Curriculum Development Committees on the Curriculum Product.
ERIC Educational Resources Information Center
Talmage, Harriet
An attempt was made to ascertain what type of verbal interaction behavior manifested by a group given a problem in curriculum development affects the quality of the product. Thirty ad hoc groups, selected randomly, were given curriculum development tasks to solve. Curriculum Guide Form (CGF) and Bales' Interaction Process Analysis (IPA) were used…
Curriculum Development for Enhancing Grade Nine Students' Systems Thinking
ERIC Educational Resources Information Center
Hernthaisong, Preeyanan; Sitti, Somsong; Sonsupap, Kanyarat
2015-01-01
The objectives of this research were to study the development of a curriculum for enhancing grade 9 students' cognitive skills using a curriculum based on Systems Thinking Process. There were 3 phases: 1) studying of the problem; 2) development of tentative curriculum; and 3) implementation of the curriculum in a pilot study. The samples were 32…
ERIC Educational Resources Information Center
Gibbs, Vanita; Mullican, James
This monograph describes a curriculum first published 14 years ago that is based on students' human development. The described curriculum utilizes a framework of the language arts of listening, speaking, reading, writing, and literature understanding and leaves to the imagination and skill of the individual teacher how the curriculum is…
Engaging Stakeholders in Curriculum Development
ERIC Educational Resources Information Center
Wood, Jo Nell
2010-01-01
This article investigates the importance of parent and community engagement in curriculum development, along with curriculum leadership, engaging stakeholders, and the importance of curriculum. Parent and community member engagement is examined in light of curriculum committee participation as reported by Missouri superintendents. Survey responses…
NASA Astrophysics Data System (ADS)
Pittman, Cheryl
Pioneered by NASA-JSC scientists, Marilyn Lindstorm and Jaclyn Allen, the partnering of teachers with scientists has ventured into the realms of the extreme... extreme life, that is. In 1998, two years after the announcement that possible evidence of life had been discovered within a Martian rock, teachers from region served by JSC were brought together with the Mars Meteorite research team. The goal was to familiarize the teachers with research being done in the search for evidence of extra-terrestrial life and Earth analogues. The teachers would then design curriculum to translate the research into a format that could be utilized in the classroom. "Fingerprints of Life", a work-in-progress, is a CD-rom /web-based curriculum derived from that collaboration. Modeling the actual science being done, the CD contains laboratory and classroom activities utilizing Astrobiology as the 'hook' to teach basic science skills of observation, description, communication of ideas and laboratory techniques. In addition, electron microscopy images and video clips give background information for the uninitiated. From "Wold Trap", which is based upon an actual experiment designed for the Mars Viking missions, to "Creature Feature", which deals with observation and communication, the labs and activities are appropriate for multiple grade levels. Designed to be user-friendly and tested in the classroom, "Fingerprints" uses materials that can be purchased inexpensively at the grocery store, or recycled from other sources.
25 CFR 36.13 - Standard IV-Curriculum development.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false Standard IV-Curriculum development. 36.13 Section 36.13... § 36.13 Standard IV—Curriculum development. (a) Each school shall implement an organized program of curriculum development involving certified and non-certified staff and shall provide the opportunity for...
25 CFR 36.13 - Standard IV-Curriculum development.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 25 Indians 1 2011-04-01 2011-04-01 false Standard IV-Curriculum development. 36.13 Section 36.13... § 36.13 Standard IV—Curriculum development. (a) Each school shall implement an organized program of curriculum development involving certified and non-certified staff and shall provide the opportunity for...
Influence of Culture on Curriculum Development in Ghana: An Undervalued Factor?
ERIC Educational Resources Information Center
Gervedink Nijhuis, Chantal J.; Pieters, Jules M.; Voogt, Joke M.
2013-01-01
Curriculum implementation often falls short because of a lack of cultural understanding by curriculum developers and aid organizations. This paper describes a single-case study of a professional development programme for polytechnic Heads of Department in Ghana, which aimed at identifying how curriculum development activities were sensitive to…
ERIC Educational Resources Information Center
Green (Del) Associates, Foster City, CA.
This document presents in three parts the bases for curriculum decisions in the development of a post-secondary curriculum for minorities in small business ownership and management. Part 1 covers the general curriculum decisions, including the following items: selection of curriculum testing site; academic credits; class scheduling; student…
NASA Astrophysics Data System (ADS)
Mclaughlin, Cheryl Althea
A professional learning community (PLC) typically consists of practitioners who systematically examine and problematize their practice with the intention of development and improvement. The collaborative practices inherent in PLCs mirror the way scientists work together to develop new theories, and are particularly valuable for science teachers who could draw from these experiences to improve the quality of student learning. Gaps in the science education literature support the need for research to determine how interactions within PLCs support science teacher development. Additionally, issues of power that may constrain or encourage meaningful interactions are largely overlooked in PLC studies. This qualitative study examines, from a Foucauldian perspective, interactions within a PLC comprising middle school science teachers preparing to implement reform curriculum. Specifically, the study analyzes interactions within the PLC to determine opportunities created for professional learning and development. Audiotaped transcripts of teacher interactions were analyzed using discourse analysis building tasks designed to identify opportunities for learning and to examine the exercise of power within the PLCs. The discourse analytical tools integrated theories of Gee (2011) and Foucault (1972), and were used to deconstruct and interrogate the data. The events were subsequently reconstructed through the lens of social constructivism and Foucault theories on power. The findings identified several processes emerging from the interactions that contributed to the negotiation of an understanding of the reform curriculum. These include reflection on practice, reorganization of cognitive structures, reinvention of practice, and refinement of instructional strategies. The findings also indicated that the exercise of power by entities both external to, and within the PLCs influenced the process of meaning negotiation among the science teachers. The consensus achieved by the teachers reflected knowledge constructed by science education discourses external to the PLC, which regulated understandings emerging from the interactions. Additionally, some teachers, through their actions, exercised power in ways that hindered rather than enhanced constructive dialogue in PLCs. The exercise of power by external institutions was nevertheless necessary to set the stage for the series of actions, the outcome of which facilitated constructive dialogue among science teachers who were implementing the reform curriculum.
Models and Materials: Bridging Art and Science in the Secondary Curriculum
NASA Astrophysics Data System (ADS)
Pak, D.; Cavazos, L.
2006-12-01
Creating and sustaining student engagement in science is one challenge facing secondary teachers. The visual arts provide an alternative means of communicating scientific concepts to students who may not respond to traditional formats or identify themselves as interested in science. We have initiated a three-year teacher professional development program at U C Santa Barbara focused on bridging art and science in secondary curricula, to engage students underrepresented in science majors, including girls, English language learners and non-traditional learners. The three-year format provides the teams of teachers with the time and resources necessary to create innovative learning experiences for students that will enhance their understanding of both art and science content. Models and Materials brings together ten secondary art and science teachers from six Santa Barbara County schools. Of the five participating science teachers, three teach Earth Science and two teach Life Science. Art and science teachers from each school are teamed and challenged with the task of creating integrated curriculum projects that bring visual art concepts to the science classroom and science concepts to the art classroom. Models and Materials were selected as unifying themes; understanding the concept of models, their development and limitations, is a prominent goal in the California State Science and Art Standards. Similarly, the relationship between composition, structure and properties of materials is important to both art and science learning. The program began with a 2-week institute designed to highlight the natural links between art and science through presentations and activities by both artists and scientists, to inspire teachers to develop new ways to present models in their classrooms, and for the teacher teams to brainstorm ideas for curriculum projects. During the current school year, teachers will begin to integrate science and art and the themes of modeling and materials into their classrooms. Initial results indicate that the participating teachers developed a clearer understanding of the uses and limitations of models the classroom, better understanding of materials science, and strong initial ideas for integrated curricula.
Reaching the Next Generation of Marine Scientists
NASA Astrophysics Data System (ADS)
Joyce, J.
2009-04-01
The next generation of marine scientists are today at primary school, secondary school or at college. To encourage them in their career, and to introduce those who are as yet undecided to the wonders of marine science, the Irish Marine Institute has devised a series of three overlapping outreach programmes to reach children at all three levels. Beginning at primary school, the "Explorers" programme offers a range of resources to teachers to enable them to teach marine-related examples as part of the science or geography modules of the SESE curriculum. These include teacher training, expert visits to schools, the installation and stocking of aquaria, field trips and downloadable lesson plans. For older pupils, the "Follow the Fleet" programme is a web-based education asset that allows users to track individual merchant ships and research vessels across the world, to interact with senior crew members of ships and to learn about their cargoes, the ports they visit and the sea conditions along the way. Finally, the "Integrated Marine Exploration Programme (IMEP)" takes secondary school pupils and university students to sea aboard the Marine Institute's research vessels to give them a taste of life as a marine scientist or to educate them in the practical day-to-day sampling and data processing tasks that make up a marine scientist's job.
Scientists and K-12: Experience from The Science House
NASA Astrophysics Data System (ADS)
Haase, David G.
2003-03-01
In working with K-12 science and mathematics education, scientists may take on many different roles - from presenter to full-time partner. These roles are illustrated in the activities of The Science House, a K-12 education program of North Carolina State University, (www.science-house.org) which partners with teachers and students across the state to promote inquiry-based learning in mathematics and science. While it is important to involve scientists in K-12, most universities do not have effective means to make the connections. In our efforts to do so, which began with a few teacher workshops and now encompasses six offices across NC, we have sought to join the interests of the university (research, teaching, student recruiting) to the needs of K-12. Our programs now include teacher training workshops, student science camps and curriculum projects in several states. We are reminded that K-12 science education is interdisciplinary; local and political; and a process, not a problem to be solved and forgotten. Partially supported by NSF (CHE-9876674 and DBI-0115462), the Howard Hughes Medical Institute and the Burroughs Wellcome Fund.
NASA Astrophysics Data System (ADS)
Roth, Wolff-Michael
2013-08-01
General scientific literacy includes understanding the grounds on which scientific claims are based. The measurements scientists make and the data that they produce from them generally constitute these grounds. However, the nature of data generation has received relatively little attention from those interested in teaching science through inquiry. To inform curriculum designers about the process of data generation and its relation to the understanding of patterns as these may arise from graphs, this 5-year ethnographic study in one advanced research laboratory was designed to investigate how natural scientists make decisions about the inclusion/exclusion of certain measurements in/from their data sources. The study shows that scientists exclude measurements from their data sources even before attempting to mathematize and interpret the data. The excluded measurements therefore never even enter the ground from and against which the scientific phenomenon emerges and therefore remain invisible to it. I conclude by encouraging science educators to squarely address this aspect of the discovery sciences in their teaching, which has both methodological and ethical implications.
An Integrative-Interactive Conceptual Model for Curriculum Development.
ERIC Educational Resources Information Center
Al-Ibrahim, Abdul Rahman H.
1982-01-01
The Integrative-Interactive Conceptual Model for Curriculum Development calls for curriculum reform and innovation to be cybernetic so that all aspects of curriculum planning get adequate attention. (CJ)
Innovating undergraduate pathology education through public engagement.
Mukundu Nagesh, Navin; Chiva Giurca, Bogdan; Lishman, Suzy
2018-05-01
The trends in modern undergraduate medical education focus on a patient-centred approach through problem-based learning over the traditional modular curriculum. Integrating pathology into this style of learning has resulted in the dilution of core scientific principles which may have contributed to reduced understanding and interest in the subject. We aim to innovate pathology education by utilising National Pathology Week which is organised by the Royal College of Pathologists to develop the public engagement model which empowers students to learn pathology by teaching the public. Through this model, we hope to generate a greater interest in pathology at both undergraduate and postgraduate stages of education. We obtained funding from the Royal College of Pathologists to organise National Pathology Week at Exeter Medical School and the Royal Devon & Exeter Hospital. We involved 125 undergraduate student volunteers from health-related courses. We designed a curriculum aiming to educate both students and public on current topics such as cancer screening programmes, antibiotic resistance, diagnosis of inflammatory bowel disease and the role of pathologists. We hosted 15 pathologists, biomedical scientists and microbiologists to engage with students, share experiences and offer an insight into their careers. Through this project, we interacted with over 500 members of the public and 150 school students. The medical student volunteers developed a range of skills including competent use of microscopes to visualise pathology slides, effective communication with lay audiences to teach pathology and understanding of the clinical application of pathology. We believe the public engagement model of teaching undergraduate students has the potential to develop a greater interest in pathology whilst benefitting the wider community.
Estape, Estela S.; Segarra, Barbara; Baez, Adriana; Huertas, Aracelis; Diaz, Clemente; Frontera, Walter
2012-01-01
In 2011, research educators face significant challenges. Training programs in Clinical and Translational Research need to develop or enhance their curriculum to comply with new scientific trends and government policies. Curricula must impart the skills and competencies needed to help facilitate the dissemination and transfer of scientific advances at a faster pace than current health policy and practice. Clinical and translational researchers are facing also the need of new paradigms for effective collaboration, and resource sharing while using the best educational models. Both government and public policy makers emphasize addressing the goals of improving health quality and elimination of health disparities. To help achieve this goal, our academic institution is taking an active role and striving to develop an environment that fosters the career development of clinical and translational researchers. Consonant with this vision, in 2002 the University of Puerto Rico, Medical Sciences Campus School of Health Professions and School of Medicine initiated a multidisciplinary post-doctoral Master of Science in Clinical Research focused in training Hispanics who will address minority health and health disparities research. Recently, we proposed a curriculum revision to enhance this commitment in promoting competency-based curricula for clinician-scientists in clinical and translational sciences. The revised program will be a post-doctoral Master of Science in Clinical and Translational Research (MCTR), expanding its outreach by actively engaging in establishing new collaborations and partnerships that will increase our capability to diversify our educational efforts and make significant contributions to help reduce and eliminate the gap in health disparities. PMID:22263296
Economics in the School Curriculum.
ERIC Educational Resources Information Center
Brenneke, Judith Staley; Soper, John C.
1987-01-01
Various approaches to developing and implementing economics curricula are explored, including positive and normative economics, teacher-developed informal curriculum, district-developed formal curriculum, "outside" curriculum, the infusion approach, or as a separate course. It is suggested that a "blend" of the alternatives may optimize the…
The Design of Curriculum Development Based on Entrepreneurship through Balanced Scorecard Approach
ERIC Educational Resources Information Center
Hidayat, Muhammad; Musa, Chalid Imran; Haerani, Siti; Sudirman, Indrianti
2015-01-01
This research is intended to develop curriculum based on entrepreneurship through balanced scorecard approach at the School of Business or "Sekolah Tinggi Ilmu Ekonomi" (STIE) Nobel Indonesia. In order to develop the curriculum, a need analysis in terms of curriculum development that involves all stakeholders at STIE Nobel in Indonesia…
ERIC Educational Resources Information Center
Kern Joint Union High School District, Bakersfield, CA.
Intended for consumer and homemaking education program development in kindergarten through adult education, this curriculum design emphasizes human development and interpersonal relationships. Presented in two sections, the document covers both the curriculum development process and the resulting products. The curriculum addresses five…
Curriculum Orientation of Lecturers in Teacher Training College in Malaysia
ERIC Educational Resources Information Center
Salleh, Halimatussaadiah; Hamdan, Abdul Rahim; Yahya, Fauziah; Jantan, Hafsah
2015-01-01
Curriculum development in teacher training college can be facilitated by indentifying the lecturers curriculum orientation. This study focuses on curriculum orientation of lecturer in Teacher Training Colleges (TTC) in Malaysia. Data were collected through questionnaire survey using the Curriculum Orientation Inventory, an instrument developed by…
New Solutions to Curricular Problems.
ERIC Educational Resources Information Center
Willman, Fred
1992-01-01
Discusses resources for curriculum design and choosing technology to fit with the curriculum developed. Lists questions about curriculum development raised by the Manhattan Music Curriculum Project. Describes software and hardware that place students in the many roles undertaken by musicians. Emphasizes the development of cognitive as well as…
An International Marketing Curriculum - Development and Analysis.
ERIC Educational Resources Information Center
Abboushi, Suhail; Lackman, Conway; Peace, A. Graham
1999-01-01
Describes the process of market-driven curriculum design in the development of an undergraduate International Marketing (IM) major at Duquesne University (Pennsylvania) School of Business Administration. Reports on a market study revealing profiles and IM curriculum design preferences of exporting companies. Discusses the curriculum development,…
Active Astronomy Roadshow Haiti
NASA Astrophysics Data System (ADS)
Laycock, Silas; Oram, Kathleen; Alabre, Dayana; Douyon, Ralph; UMass Lowell Haiti Development Studies Center
2016-01-01
College-age Haitian students working with advisors and volunteers from UMass Lowell in 2015 developed and tested an activity-based K-8 curriculum in astronomy, space, and earth science. Our partner school is located in Les Cayes, Haiti a city where only 65% of children attend school, and only half of those will complete 6th grade. Astronomy provides an accessible and non-intimidating entry into science, and activity-based learning contrasts with the predominant traditional teaching techniques in use in Haiti, to reach and inspire a different cohort of learners. Teachers are predominantly women in Haiti, so part of the effort involves connecting them with scientists, engineers and teacher peers in the US. As a developing nation, it is vital for Haitian (as for all) children to grow up viewing women as leaders in science. Meanwhile in the US, few are aware of the reality of getting an education in a 3rd world nation (i.e. most of the world), so we also joined with teachers in Massachusetts to give US school children a peek at what daily life is like for their peers living in our vibrant but impoverished neighbor. Our Haitian partners are committed to helping their sister-schools with curriculum and educator workshops, so that the overall quality of education can rise, and not be limited to the very few schools with access to resources. We will describe the activites, motivation, and and the lessons learned from our first year of the project.
