ERIC Educational Resources Information Center
Sutcliffe, Iain C.; Cummings, Stephen P.
2007-01-01
Bioinformatics has emerged as an important discipline within the biological sciences that allows scientists to decipher and manage the vast quantities of data (such as genome sequences) that are now available. Consequently, there is an obvious need to provide graduates in biosciences with generic, transferable skills in bioinformatics. We present…
Metabolomic strategies to map functions of metabolic pathways
Mulvihill, Melinda M.
2014-01-01
Genome sequencing efforts have revealed a strikingly large number of unannotated and uncharacterized genes that fall into metabolic enzymes classes, likely indicating that our current knowledge of biochemical pathways in normal physiology, let alone in disease states, remains largely incomplete. This realization presents a daunting challenge for post-genomic-era scientists in deciphering the biochemical and (patho)physiological roles of these enzymes and their metabolites and metabolic networks. This is further complicated by many recent studies showing a rewiring of normal metabolic networks in disease states to give rise to unique pathophysiological functions of enzymes, metabolites, and metabolic pathways. This review focuses on recent discoveries made using metabolic mapping technologies to uncover novel pathways and metabolite-mediated posttranslational modifications and epigenetic alterations and their impact on physiology and disease. PMID:24918200
The Human Genome Project: big science transforms biology and medicine.
Hood, Leroy; Rowen, Lee
2013-01-01
The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called 'big science' - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and analytical tools, and how it brought the expertise of engineers, computer scientists and mathematicians together with biologists. It established an open approach to data sharing and open-source software, thereby making the data resulting from the project accessible to all. The genome sequences of microbes, plants and animals have revolutionized many fields of science, including microbiology, virology, infectious disease and plant biology. Moreover, deeper knowledge of human sequence variation has begun to alter the practice of medicine. The Human Genome Project has inspired subsequent large-scale data acquisition initiatives such as the International HapMap Project, 1000 Genomes, and The Cancer Genome Atlas, as well as the recently announced Human Brain Project and the emerging Human Proteome Project.
The Human Genome Project: big science transforms biology and medicine
2013-01-01
The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called ‘big science’ - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and analytical tools, and how it brought the expertise of engineers, computer scientists and mathematicians together with biologists. It established an open approach to data sharing and open-source software, thereby making the data resulting from the project accessible to all. The genome sequences of microbes, plants and animals have revolutionized many fields of science, including microbiology, virology, infectious disease and plant biology. Moreover, deeper knowledge of human sequence variation has begun to alter the practice of medicine. The Human Genome Project has inspired subsequent large-scale data acquisition initiatives such as the International HapMap Project, 1000 Genomes, and The Cancer Genome Atlas, as well as the recently announced Human Brain Project and the emerging Human Proteome Project. PMID:24040834
Metabolomic strategies to map functions of metabolic pathways.
Mulvihill, Melinda M; Nomura, Daniel K
2014-08-01
Genome sequencing efforts have revealed a strikingly large number of unannotated and uncharacterized genes that fall into metabolic enzymes classes, likely indicating that our current knowledge of biochemical pathways in normal physiology, let alone in disease states, remains largely incomplete. This realization presents a daunting challenge for post-genomic-era scientists in deciphering the biochemical and (patho)physiological roles of these enzymes and their metabolites and metabolic networks. This is further complicated by many recent studies showing a rewiring of normal metabolic networks in disease states to give rise to unique pathophysiological functions of enzymes, metabolites, and metabolic pathways. This review focuses on recent discoveries made using metabolic mapping technologies to uncover novel pathways and metabolite-mediated posttranslational modifications and epigenetic alterations and their impact on physiology and disease. Copyright © 2014 the American Physiological Society.
Kole, Chittaranjan; Muthamilarasan, Mehanathan; Henry, Robert; Edwards, David; Sharma, Rishu; Abberton, Michael; Batley, Jacqueline; Bentley, Alison; Blakeney, Michael; Bryant, John; Cai, Hongwei; Cakir, Mehmet; Cseke, Leland J.; Cockram, James; de Oliveira, Antonio Costa; De Pace, Ciro; Dempewolf, Hannes; Ellison, Shelby; Gepts, Paul; Greenland, Andy; Hall, Anthony; Hori, Kiyosumi; Hughes, Stephen; Humphreys, Mike W.; Iorizzo, Massimo; Ismail, Abdelbagi M.; Marshall, Athole; Mayes, Sean; Nguyen, Henry T.; Ogbonnaya, Francis C.; Ortiz, Rodomiro; Paterson, Andrew H.; Simon, Philipp W.; Tohme, Joe; Tuberosa, Roberto; Valliyodan, Babu; Varshney, Rajeev K.; Wullschleger, Stan D.; Yano, Masahiro; Prasad, Manoj
2015-01-01
Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful in enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security. PMID:26322050
Kole, Chittaranjan; Muthamilarasan, Mehanathan; Henry, Robert; Edwards, David; Sharma, Rishu; Abberton, Michael; Batley, Jacqueline; Bentley, Alison; Blakeney, Michael; Bryant, John; Cai, Hongwei; Cakir, Mehmet; Cseke, Leland J; Cockram, James; de Oliveira, Antonio Costa; De Pace, Ciro; Dempewolf, Hannes; Ellison, Shelby; Gepts, Paul; Greenland, Andy; Hall, Anthony; Hori, Kiyosumi; Hughes, Stephen; Humphreys, Mike W; Iorizzo, Massimo; Ismail, Abdelbagi M; Marshall, Athole; Mayes, Sean; Nguyen, Henry T; Ogbonnaya, Francis C; Ortiz, Rodomiro; Paterson, Andrew H; Simon, Philipp W; Tohme, Joe; Tuberosa, Roberto; Valliyodan, Babu; Varshney, Rajeev K; Wullschleger, Stan D; Yano, Masahiro; Prasad, Manoj
2015-01-01
Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful in enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security.
Kole, Chittaranjan; Muthamiliarasan, Mehanathan; Henry, Robert; ...
2015-08-11
Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful inmore » enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kole, Chittaranjan; Muthamiliarasan, Mehanathan; Henry, Robert
Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful inmore » enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security.« less
Caswell, Deborah R; Swanton, Charles
2017-07-18
The advent of rapid and inexpensive sequencing technology allows scientists to decipher heterogeneity within primary tumours, between primary and metastatic sites, and between metastases. Charting the evolutionary history of individual tumours has revealed drivers of tumour heterogeneity and highlighted its impact on therapeutic outcomes. Scientists are using improved sequencing technologies to characterise and address the challenge of tumour heterogeneity, which is a major cause of resistance to therapy and relapse. Heterogeneity may fuel metastasis through the selection of rare, aggressive, somatically altered cells. However, extreme levels of chromosomal instability, which contribute to intratumour heterogeneity, are associated with improved patient outcomes, suggesting a delicate balance between high and low levels of genome instability. We review evidence that intratumour heterogeneity influences tumour evolution, including metastasis, drug resistance, and the immune response. We discuss the prevalence of tumour heterogeneity, and how it can be initiated and sustained by external and internal forces. Understanding tumour evolution and metastasis could yield novel therapies that leverage the immune system to control emerging tumour neo-antigens.
Personalised Medicine: Genome Maintenance Lessons Learned from Studies in Yeast as a Model Organism.
Abugable, Arwa A; Awwad, Dahlia A; Fleifel, Dalia; Ali, Mohamed M; El-Khamisy, Sherif; Elserafy, Menattallah
2017-01-01
Yeast research has been tremendously contributing to the understanding of a variety of molecular pathways due to the ease of its genetic manipulation, fast doubling time as well as being cost-effective. The understanding of these pathways did not only help scientists learn more about the cellular functions but also assisted in deciphering the genetic and cellular defects behind multiple diseases. Hence, yeast research not only opened the doors for transforming basic research into applied research, but also paved the roads for improving diagnosis and innovating personalized therapy of different diseases. In this chapter, we discuss how yeast research has contributed to understanding major genome maintenance pathways such as the S-phase checkpoint activation pathways, repair via homologous recombination and non-homologous end joining as well as topoisomerases-induced protein linked DNA breaks repair. Defects in these pathways lead to neurodegenerative diseases and cancer. Thus, the understanding of the exact genetic defects underlying these diseases allowed the development of personalized medicine, improving the diagnosis and treatment and overcoming the detriments of current conventional therapies such as the side effects, toxicity as well as drug resistance.
The Human Genome Project: An Imperative for International Collaboration.
ERIC Educational Resources Information Center
Allende, J. E.
1989-01-01
Discussed is the Human Genome Project which aims to decipher the totality of the human genetic information. The historical background, the objectives, international cooperation, ethical discussion, and the role of UNESCO are included. (KR)
Stephen Baylin, M.D., Explains Genetics and Epigenetics - TCGA
Stephen Baylin, M.D., at the Johns Hopkins Kimmel Cancer Center discusses the how alterations in the DNA code are deciphered in a combined effort with The Cancer Genome Atlas at the National Cancer Institute to decode the brain cancer genome.
USDA-ARS?s Scientific Manuscript database
Colletotrichum species are devastating fungal pathogens of major crop plants worldwide. Infection involves differentiation of specialized cell-types associated with host surface penetration, growth inside living host cells (biotrophy) and tissue destruction (necrotrophy). Here we report genome and t...
An integrated approach for increasing breeding efficiency in apple and peach in Europe.
Laurens, Francois; Aranzana, Maria José; Arus, Pere; Bassi, Daniele; Bink, Marco; Bonany, Joan; Caprera, Andrea; Corelli-Grappadelli, Luca; Costes, Evelyne; Durel, Charles-Eric; Mauroux, Jehan-Baptiste; Muranty, Hélène; Nazzicari, Nelson; Pascal, Thierry; Patocchi, Andrea; Peil, Andreas; Quilot-Turion, Bénédicte; Rossini, Laura; Stella, Alessandra; Troggio, Michela; Velasco, Riccardo; van de Weg, Eric
2018-01-01
Despite the availability of whole genome sequences of apple and peach, there has been a considerable gap between genomics and breeding. To bridge the gap, the European Union funded the FruitBreedomics project (March 2011 to August 2015) involving 28 research institutes and private companies. Three complementary approaches were pursued: (i) tool and software development, (ii) deciphering genetic control of main horticultural traits taking into account allelic diversity and (iii) developing plant materials, tools and methodologies for breeders. Decisive breakthroughs were made including the making available of ready-to-go DNA diagnostic tests for Marker Assisted Breeding, development of new, dense SNP arrays in apple and peach, new phenotypic methods for some complex traits, software for gene/QTL discovery on breeding germplasm via Pedigree Based Analysis (PBA). This resulted in the discovery of highly predictive molecular markers for traits of horticultural interest via PBA and via Genome Wide Association Studies (GWAS) on several European genebank collections. FruitBreedomics also developed pre-breeding plant materials in which multiple sources of resistance were pyramided and software that can support breeders in their selection activities. Through FruitBreedomics, significant progresses were made in the field of apple and peach breeding, genetics, genomics and bioinformatics of which advantage will be made by breeders, germplasm curators and scientists. A major part of the data collected during the project has been stored in the FruitBreedomics database and has been made available to the public. This review covers the scientific discoveries made in this major endeavour, and perspective in the apple and peach breeding and genomics in Europe and beyond.
You, Yuanhai; Yang, Xianwei; Song, Yanyan; Yan, Xiaomei; Yuan, Yanting; Li, Dongfang; Yan, Yanfeng; Wang, Haibin; Tao, Xiaoxia; Li, Leilei; Jiang, Xihong; Zhou, Hao; Xiao, Di; Jin, Lianmei; Feng, Zijian; Yang, Ruifu; Luo, Fengji; Cui, Yujun; Zhang, Jianzhong
2012-11-01
A scarlet fever outbreak caused by Streptococcus pyogenes occurred in China in 2011. To determine the genomic features of the outbreak strains, we deciphered genomes of two strains isolated from the regions with the highest incidence rates. The sequences will provide valuable information for comprehensive study of mechanisms related to this outbreak.
Cimmino, Teresa; Olaitan, Abiola Olumuyiwa; Rolain, Jean-Marc
2016-01-01
We characterize and decipher the resistome and the virulence factors of Shewanella algae MARS 14, a multidrug-resistant clinical strain using the whole genome sequencing (WGS) strategy. The bacteria were isolated from the bronchoalveolar lavage of a hospitalized patient in the Timone Hospital in Marseille, France who developed pneumonia after plunging into the Mediterranean Sea. The genome size of S. algae MARS 14 was 5,005,710 bp with 52.8% guanine cytosine content. The resistome includes members of class C and D beta-lactamases and numerous multidrug-efflux pumps. We also found the presence of several hemolysins genes, a complete flagellum system gene cluster and genes responsible for biofilm formation. Moreover, we reported for the first time in a clinical strain of Shewanella spp. the presence of a bacteriocin (marinocin). The WGS analysis of this pathogen provides insight into its virulence factors and resistance to antibiotics.
The identification of cis-regulatory elements: A review from a machine learning perspective.
Li, Yifeng; Chen, Chih-Yu; Kaye, Alice M; Wasserman, Wyeth W
2015-12-01
The majority of the human genome consists of non-coding regions that have been called junk DNA. However, recent studies have unveiled that these regions contain cis-regulatory elements, such as promoters, enhancers, silencers, insulators, etc. These regulatory elements can play crucial roles in controlling gene expressions in specific cell types, conditions, and developmental stages. Disruption to these regions could contribute to phenotype changes. Precisely identifying regulatory elements is key to deciphering the mechanisms underlying transcriptional regulation. Cis-regulatory events are complex processes that involve chromatin accessibility, transcription factor binding, DNA methylation, histone modifications, and the interactions between them. The development of next-generation sequencing techniques has allowed us to capture these genomic features in depth. Applied analysis of genome sequences for clinical genetics has increased the urgency for detecting these regions. However, the complexity of cis-regulatory events and the deluge of sequencing data require accurate and efficient computational approaches, in particular, machine learning techniques. In this review, we describe machine learning approaches for predicting transcription factor binding sites, enhancers, and promoters, primarily driven by next-generation sequencing data. Data sources are provided in order to facilitate testing of novel methods. The purpose of this review is to attract computational experts and data scientists to advance this field. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.
Das, Abhishek; Panda, Arijit; Singh, Deeksha; Chandrababunaidu, Mathu Malar; Mishra, Gyan Prakash; Bhan, Sushma
2015-01-01
Scytonema tolypothrichoides VB-61278, a terrestrial cyanobacterium, can be exploited to produce commercially important products. Here, we report for the first time a 10-Mb draft genome assembly of S. tolypothrichoides VB-61278, with 214 scaffolds and 7,148 putative protein-coding genes. PMID:25838486
You, Yuanhai; Yang, Xianwei; Song, Yanyan; Yan, Xiaomei; Yuan, Yanting; Li, Dongfang; Yan, Yanfeng; Wang, Haibin; Tao, Xiaoxia; Li, Leilei; Jiang, Xihong; Zhou, Hao; Xiao, Di; Jin, Lianmei; Feng, Zijian; Yang, Ruifu; Luo, Fengji
2012-01-01
A scarlet fever outbreak caused by Streptococcus pyogenes occurred in China in 2011. To determine the genomic features of the outbreak strains, we deciphered genomes of two strains isolated from the regions with the highest incidence rates. The sequences will provide valuable information for comprehensive study of mechanisms related to this outbreak. PMID:23045496
Das, Abhishek; Panda, Arijit; Singh, Deeksha; Chandrababunaidu, Mathu Malar; Mishra, Gyan Prakash; Bhan, Sushma; Adhikary, Siba Prasad; Tripathy, Sucheta
2015-04-02
Scytonema tolypothrichoides VB-61278, a terrestrial cyanobacterium, can be exploited to produce commercially important products. Here, we report for the first time a 10-Mb draft genome assembly of S. tolypothrichoides VB-61278, with 214 scaffolds and 7,148 putative protein-coding genes. Copyright © 2015 Das et al.
Complete Genome Sequence of the Probiotic Strain Lactobacillus salivarius LPM01
Codoñer, Francisco M.; Martinez-Blanch, Juan F.; Acevedo-Piérart, Marcelo; Ormeño, M. Loreto; Ramón, Daniel
2016-01-01
Lactobacillus salivarius LPM01 (DSM 22150) is a probiotic strain able to improve health status in immunocompromised people. Here, we report its complete genome sequence deciphered by PacBio single-molecule real-time (SMRT) technology. Analysis of the sequence may provide insights into its functional activity and safety assessment. PMID:27881545
-performance Computing Grid Computing Networking Mass Storage Plan for the Future State of the Laboratory to help decipher the language of high-energy physics. Virtual Ask-a-Scientist Read transcripts from past online chat sessions. last modified 1/04/2005 email Fermilab Fermi National Accelerator Laboratory
Complete Genome Sequence of the Probiotic Strain Lactobacillus salivarius LPM01.
Chenoll, Empar; Codoñer, Francisco M; Martinez-Blanch, Juan F; Acevedo-Piérart, Marcelo; Ormeño, M Loreto; Ramón, Daniel; Genovés, Salvador
2016-11-23
Lactobacillus salivarius LPM01 (DSM 22150) is a probiotic strain able to improve health status in immunocompromised people. Here, we report its complete genome sequence deciphered by PacBio single-molecule real-time (SMRT) technology. Analysis of the sequence may provide insights into its functional activity and safety assessment. Copyright © 2016 Chenoll et al.
USDA-ARS?s Scientific Manuscript database
The fungus Fusarium fujikuroi is agriculturally important because it produces the phytohormones gibberellic acids (GAs) and causes bakanae (“foolish seedling”) disease of rice. The fungus also produces multiple other secondary metabolites, including pigments and mycotoxins. Here, we present a high-q...
Lobo, Jennifer M; Trifiletti, Daniel M; Sturz, Vanessa N; Dicker, Adam P; Buerki, Christine; Davicioni, Elai; Cooperberg, Matthew R; Karnes, R Jeffrey; Jenkins, Robert B; Den, Robert B; Showalter, Timothy N
2017-06-01
Controversy exists regarding the effectiveness of early adjuvant versus salvage radiation therapy after prostatectomy for prostate cancer. Estimates of prostate cancer progression from the Decipher genomic classifier (GC) could guide informed decision-making and improve the outcomes for patients. We developed a Markov model to compare the costs and quality-adjusted life years (QALYs) associated with GC-based treatment decisions regarding adjuvant therapy after prostatectomy with those of 2 control strategies: usual care (determined from patterns of care studies) and the alternative of 100% adjuvant radiation therapy. Using the bootstrapping method of sampling with replacement, the cases of 10,000 patients were simulated during a 10-year time horizon, with each subject having individual estimates for cancer progression (according to GC findings) and noncancer mortality (according to age). GC-based care was more effective and less costly than 100% adjuvant radiation therapy and resulted in cost savings up to an assay cost of $11,402. Compared with usual care, GC-based care resulted in more QALYs. Assuming a $4000 assay cost, the incremental cost-effectiveness ratio was $90,833 per QALY, assuming a 7% usage rate of adjuvant radiation therapy. GC-based care was also associated with a 16% reduction in the percentage of patients with distant metastasis at 5 years compared with usual care. The Decipher GC could be a cost-effective approach for genomics-driven cancer treatment decisions after prostatectomy, with improvements in estimated clinical outcomes compared with usual care. The individualized decision analytic framework applied in the present study offers a flexible approach to estimate the potential utility of genomic assays for personalized cancer medicine. Copyright © 2016 Elsevier Inc. All rights reserved.
Decoding transcriptional enhancers: Evolving from annotation to functional interpretation
Engel, Krysta L.; Mackiewicz, Mark; Hardigan, Andrew A.; Myers, Richard M.; Savic, Daniel
2016-01-01
Deciphering the intricate molecular processes that orchestrate the spatial and temporal regulation of genes has become an increasingly major focus of biological research. The differential expression of genes by diverse cell types with a common genome is a hallmark of complex cellular functions, as well as the basis for multicellular life. Importantly, a more coherent understanding of gene regulation is critical for defining developmental processes, evolutionary principles and disease etiologies. Here we present our current understanding of gene regulation by focusing on the role of enhancer elements in these complex processes. Although functional genomic methods have provided considerable advances to our understanding of gene regulation, these assays, which are usually performed on a genome-wide scale, typically provide correlative observations that lack functional interpretation. Recent innovations in genome editing technologies have placed gene regulatory studies at an exciting crossroads, as systematic, functional evaluation of enhancers and other transcriptional regulatory elements can now be performed in a coordinated, high-throughput manner across the entire genome. This review provides insights on transcriptional enhancer function, their role in development and disease, and catalogues experimental tools commonly used to study these elements. Additionally, we discuss the crucial role of novel techniques in deciphering the complex gene regulatory landscape and how these studies will shape future research. PMID:27224938
Decoding transcriptional enhancers: Evolving from annotation to functional interpretation.
Engel, Krysta L; Mackiewicz, Mark; Hardigan, Andrew A; Myers, Richard M; Savic, Daniel
2016-09-01
Deciphering the intricate molecular processes that orchestrate the spatial and temporal regulation of genes has become an increasingly major focus of biological research. The differential expression of genes by diverse cell types with a common genome is a hallmark of complex cellular functions, as well as the basis for multicellular life. Importantly, a more coherent understanding of gene regulation is critical for defining developmental processes, evolutionary principles and disease etiologies. Here we present our current understanding of gene regulation by focusing on the role of enhancer elements in these complex processes. Although functional genomic methods have provided considerable advances to our understanding of gene regulation, these assays, which are usually performed on a genome-wide scale, typically provide correlative observations that lack functional interpretation. Recent innovations in genome editing technologies have placed gene regulatory studies at an exciting crossroads, as systematic, functional evaluation of enhancers and other transcriptional regulatory elements can now be performed in a coordinated, high-throughput manner across the entire genome. This review provides insights on transcriptional enhancer function, their role in development and disease, and catalogues experimental tools commonly used to study these elements. Additionally, we discuss the crucial role of novel techniques in deciphering the complex gene regulatory landscape and how these studies will shape future research. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chenoll, Empar; Codoñer, Francisco M; Martinez-Blanch, Juan F; Ramón, Daniel; Genovés, Salvador; Menabrito, Marco
2016-04-21
ITALIC! Lactobacillus rhamnosusBPL5 (CECT 8800), is a probiotic strain suitable for the treatment of bacterial vaginosis. Here, we report its complete genome sequence deciphered by PacBio single-molecule real-time (SMRT) technology. Analysis of the sequence may provide insight into its functional activity. Copyright © 2016 Chenoll et al.
Wu, Linhuan; McCluskey, Kevin; Desmeth, Philippe; Liu, Shuangjiang; Hideaki, Sugawara; Yin, Ye; Moriya, Ohkuma; Itoh, Takashi; Kim, Cha Young; Lee, Jung-Sook; Zhou, Yuguang; Kawasaki, Hiroko; Hazbón, Manzour Hernando; Robert, Vincent; Boekhout, Teun; Lima, Nelson; Evtushenko, Lyudmila; Boundy-Mills, Kyria; Bunk, Boyke; Moore, Edward R B; Eurwilaichitr, Lily; Ingsriswang, Supawadee; Shah, Heena; Yao, Su; Jin, Tao; Huang, Jinqun; Shi, Wenyu; Sun, Qinglan; Fan, Guomei; Li, Wei; Li, Xian; Kurtböke, Ipek; Ma, Juncai
2018-05-01
Genomic information is essential for taxonomic, phylogenetic, and functional studies to comprehensively decipher the characteristics of microorganisms, to explore microbiomes through metagenomics, and to answer fundamental questions of nature and human life. However, large gaps remain in the available genomic sequencing information published for bacterial and archaeal species, and the gaps are even larger for fungal type strains. The Global Catalogue of Microorganisms (GCM) leads an internationally coordinated effort to sequence type strains and close gaps in the genomic maps of microorganisms. Hence, the GCM aims to promote research by deep-mining genomic data.
Chiapello, Hélène; Mallet, Ludovic; Guérin, Cyprien; Aguileta, Gabriela; Amselem, Joëlle; Kroj, Thomas; Ortega-Abboud, Enrique; Lebrun, Marc-Henri; Henrissat, Bernard; Gendrault, Annie; Rodolphe, François; Tharreau, Didier; Fournier, Elisabeth
2015-01-01
Deciphering the genetic bases of pathogen adaptation to its host is a key question in ecology and evolution. To understand how the fungus Magnaporthe oryzae adapts to different plants, we sequenced eight M. oryzae isolates differing in host specificity (rice, foxtail millet, wheat, and goosegrass), and one Magnaporthe grisea isolate specific of crabgrass. Analysis of Magnaporthe genomes revealed small variation in genome sizes (39–43 Mb) and gene content (12,283–14,781 genes) between isolates. The whole set of Magnaporthe genes comprised 14,966 shared families, 63% of which included genes present in all the nine M. oryzae genomes. The evolutionary relationships among Magnaporthe isolates were inferred using 6,878 single-copy orthologs. The resulting genealogy was mostly bifurcating among the different host-specific lineages, but was reticulate inside the rice lineage. We detected traces of introgression from a nonrice genome in the rice reference 70-15 genome. Among M. oryzae isolates and host-specific lineages, the genome composition in terms of frequencies of genes putatively involved in pathogenicity (effectors, secondary metabolism, cazome) was conserved. However, 529 shared families were found only in nonrice lineages, whereas the rice lineage possessed 86 specific families absent from the nonrice genomes. Our results confirmed that the host specificity of M. oryzae isolates was associated with a divergence between lineages without major gene flow and that, despite the strong conservation of gene families between lineages, adaptation to different hosts, especially to rice, was associated with the presence of a small number of specific gene families. All information was gathered in a public database (http://genome.jouy.inra.fr/gemo). PMID:26454013
Krassowski, Michal; Paczkowska, Marta; Cullion, Kim; Huang, Tina; Dzneladze, Irakli; Ouellette, B F Francis; Yamada, Joseph T; Fradet-Turcotte, Amelie
2018-01-01
Abstract Interpretation of genetic variation is needed for deciphering genotype-phenotype associations, mechanisms of inherited disease, and cancer driver mutations. Millions of single nucleotide variants (SNVs) in human genomes are known and thousands are associated with disease. An estimated 21% of disease-associated amino acid substitutions corresponding to missense SNVs are located in protein sites of post-translational modifications (PTMs), chemical modifications of amino acids that extend protein function. ActiveDriverDB is a comprehensive human proteo-genomics database that annotates disease mutations and population variants through the lens of PTMs. We integrated >385,000 published PTM sites with ∼3.6 million substitutions from The Cancer Genome Atlas (TCGA), the ClinVar database of disease genes, and human genome sequencing projects. The database includes site-specific interaction networks of proteins, upstream enzymes such as kinases, and drugs targeting these enzymes. We also predicted network-rewiring impact of mutations by analyzing gains and losses of kinase-bound sequence motifs. ActiveDriverDB provides detailed visualization, filtering, browsing and searching options for studying PTM-associated mutations. Users can upload mutation datasets interactively and use our application programming interface in pipelines. Integrative analysis of mutations and PTMs may help decipher molecular mechanisms of phenotypes and disease, as exemplified by case studies of TP53, BRCA2 and VHL. The open-source database is available at https://www.ActiveDriverDB.org. PMID:29126202
Cimmino, T; Rolain, J-M
2016-07-01
We decipher the resistome of Chryseobacterium indologenes MARS15, an emerging multidrug-resistant clinical strain, using the whole genome sequencing strategy. The bacterium was isolated from the sputum of a hospitalized patient with cystic fibrosis in the Timone Hospital in Marseille, France. Genome sequencing was done with Illumina MiSeq using a paired-end strategy. The in silico analysis was done by RAST, the resistome by the ARG-ANNOT database and detection of polyketide synthase (PKS) by ANTISMAH. The genome size of C. indologenes MARS15 is 4 972 580 bp with 36.4% GC content. This multidrug-resistant bacterium was resistant to all β-lactams, including imipenem, and also to colistin. The resistome of C. indologenes MARS15 includes Ambler class A and B β-lactams encoding bla CIA and bla IND-2 genes and MBL (metallo-β-lactamase) genes, the CAT (chloramphenicol acetyltransferase) gene and the multidrug efflux pump AcrB. Specific features include the presence of an urease operon, an intact prophage and a carotenoid biosynthesis pathway. Interestingly, we report for the first time in C. indologenes a PKS cluster that might be responsible for secondary metabolite biosynthesis, similar to erythromycin. The whole genome sequence analysis provides insight into the resistome and the discovery of new details, such as the PKS cluster.
Complete genome sequence of Streptosporangium roseum type strain (NI 9100T)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nolan, Matt; Sikorski, Johannes; Jando, Marlen
2010-01-01
Streptosporangium roseum Crauch 1955 is the type strain of the species which is the type species of the genus Streptosporangium. The pinkish coiled Streptomyces-like organism with a spore case was isolated from vegetable garden soil in 1955. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the family Streptosporangiaceae, and the second largest microbial genome sequence ever deciphered. The 10,369,518 bp long genome with its 9421 protein-coding and 80 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaeamore » project.« less
DCEG scientists discuss researching cancer causes and training future researchers
Watch scientists in the NCI Division of Cancer Epidemiology and Genetics discuss research into the causes of cancer at the population level. Topics include genome-wide association studies, HPV genomics, Li-Fraumeni syndrome, and training future scientists.
2010-08-25
or intentional genetic modifications that circumvent the targets of the detection assays or in the case of a biological attack using an antibiotic ...genetic changes conferring antibiotic resistance can be deciphered rapidly and accurately using WGS. We demonstrate the utility of Roche 454...Rapid Identification of Genetic Modifications in Bacillus anthracis Using Whole Genome Draft Sequences Generated by 454 Pyrosequencing Peter E. Chen1
Azolla--a model organism for plant genomic studies.
Qiu, Yin-Long; Yu, Jun
2003-02-01
The aquatic ferns of the genus Azolla are nitrogen-fixing plants that have great potentials in agricultural production and environmental conservation. Azolla in many aspects is qualified to serve as a model organism for genomic studies because of its importance in agriculture, its unique position in plant evolution, its symbiotic relationship with the N2-fixing cyanobacterium, Anabaena azollae, and its moderate-sized genome. The goals of this genome project are not only to understand the biology of the Azolla genome to promote its applications in biological research and agriculture practice but also to gain critical insights about evolution of plant genomes. Together with the strategic and technical improvement as well as cost reduction of DNA sequencing, the deciphering of their genetic code is imminent.
Bon, Céline; Caudy, Nicolas; de Dieuleveult, Maud; Fosse, Philippe; Philippe, Michel; Maksud, Frédéric; Beraud-Colomb, Eliane; Bouzaid, Eric; Kefi, Rym; Laugier, Christelle; Rousseau, Bernard; Casane, Didier; van der Plicht, Johannes; Elalouf, Jean-Marc
2008-11-11
Retrieving a large amount of genetic information from extinct species was demonstrated feasible, but complete mitochondrial genome sequences have only been deciphered for the moa, a bird that became extinct a few hundred years ago, and for Pleistocene species, such as the woolly mammoth and the mastodon, both of which could be studied from animals embedded in permafrost. To enlarge the diversity of mitochondrial genomes available for Pleistocene species, we turned to the cave bear (Ursus spelaeus), whose only remains consist of skeletal elements. We collected bone samples from the Paleolithic painted cave of Chauvet-Pont d'Arc (France), which displays the earliest known human drawings, and contains thousands of bear remains. We selected a cave bear sternebra, radiocarbon dated to 32,000 years before present, from which we generated overlapping DNA fragments assembling into a 16,810-base pair mitochondrial genome. Together with the first mitochondrial genome for the brown bear western lineage, this study provides a statistically secured molecular phylogeny assessing the cave bear as a sister taxon to the brown bear and polar bear clade, with a divergence inferred to 1.6 million years ago. With the first mitochondrial genome for a Pleistocene carnivore to be delivered, our study establishes the Chauvet-Pont d'Arc Cave as a new reservoir for Paleogenetic studies. These molecular data enable establishing the chronology of bear speciation, and provide a helpful resource to rescue for genetic analysis archeological samples initially diagnosed as devoid of amplifiable DNA.
Bon, Céline; Caudy, Nicolas; de Dieuleveult, Maud; Fosse, Philippe; Philippe, Michel; Maksud, Frédéric; Beraud-Colomb, Éliane; Bouzaid, Eric; Kefi, Rym; Laugier, Christelle; Rousseau, Bernard; Casane, Didier; van der Plicht, Johannes; Elalouf, Jean-Marc
2008-01-01
Retrieving a large amount of genetic information from extinct species was demonstrated feasible, but complete mitochondrial genome sequences have only been deciphered for the moa, a bird that became extinct a few hundred years ago, and for Pleistocene species, such as the woolly mammoth and the mastodon, both of which could be studied from animals embedded in permafrost. To enlarge the diversity of mitochondrial genomes available for Pleistocene species, we turned to the cave bear (Ursus spelaeus), whose only remains consist of skeletal elements. We collected bone samples from the Paleolithic painted cave of Chauvet-Pont d'Arc (France), which displays the earliest known human drawings, and contains thousands of bear remains. We selected a cave bear sternebra, radiocarbon dated to 32,000 years before present, from which we generated overlapping DNA fragments assembling into a 16,810-base pair mitochondrial genome. Together with the first mitochondrial genome for the brown bear western lineage, this study provides a statistically secured molecular phylogeny assessing the cave bear as a sister taxon to the brown bear and polar bear clade, with a divergence inferred to 1.6 million years ago. With the first mitochondrial genome for a Pleistocene carnivore to be delivered, our study establishes the Chauvet-Pont d'Arc Cave as a new reservoir for Paleogenetic studies. These molecular data enable establishing the chronology of bear speciation, and provide a helpful resource to rescue for genetic analysis archeological samples initially diagnosed as devoid of amplifiable DNA. PMID:18955696
Xia, Chongjing; Wang, Meinan; Yin, Chuntao; Cornejo, Omar E; Hulbert, Scot; Chen, Xianming
2018-05-24
Puccinia striiformis f. sp. tritici (Pst) causes devastating stripe (yellow) rust on wheat and P. striiformis f. sp. hordei (Psh) causes stripe rust on barley. Several Pst genomes are available, but no Psh genome is available. More genomes of Pst and Psh are needed to understand the genome evolution and molecular mechanisms of their pathogenicity. We sequenced Pst isolate 93-210 and Psh isolate 93TX-2 using PacBio and Illumina technologies, and RNA sequencing. Their genomic sequences were assembled to contigs with high continuity and showed significant structural differences. The circular mitochondria genomes of both were complete. These genomes provide high-quality resources for deciphering the genomic basis of rapid evolution and host adaptation, identifying genes for avirulence and other important traits, and studying host-pathogen interaction.
Determining protein function and interaction from genome analysis
Eisenberg, David; Marcotte, Edward M.; Thompson, Michael J.; Pellegrini, Matteo; Yeates, Todd O.
2004-08-03
A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.
Assigning protein functions by comparative genome analysis protein phylogenetic profiles
Pellegrini, Matteo; Marcotte, Edward M.; Thompson, Michael J.; Eisenberg, David; Grothe, Robert; Yeates, Todd O.
2003-05-13
A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.
Using large-scale genome variation cohorts to decipher the molecular mechanism of cancer.
Habermann, Nina; Mardin, Balca R; Yakneen, Sergei; Korbel, Jan O
2016-01-01
Characterizing genomic structural variations (SVs) in the human genome remains challenging, and there is a growing interest to understand somatic SVs occurring in cancer, a disease of the genome. A havoc-causing SV process known as chromothripsis scars the genome when localized chromosome shattering and repair occur in a one-off catastrophe. Recent efforts led to the development of a set of conceptual criteria for the inference of chromothripsis events in cancer genomes and to the development of experimental model systems for studying this striking DNA alteration process in vitro. We discuss these approaches, and additionally touch upon current "Big Data" efforts that employ hybrid cloud computing to enable studies of numerous cancer genomes in an effort to search for commonalities and differences in molecular DNA alteration processes in cancer. Copyright © 2016. Published by Elsevier SAS.
Recent Advances in Microbial Single Cell Genomics Technology and Applications
NASA Astrophysics Data System (ADS)
Stepanauskas, R.
2016-02-01
Single cell genomics is increasingly utilized as a powerful tool to decipher the metabolic potential, evolutionary histories and in situ interactions of environmental microorganisms. This transformative technology recovers extensive information from cultivation-unbiased samples of individual, unicellular organisms. Thus, it does not require data binning into arbitrary phylogenetic or functional groups and therefore is highly compatible with agent-based modeling approaches. I will present several technological advances in this field, which significantly improve genomic data recovery from individual cells and provide direct linkages between cell's genomic and phenotypic properties. I will also demonstrate how these new technical capabilities help understanding the metabolic potential and viral infections of the "microbial dark matter" inhabiting aquatic and subsurface environments.
... Partners & Collaborators Spotlight on Scientists Research Areas Cancer Biology Research Cancer Genomics Research Research on Causes of ... Collaborators Spotlight on Scientists NCI Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ...
... Partners & Collaborators Spotlight on Scientists Research Areas Cancer Biology Research Cancer Genomics Research Research on Causes of ... Collaborators Spotlight on Scientists NCI Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ...
... Partners & Collaborators Spotlight on Scientists Research Areas Cancer Biology Research Cancer Genomics Research Research on Causes of ... Collaborators Spotlight on Scientists NCI Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ...
Beyond The Human Genome: What's Next? (LBNL Summer Lecture Series)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rokhsar, Daniel
2003-06-18
UC Berkeley's Daniel Rokhsar and his colleagues were instrumental in contributing the sequences for three of the human body's chromosomes in the effort to decipher the blueprint of life- the completion of the DNA sequencing of the human genome. Now he is turning to the structure and function of genes in other organisms, some of them no less important to the planet's future than the human map. Hear the latest in this lecture from Lawrence Berkeley National Laboratory.
Beyond The Human Genome: What's Next? (LBNL Summer Lecture Series)
Rokhsar, Daniel
2018-04-27
UC Berkeley's Daniel Rokhsar and his colleagues were instrumental in contributing the sequences for three of the human body's chromosomes in the effort to decipher the blueprint of life- the completion of the DNA sequencing of the human genome. Now he is turning to the structure and function of genes in other organisms, some of them no less important to the planet's future than the human map. Hear the latest in this lecture from Lawrence Berkeley National Laboratory.
... Partners & Collaborators Spotlight on Scientists Research Areas Cancer Biology Research Cancer Genomics Research Research on Causes of ... Collaborators Spotlight on Scientists NCI Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ...
Photodynamic Therapy for Cancer
... Partners & Collaborators Spotlight on Scientists Research Areas Cancer Biology Research Cancer Genomics Research Research on Causes of ... Collaborators Spotlight on Scientists NCI Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ...
Cancer Genetics Services Directory
... Partners & Collaborators Spotlight on Scientists Research Areas Cancer Biology Research Cancer Genomics Research Research on Causes of ... Collaborators Spotlight on Scientists NCI Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ...
Biological Therapies for Cancer
... Partners & Collaborators Spotlight on Scientists Research Areas Cancer Biology Research Cancer Genomics Research Research on Causes of ... Collaborators Spotlight on Scientists NCI Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ...
Drugs Approved for Prostate Cancer
... Partners & Collaborators Spotlight on Scientists Research Areas Cancer Biology Research Cancer Genomics Research Research on Causes of ... Collaborators Spotlight on Scientists NCI Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ...
Hormone Therapy for Prostate Cancer
... Partners & Collaborators Spotlight on Scientists Research Areas Cancer Biology Research Cancer Genomics Research Research on Causes of ... Collaborators Spotlight on Scientists NCI Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ...
... Partners & Collaborators Spotlight on Scientists Research Areas Cancer Biology Research Cancer Genomics Research Research on Causes of ... Collaborators Spotlight on Scientists NCI Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ...
Gu, Deqing; Jian, Xingxing; Zhang, Cheng; Hua, Qiang
2017-01-01
Genome-scale metabolic network models (GEMs) have played important roles in the design of genetically engineered strains and helped biologists to decipher metabolism. However, due to the complex gene-reaction relationships that exist in model systems, most algorithms have limited capabilities with respect to directly predicting accurate genetic design for metabolic engineering. In particular, methods that predict reaction knockout strategies leading to overproduction are often impractical in terms of gene manipulations. Recently, we proposed a method named logical transformation of model (LTM) to simplify the gene-reaction associations by introducing intermediate pseudo reactions, which makes it possible to generate genetic design. Here, we propose an alternative method to relieve researchers from deciphering complex gene-reactions by adding pseudo gene controlling reactions. In comparison to LTM, this new method introduces fewer pseudo reactions and generates a much smaller model system named as gModel. We showed that gModel allows two seldom reported applications: identification of minimal genomes and design of minimal cell factories within a modified OptKnock framework. In addition, gModel could be used to integrate expression data directly and improve the performance of the E-Fmin method for predicting fluxes. In conclusion, the model transformation procedure will facilitate genetic research based on GEMs, extending their applications.
... Partners & Collaborators Spotlight on Scientists Research Areas Cancer Biology Research Cancer Genomics Research Research on Causes of ... Collaborators Spotlight on Scientists NCI Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ...
Adolescents and Young Adults with Cancer
... Partners & Collaborators Spotlight on Scientists Research Areas Cancer Biology Research Cancer Genomics Research Research on Causes of ... Collaborators Spotlight on Scientists NCI Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ...
Treatment Options for Pheochromocytoma and Paraganglioma
... Partners & Collaborators Spotlight on Scientists Research Areas Cancer Biology Research Cancer Genomics Research Research on Causes of ... Collaborators Spotlight on Scientists NCI Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ...
Treatment Option Overview (Childhood Non-Hodgkin Lymphoma)
... Partners & Collaborators Spotlight on Scientists Research Areas Cancer Biology Research Cancer Genomics Research Research on Causes of ... Collaborators Spotlight on Scientists NCI Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ...
Eisenberg, David; Marcotte, Edward M.; Pellegrini, Matteo; Thompson, Michael J.; Yeates, Todd O.
2002-10-15
A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.
Parallel computing in genomic research: advances and applications
Ocaña, Kary; de Oliveira, Daniel
2015-01-01
Today’s genomic experiments have to process the so-called “biological big data” that is now reaching the size of Terabytes and Petabytes. To process this huge amount of data, scientists may require weeks or months if they use their own workstations. Parallelism techniques and high-performance computing (HPC) environments can be applied for reducing the total processing time and to ease the management, treatment, and analyses of this data. However, running bioinformatics experiments in HPC environments such as clouds, grids, clusters, and graphics processing unit requires the expertise from scientists to integrate computational, biological, and mathematical techniques and technologies. Several solutions have already been proposed to allow scientists for processing their genomic experiments using HPC capabilities and parallelism techniques. This article brings a systematic review of literature that surveys the most recently published research involving genomics and parallel computing. Our objective is to gather the main characteristics, benefits, and challenges that can be considered by scientists when running their genomic experiments to benefit from parallelism techniques and HPC capabilities. PMID:26604801
Parallel computing in genomic research: advances and applications.
Ocaña, Kary; de Oliveira, Daniel
2015-01-01
Today's genomic experiments have to process the so-called "biological big data" that is now reaching the size of Terabytes and Petabytes. To process this huge amount of data, scientists may require weeks or months if they use their own workstations. Parallelism techniques and high-performance computing (HPC) environments can be applied for reducing the total processing time and to ease the management, treatment, and analyses of this data. However, running bioinformatics experiments in HPC environments such as clouds, grids, clusters, and graphics processing unit requires the expertise from scientists to integrate computational, biological, and mathematical techniques and technologies. Several solutions have already been proposed to allow scientists for processing their genomic experiments using HPC capabilities and parallelism techniques. This article brings a systematic review of literature that surveys the most recently published research involving genomics and parallel computing. Our objective is to gather the main characteristics, benefits, and challenges that can be considered by scientists when running their genomic experiments to benefit from parallelism techniques and HPC capabilities.
Genome Sequencing Technologies and Nursing: What Are the Roles of Nurses and Nurse Scientists?
Taylor, Jacquelyn Y; Wright, Michelle L; Hickey, Kathleen T; Housman, David E
Advances in DNA sequencing technology have resulted in an abundance of personalized data with challenging clinical utility and meaning for clinicians. This wealth of data has potential to dramatically impact the quality of healthcare. Nurses are at the focal point in educating patients regarding relevant healthcare needs; therefore, an understanding of sequencing technology and utilizing these data are critical. The objective of this study was to explicate the role of nurses and nurse scientists as integral members of healthcare teams in improving understanding of DNA sequencing data and translational genomics for patients. A history of the nurse role in newborn screening is used as an exemplar. This study serves as an exemplar on how genome sequencing has been utilized in nursing science and incorporates linkages of other omics approaches used by nurses that are included in this special issue. This special issue showcased nurse scientists conducting multi-omic research from various methods, including targeted candidate genes, pharmacogenomics, proteomics, epigenomics, and the microbiome. From this vantage point, we provide an overview of the roles of nurse scientists in genome sequencing research and provide recommendations for the best utilization of nurses and nurse scientists related to genome sequencing.
Drugs Approved for Thyroid Cancer
... Partners & Collaborators Spotlight on Scientists Research Areas Cancer Biology Research Cancer Genomics Research Research on Causes of Cancer ... National Lab Partners & Collaborators Spotlight on Scientists NCI Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ...
Jani, Mehul; Mathee, Kalai; Azad, Rajeev K.
2016-01-01
Pseudomonas aeruginosa is an opportunistic pathogen implicated in a myriad of infections and a leading pathogen responsible for mortality in patients with cystic fibrosis (CF). Horizontal transfers of genes among the microorganisms living within CF patients have led to highly virulent and multi-drug resistant strains such as the Liverpool epidemic strain of P. aeruginosa, namely the LESB58 strain that has the propensity to acquire virulence and antibiotic resistance genes. Often these genes are acquired in large clusters, referred to as “genomic islands (GIs).” To decipher GIs and understand their contributions to the evolution of virulence and antibiotic resistance in P. aeruginosa LESB58, we utilized a recursive segmentation and clustering procedure, presented here as a genome-mining tool, “GEMINI.” GEMINI was validated on experimentally verified islands in the LESB58 strain before examining its potential to decipher novel islands. Of the 6062 genes in P. aeruginosa LESB58, 596 genes were identified to be resident on 20 GIs of which 12 have not been previously reported. Comparative genomics provided evidence in support of our novel predictions. Furthermore, GEMINI unraveled the mosaic structure of islands that are composed of segments of likely different evolutionary origins, and demonstrated its ability to identify potential strain biomarkers. These newly found islands likely have contributed to the hyper-virulence and multidrug resistance of the Liverpool epidemic strain of P. aeruginosa. PMID:27536294
Best practices for mapping replication origins in eukaryotic chromosomes.
Besnard, Emilie; Desprat, Romain; Ryan, Michael; Kahli, Malik; Aladjem, Mirit I; Lemaitre, Jean-Marc
2014-09-02
Understanding the regulatory principles ensuring complete DNA replication in each cell division is critical for deciphering the mechanisms that maintain genomic stability. Recent advances in genome sequencing technology facilitated complete mapping of DNA replication sites and helped move the field from observing replication patterns at a handful of single loci to analyzing replication patterns genome-wide. These advances address issues, such as the relationship between replication initiation events, transcription, and chromatin modifications, and identify potential replication origin consensus sequences. This unit summarizes the technological and fundamental aspects of replication profiling and briefly discusses novel insights emerging from mining large datasets, published in the last 3 years, and also describes DNA replication dynamics on a whole-genome scale. Copyright © 2014 John Wiley & Sons, Inc.
USDA-ARS?s Scientific Manuscript database
The ability to decipher DNA sequences provides new insights into the study of plant viruses and their interactions with host plants, including the intricate interactions that allow a virus to be transmitted by an insect vector. Next generation sequencing (NGS) provides a wealth of genetic informati...
New Treatment Option for Young Women with Hormone-Sensitive Breast Cancer
... Partners & Collaborators Spotlight on Scientists Research Areas Cancer Biology Research Cancer Genomics Research Research on Causes of ... Collaborators Spotlight on Scientists NCI Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ...
The cancer transcriptome is shaped by genetic changes, variation in gene transcription, mRNA processing, editing and stability, and the cancer microbiome. Deciphering this variation and understanding its implications on tumorigenesis requires sophisticated computational analyses. Most RNA-Seq analyses rely on methods that first map short reads to a reference genome, and then compare them to annotated transcripts or assemble them. However, this strategy can be limited when the cancer genome is substantially different than the reference or for detecting sequences from the cancer microbiome.
Deciphering the genomic targets of alkylating polyamide conjugates using high-throughput sequencing
Chandran, Anandhakumar; Syed, Junetha; Taylor, Rhys D.; Kashiwazaki, Gengo; Sato, Shinsuke; Hashiya, Kaori; Bando, Toshikazu; Sugiyama, Hiroshi
2016-01-01
Chemically engineered small molecules targeting specific genomic sequences play an important role in drug development research. Pyrrole-imidazole polyamides (PIPs) are a group of molecules that can bind to the DNA minor-groove and can be engineered to target specific sequences. Their biological effects rely primarily on their selective DNA binding. However, the binding mechanism of PIPs at the chromatinized genome level is poorly understood. Herein, we report a method using high-throughput sequencing to identify the DNA-alkylating sites of PIP-indole-seco-CBI conjugates. High-throughput sequencing analysis of conjugate 2 showed highly similar DNA-alkylating sites on synthetic oligos (histone-free DNA) and on human genomes (chromatinized DNA context). To our knowledge, this is the first report identifying alkylation sites across genomic DNA by alkylating PIP conjugates using high-throughput sequencing. PMID:27098039
Genome Sequencing Technologies and Nursing: What Are the Roles of Nurses and Nurse Scientists?
Taylor, Jacquelyn Y.; Wright, Michelle L.; Hickey, Kathleen T.; Housman, David
2016-01-01
Background Advances in DNA sequencing technology have resulted in an abundance of personalized data with challenging clinical utility and meaning for clinicians. This wealth of data has potential to dramatically impact the quality of healthcare. Nurses are at the focal point in educating patients regarding relevant healthcare needs; therefore, an understanding of sequencing technology and utilizing these data are critical. Aim The objective of this paper is to explicate the role of nurses and nurse scientists as integral members of healthcare teams in improving understanding of DNA sequencing data and translational genomics for patients. Approach A history of the nurse role in newborn screening is used as an exemplar. Discussion This paper serves as an exemplar on how genome sequencing has been utilized in nursing science and incorporates linkages of other omics approaches used by nurses that are included in this special issue. This special issue showcased nurse scientists conducting multi-omic research from various methods, including targeted candidate genes, pharmacogenomics, proteomics, epigenomics and the microbiome. From this vantage point, we provide an overview of the roles of nurse scientists in genome sequencing research and provide recommendations for the best utilization of nurses and nurse scientists related to genome sequencing. PMID:28252579
Exosemiotics: an inter-disciplinary approach
NASA Astrophysics Data System (ADS)
Reed, Mary L.
2000-06-01
Over the past several hundred years, many ideas have been expressed as to how human beings might communicate with extraterrestrials. These ideas have been put forth by experts from a diverse range of fields including physical scientists, mathematicians, behavioral scientists, philosophers and creative writers who have widely differing views on how to express ourselves coherently with civilizations from other worlds. This paper will look at some of these differing viewpoints and stress the need for an inter-disciplinary approach to the challenges of sending and, perhaps most important, receiving messages. Could we decipher a message if we got one? Who is doing the listening and what advantages could an inter-disciplinary approach bring to these efforts? What are some inter-disciplinary approaches to sending messages to extraterrestrials?
Envirotyping for deciphering environmental impacts on crop plants.
Xu, Yunbi
2016-04-01
Global climate change imposes increasing impacts on our environments and crop production. To decipher environmental impacts on crop plants, the concept "envirotyping" is proposed, as a third "typing" technology, complementing with genotyping and phenotyping. Environmental factors can be collected through multiple environmental trials, geographic and soil information systems, measurement of soil and canopy properties, and evaluation of companion organisms. Envirotyping contributes to crop modeling and phenotype prediction through its functional components, including genotype-by-environment interaction (GEI), genes responsive to environmental signals, biotic and abiotic stresses, and integrative phenotyping. Envirotyping, driven by information and support systems, has a wide range of applications, including environmental characterization, GEI analysis, phenotype prediction, near-iso-environment construction, agronomic genomics, precision agriculture and breeding, and development of a four-dimensional profile of crop science involving genotype (G), phenotype (P), envirotype (E) and time (T) (developmental stage). In the future, envirotyping needs to zoom into specific experimental plots and individual plants, along with the development of high-throughput and precision envirotyping platforms, to integrate genotypic, phenotypic and envirotypic information for establishing a high-efficient precision breeding and sustainable crop production system based on deciphered environmental impacts.
D-peaks: a visual tool to display ChIP-seq peaks along the genome.
Brohée, Sylvain; Bontempi, Gianluca
2012-01-01
ChIP-sequencing is a method of choice to localize the positions of protein binding sites on DNA on a whole genomic scale. The deciphering of the sequencing data produced by this novel technique is challenging and it is achieved by their rigorous interpretation using dedicated tools and adapted visualization programs. Here, we present a bioinformatics tool (D-peaks) that adds several possibilities (including, user-friendliness, high-quality, relative position with respect to the genomic features) to the well-known visualization browsers or databases already existing. D-peaks is directly available through its web interface http://rsat.ulb.ac.be/dpeaks/ as well as a command line tool.
The Language of the Protein Universe
Scaiewicz, Andrea; Levitt, Michael
2015-01-01
Proteins, the main cell machinery which play a major roll in nearly every cellular process, have always been a central focus in biology. We live in the post-genomic era, and inferring information from massive data sets is a steadily growing universal challenge. The increasing availability of fully sequenced genomes can be regarded as the “Rosetta Stone” of the protein universe, allowing the understanding of genomes and their evolution, just as the original Rosetta Stone allowed Champollion to decipher the ancient Egyptian hieroglyphics. In this review, we consider aspects of the protein domain architectures repertoire that are closely related to those of human languages and aim to provide some insights about the language of proteins. PMID:26451980
Human Genome Sequencing in Health and Disease
Gonzaga-Jauregui, Claudia; Lupski, James R.; Gibbs, Richard A.
2013-01-01
Following the “finished,” euchromatic, haploid human reference genome sequence, the rapid development of novel, faster, and cheaper sequencing technologies is making possible the era of personalized human genomics. Personal diploid human genome sequences have been generated, and each has contributed to our better understanding of variation in the human genome. We have consequently begun to appreciate the vastness of individual genetic variation from single nucleotide to structural variants. Translation of genome-scale variation into medically useful information is, however, in its infancy. This review summarizes the initial steps undertaken in clinical implementation of personal genome information, and describes the application of whole-genome and exome sequencing to identify the cause of genetic diseases and to suggest adjuvant therapies. Better analysis tools and a deeper understanding of the biology of our genome are necessary in order to decipher, interpret, and optimize clinical utility of what the variation in the human genome can teach us. Personal genome sequencing may eventually become an instrument of common medical practice, providing information that assists in the formulation of a differential diagnosis. We outline herein some of the remaining challenges. PMID:22248320
Exploring the Moon: A Teacher's Guide with Activities for Earth and Space Sciences
NASA Technical Reports Server (NTRS)
Martel, Linda M. V. (Editor)
1997-01-01
The "Teacher's Guide" tells the story of the Moon's geological history and how scientists try to decipher the story. This background information may be useful reading for students as well. Key facts about the Moon appear on the "Moon ABCs" and "Rock ABCs" pages. These pages were named to emphasize the basic nature of the information. The "Progress in Lunar Science Chart" summarizes our knowledge about the Moon from 1959 to 1997.
Genomics and metagenomics in medical microbiology.
Padmanabhan, Roshan; Mishra, Ajay Kumar; Raoult, Didier; Fournier, Pierre-Edouard
2013-12-01
Over the last two decades, sequencing tools have evolved from laborious time-consuming methodologies to real-time detection and deciphering of genomic DNA. Genome sequencing, especially using next generation sequencing (NGS) has revolutionized the landscape of microbiology and infectious disease. This deluge of sequencing data has not only enabled advances in fundamental biology but also helped improve diagnosis, typing of pathogen, virulence and antibiotic resistance detection, and development of new vaccines and culture media. In addition, NGS also enabled efficient analysis of complex human micro-floras, both commensal, and pathological, through metagenomic methods, thus helping the comprehension and management of human diseases such as obesity. This review summarizes technological advances in genomics and metagenomics relevant to the field of medical microbiology. Copyright © 2013 Elsevier B.V. All rights reserved.
Genomics of Extinct and Endangered Species (2011 JGI User Meeting)
Shuster, Stephen
2018-02-13
The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Stephen Shuster of Penn State University gives a presentation on "Genomics of Extinct and Endangered Species" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011.
CGAT: a model for immersive personalized training in computational genomics
Sims, David; Ponting, Chris P.
2016-01-01
How should the next generation of genomics scientists be trained while simultaneously pursuing high quality and diverse research? CGAT, the Computational Genomics Analysis and Training programme, was set up in 2010 by the UK Medical Research Council to complement its investment in next-generation sequencing capacity. CGAT was conceived around the twin goals of training future leaders in genome biology and medicine, and providing much needed capacity to UK science for analysing genome scale data sets. Here we outline the training programme employed by CGAT and describe how it dovetails with collaborative research projects to launch scientists on the road towards independent research careers in genomics. PMID:25981124
DCODE.ORG Anthology of Comparative Genomic Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loots, G G; Ovcharenko, I
2005-01-11
Comparative genomics provides the means to demarcate functional regions in anonymous DNA sequences. The successful application of this method to identifying novel genes is currently shifting to deciphering the noncoding encryption of gene regulation across genomes. To facilitate the use of comparative genomics to practical applications in genetics and genomics we have developed several analytical and visualization tools for the analysis of arbitrary sequences and whole genomes. These tools include two alignment tools: zPicture and Mulan; a phylogenetic shadowing tool: eShadow for identifying lineage- and species-specific functional elements; two evolutionary conserved transcription factor analysis tools: rVista and multiTF; a toolmore » for extracting cis-regulatory modules governing the expression of co-regulated genes, CREME; and a dynamic portal to multiple vertebrate and invertebrate genome alignments, the ECR Browser. Here we briefly describe each one of these tools and provide specific examples on their practical applications. All the tools are publicly available at the http://www.dcode.org/ web site.« less
H3Africa and the African life sciences ecosystem: building sustainable innovation.
Dandara, Collet; Huzair, Farah; Borda-Rodriguez, Alexander; Chirikure, Shadreck; Okpechi, Ikechi; Warnich, Louise; Masimirembwa, Collen
2014-12-01
Interest in genomics research in African populations is experiencing exponential growth. This enthusiasm stems in part from the recognition that the genomic diversity of African populations is a window of opportunity for innovations in postgenomics medicine, ecology, and evolutionary biology. The recently launched H3Africa initiative, for example, captures the energy and momentum of this interest. This interdisciplinary socio-technical analysis highlights the challenges that have beset previous genomics research activities in Africa, and looking ahead, suggests constructive ways H3Africa and similar large scale science efforts could usefully chart a new era of genomics and life sciences research in Africa that is locally productive and globally competitive. As independent African scholars and social scientists, we propose that any serious global omics science effort, including H3Africa, aiming to build genomics research capacity and capability in Africa, needs to fund the establishment of biobanks and the genomic analyses platforms within Africa. Equally they need to prioritize community engagement and bioinformatics capability and the training of African scientists on these platforms. Historically, the financial, technological, and skills imbalance between Africa and developed countries has created exploitative frameworks of collaboration where African researchers have become merely facilitators of Western funded and conceived research agendas involving offshore expatriation of samples. Not surprisingly, very little funding was allocated to infrastructure and human capital development in the past. Moving forward, capacity building should materialize throughout the entire knowledge co-production trajectory: idea generation (e.g., brainstorming workshops for innovative hypotheses development by African scientists), data generation (e.g., genome sequencing), and high-throughput data analysis and contextualization. Additionally, building skills for political science scholarship that questions the unchecked assumptions of the innovation performers be they funders, scientists, and social scientists, would enable collective innovation that is truly sustainable, ethical, and robust.
Genomics of Extinct and Endangered Species (2011 JGI User Meeting)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shuster, Stephen
The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Stephen Shuster of Penn State University gives a presentation on "Genomics of Extinct and Endangeredmore » Species" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011.« less
Genomic Speciation and Adaptation in Aquilegia (2011 JGI User Meeting)
Hodges, Scott
2018-02-14
The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Scott Hodges of the University of California, Santa Barbara gives a presentation on Genomic Speciation and Adaptation in Aquilegia at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011.
Tuskan, Gerry
2018-02-13
The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Gerry Tuskan of Oak Ridge National Laboratory on Resequencing in Populus: Towards Genome Wide Association Genetics at the 6th annual Genomics of Energy Environment Meeting on March 23, 2011.
Dynamic microenvironments: the fourth dimension.
Tibbitt, Mark W; Anseth, Kristi S
2012-11-14
The extracellular space, or cell microenvironment, choreographs cell behavior through myriad controlled signals, and aberrant cues can result in dysfunction and disease. For functional studies of human cell biology or expansion and delivery of cells for therapeutic purposes, scientists must decipher this intricate map of microenvironment biology and develop ways to mimic these functions in vitro. In this Perspective, we describe technologies for four-dimensional (4D) biology: cell-laden matrices engineered to recapitulate tissue and organ function in 3D space and over time.
Robinson, Gene
2018-02-05
The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, CA. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Gene Robinson of the University of Illinois on Genomic and Systems Biology Analyses of Social Behavior at the 6th Annual Genomics of Energy & Environment Meeting on March 23, 2011.
CGAT: a model for immersive personalized training in computational genomics.
Sims, David; Ponting, Chris P; Heger, Andreas
2016-01-01
How should the next generation of genomics scientists be trained while simultaneously pursuing high quality and diverse research? CGAT, the Computational Genomics Analysis and Training programme, was set up in 2010 by the UK Medical Research Council to complement its investment in next-generation sequencing capacity. CGAT was conceived around the twin goals of training future leaders in genome biology and medicine, and providing much needed capacity to UK science for analysing genome scale data sets. Here we outline the training programme employed by CGAT and describe how it dovetails with collaborative research projects to launch scientists on the road towards independent research careers in genomics. © The Author 2015. Published by Oxford University Press.
Revealing Long-Range Interconnected Hubs in Human Chromatin Interaction Data Using Graph Theory
NASA Astrophysics Data System (ADS)
Boulos, R. E.; Arneodo, A.; Jensen, P.; Audit, B.
2013-09-01
We use graph theory to analyze chromatin interaction (Hi-C) data in the human genome. We show that a key functional feature of the genome—“master” replication origins—corresponds to DNA loci of maximal network centrality. These loci form a set of interconnected hubs both within chromosomes and between different chromosomes. Our results open the way to a fruitful use of graph theory concepts to decipher DNA structural organization in relation to genome functions such as replication and transcription. This quantitative information should prove useful to discriminate between possible polymer models of nuclear organization.
Deciphering the Code of the Cancer Genome: Mechanisms of Chromosome Rearrangement
Willis, Nicholas A.; Rass, Emilie; Scully, Ralph
2015-01-01
Chromosome rearrangement plays a causal role in tumorigenesis by contributing to the inactivation of tumor suppressor genes, the dysregulated expression or amplification of oncogenes and the generation of novel gene fusions. Chromosome breaks are important intermediates in this process. How, when and where these breaks arise and the specific mechanisms engaged in their repair strongly influence the resulting patterns of chromosome rearrangement. Here, we review recent progress in understanding how certain distinctive features of the cancer genome, including clustered mutagenesis, tandem segmental duplications, complex breakpoints, chromothripsis, chromoplexy and chromoanasynthesis may arise. PMID:26726318
Mishra, Bud
2009-01-01
Systems biology, as a subject, has captured the imagination of both biologists and systems scientists alike. But what is it? This review provides one researcher's somewhat idiosyncratic view of the subject, but also aims to persuade young scientists to examine the possible evolution of this subject in a rich historical context. In particular, one may wish to read this review to envision a subject built out of a consilience of many interesting concepts from systems sciences, logic and model theory, and algebra, culminating in novel tools, techniques and theories that can reveal deep principles in biology—seen beyond mere observations. A particular focus in this review is on approaches embedded in an embryonic program, dubbed ‘algorithmic algebraic model checking’, and its powers and limitations. PMID:19364723
Sun, Sangrong; Wang, Jinpeng; Yu, Jigao; Meng, Fanbo; Xia, Ruiyan; Wang, Li; Wang, Zhenyi; Ge, Weina; Liu, Xiaojian; Li, Yuxian; Liu, Yinzhe; Yang, Nanshan; Wang, Xiyin
2017-01-01
Grass genomes are complicated structures as they share a common tetraploidization, and particular genomes have been further affected by extra polyploidizations. These events and the following genomic re-patternings have resulted in a complex, interweaving gene homology both within a genome, and between genomes. Accurately deciphering the structure of these complicated plant genomes would help us better understand their compositional and functional evolution at multiple scales. Here, we build on our previous research by performing a hierarchical alignment of the common wheat genome vis-à-vis eight other sequenced grass genomes with most up-to-date assemblies, and annotations. With this data, we constructed a list of the homologous genes, and then, in a layer-by-layer process, separated their orthology, and paralogy that were established by speciations and recursive polyploidizations, respectively. Compared with the other grasses, the far fewer collinear outparalogous genes within each of three subgenomes of common wheat suggest that homoeologous recombination, and genomic fractionation should have occurred after its formation. In sum, this work contributes to the establishment of an important and timely comparative genomics platform for researchers in the grass community and possibly beyond. Homologous gene list can be found in Supplemental material. PMID:28912789
Deciphering the transcriptional cis-regulatory code.
Yáñez-Cuna, J Omar; Kvon, Evgeny Z; Stark, Alexander
2013-01-01
Information about developmental gene expression resides in defined regulatory elements, called enhancers, in the non-coding part of the genome. Although cells reliably utilize enhancers to orchestrate gene expression, a cis-regulatory code that would allow their interpretation has remained one of the greatest challenges of modern biology. In this review, we summarize studies from the past three decades that describe progress towards revealing the properties of enhancers and discuss how recent approaches are providing unprecedented insights into regulatory elements in animal genomes. Over the next years, we believe that the functional characterization of regulatory sequences in entire genomes, combined with recent computational methods, will provide a comprehensive view of genomic regulatory elements and their building blocks and will enable researchers to begin to understand the sequence basis of the cis-regulatory code. Copyright © 2012 Elsevier Ltd. All rights reserved.
The language of the protein universe.
Scaiewicz, Andrea; Levitt, Michael
2015-12-01
Proteins, the main cell machinery which play a major role in nearly every cellular process, have always been a central focus in biology. We live in the post-genomic era, and inferring information from massive data sets is a steadily growing universal challenge. The increasing availability of fully sequenced genomes can be regarded as the 'Rosetta Stone' of the protein universe, allowing the understanding of genomes and their evolution, just as the original Rosetta Stone allowed Champollion to decipher the ancient Egyptian hieroglyphics. In this review, we consider aspects of the protein domain architectures repertoire that are closely related to those of human languages and aim to provide some insights about the language of proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dcode.org anthology of comparative genomic tools.
Loots, Gabriela G; Ovcharenko, Ivan
2005-07-01
Comparative genomics provides the means to demarcate functional regions in anonymous DNA sequences. The successful application of this method to identifying novel genes is currently shifting to deciphering the non-coding encryption of gene regulation across genomes. To facilitate the practical application of comparative sequence analysis to genetics and genomics, we have developed several analytical and visualization tools for the analysis of arbitrary sequences and whole genomes. These tools include two alignment tools, zPicture and Mulan; a phylogenetic shadowing tool, eShadow for identifying lineage- and species-specific functional elements; two evolutionary conserved transcription factor analysis tools, rVista and multiTF; a tool for extracting cis-regulatory modules governing the expression of co-regulated genes, Creme 2.0; and a dynamic portal to multiple vertebrate and invertebrate genome alignments, the ECR Browser. Here, we briefly describe each one of these tools and provide specific examples on their practical applications. All the tools are publicly available at the http://www.dcode.org/ website.
A genome-wide 3C-method for characterizing the three-dimensional architectures of genomes.
Duan, Zhijun; Andronescu, Mirela; Schutz, Kevin; Lee, Choli; Shendure, Jay; Fields, Stanley; Noble, William S; Anthony Blau, C
2012-11-01
Accumulating evidence demonstrates that the three-dimensional (3D) organization of chromosomes within the eukaryotic nucleus reflects and influences genomic activities, including transcription, DNA replication, recombination and DNA repair. In order to uncover structure-function relationships, it is necessary first to understand the principles underlying the folding and the 3D arrangement of chromosomes. Chromosome conformation capture (3C) provides a powerful tool for detecting interactions within and between chromosomes. A high throughput derivative of 3C, chromosome conformation capture on chip (4C), executes a genome-wide interrogation of interaction partners for a given locus. We recently developed a new method, a derivative of 3C and 4C, which, similar to Hi-C, is capable of comprehensively identifying long-range chromosome interactions throughout a genome in an unbiased fashion. Hence, our method can be applied to decipher the 3D architectures of genomes. Here, we provide a detailed protocol for this method. Published by Elsevier Inc.
Orlando, Ludovic
2014-06-01
By combining state-of-the-art approaches in ancient genomics, Meyer and co-workers have reconstructed the mitochondrial sequence of an archaic hominin that lived at Sierra de Atapuerca, Spain about 400,000 years ago. This achievement follows recent advances in molecular anthropology that delivered the genome sequence of younger archaic hominins, such as Neanderthals and Denisovans. Molecular phylogenetic reconstructions placed the Atapuercan as a sister group to Denisovans, although its morphology suggested closer affinities with Neanderthals. In addition to possibly challenging our interpretation of the fossil record, this study confirms that genomic information can be recovered from extremely damaged DNA molecules, even in the presence of significant levels of human contamination. Together with the recent characterization of a 700,000-year-old horse genome, this study opens the Middle Pleistocene to genomics, thereby extending the scope of ancient DNA to the last million years. © 2014 WILEY Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuskan, Gerry
The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Gerry Tuskan of Oak Ridge National Laboratory on Resequencing in Populus: Towards Genome Wide Association Geneticsmore » at the 6th annual Genomics of Energy Environment Meeting on March 23, 2011.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Gene
The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, CA. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Gene Robinson of the University of Illinois on Genomic and Systems Biology Analyses of Socialmore » Behavior at the 6th Annual Genomics of Energy & Environment Meeting on March 23, 2011.« less
Bauchet, Guillaume; Grenier, Stéphane; Samson, Nicolas; Bonnet, Julien; Grivet, Laurent; Causse, Mathilde
2017-05-01
A panel of 300 tomato accessions including breeding materials was built and characterized with >11,000 SNP. A population structure in six subgroups was identified. Strong heterogeneity in linkage disequilibrium and recombination landscape among groups and chromosomes was shown. GWAS identified several associations for fruit weight, earliness and plant growth. Genome-wide association studies (GWAS) have become a method of choice in quantitative trait dissection. First limited to highly polymorphic and outcrossing species, it is now applied in horticultural crops, notably in tomato. Until now GWAS in tomato has been performed on panels of heirloom and wild accessions. Using modern breeding materials would be of direct interest for breeding purpose. To implement GWAS on a large panel of 300 tomato accessions including 168 breeding lines, this study assessed the genetic diversity and linkage disequilibrium decay and revealed the population structure and performed GWA experiment. Genetic diversity and population structure analyses were based on molecular markers (>11,000 SNP) covering the whole genome. Six genetic subgroups were revealed and associated to traits of agronomical interest, such as fruit weight and disease resistance. Estimates of linkage disequilibrium highlighted the heterogeneity of its decay among genetic subgroups. Haplotype definition allowed a fine characterization of the groups and their recombination landscape revealing the patterns of admixture along the genome. Selection footprints showed results in congruence with introgressions. Taken together, all these elements refined our knowledge of the genetic material included in this panel and allowed the identification of several associations for fruit weight, plant growth and earliness, deciphering the genetic architecture of these complex traits and identifying several new loci useful for tomato breeding.
Curk, Franck; Ancillo, Gema; Garcia-Lor, Andres; Luro, François; Perrier, Xavier; Jacquemoud-Collet, Jean-Pierre; Navarro, Luis; Ollitrault, Patrick
2014-12-29
The most economically important Citrus species originated by natural interspecific hybridization between four ancestral taxa (Citrus reticulata, Citrus maxima, Citrus medica, and Citrus micrantha) and from limited subsequent interspecific recombination as a result of apomixis and vegetative propagation. Such reticulate evolution coupled with vegetative propagation results in mosaic genomes with large chromosome fragments from the basic taxa in frequent interspecific heterozygosity. Modern breeding of these species is hampered by their complex heterozygous genomic structures that determine species phenotype and are broken by sexual hybridisation. Nevertheless, a large amount of diversity is present in the citrus gene pool, and breeding to allow inclusion of desirable traits is of paramount importance. However, the efficient mobilization of citrus biodiversity in innovative breeding schemes requires previous understanding of Citrus origins and genomic structures. Haplotyping of multiple gene fragments along the whole genome is a powerful approach to reveal the admixture genomic structure of current species and to resolve the evolutionary history of the gene pools. In this study, the efficiency of parallel sequencing with 454 methodology to decipher the hybrid structure of modern citrus species was assessed by analysis of 16 gene fragments on chromosome 2. 454 amplicon libraries were established using the Fluidigm array system for 48 genotypes and 16 gene fragments from chromosome 2. Haplotypes were established from the reads of each accession and phylogenetic analyses were performed using the haplotypic data for each gene fragment. The length of 454 reads and the level of differentiation between the ancestral taxa of modern citrus allowed efficient haplotype phylogenetic assignations for 12 of the 16 gene fragments. The analysis of the mixed genomic structure of modern species and cultivars (i) revealed C. maxima introgressions in modern mandarins, (ii) was consistent with previous hypotheses regarding the origin of secondary species, and (iii) provided a new picture of the evolution of chromosome 2. 454 sequencing was an efficient strategy to establish haplotypes with significant phylogenetic assignations in Citrus, providing a new picture of the mixed structure on chromosome 2 in 48 citrus genotypes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, Rob
The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Rob Knight of the University of Colorado gives a presentation on "Spatially and Temporally Resolvedmore » Studies of the Human Microbiome" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011.« less
Deciphering the Diploid Ancestral Genome of the Mesohexaploid Brassica rapa[C][W
Cheng, Feng; Mandáková, Terezie; Wu, Jian; Xie, Qi; Lysak, Martin A.; Wang, Xiaowu
2013-01-01
The genus Brassica includes several important agricultural and horticultural crops. Their current genome structures were shaped by whole-genome triplication followed by extensive diploidization. The availability of several crucifer genome sequences, especially that of Chinese cabbage (Brassica rapa), enables study of the evolution of the mesohexaploid Brassica genomes from their diploid progenitors. We reconstructed three ancestral subgenomes of B. rapa (n = 10) by comparing its whole-genome sequence to ancestral and extant Brassicaceae genomes. All three B. rapa paleogenomes apparently consisted of seven chromosomes, similar to the ancestral translocation Proto-Calepineae Karyotype (tPCK; n = 7), which is the evolutionarily younger variant of the Proto-Calepineae Karyotype (n = 7). Based on comparative analysis of genome sequences or linkage maps of Brassica oleracea, Brassica nigra, radish (Raphanus sativus), and other closely related species, we propose a two-step merging of three tPCK-like genomes to form the hexaploid ancestor of the tribe Brassiceae with 42 chromosomes. Subsequent diversification of the Brassiceae was marked by extensive genome reshuffling and chromosome number reduction mediated by translocation events and followed by loss and/or inactivation of centromeres. Furthermore, via interspecies genome comparison, we refined intervals for seven of the genomic blocks of the Ancestral Crucifer Karyotype (n = 8), thus revising the key reference genome for evolutionary genomics of crucifers. PMID:23653472
2014-01-01
Background Cis-regulatory modules (CRMs), or the DNA sequences required for regulating gene expression, play the central role in biological researches on transcriptional regulation in metazoan species. Nowadays, the systematic understanding of CRMs still mainly resorts to computational methods due to the time-consuming and small-scale nature of experimental methods. But the accuracy and reliability of different CRM prediction tools are still unclear. Without comparative cross-analysis of the results and combinatorial consideration with extra experimental information, there is no easy way to assess the confidence of the predicted CRMs. This limits the genome-wide understanding of CRMs. Description It is known that transcription factor binding and epigenetic profiles tend to determine functions of CRMs in gene transcriptional regulation. Thus integration of the genome-wide epigenetic profiles with systematically predicted CRMs can greatly help researchers evaluate and decipher the prediction confidence and possible transcriptional regulatory functions of these potential CRMs. However, these data are still fragmentary in the literatures. Here we performed the computational genome-wide screening for potential CRMs using different prediction tools and constructed the pioneer database, cisMEP (cis-regulatory module epigenetic profile database), to integrate these computationally identified CRMs with genomic epigenetic profile data. cisMEP collects the literature-curated TFBS location data and nine genres of epigenetic data for assessing the confidence of these potential CRMs and deciphering the possible CRM functionality. Conclusions cisMEP aims to provide a user-friendly interface for researchers to assess the confidence of different potential CRMs and to understand the functions of CRMs through experimentally-identified epigenetic profiles. The deposited potential CRMs and experimental epigenetic profiles for confidence assessment provide experimentally testable hypotheses for the molecular mechanisms of metazoan gene regulation. We believe that the information deposited in cisMEP will greatly facilitate the comparative usage of different CRM prediction tools and will help biologists to study the modular regulatory mechanisms between different TFs and their target genes. PMID:25521507
Clonal evolution of acute myeloid leukemia highlighted by latest genome sequencing studies.
Zhang, Xuehong; Lv, Dekang; Zhang, Yu; Liu, Quentin; Li, Zhiguang
2016-09-06
Decades of years might be required for an initiated cell to become a fully-pledged, metastasized tumor. DNA mutations are accumulated during this process including background mutations that emerge scholastically, as well as driver mutations that selectively occur in a handful of cancer genes and confer the cell a growth advantage over its neighbors. A clone of tumor cells could be superseded by another clone that acquires new mutations and grows more aggressively. Tumor evolutional patterns have been studied for years using conventional approaches that focus on the investigation of a single or a couple of genes. Latest deep sequencing technology enables a global view of tumor evolution by deciphering almost all genome aberrations in a tumor. Tumor clones and the fate of each clone during tumor evolution can be depicted with the help of the concept of variant allele frequency. Here, we summarize the new insights of cancer evolutional progression in acute myeloid leukemia. Cancer evolution is currently thought to start from a clone that has accumulated the requisite somatically-acquired genetic aberrations through a series of increasingly disordered clinical and pathological phases, eventually leading to malignant transformation [1-3]. The observations in invasive colorectal cancer that usually emerges from an antecedent benign adenomatous polyp and in cervical cancer that proceeds through intraepithelial neoplasia support the idea of stepwise or linear cancerous progression [3-5]. Genetically, such progression is achieved by successive waves of clonal expansion during which cells acquire novel genomic alterations including single nucleotide variants (SNVs), small insertions and deletions (indels), and/or copy number variations (CNVs) [6]. The latest improvement in sequencing technology has allowed the deciphering of the whole exome or genome in different types of tumor and normal tissue pairs, providing detailed catalogue about genome aberrations during tumor initiation and progression, which have been reviewed in several papers [7-10]. Here, we focus on demonstrating the cancer clonal evolution pattern revealed by recent deep sequencing studies of samples from acute myeloid leukemia (AML) patients.
Whole-Genome Sequencing Reveals Genetic Variation in the Asian House Rat.
Teng, Huajing; Zhang, Yaohua; Shi, Chengmin; Mao, Fengbiao; Hou, Lingling; Guo, Hongling; Sun, Zhongsheng; Zhang, Jianxu
2016-07-07
Whole-genome sequencing of wild-derived rat species can provide novel genomic resources, which may help decipher the genetics underlying complex phenotypes. As a notorious pest, reservoir of human pathogens, and colonizer, the Asian house rat, Rattus tanezumi, is successfully adapted to its habitat. However, little is known regarding genetic variation in this species. In this study, we identified over 41,000,000 single-nucleotide polymorphisms, plus insertions and deletions, through whole-genome sequencing and bioinformatics analyses. Moreover, we identified over 12,000 structural variants, including 143 chromosomal inversions. Further functional analyses revealed several fixed nonsense mutations associated with infection and immunity-related adaptations, and a number of fixed missense mutations that may be related to anticoagulant resistance. A genome-wide scan for loci under selection identified various genes related to neural activity. Our whole-genome sequencing data provide a genomic resource for future genetic studies of the Asian house rat species and have the potential to facilitate understanding of the molecular adaptations of rats to their ecological niches. Copyright © 2016 Teng et al.
ATAC-see reveals the accessible genome by transposase-mediated imaging and sequencing.
Chen, Xingqi; Shen, Ying; Draper, Will; Buenrostro, Jason D; Litzenburger, Ulrike; Cho, Seung Woo; Satpathy, Ansuman T; Carter, Ava C; Ghosh, Rajarshi P; East-Seletsky, Alexandra; Doudna, Jennifer A; Greenleaf, William J; Liphardt, Jan T; Chang, Howard Y
2016-12-01
Spatial organization of the genome plays a central role in gene expression, DNA replication, and repair. But current epigenomic approaches largely map DNA regulatory elements outside of the native context of the nucleus. Here we report assay of transposase-accessible chromatin with visualization (ATAC-see), a transposase-mediated imaging technology that employs direct imaging of the accessible genome in situ, cell sorting, and deep sequencing to reveal the identity of the imaged elements. ATAC-see revealed the cell-type-specific spatial organization of the accessible genome and the coordinated process of neutrophil chromatin extrusion, termed NETosis. Integration of ATAC-see with flow cytometry enables automated quantitation and prospective cell isolation as a function of chromatin accessibility, and it reveals a cell-cycle dependence of chromatin accessibility that is especially dynamic in G1 phase. The integration of imaging and epigenomics provides a general and scalable approach for deciphering the spatiotemporal architecture of gene control.
Issues with RNA-seq analysis in non-model organisms: A salmonid example.
Sundaram, Arvind; Tengs, Torstein; Grimholt, Unni
2017-10-01
High throughput sequencing (HTS) is useful for many purposes as exemplified by the other topics included in this special issue. The purpose of this paper is to look into the unique challenges of using this technology in non-model organisms where resources such as genomes, functional genome annotations or genome complexity provide obstacles not met in model organisms. To describe these challenges, we narrow our scope to RNA sequencing used to study differential gene expression in response to pathogen challenge. As a demonstration species we chose Atlantic salmon, which has a sequenced genome with poor annotation and an added complexity due to many duplicated genes. We find that our RNA-seq analysis pipeline deciphers between duplicates despite high sequence identity. However, annotation issues provide problems in linking differentially expressed genes to pathways. Also, comparing results between approaches and species are complicated due to lack of standardized annotation. Copyright © 2017 Elsevier Ltd. All rights reserved.
H3Africa and the African Life Sciences Ecosystem: Building Sustainable Innovation
Huzair, Farah; Borda-Rodriguez, Alexander; Chirikure, Shadreck; Okpechi, Ikechi; Warnich, Louise; Masimirembwa, Collen
2014-01-01
Abstract Interest in genomics research in African populations is experiencing exponential growth. This enthusiasm stems in part from the recognition that the genomic diversity of African populations is a window of opportunity for innovations in postgenomics medicine, ecology, and evolutionary biology. The recently launched H3Africa initiative, for example, captures the energy and momentum of this interest. This interdisciplinary socio-technical analysis highlights the challenges that have beset previous genomics research activities in Africa, and looking ahead, suggests constructive ways H3Africa and similar large scale science efforts could usefully chart a new era of genomics and life sciences research in Africa that is locally productive and globally competitive. As independent African scholars and social scientists, we propose that any serious global omics science effort, including H3Africa, aiming to build genomics research capacity and capability in Africa, needs to fund the establishment of biobanks and the genomic analyses platforms within Africa. Equally they need to prioritize community engagement and bioinformatics capability and the training of African scientists on these platforms. Historically, the financial, technological, and skills imbalance between Africa and developed countries has created exploitative frameworks of collaboration where African researchers have become merely facilitators of Western funded and conceived research agendas involving offshore expatriation of samples. Not surprisingly, very little funding was allocated to infrastructure and human capital development in the past. Moving forward, capacity building should materialize throughout the entire knowledge co-production trajectory: idea generation (e.g., brainstorming workshops for innovative hypotheses development by African scientists), data generation (e.g., genome sequencing), and high-throughput data analysis and contextualization. Additionally, building skills for political science scholarship that questions the unchecked assumptions of the innovation performers be they funders, scientists, and social scientists, would enable collective innovation that is truly sustainable, ethical, and robust. PMID:25454511
Reprogramming neurodegeneration in the big data era.
Zhou, Lujia; Verstreken, Patrik
2018-02-01
Recent genome-wide association studies (GWAS) have identified numerous genetic risk variants for late-onset Alzheimer's disease (AD) and Parkinson's disease (PD). However, deciphering the functional consequences of GWAS data is challenging due to a lack of reliable model systems to study the genetic variants that are often of low penetrance and non-coding identities. Pluripotent stem cell (PSC) technologies offer unprecedented opportunities for molecular phenotyping of GWAS variants in human neurons and microglia. Moreover, rapid technological advances in whole-genome RNA-sequencing and epigenome mapping fuel comprehensive and unbiased investigations of molecular alterations in PSC-derived disease models. Here, we review and discuss how integrated studies that utilize PSC technologies and genome-wide approaches may bring new mechanistic insight into the pathogenesis of AD and PD. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sequencing the head and neck cancer genome: implications for therapy
Sun, Wenyue; Califano, Joseph A.
2015-01-01
Head and neck squamous cell carcinoma (HNSCC) is a disease with significant morbidity and mortality. The advancement of next-generation sequencing technologies now enables the landscape of genetic alterations in HNSCCs to be deciphered. In this review, we describe the mutation spectrum discovered in HNSCCs, especially human papilloma virus (HPV)- and/or tobacco smoke exposure–associated HNSCCs. We also describe related research from two independent investigators and from the Cancer Genome Atlas (TCGA). Emphasis is placed on the therapeutic implications of genes frequently altered in HNSCCs (i.e., TP53, PIK3CA, and NOTCH1) and their corresponding pathways, with a particular focus on recent findings of NOTCH pathway activation in HNSCC. We also discuss the application of integrated genomic pathway–based analysis for precision cancer therapy in HNSCC. PMID:25440877
Functional genomics approaches in parasitic helminths.
Hagen, J; Lee, E F; Fairlie, W D; Kalinna, B H
2012-01-01
As research on parasitic helminths is moving into the post-genomic era, an enormous effort is directed towards deciphering gene function and to achieve gene annotation. The sequences that are available in public databases undoubtedly hold information that can be utilized for new interventions and control but the exploitation of these resources has until recently remained difficult. Only now, with the emergence of methods to genetically manipulate and transform parasitic worms will it be possible to gain a comprehensive understanding of the molecular mechanisms involved in nutrition, metabolism, developmental switches/maturation and interaction with the host immune system. This review focuses on functional genomics approaches in parasitic helminths that are currently used, to highlight potential applications of these technologies in the areas of cell biology, systems biology and immunobiology of parasitic helminths. © 2011 Blackwell Publishing Ltd.
The Genome 10K Project: a way forward.
Koepfli, Klaus-Peter; Paten, Benedict; O'Brien, Stephen J
2015-01-01
The Genome 10K Project was established in 2009 by a consortium of biologists and genome scientists determined to facilitate the sequencing and analysis of the complete genomes of 10,000 vertebrate species. Since then the number of selected and initiated species has risen from ∼26 to 277 sequenced or ongoing with funding, an approximately tenfold increase in five years. Here we summarize the advances and commitments that have occurred by mid-2014 and outline the achievements and present challenges of reaching the 10,000-species goal. We summarize the status of known vertebrate genome projects, recommend standards for pronouncing a genome as sequenced or completed, and provide our present and future vision of the landscape of Genome 10K. The endeavor is ambitious, bold, expensive, and uncertain, but together the Genome 10K Consortium of Scientists and the worldwide genomics community are moving toward their goal of delivering to the coming generation the gift of genome empowerment for many vertebrate species.
The Genome 10K Project: A Way Forward
Koepfli, Klaus-Peter; Paten, Benedict; O’Brien, Stephen J.