Engaging Students in Water Resources Issues in Developing Countries (Invited)
NASA Astrophysics Data System (ADS)
Thomas, J.; Lutz, A.
2010-12-01
When all is said and done, what does it mean to work in the developing world? The need for access to clean water and sanitation and the desire to end poverty and disease cannot be disputed. But as engineers and physical scientists, we often step into a scenario with a problem-identification-and-solving approach. However, to successfully apply engineering and science in developing countries, we should also consider questions such as: how the problems have come to be; have our approaches been appropriate; and what have the effects of projects been on local populations? A short course to help us better address critical needs begins with readings that cover the history of development, development theories, review of “players” in development, case studies, and possibilities on the road ahead. It is also important to include key guest speakers with experience in developing countries as part of an international course curriculum. Within this overall course context, discussion of case studies provides an opportunity to critically assess positive, negative, and a combination of outcomes for communities. These case studies are building blocks for solving some of the most important water and sanitation issues in developing countries.
Girls Talk Math - Engaging Girls Through Math Media
NASA Astrophysics Data System (ADS)
Bernardi, Francesca; Morgan, Katrina
2017-11-01
``Girls Talk Math: Engaging Girls through Math Media'' is a free two-week long summer day camp for high-school girls in the Triangle area of NC. This past June the camp had its second run thanks to renewed funding from the Mathematical Association of America Tensor Women and Mathematics Grant. The camp involved 35 local high-school students who identify as female. Campers complete challenging problem sets and research the life of a female scientist who worked on similar problems. They report their work in a blog post and record a podcast about the scientist they researched. The curriculum has been developed by Mathematics graduate students at UNC from an inquiry based learning perspective; problem sets topics include some theoretical mathematics, but also more applied physics-based material. Campers worked on fluid dynamics, special relativity, and quantum mechanics problem sets which included experiments. The camp has received positive feedback from the local community and the second run saw a large increase in the number of participants. The program is evaluated using pre and post surveys, which measure campers' confidence and interest in pursuing higher level courses in STEM. The results from the past two summers have been encouraging. Mathematical Association of America Tensor Women and Mathematics Grant.
NASA Astrophysics Data System (ADS)
Widhiyanti, Tuszie; Treagust, David F.; Mocerino, Mauro; Vishnumolakala, Venkat
2017-08-01
One of the essential facets in teacher education program is the development of the teachers' content knowledge and it has been suggested by many scholars that the study to analyse the process of content knowledge development in teacher education program is necessary. Regarding this, the aim of this research is to evaluate the existing program of developing pre-service chemistry teachers' content knowledge, especially in the topic about the particulate nature of matter. The curriculum of content knowledge development was analysed using the forms of the curriculum evaluation (Akker, 1998; Goodlad, Klein, and Tye (1979); Treagust, 1987). Within this framework, the curriculum was evaluated in several aspects including the vision and intention of the curriculum as mentioned in the curriculum documents (intended curriculum), the users' interpretation and perception about the curriculum (perceived curriculum), the actual process of curriculum implementation (implemented curriculum), and the outcomes of the curriculum (achieved curriculum). According to the framework used for this study, the research combined qualitative and quantitative methods of data collection and the interpretation including document analysis, classroom observation, interviews, and two-tier diagnostic test. Through this research we examined the coherence among those aspects. The results reveal that although the content knowledge development is explicitly intended in a curriculum, its implementation and lecturers' perceptions give influence in the results as appear in pre-service teachers' achievements. In general, this research provides basic information about the effectiveness of the program including the challenges and the potentials for a reconsideration of the program in the future.
Making Connections: A "Number Curriculum" for Preschoolers.
ERIC Educational Resources Information Center
Shane, Ruth
This paper discusses a one-page curriculum outline for a preschool mathematics program in Israel. The curriculum was developed in the course of preservice and inservice teacher education programs in Israel, and the mathematics activities offered to support the curriculum were developed by student teachers there. The curriculum starts from…
Research Visibility: Vocational Education Curriculum.
ERIC Educational Resources Information Center
Brandon, George L., Ed.
1970-01-01
Sixteen research reviews are organized under these topics: (1) Curriculum Development, treating a national conference report, a guide for the development of a curriculum, occupational analysis as a basis for curriculum development, and a shared-time concept for area programs, (2) Agricultural Education, reviewing innovative aspects of off-farm…
Curriculum Development in Population Education. Abstract-Bibliography, Series 6.
ERIC Educational Resources Information Center
United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and the Pacific.
Part of a series of annotated bibliographies dealing with issues and problems raised by educators involved with population education programs, this publication addresses curriculum development in population education. Curriculum development is the most important component of a population education program, for it is through curriculum materials…
ERIC Educational Resources Information Center
Srijumnong, Sirithorn; Sri-ampai, Pissamai; Chano, Jiraporn
2015-01-01
The purposes of this study were to develop a public mind curriculum with Contemplative Education and to study the effect of using the curriculum to enhance public minds. The study was carried out using the research and development process, consisting of three phases: investigating fundamental data, developing a curriculum, and evaluating the…
What Works: 20 Years of Curriculum Development and Research for Advanced Learners, 1988-2008
ERIC Educational Resources Information Center
VanTassel-Baska, Joyce, Ed.; Stambaugh, Tamra, Ed.
2009-01-01
The purpose of this document is to highlight "what works" based on the curriculum development and research work of the Center for Gifted Education during the past 20 years. Areas of study include curriculum development, instruction, assessment, and professional development. Through the use of the Integrated Curriculum Model as a template for …
The process of internationalization of the nursing and midwifery curriculum: A qualitative study.
Abdul-Mumin, Khadizah H
2016-11-01
There is an abundance of literature on internationalization of curricula. However, research on how a curriculum is internationalized to accommodate non-mobile students studying in their home countries is limited. To describe the process undertaken by curriculum developers in internationalizing the Brunei nursing and midwifery curriculum through curriculum design. A descriptive qualitative research design. A nursing and midwifery higher education institution in Brunei. Seventeen nurse/midwife academics. Semi-structured interviews were conducted with 17 curriculum developers. Data were analyzed using thematic analysis. Four themes emerged: expectations of an internationalized curriculum; formation of a committee; benchmarking and setting standards; and designing the curriculum for internationalization. This study has implications for the development of an internationally-oriented curriculum that takes into account the cultural context of a specific country. The findings highlight the need to involve students in curriculum design, a practice that is not common in Brunei. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Williams, Latonya Michelle
This dissertation reports on a three year study designed to investigate the trajectories of two urban elementary school teachers---a novice and an experienced teacher---learning to teach a science curriculum unit using an inquiry approach supported by the Web-based Inquiry Science Environment (WISE). This research investigated teachers' development in knowledge and practice. Through analyses of video records of classroom instruction and professional development meetings, repeated interviews, and student assessments, I have produced case studies of teachers' journeys as they implement the technological inquiry-based instructional model. This study captures the interplay between the teachers' pedagogical content knowledge, enacted practice, and insights into students' thinking about complex science ideas. I trace the factors that encouraged and supported the teachers' development, in addition to the kinds of struggles they faced and overcame. I discuss the social supports I provided for the teachers, including scaffolding them in reflecting on their practice, assisting them with curriculum customizations, and supporting their learning such as arranging online interactions with scientists. I analyze spontaneous activities such as teachers' own reflections. The results suggest that the novice and experienced teacher's classroom practices became more inquiry oriented across time. For both teachers, use of technology accompanied an increase in science dialogue with small groups in years two and three. The novice teacher began asking inquiry questions in her second year of classroom experience, after a great deal of professional support. Both teachers improved in their pedagogical content knowledge from years one through three as a result of the varied professional development supports. The results suggest that teachers' improvement in instructional strategies and pedagogical content knowledge accompanied students' improvement in understanding of the science content.
Curriculum in radiology for residents: what, why, how, when, and where.
Collins, J
2000-02-01
Developing a curriculum in chest radiology should follow the same general principles that are used when developing a curriculum in any subspecialty area of radiology. A curriculum is more than a "list of topics" with which a resident should be familiar after 4 years of training. It includes objectives and goals, content, faculty, methods, and evaluation. Numerous resources are available for those who are charged with developing a curriculum in chest radiology. In addition to faculty members in the department, whose input during development can ensure successful implementation of the curriculum, organizations (i.e., ACR, APDR, STR) already have begun to develop "model" curricula. Attending the annual meeting of the Association of American Medical Colleges is a way to meet and hear from professionals who develop and oversee curriculum development at their medical schools, and another important resource available at some medical schools is the Office of Medical Education. The faculty within such offices are uniquely qualified to assist with curriculum and faculty development, especially for those areas in which radiology faculty traditionally are less experienced, such as development of valid and reliable assessment forms and construction of behaviorally based objectives.
ERIC Educational Resources Information Center
Susilana, Rudi; Asra; Herlina
2014-01-01
The aim of this study is to describe how the self-efficacy of curriculum development team (CDT) and curriculum document quality contributed to the implementation of diversified curriculum in elementary schools. This research is a survey study using descriptive method. Schools were the unit of analysis while respondents selected from the schools…
First Year K-12 Teachers as High Leverage Point to Implement GEMS Space Science Curriculum Sequence
NASA Astrophysics Data System (ADS)
Slater, Timothy F.; Mendez, B. J.; Schultz, G.; Wierman, T.
2013-01-01
The recurring challenge for curriculum developers is how to efficiently prepare K-12 classroom teachers to use new curricula. First-year teachers, numbering nearly 250,000 in the US each year, have the greatest potential to impact the largest number of students because they have potential to be in the classroom for thirty years. At the same time, these novice teachers are often the most open minded about adopting curricular innovation because they are not yet deeply entrenched in existing practices. To take advantage of this high leverage point, a collaborative of space scientists and science educators at the University of California, Berkeley’s Lawrence Hall of Science and Center for Science Education at the Space Sciences Laboratory with experts from the Astronomical Society of the Pacific, the University of Wyoming, and the CAPER Center for Astronomy & Physics Education experimented with a unique professional development model focused on helping master teachers work closely with pre-service teachers during their student teaching internship field experience. The Advancing Mentor and Novice Teachers in Space Science (AMANTISS) team first identified master teachers who supervise novice, student teachers and trained these master teachers to use the GEMS Space Science Curriculum Sequence. Then, these master teachers were mentored in coaching interning student teachers assigned to them in using GEMS materials. Evaluation showed that novice teachers mentored by the master teachers felt knowledgeable after teaching the GEMS units. However, they seemed relatively less confident about the solar system and objects beyond the solar system. Overall, mentees felt strongly at the end of the year that they have acquired good strategies for teaching the various topics, suggesting that the support they received while teaching and working with a mentor was of real benefit to them. Funding provided in part by NASA ROSES AMANTISS NNX09AD51G
NASA Astrophysics Data System (ADS)
Posner, Matthew T.; Jantzen, Alexander; van Putten, Lieke D.; Ravagli, Andrea; Donko, Andrei L.; Soper, Nathan; Wong, Nicholas H. L.; John, Pearl V.
2017-08-01
Universities in the United Kingdom have been driven to work with a larger pool of potential students than just the more traditional student (middle-class white male), in order to tackle the widely-accepted skills-shortage in the fields of science, technology, engineering and mathematics (STEM), whilst honoring their commitment to fair access to higher education. Student-led outreach programs have contributed significantly to this drive. Two such programs run by postgraduate students at the University of Southampton are the Lightwave Roadshow and Southampton Accelerate!, which focus on photonics and particle physics, respectively. The program ambassadors have developed activities to enhance areas of the national curriculum through presenting fundamental physical sciences and their applications to optics and photonics research. The activities have benefitted significantly from investment from international organizations, such as SPIE, OSA and the IEEE Photonics Society, and UK research councils, in conjunction with university recruitment and outreach strategies. New partnerships have been formed to expand outreach programs to work in non-traditional environments to challenge stereotypes of scientists. This paper presents two case studies of collaboration with education learning centers at Salisbury Cathedral and Winchester Cathedral. The paper outlines workshops and shows developed for pupils aged 6-14 years (UK key stages 2-4) on the electromagnetic spectrum, particle physics, telecommunications and the human eye using a combination of readily obtainable items, hand-built kits and elements from the EYEST Photonics Explorer kit. The activities are interactive to stimulate learning through active participation, complement the UK national curriculum and link the themes of science with the non-traditional setting of a cathedral. We present methods to evaluate the impact of the activity and tools to obtain qualitative feedback for continual program improvement. We also share lessons learned to assist educators emulating this format of engagement, and provide ideas and inspiration of outreach activities for student chapters to carry out.
Training tomorrow's clinicians today--managed care essentials: a process for curriculum development.
Colenda, C C; Wadland, W; Hayes, O; Anderson, W; Priester, F; Pearson, R; Keefe, C; Fleck, L
2000-05-01
To develop a managed care curriculum for primary care residents. This article outlines a 4-stage curriculum development process focusing on concepts of managed care organization and finance. The stages consist of: (1) identifying the curriculum development work group and framing the scope of the curriculum, (2) identifying stakeholder buy-in and expectations, (3) choosing curricular topics and delivery mechanisms, and (4) outlining the evaluation process. Key elements of building a curriculum development team, content objectives of the curriculum, the rationale for using problem-based learning, and finally, lessons learned from the partnership among the stakeholders are reviewed. The curriculum was delivered to an entering group of postgraduate-year 1 primary care residents. Attitudes among residents toward managed care remained relatively negative and stable over the yearlong curriculum, especially over issues relating to finance, quality of care, control and autonomy of practitioners, time spent with patients, and managed care's impact on the doctor-patient relationship. Residents' baseline knowledge of core concepts about managed care organization and finance improved during the year that the curriculum was delivered. Satisfaction with a problem-based learning approach was high. Problem-based learning, using real-life clinical examples, is a successful approach to resident instruction about managed care.
Application of a Sensemaking Approach to Ethics Training in the Physical Sciences and Engineering
NASA Astrophysics Data System (ADS)
Kligyte, Vykinta; Marcy, Richard T.; Waples, Ethan P.; Sevier, Sydney T.; Godfrey, Elaine S.; Mumford, Michael D.; Hougen, Dean F.
2008-06-01
Integrity is a critical determinant of the effectiveness of research organizations in terms of producing high quality research and educating the new generation of scientists. A number of responsible conduct of research (RCR) training programs have been developed to address this growing organizational concern. However, in spite of a significant body of research in ethics training, it is still unknown which approach has the highest potential to enhance researchers' integrity. One of the approaches showing some promise in improving researchers' integrity has focused on the development of ethical decision-making skills. The current effort proposes a novel curriculum that focuses on broad metacognitive reasoning strategies researchers use when making sense of day-to-day social and professional practices that have ethical implications for the physical sciences and engineering. This sensemaking training has been implemented in a professional sample of scientists conducting research in electrical engineering, atmospheric and computer sciences at a large multi-cultural, multi-disciplinary, and multi-university research center. A pre-post design was used to assess training effectiveness using scenario-based ethical decision-making measures. The training resulted in enhanced ethical decision-making of researchers in relation to four ethical conduct areas, namely data management, study conduct, professional practices, and business practices. In addition, sensemaking training led to researchers' preference for decisions involving the application of the broad metacognitive reasoning strategies. Individual trainee and training characteristics were used to explain the study findings. Broad implications of the findings for ethics training development, implementation, and evaluation in the sciences are discussed.
Application of a sensemaking approach to ethics training in the physical sciences and engineering.
Kligyte, Vykinta; Marcy, Richard T; Waples, Ethan P; Sevier, Sydney T; Godfrey, Elaine S; Mumford, Michael D; Hougen, Dean F
2008-06-01
Integrity is a critical determinant of the effectiveness of research organizations in terms of producing high quality research and educating the new generation of scientists. A number of responsible conduct of research (RCR) training programs have been developed to address this growing organizational concern. However, in spite of a significant body of research in ethics training, it is still unknown which approach has the highest potential to enhance researchers' integrity. One of the approaches showing some promise in improving researchers' integrity has focused on the development of ethical decision-making skills. The current effort proposes a novel curriculum that focuses on broad metacognitive reasoning strategies researchers use when making sense of day-to-day social and professional practices that have ethical implications for the physical sciences and engineering. This sensemaking training has been implemented in a professional sample of scientists conducting research in electrical engineering, atmospheric and computer sciences at a large multi-cultural, multi-disciplinary, and multi-university research center. A pre-post design was used to assess training effectiveness using scenario-based ethical decision-making measures. The training resulted in enhanced ethical decision-making of researchers in relation to four ethical conduct areas, namely data management, study conduct, professional practices, and business practices. In addition, sensemaking training led to researchers' preference for decisions involving the application of the broad metacognitive reasoning strategies. Individual trainee and training characteristics were used to explain the study findings. Broad implications of the findings for ethics training development, implementation, and evaluation in the sciences are discussed.