2017-01-01
The Genome 10K Project was established in 2009 by a consortium of biologists and genome scientists determined to facilitate the sequencing and analysis of the complete genomes of 10,000 vertebrate species. Since then the number of selected and initiated species has risen from ~26 to 277 sequenced or ongoing with funding, an approximately tenfold increase in five years. Here we summarize the advances and commitments that have occurred by mid-2014 and outline the achievements and present challenges of reaching the 10,000-species goal. We summarize the status of known vertebrate genome projects, recommend standards for pronouncing a genome as sequenced or completed, and provide our present and future vision of the landscape of Genome 10K. The endeavor is ambitious, bold, expensive, and uncertain, but together the Genome 10K Consortium of Scientists and the worldwide genomics community are moving toward their goal of delivering to the coming generation the gift of genome empowerment for many vertebrate species. PMID:25689317
Genome Variation Map: a data repository of genome variations in BIG Data Center
Tian, Dongmei; Li, Cuiping; Tang, Bixia; Dong, Lili; Xiao, Jingfa; Bao, Yiming; Zhao, Wenming; He, Hang
2018-01-01
Abstract The Genome Variation Map (GVM; http://bigd.big.ac.cn/gvm/) is a public data repository of genome variations. As a core resource in the BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, GVM dedicates to collect, integrate and visualize genome variations for a wide range of species, accepts submissions of different types of genome variations from all over the world and provides free open access to all publicly available data in support of worldwide research activities. Unlike existing related databases, GVM features integration of a large number of genome variations for a broad diversity of species including human, cultivated plants and domesticated animals. Specifically, the current implementation of GVM not only houses a total of ∼4.9 billion variants for 19 species including chicken, dog, goat, human, poplar, rice and tomato, but also incorporates 8669 individual genotypes and 13 262 manually curated high-quality genotype-to-phenotype associations for non-human species. In addition, GVM provides friendly intuitive web interfaces for data submission, browse, search and visualization. Collectively, GVM serves as an important resource for archiving genomic variation data, helpful for better understanding population genetic diversity and deciphering complex mechanisms associated with different phenotypes. PMID:29069473
Anderson, Iain; Teshima, Huzuki; Nolan, Matt; Lapidus, Alla; Tice, Hope; Del Rio, Tijana Glavina; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Mavromatis, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Rohde, Manfred; Lang, Elke; Detter, John C.; Göker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter
2013-01-01
Frateuria aurantia (ex Kondô and Ameyama 1958) Swings et al. 1980 is a member of the bispecific genus Frateuria in the family Xanthomonadaceae, which is already heavily targeted for non-type strain genome sequencing. Strain Kondô 67T was initially (1958) identified as a member of ‘Acetobacter aurantius’, a name that was not considered for the approved list. Kondô 67T was therefore later designated as the type strain of the newly proposed acetogenic species Frateuria aurantia. The strain is of interest because of its triterpenoids (hopane family). F. aurantia Kondô 67T is the first member of the genus Frateura whose genome sequence has been deciphered, and here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,603,458-bp long chromosome with its 3,200 protein-coding and 88 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:24501647
Education and personalized genomics: deciphering the public's genetic health report
Lamb, Neil E; Myers, Richard M; Gunter, Chris
2010-01-01
Where do members of the public turn to understand what genetic tests mean in terms of their own health? Now that genome-wide association studies and complete genome sequencing are widely available, the importance of education in personalized genomics cannot be overstated. Although some media have introduced the concept of genetic testing to better understand health and disease, the public's understanding of the scope and impact of genetic variation has not kept up with the pace of the science or technology. Unfortunately, the likely sources to which the public turn to for guidance – their physician and the media – are often no better prepared. We examine several venues for information, including print and online guides for both lay and health-oriented audiences, and summarize selected resources in multiple formats. We also note on the roadblocks to progress and discuss ways to remove them, as urgent action is needed to connect people with their genomes in a meaningful way. PMID:20161675
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Iain; Teshima, Hazuki; Nolan, Matt
2013-01-01
rateuria aurantia (ex Kondo and Ameyama 1958) Swings et al. 1980 is a member of the bispecific genus Frateuria in the family Xanthomonadaceae, which is already heavily targeted for non-type strain genome sequencing. Strain Kondo 67(T) was initially (1958) identified as a member of 'Acetobacter aurantius', a name that was not considered for the approved list. Kondo 67(T) was therefore later designated as the type strain of the newly proposed acetogenic species Frateuria aurantia. The strain is of interest because of its triterpenoids (hopane family). F. aurantia Kondo 67(T) is the first member of the genus Frateura whose genome sequencemore » has been deciphered, and here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,603,458-bp long chromosome with its 3,200 protein-coding and 88 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less
Anderson, Iain; Teshima, Huzuki; Nolan, Matt; ...
2013-10-16
Frateuria aurantia (ex Kondô and Ameyama 1958) Swings et al. 1980 is a member of the bispecific genus Frateuria in the family Xanthomonadaceae, which is already heavily targeted for non-type strain genome sequencing. Strain Kondô 67 T was initially (1958) identified as a member of ‘Acetobacter aurantius’, a name that was not considered for the approved list. Kondô 67 T was therefore later designated as the type strain of the newly proposed acetogenic species Frateuria aurantia. The strain is of interest because of its triterpenoids (hopane family). F. aurantia Kondô 67 T is the first member of the genus Frateuramore » whose genome sequence has been deciphered, and here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,603,458-bp long chromosome with its 3,200 protein-coding and 88 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less
Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies
Li, Xueyan; Fan, Dingding; Zhang, Wei; Liu, Guichun; Zhang, Lu; Zhao, Li; Fang, Xiaodong; Chen, Lei; Dong, Yang; Chen, Yuan; Ding, Yun; Zhao, Ruoping; Feng, Mingji; Zhu, Yabing; Feng, Yue; Jiang, Xuanting; Zhu, Deying; Xiang, Hui; Feng, Xikan; Li, Shuaicheng; Wang, Jun; Zhang, Guojie; Kronforst, Marcus R.; Wang, Wen
2015-01-01
Butterflies are exceptionally diverse but their potential as an experimental system has been limited by the difficulty of deciphering heterozygous genomes and a lack of genetic manipulation technology. Here we use a hybrid assembly approach to construct high-quality reference genomes for Papilio xuthus (contig and scaffold N50: 492 kb, 3.4 Mb) and Papilio machaon (contig and scaffold N50: 81 kb, 1.15 Mb), highly heterozygous species that differ in host plant affiliations, and adult and larval colour patterns. Integrating comparative genomics and analyses of gene expression yields multiple insights into butterfly evolution, including potential roles of specific genes in recent diversification. To functionally test gene function, we develop an efficient (up to 92.5%) CRISPR/Cas9 gene editing method that yields obvious phenotypes with three genes, Abdominal-B, ebony and frizzled. Our results provide valuable genomic and technological resources for butterflies and unlock their potential as a genetic model system. PMID:26354079
Building Communities: The Community Sequencing Program at JGI (2011 JGI User Meeting)
Bristow, Jim
2018-01-22
The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy Environment Meeting held March 22-24, 2011 in Walnut Creek, CA. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. DOE JGI Deputy Director Jim Bristow gives a presentation on the Community Sequencing Program at the 6th annual Genomics of Energy and Environment Meeting on March 23, 2011.
The Gulf Oil Spill: Ecogenomics and Ecoresilience (Keynote - 2011 JGI User Meeting)
Hazen, Terry [LBNL
2018-04-25
The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Berkeley Lab microbial ecologist Terry Hazen delivers a keynote on "The Gulf Oil Spill: Ecogenomics and Ecoresilience" at the 6th Genomics of Energy & Environment Meeting on March 22, 2011.
Silver, Pamela
2018-02-13
The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Pam Silver of Harvard University gives a presentation on "Designing Biological Systems for Sustainability and Programmed Environmental Interface" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011.
Spatially and Temporally Resolved Studies of the Human Microbiome (2011 JGI User Meeting)
Knight, Rob
2018-04-26
The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Rob Knight of the University of Colorado gives a presentation on "Spatially and Temporally Resolved Studies of the Human Microbiome" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011.
Deciphering the Mechanism of Alternative Cleavage and Polyadenylation in Mantle Cell Lymphoma (MCL)
2013-10-01
also has human firefly luciferase cloned within the same reporter system allowing for intra-plasmid normalization of transfection eliminating problems...collaboration with Dr. Wei Li, a Bioinformaticist from Baylor College of Medicine whose lab specializes in developing complex algorithms to analyze genome...wide sequencing data. Dr. Wei Li and his postdoctoral fellow, Dr. Zheng Xia developed a customized algorithm that is able to detect and quantify
Schmidt, C W
2001-01-01
Scientists expect that mapping the human genome will lead to a host of innovations in biology and research. For example, it may become possible to use DNA microarrays to accurately diagnose cancer and infectious disease subtypes and to predict clinical outcomes. Scientists might also use the genome to look at the interactions of the environment, genetic makeup, and toxic exposures, including the ability of certain beneficial genes to detoxify the body and resist disease. But despite the great potential of the field of genomics, scientists caution that public expectations need to be tempered by reality. People are as much a product of their environment as they are of their genes, say experts, and to suggest that genetics is the sole determinant that defines humans as individuals stretches the science beyond the current data. PMID:11171541
Gat-Viks, Irit; Chevrier, Nicolas; Wilentzik, Roni; Eisenhaure, Thomas; Raychowdhury, Raktima; Steuerman, Yael; Shalek, Alex; Hacohen, Nir; Amit, Ido; Regev, Aviv
2013-01-01
Individual genetic variation affects gene expression in response to stimuli, often by influencing complex molecular circuits. Here we combine genomic and intermediate-scale transcriptional profiling with computational methods to identify variants that affect the responsiveness of genes to stimuli (responsiveness QTLs; reQTLs) and to position these variants in molecular circuit diagrams. We apply this approach to study variation in transcriptional responsiveness to pathogen components in dendritic cells from recombinant inbred mouse strains. We identify reQTLs that correlate with particular stimuli and position them in known pathways. For example, in response to a virus-like stimulus, a trans-acting variant acts as an activator of the antiviral response; using RNAi, we identify Rgs16 as the likely causal gene. Our approach charts an experimental and analytic path to decipher the mechanisms underlying genetic variation in circuits that control responses to stimuli. PMID:23503680
Gat-Viks, Irit; Chevrier, Nicolas; Wilentzik, Roni; Eisenhaure, Thomas; Raychowdhury, Raktima; Steuerman, Yael; Shalek, Alex K; Hacohen, Nir; Amit, Ido; Regev, Aviv
2013-04-01
Individual genetic variation affects gene responsiveness to stimuli, often by influencing complex molecular circuits. Here we combine genomic and intermediate-scale transcriptional profiling with computational methods to identify variants that affect the responsiveness of genes to stimuli (responsiveness quantitative trait loci or reQTLs) and to position these variants in molecular circuit diagrams. We apply this approach to study variation in transcriptional responsiveness to pathogen components in dendritic cells from recombinant inbred mouse strains. We identify reQTLs that correlate with particular stimuli and position them in known pathways. For example, in response to a virus-like stimulus, a trans-acting variant responds as an activator of the antiviral response; using RNA interference, we identify Rgs16 as the likely causal gene. Our approach charts an experimental and analytic path to decipher the mechanisms underlying genetic variation in circuits that control responses to stimuli.
Research advances on animal genetics in China in 2015.
Zhang, Bo; Chen, Xiao-fang; Huang, Xun; Yang, Xiao
2016-06-20
Chinese scientists have made significant achievements in the field of animal genetics in 2015. Incomplete statistics show that among all the publications of 2015 involving nematode (Caenorhabditis elegans), fly (Drosophila melanogaster), zebrafish (Danio rerio), African clawed frog (Xenopus) or mice (Mus musculus), about 1/5 publications are from China. Many innovative studies were published in high-impact international academic journals by Chinese scientists, including the identification of a putative magnetic receptor MagR, the genetic basis for the regulation of wing polyphenism in the insect brown planthopper (Nilaparvata lugens), DNA N 6 -methyladenine (6mA) modification in the Drosophila genome, a novel molecular mechanism regarding the dendritic spine pruning and maturation in the mammals, the mechanism for the CREB coactivator CRTC2 in the regulation of hepatic lipid metabolism, the control of systemic inflammation by neurotransmitter dopamine, the role of Gasdermin protein family in triggering pyroptosis, a parvalbumin-positive excitatory visual pathway to trigger fear responses in mice, etc. Chinese scientists have also made important contributions in genome editing via TALEN or CRISPR/Cas system. According to incomplete statistics, more than 1/5 of the publications related to genome editing in 2015 are from China, where a variety of animals with different approaches were targeted, ranging from the worm to primates. Particularly, CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes was successfully achieved for the first time. China has been one of the leading countries in genome sequencing in recent years, and Chinese scientists reported the sequence and annotation of the genomes of several important animal species in 2015, including goose (Anser cygnoides), Schlegel's Japanese Gecko (Gekko japonicus), grass carp (Ctenopharyngodon idellus), large yellow croaker (Larimichthys crocea) and pig (Sus scrofa). They further analyzed the genome-wide genetic basis of the species-specific physiological and pathological characteristics as well as their adaptation to environmental conditions. In this review, we make a first attempt to summarize the research advances on animal genetics in China in 2015, with an emphasis on the achievements led by Chinese scientists and carried out in Chinese institutions. We will briefly discuss the significance of their research and contributions of Chinese scientists in animal genetics.
The Turn-on of LCLS: the X-Ray Free Electron Laser at SLAC ( Keynote - 2011 JGI User Meeting)
Drell, Persis [SLAC National Accelerator Lab., Menlo Park, CA (United States)
2018-06-15
The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. SLAC National Laboratory Director Persis Drell gives a keynote talk on "The Turn-on of LCLS: the X-Ray Free-Electron Laser at SLAC" at the 6th Genomics of Energy & Environment Meeting on March 22, 2011
Thomashow, Mike
2018-02-06
The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Mike Thomashow of Michigan State University gives a presentation on on "Low Temperature Regulatory Networks Controlling Cold Acclimation in Arabidopsis" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011."
Ley, Ruth E. [Cornell Univ., Ithaca, NY (United States). Cornell Center for Comparative and Population Genomics, Dept. of Microbiology and Dept. of Molecular Biology and Genetics
2018-06-27
The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy and Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Ruth Ley of Cornell University gives a presentation on "Relating Host Genetic Variation to the Microbiome" at the 6th annual Genomics of Energy and Environment Meeting on March 23, 2011.
Reconstructing each cell's genome within complex microbial communities-dream or reality?
Clingenpeel, Scott; Clum, Alicia; Schwientek, Patrick; Rinke, Christian; Woyke, Tanja
2014-01-01
As the vast majority of microorganisms have yet to be cultivated in a laboratory setting, access to their genetic makeup has largely been limited to cultivation-independent methods. These methods, namely metagenomics and more recently single-cell genomics, have become cornerstones for microbial ecology and environmental microbiology. One ultimate goal is the recovery of genome sequences from each cell within an environment to move toward a better understanding of community metabolic potential and to provide substrate for experimental work. As single-cell sequencing has the ability to decipher all sequence information contained in an individual cell, this method holds great promise in tackling such challenge. Methodological limitations and inherent biases however do exist, which will be discussed here based on environmental and benchmark data, to assess how far we are from reaching this goal.
Transgenesis in axolotl (Ambystoma mexicanum).
Khattak, Shahryar; Tanaka, Elly M
2015-01-01
Transgenic animals have been indispensable in elucidating and deciphering mechanisms underlying various biological phenomena. In regeneration, transgenic animals expressing fluorescent protein genes have been crucial for identifying the source cells for regeneration and the mechanism of blastema formation. Animals are usually generated by manipulating their genome using various techniques at/in one cell embryo/fertilized egg stage. Here, we describe the generation of germline transgenic axolotls (Ambystoma mexicanum) using the I-SceI meganuclease and Tol2 transposase.
Valle Mansilla, José Ignacio
2011-01-01
Biomedical researchers often now ask subjects to donate samples to be deposited in biobanks. This is not only of interest to researchers, patients and society as a whole can benefit from the improvements in diagnosis, treatment, and prevention that the advent of genomic medicine portends. However, there is a growing debate regarding the social and ethical implications of creating biobanks and using stored human tissue samples for genomic research. Our aim was to identify factors related to both scientists and patients' preferences regarding the sort of information to convey to subjects about the results of the study and the risks related to genomic research. The method used was a survey addressed to 204 scientists and 279 donors from the U.S. and Spain. In this sample, researchers had already published genomic epidemiology studies; and research subjects had actually volunteered to donate a human sample for genomic research. Concerning the results, patients supported more frequently than scientists their right to know individual results from future genomic research. These differences were statistically significant after adjusting by the opportunity to receive genetic research results from the research they had previously participated and their perception of risks regarding genetic information compared to other clinical data. A slight majority of researchers supported informing participants about individual genomic results only if the reliability and clinical validity of the information had been established. Men were more likely than women to believe that patients should be informed of research results even if these conditions were not met. Also among patients, almost half of them would always prefer to be informed about individual results from future genomic research. The three main factors associated to a higher support of a non-limited access to individual results were: being from the US, having previously been offered individual information and considering genomic data more sensitive than other personal medical data. Moreover, the disease of patients, the educational level and the patient's country of origin were factors associated with the perception of risks related to genomic information. As a conclusion, it is mandatory to clarify the criteria required to establish when individual results from genomic research should be offered to participants.
Cloud-based interactive analytics for terabytes of genomic variants data.
Pan, Cuiping; McInnes, Gregory; Deflaux, Nicole; Snyder, Michael; Bingham, Jonathan; Datta, Somalee; Tsao, Philip S
2017-12-01
Large scale genomic sequencing is now widely used to decipher questions in diverse realms such as biological function, human diseases, evolution, ecosystems, and agriculture. With the quantity and diversity these data harbor, a robust and scalable data handling and analysis solution is desired. We present interactive analytics using a cloud-based columnar database built on Dremel to perform information compression, comprehensive quality controls, and biological information retrieval in large volumes of genomic data. We demonstrate such Big Data computing paradigms can provide orders of magnitude faster turnaround for common genomic analyses, transforming long-running batch jobs submitted via a Linux shell into questions that can be asked from a web browser in seconds. Using this method, we assessed a study population of 475 deeply sequenced human genomes for genomic call rate, genotype and allele frequency distribution, variant density across the genome, and pharmacogenomic information. Our analysis framework is implemented in Google Cloud Platform and BigQuery. Codes are available at https://github.com/StanfordBioinformatics/mvp_aaa_codelabs. cuiping@stanford.edu or ptsao@stanford.edu. Supplementary data are available at Bioinformatics online. Published by Oxford University Press 2017. This work is written by US Government employees and are in the public domain in the US.
Cloud-based interactive analytics for terabytes of genomic variants data
Pan, Cuiping; McInnes, Gregory; Deflaux, Nicole; Snyder, Michael; Bingham, Jonathan; Datta, Somalee; Tsao, Philip S
2017-01-01
Abstract Motivation Large scale genomic sequencing is now widely used to decipher questions in diverse realms such as biological function, human diseases, evolution, ecosystems, and agriculture. With the quantity and diversity these data harbor, a robust and scalable data handling and analysis solution is desired. Results We present interactive analytics using a cloud-based columnar database built on Dremel to perform information compression, comprehensive quality controls, and biological information retrieval in large volumes of genomic data. We demonstrate such Big Data computing paradigms can provide orders of magnitude faster turnaround for common genomic analyses, transforming long-running batch jobs submitted via a Linux shell into questions that can be asked from a web browser in seconds. Using this method, we assessed a study population of 475 deeply sequenced human genomes for genomic call rate, genotype and allele frequency distribution, variant density across the genome, and pharmacogenomic information. Availability and implementation Our analysis framework is implemented in Google Cloud Platform and BigQuery. Codes are available at https://github.com/StanfordBioinformatics/mvp_aaa_codelabs. Contact cuiping@stanford.edu or ptsao@stanford.edu Supplementary information Supplementary data are available at Bioinformatics online. PMID:28961771
Kumar, Rakshak; Acharya, Vishal; Singh, Dharam; Kumar, Sanjay
2018-01-01
A light pink coloured bacterial strain ERGS5:01 isolated from glacial stream water of Sikkim Himalaya was affiliated to Janthinobacterium lividum based on 16S rRNA gene sequence identity and phylogenetic clustering. Whole genome sequencing was performed for the strain to confirm its taxonomy as it lacked the typical violet pigmentation of the genus and also to decipher its survival strategy at the aquatic ecosystem of high elevation. The PacBio RSII sequencing generated genome of 5,168,928 bp with 4575 protein-coding genes and 118 RNA genes. Whole genome-based multilocus sequence analysis clustering, in silico DDH similarity value of 95.1% and, the ANI value of 99.25% established the identity of the strain ERGS5:01 (MCC 2953) as a non-violacein producing J. lividum . The genome comparisons across genus Janthinobacterium revealed an open pan-genome with the scope of the addition of new orthologous cluster to complete the genomic inventory. The genomic insight provided the genetic basis of freezing and frequent freeze-thaw cycle tolerance and, for industrially important enzymes. Extended insight into the genome provided clues of crucial genes associated with adaptation in the harsh aquatic ecosystem of high altitude.
Genome Variation Map: a data repository of genome variations in BIG Data Center.
Song, Shuhui; Tian, Dongmei; Li, Cuiping; Tang, Bixia; Dong, Lili; Xiao, Jingfa; Bao, Yiming; Zhao, Wenming; He, Hang; Zhang, Zhang
2018-01-04
The Genome Variation Map (GVM; http://bigd.big.ac.cn/gvm/) is a public data repository of genome variations. As a core resource in the BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, GVM dedicates to collect, integrate and visualize genome variations for a wide range of species, accepts submissions of different types of genome variations from all over the world and provides free open access to all publicly available data in support of worldwide research activities. Unlike existing related databases, GVM features integration of a large number of genome variations for a broad diversity of species including human, cultivated plants and domesticated animals. Specifically, the current implementation of GVM not only houses a total of ∼4.9 billion variants for 19 species including chicken, dog, goat, human, poplar, rice and tomato, but also incorporates 8669 individual genotypes and 13 262 manually curated high-quality genotype-to-phenotype associations for non-human species. In addition, GVM provides friendly intuitive web interfaces for data submission, browse, search and visualization. Collectively, GVM serves as an important resource for archiving genomic variation data, helpful for better understanding population genetic diversity and deciphering complex mechanisms associated with different phenotypes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
MEGAnnotator: a user-friendly pipeline for microbial genomes assembly and annotation.
Lugli, Gabriele Andrea; Milani, Christian; Mancabelli, Leonardo; van Sinderen, Douwe; Ventura, Marco
2016-04-01
Genome annotation is one of the key actions that must be undertaken in order to decipher the genetic blueprint of organisms. Thus, a correct and reliable annotation is essential in rendering genomic data valuable. Here, we describe a bioinformatics pipeline based on freely available software programs coordinated by a multithreaded script named MEGAnnotator (Multithreaded Enhanced prokaryotic Genome Annotator). This pipeline allows the generation of multiple annotated formats fulfilling the NCBI guidelines for assembled microbial genome submission, based on DNA shotgun sequencing reads, and minimizes manual intervention, while also reducing waiting times between software program executions and improving final quality of both assembly and annotation outputs. MEGAnnotator provides an efficient way to pre-arrange the assembly and annotation work required to process NGS genome sequence data. The script improves the final quality of microbial genome annotation by reducing ambiguous annotations. Moreover, the MEGAnnotator platform allows the user to perform a partial annotation of pre-assembled genomes and includes an option to accomplish metagenomic data set assemblies. MEGAnnotator platform will be useful for microbiologists interested in genome analyses of bacteria as well as those investigating the complexity of microbial communities that do not possess the necessary skills to prepare their own bioinformatics pipeline. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
USDA-ARS?s Scientific Manuscript database
New genome sequence information can now be generated very quickly and cheaply for virtually any organism. The dive into genomics is increasingly tempting to scientists studying plant pathogens and other eukaryotic species without reference genomes. The ease of data collection, however, is tempered ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ley, Ruth
2011-03-23
The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Ruth Ley of Cornell University gives a presentation on "Relating Host Genetic Variation to themore » Microbiome" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011.« less
Bork, Peer
2018-02-14
The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Peer Bork of the European Molecular Biology Laboratory on Comparative Metagenomics of Gut and Ocean: Identification of Microbial Marker Genes for Complex Environmental Properties at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011.
Kappler, Ulrike; Davenport, Karen W.; Beatson, Scott; ...
2016-06-03
Thioalkalimicrobium cyclicum (Sorokin et al. 2002) is a member of the family Piscirickettsiaceae in the order Thiotrichales. The -proteobacterium belongs to the colourless sulfur-oxidizing bacteria isolated from saline soda lakes with stable alkaline pH, such as Lake Mono (California) and Soap Lake (Washington State). Strain ALM 1 T is characterized by its adaptation to life in the oxic/anoxic interface towards the less saline aerobic waters (mixolimnion) of the stable stratified alkaline salt lakes. Strain ALM 1 T is the first representative of the genus Thioalkalimicrobium whose genome sequence has been deciphered and the fourth genome sequence of a type strainmore » of the Piscirickettsiaceae to be published. As a result, the 1,932,455 bp long chromosome with its 1,684 protein-coding and 50 RNA genes was sequenced as part of the DOE Joint Genome Institute Community Sequencing Program (CSP) 2008.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kappler, Ulrike; Davenport, Karen W.; Beatson, Scott
Thioalkalimicrobium cyclicum (Sorokin et al. 2002) is a member of the family Piscirickettsiaceae in the order Thiotrichales. The -proteobacterium belongs to the colourless sulfur-oxidizing bacteria isolated from saline soda lakes with stable alkaline pH, such as Lake Mono (California) and Soap Lake (Washington State). Strain ALM 1 T is characterized by its adaptation to life in the oxic/anoxic interface towards the less saline aerobic waters (mixolimnion) of the stable stratified alkaline salt lakes. Strain ALM 1 T is the first representative of the genus Thioalkalimicrobium whose genome sequence has been deciphered and the fourth genome sequence of a type strainmore » of the Piscirickettsiaceae to be published. As a result, the 1,932,455 bp long chromosome with its 1,684 protein-coding and 50 RNA genes was sequenced as part of the DOE Joint Genome Institute Community Sequencing Program (CSP) 2008.« less
Schuenemann, Verena J; Peltzer, Alexander; Welte, Beatrix; van Pelt, W Paul; Molak, Martyna; Wang, Chuan-Chao; Furtwängler, Anja; Urban, Christian; Reiter, Ella; Nieselt, Kay; Teßmann, Barbara; Francken, Michael; Harvati, Katerina; Haak, Wolfgang; Schiffels, Stephan; Krause, Johannes
2017-05-30
Egypt, located on the isthmus of Africa, is an ideal region to study historical population dynamics due to its geographic location and documented interactions with ancient civilizations in Africa, Asia and Europe. Particularly, in the first millennium BCE Egypt endured foreign domination leading to growing numbers of foreigners living within its borders possibly contributing genetically to the local population. Here we present 90 mitochondrial genomes as well as genome-wide data sets from three individuals obtained from Egyptian mummies. The samples recovered from Middle Egypt span around 1,300 years of ancient Egyptian history from the New Kingdom to the Roman Period. Our analyses reveal that ancient Egyptians shared more ancestry with Near Easterners than present-day Egyptians, who received additional sub-Saharan admixture in more recent times. This analysis establishes ancient Egyptian mummies as a genetic source to study ancient human history and offers the perspective of deciphering Egypt's past at a genome-wide level.
Damerau, Malte; Matschiner, Michael; Jentoft, Sissel
2017-01-01
Recent developments in the field of genomics have provided new and powerful insights into population structure and dynamics that are essential for the conservation of biological diversity. As a commercially highly valuable species, the yellowfin tuna (Thunnus albacares) is intensely exploited throughout its distribution in tropical oceans around the world, and is currently classified as near threatened. However, conservation efforts for this species have so far been hampered by limited knowledge of its population structure, due to incongruent results of previous investigations. Here, we use whole-genome sequencing in concert with a draft genome assembly to decipher the global population structure of the yellowfin tuna, and to investigate its demographic history. We detect significant differentiation of Atlantic and Indo-Pacific yellowfin tuna populations as well as the possibility of a third diverged yellowfin tuna group in the Arabian Sea. We further observe evidence for past population expansion as well as asymmetric gene flow from the Indo-Pacific to the Atlantic. PMID:28419285
Schuenemann, Verena J.; Peltzer, Alexander; Welte, Beatrix; van Pelt, W. Paul; Molak, Martyna; Wang, Chuan-Chao; Furtwängler, Anja; Urban, Christian; Reiter, Ella; Nieselt, Kay; Teßmann, Barbara; Francken, Michael; Harvati, Katerina; Haak, Wolfgang; Schiffels, Stephan; Krause, Johannes
2017-01-01
Egypt, located on the isthmus of Africa, is an ideal region to study historical population dynamics due to its geographic location and documented interactions with ancient civilizations in Africa, Asia and Europe. Particularly, in the first millennium BCE Egypt endured foreign domination leading to growing numbers of foreigners living within its borders possibly contributing genetically to the local population. Here we present 90 mitochondrial genomes as well as genome-wide data sets from three individuals obtained from Egyptian mummies. The samples recovered from Middle Egypt span around 1,300 years of ancient Egyptian history from the New Kingdom to the Roman Period. Our analyses reveal that ancient Egyptians shared more ancestry with Near Easterners than present-day Egyptians, who received additional sub-Saharan admixture in more recent times. This analysis establishes ancient Egyptian mummies as a genetic source to study ancient human history and offers the perspective of deciphering Egypt's past at a genome-wide level. PMID:28556824
Sha, Yanwei; Sha, Yankun; Ji, Zhiyong; Ding, Lu; Zhang, Qing; Ouyang, Honggen; Lin, Shaobin; Wang, Xu; Shao, Lin; Shi, Chong; Li, Ping; Song, Yueqiang
2017-03-01
Robertsonian translocation (RT) is a common cause for male infertility, recurrent pregnancy loss, and birth defects. Studying meiotic recombination in RT-carrier patients helps decipher the mechanism and improve the clinical management of infertility and birth defects caused by RT. Here we present a new method to study spermatogenesis on a single-gamete basis from two RT carriers. By using a combined single-cell whole-genome amplification and sequencing protocol, we comprehensively profiled the chromosomal copy number of 88 single sperms from two RT-carrier patients. With the profiled information, chromosomal aberrations were identified on a whole-genome, per-sperm basis. We found that the previously reported interchromosomal effect might not exist with RT carriers. It is suggested that single-cell genome sequencing enables comprehensive chromosomal aneuploidy screening and provides a powerful tool for studying gamete generation from patients carrying chromosomal diseases. © 2017 John Wiley & Sons Ltd/University College London.
Future potential of the Human Epigenome Project.
Eckhardt, Florian; Beck, Stephan; Gut, Ivo G; Berlin, Kurt
2004-09-01
Deciphering the information encoded in the human genome is key for the further understanding of human biology, physiology and evolution. With the draft sequence of the human genome completed, elucidation of the epigenetic information layer of the human genome becomes accessible. Epigenetic mechanisms are mediated by either chemical modifications of the DNA itself or by modifications of proteins that are closely associated with DNA. Defects of the epigenetic regulation involved in processes such as imprinting, X chromosome inactivation, transcriptional control of genes, as well as mutations affecting DNA methylation enzymes, contribute fundamentally to the etiology of many human diseases. Headed by the Human Epigenome Consortium, the Human Epigenome Project is a joint effort by an international collaboration that aims to identify, catalog and interpret genome-wide DNA methylation patterns of all human genes in all major tissues. Methylation variable positions are thought to reflect gene activity, tissue type and disease state, and are useful epigenetic markers revealing the dynamic state of the genome. Like single nucleotide polymorphisms, methylation variable positions will greatly advance our ability to elucidate and diagnose the molecular basis of human diseases.
Forward and reverse mutagenesis in C. elegans
Kutscher, Lena M.; Shaham, Shai
2014-01-01
Mutagenesis drives natural selection. In the lab, mutations allow gene function to be deciphered. C. elegans is highly amendable to functional genetics because of its short generation time, ease of use, and wealth of available gene-alteration techniques. Here we provide an overview of historical and contemporary methods for mutagenesis in C. elegans, and discuss principles and strategies for forward (genome-wide mutagenesis) and reverse (target-selected and gene-specific mutagenesis) genetic studies in this animal. PMID:24449699
Deciphering the genetic blueprint behind Holstein milk proteins and production.
Lee, Hyun-Jeong; Kim, Jaemin; Lee, Taeheon; Son, Jun Kyu; Yoon, Ho-Baek; Baek, Kwang-Soo; Jeong, Jin Young; Cho, Yong-Min; Lee, Kyung-Tai; Yang, Byoung-Chul; Lim, Hyun-Joo; Cho, Kwanghyeon; Kim, Tae-Hun; Kwon, Eung Gi; Nam, Jungrye; Kwak, Woori; Cho, Seoae; Kim, Heebal
2014-05-14
Holstein is known to provide higher milk yields than most other cattle breeds, and the dominant position of Holstein today is the result of various selection pressures. Holstein cattle have undergone intensive selection for milk production in recent decades, which has left genome-wide footprints of domestication. To further characterize the bovine genome, we performed whole-genome resequencing analysis of 10 Holstein and 11 Hanwoo cattle to identify regions containing genes as outliers in Holstein, including CSN1S1, CSN2, CSN3, and KIT whose products are likely involved in the yield and proteins of milk and their distinctive black-and-white markings. In addition, genes indicative of positive selection were associated with cardiovascular disease, which is related to simultaneous propagation of genetic defects, also known as inbreeding depression in Holstein. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Integration, warehousing, and analysis strategies of Omics data.
Gedela, Srinubabu
2011-01-01
"-Omics" is a current suffix for numerous types of large-scale biological data generation procedures, which naturally demand the development of novel algorithms for data storage and analysis. With next generation genome sequencing burgeoning, it is pivotal to decipher a coding site on the genome, a gene's function, and information on transcripts next to the pure availability of sequence information. To explore a genome and downstream molecular processes, we need umpteen results at the various levels of cellular organization by utilizing different experimental designs, data analysis strategies and methodologies. Here comes the need for controlled vocabularies and data integration to annotate, store, and update the flow of experimental data. This chapter explores key methodologies to merge Omics data by semantic data carriers, discusses controlled vocabularies as eXtensible Markup Languages (XML), and provides practical guidance, databases, and software links supporting the integration of Omics data.
Emerging Imaging and Genomic Tools for Developmental Systems Biology.
Liu, Zhe; Keller, Philipp J
2016-03-21
Animal development is a complex and dynamic process orchestrated by exquisitely timed cell lineage commitment, divisions, migration, and morphological changes at the single-cell level. In the past decade, extensive genetic, stem cell, and genomic studies provided crucial insights into molecular underpinnings and the functional importance of genetic pathways governing various cellular differentiation processes. However, it is still largely unknown how the precise coordination of these pathways is achieved at the whole-organism level and how the highly regulated spatiotemporal choreography of development is established in turn. Here, we discuss the latest technological advances in imaging and single-cell genomics that hold great promise for advancing our understanding of this intricate process. We propose an integrated approach that combines such methods to quantitatively decipher in vivo cellular dynamic behaviors and their underlying molecular mechanisms at the systems level with single-cell, single-molecule resolution. Copyright © 2016 Elsevier Inc. All rights reserved.
Uprobe: a genome-wide universal probe resource for comparative physical mapping in vertebrates.
Kellner, Wendy A; Sullivan, Robert T; Carlson, Brian H; Thomas, James W
2005-01-01
Interspecies comparisons are important for deciphering the functional content and evolution of genomes. The expansive array of >70 public vertebrate genomic bacterial artificial chromosome (BAC) libraries can provide a means of comparative mapping, sequencing, and functional analysis of targeted chromosomal segments that is independent and complementary to whole-genome sequencing. However, at the present time, no complementary resource exists for the efficient targeted physical mapping of the majority of these BAC libraries. Universal overgo-hybridization probes, designed from regions of sequenced genomes that are highly conserved between species, have been demonstrated to be an effective resource for the isolation of orthologous regions from multiple BAC libraries in parallel. Here we report the application of the universal probe design principal across entire genomes, and the subsequent creation of a complementary probe resource, Uprobe, for screening vertebrate BAC libraries. Uprobe currently consists of whole-genome sets of universal overgo-hybridization probes designed for screening mammalian or avian/reptilian libraries. Retrospective analysis, experimental validation of the probe design process on a panel of representative BAC libraries, and estimates of probe coverage across the genome indicate that the majority of all eutherian and avian/reptilian genes or regions of interest can be isolated using Uprobe. Future implementation of the universal probe design strategy will be used to create an expanded number of whole-genome probe sets that will encompass all vertebrate genomes.
Yu, Yang; Zhang, Xiaojun; Yuan, Jianbo; Li, Fuhua; Chen, Xiaohan; Zhao, Yongzhen; Huang, Long; Zheng, Hongkun; Xiang, Jianhai
2015-01-01
The Pacific white shrimp Litopenaeus vannamei is the dominant crustacean species in global seafood mariculture. Understanding the genome and genetic architecture is useful for deciphering complex traits and accelerating the breeding program in shrimp. In this study, a genome survey was conducted and a high-density linkage map was constructed using a next-generation sequencing approach. The genome survey was used to identify preliminary genome characteristics and to generate a rough reference for linkage map construction. De novo SNP discovery resulted in 25,140 polymorphic markers. A total of 6,359 high-quality markers were selected for linkage map construction based on marker coverage among individuals and read depths. For the linkage map, a total of 6,146 markers spanning 4,271.43 cM were mapped to 44 sex-averaged linkage groups, with an average marker distance of 0.7 cM. An integration analysis linked 5,885 genome scaffolds and 1,504 BAC clones to the linkage map. Based on the high-density linkage map, several QTLs for body weight and body length were detected. This high-density genetic linkage map reveals basic genomic architecture and will be useful for comparative genomics research, genome assembly and genetic improvement of L. vannamei and other penaeid shrimp species. PMID:26503227
Genomics and Biochemistry of Saccharomyces cerevisiae Wine Yeast Strains.
Eldarov, M A; Kishkovskaia, S A; Tanaschuk, T N; Mardanov, A V
2016-12-01
Saccharomyces yeasts have been used for millennia for the production of beer, wine, bread, and other fermented products. Long-term "unconscious" selection and domestication led to the selection of hundreds of strains with desired production traits having significant phenotypic and genetic differences from their wild ancestors. This review summarizes the results of recent research in deciphering the genomes of wine Saccharomyces strains, the use of comparative genomics methods to study the mechanisms of yeast genome evolution under conditions of artificial selection, and the use of genomic and postgenomic approaches to identify the molecular nature of the important characteristics of commercial wine strains of Saccharomyces. Succinctly, data concerning metagenomics of microbial communities of grapes and wine and the dynamics of yeast and bacterial flora in the course of winemaking is provided. A separate section is devoted to an overview of the physiological, genetic, and biochemical features of sherry yeast strains used to produce biologically aged wines. The goal of the review is to convince the reader of the efficacy of new genomic and postgenomic technologies as tools for developing strategies for targeted selection and creation of new strains using "classical" and modern techniques for improving winemaking technology.
Genetic and genomic glimpses of the elusive arbuscular mycorrhizal fungi.
Lanfranco, Luisa; Young, J Peter W
2012-08-01
Arbuscular mycorrhizal fungi (AMF), which form an ancient and widespread mutualistic symbiosis with plants, are a crucial but still enigmatic component of the plant microbiome. Nowadays, their obligate biotrophy is no longer an obstacle to deciphering the role played by AMF in this fascinating symbiosis. The first genome-wide transcriptomic analysis of an AMF showed a metabolic complexity with no sign of massive gene loss, and the presence of genes for meiotic recombination suggests that AMF are not simple clonal organisms, as originally thought. New findings on suppression of host defenses and nutrient exchange processes have shed light on the mechanisms that contribute to such an intimate and long-lasting integration between living plant and fungal cells. Copyright © 2012 Elsevier Ltd. All rights reserved.
Genomic and epigenomic regulation of adipose tissue inflammation in obesity.
Toubal, Amine; Treuter, Eckardt; Clément, Karine; Venteclef, Nicolas
2013-12-01
Chronic inflammation of adipose tissue is viewed as a hallmark of obesity and contributes to the development of type 2 diabetes and cardiovascular disease. According to current models, nutrient excess causes metabolic and structural changes in adipocytes, which initiate transcriptional programs leading to the expression of inflammatory molecules and the subsequent recruitment of immune cells. Recent advances in deciphering the underlying mechanisms revealed that key regulatory events occur at the genomic and epigenomic levels. Here we review these advances because they offer a better understanding of the mechanisms behind the complex obesogenic program in adipose tissue, and because they may help in defining new therapeutic strategies that prevent, restrict, and resolve inflammation in the context of obesity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Although recent technological advances in DNA sequencing and computational biology now allow scientists to compare entire microbial genomes, comparisons of closely related bacterial species and individual isolates by whole-genome sequencing approaches remains prohibitively expens...
Lee, Tae-Rim; Ahn, Jin Mo; Kim, Gyuhee; Kim, Sangsoo
2017-12-01
Next-generation sequencing (NGS) technology has become a trend in the genomics research area. There are many software programs and automated pipelines to analyze NGS data, which can ease the pain for traditional scientists who are not familiar with computer programming. However, downstream analyses, such as finding differentially expressed genes or visualizing linkage disequilibrium maps and genome-wide association study (GWAS) data, still remain a challenge. Here, we introduce a dockerized web application written in R using the Shiny platform to visualize pre-analyzed RNA sequencing and GWAS data. In addition, we have integrated a genome browser based on the JBrowse platform and an automated intermediate parsing process required for custom track construction, so that users can easily build and navigate their personal genome tracks with in-house datasets. This application will help scientists perform series of downstream analyses and obtain a more integrative understanding about various types of genomic data by interactively visualizing them with customizable options.
Deciphering the Minimal Algorithm for Development and Information-genesis
NASA Astrophysics Data System (ADS)
Li, Zhiyuan; Tang, Chao; Li, Hao
During development, cells with identical genomes acquires different fates in a highly organized manner. In order to decipher the principles underlining development, we used C.elegans as the model organism. Based on a large set of microscopy imaging, we first constructed a ``standard worm'' in silico: from the single zygotic cell to about 500 cell stage, the lineage, position, cell-cell contact and gene expression dynamics are quantified for each cell in order to investigate principles underlining these intensive data. Next, we reverse-engineered the possible gene-gene/cell-cell interaction rules that are capable of running a dynamic model recapitulating the early fate decisions during C.elegans development. we further formulized the C.elegans embryogenesis in the language of information genesis. Analysis towards data and model uncovered the global landscape of development in the cell fate space, suggested possible gene regulatory architectures and cell signaling processes, revealed diversity and robustness as the essential trade-offs in development, and demonstrated general strategies in building multicellular organisms.
Genome re-annotation: a wiki solution?
Salzberg, Steven L
2007-01-01
The annotation of most genomes becomes outdated over time, owing in part to our ever-improving knowledge of genomes and in part to improvements in bioinformatics software. Unfortunately, annotation is rarely if ever updated and resources to support routine reannotation are scarce. Wiki software, which would allow many scientists to edit each genome's annotation, offers one possible solution. PMID:17274839
Assembling the bacterial segrosome.
Hayes, Finbarr; Barillà, Daniela
2006-05-01
Genome segregation in prokaryotes is a highly ordered process that integrates with DNA replication, cytokinesis and other fundamental facets of the bacterial cell cycle. The segrosome is the nucleoprotein complex that mediates DNA segregation in bacteria, its assembly and organization is best understood for plasmid partition. The recent elucidation of structures of the ParB plasmid segregation protein bound to centromeric DNA, and of the tertiary structures of other segregation proteins, are key milestones in the path to deciphering the molecular basis of bacterial DNA segregation.
Deciphering the distance to antibiotic resistance for the pneumococcus using genome sequencing data
Mobegi, Fredrick M.; Cremers, Amelieke J. H.; de Jonge, Marien I.; Bentley, Stephen D.; van Hijum, Sacha A. F. T.; Zomer, Aldert
2017-01-01
Advances in genome sequencing technologies and genome-wide association studies (GWAS) have provided unprecedented insights into the molecular basis of microbial phenotypes and enabled the identification of the underlying genetic variants in real populations. However, utilization of genome sequencing in clinical phenotyping of bacteria is challenging due to the lack of reliable and accurate approaches. Here, we report a method for predicting microbial resistance patterns using genome sequencing data. We analyzed whole genome sequences of 1,680 Streptococcus pneumoniae isolates from four independent populations using GWAS and identified probable hotspots of genetic variation which correlate with phenotypes of resistance to essential classes of antibiotics. With the premise that accumulation of putative resistance-conferring SNPs, potentially in combination with specific resistance genes, precedes full resistance, we retrogressively surveyed the hotspot loci and quantified the number of SNPs and/or genes, which if accumulated would confer full resistance to an otherwise susceptible strain. We name this approach the ‘distance to resistance’. It can be used to identify the creep towards complete antibiotics resistance in bacteria using genome sequencing. This approach serves as a basis for the development of future sequencing-based methods for predicting resistance profiles of bacterial strains in hospital microbiology and public health settings. PMID:28205635
Musunuru, Kiran; Arora, Pankaj; Cooke, John P; Ferguson, Jane F; Hershberger, Ray E; Hickey, Kathleen T; Lee, Jin-Moo; Lima, João A C; Loscalzo, Joseph; Pereira, Naveen L; Russell, Mark W; Shah, Svati H; Sheikh, Farah; Wang, Thomas J; MacRae, Calum A
2018-06-01
The completion of the Human Genome Project has unleashed a wealth of human genomics information, but it remains unclear how best to implement this information for the benefit of patients. The standard approach of biomedical research, with researchers pursuing advances in knowledge in the laboratory and, separately, clinicians translating research findings into the clinic as much as decades later, will need to give way to new interdisciplinary models for research in genomic medicine. These models should include scientists and clinicians actively working as teams to study patients and populations recruited in clinical settings and communities to make genomics discoveries-through the combined efforts of data scientists, clinical researchers, epidemiologists, and basic scientists-and to rapidly apply these discoveries in the clinic for the prediction, prevention, diagnosis, prognosis, and treatment of cardiovascular diseases and stroke. The highly publicized US Precision Medicine Initiative, also known as All of Us, is a large-scale program funded by the US National Institutes of Health that will energize these efforts, but several ongoing studies such as the UK Biobank Initiative; the Million Veteran Program; the Electronic Medical Records and Genomics Network; the Kaiser Permanente Research Program on Genes, Environment and Health; and the DiscovEHR collaboration are already providing exemplary models of this kind of interdisciplinary work. In this statement, we outline the opportunities and challenges in broadly implementing new interdisciplinary models in academic medical centers and community settings and bringing the promise of genomics to fruition. © 2018 American Heart Association, Inc.
Riddle, Brett R.
2016-01-01
Deciphering the geographic context of diversification and distributional dynamics in continental biotas has long been an interest of biogeographers, ecologists, and evolutionary biologists. Thirty years ago, the approach now known as comparative phylogeography was introduced in a landmark study of a continental biota. Here, I use a set of 455 studies to explore the current scope of continental comparative phylogeography, including geographic, conceptual, temporal, ecological, and genomic attributes. Geographically, studies are more frequent in the northern hemisphere, but the south is catching up. Most studies focus on a Quaternary timeframe, but the Neogene is well represented. As such, explanations for geographic structure and history include geological and climatic events in Earth history, and responses include vicariance, dispersal, and range contraction-expansion into and out of refugia. Focal taxa are biased toward terrestrial or semiterrestrial vertebrates, although plants and invertebrates are well represented in some regions. The use of various kinds of nuclear DNA markers is increasing, as are multiple locus studies, but use of organelle DNA is not decreasing. Species distribution models are not yet widely incorporated into studies. In the future, continental comparative phylogeographers will continue to contribute to erosion of the simple vicariance vs. dispersal paradigm, including exposure of the widespread nature of temporal pseudocongruence and its implications for models of diversification; provide new templates for addressing a variety of ecological and evolutionary traits; and develop closer working relationships with earth scientists and biologists in a variety of disciplines. PMID:27432953
Riddle, Brett R
2016-07-19
Deciphering the geographic context of diversification and distributional dynamics in continental biotas has long been an interest of biogeographers, ecologists, and evolutionary biologists. Thirty years ago, the approach now known as comparative phylogeography was introduced in a landmark study of a continental biota. Here, I use a set of 455 studies to explore the current scope of continental comparative phylogeography, including geographic, conceptual, temporal, ecological, and genomic attributes. Geographically, studies are more frequent in the northern hemisphere, but the south is catching up. Most studies focus on a Quaternary timeframe, but the Neogene is well represented. As such, explanations for geographic structure and history include geological and climatic events in Earth history, and responses include vicariance, dispersal, and range contraction-expansion into and out of refugia. Focal taxa are biased toward terrestrial or semiterrestrial vertebrates, although plants and invertebrates are well represented in some regions. The use of various kinds of nuclear DNA markers is increasing, as are multiple locus studies, but use of organelle DNA is not decreasing. Species distribution models are not yet widely incorporated into studies. In the future, continental comparative phylogeographers will continue to contribute to erosion of the simple vicariance vs. dispersal paradigm, including exposure of the widespread nature of temporal pseudocongruence and its implications for models of diversification; provide new templates for addressing a variety of ecological and evolutionary traits; and develop closer working relationships with earth scientists and biologists in a variety of disciplines.
Moroz, Leonid L.
2015-01-01
The origins of neural systems and centralized brains are one of the major transitions in evolution. These events might occur more than once over 570–600 million years. The convergent evolution of neural circuits is evident from a diversity of unique adaptive strategies implemented by ctenophores, cnidarians, acoels, molluscs, and basal deuterostomes. But, further integration of biodiversity research and neuroscience is required to decipher critical events leading to development of complex integrative and cognitive functions. Here, we outline reference species and interdisciplinary approaches in reconstructing the evolution of nervous systems. In the “omic” era, it is now possible to establish fully functional genomics laboratories aboard of oceanic ships and perform sequencing and real-time analyses of data at any oceanic location (named here as Ship-Seq). In doing so, fragile, rare, cryptic, and planktonic organisms, or even entire marine ecosystems, are becoming accessible directly to experimental and physiological analyses by modern analytical tools. Thus, we are now in a position to take full advantages from countless “experiments” Nature performed for us in the course of 3.5 billion years of biological evolution. Together with progress in computational and comparative genomics, evolutionary neuroscience, proteomic and developmental biology, a new surprising picture is emerging that reveals many ways of how nervous systems evolved. As a result, this symposium provides a unique opportunity to revisit old questions about the origins of biological complexity. PMID:26163680
Di Guardo, Mario; Bink, Marco C.A.M.; Guerra, Walter; Letschka, Thomas; Lozano, Lidia; Busatto, Nicola; Poles, Lara; Tadiello, Alice; Bianco, Luca; Visser, Richard G.F.; van de Weg, Eric
2017-01-01
Abstract Fruit texture is a complex feature composed of mechanical and acoustic properties relying on the modifications occurring in the cell wall throughout fruit development and ripening. Apple is characterized by a large variation in fruit texture behavior that directly impacts both the consumer’s appreciation and post-harvest performance. To decipher the genetic control of fruit texture comprehensively, two complementing quantitative trait locus (QTL) mapping approaches were employed. The first was represented by a pedigree-based analysis (PBA) carried out on six full-sib pedigreed families, while the second was a genome-wide association study (GWAS) performed on a collection of 233 apple accessions. Both plant materials were genotyped with a 20K single nucleotide polymorphism (SNP) array and phenotyped with a sophisticated high-resolution texture analyzer. The overall QTL results indicated the fundamental role of chromosome 10 in controlling the mechanical properties, while chromosomes 2 and 14 were more associated with the acoustic response. The latter QTL, moreover, showed a consistent relationship between the QTL-estimated genotypes and the acoustic performance assessed among seedlings. The in silico annotation of these intervals revealed interesting candidate genes potentially involved in fruit texture regulation, as suggested by the gene expression profile. The joint integration of these approaches sheds light on the specific control of fruit texture, enabling important genetic information to assist in the selection of valuable fruit quality apple varieties. PMID:28338805
Di Guardo, Mario; Bink, Marco C A M; Guerra, Walter; Letschka, Thomas; Lozano, Lidia; Busatto, Nicola; Poles, Lara; Tadiello, Alice; Bianco, Luca; Visser, Richard G F; van de Weg, Eric; Costa, Fabrizio
2017-03-01
Fruit texture is a complex feature composed of mechanical and acoustic properties relying on the modifications occurring in the cell wall throughout fruit development and ripening. Apple is characterized by a large variation in fruit texture behavior that directly impacts both the consumer's appreciation and post-harvest performance. To decipher the genetic control of fruit texture comprehensively, two complementing quantitative trait locus (QTL) mapping approaches were employed. The first was represented by a pedigree-based analysis (PBA) carried out on six full-sib pedigreed families, while the second was a genome-wide association study (GWAS) performed on a collection of 233 apple accessions. Both plant materials were genotyped with a 20K single nucleotide polymorphism (SNP) array and phenotyped with a sophisticated high-resolution texture analyzer. The overall QTL results indicated the fundamental role of chromosome 10 in controlling the mechanical properties, while chromosomes 2 and 14 were more associated with the acoustic response. The latter QTL, moreover, showed a consistent relationship between the QTL-estimated genotypes and the acoustic performance assessed among seedlings. The in silico annotation of these intervals revealed interesting candidate genes potentially involved in fruit texture regulation, as suggested by the gene expression profile. The joint integration of these approaches sheds light on the specific control of fruit texture, enabling important genetic information to assist in the selection of valuable fruit quality apple varieties. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Cecchini, Tiphaine; Yoon, Eun-Jeong; Charretier, Yannick; Bardet, Chloé; Beaulieu, Corinne; Lacoux, Xavier; Docquier, Jean-Denis; Lemoine, Jerome; Courvalin, Patrice; Grillot-Courvalin, Catherine; Charrier, Jean-Philippe
2018-03-01
Resistance to β-lactams in Acinetobacter baumannii involves various mechanisms. To decipher them, whole genome sequencing (WGS) and real-time quantitative polymerase chain reaction (RT-qPCR) were complemented by mass spectrometry (MS) in selected reaction monitoring mode (SRM) in 39 clinical isolates. The targeted label-free proteomic approach enabled, in one hour and using a single method, the quantitative detection of 16 proteins associated with antibiotic resistance: eight acquired β-lactamases ( i.e. GES, NDM-1, OXA-23, OXA-24, OXA-58, PER, TEM-1, and VEB), two resident β-lactamases ( i.e. ADC and OXA-51-like) and six components of the two major efflux systems ( i.e. AdeABC and AdeIJK). Results were normalized using "bacterial quantotypic peptides," i.e. peptide markers of the bacterial quantity, to obtain precise protein quantitation (on average 8.93% coefficient of variation for three biological replicates). This allowed to correlate the levels of resistance to β-lactam with those of the production of acquired as well as resident β-lactamases or of efflux systems. SRM detected enhanced ADC or OXA-51-like production and absence or increased efflux pump production. Precise protein quantitation was particularly valuable to detect resistance mechanisms mediated by regulated genes or by overexpression of chromosomal genes. Combination of WGS and MS, two orthogonal and complementary techniques, allows thereby interpretation of the resistance phenotypes at the molecular level. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Analysis of pan-genome to identify the core genes and essential genes of Brucella spp.
Yang, Xiaowen; Li, Yajie; Zang, Juan; Li, Yexia; Bie, Pengfei; Lu, Yanli; Wu, Qingmin
2016-04-01
Brucella spp. are facultative intracellular pathogens, that cause a contagious zoonotic disease, that can result in such outcomes as abortion or sterility in susceptible animal hosts and grave, debilitating illness in humans. For deciphering the survival mechanism of Brucella spp. in vivo, 42 Brucella complete genomes from NCBI were analyzed for the pan-genome and core genome by identification of their composition and function of Brucella genomes. The results showed that the total 132,143 protein-coding genes in these genomes were divided into 5369 clusters. Among these, 1710 clusters were associated with the core genome, 1182 clusters with strain-specific genes and 2477 clusters with dispensable genomes. COG analysis indicated that 44 % of the core genes were devoted to metabolism, which were mainly responsible for energy production and conversion (COG category C), and amino acid transport and metabolism (COG category E). Meanwhile, approximately 35 % of the core genes were in positive selection. In addition, 1252 potential essential genes were predicted in the core genome by comparison with a prokaryote database of essential genes. The results suggested that the core genes in Brucella genomes are relatively conservation, and the energy and amino acid metabolism play a more important role in the process of growth and reproduction in Brucella spp. This study might help us to better understand the mechanisms of Brucella persistent infection and provide some clues for further exploring the gene modules of the intracellular survival in Brucella spp.
Solving the Problem: Genome Annotation Standards before the Data Deluge.
Klimke, William; O'Donovan, Claire; White, Owen; Brister, J Rodney; Clark, Karen; Fedorov, Boris; Mizrachi, Ilene; Pruitt, Kim D; Tatusova, Tatiana
2011-10-15
The promise of genome sequencing was that the vast undiscovered country would be mapped out by comparison of the multitude of sequences available and would aid researchers in deciphering the role of each gene in every organism. Researchers recognize that there is a need for high quality data. However, different annotation procedures, numerous databases, and a diminishing percentage of experimentally determined gene functions have resulted in a spectrum of annotation quality. NCBI in collaboration with sequencing centers, archival databases, and researchers, has developed the first international annotation standards, a fundamental step in ensuring that high quality complete prokaryotic genomes are available as gold standard references. Highlights include the development of annotation assessment tools, community acceptance of protein naming standards, comparison of annotation resources to provide consistent annotation, and improved tracking of the evidence used to generate a particular annotation. The development of a set of minimal standards, including the requirement for annotated complete prokaryotic genomes to contain a full set of ribosomal RNAs, transfer RNAs, and proteins encoding core conserved functions, is an historic milestone. The use of these standards in existing genomes and future submissions will increase the quality of databases, enabling researchers to make accurate biological discoveries.
Yan, Liang; Wang, Xiao; Liu, Hui; Tian, Yang; Lian, Jinmin; Yang, Ruijuan; Hao, Shumei; Wang, Xuanjun; Yang, Shengchao; Li, Qiye; Qi, Shuai; Kui, Ling; Okpekum, Moses; Ma, Xiao; Zhang, Jiajin; Ding, Zhaoli; Zhang, Guojie; Wang, Wen; Dong, Yang; Sheng, Jun
2015-06-01
Dendrobium officinale Kimura et Migo is a traditional Chinese orchid herb that has both ornamental value and a broad range of therapeutic effects. Here, we report the first de novo assembled 1.35 Gb genome sequences for D. officinale by combining the second-generation Illumina Hiseq 2000 and third-generation PacBio sequencing technologies. We found that orchids have a complete inflorescence gene set and have some specific inflorescence genes. We observed gene expansion in gene families related to fungus symbiosis and drought resistance. We analyzed biosynthesis pathways of medicinal components of D. officinale and found extensive duplication of SPS and SuSy genes, which are related to polysaccharide generation, and that the pathway of D. officinale alkaloid synthesis could be extended to generate 16-epivellosimine. The D. officinale genome assembly demonstrates a new approach to deciphering large complex genomes and, as an important orchid species and a traditional Chinese medicine, the D. officinale genome will facilitate future research on the evolution of orchid plants, as well as the study of medicinal components and potential genetic breeding of the dendrobe. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.
Chelkha, Nisrine; Colson, Philippe; Levasseur, Anthony; La Scola, Bernard
2018-06-02
Giant viruses infect protozoa, especially amoebae of the genus Acanthamoeba. These viruses possess genetic elements named Mobilome. So far, this mobilome comprises provirophages which are integrated into the genome of their hosts, transpovirons, and Maverick/Polintons. Virophages replicate inside virus factories within Acanthamoeba and can decrease the infectivity of giant viruses. The virophage infecting CroV was found to be integrated in the host of CroV, Cafeteria roenbergensis, thus protecting C. roenbergensis by reduction of CroV multiplication. Because of this unique property, assessment of the mechanisms of replication of virophages and their relationship with giant viruses is a key element of this investigation. This work aimed at evaluating the presence and the dynamic of these mobile elements in sixteen Acanthamoeba genomes. No significant traces of the integration of genomes or sequences from known virophages were identified in all the available Acanthamoeba genomes. These results brought us to hypothesize that the interactions between mimiviruses and their virophages might occur through different mechanisms, or at low frequency. An additional explanation could be that our knowledge of the diversity of virophages is still very limited. Copyright © 2018 Elsevier B.V. All rights reserved.
Solving the Problem: Genome Annotation Standards before the Data Deluge
Klimke, William; O'Donovan, Claire; White, Owen; Brister, J. Rodney; Clark, Karen; Fedorov, Boris; Mizrachi, Ilene; Pruitt, Kim D.; Tatusova, Tatiana
2011-01-01
The promise of genome sequencing was that the vast undiscovered country would be mapped out by comparison of the multitude of sequences available and would aid researchers in deciphering the role of each gene in every organism. Researchers recognize that there is a need for high quality data. However, different annotation procedures, numerous databases, and a diminishing percentage of experimentally determined gene functions have resulted in a spectrum of annotation quality. NCBI in collaboration with sequencing centers, archival databases, and researchers, has developed the first international annotation standards, a fundamental step in ensuring that high quality complete prokaryotic genomes are available as gold standard references. Highlights include the development of annotation assessment tools, community acceptance of protein naming standards, comparison of annotation resources to provide consistent annotation, and improved tracking of the evidence used to generate a particular annotation. The development of a set of minimal standards, including the requirement for annotated complete prokaryotic genomes to contain a full set of ribosomal RNAs, transfer RNAs, and proteins encoding core conserved functions, is an historic milestone. The use of these standards in existing genomes and future submissions will increase the quality of databases, enabling researchers to make accurate biological discoveries. PMID:22180819
Comparative analysis of viral RNA signatures on different RIG-I-like receptors
Sanchez David, Raul Y; Combredet, Chantal; Sismeiro, Odile; Dillies, Marie-Agnès; Jagla, Bernd; Coppée, Jean-Yves; Mura, Marie; Guerbois Galla, Mathilde; Despres, Philippe; Tangy, Frédéric; Komarova, Anastassia V
2016-01-01
The RIG-I-like receptors (RLRs) play a major role in sensing RNA virus infection to initiate and modulate antiviral immunity. They interact with particular viral RNAs, most of them being still unknown. To decipher the viral RNA signature on RLRs during viral infection, we tagged RLRs (RIG-I, MDA5, LGP2) and applied tagged protein affinity purification followed by next-generation sequencing (NGS) of associated RNA molecules. Two viruses with negative- and positive-sense RNA genome were used: measles (MV) and chikungunya (CHIKV). NGS analysis revealed that distinct regions of MV genome were specifically recognized by distinct RLRs: RIG-I recognized defective interfering genomes, whereas MDA5 and LGP2 specifically bound MV nucleoprotein-coding region. During CHIKV infection, RIG-I associated specifically to the 3’ untranslated region of viral genome. This study provides the first comparative view of the viral RNA ligands for RIG-I, MDA5 and LGP2 in the presence of infection. DOI: http://dx.doi.org/10.7554/eLife.11275.001 PMID:27011352
Barth, J M I; Damerau, M; Matschiner, M; Jentoft, S; Hanel, R
2017-04-13
Recent developments in the field of genomics have provided new and powerful insights into population structure and dynamics that are essential for the conservation of biological diversity. As a commercially highly valuable species, the yellowfin tuna (Thunnus albacares) is intensely exploited throughout its distribution in tropical oceans around the world, and is currently classified as near threatened. However, conservation efforts for this species have so far been hampered by limited knowledge of its population structure, due to incongruent results of previous investigations. Here, we use whole-genome sequencing in concert with a draft genome assembly to decipher the global population structure of the yellowfin tuna, and to investigate its demographic history. We detect significant differentiation of Atlantic and Indo-Pacific yellowfin tuna populations as well as the possibility of a third diverged yellowfin tuna group in the Arabian Sea. We further observe evidence for past population expansion as well as asymmetric gene flow from the Indo-Pacific to the Atlantic. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Chaudhary, Sakshi; Mishra, Bharat Kumar; Vivek, Thiruvettai; Magadum, Santoshkumar; Yasin, Jeshima Khan
2016-01-01
Simple Sequence Repeats or microsatellites are resourceful molecular genetic markers. There are only few reports of SSR identification and development in pineapple. Complete genome sequence of pineapple available in the public domain can be used to develop numerous novel SSRs. Therefore, an attempt was made to identify SSRs from genomic, chloroplast, mitochondrial and EST sequences of pineapple which will help in deciphering genetic makeup of its germplasm resources. A total of 359511 SSRs were identified in pineapple (356385 from genome sequence, 45 from chloroplast sequence, 249 in mitochondrial sequence and 2832 from EST sequences). The list of EST-SSR markers and their details are available in the database. PineElm_SSRdb is an open source database available for non-commercial academic purpose at http://app.bioelm.com/ with a mapping tool which can develop circular maps of selected marker set. This database will be of immense use to breeders, researchers and graduates working on Ananas spp. and to others working on cross-species transferability of markers, investigating diversity, mapping and DNA fingerprinting.
DNA Sequencing by Capillary Electrophoresis
Karger, Barry L.; Guttman, Andras
2009-01-01
Sequencing of human and other genomes has been at the center of interest in the biomedical field over the past several decades and is now leading toward an era of personalized medicine. During this time, DNA sequencing methods have evolved from the labor intensive slab gel electrophoresis, through automated multicapillary electrophoresis systems using fluorophore labeling with multispectral imaging, to the “next generation” technologies of cyclic array, hybridization based, nanopore and single molecule sequencing. Deciphering the genetic blueprint and follow-up confirmatory sequencing of Homo sapiens and other genomes was only possible by the advent of modern sequencing technologies that was a result of step by step advances with a contribution of academics, medical personnel and instrument companies. While next generation sequencing is moving ahead at break-neck speed, the multicapillary electrophoretic systems played an essential role in the sequencing of the Human Genome, the foundation of the field of genomics. In this prospective, we wish to overview the role of capillary electrophoresis in DNA sequencing based in part of several of our articles in this journal. PMID:19517496
Deciphering RNA regulatory elements in trypanosomatids: one piece at a time or genome-wide?
Gazestani, Vahid H; Lu, Zhiquan; Salavati, Reza
2014-05-01
Morphological and metabolic changes in the life cycle of Trypanosoma brucei are accomplished by precise regulation of hundreds of genes. In the absence of transcriptional control, RNA-binding proteins (RBPs) shape the structure of gene regulatory maps in this organism, but our knowledge about their target RNAs, binding sites, and mechanisms of action is far from complete. Although recent technological advances have revolutionized the RBP-based approaches, the main framework for the RNA regulatory element (RRE)-based approaches has not changed over the last two decades in T. brucei. In this Opinion, after highlighting the current challenges in RRE inference, we explain some genome-wide solutions that can significantly boost our current understanding about gene regulatory networks in T. brucei. Copyright © 2014 Elsevier Ltd. All rights reserved.
Optimizing mouse models of neurodegenerative disorders: are therapeutics in sight?
Lutz, Cathleen M; Osborne, Melissa A
2013-01-01
The genomic and biologic conservation between mice and humans, along with our increasing ability to manipulate the mouse genome, places the mouse as a premier model for deciphering disease mechanisms and testing potential new therapies. Despite these advantages, mouse models of neurodegenerative disease are sometimes difficult to generate and can present challenges that must be carefully addressed when used for preclinical studies. For those models that do exist, the standardization and optimization of the models is a critical step in ensuring success in both basic research and preclinical use. This review looks back on the history of model development for neurodegenerative diseases and highlights the key strategies that have been learned in order to improve the design, development and use of mouse models in the study of neurodegenerative disease.
Y and W Chromosome Assemblies: Approaches and Discoveries.
Tomaszkiewicz, Marta; Medvedev, Paul; Makova, Kateryna D
2017-04-01
Hundreds of vertebrate genomes have been sequenced and assembled to date. However, most sequencing projects have ignored the sex chromosomes unique to the heterogametic sex - Y and W - that are known as sex-limited chromosomes (SLCs). Indeed, haploid and repetitive Y chromosomes in species with male heterogamety (XY), and W chromosomes in species with female heterogamety (ZW), are difficult to sequence and assemble. Nevertheless, obtaining their sequences is important for understanding the intricacies of vertebrate genome function and evolution. Recent progress has been made towards the adaptation of next-generation sequencing (NGS) techniques to deciphering SLC sequences. We review here currently available methodology and results with regard to SLC sequencing and assembly. We focus on vertebrates, but bring in some examples from other taxa. Copyright © 2017 Elsevier Ltd. All rights reserved.
Full Genome Sequence of Giant Panda Rotavirus Strain CH-1
Guo, Ling; Yang, Shaolin; Wang, Chengdong; Chen, Shijie; Yang, Xiaonong; Hou, Rong; Quan, Zifang; Hao, Zhongxiang
2013-01-01
We report here the complete genomic sequence of the giant panda rotavirus strain CH-1. This work is the first to document the complete genomic sequence (segments 1 to 11) of the CH-1 strain, which offers an effective platform for providing authentic research experiences to novice scientists. PMID:23469354
CRISPR/Cas9-mediated genome editing and gene replacement in plants: Transitioning from lab to field
USDA-ARS?s Scientific Manuscript database
The CRISPR/Cas9 genome engineering system has ignited and swept through the scientific community like wildfire. Owing largely to its efficiency, specificity, and flexibility, the CRISPR/Cas9 system has quickly become the preferred genome-editing tool of plant scientists. In plants, much of the earl...
The complete nucleotide sequence and genomic characterization of tropical soda apple mosaic virus
USDA-ARS?s Scientific Manuscript database
Tropical soda apple mosaic virus (TSAMV) was first identified in tropical soda apple (Solanum viarum), a noxious weed, in Florida in 2002. This report provides the first full genome sequence of TSAMV. The full genome sequence of this virus will enable research scientists to develop additional spec...
National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) scientists have released a dataset of proteins and phosphopeptides identified through deep proteomic and phosphoproteomic analysis of breast tumor samples, previously genomically analyzed by The Cancer Genome Atlas (TCGA).
Africa: continent of genome contrasts with implications for biomedical research and health.
Ramsay, Michèle
2012-08-31
The genomic architecture of African populations is poorly understood and there is considerable variation between ethno-linguistic groups. Genome-wide approaches have been extensively applied to search for genetic associations to complex traits in Europeans, but rarely in Africans. This is largely attributed to lower levels of funding, poor infrastructure and public health systems, and to the small pool of trained scientists. High levels of genetic variation and underlying population structure in Africans present significant challenges, but lower levels of linkage disequilibrium provide an opportunity for more effective localisation of causal variants. High throughput technologies, including dense genotyping arrays, genome sequencing and epigenome studies, together with plummeting costs, are making research more affordable, even for African scientists. Understanding the interactions between genome structure and environmental influences is essential to interpreting their contributions to the increase in infectious diseases and non-communicable diseases, exacerbated by adverse environments and lifestyle choices. The unique genome dynamics in African populations have an important role to play in understanding human health and susceptibility to disease. Copyright © 2012. Published by Elsevier B.V.
Mark Jensen | Frederick National Laboratory for Cancer Research
Mark Jensen, senior principal scientist, Research Programs Administration, is the scientific lead for the Genomic Data Commons (GDC), which he describes as “NCI’s main resource for collecting and distributing cancer genomics data.” Before joini
Sequence of the tomato chloroplast DNA and evolutionary comparison of solanaceous plastid genomes.
Kahlau, Sabine; Aspinall, Sue; Gray, John C; Bock, Ralph
2006-08-01
Tomato, Solanum lycopersicum (formerly Lycopersicon esculentum), has long been one of the classical model species of plant genetics. More recently, solanaceous species have become a model of evolutionary genomics, with several EST projects and a tomato genome project having been initiated. As a first contribution toward deciphering the genetic information of tomato, we present here the complete sequence of the tomato chloroplast genome (plastome). The size of this circular genome is 155,461 base pairs (bp), with an average AT content of 62.14%. It contains 114 genes and conserved open reading frames (ycfs). Comparison with the previously sequenced plastid DNAs of Nicotiana tabacum and Atropa belladonna reveals patterns of plastid genome evolution in the Solanaceae family and identifies varying degrees of conservation of individual plastid genes. In addition, we discovered several new sites of RNA editing by cytidine-to-uridine conversion. A detailed comparison of editing patterns in the three solanaceous species highlights the dynamics of RNA editing site evolution in chloroplasts. To assess the level of intraspecific plastome variation in tomato, the plastome of a second tomato cultivar was sequenced. Comparison of the two genotypes (IPA-6, bred in South America, and Ailsa Craig, bred in Europe) revealed no nucleotide differences, suggesting that the plastomes of modern tomato cultivars display very little, if any, sequence variation.
Distinctive characters of Nostoc genomes in cyanolichens.
Gagunashvili, Andrey N; Andrésson, Ólafur S
2018-06-05
Cyanobacteria of the genus Nostoc are capable of forming symbioses with a wide range of organism, including a diverse assemblage of cyanolichens. Only certain lineages of Nostoc appear to be able to form a close, stable symbiosis, raising the question whether symbiotic competence is determined by specific sets of genes and functionalities. We present the complete genome sequencing, annotation and analysis of two lichen Nostoc strains. Comparison with other Nostoc genomes allowed identification of genes potentially involved in symbioses with a broad range of partners including lichen mycobionts. The presence of additional genes necessary for symbiotic competence is likely reflected in larger genome sizes of symbiotic Nostoc strains. Some of the identified genes are presumably involved in the initial recognition and establishment of the symbiotic association, while others may confer advantage to cyanobionts during cohabitation with a mycobiont in the lichen symbiosis. Our study presents the first genome sequencing and genome-scale analysis of lichen-associated Nostoc strains. These data provide insight into the molecular nature of the cyanolichen symbiosis and pinpoint candidate genes for further studies aimed at deciphering the genetic mechanisms behind the symbiotic competence of Nostoc. Since many phylogenetic studies have shown that Nostoc is a polyphyletic group that includes several lineages, this work also provides an improved molecular basis for demarcation of a Nostoc clade with symbiotic competence.
Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function.
Mehrotra, Shweta; Goyal, Vinod
2014-08-01
Repetitive DNA sequences are a major component of eukaryotic genomes and may account for up to 90% of the genome size. They can be divided into minisatellite, microsatellite and satellite sequences. Satellite DNA sequences are considered to be a fast-evolving component of eukaryotic genomes, comprising tandemly-arrayed, highly-repetitive and highly-conserved monomer sequences. The monomer unit of satellite DNA is 150-400 base pairs (bp) in length. Repetitive sequences may be species- or genus-specific, and may be centromeric or subtelomeric in nature. They exhibit cohesive and concerted evolution caused by molecular drive, leading to high sequence homogeneity. Repetitive sequences accumulate variations in sequence and copy number during evolution, hence they are important tools for taxonomic and phylogenetic studies, and are known as "tuning knobs" in the evolution. Therefore, knowledge of repetitive sequences assists our understanding of the organization, evolution and behavior of eukaryotic genomes. Repetitive sequences have cytoplasmic, cellular and developmental effects and play a role in chromosomal recombination. In the post-genomics era, with the introduction of next-generation sequencing technology, it is possible to evaluate complex genomes for analyzing repetitive sequences and deciphering the yet unknown functional potential of repetitive sequences. Copyright © 2014 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.
SG-ADVISER CNV: copy-number variant annotation and interpretation.
Erikson, Galina A; Deshpande, Neha; Kesavan, Balachandar G; Torkamani, Ali
2015-09-01
Copy-number variants have been associated with a variety of diseases, especially cancer, autism, schizophrenia, and developmental delay. The majority of clinically relevant events occur de novo, necessitating the interpretation of novel events. In this light, we present the Scripps Genome ADVISER CNV annotation pipeline and Web server, which aims to fill the gap between copy number variant detection and interpretation by performing in-depth annotations and functional predictions for copy number variants. The Scripps Genome ADVISER CNV suite includes a Web server interface to a high-performance computing environment for calculations of annotations and a table-based user interface that allows for the execution of numerous annotation-based variant filtration strategies and statistics. The annotation results include details regarding location, impact on the coding portion of genes, allele frequency information (including allele frequencies from the Scripps Wellderly cohort), and overlap information with other reference data sets (including ClinVar, DGV, DECIPHER). A summary variant classification is produced (ADVISER score) based on the American College of Medical Genetics and Genomics scoring guidelines. We demonstrate >90% sensitivity/specificity for detection of pathogenic events. Scripps Genome ADVISER CNV is designed to allow users with no prior bioinformatics expertise to manipulate large volumes of copy-number variant data. Scripps Genome ADVISER CNV is available at http://genomics.scripps.edu/ADVISER/.
NGSPanPipe: A Pipeline for Pan-genome Identification in Microbial Strains from Experimental Reads.
Kulsum, Umay; Kapil, Arti; Singh, Harpreet; Kaur, Punit
2018-01-01
Recent advancements in sequencing technologies have decreased both time span and cost for sequencing the whole bacterial genome. High-throughput Next-Generation Sequencing (NGS) technology has led to the generation of enormous data concerning microbial populations publically available across various repositories. As a consequence, it has become possible to study and compare the genomes of different bacterial strains within a species or genus in terms of evolution, ecology and diversity. Studying the pan-genome provides insights into deciphering microevolution, global composition and diversity in virulence and pathogenesis of a species. It can also assist in identifying drug targets and proposing vaccine candidates. The effective analysis of these large genome datasets necessitates the development of robust tools. Current methods to develop pan-genome do not support direct input of raw reads from the sequencer machine but require preprocessing of reads as an assembled protein/gene sequence file or the binary matrix of orthologous genes/proteins. We have designed an easy-to-use integrated pipeline, NGSPanPipe, which can directly identify the pan-genome from short reads. The output from the pipeline is compatible with other pan-genome analysis tools. We evaluated our pipeline with other methods for developing pan-genome, i.e. reference-based assembly and de novo assembly using simulated reads of Mycobacterium tuberculosis. The single script pipeline (pipeline.pl) is applicable for all bacterial strains. It integrates multiple in-house Perl scripts and is freely accessible from https://github.com/Biomedinformatics/NGSPanPipe .
3D chromosome rendering from Hi-C data using virtual reality
NASA Astrophysics Data System (ADS)
Zhu, Yixin; Selvaraj, Siddarth; Weber, Philip; Fang, Jennifer; Schulze, Jürgen P.; Ren, Bing
2015-01-01
Most genome browsers display DNA linearly, using single-dimensional depictions that are useful to examine certain epigenetic mechanisms such as DNA methylation. However, these representations are insufficient to visualize intrachromosomal interactions and relationships between distal genome features. Relationships between DNA regions may be difficult to decipher or missed entirely if those regions are distant in one dimension but could be spatially proximal when mapped to three-dimensional space. For example, the visualization of enhancers folding over genes is only fully expressed in three-dimensional space. Thus, to accurately understand DNA behavior during gene expression, a means to model chromosomes is essential. Using coordinates generated from Hi-C interaction frequency data, we have created interactive 3D models of whole chromosome structures and its respective domains. We have also rendered information on genomic features such as genes, CTCF binding sites, and enhancers. The goal of this article is to present the procedure, findings, and conclusions of our models and renderings.
Maghuly, Fatemeh; Laimer, Margit
2013-01-01
Jatropha curcas is currently attracting much attention as an oilseed crop for biofuel, as Jatropha can grow under climate and soil conditions that are unsuitable for food production. However, little is known about Jatropha, and there are a number of challenges to be overcome. In fact, Jatropha has not really been domesticated; most of the Jatropha accessions are toxic, which renders the seedcake unsuitable for use as animal feed. The seeds of Jatropha contain high levels of polyunsaturated fatty acids, which negatively impact the biofuel quality. Fruiting of Jatropha is fairly continuous, thus increasing costs of harvesting. Therefore, before starting any improvement program using conventional or molecular breeding techniques, understanding gene function and the genome scale of Jatropha are prerequisites. This review presents currently available and relevant information on the latest technologies (genomics, transcriptomics, proteomics and metabolomics) to decipher important metabolic pathways within Jatropha, such as oil and toxin synthesis. Further, it discusses future directions for biotechnological approaches in Jatropha breeding and improvement. PMID:24092674
Touret, Franck; Guiguen, François; Greenland, Timothy; Terzian, Christophe
2014-12-09
Retroviruses are RNA viruses that are able to synthesize a DNA copy of their genome and insert it into a chromosome of the host cell. Sequencing of different eukaryote genomes has revealed the presence of many such endogenous retroviral sequences. The mechanisms by which these retroviral sequences have colonized the genome are still unknown, and the endogenous retrovirus gypsy of Drosophila melanogaster is a powerful experimental model for deciphering this process in vivo. Gypsy is expressed in a layer of somatic cells, and then transferred into the oocyte by an unknown mechanism. This critical step is the start of the endogenization process. Moreover gypsy has been shown to have infectious properties, probably due to its envelope gene acquired from a baculovirus. Recently we have also shown that gypsy maternal transmission is reduced in the presence of the endosymbiotic bacterium Wolbachia. These studies demonstrate that gypsy is a unique and powerful model for understanding the endogenization of retroviruses.
Touret, Franck; Guiguen, François; Greenland, Timothy; Terzian, Christophe
2014-01-01
Retroviruses are RNA viruses that are able to synthesize a DNA copy of their genome and insert it into a chromosome of the host cell. Sequencing of different eukaryote genomes has revealed the presence of many such endogenous retroviral sequences. The mechanisms by which these retroviral sequences have colonized the genome are still unknown, and the endogenous retrovirus gypsy of Drosophila melanogaster is a powerful experimental model for deciphering this process in vivo. Gypsy is expressed in a layer of somatic cells, and then transferred into the oocyte by an unknown mechanism. This critical step is the start of the endogenization process. Moreover gypsy has been shown to have infectious properties, probably due to its envelope gene acquired from a baculovirus. Recently we have also shown that gypsy maternal transmission is reduced in the presence of the endosymbiotic bacterium Wolbachia. These studies demonstrate that gypsy is a unique and powerful model for understanding the endogenization of retroviruses. PMID:25502325
Target Capture during Mos1 Transposition*
Pflieger, Aude; Jaillet, Jerôme; Petit, Agnès; Augé-Gouillou, Corinne; Renault, Sylvaine
2014-01-01
DNA transposition contributes to genomic plasticity. Target capture is a key step in the transposition process, because it contributes to the selection of new insertion sites. Nothing or little is known about how eukaryotic mariner DNA transposons trigger this step. In the case of Mos1, biochemistry and crystallography have deciphered several inverted terminal repeat-transposase complexes that are intermediates during transposition. However, the target capture complex is still unknown. Here, we show that the preintegration complex (i.e., the excised transposon) is the only complex able to capture a target DNA. Mos1 transposase does not support target commitment, which has been proposed to explain Mos1 random genomic integrations within host genomes. We demonstrate that the TA dinucleotide used as the target is crucial both to target recognition and in the chemistry of the strand transfer reaction. Bent DNA molecules are better targets for the capture when the target DNA is nicked two nucleotides apart from the TA. They improve strand transfer when the target DNA contains a mismatch near the TA dinucleotide. PMID:24269942
Genetics and Molecular Pathogenesis of Gastric Adenocarcinoma.
Tan, Patrick; Yeoh, Khay-Guan
2015-10-01
Gastric cancer (GC) is globally the fifth most common cancer and third leading cause of cancer death. A complex disease arising from the interaction of environmental and host-associated factors, key contributors to GC's high mortality include its silent nature, late clinical presentation, and underlying biological and genetic heterogeneity. Achieving a detailed molecular understanding of the various genomic aberrations associated with GC will be critical to improving patient outcomes. The recent years has seen considerable progress in deciphering the genomic landscape of GC, identifying new molecular components such as ARID1A and RHOA, cellular pathways, and tissue populations associated with gastric malignancy and progression. The Cancer Genome Atlas (TCGA) project is a landmark in the molecular characterization of GC. Key challenges for the future will involve the translation of these molecular findings to clinical utility, by enabling novel strategies for early GC detection, and precision therapies for individual GC patients. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.
Target capture during Mos1 transposition.
Pflieger, Aude; Jaillet, Jerôme; Petit, Agnès; Augé-Gouillou, Corinne; Renault, Sylvaine
2014-01-03
DNA transposition contributes to genomic plasticity. Target capture is a key step in the transposition process, because it contributes to the selection of new insertion sites. Nothing or little is known about how eukaryotic mariner DNA transposons trigger this step. In the case of Mos1, biochemistry and crystallography have deciphered several inverted terminal repeat-transposase complexes that are intermediates during transposition. However, the target capture complex is still unknown. Here, we show that the preintegration complex (i.e., the excised transposon) is the only complex able to capture a target DNA. Mos1 transposase does not support target commitment, which has been proposed to explain Mos1 random genomic integrations within host genomes. We demonstrate that the TA dinucleotide used as the target is crucial both to target recognition and in the chemistry of the strand transfer reaction. Bent DNA molecules are better targets for the capture when the target DNA is nicked two nucleotides apart from the TA. They improve strand transfer when the target DNA contains a mismatch near the TA dinucleotide.
Azam, Syed Sikander; Shamim, Amen
2014-09-01
The discovery of novel drug targets of a genome that can bind with high affinity to drug-like compounds is a significant challenge in drug development. Streptococcus gordonii initiates dental plaque formation and endocarditis by entering into the blood stream, usually after oral trauma. The prolonged use of antibiotics is raising a problem of multi-drug resistance and lack of an optimal therapeutic regime that necessitates the drug discovery of vital importance in curing various infections. To overcome this dilemma, the in silico approach paves the way for identification and qualitative characterization of promising drug targets for S. gordonii that encompass three phases of analyses. The present study deciphers drug target genomes of S. gordonii in which 93 proteins were identified as potential drug targets and 16 proteins were found to be involved in unique metabolic pathways. Highlighted information will convincingly render to facilitate selection of S. gordonii proteins for successful entry into drug design pipelines. Copyright © 2014 Elsevier Inc. All rights reserved.
Dagan, Tal; Roettger, Mayo; Stucken, Karina; Landan, Giddy; Koch, Robin; Major, Peter; Gould, Sven B; Goremykin, Vadim V; Rippka, Rosmarie; Tandeau de Marsac, Nicole; Gugger, Muriel; Lockhart, Peter J; Allen, John F; Brune, Iris; Maus, Irena; Pühler, Alfred; Martin, William F
2013-01-01
Cyanobacteria forged two major evolutionary transitions with the invention of oxygenic photosynthesis and the bestowal of photosynthetic lifestyle upon eukaryotes through endosymbiosis. Information germane to understanding those transitions is imprinted in cyanobacterial genomes, but deciphering it is complicated by lateral gene transfer (LGT). Here, we report genome sequences for the morphologically most complex true-branching cyanobacteria, and for Scytonema hofmanni PCC 7110, which with 12,356 proteins is the most gene-rich prokaryote currently known. We investigated components of cyanobacterial evolution that have been vertically inherited, horizontally transferred, and donated to eukaryotes at plastid origin. The vertical component indicates a freshwater origin for water-splitting photosynthesis. Networks of the horizontal component reveal that 60% of cyanobacterial gene families have been affected by LGT. Plant nuclear genes acquired from cyanobacteria define a lower bound frequency of 611 multigene families that, in turn, specify diazotrophic cyanobacterial lineages as having a gene collection most similar to that possessed by the plastid ancestor.
Civaň, Peter; Foster, Peter G; Embley, Martin T; Séneca, Ana; Cox, Cymon J
2014-04-01
Despite the significance of the relationships between embryophytes and their charophyte algal ancestors in deciphering the origin and evolutionary success of land plants, few chloroplast genomes of the charophyte algae have been reconstructed to date. Here, we present new data for three chloroplast genomes of the freshwater charophytes Klebsormidium flaccidum (Klebsormidiophyceae), Mesotaenium endlicherianum (Zygnematophyceae), and Roya anglica (Zygnematophyceae). The chloroplast genome of Klebsormidium has a quadripartite organization with exceptionally large inverted repeat (IR) regions and, uniquely among streptophytes, has lost the rrn5 and rrn4.5 genes from the ribosomal RNA (rRNA) gene cluster operon. The chloroplast genome of Roya differs from other zygnematophycean chloroplasts, including the newly sequenced Mesotaenium, by having a quadripartite structure that is typical of other streptophytes. On the basis of the improbability of the novel gain of IR regions, we infer that the quadripartite structure has likely been lost independently in at least three zygnematophycean lineages, although the absence of the usual rRNA operonic synteny in the IR regions of Roya may indicate their de novo origin. Significantly, all zygnematophycean chloroplast genomes have undergone substantial genomic rearrangement, which may be the result of ancient retroelement activity evidenced by the presence of integrase-like and reverse transcriptase-like elements in the Roya chloroplast genome. Our results corroborate the close phylogenetic relationship between Zygnematophyceae and land plants and identify 89 protein-coding genes and 22 introns present in the chloroplast genome at the time of the evolutionary transition of plants to land, all of which can be found in the chloroplast genomes of extant charophytes.
2012-01-01
Background The genome of Mycobacterium avium subspecies paratuberculosis (MAP) is remarkably homogeneous among the genomes of bovine, human and wildlife isolates. However, previous work in our laboratories with the bovine K-10 strain has revealed substantial differences compared to sheep isolates. To systematically characterize all genomic differences that may be associated with the specific hosts, we sequenced the genomes of three U.S. sheep isolates and also obtained an optical map. Results Our analysis of one of the isolates, MAP S397, revealed a genome 4.8 Mb in size with 4,700 open reading frames (ORFs). Comparative analysis of the MAP S397 isolate showed it acquired approximately 10 large sequence regions that are shared with the human M. avium subsp. hominissuis strain 104 and lost 2 large regions that are present in the bovine strain. In addition, optical mapping defined the presence of 7 large inversions between the bovine and ovine genomes (~ 2.36 Mb). Whole-genome sequencing of 2 additional sheep strains of MAP (JTC1074 and JTC7565) further confirmed genomic homogeneity of the sheep isolates despite the presence of polymorphisms on the nucleotide level. Conclusions Comparative sequence analysis employed here provided a better understanding of the host association, evolution of members of the M. avium complex and could help in deciphering the phenotypic differences observed among sheep and cattle strains of MAP. A similar approach based on whole-genome sequencing combined with optical mapping could be employed to examine closely related pathogens. We propose an evolutionary scenario for M. avium complex strains based on these genome sequences. PMID:22409516
Civáň, Peter; Foster, Peter G.; Embley, Martin T.; Séneca, Ana; Cox, Cymon J.