Communicating Geosciences with Policy-makers: a Grand Challenge for Academia
NASA Astrophysics Data System (ADS)
Harrison, W. J.; Walls, M. R.; Boland, M. A.
2015-12-01
Geoscientists interested in the broader societal impacts of their research can make a meaningful contribution to policy making in our changing world. Nevertheless, policy and public decision making are the least frequently cited Broader Impacts in proposals and funded projects within NSF's Geosciences Directorate. Academic institutions can play a lead role by introducing this societal dimension of our profession to beginning students, and by enabling interdisciplinary research and promoting communication pathways for experienced career geoscientists. Within the academic environment, the public interface of the geosciences can be presented through curriculum content and creative programs. These include undergraduate minors in economics or public policy designed for scientists and engineers, and internships with policy makers. Federal research institutions and other organizations provide valuable policy-relevant experiences for students. Academic institutions have the key freedom of mission to tackle interdisciplinary research challenges at the interface of geoscience and policy. They develop long-standing relationships with research partners, including national laboratories and state geological surveys, whose work may support policy development and analysis at local, state, regional, and national levels. CSM's Payne Institute for Earth Resources awards mini-grants for teams of researchers to develop collaborative research efforts between engineering/science and policy researchers. Current work in the areas of nuclear generation and the costs of climate policy and on policy alternatives for capturing fugitive methane emissions are examples of work at the interface between the geosciences and public policy. With academic engagement, geoscientists can steward their intellectual output when non-scientists translate geoscience information and concepts into action through public policies.
Developing a Quality Curriculum.
ERIC Educational Resources Information Center
Glatthorn, Allan A.
In the face of increasing demands for school reform, educational leaders are looking anew at the core elements of the instructional program, including the curriculum. This book serves as a guide to both understanding and practicing sound curriculum development. It lays out the steps of a quality curriculum-development process and emphasizes that…
Planning and Teaching Creatively within a Required Curriculum for School-Age Learners
ERIC Educational Resources Information Center
McKay, Penny, Ed.; Graves, Kathleen, Ed.
2006-01-01
As the second volume of a seven-volume series, this book describes curriculum development as three interrelated processes: planning, enacting, and evaluating. Curriculum development is a dynamic process that happens among learners and teachers in the classroom. In this volume, readers will encounter teachers, curriculum developers, and…
Development of an Aviation Maintenance Curriculum in an Aerospace Engineering Department.
ERIC Educational Resources Information Center
Miau, Jiun-Jih; Chiu, Huei-Huang; Wu, Yuh-Yi; Lin, Chin-E; Choi, Siu-Tong; Yang, Shih-Ming; Jenq, Syh-Tsang
This paper describes the motivation of developing the Aviation Maintenance Curriculum, at National Chang Kung University (seven elective courses) contents of the elective courses, and university-industry collaborations developed along with the Curriculum. The curriculum represents an effort to respond to the needs of manpower in the aviation…
Implementation of the Hong Kong Language Policy in Pre-School Settings
ERIC Educational Resources Information Center
Leung, Cheung-Shing Sam; Lim, Swee Eng Audrey; Li, Yuen Ling
2013-01-01
In the past, the Curriculum Development Council in Hong Kong [Curriculum Development Council (CDC). (1996). "Guide to the Pre-Primary Curriculum." Hong Kong: Government Printer; CDC. (2000). "Consultation Document: Learning to Learn: The Way Forward in Curriculum Development." Hong Kong: Government Printer; CDC. (2001).…
ERIC Educational Resources Information Center
Smith, Emma; Cooke, Sandra
2011-01-01
The recruitment and training of scientists is an area of international concern. Much of the research and policy focus around this issue in the UK has been on how science is taught in schools and in particular on the structure of the school science curriculum. Much less attention has been devoted to the undergraduate student experience and the…
2015-05-21
5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) MAJ Coley D. Tyler 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...American political scientist Jack Snyder introduced strategic culture in 1977 while trying to explain the differences in Soviet and American nuclear...Strategic Cultures Curriculum Project (McLean, VA: SAIC, 2006), 3. 3 how belligerents could act in a crisis.9 The US Army cannot underestimate the
NASA Astrophysics Data System (ADS)
von der Linden, Jens; Hilton, Eric; Mitchell, Rachel; Rosenfield, Phil
2011-10-01
Communicating the results and significance of basic research to the general public is of critical importance. At present, very few programs exist to allow young scientists the opportunity to practice their public outreach skills. Although the need for science outreach is recognized, graduate programs often fail to provide any training in making science accessible. Engage represents a unique, graduate student-led effort to improve public outreach skills. Founded in 2009, Engage was created by three science graduate students at the University of Washington. The students developed an interdisciplinary curriculum to investigate why science outreach often fails, to improve graduate student communication skills, and to help students create a dynamic, public-friendly talk about their research. The course incorporates story-telling, improvisational arts, and development of analogy, all with a focus on clarity, brevity and accessibility. This free, public-friendly speaker series is hosted at the University of Washington and has substantial public attendance and participation.
NASA Astrophysics Data System (ADS)
Passow, M. J.; Assumpcao, C. M.; Baggio, F. D.; Hemming, S. R.; Goodwillie, A. M.; Brenner, C.
2014-12-01
Professional development for teachers involved in the implementation of the Next Generation Science Standards (NGSS) will require a multifaceted approach combining curriculum development, understanding the nature of science, applications of engineering and technology, integrating reading and writing, and other pedagogical components. The Earth2Class Workshops (E2C) at the Lamont-Doherty Earth Observatory of Columbia University (LDEO) provides one model for creating effective training to meet the NGSS challenges. E2C has provided more than 135 workshops since 1998 that have brought together LDEO research scientists with classroom teachers and students from the New York metropolitan area and elsewhere. Each session provides teachers with the chance to learn first-hand about the wide range of investigations conducted at LDEO. This approach aligns strongly with the NGSS goals: mastery of the disciplinary core ideas, science and engineering practices, understanding the nature of science, and cross-cutting relationships. During workshops, participating teachers interact with scientists to gain understanding of what stimulated research questions, how scientists put together all the components of investigations, and ways in which results are disseminated. Networking among teachers often leads to developing lesson plans based on the science, as well as support for professional growth not always possible within the school setting. Through the E2C website www.earth2class.org, teachers and students not able to attend the live workshops can access archival versions of the sessions. The website also provides a wide variety of educational resources. These have proved to be valuable on a national basis, as evidenced by an average of more than 300,000 hits per month from thousands of site visitors. Participating researchers have found E2C to be an effective approach to provide broader outreach of their results. During the next couple of years, the E2C program will expand to provide more resources useful for educators seeking to introduce NGSS-based programs in their districts. The E2C model can be applied in other settings, with appropriate modifications.
Center for Advancing ystemic Heliophysics Education (CAHEd): Outreach through Community Building
NASA Astrophysics Data System (ADS)
Whitman, K.; Kadooka, M.
2012-12-01
In 2010, the Center for Advancing ystemic Heliophysics Education (CAHEd) was established at the University of Hawaii Institute for Astronomy to promote public outreach and education of solar astronomy and heliophysics. The primary objectives of CAHEd are to increase public awareness of the significance of heliophysics and space weather through lectures, open houses, and online resources. In addition, CAHEd works to educate secondary teachers and students on physics concepts essential for understanding heliophysics ideas. For the first two years of the NASA sponsored grant, CAHEd has focused its efforts on teachers and students in Hawaii. Approaching its third year, CAHEd has begun to expand to a national level, partnering with teachers in locations across the United States. Two core goals of CAHEd will be discussed here: collaboration with a select group of Master Teachers and student mentoring in research projects. CAHEd has built a partnership with over a dozen Master Teachers that work with scientists to develop curriculum for the middle and high school classroom. These teachers come from diverse backgrounds with a variety of scientific experiences. Master Teachers play the important role of assessing and improving CAHEd curriculum and provide support for CAHEd activities. All Master Teachers participate in in-depth multi-day workshops that allow them to develop a deeper understanding of the science behind heliophysics. After building a strong background, Master Teachers organize workshops, growing a community of teachers who incorporate heliophysics into their curriculum. Scientists also work closely with middle school and high school students who wish to pursue study in heliophysics. Student research is a fundamental goal of CAHEd and scientists work with students to complete projects for school and state science fairs. Four students have completed award winning heliophysics projects to date and three of the four students have gone on to pursue a second science fair project under the tutelage of the same mentor. A selection of science fair projects includes those carried out by high school sophomore Kira Fox (2011), freshman Malia Swartz (2011), and freshman Kayla Ishida (2012). Kira searched for long-term cycles in solar activity. Using Beryllium-10 data from the GRIP ice core, she applied a Lomb-Scargle Periodogram to identify possible cyclic frequencies, then created a fit to the Be10 data by summing up sine functions with these frequencies. This method reproduced the major maxima and minima present in the last 75,000 years of solar activity. Malia hypothesized that major medical pandemics were more likely to occur during solar minima when the Earth experiences increased galactic cosmic ray flux. She compared the dates of pandemics to sunspot number and Be10 data. Her investigation lead to no correlation between sunspots and pandemics. Kayla asked the question, which flares cause EUV waves? Using SDO data to search for EUV waves visually and flare and CME catalogs, she found that EUV waves are associated with M and X class flares that also generate a CME. Working with students and Master Teachers in a systematic way over multiple years, CAHEd has built long-term relationships with teachers and students, creating a self-sustaining community that collaborates to incorporate heliophysics education into the classroom.
Developing Curriculum Materials on East Asia for Secondary School Students
ERIC Educational Resources Information Center
Menton, Linda K.
2007-01-01
The Curriculum Research & Development Group (CRDG) is a research unit of the College of Education at the University of Hawai'i. Part of its mission is to develop curriculum materials for students in grades K-12. The social studies section of CRDG has been developing curriculum materials on Asia since the early 1990s. As part of a project…
Scientific field training for human planetary exploration
NASA Astrophysics Data System (ADS)
Lim, D. S. S.; Warman, G. L.; Gernhardt, M. L.; McKay, C. P.; Fong, T.; Marinova, M. M.; Davila, A. F.; Andersen, D.; Brady, A. L.; Cardman, Z.; Cowie, B.; Delaney, M. D.; Fairén, A. G.; Forrest, A. L.; Heaton, J.; Laval, B. E.; Arnold, R.; Nuytten, P.; Osinski, G.; Reay, M.; Reid, D.; Schulze-Makuch, D.; Shepard, R.; Slater, G. F.; Williams, D.
2010-05-01
Forthcoming human planetary exploration will require increased scientific return (both in real time and post-mission), longer surface stays, greater geographical coverage, longer and more frequent EVAs, and more operational complexities than during the Apollo missions. As such, there is a need to shift the nature of astronauts' scientific capabilities to something akin to an experienced terrestrial field scientist. To achieve this aim, the authors present a case that astronaut training should include an Apollo-style curriculum based on traditional field school experiences, as well as full immersion in field science programs. Herein we propose four Learning Design Principles (LDPs) focused on optimizing astronaut learning in field science settings. The LDPs are as follows: LDP#1: Provide multiple experiences: varied field science activities will hone astronauts' abilities to adapt to novel scientific opportunities LDP#2: Focus on the learner: fostering intrinsic motivation will orient astronauts towards continuous informal learning and a quest for mastery LDP#3: Provide a relevant experience - the field site: field sites that share features with future planetary missions will increase the likelihood that astronauts will successfully transfer learning LDP#4: Provide a social learning experience - the field science team and their activities: ensuring the field team includes members of varying levels of experience engaged in opportunities for discourse and joint problem solving will facilitate astronauts' abilities to think and perform like a field scientist. The proposed training program focuses on the intellectual and technical aspects of field science, as well as the cognitive manner in which field scientists experience, observe and synthesize their environment. The goal of the latter is to help astronauts develop the thought patterns and mechanics of an effective field scientist, thereby providing a broader base of experience and expertise than could be achieved from field school alone. This will enhance their ability to execute, explore and adapt as in-field situations require.
Hands-on Activities for Exploring the Solar System in K-14 Formal and Informal Education Settings
NASA Astrophysics Data System (ADS)
Allen, J. S.; Tobola, K. W.
2004-12-01
Introduction: Activities developed by NASA scientists and teachers focus on integrating Planetary Science activities with existing Earth science, math, and language arts curriculum. Educators may choose activities that fit a particular concept or theme within their curriculum from activities that highlight missions and research pertaining to exploring the solar system. Most of the activities use simple, inexpensive techniques that help students understand the how and why of what scientists are learning about comets, asteroids, meteorites, moons and planets. The web sites for the activities contain current information so students experience recent mission information such as data from Mars rovers or the status of Stardust sample return. The Johnson Space Center Astromaterials Research and Exploration Science education team has compiled a variety of NASA solar system activities to produce an annotated thematic syllabus useful to classroom educators and informal educators as they teach space science. An important aspect of the syllabus is that it highlights appropriate science content information and key science and math concepts so educators can easily identify activities that will enhance curriculum development. The outline contains URLs for the activities and NASA educator guides as well as links to NASA mission science and technology. In the informal setting, educators can use solar system exploration activities to reinforce learning in association with thematic displays, planetarium programs, youth group gatherings, or community events. In both the informal and the primary education levels the activities are appropriately designed to excite interest, arouse curiosity and easily take the participants from pre-awareness to the awareness stage. Middle school educators will find activities that enhance thematic science and encourage students to think about the scientific process of investigation. Some of the activities offered may easily be adapted for the upper levels of high school and early college, as they require students to use and analyze data. Syllabus Format: The Exploring the Solar System Syllabus of Activities starts with a variety of solar system scale activities that fit different settings and equipment. The early solar system formation activities are focused on asteroids, meteorites and planet formation. The theme of how and why we explore our solar system encompasses activities that engage the language and creative arts. Further activities highlight the Sun and planetary geology. A key aspect of the usefulness of the syllabus is that it provides easy access to solar system content, activities, related links and the thematic context for the classroom teacher or group leader. Conclusion: The Exploring the Solar System Syllabus of Activities is a concentrated resource of activities and links that allows educators to comfortably and inexpensively share the excitement and science of solar system exploration with students and members of the public. Additional Information: Some of the activities included in the Exploring the Solar System Syllabus of Activities are in the following NASA developed guides. http://ares.jsc.nasa.gov/Education/index.html
Resource materials for a GIS spatial analysis course
Raines, Gary L.
2001-01-01
This report consists of materials prepared for a GIS spatial analysis course offered as part of the Geography curriculum at the University of Nevada, Reno and the University of California at Santa Barbara in the spring of 2000. The report is intended to share information with instructors preparing spatial-modeling training and scientists with advanced GIS expertise. The students taking this class had completed each universities GIS curriculum and had a foundation in statistics as part of a science major. This report is organized into chapters that contain the following: Slides used during lectures, Guidance on the use of Arcview, Introduction to filtering in Arcview, Conventional and spatial correlation in Arcview, Tools for fuzzification in Arcview, Data and instructions for creating using ArcSDM for simple weights-of-evidence, fuzzy logic, and neural network models for Carlin-type gold deposits in central Nevada, Reading list on spatial modeling, and Selected student spatial-modeling posters from the laboratory exercises.
Developing a New Industrial Engineering Curriculum Using a Systems Engineering Approach
ERIC Educational Resources Information Center
Buyurgan, Nebil; Kiassat, Corey
2017-01-01
This paper reports on the development of an engineering curriculum for a new industrial engineering programme at a medium-sized private university in the northeast United States. A systems engineering process has been followed to design and develop the new curriculum. Considering the programme curriculum as a system, first the stakeholders have…
ERIC Educational Resources Information Center
Rodwell, Grant
2016-01-01
During period 1975 through to 1987 the Commonwealth ventured into curriculum development, hitherto an activity for states and territories. Unlike the ACARA Curriculum of the Rudd-Gillard-Rudd governments, there was nothing mandatory about the CDC's curriculum development activities. Here, the dominant influence was coordinative federalism. This…
Developing a Comprehensive and Articulated Nuclear Training Curriculum--The Westinghouse Model.
ERIC Educational Resources Information Center
Widen, William C.
After conducting a comprehensive evaluation of its curriculum, staff at the Westinghouse Nuclear Training Center in Zion, Illinois, undertook a research and development project aimed at upgrading the center's curriculum to the competency-based format. Included among the main activities of the curriculum development process were the following:…
NASA Astrophysics Data System (ADS)
Wong, Siu Ling; Kwan, Jenny; Hodson, Derek; Yung, Benny Hin Wai
2009-01-01
Interviews with key scientists who had conducted research on Severe Acute Respiratory Syndrome (SARS), together with analysis of media reports, documentaries and other literature published during and after the SARS epidemic, revealed many interesting aspects of the nature of science (NOS) and scientific inquiry in contemporary scientific research in the rapidly growing field of molecular biology. The story of SARS illustrates vividly some NOS features advocated in the school science curriculum, including the tentative nature of scientific knowledge, theory-laden observation and interpretation, multiplicity of approaches adopted in scientific inquiry, the inter-relationship between science and technology, and the nexus of science, politics, social and cultural practices. The story also provided some insights into a number of NOS features less emphasised in the school curriculum—for example, the need to combine and coordinate expertise in a number of scientific fields, the intense competition between research groups (suspended during the SARS crisis), the significance of affective issues relating to intellectual honesty and the courage to challenge authority, the pressure of funding issues on the conduct of research and the ‘peace of mind’ of researchers, These less emphasised elements provided empirical evidence that NOS knowledge, like scientific knowledge itself, changes over time. They reflected the need for teachers and curriculum planners to revisit and reconsider whether the features of NOS currently included in the school science curriculum are fully reflective of the practice of science in the 21st century. In this paper, we also report on how we made use of extracts from the news reports and documentaries on SARS, together with episodes from the scientists’ interviews, to develop a multimedia instructional package for explicitly teaching the prominent features of NOS and scientific inquiry identified in the SARS research.
Guidelines for Developing Competency-Based Curriculum.
ERIC Educational Resources Information Center
Goodson, Ludy
1979-01-01
Presents guidelines for the development of competency-based curriculum formulated as a result of an automotive mechanics curriculum workshop. Listed are specific guidelines for content development, writing style, and illustration. (LRA)
Gifted and Talented Education: Elementary Curriculum Guide.
ERIC Educational Resources Information Center
Corono-Norco Unified School District, Corono, CA.
The curriculum ideas were developed by elementary teachers in a gifted and talented program. Five strands are incorporated throughout curriculum areas: development of problem solving skills, development of ethical standards, development of sensitivity and responsibility to others, development of a healthy self concept, and development of…
Curriculum Planning and Development in Mathematics from the Formative Stages
ERIC Educational Resources Information Center
Festus, Azuka Benard; Kurumeh, Mary Seraphina
2015-01-01
Curriculum of a school consists of all the experiences that a learner encounters under the direction of the school. The curriculum of any educational system is planned and developed according to the needs of the society. Just as the society is dynamic, the curriculum is also dynamic. Hence, curriculum is usually changed from time to time. This…
Beyond the Model: Building an Effective and Dynamic IT Curriculum
ERIC Educational Resources Information Center
Brewer, Jeffrey; Harriger, Alka; Mendonca, John
2006-01-01
A model curriculum, such as that developed by the ACM/SIGITE Curriculum Committee (2005), has two important functions. First, it provides a base structure for newly developing programs that can use it as a platform for articulating a curriculum. Second, it offers an existing curriculum framework that can be used for validation by existing…
NASA Astrophysics Data System (ADS)
Buzby, C. K.; Jona, K.
2009-12-01
The Watershed Dynamics project is a partnership between Northwestern University, the Consortium of Universities for the Advancement of Hydrologic Science (CUAHSI), and the GLOBE Program (Global Learning and Observations to Benefit the Environment). The goal of the project is to develop inquiry-based educational materials that use authentic scientific data and analysis techniques to teach students about the watershed. The relationship between Northwestern, CUAHSI, and GLOBE allows each partner to contribute to the development of the project in the area of their expertise. Science researchers from CUAHSI share science content knowledge and data access through the development of their Hydrologic Information System (HIS). Curriculum developers at Northwestern write inquiry-based curriculum using GIS technology to access and analyze live data. The GLOBE Program is a worldwide hands-on, primary and secondary school-based science education program that provides teacher training opportunities to a network of teachers around the world. This partnership allows each partner to bring their area of expertise to the project and make the best use of one another's resources. The Watershed Dynamics project can serve as a model for future partnerships between the science and education communities. The Office of Science, Technology, Engineering, and Math Education Partnerships (OSEP) at Northwestern is a service organization that supports Northwestern researchers in developing proposals and implementing research projects that incorporate K-12 educational components, particularly in the fields of science, technology, engineering and mathematics (STEM). OSEP assists faculty with the development of sound plans for education and outreach that reflect current research on learning and educational reform and provides expertise in STEM education materials development, learning technologies, and professional development for K-12 teachers and facilitators in informal education institutions. Resources such as OSEP can pair scientists with educational organizations so that science outreach programs can be sustainable.
NASA Astrophysics Data System (ADS)
O'Connell, E. A.
2016-12-01
Telling stories is a cliché for best practice in science videos. It's upheld as a method to capture audience attention in many fields. Findings from neurobiology research show character-driven stories cause the release of the neurochemical oxytocin in the brain. Oxytocin motivates cooperation with others and enhances a sense of empathy, in particular the ability to experience others' emotions. Developing character tension- as in our video design showcasing scientists along with their work- holds the viewers' attention, promotes recall of story, and has the potential to clearly broadcast the feelings and behaviors of the scientists. The brain chemical change should help answer the questions: Why should a viewer care about this science? How does it improve the world, or our lives? Is just a story-driven video the solution to science outreach? Answer: Not in our multi-media world. Frontier Scientists (FS) discovered in its three year National Science Foundation project titled 'Science in Alaska: using Multimedia to Support Science Education': the storied video is only part of the effort. Although FS created from scratch and drove a multimedia national campaign throughout the project, major reach was not achieved. Despite FS' dedicated web site, YouTube channel, weekly blog, monthly press release, Facebook and G+ pages, Twitter activity, contact with scientists' institutions, and TV broadcast, monthly activity on the web site seemed to plateau at about 3000 visitors to the FS website per month. Several factors hampered the effort: Inadequate funding for social media limited the ability of FS to get the word to untapped markets: those whose interest might be sparked by ad campaigns but who do not actively explore unfamiliar agencies' science education content. However, when institutions took advantage of promoting their scientists through the FS videos we saw an uptick in video views and the participating scientists were often contacted for additional stories or were invited to participate in more visible videos (for example, a National Geographic show). Our suggestion for future science video use is to coordinate media with an institution, an already established news network, an entity with constant traffic flow like a museum, or to move into the academic world to supplement science curriculum with real world field science.
Engineering the curriculum: Towards an adaptive curriculum
NASA Astrophysics Data System (ADS)
Johns-Boast, Lynette Frances
The curriculum is one of the most important artefacts produced by higher education institutions, yet it is one of the least studied. Additionally, little is known about the decision-making of academics when designing and developing their curricula, nor how they make use of them. This research investigates how 22 Australian higher education engineering, software engineering, computer science, and information systems academics conceive of curriculum, what approaches they take when designing, and developing course and program curricula, and what use they make of the curriculum. It also considers the implications of these conceptions and behaviour upon their curricula. Data were collected through a series of one-to-one, in-depth, qualitative interviews as well as small focus group sessions and were analysed following Charmaz’ (2006) approach to grounded theory. In this thesis, I argue that the development of curricula for new higher degree programs and courses and / or the updating and innovating of an existing curriculum is a design problem. I also argue that curriculum is a complex adaptive system. Surrounding the design and development of a curriculum is a process of design that leads to the creation of a designed object - the official-curriculum. The official-curriculum provides the guiding principles for its implementation, which involves the design and development of the curriculum-in-use, its delivery, and evaluation. Data show that while the participants conceive of curriculum as a problem of design involving a design process leading to the development of the official-curriculum, surprisingly, their behaviour does not match their conceptions. Over a very short period, their behaviour leads to a process I have called curriculum drift where the official-curriculum and the curriculum-in-use drift away from each other causing the curriculum to lose its integrity. Curricular integrity is characterised through the attributes of alignment, coherence, and cohesiveness. Without integrity, a curriculum is unlikely to be able to deliver all its required outcomes. Utilising the concepts of system dynamics and systems thinking I propose that not only is the curriculum a complex adaptive system, it is a multi-dimensional object. Adopting this notion facilitates possible interventions that may be used to monitor the curriculum and to moderate the effects of curriculum drift. I argue that using the articulated purpose of the curriculum to determine the desired outcomes of that curriculum will enhance curricular alignment, leading to improved student learning and outcomes. Furthermore, perceiving the curriculum as a multi-dimensional object reinforces the proposition that aligning the purpose and desired outcomes of each course with those of the program will achieve improved desired outcomes from the program as a whole. The original contributions to knowledge arising from this research are curriculum drift, an enhanced approach to the curricular alignment, and a multi-dimensional view of curriculum. Perhaps the most important implication of this research, is insight into how we might incorporate curriculum drift into curriculum review models. Successful incorporation has the potential to deliver increased quality of educational outcomes by enabling innovation whilst maintaining the integrity of the curriculum.
The Development of Talent through Curriculum.
ERIC Educational Resources Information Center
Van Tassel-Baska, Joyce
1995-01-01
An integrated curriculum model (ICM) is applied to the talent development process. Discussion focuses on a rationale for such a model, model features, applications in two federally funded curriculum projects, and relationship of the ICM to curriculum reform variables and implementation considerations. (DB)
NASA Astrophysics Data System (ADS)
Zalles, D. R.; Acker, J. G.; Berding, M.
2014-12-01
Energy literacy requires knowledge about the trade-offs inherent in energy alternatives, about how humans use energy and have choices in how much energy to use, and about what changes to the Earth system are occurring from energy uses. It also requires collaborative decision-making skills coupled with awareness about what values we bring to the table as we negotiate solutions that serve both personal needs and the common good. Coming up with a notion of the common good requires delineating how environmental crises occurring in other parts of the world compare to our own. We also need to understand criteria for judging what might be viable solutions. This presentation describes work that SRI International is carrying out to meet these awareness-building needs. SRI educational researchers created a curriculum that immerses students in studying regional climate change data about California in comparison to global climate change. Students ponder solution energy-related strategies and impact analyses. The curriculum will be described, as will a collaboration between SRI educational researchers and materials scientists. The scientists are designing and testing technologies for producing biofuels and solar power, and for sequestering carbon from coal fired power plants. As they apply principles of science and engineering to test materials intended to meet these energy challenges, they understand that even if the tests prove successful, if there is not economic feasibility or environmental advantage, the technology may not stand as a viable solution. This educator-scientist team is using the Essential Energy Principles and Next Generation Science Standards to articulate milestones along a trajectory of energy learning. The trajectory starts with simple understandings of what energy is and what constitute our energy challenges. It ends with more the types of more sophisticated understandings needed for designing and testing energy technology solutions.
NASA Astrophysics Data System (ADS)
Nilasari, Yoni; Dasining
2018-04-01
In this era of globalization, every human resource is faced with a competitive climate that will have a major impact on the development of the business and industrial sector. Therefore it is deemed necessary to research the development of curriculum based on INQF and the business/industries sector in order to improve the competence of Sewing Technique for Vocational High School Students of fashion clothing program. The development of curricula based on INQF and the business/industries is an activity to produce a curriculum that suits the needs of the business and industries sector. The formulation of the problem in this research are: (1) what is the curriculum based on INQF and the business/industries sector?; (2) how is the process and procedure of curriculum development of fashion program profession based on INQF and the business/industries sector?; And (3) how the result of the curriculum of fashion expertise based on INQF and the business/industries sector. The aims of research are: (1) explain what is meant by curriculum based on INQF and business/industries sector; (2) to know the process and procedure of curriculum development of fashion program profession based on INQF and the business/industries sectors ; And (3) to know result the curriculum of clothing expertise based on INQF and the business/industries sector. The research method chosen in developing curriculum based on INQFand business/industry sector is using by 4-D model from Thiagarajan, which includes: (1) define; (2) design; (3) development; And (4) disseminate. Step 4, not done but in this study. The result of the research shows that: (1) the curriculum based on INQF and the business/industries sector is the curriculum created by applying the principles and procedures of the Indonesian National Qualification Framework (INQF) that will improve the quality of graduates of Vocational High School level 2, and establish cooperation with Business/industries as a guest teacher (counselor) in the learning process; (2) process and procedure of curriculum development of fashion program profession based on INQF and business/industries sector is process and procedure of curriculum development of fashion program profession based on INQF and business/industries sector there are several stages: feasibility study and requirement, preparation of initial concept of curriculum planning based on INQF and the business/industries sector in the field of fashion, as well as the development of a plan to implement the curriculum based on INQF and the business/industries sector in the field of fashion, this development will produce a curriculum of fashion proficiency program in the form of learning competency of sewing technology where the implementer of learning (counselor) Is a guest teacher from business/industries sector. (3) the learning device validity aspect earns an average score of 3.5 with very valid criteria and the practicality aspect of the device obtains an average score of 3.3 with practical criteria.
NASA Astrophysics Data System (ADS)
Eubanks, E. D.; Kohin, S.; Oberbauer, S.
2008-12-01
As a participant of the National Oceanic and Atmospheric Administration (NOAA), Teacher at Sea (2007) and the Arctic Research Consortium of the U.S., PolarTREC (2008) programs, I have had the opportunity to participate in hands-on research with leading scientific researchers from the tropics to the Arctic. These Teacher Researcher Experiences (TRE's) and the resulting relationships that have developed with the scientific community have been an asset to my professional development and have greatly enhanced my students' learning. The opportunity to participate in data collection and hands-on research with a NOAA researcher, Dr. Kohin, helped me bring shark, ocean, and ship science from my expedition onboard the NOAA Ship David Starr Jordan in the Channel Island region into my classroom. The new knowledge, experiences, and resources that I brought back allowed me to create lesson plans and host Shark Month--an activity that involved all 300 students in my school. My students were able to link real data regarding the location of sharks to practical application and still meet state standards. Likewise, the scientist from my PolarTREC expedition, Dr. Oberbauer, is assisting me in a long-term plan to incorporate his data into my classroom curricula. Already, my experiences from Barrow, Alaska, have been shared through webinars with my community and as a keynote speaker to over 600 Palm Beach County science teachers. We are also working together to develop a yearlong curriculum, in which my entire school of 300 students will discover interdisciplinary polar science. Participation in TRE's has been beneficial for my students and my community, but what is the return on the investment for the scientists who invited me to participate in their research? Both scientists have transferred their knowledge out of the laboratory and made a link between their research and a different generation--our future scientists. They become instrumental science leaders in a community of young impressionable learners. Additionally, I've been invited to participate in a future research project in Costa Rica with Dr. Oberbauer--allowing his research to continue to reach a broad audience of students and community members interested in learning about fascinating science from around the world. I have found that the best way to be an effective science teacher is to be a scientist. Having the opportunity to work in the field with researchers, allowed me to become a scientist. Participating in TRE's has rejuvenated my career, allowed me to acquire new and innovative ideas for my classroom and school, and has given my students the opportunity to work with renowned oceanographers and climatologists and real data--something most kids will never get the chance to do. Teachers and researchers only stand to benefit from these unique relationships. As a Zoology major and teacher, these experiences were life changing for me during a time when I had contemplated leaving my profession due to boredom. The expeditions rekindled my love for science and desire to share and teach through the eyes of a scientist. The more we bridge the gap between teachers and researchers the more science comes alive for our future scientists. We need to our youth to continue the research that is already underway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redmond, B.L.; Saturnelli, A.M.
1994-12-31
Our goal is to ensure that All students have the opportunity to learn science, and it is being accomplished through a unique working model program that: (1) changes the way that teaching and learning take place; (2) incorporates the advanced technology of microscopy directly into the K-12 curriculum; and (3) develops R & D teacher specialists. We conducted three in-service science courses, a Summer Science Microscopy Camp, and a staff development program (the latter funded by a NYS Education Department grant) in which science professors, industrial engineers and scientists interacted with teachers and students to explore the world using highmore » technology. This year, all 5th and 7th graders in the district (200 students) and about 1,000 high school science students are having experiences as active researchers, solving real-life, multi-step problems using all levels of microscopy, including scanning tunneling. Students develop a chronological portfolio, using multimedia formats. Our 1993 Summer Microscopy Camp attendance record was 98%, compared to the typical 75% for other programs.« less
The development and evaluation of a community attachment scheme for first-year medical students.
Hannay, David; Mitchell, Caroline; Chung, Man Cheung
2003-03-01
This paper describes the development over 14 years of a Community Attachment Scheme for First Year Medical Students in Sheffield, together with feedback from tutors and students. The scheme involves pairs of students visiting families expecting a baby or experiencing an illness. The families are identified by general practitioners who act as tutors together with a behavioural scientist for groups of eight to 10 students. The scheme provides first-year students with practical experience of sociology and psychology in terms of family dynamics and illness behaviour. Assessment is part of the degree examination, and involves a written assignment on the family, together with tutors' assessments. The development of the attachment scheme took place in three phases, which are described together with feedback from tutors and students, as well as changes in methods of assessment. The basis of the Community Attachment Scheme has been self-directed problem-based learning in small groups with continuous assessment, and these principles have now extended to the rest of the medical curriculum in Sheffield, of which the Community Attachment Scheme is an integral part.