2014-01-01
Despite the significance of the relationships between embryophytes and their charophyte algal ancestors in deciphering the origin and evolutionary success of land plants, few chloroplast genomes of the charophyte algae have been reconstructed to date. Here, we present new data for three chloroplast genomes of the freshwater charophytes Klebsormidium flaccidum (Klebsormidiophyceae), Mesotaenium endlicherianum (Zygnematophyceae), and Roya anglica (Zygnematophyceae). The chloroplast genome of Klebsormidium has a quadripartite organization with exceptionally large inverted repeat (IR) regions and, uniquely among streptophytes, has lost the rrn5 and rrn4.5 genes from the ribosomal RNA (rRNA) gene cluster operon. The chloroplast genome of Roya differs from other zygnematophycean chloroplasts, including the newly sequenced Mesotaenium, by having a quadripartite structure that is typical of other streptophytes. On the basis of the improbability of the novel gain of IR regions, we infer that the quadripartite structure has likely been lost independently in at least three zygnematophycean lineages, although the absence of the usual rRNA operonic synteny in the IR regions of Roya may indicate their de novo origin. Significantly, all zygnematophycean chloroplast genomes have undergone substantial genomic rearrangement, which may be the result of ancient retroelement activity evidenced by the presence of integrase-like and reverse transcriptase-like elements in the Roya chloroplast genome. Our results corroborate the close phylogenetic relationship between Zygnematophyceae and land plants and identify 89 protein-coding genes and 22 introns present in the chloroplast genome at the time of the evolutionary transition of plants to land, all of which can be found in the chloroplast genomes of extant charophytes. PMID:24682153
Complete genome sequence of Tomato mosaic virus isolated from jasmine in the United States
USDA-ARS?s Scientific Manuscript database
Tomato mosaic virus (ToMV) was first identified in jasmine in the U.S. in Florida in 1999. This report provides the first full genome sequence of a ToMV isolate from jasmine. The full genome sequence of this virus will enable research scientists to develop additional specific diagnostic tests for ...
USDA-ARS?s Scientific Manuscript database
The Collaborative African Genomics Network (CAfGEN) aims to establish sustainable genomics research programs in Botswana and Uganda through long-term training of PhD students from these countries at Baylor College of Medicine. Here, we present an overview of the CAfGEN PhD training program alongside...
2014-01-01
The Bactrian camel (Camelus bactrianus) and the dromedary (Camelus dromedarius) are among the last species that have been domesticated around 3000–6000 years ago. During domestication, strong artificial (anthropogenic) selection has shaped the livestock, creating a huge amount of phenotypes and breeds. Hence, domestic animals represent a unique resource to understand the genetic basis of phenotypic variation and adaptation. Similar to its late domestication history, the Bactrian camel is also among the last livestock animals to have its genome sequenced and deciphered. As no genomic data have been available until recently, we generated a de novo assembly by shotgun sequencing of a single male Bactrian camel. We obtained 1.6 Gb genomic sequences, which correspond to more than half of the Bactrian camel’s genome. The aim of this study was to identify heterozygous single-nucleotide polymorphisms (SNPs) and to estimate population parameters and nucleotide diversity based on an individual camel. With an average 6.6-fold coverage, we detected over 116 000 heterozygous SNPs and recorded a genome-wide nucleotide diversity similar to that of other domesticated ungulates. More than 20 000 (85%) dromedary expressed sequence tags successfully aligned to our genomic draft. Our results provide a template for future association studies targeting economically relevant traits and to identify changes underlying the process of camel domestication and environmental adaptation. PMID:23454912
Wu, Jiaxin; Wu, Mengmeng; Li, Lianshuo; Liu, Zhuo; Zeng, Wanwen; Jiang, Rui
2016-01-01
The recent advancement of the next generation sequencing technology has enabled the fast and low-cost detection of all genetic variants spreading across the entire human genome, making the application of whole-genome sequencing a tendency in the study of disease-causing genetic variants. Nevertheless, there still lacks a repository that collects predictions of functionally damaging effects of human genetic variants, though it has been well recognized that such predictions play a central role in the analysis of whole-genome sequencing data. To fill this gap, we developed a database named dbWGFP (a database and web server of human whole-genome single nucleotide variants and their functional predictions) that contains functional predictions and annotations of nearly 8.58 billion possible human whole-genome single nucleotide variants. Specifically, this database integrates 48 functional predictions calculated by 17 popular computational methods and 44 valuable annotations obtained from various data sources. Standalone software, user-friendly query services and free downloads of this database are available at http://bioinfo.au.tsinghua.edu.cn/dbwgfp. dbWGFP provides a valuable resource for the analysis of whole-genome sequencing, exome sequencing and SNP array data, thereby complementing existing data sources and computational resources in deciphering genetic bases of human inherited diseases. © The Author(s) 2016. Published by Oxford University Press.
AN ECOLOGICAL PERSPECTIVE OF GENOMICS: ASSESSING ECOLOGICAL RISK THROUGH PARTNERSHIPS
The application of new molecular biological tools to environmental toxicology was discussed at an international workshop attended by
approximately 60 government, academic, and industrial scientists. The sequencing of the human genome, development of microarrays and
DNA chip...
Literature and patent analysis of the cloning and identification of human functional genes in China.
Xia, Yan; Tang, LiSha; Yao, Lei; Wan, Bo; Yang, XianMei; Yu, Long
2012-03-01
The Human Genome Project was launched at the end of the 1980s. Since then, the cloning and identification of functional genes has been a major focus of research across the world. In China too, the potentially profound impact of such studies on the life sciences and on human health was realized, and relevant studies were initiated in the 1990s. To advance China's involvement in the Human Genome Project, in the mid-1990s, Committee of Experts in Biology from National High Technology Research and Development Program of China (863 Program) proposed the "two 1%" goal. This goal envisaged China contributing 1% of the total sequencing work, and cloning and identifying 1% of the total human functional genes. Over the past 20 years, tremendous achievement has been accomplished by Chinese scientists. It is well known that scientists in China finished the 1% of sequencing work of the Human Genome Project, whereas, there is no comprehensive report about "whether China had finished cloning and identifying 1% of human functional genes". In the present study, the GenBank database at the National Center of Biotechnology Information, the PubMed search tool, and the patent database of the State Intellectual Property Office, China, were used to retrieve entries based on two screening standards: (i) Were the newly cloned and identified genes first reported by Chinese scientists? (ii) Were the Chinese scientists awarded the gene sequence patent? Entries were retrieved from the databases up to the cut-off date of 30 June 2011 and the obtained data were analyzed further. The results showed that 589 new human functional genes were first reported by Chinese scientists and 159 gene sequences were patented (http://gene.fudan.sh.cn/introduction/database/chinagene/chinagene.html). This study systematically summarizes China's contributions to human functional genomics research and answers the question "has China finished cloning and identifying 1% of human functional genes?" in the affirmative.
Genome editing: Bioethics shows the way.
Neuhaus, Carolyn P; Caplan, Arthur L
2017-03-01
When some scientists hear the word "bioethics," they break out in intellectual hives. They shouldn't. Good bioethics is about enabling science to move forward. Bioethics pushes scientists to acknowledge that they operate not within a vacuum but within a society in which diverse perspectives and values must be engaged. Bioethicists give voice to those divergent perspectives and provide a framework to facilitate informed and inclusive discussions that spur progress, rather than stall it. The field is needed to advance cutting-edge biomedical research in domains in which the benefits to be had are enormous, such as genome editing, but ethical concerns persist.
DECIPHER, a Search-Based Approach to Chimera Identification for 16S rRNA Sequences
Wright, Erik S.; Yilmaz, L. Safak
2012-01-01
DECIPHER is a new method for finding 16S rRNA chimeric sequences by the use of a search-based approach. The method is based upon detecting short fragments that are uncommon in the phylogenetic group where a query sequence is classified but frequently found in another phylogenetic group. The algorithm was calibrated for full sequences (fs_DECIPHER) and short sequences (ss_DECIPHER) and benchmarked against WigeoN (Pintail), ChimeraSlayer, and Uchime using artificially generated chimeras. Overall, ss_DECIPHER and Uchime provided the highest chimera detection for sequences 100 to 600 nucleotides long (79% and 81%, respectively), but Uchime's performance deteriorated for longer sequences, while ss_DECIPHER maintained a high detection rate (89%). Both methods had low false-positive rates (1.3% and 1.6%). The more conservative fs_DECIPHER, benchmarked only for sequences longer than 600 nucleotides, had an overall detection rate lower than that of ss_DECIPHER (75%) but higher than those of the other programs. In addition, fs_DECIPHER had the lowest false-positive rate among all the benchmarked programs (<0.20%). DECIPHER was outperformed only by ChimeraSlayer and Uchime when chimeras were formed from closely related parents (less than 10% divergence). Given the differences in the programs, it was possible to detect over 89% of all chimeras with just the combination of ss_DECIPHER and Uchime. Using fs_DECIPHER, we detected between 1% and 2% additional chimeras in the RDP, SILVA, and Greengenes databases from which chimeras had already been removed with Pintail or Bellerophon. DECIPHER was implemented in the R programming language and is directly accessible through a webpage or by downloading the program as an R package (http://DECIPHER.cee.wisc.edu). PMID:22101057
National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) scientists have just released a comprehensive dataset of the proteomic analysis of high grade serous ovarian tumor samples, previously genomically analyzed by The Cancer Genome Atlas (TCGA). This is one of the largest public datasets covering the proteome, phosphoproteome and glycoproteome with complementary deep genomic sequencing data on the same tumor.
Oueslati, Amel; Salhi-Hannachi, Amel; Luro, François; Vignes, Hélène; Mournet, Pierre; Ollitrault, Patrick
2017-01-01
The mandarin horticultural group is an important component of world citrus production for the fresh fruit market. This group formerly classified as C. reticulata is highly polymorphic and recent molecular studies have suggested that numerous cultivated mandarins were introgressed by C. maxima (the pummelos). C. maxima and C. reticulata are also the ancestors of sweet and sour oranges, grapefruit, and therefore of all the "small citrus" modern varieties (mandarins, tangors, tangelos) derived from sexual hybridization between these horticultural groups. Recently, NGS technologies have greatly modified how plant evolution and genomic structure are analyzed, moving from phylogenetics to phylogenomics. The objective of this work was to develop a workflow for phylogenomic inference from Genotyping By Sequencing (GBS) data and to analyze the interspecific admixture along the nine citrus chromosomes for horticultural groups and recent varieties resulting from the combination of the C. reticulata and C. maxima gene pools. A GBS library was established from 55 citrus varieties, using the ApekI restriction enzyme and selective PCR to improve the read depth. Diagnostic polymorphisms (DPs) of C. reticulata/C. maxima differentiation were identified and used to decipher the phylogenomic structure of the 55 varieties. The GBS approach was powerful and revealed 30,289 SNPs and 8,794 Indels with 12.6% of missing data. 11,133 DPs were selected covering the nine chromosomes with a higher density in genic regions. GBS combined with the detection of DPs was powerful for deciphering the "phylogenomic karyotypes" of cultivars derived from admixture of the two ancestral species after a limited number of interspecific recombinations. All the mandarins, mandarin hybrids, tangelos and tangors analyzed displayed introgression of C. maxima in different parts of the genome. C. reticulata/C. maxima admixture should be a major component of the high phenotypic variability of this germplasm opening up the way for association studies based on phylogenomics.
Oueslati, Amel; Salhi-Hannachi, Amel; Luro, François; Vignes, Hélène; Mournet, Pierre
2017-01-01
The mandarin horticultural group is an important component of world citrus production for the fresh fruit market. This group formerly classified as C. reticulata is highly polymorphic and recent molecular studies have suggested that numerous cultivated mandarins were introgressed by C. maxima (the pummelos). C. maxima and C. reticulata are also the ancestors of sweet and sour oranges, grapefruit, and therefore of all the “small citrus” modern varieties (mandarins, tangors, tangelos) derived from sexual hybridization between these horticultural groups. Recently, NGS technologies have greatly modified how plant evolution and genomic structure are analyzed, moving from phylogenetics to phylogenomics. The objective of this work was to develop a workflow for phylogenomic inference from Genotyping By Sequencing (GBS) data and to analyze the interspecific admixture along the nine citrus chromosomes for horticultural groups and recent varieties resulting from the combination of the C. reticulata and C. maxima gene pools. A GBS library was established from 55 citrus varieties, using the ApekI restriction enzyme and selective PCR to improve the read depth. Diagnostic polymorphisms (DPs) of C. reticulata/C. maxima differentiation were identified and used to decipher the phylogenomic structure of the 55 varieties. The GBS approach was powerful and revealed 30,289 SNPs and 8,794 Indels with 12.6% of missing data. 11,133 DPs were selected covering the nine chromosomes with a higher density in genic regions. GBS combined with the detection of DPs was powerful for deciphering the “phylogenomic karyotypes” of cultivars derived from admixture of the two ancestral species after a limited number of interspecific recombinations. All the mandarins, mandarin hybrids, tangelos and tangors analyzed displayed introgression of C. maxima in different parts of the genome. C. reticulata/C. maxima admixture should be a major component of the high phenotypic variability of this germplasm opening up the way for association studies based on phylogenomics. PMID:28982157
Calcium/calmodulin-mediated signal network in plants
NASA Technical Reports Server (NTRS)
Yang, Tianbao; Poovaiah, B. W.
2003-01-01
Various extracellular stimuli elicit specific calcium signatures that can be recognized by different calcium sensors. Calmodulin, the predominant calcium receptor, is one of the best-characterized calcium sensors in eukaryotes. In recent years, completion of the Arabidopsis genome project and advances in functional genomics have helped to identify and characterize numerous calmodulin-binding proteins in plants. There are some similarities in Ca(2+)/calmodulin-mediated signaling in plants and animals. However, plants possess multiple calmodulin genes and many calmodulin target proteins, including unique protein kinases and transcription factors. Some of these proteins are likely to act as "hubs" during calcium signal transduction. Hence, a better understanding of the function of these calmodulin target proteins should help in deciphering the Ca(2+)/calmodulin-mediated signal network and its role in plant growth, development and response to environmental stimuli.
ERIC Educational Resources Information Center
Ceccarelli, Leah
2004-01-01
This article undertakes a close rhetorical reading of the speeches given by Bill Clinton, Tony Blair, Francis Collins, and Craig Venter on June 26, 2000, at the White House ceremony announcing the completion of the Human Genome Project. Specifically, it looks at the metaphors used by each speaker to describe the activity of genomic scientists.…
Highlights of recent articles on data mining in genomics & proteomics
USDA-ARS?s Scientific Manuscript database
This editorial elaborates on investigations consisting of different “OMICS” technologies and their application to biological sciences. In addition, advantages and recent development of the proteomic, genomic and data mining technologies are discussed. This information will be useful to scientists ...
Applications of genome editing in insects
USDA-ARS?s Scientific Manuscript database
Insect genome editing was first reported 1991 in Drosophila melanogaster but the technology used was not portable to other species. Not until the recent development of facile, engineered DNA endonuclease systems has gene editing become widely available to insect scientists. Most applications in inse...
Although recent technological advances in DNA sequencing and computational biology now allow scientists to compare entire microbial genomes, the use of these approaches to discern key genomic differences between natural microbial communities remains prohibitively expensive for mo...
Technological advances in DNA sequencing and computational biology allow scientists to compare entire microbial genomes. However, the use of these approaches to discern key genomic differences between natural microbial communities remains prohibitively expensive for most laborato...
IDENTIFICATION OF BACTERIAL DNA MARKERS FOR THE DETECTION OF HUMAN AND CATTLE FECAL POLLUTION
Technological advances in DNA sequencing and computational biology allow scientists to compare entire microbial genomes. However, the use of these approaches to discern key genomic differences between natural microbial communities remains prohibitively expensive for most laborato...
Application of Weighted Gene Co-expression Network Analysis for Data from Paired Design.
Li, Jianqiang; Zhou, Doudou; Qiu, Weiliang; Shi, Yuliang; Yang, Ji-Jiang; Chen, Shi; Wang, Qing; Pan, Hui
2018-01-12
Investigating how genes jointly affect complex human diseases is important, yet challenging. The network approach (e.g., weighted gene co-expression network analysis (WGCNA)) is a powerful tool. However, genomic data usually contain substantial batch effects, which could mask true genomic signals. Paired design is a powerful tool that can reduce batch effects. However, it is currently unclear how to appropriately apply WGCNA to genomic data from paired design. In this paper, we modified the current WGCNA pipeline to analyse high-throughput genomic data from paired design. We illustrated the modified WGCNA pipeline by analysing the miRNA dataset provided by Shiah et al. (2014), which contains forty oral squamous cell carcinoma (OSCC) specimens and their matched non-tumourous epithelial counterparts. OSCC is the sixth most common cancer worldwide. The modified WGCNA pipeline identified two sets of novel miRNAs associated with OSCC, in addition to the existing miRNAs reported by Shiah et al. (2014). Thus, this work will be of great interest to readers of various scientific disciplines, in particular, genetic and genomic scientists as well as medical scientists working on cancer.
The founding charter of the Genomic Observatories Network.
Davies, Neil; Field, Dawn; Amaral-Zettler, Linda; Clark, Melody S; Deck, John; Drummond, Alexei; Faith, Daniel P; Geller, Jonathan; Gilbert, Jack; Glöckner, Frank Oliver; Hirsch, Penny R; Leong, Jo-Ann; Meyer, Chris; Obst, Matthias; Planes, Serge; Scholin, Chris; Vogler, Alfried P; Gates, Ruth D; Toonen, Rob; Berteaux-Lecellier, Véronique; Barbier, Michèle; Barker, Katherine; Bertilsson, Stefan; Bicak, Mesude; Bietz, Matthew J; Bobe, Jason; Bodrossy, Levente; Borja, Angel; Coddington, Jonathan; Fuhrman, Jed; Gerdts, Gunnar; Gillespie, Rosemary; Goodwin, Kelly; Hanson, Paul C; Hero, Jean-Marc; Hoekman, David; Jansson, Janet; Jeanthon, Christian; Kao, Rebecca; Klindworth, Anna; Knight, Rob; Kottmann, Renzo; Koo, Michelle S; Kotoulas, Georgios; Lowe, Andrew J; Marteinsson, Viggó Thór; Meyer, Folker; Morrison, Norman; Myrold, David D; Pafilis, Evangelos; Parker, Stephanie; Parnell, John Jacob; Polymenakou, Paraskevi N; Ratnasingham, Sujeevan; Roderick, George K; Rodriguez-Ezpeleta, Naiara; Schonrogge, Karsten; Simon, Nathalie; Valette-Silver, Nathalie J; Springer, Yuri P; Stone, Graham N; Stones-Havas, Steve; Sansone, Susanna-Assunta; Thibault, Kate M; Wecker, Patricia; Wichels, Antje; Wooley, John C; Yahara, Tetsukazu; Zingone, Adriana
2014-03-07
The co-authors of this paper hereby state their intention to work together to launch the Genomic Observatories Network (GOs Network) for which this document will serve as its Founding Charter. We define a Genomic Observatory as an ecosystem and/or site subject to long-term scientific research, including (but not limited to) the sustained study of genomic biodiversity from single-celled microbes to multicellular organisms.An international group of 64 scientists first published the call for a global network of Genomic Observatories in January 2012. The vision for such a network was expanded in a subsequent paper and developed over a series of meetings in Bremen (Germany), Shenzhen (China), Moorea (French Polynesia), Oxford (UK), Pacific Grove (California, USA), Washington (DC, USA), and London (UK). While this community-building process continues, here we express our mutual intent to establish the GOs Network formally, and to describe our shared vision for its future. The views expressed here are ours alone as individual scientists, and do not necessarily represent those of the institutions with which we are affiliated.
The founding charter of the Genomic Observatories Network
2014-01-01
The co-authors of this paper hereby state their intention to work together to launch the Genomic Observatories Network (GOs Network) for which this document will serve as its Founding Charter. We define a Genomic Observatory as an ecosystem and/or site subject to long-term scientific research, including (but not limited to) the sustained study of genomic biodiversity from single-celled microbes to multicellular organisms. An international group of 64 scientists first published the call for a global network of Genomic Observatories in January 2012. The vision for such a network was expanded in a subsequent paper and developed over a series of meetings in Bremen (Germany), Shenzhen (China), Moorea (French Polynesia), Oxford (UK), Pacific Grove (California, USA), Washington (DC, USA), and London (UK). While this community-building process continues, here we express our mutual intent to establish the GOs Network formally, and to describe our shared vision for its future. The views expressed here are ours alone as individual scientists, and do not necessarily represent those of the institutions with which we are affiliated. PMID:24606731
Henry Friesen Award Lecture. Work, the clinician-scientist and human biochemical genetics.
Scriver, C R
2001-08-01
The pursuit of human biochemical genetics has allowed us to understand better how the person with the (genetic) disease differs from the disease the person has and to develop the concept that genetics belongs in all aspects of health care. It is a perspective that comes quite readily to the clinician-scientist, and the restoration of that "species" in the era of functional genomics is strongly recommended. Garrod, the initial founder of human "biochemical genetics" belonged to the clinician-scientist community. Archibald Edward Garrod introduced a paradigm, new for its day, in medicine: biochemistry is dynamic and different from the static nature of organic chemistry. It led him to think about metabolic pathways and to recognize that variation in Mendelian heredity could explain an "inborn error of metabolism." At the time, Garrod had no idea about the nature of a gene. Genes are now well understood; genomes are being described for one organism after another (including Homo sapiens) and it is understood that genomes "speak biochemistry (not phenotype)." Accordingly, in the era of genomics, biochemistry and physiology become the bases of functional genomics, and it is possible to appreciate why "nothing in biology makes sense without evolution" (and nothing in medicine will make sense without biology). Mendelian, biochemical and molecular genetics together have revealed what lies behind the 4 canonical inborn errors described by Garrod (albinisn, alkaptonuria, cystinuria and pentosuria). Both older and newer ideas in genetics, new tools for applying them (and renewed respect for the clinician-scientist) will enhance our understanding of the human biological variation that accounts for variant states of health and overt disease. A so-called monogenic phenotype (phenylketonuria) is used to illustrate, in some detail, that all disease phenotypes are, in one way or another, likely to be complex in nature. What can be known and what ought to be done, with knowledge about human genetics, to benefit individuals, families and communities (society), is both opportunity and challenge.
Prasad, Pushplata; Varshney, Deepti; Adholeya, Alok
2015-11-25
The fungus Purpureocillium lilacinum is widely known as a biological control agent against plant parasitic nematodes. This research article consists of genomic annotation of the first draft of whole genome sequence of P. lilacinum. The study aims to decipher the putative genetic components of the fungus involved in nematode pathogenesis by performing comparative genomic analysis with nine closely related fungal species in Hypocreales. de novo genomic assembly was done and a total of 301 scaffolds were constructed for P. lilacinum genomic DNA. By employing structural genome prediction models, 13, 266 genes coding for proteins were predicted in the genome. Approximately 73% of the predicted genes were functionally annotated using Blastp, InterProScan and Gene Ontology. A 14.7% fraction of the predicted genes shared significant homology with genes in the Pathogen Host Interactions (PHI) database. The phylogenomic analysis carried out using maximum likelihood RAxML algorithm provided insight into the evolutionary relationship of P. lilacinum. In congruence with other closely related species in the Hypocreales namely, Metarhizium spp., Pochonia chlamydosporia, Cordyceps militaris, Trichoderma reesei and Fusarium spp., P. lilacinum has large gene sets coding for G-protein coupled receptors (GPCRs), proteases, glycoside hydrolases and carbohydrate esterases that are required for degradation of nematode-egg shell components. Screening of the genome by Antibiotics & Secondary Metabolite Analysis Shell (AntiSMASH) pipeline indicated that the genome potentially codes for a variety of secondary metabolites, possibly required for adaptation to heterogeneous lifestyles reported for P. lilacinum. Significant up-regulation of subtilisin-like serine protease genes in presence of nematode eggs in quantitative real-time analyses suggested potential role of serine proteases in nematode pathogenesis. The data offer a better understanding of Purpureocillium lilacinum genome and will enhance our understanding on the molecular mechanism involved in nematophagy.
Bishop, Steve C; Lunney, Joan K; Pinard-van der Laan, Marie-Hélène; Gay, Cyril G
2011-06-03
The second International Symposium on Animal Genomics for Animal Health held in Paris, France 31 May-2 June, 2010, assembled more than 140 participants representing research organizations from 40 countries. The symposium included a roundtable discussion on critical needs, challenges and opportunities, and a forward look at the potential applications of animal genomics in animal health research. The aim of the roundtable discussion was to foster a dialogue between scientists working at the cutting edge of animal genomics research and animal health scientists. Importantly, stakeholders were included to provide input on priorities and the potential value of animal genomics to the animal health community. In an effort to facilitate the roundtable discussion, the organizers identified four priority areas to advance the use of genome-enabled technologies in animal health research. Contributions were obtained through open discussions and a questionnaire distributed at the start of the symposium. This report provides the outcome of the roundtable discussion for each of the four priority areas. For each priority, problems are identified, including potential solutions and recommendations. This report captures key points made by symposium participants during the roundtable discussion and serves as a roadmap to steer future research priorities in animal genomics research.
Abu-Elmagd, Muhammad; Assidi, Mourad; Dallol, Ashraf; Buhmeida, Abdelbaset; Pushparaj, Peter Natesan; Kalamegam, Gauthaman; Al-Hamzi, Emad; Shay, Jerry W; Scherer, Stephen W; Agarwal, Ashok; Budowle, Bruce; Gari, Mamdooh; Chaudhary, Adeel; Abuzenadah, Adel; Al-Qahtani, Mohammed
2016-10-17
The Third International Genomic Medicine Conference (3 rd IGMC) was organised by the Centre of Excellence in Genomic Medicine Research (CEGMR) at the King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia (KSA). This conference is a continuation of a series of meetings, which began with the first International Genomic Medicine Conference (1 st IGMC, 2011) followed by the second International Genomic Medicine Conference (2 nd IGMC, 2013). The 3 rd IGMC meeting presented as a timely opportunity to bring scientists from across the world to gather, discuss, and exchange recent advances in the field of genomics and genetics in general as well as practical information on using these new technologies in different basic and clinical applications. The meeting undoubtedly inspired young male and female Saudi researchers, who attended the conference in large numbers, as evidenced by the oversubscribed oral and poster presentations. The conference also witnessed the launch of the first content for npj Genomic Medicine, a high quality new journal was established in partnership by CEGMR with Springer Nature and published as part of the Nature Partner Journal series. Here, we present a brief summary report of the 2-day meeting including highlights from the oral presentations, poster presentations, workshops, poster prize-winners and comments from the distinguished scientists.
Gillespie, Joseph J.; Wattam, Alice R.; Cammer, Stephen A.; Gabbard, Joseph L.; Shukla, Maulik P.; Dalay, Oral; Driscoll, Timothy; Hix, Deborah; Mane, Shrinivasrao P.; Mao, Chunhong; Nordberg, Eric K.; Scott, Mark; Schulman, Julie R.; Snyder, Eric E.; Sullivan, Daniel E.; Wang, Chunxia; Warren, Andrew; Williams, Kelly P.; Xue, Tian; Seung Yoo, Hyun; Zhang, Chengdong; Zhang, Yan; Will, Rebecca; Kenyon, Ronald W.; Sobral, Bruno W.
2011-01-01
Funded by the National Institute of Allergy and Infectious Diseases, the Pathosystems Resource Integration Center (PATRIC) is a genomics-centric relational database and bioinformatics resource designed to assist scientists in infectious-disease research. Specifically, PATRIC provides scientists with (i) a comprehensive bacterial genomics database, (ii) a plethora of associated data relevant to genomic analysis, and (iii) an extensive suite of computational tools and platforms for bioinformatics analysis. While the primary aim of PATRIC is to advance the knowledge underlying the biology of human pathogens, all publicly available genome-scale data for bacteria are compiled and continually updated, thereby enabling comparative analyses to reveal the basis for differences between infectious free-living and commensal species. Herein we summarize the major features available at PATRIC, dividing the resources into two major categories: (i) organisms, genomes, and comparative genomics and (ii) recurrent integration of community-derived associated data. Additionally, we present two experimental designs typical of bacterial genomics research and report on the execution of both projects using only PATRIC data and tools. These applications encompass a broad range of the data and analysis tools available, illustrating practical uses of PATRIC for the biologist. Finally, a summary of PATRIC's outreach activities, collaborative endeavors, and future research directions is provided. PMID:21896772
Moroz, Leonid L
2015-12-01
The origins of neural systems and centralized brains are one of the major transitions in evolution. These events might occur more than once over 570-600 million years. The convergent evolution of neural circuits is evident from a diversity of unique adaptive strategies implemented by ctenophores, cnidarians, acoels, molluscs, and basal deuterostomes. But, further integration of biodiversity research and neuroscience is required to decipher critical events leading to development of complex integrative and cognitive functions. Here, we outline reference species and interdisciplinary approaches in reconstructing the evolution of nervous systems. In the "omic" era, it is now possible to establish fully functional genomics laboratories aboard of oceanic ships and perform sequencing and real-time analyses of data at any oceanic location (named here as Ship-Seq). In doing so, fragile, rare, cryptic, and planktonic organisms, or even entire marine ecosystems, are becoming accessible directly to experimental and physiological analyses by modern analytical tools. Thus, we are now in a position to take full advantages from countless "experiments" Nature performed for us in the course of 3.5 billion years of biological evolution. Together with progress in computational and comparative genomics, evolutionary neuroscience, proteomic and developmental biology, a new surprising picture is emerging that reveals many ways of how nervous systems evolved. As a result, this symposium provides a unique opportunity to revisit old questions about the origins of biological complexity. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Functional metagenomics to decipher food-microbe-host crosstalk.
Larraufie, Pierre; de Wouters, Tomas; Potocki-Veronese, Gabrielle; Blottière, Hervé M; Doré, Joël
2015-02-01
The recent developments of metagenomics permit an extremely high-resolution molecular scan of the intestinal microbiota giving new insights and opening perspectives for clinical applications. Beyond the unprecedented vision of the intestinal microbiota given by large-scale quantitative metagenomics studies, such as the EU MetaHIT project, functional metagenomics tools allow the exploration of fine interactions between food constituents, microbiota and host, leading to the identification of signals and intimate mechanisms of crosstalk, especially between bacteria and human cells. Cloning of large genome fragments, either from complex intestinal communities or from selected bacteria, allows the screening of these biological resources for bioactivity towards complex plant polymers or functional food such as prebiotics. This permitted identification of novel carbohydrate-active enzyme families involved in dietary fibre and host glycan breakdown, and highlighted unsuspected bacterial players at the top of the intestinal microbial food chain. Similarly, exposure of fractions from genomic and metagenomic clones onto human cells engineered with reporter systems to track modulation of immune response, cell proliferation or cell metabolism has allowed the identification of bioactive clones modulating key cell signalling pathways or the induction of specific genes. This opens the possibility to decipher mechanisms by which commensal bacteria or candidate probiotics can modulate the activity of cells in the intestinal epithelium or even in distal organs such as the liver, adipose tissue or the brain. Hence, in spite of our inability to culture many of the dominant microbes of the human intestine, functional metagenomics open a new window for the exploration of food-microbe-host crosstalk.
Evolutionary genomics of yeast pathogens in the Saccharomycotina
Naranjo-Ortíz, Miguel A.; Marcet-Houben, Marina
2016-01-01
Saccharomycotina comprises a diverse group of yeasts that includes numerous species of industrial or clinical relevance. Opportunistic pathogens within this clade are often assigned to the genus Candida but belong to phylogenetically distant lineages that also comprise non-pathogenic species. This indicates that the ability to infect humans has evolved independently several times among Saccharomycotina. Although the mechanisms of infection of the main groups of Candida pathogens are starting to be unveiled, we still lack sufficient understanding of the evolutionary paths that led to a virulent phenotype in each of the pathogenic lineages. Deciphering what genomic changes underlie the evolutionary emergence of a virulence trait will not only aid the discovery of novel virulence mechanisms but it will also provide valuable information to understand how new pathogens emerge, and what clades may pose a future danger. Here we review recent comparative genomics efforts that have revealed possible evolutionary paths to pathogenesis in different lineages, focusing on the main three agents of candidiasis worldwide: Candida albicans, C. parapsilosis and C. glabrata. We will discuss what genomic traits may facilitate the emergence of virulence, and focus on two different genome evolution mechanisms able to generate drastic phenotypic changes and which have been associated to the emergence of virulence: gene family expansion and interspecies hybridization. PMID:27493146
AN ECOLOGICAL PERSPECTIVE OF GENOMICS: ASSESSING ECOLOGICAL RISK THROUGH PARTNERSHIPS
A workshop attended by approximately 60 scientists from around the world met to discuss the application of new molecular biology tools to issues in environmental toxicology and chemistry. With the sequencing of the human genome, development of microarrays and DNA chips, and devel...
Better chocolate through genomics
USDA-ARS?s Scientific Manuscript database
Theobroma cacao, the cacao or chocolate tree, is a tropical understory tree whose seeds are used to make chocolate. And like any important crop, cacao is the subject of much research. On September 15, 2010, scientists publicly released a preliminary sequence of the cacao genome--which contains all o...
(Meta)genomic insights into the pathogenome of Cellulosimicrobium cellulans
Sharma, Anukriti; Gilbert, Jack A.; Lal, Rup
2016-05-06
Despite having serious clinical manifestations, Cellulosimicrobium cellulans remain under-reported with only three genome sequences available at the time of writing. Genome sequences of C. cellulans LMG16121, C. cellulans J36 and Cellulosimicrobium sp. strain MM were used to determine distribution of pathogenicity islands (PAIs) across C. cellulans, which revealed 49 potential marker genes with known association to human infections, e.g. Fic and VbhA toxin-antitoxin system. Oligonucleotide composition-based analysis of orthologous proteins (n = 791) across three genomes revealed significant negative correlation (P < 0.05) between frequency of optimal codons ( Fopt) and gene G+C content, highlighting the G+C-biased gene conversion (gBGC)more » effect across Cellulosimicrobium strains. Bayesian molecular-clock analysis performed on three virulent PAI proteins (Fic; D-alanyl-D-alanine-carboxypeptidase; transposase) dated the divergence event at 300 million years ago from the most common recent ancestor. Synteny-based annotation of hypothetical proteins highlighted gene transfers from non-pathogenic bacteria as a key factor in the evolution of PAIs. Additonally, deciphering the metagenomic islands using strain MM's genome with environmental data from the site of isolation (hot-spring biofilm) revealed (an)aerobic respiration as population segregation factor across the in situ cohorts. Furthermore, using reference genomes and metagenomic data, our results highlight the emergence and evolution of PAIs in the genus Cellulosimicrobium.« less
Ding, Jiun-Yan; Shiu, Jia-Ho; Chen, Wen-Ming; Chiang, Yin-Ru; Tang, Sen-Lin
2016-01-01
The bacterial genus Endozoicomonas was commonly detected in healthy corals in many coral-associated bacteria studies in the past decade. Although, it is likely to be a core member of coral microbiota, little is known about its ecological roles. To decipher potential interactions between bacteria and their coral hosts, we sequenced and investigated the first culturable endozoicomonal bacterium from coral, the E. montiporae CL-33T. Its genome had potential sign of ongoing genome erosion and gene exchange with its host. Testosterone degradation and type III secretion system are commonly present in Endozoicomonas and may have roles to recognize and deliver effectors to their hosts. Moreover, genes of eukaryotic ephrin ligand B2 are present in its genome; presumably, this bacterium could move into coral cells via endocytosis after binding to coral's Eph receptors. In addition, 7,8-dihydro-8-oxoguanine triphosphatase and isocitrate lyase are possible type III secretion effectors that might help coral to prevent mitochondrial dysfunction and promote gluconeogenesis, especially under stress conditions. Based on all these findings, we inferred that E. montiporae was a facultative endosymbiont that can recognize, translocate, communicate and modulate its coral host. PMID:27014194
Genome sequence of the small brown planthopper, Laodelphax striatellus.
Zhu, Junjie; Jiang, Feng; Wang, Xianhui; Yang, Pengcheng; Bao, Yanyuan; Zhao, Wan; Wang, Wei; Lu, Hong; Wang, Qianshuo; Cui, Na; Li, Jing; Chen, Xiaofang; Luo, Lan; Yu, Jinting; Kang, Le; Cui, Feng
2017-12-01
Laodelphax striatellus Fallén (Hemiptera: Delphacidae) is one of the most destructive rice pests. L. striatellus is different from 2 other rice planthoppers with a released genome sequence, Sogatella furcifera and Nilaparvata lugens, in many biological characteristics, such as host range, dispersal capacity, and vectoring plant viruses. Deciphering the genome of L. striatellus will further the understanding of the genetic basis of the biological differences among the 3 rice planthoppers. A total of 190 Gb of Illumina data and 32.4 Gb of Pacbio data were generated and used to assemble a high-quality L. striatellus genome sequence, which is 541 Mb in length and has a contig N50 of 118 Kb and a scaffold N50 of 1.08 Mb. Annotated repetitive elements account for 25.7% of the genome. A total of 17 736 protein-coding genes were annotated, capturing 97.6% and 98% of the BUSCO eukaryote and arthropoda genes, respectively. Compared with N. lugens and S. furcifera, L. striatellus has the smallest genome and the lowest gene number. Gene family expansion and transcriptomic analyses provided hints to the genomic basis of the differences in important traits such as host range, migratory habit, and plant virus transmission between L. striatellus and the other 2 planthoppers. We report a high-quality genome assembly of L. striatellus, which is an important genomic resource not only for the study of the biology of L. striatellus and its interactions with plant hosts and plant viruses, but also for comparison with other planthoppers. © The Authors 2017. Published by Oxford University Press.
Genome sequence of the small brown planthopper, Laodelphax striatellus
Zhu, Junjie; Jiang, Feng; Wang, Xianhui; Yang, Pengcheng; Bao, Yanyuan; Zhao, Wan; Wang, Wei; Lu, Hong; Wang, Qianshuo; Cui, Na; Li, Jing; Chen, Xiaofang; Luo, Lan; Yu, Jinting
2017-01-01
Abstract Background Laodelphax striatellus Fallén (Hemiptera: Delphacidae) is one of the most destructive rice pests. L. striatellus is different from 2 other rice planthoppers with a released genome sequence, Sogatella furcifera and Nilaparvata lugens, in many biological characteristics, such as host range, dispersal capacity, and vectoring plant viruses. Deciphering the genome of L. striatellus will further the understanding of the genetic basis of the biological differences among the 3 rice planthoppers. Findings A total of 190 Gb of Illumina data and 32.4 Gb of Pacbio data were generated and used to assemble a high-quality L. striatellus genome sequence, which is 541 Mb in length and has a contig N50 of 118 Kb and a scaffold N50 of 1.08 Mb. Annotated repetitive elements account for 25.7% of the genome. A total of 17 736 protein-coding genes were annotated, capturing 97.6% and 98% of the BUSCO eukaryote and arthropoda genes, respectively. Compared with N. lugens and S. furcifera, L. striatellus has the smallest genome and the lowest gene number. Gene family expansion and transcriptomic analyses provided hints to the genomic basis of the differences in important traits such as host range, migratory habit, and plant virus transmission between L. striatellus and the other 2 planthoppers. Conclusions We report a high-quality genome assembly of L. striatellus, which is an important genomic resource not only for the study of the biology of L. striatellus and its interactions with plant hosts and plant viruses, but also for comparison with other planthoppers. PMID:29136191
HpBase: A genome database of a sea urchin, Hemicentrotus pulcherrimus.
Kinjo, Sonoko; Kiyomoto, Masato; Yamamoto, Takashi; Ikeo, Kazuho; Yaguchi, Shunsuke
2018-04-01
To understand the mystery of life, it is important to accumulate genomic information for various organisms because the whole genome encodes the commands for all the genes. Since the genome of Strongylocentrotus purpratus was sequenced in 2006 as the first sequenced genome in echinoderms, the genomic resources of other North American sea urchins have gradually been accumulated, but no sea urchin genomes are available in other areas, where many scientists have used the local species and reported important results. In this manuscript, we report a draft genome of the sea urchin Hemincentrotus pulcherrimus because this species has a long history as the target of developmental and cell biology in East Asia. The genome of H. pulcherrimus was assembled into 16,251 scaffold sequences with an N50 length of 143 kbp, and approximately 25,000 genes were identified in the genome. The size of the genome and the sequencing coverage were estimated to be approximately 800 Mbp and 100×, respectively. To provide these data and information of annotation, we constructed a database, HpBase (http://cell-innovation.nig.ac.jp/Hpul/). In HpBase, gene searches, genome browsing, and blast searches are available. In addition, HpBase includes the "recipes" for experiments from each lab using H. pulcherrimus. These recipes will continue to be updated according to the circumstances of individual scientists and can be powerful tools for experimental biologists and for the community. HpBase is a suitable dataset for evolutionary, developmental, and cell biologists to compare H. pulcherrimus genomic information with that of other species and to isolate gene information. © 2018 Japanese Society of Developmental Biologists.
Beyond positivism: a metaphysical basis for clinical practice?
Herman, J
1992-09-01
Medicine does not have its own unified body of scientific knowledge. Instead, physicians who are oriented to research make sporadic incursions into the basic sciences such as genetics, biochemistry, immunology, epidemiology, physiology, pharmacology and so on. These latter, taken together, comprise biomedicine which is said to have adopted the positivist epistemology or the Cartesian/Newtonian one that regards the scientist as an uninvolved observer of nature. In effect, medical science has come to rest on a theory of knowledge which links meaning to probability and considers prediction as the scientist's chief task. Like its predecessor, the probability theory of meaning rejects metaphysical speculation and remains connected to observations made, directly or indirectly, by means of the five senses. Despite some brilliant successes touching on relatively uncommon disorders, biomedicine cannot explain most day-to-day clinical activity. An understanding of what transpires between patient and doctor, of its diagnostic potential and therapeutic weight requires hermeneutic, or phenomenological, inquiry which brings about changes in both parties to it. Such a science, as ontological speculation has been called, cannot be deciphered by an epistemology couched in the imagery of physics and chemistry.
Proteogenomics | Office of Cancer Clinical Proteomics Research
Proteogenomics, or the integration of proteomics with genomics and transcriptomics, is an emerging approach that promises to advance basic, translational and clinical research. By combining genomic and proteomic information, leading scientists are gaining new insights due to a more complete and unified understanding of complex biological processes.
A Mitogenomic Phylogeny of Living Primates
Finstermeier, Knut; Zinner, Dietmar; Brameier, Markus; Meyer, Matthias; Kreuz, Eva; Hofreiter, Michael; Roos, Christian
2013-01-01
Primates, the mammalian order including our own species, comprise 480 species in 78 genera. Thus, they represent the third largest of the 18 orders of eutherian mammals. Although recent phylogenetic studies on primates are increasingly built on molecular datasets, most of these studies have focused on taxonomic subgroups within the order. Complete mitochondrial (mt) genomes have proven to be extremely useful in deciphering within-order relationships even up to deep nodes. Using 454 sequencing, we sequenced 32 new complete mt genomes adding 20 previously not represented genera to the phylogenetic reconstruction of the primate tree. With 13 new sequences, the number of complete mt genomes within the parvorder Platyrrhini was widely extended, resulting in a largely resolved branching pattern among New World monkey families. We added 10 new Strepsirrhini mt genomes to the 15 previously available ones, thus almost doubling the number of mt genomes within this clade. Our data allow precise date estimates of all nodes and offer new insights into primate evolution. One major result is a relatively young date for the most recent common ancestor of all living primates which was estimated to 66-69 million years ago, suggesting that the divergence of extant primates started close to the K/T-boundary. Although some relationships remain unclear, the large number of mt genomes used allowed us to reconstruct a robust primate phylogeny which is largely in agreement with previous publications. Finally, we show that mt genomes are a useful tool for resolving primate phylogenetic relationships on various taxonomic levels. PMID:23874967
Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study.
Simon, Gabriel M; Cravatt, Benjamin F
2010-04-09
Genome sequencing projects have uncovered thousands of uncharacterized enzymes in eukaryotic and prokaryotic organisms. Deciphering the physiological functions of enzymes requires tools to profile and perturb their activities in native biological systems. Activity-based protein profiling has emerged as a powerful chemoproteomic strategy to achieve these objectives through the use of chemical probes that target large swaths of enzymes that share active-site features. Here, we review activity-based protein profiling and its implementation to annotate the enzymatic proteome, with particular attention given to probes that target serine hydrolases, a diverse superfamily of enzymes replete with many uncharacterized members.