What Is Required In Uganda? The 2007 Report Of The Japan Sci-edu. Support Project
NASA Astrophysics Data System (ADS)
Uchida, Tatsuhiro
2010-07-01
The development of ability for technology and invention is required as self-sustaining growth of science and technology in Asian and African developing countries. Science education that connects to the real world is the required education for the self-sustaining growth. But in fact, it is very common to study for the entrance examination. According to C. Camilla, S. and Sjo/berg, [The Re-emergence of Values in the Science Curriculum. Rotterdam, 2007, Sense Publishers], Ugandan students are the most interested ones in science and technology (I would like to be a scientist, I would like to get a job in technology) in the world. Science education should mortgages future of youth. Especially science education of developing countries should be directly connected to the real world. Because they need a lot of engineers as skilled worker, we implemented physics education that was directly connected with manufacturing by the sci-edu. support project in Uganda. The best results were achieved by contrivance in spite of poverty area. Our education method gave one form of New Science Education in Asia and Africa.
Author-Publisher-Educator Relationships and Curriculum Reform.
ERIC Educational Resources Information Center
McFadden, Charles P.
1992-01-01
Discusses relationships among teachers, curriculum package authors, and publishers. Describes the Atlantic Science Curriculum Project's reform efforts. Recommends that curriculum development projects include: (1) lengthy informal development; (2) combined testing of design and materials; (3) the withholding of contracts until materials are in…
Evaluation of an Eating Disorder Curriculum.
ERIC Educational Resources Information Center
Moriarty, Dick; And Others
1990-01-01
A qualitative and quantitative evaluation of "A Preventive Curriculum for Anorexia Nervosa and Bulimia" is reported. The evaluation, which included teachers, researchers, health professionals, and students, included development of the curriculum as well as pilot testing activities. The curriculum development and evaluation consisted of…
NASA Astrophysics Data System (ADS)
Duggan-Haas, D.; Ross, R. M.; Derry, L. A.; White, T.
2014-12-01
The Next Generation Science Standards (NGSS) offers a vision for K-12 science education that has important differences from common and long-standing classroom practice in many ways. NGSS's three dimensions (Scientific and Engineering Practices, Crosscutting Concepts, and Disciplinary Core Ideas), coupled with the recognition that it takes years to develop deep understandings of big ideas, do not mesh well with common K-12 (or K-16) teaching practices. NGSS also infuses systems and complexity into the K-12 curriculum. The Critical Zone lies between the bottom of the groundwater and the tops of the trees -- the layer of the Earth system where most life resides. Critical Zone Observatories (CZOs) are NSF-funded observatories in markedly varied ecosystems throughout the US, where interdisciplinary teams study the interplay of geological, biological, physical, and chemical sciences. The work being done in CZOs is three-dimensional science that is both deepening the scientific community's understandings of Earth systems and providing a cutting edge and highly relevant model for K-12 science education. Virtual Fieldwork Experiences (VFEs) are multi-media representations of actual field sites that are intended to mimic fieldwork by allowing for open-ended inquiry. The Paleontological Research Institution has developed tools and strategies to build VFEs of any site that use consistent formats, yet allow for inquiry to take multiple directions. Working together with CZO scientists, PRI staff are developing VFEs and accompanying curriculum materials for each CZO site. Ready-to-use VFEs act as models that teachers and students can use to create VFEs local to their schools. VFEs, like CZOs, facilitate use of interdisciplinary science to better understand the environment. A local VFE can be built up over time with contributions from students and teachers in middle school sciences, high school biology, Earth science, and environmental science -- classes where most curriculum units relate to processes outside the classroom door. A local VFE can also be used in chemistry and physics classes, where these sciences can be applied to understanding the environment. The Southern Sierra CZO draft VFE will be shown to demonstrate the concept and seek feedback.
NASA Astrophysics Data System (ADS)
Weihs, R. R.
2012-12-01
A series of professional development workshops covering the fundamentals of climate change have been developed and facilitated for two groups of middle school science teachers in three Florida counties. The NASA-supported joint venture between Florida State University's Center for Ocean-Atmospheric Prediction Studies (COAPS) and the University of South Florida's (USF's) Coalition for Science Literacy, ASK Florida, focuses on expanding and deepening teachers' content knowledge of a wide range of climate change topics, connecting local and regional changes to the global picture, and supporting classroom implementation and effective teaching practices. Education experts from USF, climate scientists from COAPS, and Hillsborough county teachers and science coaches coordinated and developed the workshop content, which is based on Florida's Next Generation Sunshine State Standards in science, science curriculum guides for 6th grade, and teacher interest. Several scientists have facilitated activities during the workshop, including professors in meteorology and climatology, research scientists in the field, a NOAA program manager, the state climatologists for Florida, and others. Having these climate scientists present during the workshop provides teachers an opportunity to interact directly with the scientists and gain insight into the climatology field. Additionally, we host an open-forum discussion panel during which teachers can ask the experts about any topics of interest. Activities are designed to enhance the scientific skill level of the teachers. Introductory activities reinforce teachers' abilities to distinguish facts from opinions and to evaluate sources. Other activities provide hands-on experience using actual scientific data from NASA and other agencies. For example, teachers analyze precipitation data to create distributions of Florida rainfall, examine sea level trends at various locations, identify Atlantic hurricane frequencies during the phases of ENSO, and create maps of climate data available on the MYNASADATA web portal. The human aspect of climate change is addressed by discussing anthropological influences such as land use changes. In addition, we examine scientific and public use and interpretation of climate models, scenarios, and projections, and explore adaptation and mitigation strategies for Florida-specific climate projections. Pedagogy is incorporated throughout the workshops to demonstrate how the content and activities can be adapted for their students. Furthermore, we support educators in overcoming obstacles associated with teaching global and regional climate change. This program targets teachers from Title-I schools because students from these schools are typically underrepresented in the STEM fields. Additionally, classroom technology is often limited; therefore, it is important to adapt resources so they can be used in the classroom with or without computers. Activities are presented through an inquiry-based format to encourage knowledge acquisition and discovery similar to that occurring in the actual scientific field. Finally, we prepare teachers to address apathetic or antiscientific sentiments their students may have about climate change by identifying the background issues and ideology and developing strategies to make the content more relevant to their students' lives.
Enabling Wide-Scale Computer Science Education through Improved Automated Assessment Tools
NASA Astrophysics Data System (ADS)
Boe, Bryce A.
There is a proliferating demand for newly trained computer scientists as the number of computer science related jobs continues to increase. University programs will only be able to train enough new computer scientists to meet this demand when two things happen: when there are more primary and secondary school students interested in computer science, and when university departments have the resources to handle the resulting increase in enrollment. To meet these goals, significant effort is being made to both incorporate computational thinking into existing primary school education, and to support larger university computer science class sizes. We contribute to this effort through the creation and use of improved automated assessment tools. To enable wide-scale computer science education we do two things. First, we create a framework called Hairball to support the static analysis of Scratch programs targeted for fourth, fifth, and sixth grade students. Scratch is a popular building-block language utilized to pique interest in and teach the basics of computer science. We observe that Hairball allows for rapid curriculum alterations and thus contributes to wide-scale deployment of computer science curriculum. Second, we create a real-time feedback and assessment system utilized in university computer science classes to provide better feedback to students while reducing assessment time. Insights from our analysis of student submission data show that modifications to the system configuration support the way students learn and progress through course material, making it possible for instructors to tailor assignments to optimize learning in growing computer science classes.
Lam, Ching Man; Lau, Patrick S. Y.; Law, Ben M. F.; Poon, Y. H.
2011-01-01
This paper outlines the design of a new curriculum for positive youth development (P.A.T.H.S. II) in Hong Kong. The paper discusses the conceptual base for designing a drug-education curriculum for junior-secondary students using four positive youth development constructs—cognitive competence, emotional competence, beliefs in the future, and self-efficacy. The program design is premised on the belief that adolescents do have developmental assets; therefore, the curriculum is designed to develop their psychosocial competencies. The goal of the curriculum is to develop the selfhood of these youths and ultimately achieve the goal of successful adolescent development. PMID:22194667
Helping Students Develop Learning Strategies: Some Theoretical and Practical Considerations.
ERIC Educational Resources Information Center
Harrison, Ian D.
The collaborative curriculum development process in a postsecondary language education program in Japan is described, looking specifically at the work of five curriculum development teams, or focus groups: needs assessment; curriculum aims, goals, and objectives; cognitive development and learner strategies; materials development; and learner…
ERIC Educational Resources Information Center
Hiatt, Evelyn Levsky, Ed.; Covington, Jeanette, Ed.
1991-01-01
This document is a "theme" issue of a quarterly serial publication. It focuses on curriculum development for gifted students. A list of 13 principles of a differentiated curriculum for gifted/talented students precedes the articles. The first article, "Developing Curriculum for Gifted/Talented" by Jim Coffey, offers a philosophical rationale for a…
Fuhrmann, C. N.; Halme, D. G.; O’Sullivan, P. S.; Lindstaedt, B.
2011-01-01
Today's doctoral programs continue to prepare students for a traditional academic career path despite the inadequate supply of research-focused faculty positions. We advocate for a broader doctoral curriculum that prepares trainees for a wide range of science-related career paths. In support of this argument, we describe data from our survey of doctoral students in the basic biomedical sciences at University of California, San Francisco (UCSF). Midway through graduate training, UCSF students are already considering a broad range of career options, with one-third intending to pursue a non–research career path. To better support this branching career pipeline, we recommend that national standards for training and mentoring include emphasis on career planning and professional skills development to ensure the success of PhD-level scientists as they contribute to a broadly defined global scientific enterprise. PMID:21885820
CERN@school: demonstrating physics with the Timepix detector
NASA Astrophysics Data System (ADS)
Whyntie, T.; Bithray, H.; Cook, J.; Coupe, A.; Eddy, D.; Fickling, R. L.; McKenna, J.; Parker, B.; Paul, A.; Shearer, N.
2015-10-01
This article shows how the Timepix hybrid silicon pixel detector, developed by the Medipix2 Collaboration, can be used by students and teachers alike to demonstrate some key aspects of any well-rounded physics curriculum with CERN@school. After an overview of the programme, the detector's capabilities for measuring and visualising ionising radiation are examined. The classification of clusters - groups of adjacent pixels - is discussed with respect to identifying the different types of particles. Three demonstration experiments - background radiation measurements, radiation profiles and the attenuation of radiation - are described; these can used as part of lessons or as inspiration for independent research projects. Results for exemplar data-sets are presented for reference, as well as details of ongoing research projects inspired by these experiments. Interested readers are encouraged to join the CERN@school Collaboration and so contribute to achieving the programme's aim of inspiring the next generation of scientists and engineers.
Fuhrmann, C N; Halme, D G; O'Sullivan, P S; Lindstaedt, B
2011-01-01
Today's doctoral programs continue to prepare students for a traditional academic career path despite the inadequate supply of research-focused faculty positions. We advocate for a broader doctoral curriculum that prepares trainees for a wide range of science-related career paths. In support of this argument, we describe data from our survey of doctoral students in the basic biomedical sciences at University of California, San Francisco (UCSF). Midway through graduate training, UCSF students are already considering a broad range of career options, with one-third intending to pursue a non-research career path. To better support this branching career pipeline, we recommend that national standards for training and mentoring include emphasis on career planning and professional skills development to ensure the success of PhD-level scientists as they contribute to a broadly defined global scientific enterprise.
Learning That's Out of This World
NASA Technical Reports Server (NTRS)
2001-01-01
NASA's Ames Research Center developed a new curriculum to educate the space explorers of tomorrow. The Mars Virtual Exploration CD-ROM is exclusively licensed to Modern School Supplies, Inc., of Bloomfield, Connecticut. The CD-ROM allows students to imagine they are residents of a research team at an advanced facility divided into four different domes. Students experience how scientists approach planetary exploration through interactive exercises in ExoPaleontology, Meteorology, Exobiology, and Volcanology. Once the students have learned the facts and have consulted with the experts, they select a potential landing site. Using QuickTimeVR(TM) software, the students get a 360-degree view of the potential landing terrain. They are then able to virtually explore the four available sites and select the one they feel is best for conducting research. The Mars Virtual Exploration CD-ROM comes complete with a printable teacher's guide and student logbook.
ERIC Educational Resources Information Center
Minnesota State Dept. of Education, St. Paul.
CURRICULUM MATERIALS TO HELP TEACHERS IN DEVELOPING SPECIFIC PLANS FOR TEACHING FOODS AND NUTRITION IN GRADES 7 THROUGH 12 ARE PRESENTED. CLASSROOM TEACHERS, SUPERVISORS, TEACHER EDUCATORS, AND CURRICULUM DEVELOPMENT STUDENTS CONTRIBUTED TO THE STATEWIDE CURRICULUM PROJECT WHICH DEVELOPED THE MATERIALS. MAJOR CONCEPTS INCORPORATED INTO THE UNITS…
Wind energy curriculum development at GWU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Stephen M
A wind energy curriculum has been developed at the George Washington University, School of Engineering and Applied Science. Surveys of student interest and potential employers expectations were conducted. Wind industry desires a combination of mechanical engineering training with electrical engineering training. The curriculum topics and syllabus were tested in several graduate/undergraduate elective courses. The developed curriculum was then submitted for consideration.
ERIC Educational Resources Information Center
Parry, Lindsay
2007-01-01
The New Social Studies movement of the 1960s and 1970s represents a significant era of curriculum development and reform in the United States, which had international implications. This article presents an Australian case study of the experiences of curriculum workers involved in the development of an elementary social studies curriculum in the…
NASA Astrophysics Data System (ADS)
Roush, J. J.; Hansen, R. A.
2003-12-01
The Geophysical Institute of the University of Alaska Fairbanks, in partnership with Denali National Park and Preserve, has begun an education outreach program that will create learning opportunities in solid earth geophysics for a wide sector of the public. We will capitalize upon a unique coincidence of heightened public interest in earthquakes (due to the M 7.9 Denali Fault event of Nov. 3rd, 2002), the startup of the EarthScope experiment, and the construction of the Denali Science & Learning Center, a premiere facility for science education located just 43 miles from the epicenter of the Denali Fault earthquake. Real-time data and current research results from EarthScope installations and science projects in Alaska will be used to engage students and teachers, national park visitors, and the general public in a discovery process that will enhance public understanding of tectonics, seismicity and volcanism along the boundary between the Pacific and North American plates. Activities will take place in five program areas, which are: 1) museum displays and exhibits, 2) outreach via print publications and electronic media, 3) curriculum development to enhance K-12 earth science education, 4) teacher training to develop earth science expertise among K-12 educators, and 5) interaction between scientists and the public. In order to engage the over 1 million annual visitors to Denali, as well as people throughout Alaska, project activities will correspond with the opening of the Denali Science and Learning Center in 2004. An electronic interactive kiosk is being constructed to provide public access to real-time data from seismic and geodetic monitoring networks in Alaska, as well as cutting edge visualizations of solid earth processes. A series of print publications and a website providing access to real-time seismic and geodetic data will be developed for park visitors and the general public, highlighting EarthScope science in Alaska. A suite of curriculum modules will be developed for middle school classrooms to enrich earth science curricula by taking students into the field, and by providing opportunities to interact with scientists using real EarthScope data and research results. Curriculum modules will take advantage of Denali's new "Nature Area Network", an IEEE 802.11b wireless network serving the backcountry areas of the Park where students can engage in hands on learning about geology and geophysics and share their experiences with students worldwide via the Internet. Curricula will also focus on the new field of digital story telling, in which students will develop their own understanding of solid earth processes by creating digital stories using readily available digital moviemaking technology. A training course will be developed to enhance K-12 educators' ability to teach earth science utilizing real data and research results. And a series of public lectures both at Denali and in communities across Alaska will engage Geophysical Institute researchers with the public and foster wider participation in the EarthScope Experiment. The anticipated benefits of this project are many. An increase in public awareness and understanding of solid earth processes will lead to better preparedness, and improved decision making regarding the mitigation of risk from seismic and volcanic hazards. Earth science education will be made more vital and engaging for both students and teachers. And Alaska's visitors and residents will gain a better understand and greater appreciation for the dynamic tectonic processes that have created the rugged landscape of the state and its national parklands.
NASA Astrophysics Data System (ADS)
Schielack, J. F.; Herbert, B. E.
2004-12-01
The ITS Center for Teaching and Learning (http://its.tamu.edu) is a five-year NSF-funded collaborative effort to engage scientists, educational researchers, and educators in the use of information technology to enhance science teaching and learning at Grades 7 - 16. The ITS program combines graduate courses in science and science education leadership for both science and education graduate students with professional development experiences for classroom teachers. The design of the ITS professional development experience is based upon the assumption that science and mathematics teaching and learning will be improved when they become more connected to the authentic science research done in field settings or laboratories. The effective use of information technology to support inquiry in science classrooms has been shown to help achieve this objective. In particular, the professional development for teachers centers around support for implementing educational research in their own classrooms on the impacts of using information technology to promote authentic science experiences for their students. As a design study that is "working toward a greater understanding of the "learning ecology," the research related to the creation and refinement of the ITS Center's collaborative environment for integrating professional development for faculty, graduate students, and classroom teachers is contributing information about an important setting not often included in the descriptions of professional development, a setting that incorporates distributed expertise and resulting distributed growth in the various categories of participants: scientists, science graduate students, education researchers, science education graduate students, and master teachers. Design-based research is an emerging paradigm for the study of learning in context through the systematic design and study of instructional strategies and tools. In this presentation, we will discuss the results of the formative evaluation process that has moved the ITS Center's collaborative environment for professional development through the iterative process from Phase I (the planned program designed in-house) to Phase II (the experimental program being tested in-house). Phase II highlighted learning experiences over two summers focused on the exploration of environmentally-related science, technology, engineering or mathematics (STEM) topics through the use of modeling, visualization and complex data sets to explore authentic scientific questions that can be integrated within the 7-16 curriculum.
Information needs of academic medical scientists at Chulalongkorn University.
Premsmit, P
1990-01-01
The information needs of scientists in English-speaking countries have been studied and reported in the library literature. However, few studies exist on the information-seeking patterns of scientists in developing countries, and no study has examined the information needs of medical scientists in developing Asian countries. This study investigated the information needs of academic medical scientists at Chulalongkorn University in Bangkok, Thailand. The results indicate that medical scientists have three types of information needs: identifying up-to-date information, obtaining relevant studies and data, and developing research topics. Thai scientists' information-seeking behavior was different from that of scientists in developed countries. The study shows a high use of libraries as information providers; Thai medical scientists rely heavily on information from abroad. PMID:2224302
ERIC Educational Resources Information Center
Wallace, Guy W.
2001-01-01
Explains lean instructional systems design/development (ISD) as it relates to curriculum architecture design, based on Japan's lean production system. Discusses performance-based systems; ISD models; processes for organizational training and development; curriculum architecture to support job performance; and modular curriculum development. (LRW)
Explorations of Tenth-Grade STS[E] Curricula across Three Provincial Political Landscapes
NASA Astrophysics Data System (ADS)
Phillips, Christina Ann
This thesis focuses on explorations of science, technology, society and the environment (i.e., STS[E]) outcomes/expectations in tenth-grade level science curricula across three Canadian provinces (i.e., Alberta, Manitoba & Ontario) with distinctive provincial political environments at the time of curriculum construction and/or implementation. Document analysis, discourse analysis and a range of theoretical frameworks (i.e., Levinson, 2010; Pedretti & Nazir, 2011 & Krathwohl, 2002) were used to aid in explorations of STS[E] curriculum segments and discourses in each provincial region. More detailed analysis and thematic exploration is presented for each unit associated with climate change as some interesting patterns emerged following initial analysis. My findings are presented as three comparative case studies and represent a small and original contribution to the large body of scholarly research devoted to studies of STS[E] education, where each province represents a unique case that has been explored regarding some aspects the STS[E] curriculum outcomes/expectations and general political culture as well as some other theoretical factors. Findings from this study indicate that Alberta's STS[E] outcomes may be related to Levinson's (2010) 'deliberative' citizenship focus. The following currents from Pedretti and Nazir (2011) appear to be emphasized: logical reasoning, historical, application & design and socio-cultural aligned outcomes when STS[E] is considered as an entity separate from the Alberta curriculum combination of STS and Knowledge. Ontario's STS[E] expectations may align with Levinson's (2010) 'deliberative' or in some select cases a 'deliberative'/'praxis' framework category with some emphasis related to logical reasoning and socio-cultural awareness (Pedretti & Nazir, 2011) in their STS[E] curriculum. The Manitoba STS[E] outcomes may be aligned with a more 'deliberative' approach with some associations that could intersect with the framework categories of 'praxis' or possibly 'dissent and conflict' (Levinson, 2010) and the logical reasoning, socio-cultural and socio-ecojustice currents (Pedretti & Nazir, 2011). General provincial political culture seems to play a limited role in the STS[E] outcomes/expectations as the provinces studied here all tend to align with Levinson's (2010) deliberative citizenship stance (i.e., to varying degrees), with some caveats as explored throughout these cases. A chapter on cross-case analysis follows the three central cases and focuses on the following categories that emerged from this research: STS[E] ontology; STS[E] & citizenship and socio-economic thematic explorations. The final chapter of this thesis focuses on some additional factors and theoretical explorations that may shape STS[E] curricula such as cultural-geographic considerations; educational-political interactions during curriculum construction processes and possible influences from academic scientists. This chapter also provides some recommendations for curriculum development as aligned with case study approaches and provides insights regarding possibilities for future research.
Clinician scientist training program: a proposal for training medical students in clinical research.
Mark, A L; Kelch, R P
2001-11-01
There is national alarm about a decline in the number of clinician scientists. Most of the proposed solutions have focused on housestaff and junior faculty. We propose a new national program for training medical students in clinical research. This program, coined "Clinician Scientist Training Program" (CSTP), would consist of a combined degree program in medicine (MD) and clinical research (eg, masters in translational research or masters in clinical epidemiology). Students could enroll in the program at any stage during medical school. After 3 years of medical school, students would spend at least 2 years in a combined didactic and mentored clinical research training program and then complete medical school. Students could elect to pursue more prolonged clinical research training toward a combined PhD and MD. The CSTP is designed to meet six critical challenges: 1) engage students early in clinical research training; 2) provide a didactic clinical research curriculum; 3) expose students to several years of mentored clinical research training; 4) promote debt prevention by providing tuition payments during medical education and a stipend during clinical research training; 5) facilitate prolonged exposure to a community of peers and mentors in a program with national and institutional identity and respect; and 6) permit enrollment in the program as students enter medical school or at any stage during medical school. If the success of the Medical Scientist Training Program in training medical students in basic research is a guide, the CSTP could become a linchpin for training future generations of clinician scientists.
Magesa, Stephen M; Mwape, Bonard; Mboera, Leonard E G
2011-12-01
Capacity building is considered a priority for health research institutions in developing countries to achieve the Millennium Development Goals by 2015. However, in many countries including Tanzania, much emphasis has been directed towards human resources for health with the total exclusion of human resources for health research. The objective of this study was to systematically investigate the capacity building process for the Tanzanian National Institute for Medical Research (NIMR) over a 30-year period and identify the challenges and opportunities in creating a critical mass of multi-disciplinary research scientists that is required for achieving the intended health benefits. A desk review of personnel database was conducted for information covering 1980-2009 on academic qualifications, training, research experience and research output. The current staff curriculum vitae (CV) were reviewed to gather information on researchers' employment record, training, training support, area of expertise and scientific output. Interviews were conducted with a cross section of researchers on capacity development aspects using a self-administered questionnaire. In-depth interviews were also conducted with the current and former NIMR Management to seek information on capacity development challenges. A review was also done on staff personal files, annual reports, strategic plans and other occasional documents. A total of 163 CV were assessed; of these, 76.7% (125) were for Research Scientists (RS), 20.9% (34) Laboratory Technologists (LT) and 2.4% (4) for System Analysts. The Institute had 13 research scientists upon its establishment. Since 1980, NIMR has recruited a total of 185 Research Scientists. By 2009, NIMR had a total scientific workforce of 170 staff (RS= 82.4%; LT= 17.6%). Of the 140 RSs, 37 (26.4%), were first degree; 77 (55.5%) second degree while 26 (18.6%) were PhD degree holders. Of the total of 78 researchers interviewed, 55 (70.5%) indicated to have accessed postgraduate training through their personal efforts and 23 through institutional arrangement. Sixty (77%) respondents were satisfied with their tenure at NIMR. Seventy (89%) indicated that they had not at any point considered leaving NIMR. Most (79%) research scientists were recruited while holding a first degree, a few (17%) with second degree while only one (0.7%) holding a PhD degree. NIMR has experienced a research scientist attrition rate of 17.5%. Staff retention factors included availability of training opportunities; passion for conducting research; and good career prospects. Despite having a training programme, the institute has never at any moment been able to hold its own training resources. Being a public research institution, NIMR receives its core funding from the government of the United Republic of Tanzania. The bulk of the funding appears to be spent on personnel emoluments that take up to 85% (mean = 66%) of the allocated budget. In conclusion, the current NIMR's research capacity building is dependent mainly on foreign funding and personal initiatives. There is an urgent need to increase local funding for capacity building and conduct of research. A programme should be put in place to ensure sustainability of the capacity building process.
Crowdsourced Curriculum Development for Online Medical Education.
Shappell, Eric; Chan, Teresa M; Thoma, Brent; Trueger, N Seth; Stuntz, Bob; Cooney, Robert; Ahn, James
2017-12-08
In recent years online educational content, efforts at quality appraisal, and integration of online material into institutional teaching initiatives have increased. However, medical education has yet to develop large-scale online learning centers. Crowd-sourced curriculum development may expedite the realization of this potential while providing opportunities for innovation and scholarship. This article describes the current landscape, best practices, and future directions for crowdsourced curriculum development using Kern's framework for curriculum development and the example topic of core content in emergency medicine. A scoping review of online educational content was performed by a panel of subject area experts for each step in Kern's framework. Best practices and recommendations for future development for each step were established by the same panel using a modified nominal group consensus process. The most prevalent curriculum design steps were (1) educational content and (2) needs assessments. Identified areas of potential innovation within these steps included targeting gaps in specific content areas and developing underrepresented instructional methods. Steps in curriculum development without significant representation included (1) articulation of goals and objectives and (2) tools for curricular evaluation. By leveraging the power of the community, crowd-sourced curriculum development offers a mechanism to diffuse the burden associated with creating comprehensive online learning centers. There is fertile ground for innovation and scholarship in each step along the continuum of curriculum development. Realization of this paradigm's full potential will require individual developers to strongly consider how their contributions will align with the work of others.
Crowdsourced Curriculum Development for Online Medical Education
Chan, Teresa M; Thoma, Brent; Trueger, N Seth; Stuntz, Bob; Cooney, Robert; Ahn, James
2017-01-01
In recent years online educational content, efforts at quality appraisal, and integration of online material into institutional teaching initiatives have increased. However, medical education has yet to develop large-scale online learning centers. Crowd-sourced curriculum development may expedite the realization of this potential while providing opportunities for innovation and scholarship. This article describes the current landscape, best practices, and future directions for crowdsourced curriculum development using Kern’s framework for curriculum development and the example topic of core content in emergency medicine. A scoping review of online educational content was performed by a panel of subject area experts for each step in Kern’s framework. Best practices and recommendations for future development for each step were established by the same panel using a modified nominal group consensus process. The most prevalent curriculum design steps were (1) educational content and (2) needs assessments. Identified areas of potential innovation within these steps included targeting gaps in specific content areas and developing underrepresented instructional methods. Steps in curriculum development without significant representation included (1) articulation of goals and objectives and (2) tools for curricular evaluation. By leveraging the power of the community, crowd-sourced curriculum development offers a mechanism to diffuse the burden associated with creating comprehensive online learning centers. There is fertile ground for innovation and scholarship in each step along the continuum of curriculum development. Realization of this paradigm’s full potential will require individual developers to strongly consider how their contributions will align with the work of others. PMID:29464134
NASA Astrophysics Data System (ADS)
Cabrol, N. A.; Grigsby, B. H.
2004-12-01
"Life at the Extreme" is an education and public outreach (E/PO) project that engaged teachers and 4-12th grade students (an in part, Prek-3rd grade students) in an internet-based, virtual expedition with scientists as they conducted experiments in a unique planetary analog environment in the Bolivian High-Andes at nearly 6,000 m (~20,000ft). Through high altitude diving and sampling, they explored the Licancabur volcano summit lake, which is one of the closest analogs to ancient lakes on Mars. Their goal was to characterize the environment and to study the defense strategies of life against extreme physical conditions in order to understand the biological potential of Mars and prepare future planetary missions. This "virtual field" was in the form of an interactive web site, live interactive discussions, a live video webcast with the San Francisco Exploratorium, and videotapes. Through this medium, about 2,700 students, 90 schools and teachers were able to directly participate and extend their knowledge of scientific processes as they explored an extreme and unique terrestrial environment. In the weeks leading up to the expedition, and during in-the-field activities, students were able to communicate with scientists as they prepared for and conducted scientific investigations. The general public could follow the expedition as well on the web. Overall, the website received ~70,000 hits from all over the world during the time of the expedition. Allowing this access to scientists as they performed their investigations proved invaluable as students understood the implications of scientific work. The broader impact of this experience provided ground work for other educational institutions to conduct similar activities with leading scientists and bridge the gap that often exists between scientists and education. The project was conducted in partnership with the NASA's Ames Research Center's expedition to the Licancabur volcano, located on the border between Chile and Bolivia and is the location of one of the least explored lakes in the world. K-12 educators played a key roll in the development and implementation of curriculum for this project. In 2002, a teacher accompanied the scientific team to the summit to document their research for the benefit of all k-12 educators both as the exploration occurs and as an ongoing educational enquiry. The virtual field experience was funded through an IDEAS (The Initiative to Develop Education through Astronomy and Space Science) grant. The 2002-03, and 2003-04 virtual field experience can be found at: http://www.extremeenvironment.com.
Climate Literacy from the Plains to the Peaks: Challenges in Teaching Climate in Colorado Classrooms
NASA Astrophysics Data System (ADS)
Hafich, K. A.; Martens, W.; Fletcher, H.; MacFerrin, B.; Morrison, D.; Stone, J.; Collins, M. C.; Chastain, M.; Hager, C.; Duncan, E.; Gay, C. J.; Kurz, J. D.; Manning, C. B.; Graves, B. J.; Bloomfield, L.
2015-12-01
Boulder, Colorado is a central hub of climate research and education resources, yet teachers less than two hours away struggle to find relevant climate curriculum and meaningful connections to climate scientists. Learn More About Climate (LMAC), an initiative of the CU-Boulder Office for Outreach and Engagement was created to provide access to the most up-to-date scientific research in a user-friendly way that raises awareness and inspires an informed dialogue about climate change among Coloradans. LMAC produces classroom ready videos highlighting CU climate scientists, offers classroom visits and Skype sessions with scientists, and serves as a hub for the most recent climate news. LMAC recently formed a Teacher Advisory Board made up of eleven K12 teachers from across Colorado spanning rural, suburban, and urban school districts. Given different locations, demographics, and grade levels, each teacher faces different challenges teaching climate. Here we present our work to identify the primary challenges that our teacher advisors have encountered while teaching climate science in their classrooms. Furthermore, we are working to co-create dynamic solutions with the teachers to address these problems using the LMAC platform.
SunBlock '99: Young Scientists Investigate the Sun
NASA Astrophysics Data System (ADS)
Walsh, R. W.; Pike, C. D.; Mason, H.; Young, P.; Ireland, J.; Galsgaard, K.
1999-10-01
SunBlock `99 is a Web-based Public Understanding of Science and educational project which seeks to present the very latest solar research as seen through the eyes of young British scientists. These ``solar guides'' discuss not only their scientific interests, but also their extra-curricular activities and the reasons they chose scientific careers; in other words the human face of scientific research. The SunBlock '99 pages gather a range of solar images and movies from current solar space observatories and discuss the underlying physics and its relationship to the school curriculum. The instructional level is pitched at UK secondary school children (aged 13-16 years). It is intended that the material should not only provide a visually appealing introduction to the study of the Sun, but that it should help bridge the often wide gap between classroom science lessons and the research scientist `out in the field'. SunBlock '99 is managed by a team from the Rutherford Appleton Laboratory and the Universities of St Andrews and Cambridge, together with educational consultants. The production has, in part, been sponsored by PPARC and the Millennium Mathematics Project. Web site addresss: http://www.sunblock99.org.uk
PUMAS: Practical Uses of Math And Science
NASA Astrophysics Data System (ADS)
Kahn, R. A.
2009-12-01
For more than ten years, PUMAS has provided a forum for disseminating peer-reviewed examples of Practical Uses of Math And Science, aimed at helping pre-college teachers enrich their presentation of math and science topics. Contributors include scientists, engineers, and content experts from many disciplines. The innovative ideas in PUMAS examples tend to be treasures, containing the ‘sparks’ of understanding that comes only from having real-life experience with the material. Examples can be essays, anecdotes, problems, demonstrations, or activities, and can be written in any style that serves the material well. They are keyed to the National Standards and Benchmarks, which provide the critical connection to K-12 curriculum guidelines, and the peer-review process involves at least one scientist with a relevant background, and at least one teacher at an appropriate grade level. The PUMAS Web Site has recently been upgraded. It is now a NASA-wide facility, recognized by both the National Science Teachers Association (NSTA) and the National Council of Teachers of Mathematics (NCTM). This presentation will describe and illustrate the operation of PUMAS, will highlight a few of our many treasures, and will appeal to scientists interested in contributing meaningfully to pre-college education to consider submitting examples to PUMAS.