Genome Variation Within Triticale in Comparison to its Wheat and Rye Progenitors
USDA-ARS?s Scientific Manuscript database
Genome variation in the intergeneric wheat-rye hybrid triticale (X Triticosecale Wittmack) has been a puzzle to scientists and plant breeders since the first triticale was synthesized. The existence of unexplained genetic variation in triticale as compared to the parents has been a hindrance to bre...
Proteogenomics, integration of proteomics, genomics, and transcriptomics, is an emerging approach that promises to advance basic, translational and clinical research. By combining genomic and proteomic information, leading scientists are gaining new insights due to a more complete and unified understanding of complex biological processes.
Deciphering the Origin of Dogs: From Fossils to Genomes.
Freedman, Adam H; Wayne, Robert K
2017-02-08
Understanding the timing and geographic context of dog origins is a crucial component for understanding human history, as well as the evolutionary context in which the morphological and behavioral divergence of dogs from wolves occurred. A substantial challenge to understanding domestication is that dogs have experienced a complicated demographic history. An initial severe bottleneck was associated with domestication followed by postdivergence gene flow between dogs and wolves, as well as population expansions, contractions, and replacements. In addition, because the domestication of dogs occurred in the relatively recent past, much of the observed polymorphism may be shared between dogs and wolves, limiting the power to distinguish between alternative models of dog history. Greater insight into the domestication process will require explicit tests of alternative models of domestication through the joint analysis of whole genomes from modern lineages and ancient wolves and dogs from across Eurasia.
CPTAC Proteomics Data on UCSC Genome Browser | Office of Cancer Clinical Proteomics Research
The National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium scientists are working together with the University of California, Santa Cruz (UCSC) Genomics Institute to provide public access to cancer proteomics data via the UCSC Genome Browser. This effort extends accessibility of the CPTAC data to more researchers and provides an additional level of analysis to assist the cancer biology community.
Toward a Comprehensive Genomic Analysis of Cancer - TCGA
The National Cancer Institute (NCI) and National Human Genome Research Institute (NHGRI) convened a "Toward a Comprehensive Genomic Analysis of Cancer" workshop in Washington, D.C. This workshop brought together physicians, basic scientists and other members of the U.S. and international cancer communities to assist in outlining the most effective strategies for the development of a successful project. Information about this workshop is reported in the Executive Summary.
FISH Oracle 2: a web server for integrative visualization of genomic data in cancer research.
Mader, Malte; Simon, Ronald; Kurtz, Stefan
2014-03-31
A comprehensive view on all relevant genomic data is instrumental for understanding the complex patterns of molecular alterations typically found in cancer cells. One of the most effective ways to rapidly obtain an overview of genomic alterations in large amounts of genomic data is the integrative visualization of genomic events. We developed FISH Oracle 2, a web server for the interactive visualization of different kinds of downstream processed genomics data typically available in cancer research. A powerful search interface and a fast visualization engine provide a highly interactive visualization for such data. High quality image export enables the life scientist to easily communicate their results. A comprehensive data administration allows to keep track of the available data sets. We applied FISH Oracle 2 to published data and found evidence that, in colorectal cancer cells, the gene TTC28 may be inactivated in two different ways, a fact that has not been published before. The interactive nature of FISH Oracle 2 and the possibility to store, select and visualize large amounts of downstream processed data support life scientists in generating hypotheses. The export of high quality images supports explanatory data visualization, simplifying the communication of new biological findings. A FISH Oracle 2 demo server and the software is available at http://www.zbh.uni-hamburg.de/fishoracle.
Transcription facilitated genome-wide recruitment of topoisomerase I and DNA gyrase.
Ahmed, Wareed; Sala, Claudia; Hegde, Shubhada R; Jha, Rajiv Kumar; Cole, Stewart T; Nagaraja, Valakunja
2017-05-01
Movement of the transcription machinery along a template alters DNA topology resulting in the accumulation of supercoils in DNA. The positive supercoils generated ahead of transcribing RNA polymerase (RNAP) and the negative supercoils accumulating behind impose severe topological constraints impeding transcription process. Previous studies have implied the role of topoisomerases in the removal of torsional stress and the maintenance of template topology but the in vivo interaction of functionally distinct topoisomerases with heterogeneous chromosomal territories is not deciphered. Moreover, how the transcription-induced supercoils influence the genome-wide recruitment of DNA topoisomerases remains to be explored in bacteria. Using ChIP-Seq, we show the genome-wide occupancy profile of both topoisomerase I and DNA gyrase in conjunction with RNAP in Mycobacterium tuberculosis taking advantage of minimal topoisomerase representation in the organism. The study unveils the first in vivo genome-wide interaction of both the topoisomerases with the genomic regions and establishes that transcription-induced supercoils govern their recruitment at genomic sites. Distribution profiles revealed co-localization of RNAP and the two topoisomerases on the active transcriptional units (TUs). At a given locus, topoisomerase I and DNA gyrase were localized behind and ahead of RNAP, respectively, correlating with the twin-supercoiled domains generated. The recruitment of topoisomerases was higher at the genomic loci with higher transcriptional activity and/or at regions under high torsional stress compared to silent genomic loci. Importantly, the occupancy of DNA gyrase, sole type II topoisomerase in Mtb, near the Ter domain of the Mtb chromosome validates its function as a decatenase.
Transcription facilitated genome-wide recruitment of topoisomerase I and DNA gyrase
Ahmed, Wareed; Sala, Claudia; Hegde, Shubhada R.; Jha, Rajiv Kumar
2017-01-01
Movement of the transcription machinery along a template alters DNA topology resulting in the accumulation of supercoils in DNA. The positive supercoils generated ahead of transcribing RNA polymerase (RNAP) and the negative supercoils accumulating behind impose severe topological constraints impeding transcription process. Previous studies have implied the role of topoisomerases in the removal of torsional stress and the maintenance of template topology but the in vivo interaction of functionally distinct topoisomerases with heterogeneous chromosomal territories is not deciphered. Moreover, how the transcription-induced supercoils influence the genome-wide recruitment of DNA topoisomerases remains to be explored in bacteria. Using ChIP-Seq, we show the genome-wide occupancy profile of both topoisomerase I and DNA gyrase in conjunction with RNAP in Mycobacterium tuberculosis taking advantage of minimal topoisomerase representation in the organism. The study unveils the first in vivo genome-wide interaction of both the topoisomerases with the genomic regions and establishes that transcription-induced supercoils govern their recruitment at genomic sites. Distribution profiles revealed co-localization of RNAP and the two topoisomerases on the active transcriptional units (TUs). At a given locus, topoisomerase I and DNA gyrase were localized behind and ahead of RNAP, respectively, correlating with the twin-supercoiled domains generated. The recruitment of topoisomerases was higher at the genomic loci with higher transcriptional activity and/or at regions under high torsional stress compared to silent genomic loci. Importantly, the occupancy of DNA gyrase, sole type II topoisomerase in Mtb, near the Ter domain of the Mtb chromosome validates its function as a decatenase. PMID:28463980
Genome medicine: gene therapy for the millennium, 30 September-3 October 2001, Rome, Italy.
Gruenert, D C; Novelli, G; Dallapiccola, B; Colosimo, A
2002-06-01
The recent surge of DNA sequence information resulting from the efforts of agencies interested in deciphering the human genetic code has facilitated technological developments that have been critical in the identification of genes associated with numerous disease pathologies. In addition, these efforts have opened the door to the opportunity to develop novel genetic therapies to treat a broad range of inherited disorders. Through a joint effort by the University of Vermont, the University of Rome, Tor Vergata, University of Rome, La Sapienza, and the CSS Mendel Institute, Rome, an international meeting, 'Genome Medicine: Gene Therapy for the Millennium' was organized. This meeting provided a forum for the discussion of scientific and clinical advances stimulated by the explosion of sequence information generated by the Human Genome Project and the implications these advances have for gene therapy. The meeting had six sessions that focused on the functional evaluation of specific genes via biochemical analysis and through animal models, the development of novel therapeutic strategies involving gene targeting, artificial chromsomes, DNA delivery systems and non-embryonic stem cells, and on the ethical and social implications of these advances.
Transcriptomic and epigenomic characterization of the developing bat wing
Eckalbar, Walter L.; Schlebusch, Stephen A.; Mason, Mandy K.; Gill, Zoe; Parker, Ash V.; Booker, Betty M.; Nishizaki, Sierra; Muswamba-Nday, Christiane; Terhune, Elizabeth; Nevonen, Kimberly; Makki, Nadja; Friedrich, Tara; VanderMeer, Julia E.; Pollard, Katherine S.; Carbone, Lucia; Wall, Jeff D.; Illing, Nicola; Ahituv, Nadav
2016-01-01
Bats are the only mammals capable of powered flight, but little is known about the genetic determinants that shape their wings. Here, we generated a genome for Miniopterus natalensis and performed RNA-seq and ChIP-seq (H3K27ac, H3K27me3) on its developing forelimb and hindlimb autopods at sequential embryonic stages to decipher the molecular events that underlie bat wing development. Over 7,000 genes and several lncRNAs, including Tbx5-as1 and Hottip, were differentially expressed between forelimb, hindlimb and different stages. ChIP-seq identified thousands of regions that are differentially modified in forelimb versus hindlimb. Comparative genomics found 2,796 bat-accelerated regions within H3K27ac peaks, several of which cluster near limb-associated genes. Pathway analyses revealed multiple ribosomal proteins and known limb patterning signaling pathways as differentially regulated, and implicated increased forelimb mesenchymal condensations with differential growth. Combined, our work outlines multiple genetic components that contribute to bat wing formation, providing a genomic blueprint for this morphological innovation. PMID:27019111
Girlich, Delphine; Dortet, Laurent; Poirel, Laurent; Nordmann, Patrice
2015-01-01
To decipher the mechanisms and their associated genetic determinants responsible for β-lactam resistance in a Proteus mirabilis clinical isolate. The entire genetic structure surrounding the β-lactam resistance genes was characterized by PCR, gene walking and DNA sequencing. Genes encoding the carbapenemase NDM-1 and the ESBL VEB-6 were located in a 38.5 kb MDR structure, which itself was inserted into a new variant of the Proteus genomic island 1 (PGI1). This new PGI1-PmPEL variant of 64.4 kb was chromosomally located, as an external circular form in the P. mirabilis isolate, suggesting potential mobility. This is the first known description of the bla(NDM-1) gene in a genomic island structure, which might further enhance the spread of the bla(NDM-1) carbapenemase gene among enteric pathogens. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Xenopus egg extract: A powerful tool to study genome maintenance mechanisms.
Hoogenboom, Wouter S; Klein Douwel, Daisy; Knipscheer, Puck
2017-08-15
DNA repair pathways are crucial to maintain the integrity of our genome and prevent genetic diseases such as cancer. There are many different types of DNA damage and specific DNA repair mechanisms have evolved to deal with these lesions. In addition to these repair pathways there is an extensive signaling network that regulates processes important for repair, such as cell cycle control and transcription. Despite extensive research, DNA damage repair and signaling are not fully understood. In vitro systems such as the Xenopus egg extract system, have played, and still play, an important role in deciphering the molecular details of these processes. Xenopus laevis egg extracts contain all factors required to efficiently perform DNA repair outside a cell, using mechanisms conserved in humans. These extracts have been used to study several genome maintenance pathways, including mismatch repair, non-homologous end joining, ICL repair, DNA damage checkpoint activation, and replication fork stability. Here we describe how the Xenopus egg extract system, in combination with specifically designed DNA templates, contributed to our detailed understanding of these pathways. Copyright © 2017. Published by Elsevier Inc.
Maghuly, Fatemeh; Laimer, Margit
2013-10-01
Jatropha curcas is currently attracting much attention as an oilseed crop for biofuel, as Jatropha can grow under climate and soil conditions that are unsuitable for food production. However, little is known about Jatropha, and there are a number of challenges to be overcome. In fact, Jatropha has not really been domesticated; most of the Jatropha accessions are toxic, which renders the seedcake unsuitable for use as animal feed. The seeds of Jatropha contain high levels of polyunsaturated fatty acids, which negatively impact the biofuel quality. Fruiting of Jatropha is fairly continuous, thus increasing costs of harvesting. Therefore, before starting any improvement program using conventional or molecular breeding techniques, understanding gene function and the genome scale of Jatropha are prerequisites. This review presents currently available and relevant information on the latest technologies (genomics, transcriptomics, proteomics and metabolomics) to decipher important metabolic pathways within Jatropha, such as oil and toxin synthesis. Further, it discusses future directions for biotechnological approaches in Jatropha breeding and improvement. © 2013 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Enhanced post wash retention of combed DNA molecules by varying multiple combing parameters.
Yadav, Hemendra; Sharma, Pulkit
2017-11-01
Recent advances in genomics have created a need for efficient techniques for deciphering information hidden in various genomes. Single molecule analysis is one such technique to understand molecular processes at single molecule level. Fiber- FISH performed with the help of DNA combing can help us in understanding genetic rearrangements and changes in genome at single DNA molecule level. For performing Fiber-FISH we need high retention of combed DNA molecules post wash as Fiber-FISH requires profuse washing. We optimized combing process involving combing solution, method of DNA mounting on glass slides and coating of glass slides to enhance post-wash retention of DNA molecules. It was found that average number of DNA molecules observed post-wash per field of view was maximum with our optimized combing solution. APTES coated glass slides showed lesser retention than PEI surface but fluorescent intensity was higher in case of APTES coated surface. Capillary method used to mount DNA on glass slides also showed lesser retention but straight DNA molecules were observed as compared to force flow method. Copyright © 2017 Elsevier Inc. All rights reserved.
Analysis of Ribosome Stalling and Translation Elongation Dynamics by Deep Learning.
Zhang, Sai; Hu, Hailin; Zhou, Jingtian; He, Xuan; Jiang, Tao; Zeng, Jianyang
2017-09-27
Ribosome stalling is manifested by the local accumulation of ribosomes at specific codon positions of mRNAs. Here, we present ROSE, a deep learning framework to analyze high-throughput ribosome profiling data and estimate the probability of a ribosome stalling event occurring at each genomic location. Extensive validation tests on independent data demonstrated that ROSE possessed higher prediction accuracy than conventional prediction models, with an increase in the area under the receiver operating characteristic curve by up to 18.4%. In addition, genome-wide statistical analyses showed that ROSE predictions can be well correlated with diverse putative regulatory factors of ribosome stalling. Moreover, the genome-wide ribosome stalling landscapes of both human and yeast computed by ROSE recovered the functional interplays between ribosome stalling and cotranslational events in protein biogenesis, including protein targeting by the signal recognition particles and protein secondary structure formation. Overall, our study provides a novel method to complement the ribosome profiling techniques and further decipher the complex regulatory mechanisms underlying translation elongation dynamics encoded in the mRNA sequence. Copyright © 2017 Elsevier Inc. All rights reserved.
Using Supercomputers to Probe the Early Universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giorgi, Elena Edi
For decades physicists have been trying to decipher the first moments after the Big Bang. Using very large telescopes, for example, scientists scan the skies and look at how fast galaxies move. Satellites study the relic radiation left from the Big Bang, called the cosmic microwave background radiation. And finally, particle colliders, like the Large Hadron Collider at CERN, allow researchers to smash protons together and analyze the debris left behind by such collisions. Physicists at Los Alamos National Laboratory, however, are taking a different approach: they are using computers. In collaboration with colleagues at University of California San Diego,more » the Los Alamos researchers developed a computer code, called BURST, that can simulate conditions during the first few minutes of cosmological evolution.« less
Tomlins, Scott A; Alshalalfa, Mohammed; Davicioni, Elai; Erho, Nicholas; Yousefi, Kasra; Zhao, Shuang; Haddad, Zaid; Den, Robert B; Dicker, Adam P; Trock, Bruce J; DeMarzo, Angelo M; Ross, Ashley E; Schaeffer, Edward M; Klein, Eric A; Magi-Galluzzi, Cristina; Karnes, R Jeffrey; Jenkins, Robert B; Feng, Felix Y
2015-10-01
Prostate cancer (PCa) molecular subtypes have been defined by essentially mutually exclusive events, including ETS gene fusions (most commonly involving ERG) and SPINK1 overexpression. Clinical assessment may aid in disease stratification, complementing available prognostic tests. To determine the analytical validity and clinicopatholgic associations of microarray-based molecular subtyping. We analyzed Affymetrix GeneChip expression profiles for 1577 patients from eight radical prostatectomy cohorts, including 1351 cases assessed using the Decipher prognostic assay (GenomeDx Biosciences, San Diego, CA, USA) performed in a laboratory with Clinical Laboratory Improvements Amendment certification. A microarray-based (m-) random forest ERG classification model was trained and validated. Outlier expression analysis was used to predict other mutually exclusive non-ERG ETS gene rearrangements (ETS(+)) or SPINK1 overexpression (SPINK1(+)). Associations with clinical features and outcomes by multivariate logistic regression analysis and receiver operating curves. The m-ERG classifier showed 95% accuracy in an independent validation subset (155 samples). Across cohorts, 45% of PCas were classified as m-ERG(+), 9% as m-ETS(+), 8% as m-SPINK1(+), and 38% as triple negative (m-ERG(-)/m-ETS(-)/m-SPINK1(-)). Gene expression profiling supports three underlying molecularly defined groups: m-ERG(+), m-ETS(+), and m-SPINK1(+)/triple negative. On multivariate analysis, m-ERG(+) tumors were associated with lower preoperative serum prostate-specific antigen and Gleason scores, but greater extraprostatic extension (p<0.001). m-ETS(+) tumors were associated with seminal vesicle invasion (p=0.01), while m-SPINK1(+)/triple negative tumors had higher Gleason scores and were more frequent in Black/African American patients (p<0.001). Clinical outcomes were not significantly different among subtypes. A clinically available prognostic test (Decipher) can also assess PCa molecular subtypes, obviating the need for additional testing. Clinicopathologic differences were found among subtypes based on global expression patterns. Molecular subtyping of prostate cancer can be achieved using extra data generated from a clinical-grade, genome-wide expression-profiling prognostic assay (Decipher). Transcriptomic and clinical analysis support three distinct molecular subtypes: (1) m-ERG(+), (2) m-ETS(+), and (3) m-SPINK1(+)/triple negative (m-ERG(-)/m-ETS(-)/m-SPINK1(-)). Incorporation of subtyping into a clinically available assay may facilitate additional applications beyond routine prognosis. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Wang, Qinghua; Arighi, Cecilia N; King, Benjamin L; Polson, Shawn W; Vincent, James; Chen, Chuming; Huang, Hongzhan; Kingham, Brewster F; Page, Shallee T; Rendino, Marc Farnum; Thomas, William Kelley; Udwary, Daniel W; Wu, Cathy H
2012-01-01
Recent advances in high-throughput DNA sequencing technologies have equipped biologists with a powerful new set of tools for advancing research goals. The resulting flood of sequence data has made it critically important to train the next generation of scientists to handle the inherent bioinformatic challenges. The North East Bioinformatics Collaborative (NEBC) is undertaking the genome sequencing and annotation of the little skate (Leucoraja erinacea) to promote advancement of bioinformatics infrastructure in our region, with an emphasis on practical education to create a critical mass of informatically savvy life scientists. In support of the Little Skate Genome Project, the NEBC members have developed several annotation workshops and jamborees to provide training in genome sequencing, annotation and analysis. Acting as a nexus for both curation activities and dissemination of project data, a project web portal, SkateBase (http://skatebase.org) has been developed. As a case study to illustrate effective coupling of community annotation with workforce development, we report the results of the Mitochondrial Genome Annotation Jamborees organized to annotate the first completely assembled element of the Little Skate Genome Project, as a culminating experience for participants from our three prior annotation workshops. We are applying the physical/virtual infrastructure and lessons learned from these activities to enhance and streamline the genome annotation workflow, as we look toward our continuing efforts for larger-scale functional and structural community annotation of the L. erinacea genome.
Wang, Qinghua; Arighi, Cecilia N.; King, Benjamin L.; Polson, Shawn W.; Vincent, James; Chen, Chuming; Huang, Hongzhan; Kingham, Brewster F.; Page, Shallee T.; Farnum Rendino, Marc; Thomas, William Kelley; Udwary, Daniel W.; Wu, Cathy H.
2012-01-01
Recent advances in high-throughput DNA sequencing technologies have equipped biologists with a powerful new set of tools for advancing research goals. The resulting flood of sequence data has made it critically important to train the next generation of scientists to handle the inherent bioinformatic challenges. The North East Bioinformatics Collaborative (NEBC) is undertaking the genome sequencing and annotation of the little skate (Leucoraja erinacea) to promote advancement of bioinformatics infrastructure in our region, with an emphasis on practical education to create a critical mass of informatically savvy life scientists. In support of the Little Skate Genome Project, the NEBC members have developed several annotation workshops and jamborees to provide training in genome sequencing, annotation and analysis. Acting as a nexus for both curation activities and dissemination of project data, a project web portal, SkateBase (http://skatebase.org) has been developed. As a case study to illustrate effective coupling of community annotation with workforce development, we report the results of the Mitochondrial Genome Annotation Jamborees organized to annotate the first completely assembled element of the Little Skate Genome Project, as a culminating experience for participants from our three prior annotation workshops. We are applying the physical/virtual infrastructure and lessons learned from these activities to enhance and streamline the genome annotation workflow, as we look toward our continuing efforts for larger-scale functional and structural community annotation of the L. erinacea genome. PMID:22434832
The Oxford Guide to the History of Physics and Astronomy
NASA Astrophysics Data System (ADS)
Heilbron, John L.
2005-06-01
With over 150 alphabetically arranged entries about key scientists, concepts, discoveries, technological innovations, and learned institutions, the Oxford Guide to Physics and Astronomy traces the history of physics and astronomy from the Renaissance to the present. For students, teachers, historians, scientists, and readers of popular science books such as Galileo's Daughter , this guide deciphers the methods and philosophies of physics and astronomy as well as the historical periods from which they emerged. Meant to serve the lay reader and the professional alike, this book can be turned to for the answer to how scientists learned to measure the speed of light, or consulted for neat, careful summaries of topics as complicated as quantum field theory and as vast as the universe. The entries, each written by a noted scholar and edited by J. L. Heilbron, Professor of History and Vice Chancellor, Emeritus, University of California, Berkeley, reflect the most up-to-date research and discuss the applications of the scientific disciplines to the wider world of religion, law, war, art and literature. No other source on these two branches of science is as informative or as inviting. Thoroughly cross-referenced and accented by dozens of black and white illustrations, the Oxford Guide to Physics and Astronomy is the source to turn to for anyone looking for a quick explanation of alchemy, x-rays and any type of matter or energy in between.
Avia, Komlan; Coelho, Susana M.; Montecinos, Gabriel J.; Cormier, Alexandre; Lerck, Fiona; Mauger, Stéphane; Faugeron, Sylvain; Valero, Myriam; Cock, J. Mark; Boudry, Pierre
2017-01-01
Deciphering the genetic architecture of adaptation of brown algae to environmental stresses such as temperature and salinity is of evolutionary as well as of practical interest. The filamentous brown alga Ectocarpus sp. is a model for the brown algae and its genome has been sequenced. As sessile organisms, brown algae need to be capable of resisting the various abiotic stressors that act in the intertidal zone (e.g. osmotic pressure, temperature, salinity, UV radiation) and previous studies have shown that an important proportion of the expressed genes is regulated in response to hyposaline, hypersaline or oxidative stress conditions. Using the double digest RAD sequencing method, we constructed a dense genetic map with 3,588 SNP markers and identified 39 QTLs for growth-related traits and their plasticity under different temperature and salinity conditions (tolerance to high temperature and low salinity). GO enrichment tests within QTL intervals highlighted membrane transport processes such as ion transporters. Our study represents a significant step towards deciphering the genetic basis of adaptation of Ectocarpus sp. to stress conditions and provides a substantial resource to the increasing list of tools generated for the species. PMID:28256542
Zhang, Wenqian; Meehan, Joe; Su, Zhenqiang; Ng, Hui Wen; Shu, Mao; Luo, Heng; Ge, Weigong; Perkins, Roger; Tong, Weida; Hong, Huixiao
2014-01-01
Due to a significant decline in the costs associated with next-generation sequencing, it has become possible to decipher the genetic architecture of a population by sequencing a large number of individuals to a deep coverage. The Korean Personal Genomes Project (KPGP) recently sequenced 35 Korean genomes at high coverage using the Illumina Hiseq platform and made the deep sequencing data publicly available, providing the scientific community opportunities to decipher the genetic architecture of the Korean population. In this study, we used two single nucleotide variant (SNV) calling pipelines: mapping the raw reads obtained from whole genome sequencing of 35 Korean individuals in KPGP using BWA and SOAP2 followed by SNV calling using SAMtools and SOAPsnp, respectively. The consensus SNVs obtained from the two SNV pipelines were used to represent the SNVs of the Korean population. We compared these SNVs to those from 17 other populations provided by the HapMap consortium and the 1000 Genomes Project (1KGP) and identified SNVs that were only present in the Korean population. We studied the mutation spectrum and analyzed the genes of non-synonymous SNVs only detected in the Korean population. We detected a total of 8,555,726 SNVs in the 35 Korean individuals and identified 1,213,613 SNVs detected in at least one Korean individual (SNV-1) and 12,640 in all of 35 Korean individuals (SNV-35) but not in 17 other populations. In contrast with the SNVs common to other populations in HapMap and 1KGP, the Korean only SNVs had high percentages of non-silent variants, emphasizing the unique roles of these Korean only SNVs in the Korean population. Specifically, we identified 8,361 non-synonymous Korean only SNVs, of which 58 SNVs existed in all 35 Korean individuals. The 5,754 genes of non-synonymous Korean only SNVs were highly enriched in some metabolic pathways. We found adhesion is the top disease term associated with SNV-1 and Nelson syndrome is the only disease term associated with SNV-35. We found that a significant number of Korean only SNVs are in genes that are associated with the drug term of adenosine. We identified the SNVs that were found in the Korean population but not seen in other populations, and explored the corresponding genes and pathways as well as the associated disease terms and drug terms. The results expand our knowledge of the genetic architecture of the Korean population, which will benefit the implementation of personalized medicine for the Korean population.
Population genomics and the causes of local differentiation.
Tonsor, Stephen J
2012-11-01
Exactly 50 years ago, a revolution in empirical population genetics began with the introduction of methods for detecting allelic variation using protein electrophoresis (Throckmorton 1962; Hubby 1963; Lewontin & Hubby 1966). These pioneering scientists showed that populations are chock-full of genetic variation. This variation was a surprise that required a re-thinking of evolutionary genetic heuristics. Understanding the causes for the maintenance of this variation became and remains a major area of research. In the process of addressing the causes, this same group of scientists documented geographical genetic structure (Prakash et al. 1969), spawning the continued accumulation of what is now a huge case study catalogue of geographical differentiation (e.g. Loveless & Hamrick 1984; Linhart & Grant 1996). Geographical differentiation is clearly quite common. Yet, a truly general understanding of the patterns in and causes of spatial genetic structure across the genome remains elusive. To what extent is spatial structure driven by drift and phylogeography vs. geographical differences in environmental sources of selection? What proportion of the genome participates? A general understanding requires range-wide data on spatial patterning of variation across the entire genome. In this issue of Molecular Ecology, Lasky et al. (2012) make important strides towards addressing these issues, taking advantage of three contemporary revolutions in evolutionary biology. Two are technological: high-throughput sequencing and burgeoning computational power. One is cultural: open access to data from the community of scientists and especially data sets that result from large collaborative efforts. Together, these developments may at last put answers within reach.
CRISPR-Cas9: Tool for Qualitative and Quantitative Plant Genome Editing
Noman, Ali; Aqeel, Muhammad; He, Shuilin
2016-01-01
Recent developments in genome editing techniques have aroused substantial excitement among agricultural scientists. These techniques offer new opportunities for developing improved plant lines with addition of important traits or removal of undesirable traits. Increased adoption of genome editing has been geared by swiftly developing Clustered regularly interspaced short palindromic repeats (CRISPR). This is appearing as driving force for innovative utilization in diverse branches of plant biology. CRISPR-Cas9 mediated genome editing is being used for rapid, easy and efficient alteration of genes among diverse plant species. With approximate completion of conceptual work about CRISPR-Cas9, plant scientists are applying this genome editing tool for crop attributes enhancement. The capability of this system for performing targeted and efficient modifications in genome sequence as well as gene expression will certainly spur novel developments not only in model plants but in crop and ornamental plants as well. Additionally, due to non-involvement of foreign DNA, this technique may help alleviating regulatory issues associated with genetically modified plants. We expect that prevailing challenges in plant science like genomic region manipulation, crop specific vectors etc. will be addressed along with sustained growth of this genome editing tool. In this review, recent progress of CRISPR-Cas9 technology in plants has been summarized and discussed. We reviewed significance of CRISPR-Cas9 for specific and non-traditional aspects of plant life. It also covers strengths of this technique in comparison with other genome editing techniques, e.g., Zinc finger nucleases, Transcription activator-like effector nucleases and potential challenges in coming decades have been described. PMID:27917188
Dharmadhikari, Avinash V.; Kang, Sung-Hae L.; Szafranski, Przemyslaw; Person, Richard E.; Sampath, Srirangan; Prakash, Siddharth K.; Bader, Patricia I.; Phillips, John A.; Hannig, Vickie; Williams, Misti; Vinson, Sherry S.; Wilfong, Angus A.; Reimschisel, Tyler E.; Craigen, William J.; Patel, Ankita; Bi, Weimin; Lupski, James R.; Belmont, John; Cheung, Sau Wai; Stankiewicz, Pawel
2012-01-01
We have identified a rare small (∼450 kb unique sequence) recurrent deletion in a previously linked attention-deficit hyperactivity disorder (ADHD) locus at 2q21.1 in five unrelated families with developmental delay (DD)/intellectual disability (ID), ADHD, epilepsy and other neurobehavioral abnormalities from 17 035 samples referred for clinical chromosomal microarray analysis. Additionally, a DECIPHER (http://decipher.sanger.ac.uk) patient 2311 was found to have the same deletion and presented with aggressive behavior. The deletion was not found in either six control groups consisting of 13 999 healthy individuals or in the DGV database. We have also identified reciprocal duplications in five unrelated families with autism, developmental delay (DD), seizures and ADHD. This genomic region is flanked by large, complex low-copy repeats (LCRs) with directly oriented subunits of ∼109 kb in size that have 97.7% DNA sequence identity. We sequenced the deletion breakpoints within the directly oriented paralogous subunits of the flanking LCR clusters, demonstrating non-allelic homologous recombination as a mechanism of formation. The rearranged segment harbors five genes: GPR148, FAM123C, ARHGEF4, FAM168B and PLEKHB2. Expression of ARHGEF4 (Rho guanine nucleotide exchange factor 4) is restricted to the brain and may regulate the actin cytoskeletal network, cell morphology and migration, and neuronal function. GPR148 encodes a G-protein-coupled receptor protein expressed in the brain and testes. We suggest that small rare recurrent deletion of 2q21.1 is pathogenic for DD/ID, ADHD, epilepsy and other neurobehavioral abnormalities and, because of its small size, low frequency and more severe phenotype might have been missed in other previous genome-wide screening studies using single-nucleotide polymorphism analyses. PMID:22543972
Frangeul, Lionel; Quillardet, Philippe; Castets, Anne-Marie; Humbert, Jean-François; Matthijs, Hans C P; Cortez, Diego; Tolonen, Andrew; Zhang, Cheng-Cai; Gribaldo, Simonetta; Kehr, Jan-Christoph; Zilliges, Yvonne; Ziemert, Nadine; Becker, Sven; Talla, Emmanuel; Latifi, Amel; Billault, Alain; Lepelletier, Anthony; Dittmann, Elke; Bouchier, Christiane; de Marsac, Nicole Tandeau
2008-06-05
The colonial cyanobacterium Microcystis proliferates in a wide range of freshwater ecosystems and is exposed to changing environmental factors during its life cycle. Microcystis blooms are often toxic, potentially fatal to animals and humans, and may cause environmental problems. There has been little investigation of the genomics of these cyanobacteria. Deciphering the 5,172,804 bp sequence of Microcystis aeruginosa PCC 7806 has revealed the high plasticity of its genome: 11.7% DNA repeats containing more than 1,000 bases, 6.8% putative transposases and 21 putative restriction enzymes. Compared to the genomes of other cyanobacterial lineages, strain PCC 7806 contains a large number of atypical genes that may have been acquired by lateral transfers. Metabolic pathways, such as fermentation and a methionine salvage pathway, have been identified, as have genes for programmed cell death that may be related to the rapid disappearance of Microcystis blooms in nature. Analysis of the PCC 7806 genome also reveals striking novel biosynthetic features that might help to elucidate the ecological impact of secondary metabolites and lead to the discovery of novel metabolites for new biotechnological applications. M. aeruginosa and other large cyanobacterial genomes exhibit a rapid loss of synteny in contrast to other microbial genomes. Microcystis aeruginosa PCC 7806 appears to have adopted an evolutionary strategy relying on unusual genome plasticity to adapt to eutrophic freshwater ecosystems, a property shared by another strain of M. aeruginosa (NIES-843). Comparisons of the genomes of PCC 7806 and other cyanobacterial strains indicate that a similar strategy may have also been used by the marine strain Crocosphaera watsonii WH8501 to adapt to other ecological niches, such as oligotrophic open oceans.
Sharma, Poonam; Gupta, Sushim Kumar; Diene, Seydina M.
2015-01-01
For the first time, we report the whole-genome sequence analysis of Chryseobacterium oranimense G311, a multidrug-resistant bacterium, from a cystic fibrosis patient in France, including resistance to colistin. Whole-genome sequencing of C. oranimense G311 was performed using Ion Torrent PGM, and RAST, the EMBL-EBI server, and the Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT) database were used for annotation of all genes, including antibiotic resistance (AR) genes. General features of the C. oranimense G311 draft genome were compared to the other available genomes of Chryseobacterium gleum and Chryseobacterium sp. strain CF314. C. oranimense G311 was found to be resistant to all β-lactams, including imipenem, and to colistin. The genome size of C. oranimense G311 is 4,457,049 bp in length, with 37.70% GC content. We found 27 AR genes in the genome, including β-lactamase genes which showed little similarity to the known β-lactamase genes and could likely be novel. We found the type I polyketide synthase operon followed by a zeaxanthin glycosyltransferase gene in the genome, which could impart the yellow pigmentation of the isolate. We located the O-antigen biosynthesis cluster, and we also discovered a novel capsular polysaccharide biosynthesis cluster. We also found known mutations in the orthologs of the pmrA (E8D), pmrB (L208F and P360Q), and lpxA (G68D) genes. We speculate that the presence of the capsular cluster and mutations in these genes could explain the resistance of this bacterium to colistin. We demonstrate that whole-genome sequencing was successfully applied to decipher the resistome of a multidrug resistance bacterium associated with cystic fibrosis patients. PMID:25583710
Sharma, Poonam; Gupta, Sushim Kumar; Diene, Seydina M; Rolain, Jean-Marc
2015-03-01
For the first time, we report the whole-genome sequence analysis of Chryseobacterium oranimense G311, a multidrug-resistant bacterium, from a cystic fibrosis patient in France, including resistance to colistin. Whole-genome sequencing of C. oranimense G311 was performed using Ion Torrent PGM, and RAST, the EMBL-EBI server, and the Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT) database were used for annotation of all genes, including antibiotic resistance (AR) genes. General features of the C. oranimense G311 draft genome were compared to the other available genomes of Chryseobacterium gleum and Chryseobacterium sp. strain CF314. C. oranimense G311 was found to be resistant to all β-lactams, including imipenem, and to colistin. The genome size of C. oranimense G311 is 4,457,049 bp in length, with 37.70% GC content. We found 27 AR genes in the genome, including β-lactamase genes which showed little similarity to the known β-lactamase genes and could likely be novel. We found the type I polyketide synthase operon followed by a zeaxanthin glycosyltransferase gene in the genome, which could impart the yellow pigmentation of the isolate. We located the O-antigen biosynthesis cluster, and we also discovered a novel capsular polysaccharide biosynthesis cluster. We also found known mutations in the orthologs of the pmrA (E8D), pmrB (L208F and P360Q), and lpxA (G68D) genes. We speculate that the presence of the capsular cluster and mutations in these genes could explain the resistance of this bacterium to colistin. We demonstrate that whole-genome sequencing was successfully applied to decipher the resistome of a multidrug resistance bacterium associated with cystic fibrosis patients. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Applied Genomics in Cattle – Identification of the SLICK locus in tropically adapted cattle
USDA-ARS?s Scientific Manuscript database
Over the past 3 years, ARS scientists have been working to identify the underlying genetic variants responsible for a heat tolerance phenotype in cattle associated with the SLICK locus typically found in Senepol cattle. This presentation reviews the general field of applied genomics in cattle, and ...
Genomic Tools in Pea Breeding Programs: Status and Perspectives
Tayeh, Nadim; Aubert, Grégoire; Pilet-Nayel, Marie-Laure; Lejeune-Hénaut, Isabelle; Warkentin, Thomas D.; Burstin, Judith
2015-01-01
Pea (Pisum sativum L.) is an annual cool-season legume and one of the oldest domesticated crops. Dry pea seeds contain 22–25% protein, complex starch and fiber constituents, and a rich array of vitamins, minerals, and phytochemicals which make them a valuable source for human consumption and livestock feed. Dry pea ranks third to common bean and chickpea as the most widely grown pulse in the world with more than 11 million tons produced in 2013. Pea breeding has achieved great success since the time of Mendel's experiments in the mid-1800s. However, several traits still require significant improvement for better yield stability in a larger growing area. Key breeding objectives in pea include improving biotic and abiotic stress resistance and enhancing yield components and seed quality. Taking advantage of the diversity present in the pea genepool, many mapping populations have been constructed in the last decades and efforts have been deployed to identify loci involved in the control of target traits and further introgress them into elite breeding materials. Pea now benefits from next-generation sequencing and high-throughput genotyping technologies that are paving the way for genome-wide association studies and genomic selection approaches. This review covers the significant development and deployment of genomic tools for pea breeding in recent years. Future prospects are discussed especially in light of current progress toward deciphering the pea genome. PMID:26640470
Zhao, Keyan; Wright, Mark; Kimball, Jennifer; Eizenga, Georgia; McClung, Anna; Kovach, Michael; Tyagi, Wricha; Ali, Md Liakat; Tung, Chih-Wei; Reynolds, Andy; Bustamante, Carlos D; McCouch, Susan R
2010-05-24
The domestication of Asian rice (Oryza sativa) was a complex process punctuated by episodes of introgressive hybridization among and between subpopulations. Deep genetic divergence between the two main varietal groups (Indica and Japonica) suggests domestication from at least two distinct wild populations. However, genetic uniformity surrounding key domestication genes across divergent subpopulations suggests cultural exchange of genetic material among ancient farmers. In this study, we utilize a novel 1,536 SNP panel genotyped across 395 diverse accessions of O. sativa to study genome-wide patterns of polymorphism, to characterize population structure, and to infer the introgression history of domesticated Asian rice. Our population structure analyses support the existence of five major subpopulations (indica, aus, tropical japonica, temperate japonica and GroupV) consistent with previous analyses. Our introgression analysis shows that most accessions exhibit some degree of admixture, with many individuals within a population sharing the same introgressed segment due to artificial selection. Admixture mapping and association analysis of amylose content and grain length illustrate the potential for dissecting the genetic basis of complex traits in domesticated plant populations. Genes in these regions control a myriad of traits including plant stature, blast resistance, and amylose content. These analyses highlight the power of population genomics in agricultural systems to identify functionally important regions of the genome and to decipher the role of human-directed breeding in refashioning the genomes of a domesticated species.
Taylor, Jared F.; Khattab, Omar S.; Chen, Yu-Han; Chen, Yumay; Jacobsen, Steven E.; Wang, Ping H.
2015-01-01
Deciphering the multitude of epigenomic and genomic factors that influence the mutation rate is an area of great interest in modern biology. Recently, chromatin has been shown to play a part in this process. To elucidate this relationship further, we integrated our own ultra-deep sequenced human nucleosomal DNA data set with a host of published human genomic and cancer genomic data sets. Our results revealed, that differences in nucleosome occupancy are associated with changes in base-specific mutation rates. Increasing nucleosome occupancy is associated with an increasing transition to transversion ratio and an increased germline mutation rate within the human genome. Additionally, cancer single nucleotide variants and microindels are enriched within nucleosomes and both the coding and non-coding cancer mutation rate increases with increasing nucleosome occupancy. There is an enrichment of cancer indels at the theoretical start (74 bp) and end (115 bp) of linker DNA between two nucleosomes. We then hypothesized that increasing nucleosome occupancy decreases access to DNA by DNA repair machinery and could account for the increasing mutation rate. Such a relationship should not exist in DNA repair knockouts, and we thus repeated our analysis in DNA repair machinery knockouts to test our hypothesis. Indeed, our results revealed no correlation between increasing nucleosome occupancy and increasing mutation rate in DNA repair knockouts. Our findings emphasize the linkage of the genome and epigenome through the nucleosome whose properties can affect genome evolution and genetic aberrations such as cancer. PMID:26308346
Kim, Hyungsuk; Dionne, Raymond A.
2010-01-01
Since the first draft of the human genome was published 10 years ago, scientists have tried to develop new treatment strategies for various types of diseases based on individual genomes. It is called personalized (or individualized) medicine and is expected to increase efficacy and reduce adverse reactions of drugs. Much progress has been made with newly developed technologies, though individualized pain medicine is still far from realization. Efforts on the integrative genomic analyses along with understandings of interactions between other related factors such as environment will eventually translate complex genomic information into individualized pain medicine. PMID:21399745
Knoppers, Bartha Maria; Chadwick, Ruth
2015-09-04
Global collaboration in genomic research is increasingly both a scientific reality and an ethical imperative. This past decade has witnessed the emergence of six new, interconnected areas of ethical consensus and emphasis for policy in genomics: governance, security, empowerment, transparency, the right not to know, and globalization. The globalization of genomic research warrants an approach to governance policies grounded in human rights. A human rights approach activates the ethical principles underpinning genomic research. It lends force to the right of all citizens to benefit from scientific progress, and to the right of all scientists to be recognized for their contributions.
Next-Generation Genomics Facility at C-CAMP: Accelerating Genomic Research in India
S, Chandana; Russiachand, Heikham; H, Pradeep; S, Shilpa; M, Ashwini; S, Sahana; B, Jayanth; Atla, Goutham; Jain, Smita; Arunkumar, Nandini; Gowda, Malali
2014-01-01
Next-Generation Sequencing (NGS; http://www.genome.gov/12513162) is a recent life-sciences technological revolution that allows scientists to decode genomes or transcriptomes at a much faster rate with a lower cost. Genomic-based studies are in a relatively slow pace in India due to the non-availability of genomics experts, trained personnel and dedicated service providers. Using NGS there is a lot of potential to study India's national diversity (of all kinds). We at the Centre for Cellular and Molecular Platforms (C-CAMP) have launched the Next Generation Genomics Facility (NGGF) to provide genomics service to scientists, to train researchers and also work on national and international genomic projects. We have HiSeq1000 from Illumina and GS-FLX Plus from Roche454. The long reads from GS FLX Plus, and high sequence depth from HiSeq1000, are the best and ideal hybrid approaches for de novo and re-sequencing of genomes and transcriptomes. At our facility, we have sequenced around 70 different organisms comprising of more than 388 genomes and 615 transcriptomes – prokaryotes and eukaryotes (fungi, plants and animals). In addition we have optimized other unique applications such as small RNA (miRNA, siRNA etc), long Mate-pair sequencing (2 to 20 Kb), Coding sequences (Exome), Methylome (ChIP-Seq), Restriction Mapping (RAD-Seq), Human Leukocyte Antigen (HLA) typing, mixed genomes (metagenomes) and target amplicons, etc. Translating DNA sequence data from NGS sequencer into meaningful information is an important exercise. Under NGGF, we have bioinformatics experts and high-end computing resources to dissect NGS data such as genome assembly and annotation, gene expression, target enrichment, variant calling (SSR or SNP), comparative analysis etc. Our services (sequencing and bioinformatics) have been utilized by more than 45 organizations (academia and industry) both within India and outside, resulting several publications in peer-reviewed journals and several genomic/transcriptomic data is available at NCBI.
Byrd, W Carson; Best, Latrica E
2016-01-01
As the social sciences expand their involvement in genetic and genomic research, more information is needed to understand how theoretical concepts are applied to genetic data found in social surveys. Given the layers of complexity of studying race in relation to genetics and genomics, it is important to identify the varying approaches used to discuss and operationalize race and identity by social scientists. The present study explores how social scientists have used race, ethnicity, and ancestry in studies published in four social science journals from 2000 to 2014. We identify not only how race, ethnicity, and ancestry are classified and conceptualized in this growing area of research, but also how these concepts are incorporated into the methodology and presentation of results, all of which structure the discussion of race, identity, and inequality. This research indicates the slippage between concepts, classifications, and their use by social scientists in their genetics-related research. The current study can assist social scientists with clarifying their use and interpretations of race and ethnicity with the incorporation of genetic data, while limiting possible misinterpretations of the complexities of the connection between genetics and the social world.
Genome-wide inference of regulatory networks in Streptomyces coelicolor.
Castro-Melchor, Marlene; Charaniya, Salim; Karypis, George; Takano, Eriko; Hu, Wei-Shou
2010-10-18
The onset of antibiotics production in Streptomyces species is co-ordinated with differentiation events. An understanding of the genetic circuits that regulate these coupled biological phenomena is essential to discover and engineer the pharmacologically important natural products made by these species. The availability of genomic tools and access to a large warehouse of transcriptome data for the model organism, Streptomyces coelicolor, provides incentive to decipher the intricacies of the regulatory cascades and develop biologically meaningful hypotheses. In this study, more than 500 samples of genome-wide temporal transcriptome data, comprising wild-type and more than 25 regulatory gene mutants of Streptomyces coelicolor probed across multiple stress and medium conditions, were investigated. Information based on transcript and functional similarity was used to update a previously-predicted whole-genome operon map and further applied to predict transcriptional networks constituting modules enriched in diverse functions such as secondary metabolism, and sigma factor. The predicted network displays a scale-free architecture with a small-world property observed in many biological networks. The networks were further investigated to identify functionally-relevant modules that exhibit functional coherence and a consensus motif in the promoter elements indicative of DNA-binding elements. Despite the enormous experimental as well as computational challenges, a systems approach for integrating diverse genome-scale datasets to elucidate complex regulatory networks is beginning to emerge. We present an integrated analysis of transcriptome data and genomic features to refine a whole-genome operon map and to construct regulatory networks at the cistron level in Streptomyces coelicolor. The functionally-relevant modules identified in this study pose as potential targets for further studies and verification.
Zhu, Zhou; Ihle, Nathan T; Rejto, Paul A; Zarrinkar, Patrick P
2016-06-13
Genome-scale functional genomic screens across large cell line panels provide a rich resource for discovering tumor vulnerabilities that can lead to the next generation of targeted therapies. Their data analysis typically has focused on identifying genes whose knockdown enhances response in various pre-defined genetic contexts, which are limited by biological complexities as well as the incompleteness of our knowledge. We thus introduce a complementary data mining strategy to identify genes with exceptional sensitivity in subsets, or outlier groups, of cell lines, allowing an unbiased analysis without any a priori assumption about the underlying biology of dependency. Genes with outlier features are strongly and specifically enriched with those known to be associated with cancer and relevant biological processes, despite no a priori knowledge being used to drive the analysis. Identification of exceptional responders (outliers) may not lead only to new candidates for therapeutic intervention, but also tumor indications and response biomarkers for companion precision medicine strategies. Several tumor suppressors have an outlier sensitivity pattern, supporting and generalizing the notion that tumor suppressors can play context-dependent oncogenic roles. The novel application of outlier analysis described here demonstrates a systematic and data-driven analytical strategy to decipher large-scale functional genomic data for oncology target and precision medicine discoveries.
Audit, Benjamin; Zaghloul, Lamia; Vaillant, Cédric; Chevereau, Guillaume; d'Aubenton-Carafa, Yves; Thermes, Claude; Arneodo, Alain
2009-01-01
For years, progress in elucidating the mechanisms underlying replication initiation and its coupling to transcriptional activities and to local chromatin structure has been hampered by the small number (approximately 30) of well-established origins in the human genome and more generally in mammalian genomes. Recent in silico studies of compositional strand asymmetries revealed a high level of organization of human genes around 1000 putative replication origins. Here, by comparing with recently experimentally identified replication origins, we provide further support that these putative origins are active in vivo. We show that regions ∼300-kb wide surrounding most of these putative replication origins that replicate early in the S phase are hypersensitive to DNase I cleavage, hypomethylated and present a significant enrichment in genomic energy barriers that impair nucleosome formation (nucleosome-free regions). This suggests that these putative replication origins are specified by an open chromatin structure favored by the DNA sequence. We discuss how this distinctive attribute makes these origins, further qualified as ‘master’ replication origins, priviledged loci for future research to decipher the human spatio-temporal replication program. Finally, we argue that these ‘master’ origins are likely to play a key role in genome dynamics during evolution and in pathological situations. PMID:19671527
novPTMenzy: a database for enzymes involved in novel post-translational modifications
Khater, Shradha; Mohanty, Debasisa
2015-01-01
With the recent discoveries of novel post-translational modifications (PTMs) which play important roles in signaling and biosynthetic pathways, identification of such PTM catalyzing enzymes by genome mining has been an area of major interest. Unlike well-known PTMs like phosphorylation, glycosylation, SUMOylation, no bioinformatics resources are available for enzymes associated with novel and unusual PTMs. Therefore, we have developed the novPTMenzy database which catalogs information on the sequence, structure, active site and genomic neighborhood of experimentally characterized enzymes involved in five novel PTMs, namely AMPylation, Eliminylation, Sulfation, Hydroxylation and Deamidation. Based on a comprehensive analysis of the sequence and structural features of these known PTM catalyzing enzymes, we have created Hidden Markov Model profiles for the identification of similar PTM catalyzing enzymatic domains in genomic sequences. We have also created predictive rules for grouping them into functional subfamilies and deciphering their mechanistic details by structure-based analysis of their active site pockets. These analytical modules have been made available as user friendly search interfaces of novPTMenzy database. It also has a specialized analysis interface for some PTMs like AMPylation and Eliminylation. The novPTMenzy database is a unique resource that can aid in discovery of unusual PTM catalyzing enzymes in newly sequenced genomes. Database URL: http://www.nii.ac.in/novptmenzy.html PMID:25931459
Lefebvre, François; Joly, David L.; Labbé, Caroline; Teichmann, Beate; Linning, Rob; Belzile, François; Bakkeren, Guus; Bélanger, Richard R.
2013-01-01
Pseudozyma flocculosa is related to the model plant pathogen Ustilago maydis yet is not a phytopathogen but rather a biocontrol agent of powdery mildews; this relationship makes it unique for the study of the evolution of plant pathogenicity factors. The P. flocculosa genome of ∼23 Mb includes 6877 predicted protein coding genes. Genome features, including hallmarks of pathogenicity, are very similar in P. flocculosa and U. maydis, Sporisorium reilianum, and Ustilago hordei. Furthermore, P. flocculosa, a strict anamorph, revealed conserved and seemingly intact mating-type and meiosis loci typical of Ustilaginales. By contrast, we observed the loss of a specific subset of candidate secreted effector proteins reported to influence virulence in U. maydis as the singular divergence that could explain its nonpathogenic nature. These results suggest that P. flocculosa could have once been a virulent smut fungus that lost the specific effectors necessary for host compatibility. Interestingly, the biocontrol agent appears to have acquired genes encoding secreted proteins not found in the compared Ustilaginales, including necrosis-inducing-Phytophthora-protein- and Lysin-motif- containing proteins believed to have direct relevance to its lifestyle. The genome sequence should contribute to new insights into the subtle genetic differences that can lead to drastic changes in fungal pathogen lifestyles. PMID:23800965
The Cancer Genome Atlas Research Network investigators, including CCR scientists, identified genetic and metabolic pathway changes linked to reduced survival of patients within and across subtypes of renal cell carcinoma (RCC), a type of kidney cancer. The study, published April 5, 2018, in Cell Reports, is part of The Cancer Genome Atlas (TCGA) Program, a joint effort of the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI).
FISH Oracle 2: a web server for integrative visualization of genomic data in cancer research
2014-01-01
Background A comprehensive view on all relevant genomic data is instrumental for understanding the complex patterns of molecular alterations typically found in cancer cells. One of the most effective ways to rapidly obtain an overview of genomic alterations in large amounts of genomic data is the integrative visualization of genomic events. Results We developed FISH Oracle 2, a web server for the interactive visualization of different kinds of downstream processed genomics data typically available in cancer research. A powerful search interface and a fast visualization engine provide a highly interactive visualization for such data. High quality image export enables the life scientist to easily communicate their results. A comprehensive data administration allows to keep track of the available data sets. We applied FISH Oracle 2 to published data and found evidence that, in colorectal cancer cells, the gene TTC28 may be inactivated in two different ways, a fact that has not been published before. Conclusions The interactive nature of FISH Oracle 2 and the possibility to store, select and visualize large amounts of downstream processed data support life scientists in generating hypotheses. The export of high quality images supports explanatory data visualization, simplifying the communication of new biological findings. A FISH Oracle 2 demo server and the software is available at http://www.zbh.uni-hamburg.de/fishoracle. PMID:24684958
Gehring, Walter J
2014-01-01
In this review, the evolution of vision is retraced from its putative origins in cyanobacteria to humans. Circadian oscillatory clocks, phototropism, and phototaxis require the capability to detect light. Photosensory proteins allow us to reconstruct molecular phylogenetic trees. The evolution of animal eyes leading from an ancestral prototype to highly complex image forming eyes can be deciphered on the basis of evolutionary developmental genetic experiments and comparative genomics. As all bilaterian animals share the same master control gene, Pax6, and the same retinal and pigment cell determination genes, we conclude that the different eye-types originated monophyletically and subsequently diversified by divergent, parallel, or convergent evolution. © 2012 Wiley Periodicals, Inc.
Revealing the Role of Microbes in Controlling Contaminants
Williams, Kenneth Hurst
2018-05-11
In Rifle, Colorado, Berkeley Lab earth scientist, Kenneth Hurst Williams, highlights the role subsurface microbial communities can play in controlling the flow of contaminants in groundwater. The DOE Joint Genome Institute is a key collaborator in the research. Williams is Component Lead of Watershed Structure and Controls within Berkeley Lab's Genomes-to-Watershed Scientific Focus Area.
Revealing the Role of Microbes in Controlling Contaminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Kenneth Hurst
2015-04-02
In Rifle, Colorado, Berkeley Lab earth scientist, Kenneth Hurst Williams, highlights the role subsurface microbial communities can play in controlling the flow of contaminants in groundwater. The DOE Joint Genome Institute is a key collaborator in the research. Williams is Component Lead of Watershed Structure and Controls within Berkeley Lab's Genomes-to-Watershed Scientific Focus Area.
ERIC Educational Resources Information Center
Hicks, Melissa A.; Cline, Rebecca J.; Trepanier, Angela M.
2014-01-01
An understanding of how genomics information, including information about risk for common, multifactorial disease, can be used to promote personal health (personalized medicine) is becoming increasingly important for the American public. We undertook a quantitative content analysis of commonly used high school textbooks to assess how frequently…
The H3Africa policy framework: negotiating fairness in genomics
de Vries, Jantina; Tindana, Paulina; Littler, Katherine; Ramsay, Michèle; Rotimi, Charles; Abayomi, Akin; Mulder, Nicola; Mayosi, Bongani M.
2015-01-01
Human Heredity and Health in Africa (H3Africa) research seeks to promote fair collaboration between scientists in Africa and those from elsewhere. Here, we outline how concerns over inequality and exploitation led to a policy framework that places a firm focus on African leadership and capacity building as guiding principles for African genomics research. PMID:25601285
Mei, Mei; Yang, Lin; Zhan, Guodong; Wang, Huijun; Ma, Duan; Zhou, Wenhao; Huang, Guoying
2014-06-01
To screen for genomic copy number variations (CNVs) in two unrelated neonates with multiple congenital abnormalities using Affymetrix SNP chip and try to find the critical region associated with congenital heart disease. Two neonates were tested for genomic copy number variations by using Cytogenetic SNP chip.Rare CNVs with potential clinical significance were selected of which deletion segments' size was larger than 50 kb and duplication segments' size was larger than 150 kb based on the analysis of ChAs software, without false positive CNVs and segments of normal population. The identified CNVs were compared with those of the cases in DECIPHER and ISCA databases. Eleven rare CNVs with size from 546.6-27 892 kb were identified in the 2 neonates. The deletion region and size of case 1 were 8p23.3-p23.1 (387 912-11 506 771 bp) and 11.1 Mb respectively, the duplication region and size of case 1 were 8p23.1-p11.1 (11 508 387-43 321 279 bp) and 31.8 Mb respectively. The deletion region and size of case 2 were 8p23.3-p23.1 (46 385-7 809 878 bp) and 7.8 Mb respectively, the duplication region and size of case 2 were 8p23.1-p11.21 (12 260 914-40 917 092 bp) and 28.7 Mb respectively. The comparison with Decipher and ISCA databases supported previous viewpoint that 8p23.1 had been associated with congenital heart disease and the region between 7 809 878-11 506 771 bp may play a role in the severe cardiac defects associated with 8p23.1 deletions. Case 1 had serious cardiac abnormalities whose GATA4 was located in the duplication segment and the copy number increased while SOX7 was located in the deletion segment and the copy number decreased. The region between 7 809 878-11 506 771 bp in 8p23.1 is associated with heart defects and copy number variants of SOX7 and GATA4 may result in congenital heart disease.
The Adam and Eve Robot Scientists for the Automated Discovery of Scientific Knowledge
NASA Astrophysics Data System (ADS)
King, Ross
A Robot Scientist is a physically implemented robotic system that applies techniques from artificial intelligence to execute cycles of automated scientific experimentation. A Robot Scientist can automatically execute cycles of hypothesis formation, selection of efficient experiments to discriminate between hypotheses, execution of experiments using laboratory automation equipment, and analysis of results. The motivation for developing Robot Scientists is to better understand science, and to make scientific research more efficient. The Robot Scientist `Adam' was the first machine to autonomously discover scientific knowledge: both form and experimentally confirm novel hypotheses. Adam worked in the domain of yeast functional genomics. The Robot Scientist `Eve' was originally developed to automate early-stage drug development, with specific application to neglected tropical disease such as malaria, African sleeping sickness, etc. We are now adapting Eve to work with on cancer. We are also teaching Eve to autonomously extract information from the scientific literature.
Observing copepods through a genomic lens
2011-01-01
Background Copepods outnumber every other multicellular animal group. They are critical components of the world's freshwater and marine ecosystems, sensitive indicators of local and global climate change, key ecosystem service providers, parasites and predators of economically important aquatic animals and potential vectors of waterborne disease. Copepods sustain the world fisheries that nourish and support human populations. Although genomic tools have transformed many areas of biological and biomedical research, their power to elucidate aspects of the biology, behavior and ecology of copepods has only recently begun to be exploited. Discussion The extraordinary biological and ecological diversity of the subclass Copepoda provides both unique advantages for addressing key problems in aquatic systems and formidable challenges for developing a focused genomics strategy. This article provides an overview of genomic studies of copepods and discusses strategies for using genomics tools to address key questions at levels extending from individuals to ecosystems. Genomics can, for instance, help to decipher patterns of genome evolution such as those that occur during transitions from free living to symbiotic and parasitic lifestyles and can assist in the identification of genetic mechanisms and accompanying physiological changes associated with adaptation to new or physiologically challenging environments. The adaptive significance of the diversity in genome size and unique mechanisms of genome reorganization during development could similarly be explored. Genome-wide and EST studies of parasitic copepods of salmon and large EST studies of selected free-living copepods have demonstrated the potential utility of modern genomics approaches for the study of copepods and have generated resources such as EST libraries, shotgun genome sequences, BAC libraries, genome maps and inbred lines that will be invaluable in assisting further efforts to provide genomics tools for copepods. Summary Genomics research on copepods is needed to extend our exploration and characterization of their fundamental biological traits, so that we can better understand how copepods function and interact in diverse environments. Availability of large scale genomics resources will also open doors to a wide range of systems biology type studies that view the organism as the fundamental system in which to address key questions in ecology and evolution. PMID:21933388
Oncogenomics and the development of new cancer therapies.
Strausberg, Robert L; Simpson, Andrew J G; Old, Lloyd J; Riggins, Gregory J
2004-05-27
Scientists have sequenced the human genome and identified most of its genes. Now it is time to use these genomic data, and the high-throughput technology developed to generate them, to tackle major health problems such as cancer. To accelerate our understanding of this disease and to produce targeted therapies, further basic mutational and functional genomic information is required. A systematic and coordinated approach, with the results freely available, should speed up progress. This will best be accomplished through an international academic and pharmaceutical oncogenomics initiative.
Opportunities and challenges of big data for the social sciences: The case of genomic data.
Liu, Hexuan; Guo, Guang
2016-09-01
In this paper, we draw attention to one unique and valuable source of big data, genomic data, by demonstrating the opportunities they provide to social scientists. We discuss different types of large-scale genomic data and recent advances in statistical methods and computational infrastructure used to address challenges in managing and analyzing such data. We highlight how these data and methods can be used to benefit social science research. Copyright © 2016 Elsevier Inc. All rights reserved.
After the Genome IV: Envisioning Biology in the Year 2010
NASA Technical Reports Server (NTRS)
Brent, Roger
1999-01-01
The After the Genome meetings were started in 1995 to help the biological community think about and prepare for the changes in biological research in the face of genomic information. This workshop brings together intellectuals from subject fields far outside of conventional biology with the expectation that this will help focus thinking beyond the immediate future. Hence the subtitle for this year's meeting: "Envisioning Biology in the Year 2010". Accordingly, the organizers brought together a broadly multi-disciplinary group of thinkers and working scientists.
Incorporating Genomics and Bioinformatics across the Life Sciences Curriculum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ditty, Jayna L.; Kvaal, Christopher A.; Goodner, Brad
Undergraduate life sciences education needs an overhaul, as clearly described in the National Research Council of the National Academies publication BIO 2010: Transforming Undergraduate Education for Future Research Biologists. Among BIO 2010's top recommendations is the need to involve students in working with real data and tools that reflect the nature of life sciences research in the 21st century. Education research studies support the importance of utilizing primary literature, designing and implementing experiments, and analyzing results in the context of a bona fide scientific question in cultivating the analytical skills necessary to become a scientist. Incorporating these basic scientific methodologiesmore » in undergraduate education leads to increased undergraduate and post-graduate retention in the sciences. Toward this end, many undergraduate teaching organizations offer training and suggestions for faculty to update and improve their teaching approaches to help students learn as scientists, through design and discovery (e.g., Council of Undergraduate Research [www.cur.org] and Project Kaleidoscope [www.pkal.org]). With the advent of genome sequencing and bioinformatics, many scientists now formulate biological questions and interpret research results in the context of genomic information. Just as the use of bioinformatic tools and databases changed the way scientists investigate problems, it must change how scientists teach to create new opportunities for students to gain experiences reflecting the influence of genomics, proteomics, and bioinformatics on modern life sciences research. Educators have responded by incorporating bioinformatics into diverse life science curricula. While these published exercises in, and guidelines for, bioinformatics curricula are helpful and inspirational, faculty new to the area of bioinformatics inevitably need training in the theoretical underpinnings of the algorithms. Moreover, effectively integrating bioinformatics into courses or independent research projects requires infrastructure for organizing and assessing student work. Here, we present a new platform for faculty to keep current with the rapidly changing field of bioinformatics, the Integrated Microbial Genomes Annotation Collaboration Toolkit (IMG-ACT). It was developed by instructors from both research-intensive and predominately undergraduate institutions in collaboration with the Department of Energy-Joint Genome Institute (DOE-JGI) as a means to innovate and update undergraduate education and faculty development. The IMG-ACT program provides a cadre of tools, including access to a clearinghouse of genome sequences, bioinformatics databases, data storage, instructor course management, and student notebooks for organizing the results of their bioinformatic investigations. In the process, IMG-ACT makes it feasible to provide undergraduate research opportunities to a greater number and diversity of students, in contrast to the traditional mentor-to-student apprenticeship model for undergraduate research, which can be too expensive and time-consuming to provide for every undergraduate. The IMG-ACT serves as the hub for the network of faculty and students that use the system for microbial genome analysis. Open access of the IMG-ACT infrastructure to participating schools ensures that all types of higher education institutions can utilize it. With the infrastructure in place, faculty can focus their efforts on the pedagogy of bioinformatics, involvement of students in research, and use of this tool for their own research agenda. What the original faculty members of the IMG-ACT development team present here is an overview of how the IMG-ACT program has affected our development in terms of teaching and research with the hopes that it will inspire more faculty to get involved.« less
Patient privacy in the genomic era.
Raisaro, Jean Louis; Ayday, Erman; Hubaux, Jean-Pierre
2014-05-07
According to many scientists and clinicians, genomics is taking on a key role in the field of medicine. Impressive advances in genome sequencing have opened the way to a variety of revolutionary applications in modern healthcare. In particular, the increasing understanding of the human genome, and of its relation to diseases and response to treatments brings promise of improvements in better preventive and personalized medicine. However, this progress raises important privacy and ethical concerns that need to be addressed. Indeed, each genome is the ultimate identifier of its owner and, due to its nature, it contains highly personal and privacy-sensitive data. In this article, after summarizing recent advances in genomics, we discuss some important privacy issues associated with human genomic information and methods put in place to address them.
Bedside Back to Bench: Building Bridges between Basic and Clinical Genomic Research.
Manolio, Teri A; Fowler, Douglas M; Starita, Lea M; Haendel, Melissa A; MacArthur, Daniel G; Biesecker, Leslie G; Worthey, Elizabeth; Chisholm, Rex L; Green, Eric D; Jacob, Howard J; McLeod, Howard L; Roden, Dan; Rodriguez, Laura Lyman; Williams, Marc S; Cooper, Gregory M; Cox, Nancy J; Herman, Gail E; Kingsmore, Stephen; Lo, Cecilia; Lutz, Cathleen; MacRae, Calum A; Nussbaum, Robert L; Ordovas, Jose M; Ramos, Erin M; Robinson, Peter N; Rubinstein, Wendy S; Seidman, Christine; Stranger, Barbara E; Wang, Haoyi; Westerfield, Monte; Bult, Carol
2017-03-23
Genome sequencing has revolutionized the diagnosis of genetic diseases. Close collaborations between basic scientists and clinical genomicists are now needed to link genetic variants with disease causation. To facilitate such collaborations, we recommend prioritizing clinically relevant genes for functional studies, developing reference variant-phenotype databases, adopting phenotype description standards, and promoting data sharing. Published by Elsevier Inc.
Bedside Back to Bench: Building Bridges between Basic and Clinical Genomic Research
Manolio, Teri A.; Fowler, Douglas M.; Starita, Lea M.; Haendel, Melissa A.; MacArthur, Daniel G.; Biesecker, Leslie G.; Worthey, Elizabeth; Chisholm, Rex L.; Green, Eric D.; Jacob, Howard J.; McLeod, Howard L.; Roden, Dan; Rodriguez, Laura Lyman; Williams, Marc S.; Cooper, Gregory M.; Cox, Nancy J.; Herman, Gail E.; Kingsmore, Stephen; Lo, Cecilia; Lutz, Cathleen; MacRae, Calum A.; Nussbaum, Robert L.; Ordovas, Jose M.; Ramos, Erin M.; Robinson, Peter N.; Rubinstein, Wendy S.; Seidman, Christine; Stranger, Barbara E.; Wang, Haoyi; Westerfield, Monte; Bult, Carol
2017-01-01
Summary Genome sequencing has revolutionized the diagnosis of genetic diseases. Close collaborations between basic scientists and clinical genomicists are now needed to link genetic variants with disease causation. To facilitate such collaborations we recommend prioritizing clinically relevant genes for functional studies, developing reference variant-phenotype databases, adopting phenotype description standards, and promoting data sharing. PMID:28340351
DNA Mapping Made Simple: An Intellectual Activity about the Genetic Modification of Organisms
ERIC Educational Resources Information Center
Marques, Miguel; Arrabaca, Joao; Chagas, Isabel
2004-01-01
Since the discovery of the DNA double helix (in 1953 by Watson and Crick), technologies have been developed that allow scientists to manipulate the genome of bacteria to produce human hormones, as well as the genome of crop plants to achieve high yield and enhanced flavor. The universality of the genetic code has allowed DNA isolated from a…
ERIC Educational Resources Information Center
Pollack, Miriam
The "Mapping the Human Genome" project demonstrated that librarians can help whomever they serve in accessing information resources in the areas of biological and health information, whether it is the scientists who are developing the information or a member of the public who is using the information. Public libraries can guide library…
USDA-ARS?s Scientific Manuscript database
Scientists at ARS developed tolerant industrial yeast that is able to reduce major chemical classes of inhibitors into less toxic or none toxic compounds while producing ethanol. Using genomic studies, we defined mechanisms of in situ detoxification involved in novel gene functions, vital cofactor r...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christian, A T; Coleman, M A; Tucker, J D
2001-02-08
Gene Recovery Microdissection (GRM) is a unique and cost-effective process for producing chromosome region-specific libraries of expressed genes. It accelerates the pace, reduces the cost, and extends the capabilities of functional genomic research, the means by which scientists will put to life-saving, life-enhancing use their knowledge of any plant or animal genome.
KnowEnG: a knowledge engine for genomics.
Sinha, Saurabh; Song, Jun; Weinshilboum, Richard; Jongeneel, Victor; Han, Jiawei
2015-11-01
We describe here the vision, motivations, and research plans of the National Institutes of Health Center for Excellence in Big Data Computing at the University of Illinois, Urbana-Champaign. The Center is organized around the construction of "Knowledge Engine for Genomics" (KnowEnG), an E-science framework for genomics where biomedical scientists will have access to powerful methods of data mining, network mining, and machine learning to extract knowledge out of genomics data. The scientist will come to KnowEnG with their own data sets in the form of spreadsheets and ask KnowEnG to analyze those data sets in the light of a massive knowledge base of community data sets called the "Knowledge Network" that will be at the heart of the system. The Center is undertaking discovery projects aimed at testing the utility of KnowEnG for transforming big data to knowledge. These projects span a broad range of biological enquiry, from pharmacogenomics (in collaboration with Mayo Clinic) to transcriptomics of human behavior. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Genetics Home Reference: McKusick-Kaufman syndrome
... Kaufman syndrome Additional NIH Resources (1 link) National Human Genome Research Institute: Gene Linked to Developmental Syndrome in Old Order Amish Identified by NIH Scientists Educational Resources ( ...
Chromosomal location and gene paucity of the male specific region on papaya Y chromosome.
Yu, Qingyi; Hou, Shaobin; Hobza, Roman; Feltus, F Alex; Wang, Xiue; Jin, Weiwei; Skelton, Rachel L; Blas, Andrea; Lemke, Cornelia; Saw, Jimmy H; Moore, Paul H; Alam, Maqsudul; Jiang, Jiming; Paterson, Andrew H; Vyskot, Boris; Ming, Ray
2007-08-01
Sex chromosomes in flowering plants evolved recently and many of them remain homomorphic, including those in papaya. We investigated the chromosomal location of papaya's small male specific region of the hermaphrodite Y (Yh) chromosome (MSY) and its genomic features. We conducted chromosome fluorescence in situ hybridization mapping of Yh-specific bacterial artificial chromosomes (BACs) and placed the MSY near the centromere of the papaya Y chromosome. Then we sequenced five MSY BACs to examine the genomic features of this specialized region, which resulted in the largest collection of contiguous genomic DNA sequences of a Y chromosome in flowering plants. Extreme gene paucity was observed in the papaya MSY with no functional gene identified in 715 kb MSY sequences. A high density of retroelements and local sequence duplications were detected in the MSY that is suppressed for recombination. Location of the papaya MSY near the centromere might have provided recombination suppression and fostered paucity of genes in the male specific region of the Y chromosome. Our findings provide critical information for deciphering the sex chromosomes in papaya and reference information for comparative studies of other sex chromosomes in animals and plants.
Defining the biological bases of individual differences in musicality
Gingras, Bruno; Honing, Henkjan; Peretz, Isabelle; Trainor, Laurel J.; Fisher, Simon E.
2015-01-01
Advances in molecular technologies make it possible to pinpoint genomic factors associated with complex human traits. For cognition and behaviour, identification of underlying genes provides new entry points for deciphering the key neurobiological pathways. In the past decade, the search for genetic correlates of musicality has gained traction. Reports have documented familial clustering for different extremes of ability, including amusia and absolute pitch (AP), with twin studies demonstrating high heritability for some music-related skills, such as pitch perception. Certain chromosomal regions have been linked to AP and musical aptitude, while individual candidate genes have been investigated in relation to aptitude and creativity. Most recently, researchers in this field started performing genome-wide association scans. Thus far, studies have been hampered by relatively small sample sizes and limitations in defining components of musicality, including an emphasis on skills that can only be assessed in trained musicians. With opportunities to administer standardized aptitude tests online, systematic large-scale assessment of musical abilities is now feasible, an important step towards high-powered genome-wide screens. Here, we offer a synthesis of existing literatures and outline concrete suggestions for the development of comprehensive operational tools for the analysis of musical phenotypes. PMID:25646515
A Genomics Approach to Deciphering Lignin Biosynthesis in Switchgrass[W
Shen, Hui; Mazarei, Mitra; Hisano, Hiroshi; Escamilla-Trevino, Luis; Fu, Chunxiang; Pu, Yunqiao; Rudis, Mary R.; Tang, Yuhong; Xiao, Xirong; Jackson, Lisa; Li, Guifen; Hernandez, Tim; Chen, Fang; Ragauskas, Arthur J.; Stewart, C. Neal; Wang, Zeng-Yu; Dixon, Richard A.
2013-01-01
It is necessary to overcome recalcitrance of the biomass to saccharification (sugar release) to make switchgrass (Panicum virgatum) economically viable as a feedstock for liquid biofuels. Lignin content correlates negatively with sugar release efficiency in switchgrass, but selecting the right gene candidates for engineering lignin biosynthesis in this tetraploid outcrossing species is not straightforward. To assist this endeavor, we have used an inducible switchgrass cell suspension system for studying lignin biosynthesis in response to exogenous brassinolide. By applying a combination of protein sequence phylogeny with whole-genome microarray analyses of induced cell cultures and developing stem internode sections, we have generated a list of candidate monolignol biosynthetic genes for switchgrass. Several genes that were strongly supported through our bioinformatics analysis as involved in lignin biosynthesis were confirmed by gene silencing studies, in which lignin levels were reduced as a result of targeting a single gene. However, candidate genes encoding enzymes involved in the early steps of the currently accepted monolignol biosynthesis pathway in dicots may have functionally redundant paralogues in switchgrass and therefore require further evaluation. This work provides a blueprint and resources for the systematic genome-wide study of the monolignol pathway in switchgrass, as well as other C4 monocot species. PMID:24285795
Wei, Ling; Yang, Chao; Tao, Wenjing; Wang, Deshou
2016-01-01
The Sox transcription factor family is characterized with the presence of a Sry-related high-mobility group (HMG) box and plays important roles in various biological processes in animals, including sex determination and differentiation, and the development of multiple organs. In this study, 27 Sox genes were identified in the genome of the Nile tilapia (Oreochromis niloticus), and were classified into seven groups. The members of each group of the tilapia Sox genes exhibited a relatively conserved exon-intron structure. Comparative analysis showed that the Sox gene family has undergone an expansion in tilapia and other teleost fishes following their whole genome duplication, and group K only exists in teleosts. Transcriptome-based analysis demonstrated that most of the tilapia Sox genes presented stage-specific and/or sex-dimorphic expressions during gonadal development, and six of the group B Sox genes were specifically expressed in the adult brain. Our results provide a better understanding of gene structure and spatio-temporal expression of the Sox gene family in tilapia, and will be useful for further deciphering the roles of the Sox genes during sex determination and gonadal development in teleosts. PMID:26907269
Wei, Ling; Yang, Chao; Tao, Wenjing; Wang, Deshou
2016-02-23
The Sox transcription factor family is characterized with the presence of a Sry-related high-mobility group (HMG) box and plays important roles in various biological processes in animals, including sex determination and differentiation, and the development of multiple organs. In this study, 27 Sox genes were identified in the genome of the Nile tilapia (Oreochromis niloticus), and were classified into seven groups. The members of each group of the tilapia Sox genes exhibited a relatively conserved exon-intron structure. Comparative analysis showed that the Sox gene family has undergone an expansion in tilapia and other teleost fishes following their whole genome duplication, and group K only exists in teleosts. Transcriptome-based analysis demonstrated that most of the tilapia Sox genes presented stage-specific and/or sex-dimorphic expressions during gonadal development, and six of the group B Sox genes were specifically expressed in the adult brain. Our results provide a better understanding of gene structure and spatio-temporal expression of the Sox gene family in tilapia, and will be useful for further deciphering the roles of the Sox genes during sex determination and gonadal development in teleosts.
A Third Approach to Gene Prediction Suggests Thousands of Additional Human Transcribed Regions
Glusman, Gustavo; Qin, Shizhen; El-Gewely, M. Raafat; Siegel, Andrew F; Roach, Jared C; Hood, Leroy; Smit, Arian F. A
2006-01-01
The identification and characterization of the complete ensemble of genes is a main goal of deciphering the digital information stored in the human genome. Many algorithms for computational gene prediction have been described, ultimately derived from two basic concepts: (1) modeling gene structure and (2) recognizing sequence similarity. Successful hybrid methods combining these two concepts have also been developed. We present a third orthogonal approach to gene prediction, based on detecting the genomic signatures of transcription, accumulated over evolutionary time. We discuss four algorithms based on this third concept: Greens and CHOWDER, which quantify mutational strand biases caused by transcription-coupled DNA repair, and ROAST and PASTA, which are based on strand-specific selection against polyadenylation signals. We combined these algorithms into an integrated method called FEAST, which we used to predict the location and orientation of thousands of putative transcription units not overlapping known genes. Many of the newly predicted transcriptional units do not appear to code for proteins. The new algorithms are particularly apt at detecting genes with long introns and lacking sequence conservation. They therefore complement existing gene prediction methods and will help identify functional transcripts within many apparent “genomic deserts.” PMID:16543943
TADs are 3D structural units of higher-order chromosome organization in Drosophila
Szabo, Quentin; Jost, Daniel; Chang, Jia-Ming; Cattoni, Diego I.; Papadopoulos, Giorgio L.; Bonev, Boyan; Sexton, Tom; Gurgo, Julian; Jacquier, Caroline; Nollmann, Marcelo; Bantignies, Frédéric; Cavalli, Giacomo
2018-01-01
Deciphering the rules of genome folding in the cell nucleus is essential to understand its functions. Recent chromosome conformation capture (Hi-C) studies have revealed that the genome is partitioned into topologically associating domains (TADs), which demarcate functional epigenetic domains defined by combinations of specific chromatin marks. However, whether TADs are true physical units in each cell nucleus or whether they reflect statistical frequencies of measured interactions within cell populations is unclear. Using a combination of Hi-C, three-dimensional (3D) fluorescent in situ hybridization, super-resolution microscopy, and polymer modeling, we provide an integrative view of chromatin folding in Drosophila. We observed that repressed TADs form a succession of discrete nanocompartments, interspersed by less condensed active regions. Single-cell analysis revealed a consistent TAD-based physical compartmentalization of the chromatin fiber, with some degree of heterogeneity in intra-TAD conformations and in cis and trans inter-TAD contact events. These results indicate that TADs are fundamental 3D genome units that engage in dynamic higher-order inter-TAD connections. This domain-based architecture is likely to play a major role in regulatory transactions during DNA-dependent processes. PMID:29503869
The Reference Genome Sequence of Saccharomyces cerevisiae: Then and Now
Engel, Stacia R.; Dietrich, Fred S.; Fisk, Dianna G.; Binkley, Gail; Balakrishnan, Rama; Costanzo, Maria C.; Dwight, Selina S.; Hitz, Benjamin C.; Karra, Kalpana; Nash, Robert S.; Weng, Shuai; Wong, Edith D.; Lloyd, Paul; Skrzypek, Marek S.; Miyasato, Stuart R.; Simison, Matt; Cherry, J. Michael
2014-01-01
The genome of the budding yeast Saccharomyces cerevisiae was the first completely sequenced from a eukaryote. It was released in 1996 as the work of a worldwide effort of hundreds of researchers. In the time since, the yeast genome has been intensively studied by geneticists, molecular biologists, and computational scientists all over the world. Maintenance and annotation of the genome sequence have long been provided by the Saccharomyces Genome Database, one of the original model organism databases. To deepen our understanding of the eukaryotic genome, the S. cerevisiae strain S288C reference genome sequence was updated recently in its first major update since 1996. The new version, called “S288C 2010,” was determined from a single yeast colony using modern sequencing technologies and serves as the anchor for further innovations in yeast genomic science. PMID:24374639
Impact of EMS Outreach: Successful Developments in Latin America
Olivero, Ofelia A.; Larramendy, Marcelo; Soloneski, Sonia; Menck, Carlos F.M.; Matta, Jaime; Folle, Gustavo A.; Zamorano-Ponce, Enrique; Spivak, Graciela
2014-01-01
This collection of articles was inspired by the long-standing relationship between the Environmental Mutagen Society and Latin American scientists, and by the program for the 39th Environmental Mutagen Society meeting in Puerto Rico in 2008, which included a symposium featuring “South of the border” scientists. This collection, compiled by Graciela Spivak and Ofelia Olivero, both originally from Argentina, highlights scientists who work in or were trained in Latin American countries and in Puerto Rico in a variety of scientific specialties related to DNA repair and cancer susceptibility, genomic organization and stability, genetic diversity, and environmental contaminants. PMID:20213840
Wang, Zhiping; Liu, Lili; Guo, Feng; Zhang, Tong
2015-10-01
Biotreatment processes fed with coking wastewater often encounter insufficient removal of pollutants, such as ammonia, phenols, and polycyclic aromatic hydrocarbons (PAHs), especially for cyanides. However, only a limited number of bacterial species in pure cultures have been confirmed to metabolize cyanides, which hinders the improvement of these processes. In this study, a microbial community of activated sludge enriched in a coking wastewater treatment plant was analyzed using 454 pyrosequencing and Illumina sequencing to characterize the potential cyanide-degrading bacteria. According to the classification of these pyro-tags, targeting V3/V4 regions of 16S rRNA gene, half of them were assigned to the family Xanthomonadaceae, implying that Xanthomonadaceae bacteria are well-adapted to coking wastewater. A nearly complete draft genome of the dominant bacterium was reconstructed from metagenome of this community to explore cyanide metabolism based on analysis of the genome. The assembled 16S rRNA gene from this draft genome showed that this bacterium was a novel species of Thermomonas within Xanthomonadaceae, which was further verified by comparative genomics. The annotation using KEGG and Pfam identified genes related to cyanide metabolism, including genes responsible for the iron-harvesting system, cyanide-insensitive terminal oxidase, cyanide hydrolase/nitrilase, and thiosulfate:cyanide transferase. Phylogenetic analysis showed that these genes had homologs in previously identified genomes of bacteria within Xanthomonadaceae and even presented similar gene cassettes, thus implying an inherent cyanide-decomposing potential. The findings of this study expand our knowledge about the bacterial degradation of cyanide compounds and will be helpful in the remediation of cyanides contamination.
Single-cell genomics-based analysis of virus–host interactions in marine surface bacterioplankton
Labonté, Jessica M.; Swan, Brandon K.; Poulos, Bonnie; ...
2015-04-07
Viral infections dynamically alter the composition and metabolic potential of marine microbial communities and the evolutionary trajectories of host populations with resulting feedback on biogeochemical cycles. It is quite possible that all microbial populations in the ocean are impacted by viral infections. Our knowledge of virus–host relationships, however, has been limited to a minute fraction of cultivated host groups. Here, we utilized single-cell sequencing to obtain genomic blueprints of viruses inside or attached to individual bacterial and archaeal cells captured in their native environment, circumventing the need for host and virus cultivation. Furthermore, a combination of comparative genomics, metagenomic fragmentmore » recruitment, sequence anomalies and irregularities in sequence coverage depth and genome recovery were utilized to detect viruses and to decipher modes of virus–host interactions. Members of all three tailed phage families were identified in 20 out of 58 phylogenetically and geographically diverse single amplified genomes (SAGs) of marine bacteria and archaea. At least four phage–host interactions had the characteristics of late lytic infections, all of which were found in metabolically active cells. One virus had genetic potential for lysogeny. Our findings include first known viruses of Thaumarchaeota, Marinimicrobia, Verrucomicrobia and Gammaproteobacteria clusters SAR86 and SAR92. Viruses were also found in SAGs of Alphaproteobacteria and Bacteroidetes. A high fragment recruitment of viral metagenomic reads confirmed that most of the SAG-associated viruses are abundant in the ocean. This study demonstrates that single-cell genomics, in conjunction with sequence-based computational tools, enable in situ, cultivation-independent insights into host–virus interactions in complex microbial communities.« less
Scientist, Single Cell Analysis Facility | Center for Cancer Research
The Cancer Research Technology Program (CRTP) develops and implements emerging technology, cancer biology expertise and research capabilities to accomplish NCI research objectives. The CRTP is an outward-facing, multi-disciplinary hub purposed to enable the external cancer research community and provides dedicated support to NCI’s intramural Center for Cancer Research (CCR). The dedicated units provide electron microscopy, protein characterization, protein expression, optical microscopy and nextGen sequencing. These research efforts are an integral part of CCR at the Frederick National Laboratory for Cancer Research (FNLCR). CRTP scientists also work collaboratively with intramural NCI investigators to provide research technologies and expertise. KEY ROLES AND RESPONSIBILITIES We are seeking a highly motivated Scientist II to join the newly established Single Cell Analysis Facility (SCAF) of the Center for Cancer Research (CCR) at NCI. The SCAF will house state of the art single cell sequencing technologies including 10xGenomics Chromium, BD Genomics Rhapsody, DEPPArray, and other emerging single cell technologies. The Scientist: Will interact with close to 200 laboratories within the CCR to design and carry out single cell experiments for cancer research Will work on single cell isolation/preparation from various tissues and cells and related NexGen sequencing library preparation Is expected to author publications in peer reviewed scientific journals
Landscape community genomics: understanding eco-evolutionary processes in complex environments
Hand, Brian K.; Lowe, Winsor H.; Kovach, Ryan P.; Muhlfeld, Clint C.; Luikart, Gordon
2015-01-01
Extrinsic factors influencing evolutionary processes are often categorically lumped into interactions that are environmentally (e.g., climate, landscape) or community-driven, with little consideration of the overlap or influence of one on the other. However, genomic variation is strongly influenced by complex and dynamic interactions between environmental and community effects. Failure to consider both effects on evolutionary dynamics simultaneously can lead to incomplete, spurious, or erroneous conclusions about the mechanisms driving genomic variation. We highlight the need for a landscape community genomics (LCG) framework to help to motivate and challenge scientists in diverse fields to consider a more holistic, interdisciplinary perspective on the genomic evolution of multi-species communities in complex environments.
Guérin, Frédéric; Arnaiz, Olivier; Boggetto, Nicole; Denby Wilkes, Cyril; Meyer, Eric; Sperling, Linda; Duharcourt, Sandra
2017-04-26
DNA elimination is developmentally programmed in a wide variety of eukaryotes, including unicellular ciliates, and leads to the generation of distinct germline and somatic genomes. The ciliate Paramecium tetraurelia harbors two types of nuclei with different functions and genome structures. The transcriptionally inactive micronucleus contains the complete germline genome, while the somatic macronucleus contains a reduced genome streamlined for gene expression. During development of the somatic macronucleus, the germline genome undergoes massive and reproducible DNA elimination events. Availability of both the somatic and germline genomes is essential to examine the genome changes that occur during programmed DNA elimination and ultimately decipher the mechanisms underlying the specific removal of germline-limited sequences. We developed a novel experimental approach that uses flow cell imaging and flow cytometry to sort subpopulations of nuclei to high purity. We sorted vegetative micronuclei and macronuclei during development of P. tetraurelia. We validated the method by flow cell imaging and by high throughput DNA sequencing. Our work establishes the proof of principle that developing somatic macronuclei can be sorted from a complex biological sample to high purity based on their size, shape and DNA content. This method enabled us to sequence, for the first time, the germline DNA from pure micronuclei and to identify novel transposable elements. Sequencing the germline DNA confirms that the Pgm domesticated transposase is required for the excision of all ~45,000 Internal Eliminated Sequences. Comparison of the germline DNA and unrearranged DNA obtained from PGM-silenced cells reveals that the latter does not provide a faithful representation of the germline genome. We developed a flow cytometry-based method to purify P. tetraurelia nuclei to high purity and provided quality control with flow cell imaging and high throughput DNA sequencing. We identified 61 germline transposable elements including the first Paramecium retrotransposons. This approach paves the way to sequence the germline genomes of P. aurelia sibling species for future comparative genomic studies.
Emerging trends in the functional genomics of the abiotic stress response in crop plants.