Developing a Scale on "Factors Regarding Curriculum Alignment"
ERIC Educational Resources Information Center
Bay, Erdal
2016-01-01
"Curriculum alignment" is the compatibility between a country's centralized curriculum determined by the ministry of education and what teachers do during the teaching process. However, it is observed that teachers do not exactly implement the curriculum. The purpose of this study is to develop a scale that will determine the factors…
The Influence of John Dewey on Curriculum Development in South Africa.
ERIC Educational Resources Information Center
Mentz, Paulus J.
The influence of John Dewey's educational theory on curriculum development in South Africa is examined in this paper. The two main streams of thinking about curriculum theory in South Africa include the traditional perspective, which is heavily influenced by the national Christianity movement, and the alternative curriculum development…
ERIC Educational Resources Information Center
Taylor, Joseph A.; Getty, Stephen R.; Kowalski, Susan M.; Wilson, Christopher D.; Carlson, Janet; Van Scotter, Pamela
2015-01-01
This study examined the efficacy of a curriculum-based intervention for high school science students. Specifically, the intervention was two years of research-based, multidisciplinary curriculum materials for science supported by comprehensive professional development for teachers that focused on those materials. A modest positive effect was…
Building a Case for the Core Curriculum in Agriculture.
ERIC Educational Resources Information Center
Hemp, Paul E.
1980-01-01
Changes in the types of students enrolled in vocational agriculture and their interests, background, and needs suggest that agricultural educators should rethink the approaches currently used in curriculum development. The advantages of the core curriculum and the traditional approach to curriculum development need to be compared and weighed…
Dealing with Distinctiveness. Development of Chinese in the "Australian Curriculum: Languages"
ERIC Educational Resources Information Center
Scrimgeour, Andrew; Foster, Marnie; Mao, Weifeng
2013-01-01
This article explores some of the distinctive challenges in Chinese language education in schools and discusses how the development of the "Australian Curriculum: Chinese" has responded to these challenges. It details how the curriculum framework outlined in the "Shape of the Australian Curriculum: Languages" (ACARA, 2011)…
ERIC Educational Resources Information Center
Doabler, Christian T.; Clarke, Ben; Fien, Hank; Baker, Scott K.; Kosty, Derek B.; Cary, Mari Strand
2015-01-01
The production of an effective mathematics curriculum begins with a scientific development, evaluation, and revision framework. The purpose of this study was to conduct an initial investigation of a recently developed Tier 2 mathematics curriculum designed to improve the outcomes of first grade students at risk for mathematics difficulties (MD).…
ERIC Educational Resources Information Center
Gardner, David C.; Beatty, Grace Joely
Within the context of the major objectives of developing, field testing, and refining the curriculum materials described in volume 1 of this final report (CE 024 117), Volume 2 describes and critiques the management system used by Project HIRE in that development process. (See Note for availability of curriculum materials.) Chapter 1 introduces…
ERIC Educational Resources Information Center
Robinson, Patricia W.
The purpose of this practicum was to develop a study skills curriculum to be incorporated into the existing ACT I Extended Freshman Orientation program at Brenau College in Georgia, to assist underprepared students admitted under special admissions programs in achieving greater academic success. An eight-step curriculum development process was…
ERIC Educational Resources Information Center
Power, D. J., Ed.; Hollingshead, Anne, Ed.
The document presents findings and discussion from a 1981 Australian workshop on language curriculum development for hearing impaired students. The first 11 papers, unattributed, address the following issues regarding development of a language curriculum: content, principles, levels of language, techniques and materials, features of conversational…
ERIC Educational Resources Information Center
Lowenstein, Michael Z.; Orsak, Charles
Phase 1 of a project in curriculum design and course development identified and is now developing a two-year solar engineering curriculum in response to the immediate need for trained solar manpower as indicated by research. The student-centered curriculum involves courses flowing from device to theory, intermixing of support and technical courses…
Undergraduate Biotechnology Students' Views of Science Communication
NASA Astrophysics Data System (ADS)
Edmondston, Joanne Elisabeth; Dawson, Vaille; Schibeci, Renato
2010-12-01
Despite rapid growth of the biotechnology industry worldwide, a number of public concerns about the application of biotechnology and its regulation remain. In response to these concerns, greater emphasis has been placed on promoting biotechnologists' public engagement. As tertiary science degree programmes form the foundation of the biotechnology sector by providing a pipeline of university graduates entering into the profession, it has been proposed that formal science communication training be introduced at this early stage of career development. The aim of the present study was to examine the views of biotechnology students towards science communication and science communication training. Using an Australian biotechnology degree programme as a case study, 69 undergraduates from all three years of the programme were administered a questionnaire that asked them to rank the importance of 12 components of a biotechnology curriculum, including two science communication items. The results were compared to the responses of 274 students enrolled in other science programmes. Additional questions were provided to the second year biotechnology undergraduates and semi-structured interviews were undertaken with 13 of these students to further examine their views of this area. The results of this study suggest that the biotechnology students surveyed do not value communication with non-scientists nor science communication training. The implications of these findings for the reform of undergraduate biotechnology courses yet to integrate science communication training into their science curriculum are discussed.
Curriculum Development for Business and Industry.
ERIC Educational Resources Information Center
Stolovitch, Harold D.; Keeps, Erica J.
1988-01-01
Defines the concept of curriculum for industrial personnel development needs, explains the concept of professionalism, and presents a model for developing curricula for business and industry called the Professional Development Curriculum (PDC) model. Training needs are discussed and two applications of the model in General Motors are described.…
Development and evaluation of a risk communication curriculum for medical students.
Han, Paul K J; Joekes, Katherine; Elwyn, Glyn; Mazor, Kathleen M; Thomson, Richard; Sedgwick, Philip; Ibison, Judith; Wong, John B
2014-01-01
To develop, pilot, and evaluate a curriculum for teaching clinical risk communication skills to medical students. A new experience-based curriculum, "Risk Talk," was developed and piloted over a 1-year period among students at Tufts University School of Medicine. An experimental study of 2nd-year students exposed vs. unexposed to the curriculum was conducted to evaluate the curriculum's efficacy. Primary outcome measures were students' objective (observed) and subjective (self-reported) risk communication competence; the latter was assessed using an Observed Structured Clinical Examination (OSCE) employing new measures. Twenty-eight 2nd-year students completed the curriculum, and exhibited significantly greater (p<.001) objective and subjective risk communication competence than a convenience sample of 24 unexposed students. New observational measures of objective competence in risk communication showed promising evidence of reliability and validity. The curriculum was resource-intensive. The new experience-based clinical risk communication curriculum was efficacious, although resource-intensive. More work is needed to develop the feasibility of curriculum delivery, and to improve the measurement of competence in clinical risk communication. Risk communication is an important advanced communication skill, and the Risk Talk curriculum provides a model educational intervention and new assessment tools to guide future efforts to teach and evaluate this skill. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Developing a New Course for Adult Learners. TESOL Language Curriculum Development Series
ERIC Educational Resources Information Center
Snow, Marguerite Ann, Ed.; Kamhi-Stein, Lia, Ed.
2006-01-01
Teachers of English to Speakers of Other Languages, Inc. (TESOL), introduces "Developing a New Course for Adult Learners," edited by Marguerite Ann Snow and Lia Kamhi-Stein. This volume in TESOL's Language Curriculum Development Series presents the stories of teachers, curriculum developers, and administrators from all over the world who…
A Case Study of a School-Based Curriculum Development as a Model for INSET.
ERIC Educational Resources Information Center
Keiny, Shoshana; Weiss, Tzila
1986-01-01
Using a school-based curriculum development approach, the Israeli Environmental Education Project constructed a conceptual model for environmental education curriculum development. A team of teachers sharing knowledge developed a case study about water regulation and its consequences in a desert environment, which is described. (MT)
ERIC Educational Resources Information Center
Lin, Kuen-Yi; Chang, Liang-Te; Tsai, Fu-Hsing; Kao, Chia-Pin
2015-01-01
Curriculum reform has frequently focused on the curriculum-development stage, overlooking considerations regarding curriculum implementation, which has led to reform failure. In this study, consideration was placed primarily on the curriculum implementation stage. The gaps between teachers' and students' perceptions of content, learning…
ERIC Educational Resources Information Center
Lanham, Frank W.
The purpose of this study was to explore the feasibility of utilizing the systems approach in developing an office occupations curriculum congruent with the concepts in the organic curriculum theory. The title of this project is New Office and Business Education Learning System (NOBELS). An analog system model was developed as the framework in…
ERIC Educational Resources Information Center
Butterwick, Shauna; Benjamin, Amanda
2006-01-01
This paper offers a critical discourse analysis of a life skills career education curriculum for schools in British Columbia, Canada. This curriculum calls for the development of a set of life skills that are positioned as central to students' employability. At the heart of the curriculum is a focus on personal development, in particular, the need…
ERIC Educational Resources Information Center
Tennessee Univ., Knoxville. Occupational Research and Development Coordinating Unit.
Over 50 educational leaders representing academic and vocational-technical interests met for a 3-day conference to identify curriculum needs and techniques used in curriculum development and to suggest curriculum priorities and coordinated projected plans to attain recommended goals. Conference objectives were accomplished through small group…
Little by Little the Bird Builds Its Nest: First Steps in Cross Cultural Curriculum Training
ERIC Educational Resources Information Center
Harte, Helene Arbouet; Jones, Melissa M.; Wray, Francis
2015-01-01
With the goal of raising awareness of child slavery and devastation of the natural environment in Haiti, while simultaneously supporting active teaching strategies, a team of educators collaborated to develop The Respecting Haiti curriculum. Following development of the curriculum, representatives from the team facilitated curriculum training with…
ERIC Educational Resources Information Center
Correa Ruiz, Carmen
2013-01-01
In this commentary, Correa Ruiz notes that from his analysis, Owen (2013) identified the essential elements to be included in a modern professional accounting curriculum, described how Association of Chartered Certified Accountants (ACCA) has embedded "Integrated Reporting" in its curriculum, and discussed future curriculum development,…
The E-3 Project: A Collaborative Curriculum Development Effort.
ERIC Educational Resources Information Center
Nelson, Lynn R.; And Others
This paper chronicles the effort of a curriculum development team to alter the high school social studies curriculum, its content, and instructional methods. Specifically, Entrepreneur/Economic Education (E-3) is the focus of this curriculum reform effort. The E-3 program is designed as a four-year cooperative effort involving selected teachers,…
Energy Management Technician Curriculum Development. Final Report.
ERIC Educational Resources Information Center
Sarvis, Robert E.
This document is the result of an effort to develop a comprehensive curriculum to train community college students as energy management technicians. The main body of the document contains the energy management technician training curriculum and course content for the proposed courses in the two-year sequence; a report of how the curriculum was…
State-Based Curriculum Work and Curriculum-Making: Norway's "Laereplanverket 1997"
ERIC Educational Resources Information Center
Sivesind, Kirsten; Westbury, Ian
2016-01-01
This case study of the development of the Norwegian compulsory school curriculum of 1997, "Laereplanverket 1997," parallels a study of the development of the "Illinois Learning Standards" of 1997. The pair of case studies is designed to explore the administration of state-based curriculum-making and, in particular, the use in…
Policy and Curriculum Development in Greece. the Case of Secondary School Curriculum
ERIC Educational Resources Information Center
Ifanti, Amalia A.
2007-01-01
This paper examines the politics and values of the secondary school curriculum in Greece and attempts to find out the influences of cultural tradition and centralized control on curriculum development. In particular, it studies the decision-making process and the politics of educational control, employing some theoretical elements from centralist…
A 10-Year Mechatronics Curriculum Development Initiative: Relevance, Content, and Results--Part I
ERIC Educational Resources Information Center
Das, S.; Yost, S. A.; Krishnan, M.
2010-01-01
This paper describes the first phase of a Mechatronics Curriculum Development effort--the design of an "Introduction to Mechatronics" course, the infusion of mechatronics activities throughout the curriculum and in outreach activities, and assessment results. In addition, the relevance and impact of such a curriculum on the education of engineers…
ERIC Educational Resources Information Center
Vocational Curriculum Resource Center of Maine, Fairfield.
This curriculum guide is designed to assist instructors in the development and implementation of a comprehensive, competency-based automotive curriculum. It contains an instructional unit for each task listed on the enclosed job analysis or DACUM (Developing a Curriculum) chart. These units include introduction, performance objectives, suggested…
The Extra Strand of the Maori Science Curriculum
ERIC Educational Resources Information Center
Stewart, Georgina
2011-01-01
This paper comments on the process of re-development of the Maori-medium Science (Putaiao) curriculum, as part of overall curriculum development in Aotearoa New Zealand. A significant difference from the English Science curriculum was the addition of an "extra strand" covering the history and philosophy of science. It is recommended that…
ERIC Educational Resources Information Center
Appleby, Judith A.
One of five modules in the curriculum development series designed to train vocational education curriculum specialists, this module is intended for use in classes or individual study arrangements at the preservice or inservice level by students with varying amounts of experience in vocational education. (These modules are revised versions of…
Brunckhorst, Oliver; Shahid, Shahab; Aydin, Abdullatif; McIlhenny, Craig; Khan, Shahid; Raza, Syed Johar; Sahai, Arun; Brewin, James; Bello, Fernando; Kneebone, Roger; Khan, Muhammad Shamim; Dasgupta, Prokar; Ahmed, Kamran
2015-09-01
Current training modalities within ureteroscopy have been extensively validated and must now be integrated within a comprehensive curriculum. Additionally, non-technical skills often cause surgical error and little research has been conducted to combine this with technical skills teaching. This study therefore aimed to develop and validate a curriculum for semi-rigid ureteroscopy, integrating both technical and non-technical skills teaching within the programme. Delphi methodology was utilised for curriculum development and content validation, with a randomised trial then conducted (n = 32) for curriculum evaluation. The developed curriculum consisted of four modules; initially developing basic technical skills and subsequently integrating non-technical skills teaching. Sixteen participants underwent the simulation-based curriculum and were subsequently assessed, together with the control cohort (n = 16) within a full immersion environment. Both technical (Time to completion, OSATS and a task specific checklist) and non-technical (NOTSS) outcome measures were recorded with parametric and non-parametric analyses used depending on the distribution of our data as evaluated by a Shapiro-Wilk test. Improvements within the intervention cohort demonstrated educational value across all technical and non-technical parameters recorded, including time to completion (p < 0.01), OSATS scores (p < 0.001), task specific checklist scores (p = 0.011) and NOTSS scores (p < 0.001). Content validity, feasibility and acceptability were all demonstrated through curriculum development and post-study questionnaire results. The current developed curriculum demonstrates that integrating both technical and non-technical skills teaching is both educationally valuable and feasible. Additionally, the curriculum offers a validated simulation-based training modality within ureteroscopy and a framework for the development of other simulation-based programmes.
2016-03-30
lesson 8.4, " Wind Turbine Design Inquiry." 13 The goal of her project was to combine a1t and science in project-based learning. Although pmt of an...challenged to design, test, and redesign wind turbine blades, defining variables and measuring performance. Their goal was to optimize perfonnance through...hydroelectric. In each model there are more than one variable. For example, the wind farm activity enables the user to select number of turbines
Increasing Staff Participation in Curriculum Development
ERIC Educational Resources Information Center
Marsh, C. J.
1977-01-01
A challenge facing school staffs is the development of school-based curriculum. Some guidelines and incentives for increasing staff participation in curriculum development are presented. Available from: Australian College of Education, 916 Swanston Street, Carlton, Victoria 3053, Australia, $2.50 single copy. (Author/MLF)
ERIC Educational Resources Information Center
Harb, Majed
2017-01-01
Curriculum reconceptualists seek to reshape the field of curriculum studies. Unlike traditional curricularists, they reprobate the technical approach of curriculum development because of its pure functional and managerial tendency. Reconceptualists look at curriculum from various philosophy-saturated perspectives. One of their claims is…
ERIC Educational Resources Information Center
Crowell, Fred A.
1971-01-01
Outlines a proposal for establishing ecological-based curriculum design and evaluation centers. Compares traditional transmission-oriented curriculum design with new self-designing curriculum structure and ECO Center development. (BL)
Fundamental Curriculum Decisions.
ERIC Educational Resources Information Center
English, Fenwick W., Ed.
This yearbook provides a readable, usable, and practical summary of the most commonly applied elements of curriculum development on the contemporary educational scene. Separate chapters discuss: (1) "Contemporary Curriculum Circumstances" (Fenwick W. English); (2) "Curriculum Thinking" (George A. Beauchamp); (3) "Curriculum Content" ( B. Othanel…
Brownell, Sara E; Hekmat-Scafe, Daria S; Singla, Veena; Chandler Seawell, Patricia; Conklin Imam, Jamie F; Eddy, Sarah L; Stearns, Tim; Cyert, Martha S
2015-01-01
We present an innovative course-based undergraduate research experience curriculum focused on the characterization of single point mutations in p53, a tumor suppressor gene that is mutated in more than 50% of human cancers. This course is required of all introductory biology students, so all biology majors engage in a research project as part of their training. Using a set of open-ended written prompts, we found that the course shifts student conceptions of what it means to think like a scientist from novice to more expert-like. Students at the end of the course identified experimental repetition, data analysis, and collaboration as important elements of thinking like a scientist. Course exams revealed that students showed gains in their ability to analyze and interpret data. These data indicate that this course-embedded research experience has a positive impact on the development of students' conceptions and practice of scientific thinking. © 2015 S. E. Brownell et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Lighten the Load: Scaffolding Visual Literacy in Biochemistry and Molecular Biology
Offerdahl, Erika G.; Arneson, Jessie B.; Byrne, Nicholas
2017-01-01
The development of scientific visual literacy has been identified as critical to the training of tomorrow’s scientists and citizens alike. Within the context of the molecular life sciences in particular, visual representations frequently incorporate various components, such as discipline-specific graphical and diagrammatic features, varied levels of abstraction, and spatial arrangements of visual elements to convey information. Visual literacy is achieved when an individual understands the various ways in which a discipline uses these components to represent a particular way of knowing. Owing to the complex nature of visual representations, the activities through which visual literacy is developed have high cognitive load. Cognitive load can be reduced by first helping students to become fluent with the discrete components of visual representations before asking them to simultaneously integrate these components to extract the intended meaning of a representation. We present a taxonomy for characterizing one component of visual representations—the level of abstraction—as a first step in understanding the opportunities afforded students to develop fluency. Further, we demonstrate how our taxonomy can be used to analyze course assessments and spur discussions regarding the extent to which the development of visual literacy skills is supported by instruction within an undergraduate biochemistry curriculum. PMID:28130273
García de Diego, Laura; Cuervo, Marta; Martínez, J. Alfredo
2015-01-01
Computer assisted instruction (CAI) is an effective tool for evaluating and training students and professionals. In this article we will present a learning-oriented CAI, which has been developed for students and health professionals to acquire and retain new knowledge through the practice. A two-phase pilot evaluation was conducted, involving 8 nutrition experts and 30 postgraduate students, respectively. In each training session, the software developed guides users in the integral evaluation of a patient’s nutritional status and helps them to implement actions. The program includes into the format clinical tools, which can be used to recognize possible patient’s needs, to improve the clinical reasoning and to develop professional skills. Among them are assessment questionnaires and evaluation criteria, cardiovascular risk charts, clinical guidelines and photographs of various diseases. This CAI is a complete software package easy to use and versatile, aimed at clinical specialists, medical staff, scientists, educators and clinical students, which can be used as a learning tool. This application constitutes an advanced method for students and health professionals to accomplish nutritional assessments combining theoretical and empirical issues, which can be implemented in their academic curriculum. PMID:25978456
García de Diego, Laura; Cuervo, Marta; Martínez, J Alfredo
2015-01-01
Computer assisted instruction (CAI) is an effective tool for evaluating and training students and professionals. In this article we will present a learning-oriented CAI, which has been developed for students and health professionals to acquire and retain new knowledge through the practice. A two-phase pilot evaluation was conducted, involving 8 nutrition experts and 30 postgraduate students, respectively. In each training session, the software developed guides users in the integral evaluation of a patient's nutritional status and helps them to implement actions. The program includes into the format clinical tools, which can be used to recognize possible patient's needs, to improve the clinical reasoning and to develop professional skills. Among them are assessment questionnaires and evaluation criteria, cardiovascular risk charts, clinical guidelines and photographs of various diseases. This CAI is a complete software package easy to use and versatile, aimed at clinical specialists, medical staff, scientists, educators and clinical students, which can be used as a learning tool. This application constitutes an advanced method for students and health professionals to accomplish nutritional assessments combining theoretical and empirical issues, which can be implemented in their academic curriculum.
Posner, Glenn; Humphrey-Murto, Susan
2017-01-01
Simulation-based education has gained popularity, yet many faculty members feel inadequately prepared to teach using this technique. Fellowship training in medical education exists, but there is little information regarding simulation or formal educational programs therein. In our institution, simulation fellowships were offered by individual clinical departments. We recognized the need for a formal curriculum in educational theory. Kern’s approach to curriculum development was used to develop, implement, and evaluate the Foundational Elements of Applied Simulation Theory (FEAST) curriculum. Needs assessments resulted in a 26-topic curriculum; each biweekly session built upon the previous. Components essential to success included setting goals and objectives for each interactive session and having dedicated faculty, collaborative leadership and administrative support for the curriculum. Evaluation data was collated and analyzed annually via anonymous feedback surveys, focus groups, and retrospective pre-post self-assessment questionnaires. Data collected from 32 fellows over five years of implementation showed that the curriculum improved knowledge, challenged thinking, and was excellent preparation for a career in simulation-based medical education. Themes arising from focus groups demonstrated that participants valued faculty expertise and the structure, practicality, and content of the curriculum. We present a longitudinal simulation educator curriculum that adheres to a well-described framework of curriculum development. Program evaluation shows that FEAST has increased participant knowledge in key areas relevant to simulation-based education and that the curriculum has been successful in meeting the needs of novice simulation educators. Insights and practice points are offered for educators wishing to implement a similar curriculum in their institution. PMID:28280655
Chiu, Michelle; Posner, Glenn; Humphrey-Murto, Susan
2017-01-27
Simulation-based education has gained popularity, yet many faculty members feel inadequately prepared to teach using this technique. Fellowship training in medical education exists, but there is little information regarding simulation or formal educational programs therein. In our institution, simulation fellowships were offered by individual clinical departments. We recognized the need for a formal curriculum in educational theory. Kern's approach to curriculum development was used to develop, implement, and evaluate the Foundational Elements of Applied Simulation Theory (FEAST) curriculum. Needs assessments resulted in a 26-topic curriculum; each biweekly session built upon the previous. Components essential to success included setting goals and objectives for each interactive session and having dedicated faculty, collaborative leadership and administrative support for the curriculum. Evaluation data was collated and analyzed annually via anonymous feedback surveys, focus groups, and retrospective pre-post self-assessment questionnaires. Data collected from 32 fellows over five years of implementation showed that the curriculum improved knowledge, challenged thinking, and was excellent preparation for a career in simulation-based medical education. Themes arising from focus groups demonstrated that participants valued faculty expertise and the structure, practicality, and content of the curriculum. We present a longitudinal simulation educator curriculum that adheres to a well-described framework of curriculum development. Program evaluation shows that FEAST has increased participant knowledge in key areas relevant to simulation-based education and that the curriculum has been successful in meeting the needs of novice simulation educators. Insights and practice points are offered for educators wishing to implement a similar curriculum in their institution.
Meta-Theory and Curriculum Development.
ERIC Educational Resources Information Center
Hartoonian, H. Michael
Curriculum development in any area should be imbued with a meaning that focuses on the cultural values of motivation, logic, and human relationships. The term "meaning" implies seeing relationships (linguistic, economic, political, moral), understanding logic, and being sensitive to the enduring values of the culture. Curriculum developers and…
Leadership in Mathematics Curriculum Development
ERIC Educational Resources Information Center
Alford, Kenneth Ray
2010-01-01
This paper discusses mathematics curriculum development throughout the past century and incorporates a discussion of appropriate leadership style needed to bring about effective change. School leaders must be cognizant of the commitment and competence of the faculty within their school for successful curriculum development to take place.…
Learning-Based Curriculum Development
ERIC Educational Resources Information Center
Nygaard, Claus; Hojlt, Thomas; Hermansen, Mads
2008-01-01
This article is written to inspire curriculum developers to centre their efforts on the learning processes of students. It presents a learning-based paradigm for higher education and demonstrates the close relationship between curriculum development and students' learning processes. The article has three sections: Section "The role of higher…
Curriculum Development and Evaluation for a Cancer Education Program.
ERIC Educational Resources Information Center
Deslauriers, Marc P.
1980-01-01
The Mid-America Cancer Center Program has developed a comprehensive approach for evaluating the cancer education curriculum at the University of Kansas Medical Center. The project included a review of all cancer-related teaching objectives and the development of an interdepartmental oncology curriculum. (JMD)
Academic Knowledge Construction and Multimodal Curriculum Development
ERIC Educational Resources Information Center
Loveless, Douglas J., Ed.; Griffith, Bryant, Ed.; Bérci, Margaret E., Ed.; Ortlieb, Evan, Ed.; Sullivan, Pamela, Ed.
2014-01-01
While incorporating digital technologies into the classroom has offered new ways of teaching and learning into educational processes, it is essential to take a look at how the digital shift impacts teachers, school administration, and curriculum development. "Academic Knowledge Construction and Multimodal Curriculum Development" presents…
Keeping Up: Change, Currency and Accuracy.
ERIC Educational Resources Information Center
Hull, Darrell; Young, Marion
1999-01-01
Describes the curriculum-morphing process used by the Center for Occupational Research and Development (CORD) to develop curriculum materials in laser electro-optics technology (LEOT). Discusses this innovative developmental project as one in which faculty and curriculum developers work together to resolve the problem of static curriculum…
Teacher Involvement in Curriculum Development.
ERIC Educational Resources Information Center
Bowers, Bruce
1991-01-01
Four recent journal articles and one meeting paper on teacher involvement in curriculum development are summarized in this research bulletin. Contents include "Motivating Teacher Involvement in Professional Growth Activities," by Ruth Wright; "Teacher Participation in Curriculum Development: What Status Does It Have?" by Jean Young; "The Locus of…
BIBLIOGRAPHY ON CURRICULUM DEVELOPMENT. SUPPLEMENT I.
ERIC Educational Resources Information Center
Harvard Univ., Cambridge, MA. Graduate School of Education.
THIS BIBLIOGRAPHY (SUPPLEMENT I) LISTS MATERIALS ON VARIOUS ASPECTS OF CURRICULUM DEVELOPMENT. EIGHTY-TWO UNANNOTATED REFERENCES ARE PROVIDED FOR DOCUMENTS DATING FROM 1961 TO 1966. BOOKS, JOURNALS, REPORT MATERIALS, AND SOME UNPUBLISHED MANUSCRIPTS ARE LISTED IN SUCH AREAS AS EDUCATIONAL GAMES, CURRICULUM CHANGE, CONCEPT DEVELOPMENT, PROGRAM…
The British and curriculum development in West Africa: A historical discourse
NASA Astrophysics Data System (ADS)
Ofori-Attah, Kwabena Dei
2006-09-01
THE BRITISH AND CURRICULUM DEVELOPMENT IN WEST AFRICA: A HISTORICAL STUDY - Only recently have African nations begun to make their way towards establishing genuinely autonomous education systems incorporating elements of indigenous culture. The present study examines the historical development of curriculum in British West Africa in its links with the educational activities of the early Christian missionaries and the imposition of British colonial rule. For over 300 years, the curriculum content was essentially European in nature. African interests and cultural practices were largely excluded, as "bookwork" was favored over "handwork". The colonial curriculum also helped introduce a new social order to West Africa, leading to the rise of new local elites reading, writing, and speaking foreign European languages. This study explores how the idea of a "civilized" person, promoted through the colonial school curriculum, developed new local elites with different sets of values and expectations that often made them strangers in their own societies. It also describes the connection between this curriculum and the repeated failure of education-reform efforts.
Developing a new industrial engineering curriculum using a systems engineering approach
NASA Astrophysics Data System (ADS)
Buyurgan, Nebil; Kiassat, Corey
2017-11-01
This paper reports on the development of an engineering curriculum for a new industrial engineering programme at a medium-sized private university in the northeast United States. A systems engineering process has been followed to design and develop the new curriculum. Considering the programme curriculum as a system, first the stakeholders have been identified, and some preliminary analysis on their needs and requirements has been conducted. Following that, the phases of conceptual design, preliminary design, and detailed design have been pursued during which different levels of validation, assessment, and evaluation processes have been utilised. In addition, a curriculum assessment and continuous improvement process have been developed to assess the curriculum and the courses frequently. The resulting curriculum is flexible, allowing the pursuit of accelerated graduate programmes, a second major, various minor options, and study-abroad; relevant, tailored to the needs of industry partners in the vicinity; and practical, providing hands-on education, resulting in employment-ready graduates.
Towards a Multi-Stakeholder-Driven Model for Excellence in Higher Education Curriculum Development
ERIC Educational Resources Information Center
Meyer, M. H.; Bushney, M. J.
2008-01-01
A multi-stakeholder-driven model for excellence in higher education curriculum development has been developed. It is based on the assumption that current efforts to curriculum development take place within a framework of limited stakeholder consultation. A total of 18 multiple stakeholders are identified, including learners, alumni, government,…
ERIC Educational Resources Information Center
National Science Foundation, Arlington, VA. Div. of Undergraduate Education.
The Undergraduate Course and Curriculum Development Program of the National Science Foundation supports the development of courses in all disciplines to improve the quality of undergraduate courses and curricula in science, mathematics, engineering, and technology. The purpose of the program in Curriculum Development in Mathematics: Calculus and…
Curriculum Development Guide Based on a Technical Program.
ERIC Educational Resources Information Center
Belle-Isle, Louis Phillip
This "Guide" is intended for educators who have been mandated to develop or modify an educational program's curriculum. The guide presupposes the formulation of an exit-profile and focuses exclusively on activities after the exit-profile has been developed. The development of a curriculum is based on an exit-profile that mirrors the…
Developing Occupational Programs. New Directions for Community Colleges, Number 58.
ERIC Educational Resources Information Center
Doty, Charles R., Ed.
1987-01-01
The essays in this collection attempt to provide a conceptual framework for the process of occupational curriculum development. The collection includes: (1) "Federal Government Involvement in Technical Curriculum Development," by John G. Nealon; (2) "The Challenge of Curriculum Development: From Idea to Reality," by Judith F. Raulf and Marilyn C.…
The Development of Scotland's Curriculum for Excellence: Amnesia and Deja Vu
ERIC Educational Resources Information Center
Priestley, Mark; Humes, Walter
2010-01-01
Scotland's new "Curriculum for Excellence" (CfE) has been widely acknowledged as the most significant educational development in a generation, with the potential to transform learning and teaching in Scottish schools. In common with recent developments elsewhere, CfE seeks to re-engage teachers with processes of curriculum development,…
ERIC Educational Resources Information Center
Scott, Paul; Moye, Mike
Developed to assist the building-level administrator in implementing a curriculum management system, this handbook considers two of five duties the vocational administrator must perform to meet the obligations of curriculum management: (1) performing curriculum management functions for the vocational program and (2) implementing and conducting an…
Curriculum Reform with a School-Based Approach: Intellectual, Structural and Cultural Challenges
ERIC Educational Resources Information Center
Lee, Theodore; Cheng, Yin Cheong; Ko, James
2018-01-01
Curriculum reform with a school-based approach is often assumed to offer schools and teachers autonomy at the site level, thus enabling them to develop a school-based curriculum and pedagogies to better fit the needs of students. Over the past decade, school-based curriculum development in Hong Kong has encountered issues that deserve worldwide…
ERIC Educational Resources Information Center
Lin, Chia-Fen
2016-01-01
Preschool curriculum reform is currently underway in Taiwan. Privately-managed public preschools (PMPPs) currently play the role of bellwethers because they stand halfway between public and private preschools, and serve as testing grounds for curriculum reforms promoted by the government. This study originated from Curriculum Development Program…
ERIC Educational Resources Information Center
Jacoby, Ruth
This practicum was designed to retrain preschool personnel on the importance of cultural diversity and the teacher's role in developing and implementing a multicultural curriculum. Faculty meetings and workshops were organized to present a cultural awareness curriculum to preschool staff and discuss the teacher's role in executing the curriculum.…
Development and Evaluation of the "Thinking with LOGO" Curriculum.
ERIC Educational Resources Information Center
Missiuna, Cheryl; And Others
This report describes a curriculum for the transfer of problem solving skills from the LOGO computer programming environment to the real world. This curriculum is being developed in the Calgary, Alberta, Canada schools for children in grades 1-6. The completed curriculum will consist of six units, one to be taught at each grade level: (1)…
A Curriculum Development Route Map for a Technology Enhanced Learning Era
ERIC Educational Resources Information Center
Castañeda, Linda; Prendes, Paz
2013-01-01
In this paper we are trying to present a model of analysis that includes a comprehensive perspective of the state of the art in the specialized literature about curriculum development. From this theoretical approach, we get a complete curriculum overview. Including insights into: what are the curriculum principal elements, what we already know…