Vij, Shubha; Tyagi, Akhilesh K
2007-05-01
Plants are exposed to different abiotic stresses, such as water deficit, high temperature, salinity, cold, heavy metals and mechanical wounding, under field conditions. It is estimated that such stress conditions can potentially reduce the yield of crop plants by more than 50%. Investigations of the physiological, biochemical and molecular aspects of stress tolerance have been conducted to unravel the intrinsic mechanisms developed during evolution to mitigate against stress by plants. Before the advent of the genomics era, researchers primarily used a gene-by-gene approach to decipher the function of the genes involved in the abiotic stress response. However, abiotic stress tolerance is a complex trait and, although large numbers of genes have been identified to be involved in the abiotic stress response, there remain large gaps in our understanding of the trait. The availability of the genome sequences of certain important plant species has enabled the use of strategies, such as genome-wide expression profiling, to identify the genes associated with the stress response, followed by the verification of gene function by the analysis of mutants and transgenics. Certain components of both abscisic acid-dependent and -independent cascades involved in the stress response have already been identified. Information originating from the genome-wide analysis of abiotic stress tolerance will help to provide an insight into the stress-responsive network(s), and may allow the modification of this network to reduce the loss caused by stress and to increase agricultural productivity.
Kwon, Soon-Kyeong; Kim, Byung Kwon; Song, Ju Yeon; Kwak, Min-Jung; Lee, Choong Hoon; Yoon, Jung-Hoon; Oh, Tae Kwang; Kim, Jihyun F
2013-01-01
Rhodopsin-containing marine microbes such as those in the class Flavobacteriia play a pivotal role in the biogeochemical cycle of the euphotic zone (Fuhrman JA, Schwalbach MS, Stingl U. 2008. Proteorhodopsins: an array of physiological roles? Nat Rev Microbiol. 6:488-494). Deciphering the genome information of flavobacteria and accessing the diversity and ecological impact of microbial rhodopsins are important in understanding and preserving the global ecosystems. The genome sequence of the orange-pigmented marine flavobacterium Nonlabens dokdonensis (basonym: Donghaeana dokdonensis) DSW-6 was determined. As a marine photoheterotroph, DSW-6 has written in its genome physiological features that allow survival in the oligotrophic environments. The sequence analysis also uncovered a gene encoding an unexpected type of microbial rhodopsin containing a unique motif in addition to a proteorhodopsin gene and a number of photolyase or cryptochrome genes. Homologs of the novel rhodopsin gene were found in other flavobacteria, alphaproteobacteria, a species of Cytophagia, a deinococcus, and even a eukaryote diatom. They all contain the characteristic NQ motif and form a phylogenetically distinct group. Expression analysis of this rhodopsin gene in DSW-6 indicated that it is induced at high NaCl concentrations, as well as in the presence of light and the absence of nutrients. Genomic and metagenomic surveys demonstrate the diversity of the NQ rhodopsins in nature and the prevalent occurrence of the encoding genes among microbial communities inhabiting hypersaline niches, suggesting its involvement in sodium metabolism and the sodium-adapted lifestyle.
Noncoding RNAs in DNA Repair and Genome Integrity
Wan, Guohui; Liu, Yunhua; Han, Cecil; Zhang, Xinna
2014-01-01
Abstract Significance: The well-studied sequences in the human genome are those of protein-coding genes, which account for only 1%–2% of the total genome. However, with the advent of high-throughput transcriptome sequencing technology, we now know that about 90% of our genome is extensively transcribed and that the vast majority of them are transcribed into noncoding RNAs (ncRNAs). It is of great interest and importance to decipher the functions of these ncRNAs in humans. Recent Advances: In the last decade, it has become apparent that ncRNAs play a crucial role in regulating gene expression in normal development, in stress responses to internal and environmental stimuli, and in human diseases. Critical Issues: In addition to those constitutively expressed structural RNA, such as ribosomal and transfer RNAs, regulatory ncRNAs can be classified as microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs), small interfering RNAs (siRNAs), small nucleolar RNAs (snoRNAs), and long noncoding RNAs (lncRNAs). However, little is known about the biological features and functional roles of these ncRNAs in DNA repair and genome instability, although a number of miRNAs and lncRNAs are regulated in the DNA damage response. Future Directions: A major goal of modern biology is to identify and characterize the full profile of ncRNAs with regard to normal physiological functions and roles in human disorders. Clinically relevant ncRNAs will also be evaluated and targeted in therapeutic applications. Antioxid. Redox Signal. 20, 655–677. PMID:23879367
Bonnafous, Fanny; Fievet, Ghislain; Blanchet, Nicolas; Boniface, Marie-Claude; Carrère, Sébastien; Gouzy, Jérôme; Legrand, Ludovic; Marage, Gwenola; Bret-Mestries, Emmanuelle; Munos, Stéphane; Pouilly, Nicolas; Vincourt, Patrick; Langlade, Nicolas; Mangin, Brigitte
2018-02-01
This study compares five models of GWAS, to show the added value of non-additive modeling of allelic effects to identify genomic regions controlling flowering time of sunflower hybrids. Genome-wide association studies are a powerful and widely used tool to decipher the genetic control of complex traits. One of the main challenges for hybrid crops, such as maize or sunflower, is to model the hybrid vigor in the linear mixed models, considering the relatedness between individuals. Here, we compared two additive and three non-additive association models for their ability to identify genomic regions associated with flowering time in sunflower hybrids. A panel of 452 sunflower hybrids, corresponding to incomplete crossing between 36 male lines and 36 female lines, was phenotyped in five environments and genotyped for 2,204,423 SNPs. Intra-locus effects were estimated in multi-locus models to detect genomic regions associated with flowering time using the different models. Thirteen quantitative trait loci were identified in total, two with both model categories and one with only non-additive models. A quantitative trait loci on LG09, detected by both the additive and non-additive models, is located near a GAI homolog and is presented in detail. Overall, this study shows the added value of non-additive modeling of allelic effects for identifying genomic regions that control traits of interest and that could participate in the heterosis observed in hybrids.
Integrating functional genomics to accelerate mechanistic personalized medicine.
Tyner, Jeffrey W
2017-03-01
The advent of deep sequencing technologies has resulted in the deciphering of tremendous amounts of genetic information. These data have led to major discoveries, and many anecdotes now exist of individual patients whose clinical outcomes have benefited from novel, genetically guided therapeutic strategies. However, the majority of genetic events in cancer are currently undrugged, leading to a biological gap between understanding of tumor genetic etiology and translation to improved clinical approaches. Functional screening has made tremendous strides in recent years with the development of new experimental approaches to studying ex vivo and in vivo drug sensitivity. Numerous discoveries and anecdotes also exist for translation of functional screening into novel clinical strategies; however, the current clinical application of functional screening remains largely confined to small clinical trials at specific academic centers. The intersection between genomic and functional approaches represents an ideal modality to accelerate our understanding of drug sensitivities as they relate to specific genetic events and further understand the full mechanisms underlying drug sensitivity patterns.
Deciphering the origin of mito-nuclear discordance in two sibling caddisfly species.
Weigand, Hannah; Weiss, Martina; Cai, Huimin; Li, Yongping; Yu, Lili; Zhang, Christine; Leese, Florian
2017-10-01
An increasing number of phylogenetic studies have reported discordances among nuclear and mitochondrial markers. These discrepancies are highly relevant to widely used biodiversity assessment approaches, such as DNA barcoding, that rely almost exclusively on mitochondrial markers. Although the theoretical causes of mito-nuclear discordances are well understood, it is often extremely challenging to determine the principal underlying factor in a given study system. In this study, we uncovered significant mito-nuclear discordances in a pair of sibling caddisfly species. Application of genome sequencing, ddRAD and DNA barcoding revealed ongoing hybridization, as well as historical hybridization in Pleistocene refugia, leading us to identify introgression as the ultimate cause of the observed discordance pattern. Our novel genomic data, the discovery of a European-wide hybrid zone and the availability of established techniques for laboratory breeding make this species pair an ideal model system for studying species boundaries with ongoing gene flow. © 2017 John Wiley & Sons Ltd.
Dhar, Niha; Razdan, Sumeer; Rana, Satiander; Bhat, Wajid W.; Vishwakarma, Ram; Lattoo, Surrinder K.
2015-01-01
Withania somnifera, a multipurpose medicinal plant is a rich reservoir of pharmaceutically active triterpenoids that are steroidal lactones known as withanolides. Though the plant has been well-characterized in terms of phytochemical profiles as well as pharmaceutical activities, limited attempts have been made to decipher the biosynthetic route and identification of key regulatory genes involved in withanolide biosynthesis. This scenario limits biotechnological interventions for enhanced production of bioactive compounds. Nevertheless, recent emergent trends vis-à-vis, the exploration of genomic, transcriptomic, proteomic, metabolomics, and in vitro studies have opened new vistas regarding pathway engineering of withanolide production. During recent years, various strategic pathway genes have been characterized with significant amount of regulatory studies which allude toward development of molecular circuitries for production of key intermediates or end products in heterologous hosts. Another pivotal aspect covering redirection of metabolic flux for channelizing the precursor pool toward enhanced withanolide production has also been attained by deciphering decisive branch point(s) as robust targets for pathway modulation. With these perspectives, the current review provides a detailed overview of various studies undertaken by the authors and collated literature related to molecular and in vitro approaches employed in W. somnifera for understanding various molecular network interactions in entirety. PMID:26640469
Genomic analysis of methanogenic archaea reveals a shift towards energy conservation
Gilmore, Sean P.; Henske, John K.; Sexton, Jessica A.; ...
2017-08-21
The metabolism of archaeal methanogens drives methane release into the environment and is critical to understanding global carbon cycling. Methanogenesis operates at a very low reducing potential compared to other forms of respiration and is therefore critical to many anaerobic environments. Harnessing or altering methanogen metabolism has the potential to mitigate global warming and even be utilized for energy applications. Here, we report draft genome sequences for the isolated methanogens Methanobacterium bryantii, Methanosarcina spelaei, Methanosphaera cuniculi, and Methanocorpusculum parvum. These anaerobic, methane-producing archaea represent a diverse set of isolates, capable of methylotrophic, acetoclastic, and hydrogenotrophic methanogenesis. Assembly and analysis ofmore » the genomes allowed for simple and rapid reconstruction of metabolism in the four methanogens. Comparison of the distribution of Clusters of Orthologous Groups (COG) proteins to a sample of genomes from the RefSeq database revealed a trend towards energy conservation in genome composition of all methanogens sequenced. Further analysis of the predicted membrane proteins and transporters distinguished differing energy conservation methods utilized during methanogenesis, such as chemiosmotic coupling in Msar. spelaei and electron bifurcation linked to chemiosmotic coupling in Mbac. bryantii and Msph. cuniculi. Methanogens occupy a unique ecological niche, acting as the terminal electron acceptors in anaerobic environments, and their genomes display a significant shift towards energy conservation. The genome-enabled reconstructed metabolisms reported here have significance to diverse anaerobic communities and have led to proposed substrate utilization not previously reported in isolation, such as formate and methanol metabolism in Mbac. bryantii and CO 2 metabolism in Msph. cuniculi. The newly proposed substrates establish an important foundation with which to decipher how methanogens behave in native communities, as CO 2 and formate are common electron carriers in microbial communities.« less
From integrative genomics to systems genetics in the rat to link genotypes to phenotypes
Moreno-Moral, Aida
2016-01-01
ABSTRACT Complementary to traditional gene mapping approaches used to identify the hereditary components of complex diseases, integrative genomics and systems genetics have emerged as powerful strategies to decipher the key genetic drivers of molecular pathways that underlie disease. Broadly speaking, integrative genomics aims to link cellular-level traits (such as mRNA expression) to the genome to identify their genetic determinants. With the characterization of several cellular-level traits within the same system, the integrative genomics approach evolved into a more comprehensive study design, called systems genetics, which aims to unravel the complex biological networks and pathways involved in disease, and in turn map their genetic control points. The first fully integrated systems genetics study was carried out in rats, and the results, which revealed conserved trans-acting genetic regulation of a pro-inflammatory network relevant to type 1 diabetes, were translated to humans. Many studies using different organisms subsequently stemmed from this example. The aim of this Review is to describe the most recent advances in the fields of integrative genomics and systems genetics applied in the rat, with a focus on studies of complex diseases ranging from inflammatory to cardiometabolic disorders. We aim to provide the genetics community with a comprehensive insight into how the systems genetics approach came to life, starting from the first integrative genomics strategies [such as expression quantitative trait loci (eQTLs) mapping] and concluding with the most sophisticated gene network-based analyses in multiple systems and disease states. Although not limited to studies that have been directly translated to humans, we will focus particularly on the successful investigations in the rat that have led to primary discoveries of genes and pathways relevant to human disease. PMID:27736746
Life in the fast lane for protein crystallization and X-ray crystallography
NASA Technical Reports Server (NTRS)
Pusey, Marc L.; Liu, Zhi-Jie; Tempel, Wolfram; Praissman, Jeremy; Lin, Dawei; Wang, Bi-Cheng; Gavira, Jose A.; Ng, Joseph D.
2005-01-01
The common goal for structural genomic centers and consortiums is to decipher as quickly as possible the three-dimensional structures for a multitude of recombinant proteins derived from known genomic sequences. Since X-ray crystallography is the foremost method to acquire atomic resolution for macromolecules, the limiting step is obtaining protein crystals that can be useful of structure determination. High-throughput methods have been developed in recent years to clone, express, purify, crystallize and determine the three-dimensional structure of a protein gene product rapidly using automated devices, commercialized kits and consolidated protocols. However, the average number of protein structures obtained for most structural genomic groups has been very low compared to the total number of proteins purified. As more entire genomic sequences are obtained for different organisms from the three kingdoms of life, only the proteins that can be crystallized and whose structures can be obtained easily are studied. Consequently, an astonishing number of genomic proteins remain unexamined. In the era of high-throughput processes, traditional methods in molecular biology, protein chemistry and crystallization are eclipsed by automation and pipeline practices. The necessity for high-rate production of protein crystals and structures has prevented the usage of more intellectual strategies and creative approaches in experimental executions. Fundamental principles and personal experiences in protein chemistry and crystallization are minimally exploited only to obtain "low-hanging fruit" protein structures. We review the practical aspects of today's high-throughput manipulations and discuss the challenges in fast pace protein crystallization and tools for crystallography. Structural genomic pipelines can be improved with information gained from low-throughput tactics that may help us reach the higher-bearing fruits. Examples of recent developments in this area are reported from the efforts of the Southeast Collaboratory for Structural Genomics (SECSG).
Life in the Fast Lane for Protein Crystallization and X-Ray Crystallography
NASA Technical Reports Server (NTRS)
Pusey, Marc L.; Liu, Zhi-Jie; Tempel, Wolfram; Praissman, Jeremy; Lin, Dawei; Wang, Bi-Cheng; Gavira, Jose A.; Ng, Joseph D.
2004-01-01
The common goal for structural genomic centers and consortiums is to decipher as quickly as possible the three-dimensional structures for a multitude of recombinant proteins derived from known genomic sequences. Since X-ray crystallography is the foremost method to acquire atomic resolution for macromolecules, the limiting step is obtaining protein crystals that can be useful of structure determination. High-throughput methods have been developed in recent years to clone, express, purify, crystallize and determine the three-dimensional structure of a protein gene product rapidly using automated devices, commercialized kits and consolidated protocols. However, the average number of protein structures obtained for most structural genomic groups has been very low compared to the total number of proteins purified. As more entire genomic sequences are obtained for different organisms from the three kingdoms of life, only the proteins that can be crystallized and whose structures can be obtained easily are studied. Consequently, an astonishing number of genomic proteins remain unexamined. In the era of high-throughput processes, traditional methods in molecular biology, protein chemistry and crystallization are eclipsed by automation and pipeline practices. The necessity for high rate production of protein crystals and structures has prevented the usage of more intellectual strategies and creative approaches in experimental executions. Fundamental principles and personal experiences in protein chemistry and crystallization are minimally exploited only to obtain "low-hanging fruit" protein structures. We review the practical aspects of today s high-throughput manipulations and discuss the challenges in fast pace protein crystallization and tools for crystallography. Structural genomic pipelines can be improved with information gained from low-throughput tactics that may help us reach the higher-bearing fruits. Examples of recent developments in this area are reported from the efforts of the Southeast Collaboratory for Structural Genomics (SECSG).
Zhu, Xun; Xie, Shangbo; Armengaud, Jean; Xie, Wen; Guo, Zhaojiang; Kang, Shi; Wu, Qingjun; Wang, Shaoli; Xia, Jixing; He, Rongjun; Zhang, Youjun
2016-01-01
The diamondback moth, Plutella xylostella (L.), is the major cosmopolitan pest of brassica and other cruciferous crops. Its larval midgut is a dynamic tissue that interfaces with a wide variety of toxicological and physiological processes. The draft sequence of the P. xylostella genome was recently released, but its annotation remains challenging because of the low sequence coverage of this branch of life and the poor description of exon/intron splicing rules for these insects. Peptide sequencing by computational assignment of tandem mass spectra to genome sequence information provides an experimental independent approach for confirming or refuting protein predictions, a concept that has been termed proteogenomics. In this study, we carried out an in-depth proteogenomic analysis to complement genome annotation of P. xylostella larval midgut based on shotgun HPLC-ESI-MS/MS data by means of a multialgorithm pipeline. A total of 876,341 tandem mass spectra were searched against the predicted P. xylostella protein sequences and a whole-genome six-frame translation database. Based on a data set comprising 2694 novel genome search specific peptides, we discovered 439 novel protein-coding genes and corrected 128 existing gene models. To get the most accurate data to seed further insect genome annotation, more than half of the novel protein-coding genes, i.e. 235 over 439, were further validated after RT-PCR amplification and sequencing of the corresponding transcripts. Furthermore, we validated 53 novel alternative splicings. Finally, a total of 6764 proteins were identified, resulting in one of the most comprehensive proteogenomic study of a nonmodel animal. As the first tissue-specific proteogenomics analysis of P. xylostella, this study provides the fundamental basis for high-throughput proteomics and functional genomics approaches aimed at deciphering the molecular mechanisms of resistance and controlling this pest. PMID:26902207
From integrative genomics to systems genetics in the rat to link genotypes to phenotypes.
Moreno-Moral, Aida; Petretto, Enrico
2016-10-01
Complementary to traditional gene mapping approaches used to identify the hereditary components of complex diseases, integrative genomics and systems genetics have emerged as powerful strategies to decipher the key genetic drivers of molecular pathways that underlie disease. Broadly speaking, integrative genomics aims to link cellular-level traits (such as mRNA expression) to the genome to identify their genetic determinants. With the characterization of several cellular-level traits within the same system, the integrative genomics approach evolved into a more comprehensive study design, called systems genetics, which aims to unravel the complex biological networks and pathways involved in disease, and in turn map their genetic control points. The first fully integrated systems genetics study was carried out in rats, and the results, which revealed conserved trans-acting genetic regulation of a pro-inflammatory network relevant to type 1 diabetes, were translated to humans. Many studies using different organisms subsequently stemmed from this example. The aim of this Review is to describe the most recent advances in the fields of integrative genomics and systems genetics applied in the rat, with a focus on studies of complex diseases ranging from inflammatory to cardiometabolic disorders. We aim to provide the genetics community with a comprehensive insight into how the systems genetics approach came to life, starting from the first integrative genomics strategies [such as expression quantitative trait loci (eQTLs) mapping] and concluding with the most sophisticated gene network-based analyses in multiple systems and disease states. Although not limited to studies that have been directly translated to humans, we will focus particularly on the successful investigations in the rat that have led to primary discoveries of genes and pathways relevant to human disease. © 2016. Published by The Company of Biologists Ltd.
Genomic analysis of methanogenic archaea reveals a shift towards energy conservation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilmore, Sean P.; Henske, John K.; Sexton, Jessica A.
The metabolism of archaeal methanogens drives methane release into the environment and is critical to understanding global carbon cycling. Methanogenesis operates at a very low reducing potential compared to other forms of respiration and is therefore critical to many anaerobic environments. Harnessing or altering methanogen metabolism has the potential to mitigate global warming and even be utilized for energy applications. Here, we report draft genome sequences for the isolated methanogens Methanobacterium bryantii, Methanosarcina spelaei, Methanosphaera cuniculi, and Methanocorpusculum parvum. These anaerobic, methane-producing archaea represent a diverse set of isolates, capable of methylotrophic, acetoclastic, and hydrogenotrophic methanogenesis. Assembly and analysis ofmore » the genomes allowed for simple and rapid reconstruction of metabolism in the four methanogens. Comparison of the distribution of Clusters of Orthologous Groups (COG) proteins to a sample of genomes from the RefSeq database revealed a trend towards energy conservation in genome composition of all methanogens sequenced. Further analysis of the predicted membrane proteins and transporters distinguished differing energy conservation methods utilized during methanogenesis, such as chemiosmotic coupling in Msar. spelaei and electron bifurcation linked to chemiosmotic coupling in Mbac. bryantii and Msph. cuniculi. Methanogens occupy a unique ecological niche, acting as the terminal electron acceptors in anaerobic environments, and their genomes display a significant shift towards energy conservation. The genome-enabled reconstructed metabolisms reported here have significance to diverse anaerobic communities and have led to proposed substrate utilization not previously reported in isolation, such as formate and methanol metabolism in Mbac. bryantii and CO 2 metabolism in Msph. cuniculi. The newly proposed substrates establish an important foundation with which to decipher how methanogens behave in native communities, as CO 2 and formate are common electron carriers in microbial communities.« less
[The ENCODE project and functional genomics studies].
Ding, Nan; Qu, Hongzhu; Fang, Xiangdong
2014-03-01
Upon the completion of the Human Genome Project, scientists have been trying to interpret the underlying genomic code for human biology. Since 2003, National Human Genome Research Institute (NHGRI) has invested nearly $0.3 billion and gathered over 440 scientists from more than 32 institutions in the United States, China, United Kingdom, Japan, Spain and Singapore to initiate the Encyclopedia of DNA Elements (ENCODE) project, aiming to identify and analyze all regulatory elements in the human genome. Taking advantage of the development of next-generation sequencing technologies and continuous improvement of experimental methods, ENCODE had made remarkable achievements: identified methylation and histone modification of DNA sequences and their regulatory effects on gene expression through altering chromatin structures, categorized binding sites of various transcription factors and constructed their regulatory networks, further revised and updated database for pseudogenes and non-coding RNA, and identified SNPs in regulatory sequences associated with diseases. These findings help to comprehensively understand information embedded in gene and genome sequences, the function of regulatory elements as well as the molecular mechanism underlying the transcriptional regulation by noncoding regions, and provide extensive data resource for life sciences, particularly for translational medicine. We re-viewed the contributions of high-throughput sequencing platform development and bioinformatical technology improve-ment to the ENCODE project, the association between epigenetics studies and the ENCODE project, and the major achievement of the ENCODE project. We also provided our prospective on the role of the ENCODE project in promoting the development of basic and clinical medicine.
Genome editing for crop improvement: Challenges and opportunities
Abdallah, Naglaa A; Prakash, Channapatna S; McHughen, Alan G
2015-01-01
ABSTRACT Genome or gene editing includes several new techniques to help scientists precisely modify genome sequences. The techniques also enables us to alter the regulation of gene expression patterns in a pre-determined region and facilitates novel insights into the functional genomics of an organism. Emergence of genome editing has brought considerable excitement especially among agricultural scientists because of its simplicity, precision and power as it offers new opportunities to develop improved crop varieties with clear-cut addition of valuable traits or removal of undesirable traits. Research is underway to improve crop varieties with higher yields, strengthen stress tolerance, disease and pest resistance, decrease input costs, and increase nutritional value. Genome editing encompasses a wide variety of tools using either a site-specific recombinase (SSR) or a site-specific nuclease (SSN) system. Both systems require recognition of a known sequence. The SSN system generates single or double strand DNA breaks and activates endogenous DNA repair pathways. SSR technology, such as Cre/loxP and Flp/FRT mediated systems, are able to knockdown or knock-in genes in the genome of eukaryotes, depending on the orientation of the specific sites (loxP, FLP, etc.) flanking the target site. There are 4 main classes of SSN developed to cleave genomic sequences, mega-nucleases (homing endonuclease), zinc finger nucleases (ZFNs), transcriptional activator-like effector nucleases (TALENs), and the CRISPR/Cas nuclease system (clustered regularly interspaced short palindromic repeat/CRISPR-associated protein). The recombinase mediated genome engineering depends on recombinase (sub-) family and target-site and induces high frequencies of homologous recombination. Improving crops with gene editing provides a range of options: by altering only a few nucleotides from billions found in the genomes of living cells, altering the full allele or by inserting a new gene in a targeted region of the genome. Due to its precision, gene editing is more precise than either conventional crop breeding methods or standard genetic engineering methods. Thus this technology is a very powerful tool that can be used toward securing the world's food supply. In addition to improving the nutritional value of crops, it is the most effective way to produce crops that can resist pests and thrive in tough climates. There are 3 types of modifications produced by genome editing; Type I includes altering a few nucleotides, Type II involves replacing an allele with a pre-existing one and Type III allows for the insertion of new gene(s) in predetermined regions in the genome. Because most genome-editing techniques can leave behind traces of DNA alterations evident in a small number of nucleotides, crops created through gene editing could avoid the stringent regulation procedures commonly associated with GM crop development. For this reason many scientists believe plants improved with the more precise gene editing techniques will be more acceptable to the public than transgenic plants. With genome editing comes the promise of new crops being developed more rapidly with a very low risk of off-target effects. It can be performed in any laboratory with any crop, even those that have complex genomes and are not easily bred using conventional methods. PMID:26930114
Heinen, Christopher D
2016-02-01
We have currently entered a genomic era of cancer research which may soon lead to a genomic era of cancer treatment. Patient DNA sequencing information may lead to a personalized approach to managing an individual's cancer as well as future cancer risk. The success of this approach, however, begins not necessarily in the clinician's office, but rather at the laboratory bench of the basic scientist. The basic scientist plays a critical role since the DNA sequencing information is of limited use unless one knows the function of the gene that is altered and the manner by which a sequence alteration affects that function. The role of basic science research in aiding the clinical management of a disease is perhaps best exemplified by considering the case of Lynch syndrome, a hereditary disease that predisposes patients to colorectal and other cancers. This review will examine how the diagnosis, treatment and even prevention of Lynch syndrome-associated cancers has benefitted from extensive basic science research on the DNA mismatch repair genes whose alteration underlies this condition. Copyright © 2015 Elsevier B.V. All rights reserved.
Ramirez-Gonzalez, Ricardo; Caccamo, Mario; MacLean, Daniel
2011-10-01
Scientists now use high-throughput sequencing technologies and short-read assembly methods to create draft genome assemblies in just days. Tools and pipelines like the assembler, and the workflow management environments make it easy for a non-specialist to implement complicated pipelines to produce genome assemblies and annotations very quickly. Such accessibility results in a proliferation of assemblies and associated files, often for many organisms. These assemblies get used as a working reference by lots of different workers, from a bioinformatician doing gene prediction or a bench scientist designing primers for PCR. Here we describe Gee Fu, a database tool for genomic assembly and feature data, including next-generation sequence alignments. Gee Fu is an instance of a Ruby-On-Rails web application on a feature database that provides web and console interfaces for input, visualization of feature data via AnnoJ, access to data through a web-service interface, an API for direct data access by Ruby scripts and access to feature data stored in BAM files. Gee Fu provides a platform for storing and sharing different versions of an assembly and associated features that can be accessed and updated by bench biologists and bioinformaticians in ways that are easy and useful for each. http://tinyurl.com/geefu dan.maclean@tsl.ac.uk.
Focusing on function to mine cancer genome data | Center for Cancer Research
CCR scientists have devised a strategy to sift through the tens of thousands of mutations in cancer genome data to find mutations that actually drive the disease. They have used the method to discover that the JNK signaling pathway, which in different contexts can either spur cancerous growth or rein it in, acts as a tumor suppressor in gastric cancers.
The Cancer Genome Atlas Research Network investigators, including CCR scientists, identified genetic and metabolic pathway changes linked to reduced survival of patients within and across subtypes of renal cell carcinoma (RCC), a type of kidney cancer. The study, published April 5, 2018, in Cell Reports, is part of The Cancer Genome Atlas (TCGA) Program, a joint effort of the
2011-01-01
Background Switchgrass, a C4 species and a warm-season grass native to the prairies of North America, has been targeted for development into an herbaceous biomass fuel crop. Genetic improvement of switchgrass feedstock traits through marker-assisted breeding and biotechnology approaches calls for genomic tools development. Establishment of integrated physical and genetic maps for switchgrass will accelerate mapping of value added traits useful to breeding programs and to isolate important target genes using map based cloning. The reported polyploidy series in switchgrass ranges from diploid (2X = 18) to duodecaploid (12X = 108). Like in other large, repeat-rich plant genomes, this genomic complexity will hinder whole genome sequencing efforts. An extensive physical map providing enough information to resolve the homoeologous genomes would provide the necessary framework for accurate assembly of the switchgrass genome. Results A switchgrass BAC library constructed by partial digestion of nuclear DNA with EcoRI contains 147,456 clones covering the effective genome approximately 10 times based on a genome size of 3.2 Gigabases (~1.6 Gb effective). Restriction digestion and PFGE analysis of 234 randomly chosen BACs indicated that 95% of the clones contained inserts, ranging from 60 to 180 kb with an average of 120 kb. Comparative sequence analysis of two homoeologous genomic regions harboring orthologs of the rice OsBRI1 locus, a low-copy gene encoding a putative protein kinase and associated with biomass, revealed that orthologous clones from homoeologous chromosomes can be unambiguously distinguished from each other and correctly assembled to respective fingerprint contigs. Thus, the data obtained not only provide genomic resources for further analysis of switchgrass genome, but also improve efforts for an accurate genome sequencing strategy. Conclusions The construction of the first switchgrass BAC library and comparative analysis of homoeologous harboring OsBRI1 orthologs present a glimpse into the switchgrass genome structure and complexity. Data obtained demonstrate the feasibility of using HICF fingerprinting to resolve the homoeologous chromosomes of the two distinct genomes in switchgrass, providing a robust and accurate BAC-based physical platform for this species. The genomic resources and sequence data generated will lay the foundation for deciphering the switchgrass genome and lead the way for an accurate genome sequencing strategy. PMID:21767393
Saski, Christopher A; Li, Zhigang; Feltus, Frank A; Luo, Hong
2011-07-18
Switchgrass, a C4 species and a warm-season grass native to the prairies of North America, has been targeted for development into an herbaceous biomass fuel crop. Genetic improvement of switchgrass feedstock traits through marker-assisted breeding and biotechnology approaches calls for genomic tools development. Establishment of integrated physical and genetic maps for switchgrass will accelerate mapping of value added traits useful to breeding programs and to isolate important target genes using map based cloning. The reported polyploidy series in switchgrass ranges from diploid (2X = 18) to duodecaploid (12X = 108). Like in other large, repeat-rich plant genomes, this genomic complexity will hinder whole genome sequencing efforts. An extensive physical map providing enough information to resolve the homoeologous genomes would provide the necessary framework for accurate assembly of the switchgrass genome. A switchgrass BAC library constructed by partial digestion of nuclear DNA with EcoRI contains 147,456 clones covering the effective genome approximately 10 times based on a genome size of 3.2 Gigabases (~1.6 Gb effective). Restriction digestion and PFGE analysis of 234 randomly chosen BACs indicated that 95% of the clones contained inserts, ranging from 60 to 180 kb with an average of 120 kb. Comparative sequence analysis of two homoeologous genomic regions harboring orthologs of the rice OsBRI1 locus, a low-copy gene encoding a putative protein kinase and associated with biomass, revealed that orthologous clones from homoeologous chromosomes can be unambiguously distinguished from each other and correctly assembled to respective fingerprint contigs. Thus, the data obtained not only provide genomic resources for further analysis of switchgrass genome, but also improve efforts for an accurate genome sequencing strategy. The construction of the first switchgrass BAC library and comparative analysis of homoeologous harboring OsBRI1 orthologs present a glimpse into the switchgrass genome structure and complexity. Data obtained demonstrate the feasibility of using HICF fingerprinting to resolve the homoeologous chromosomes of the two distinct genomes in switchgrass, providing a robust and accurate BAC-based physical platform for this species. The genomic resources and sequence data generated will lay the foundation for deciphering the switchgrass genome and lead the way for an accurate genome sequencing strategy.
Human Genome Project discoveries: Dialectics and rhetoric in the science of genetics
NASA Astrophysics Data System (ADS)
Robidoux, Charlotte A.
The Human Genome Project (HGP), a $437 million effort that began in 1990 to chart the chemical sequence of our three billion base pairs of DNA, was completed in 2003, marking the 50th anniversary that proved the definitive structure of the molecule. This study considered how dialectical and rhetorical arguments functioned in the science, political, and public forums over a 20-year period, from 1980 to 2000, to advance human genome research and to establish the official project. I argue that Aristotle's continuum of knowledge--which ranges from the probable on one end to certified or demonstrated knowledge on the other--provides useful distinctions for analyzing scientific reasoning. While contemporary scientific research seeks to discover certified knowledge, investigators generally employ the hypothetico-deductive or scientific method, which often yields probable rather than certain findings, making these dialectical in nature. Analysis of the discourse describing human genome research revealed the use of numerous rhetorical figures and topics. Persuasive and probable reasoning were necessary for scientists to characterize unknown genetic phenomena, to secure interest in and funding for large-scale human genome research, to solve scientific problems, to issue probable findings, to convince colleagues and government officials that the findings were sound and to disseminate information to the public. Both government and private venture scientists drew on these tools of reasoning to promote their methods of mapping and sequencing the genome. The debate over how to carry out sequencing was rooted in conflicting values. Scientists representing the academic tradition valued a more conservative method that would establish high quality results, and those supporting private industry valued an unconventional approach that would yield products and profits more quickly. Values in turn influenced political and public forum arguments. Agency representatives and investors sided with the approach that reflected values they supported. Fascinated with this controversy and the convincing comparisons, the media often endorsed Celera's work for its efficiency. The analysis of discourse from the science, political, and public forums revealed that value systems influenced the accuracy and quality of the arguments more than the type or number of figures used to describe the research to various audiences.
Ma, Baiquan; Liao, Liao; Peng, Qian; Fang, Ting; Zhou, Hui; Korban, Schuyler S; Han, Yuepeng
2017-03-01
Identifying DNA sequence variations is a fundamental step towards deciphering the genetic basis of traits of interest. Here, a total of 20 cultivated and 10 wild apples were genotyped using specific-locus amplified fragment sequencing, and 39,635 single nucleotide polymorphisms with no missing genotypes and evenly distributed along the genome were selected to investigate patterns of genome-wide genetic variations between cultivated and wild apples. Overall, wild apples displayed higher levels of genetic diversity than cultivated apples. Linkage disequilibrium (LD) decays were observed quite rapidly in cultivated and wild apples, with an r 2 -value below 0.2 at 440 and 280 bp, respectively. Moreover, bidirectional gene flow and different distribution patterns of LD blocks were detected between domesticated and wild apples. Most LD blocks unique to cultivated apples were located within QTL regions controlling fruit quality, thus suggesting that fruit quality had probably undergone selection during apple domestication. The genome of the earliest cultivated apple in China, Nai, was highly similar to that of Malus sieversii, and contained a small portion of genetic material from other wild apple species. This suggested that introgression could have been an important driving force during initial domestication of apple. These findings will facilitate future breeding and genetic dissection of complex traits in apple. © 2017 Institute of Botany, Chinese Academy of Sciences.
... Laboratory Sciences Office of Public Health Genomics Publications & Articles Newborn Screening Lab Bulletin Laboratory Partners Multimedia Tools Newborn Screening Program – Role of Laboratories Meet the Scientist Newborn Screening: Family Stories Newborn Screening: Public Health ...
NASA Astrophysics Data System (ADS)
Agrawal, Ankit; Choudhary, Alok
2016-05-01
Our ability to collect "big data" has greatly surpassed our capability to analyze it, underscoring the emergence of the fourth paradigm of science, which is data-driven discovery. The need for data informatics is also emphasized by the Materials Genome Initiative (MGI), further boosting the emerging field of materials informatics. In this article, we look at how data-driven techniques are playing a big role in deciphering processing-structure-property-performance relationships in materials, with illustrative examples of both forward models (property prediction) and inverse models (materials discovery). Such analytics can significantly reduce time-to-insight and accelerate cost-effective materials discovery, which is the goal of MGI.
A post-assembly genome-improvement toolkit (PAGIT) to obtain annotated genomes from contigs.
Swain, Martin T; Tsai, Isheng J; Assefa, Samual A; Newbold, Chris; Berriman, Matthew; Otto, Thomas D
2012-06-07
Genome projects now produce draft assemblies within weeks owing to advanced high-throughput sequencing technologies. For milestone projects such as Escherichia coli or Homo sapiens, teams of scientists were employed to manually curate and finish these genomes to a high standard. Nowadays, this is not feasible for most projects, and the quality of genomes is generally of a much lower standard. This protocol describes software (PAGIT) that is used to improve the quality of draft genomes. It offers flexible functionality to close gaps in scaffolds, correct base errors in the consensus sequence and exploit reference genomes (if available) in order to improve scaffolding and generating annotations. The protocol is most accessible for bacterial and small eukaryotic genomes (up to 300 Mb), such as pathogenic bacteria, malaria and parasitic worms. Applying PAGIT to an E. coli assembly takes ∼24 h: it doubles the average contig size and annotates over 4,300 gene models.
NASA Astrophysics Data System (ADS)
Sugawara, Shigeru
2015-10-01
Obliterated writing is writing that has been obscured by different-colored materials. There are obliterated writings that cannot be detected by conventional methods. A method for deciphering such obliterated writings was developed in this study. Mid-infrared spectroscopic imaging in the wavelength range of 2.5-14 μm was used for deciphering because the infrared spectrum differs among different brands of colorants. Obliterated writings were made by pressing information protection stamps onto characters written by 4 kinds of colorants. The samples were tested for deciphering by the Fourier-transform infrared imaging system. Two peak areas of two specific wavenumber regions of each reflectance spectrum were calculated and the ratio of the two values is displayed as a unique gray scale in the spectroscopic image. As a result, the absorption peak at various wavenumbers could be used to decipher obliterated writings that could not be detected by the conventional methods. Ten different parameters for deciphering obliterated writing were found in this study.
... to epigenetic errors. Scientists continue to explore the relationship between the genome and the chemical compounds that ... variety of cells to begin to assess the relationship between epigenomics and human disease. Human Epigenome Atlas ...
Adult stem cell lineage tracing and deep tissue imaging
Fink, Juergen; Andersson-Rolf, Amanda; Koo, Bon-Kyoung
2015-01-01
Lineage tracing is a widely used method for understanding cellular dynamics in multicellular organisms during processes such as development, adult tissue maintenance, injury repair and tumorigenesis. Advances in tracing or tracking methods, from light microscopy-based live cell tracking to fluorescent label-tracing with two-photon microscopy, together with emerging tissue clearing strategies and intravital imaging approaches have enabled scientists to decipher adult stem and progenitor cell properties in various tissues and in a wide variety of biological processes. Although technical advances have enabled time-controlled genetic labeling and simultaneous live imaging, a number of obstacles still need to be overcome. In this review, we aim to provide an in-depth description of the traditional use of lineage tracing as well as current strategies and upcoming new methods of labeling and imaging. [BMB Reports 2015; 48(12): 655-667] PMID:26634741
A Workshop Report on Wheat Genome Sequencing
Gill, Bikram S.; Appels, Rudi; Botha-Oberholster, Anna-Maria; Buell, C. Robin; Bennetzen, Jeffrey L.; Chalhoub, Boulos; Chumley, Forrest; Dvořák, Jan; Iwanaga, Masaru; Keller, Beat; Li, Wanlong; McCombie, W. Richard; Ogihara, Yasunari; Quetier, Francis; Sasaki, Takuji
2004-01-01
Sponsored by the National Science Foundation and the U.S. Department of Agriculture, a wheat genome sequencing workshop was held November 10–11, 2003, in Washington, DC. It brought together 63 scientists of diverse research interests and institutions, including 45 from the United States and 18 from a dozen foreign countries (see list of participants at http://www.ksu.edu/igrow). The objectives of the workshop were to discuss the status of wheat genomics, obtain feedback from ongoing genome sequencing projects, and develop strategies for sequencing the wheat genome. The purpose of this report is to convey the information discussed at the workshop and provide the basis for an ongoing dialogue, bringing forth comments and suggestions from the genetics community. PMID:15514080
The H3Africa policy framework: negotiating fairness in genomics.
de Vries, Jantina; Tindana, Paulina; Littler, Katherine; Ramsay, Michèle; Rotimi, Charles; Abayomi, Akin; Mulder, Nicola; Mayosi, Bongani M
2015-03-01
Human Heredity and Health in Africa (H3Africa) research seeks to promote fair collaboration between scientists in Africa and those from elsewhere. Here, we outline how concerns over inequality and exploitation led to a policy framework that places a firm focus on African leadership and capacity building as guiding principles for African genomics research. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Human Genome Editing and Ethical Considerations.
Krishan, Kewal; Kanchan, Tanuj; Singh, Bahadur
2016-04-01
Editing human germline genes may act as boon in some genetic and other disorders. Recent editing of the genome of the human embryo with the CRISPR/Cas9 editing tool generated a debate amongst top scientists of the world for the ethical considerations regarding its effect on the future generations. It needs to be seen as to what transformation human gene editing brings to humankind in the times to come.
Advances in Induced Pluripotent Stem Cells, Genomics, Biomarkers, and Antiplatelet Therapy
Barbato, Emanuele; Lara-Pezzi, Enrique; Stolen, Craig; Taylor, Angela; Barton, Paul J.; Bartunek, Jozef; Iaizzo, Paul; Judge, Daniel P.; Kirshenbaum, Lorrie; Blaxall, Burns C.; Terzic, Andre; Hall, Jennifer L.
2014-01-01
The Journal provides the clinician and scientist with the latest advances in discovery research, emerging technologies, pre-clinical research design and testing, and clinical trials. We highlight advances in areas of induced pluripotent stem cells, genomics, biomarkers, multi-modality imaging and antiplatelet biology and therapy. The top publications are critically discussed and presented along with anatomical reviews and FDA insight to provide context. PMID:24659088
Galla, Stephanie J; Buckley, Thomas R; Elshire, Rob; Hale, Marie L; Knapp, Michael; McCallum, John; Moraga, Roger; Santure, Anna W; Wilcox, Phillip; Steeves, Tammy E
2016-11-01
Several reviews in the past decade have heralded the benefits of embracing high-throughput sequencing technologies to inform conservation policy and the management of threatened species, but few have offered practical advice on how to expedite the transition from conservation genetics to conservation genomics. Here, we argue that an effective and efficient way to navigate this transition is to capitalize on emerging synergies between conservation genetics and primary industry (e.g., agriculture, fisheries, forestry and horticulture). Here, we demonstrate how building strong relationships between conservation geneticists and primary industry scientists is leading to mutually-beneficial outcomes for both disciplines. Based on our collective experience as collaborative New Zealand-based scientists, we also provide insight for forging these cross-sector relationships. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
“Shovel-ready” Sequences as a Stimulus for the Next Generation of Life Scientists
Boyle, Michael D.
2010-01-01
Genomics and bioinformatics are dynamic fields well-suited for capturing the imagination of undergraduates in both research laboratories and classrooms. Currently, raw nucleotide sequence is being provided, as part of several genomics research initiatives, for undergraduate research and teaching. These initiatives could be easily extended and much more effective if the source of the sequenced material and the subsequent focus of the data analysis were aligned with the research interests of individual faculty at undergraduate institutions. By judicious use of surplus capacity in existing nucleotide sequencing cores, raw sequence data could be generated to support ongoing research efforts involving undergraduates. This would allow these students to participate actively in discovery research, with a goal of making novel contributions to their field through original research while nurturing the next generation of talented research scientists. PMID:23653696
"Shovel-ready" Sequences as a Stimulus for the Next Generation of Life Scientists.
Boyle, Michael D
2010-01-01
Genomics and bioinformatics are dynamic fields well-suited for capturing the imagination of undergraduates in both research laboratories and classrooms. Currently, raw nucleotide sequence is being provided, as part of several genomics research initiatives, for undergraduate research and teaching. These initiatives could be easily extended and much more effective if the source of the sequenced material and the subsequent focus of the data analysis were aligned with the research interests of individual faculty at undergraduate institutions. By judicious use of surplus capacity in existing nucleotide sequencing cores, raw sequence data could be generated to support ongoing research efforts involving undergraduates. This would allow these students to participate actively in discovery research, with a goal of making novel contributions to their field through original research while nurturing the next generation of talented research scientists.
FDA Regulation of Clinical Applications of CRISPR-CAS Gene-Editing Technology.
Grant, Evita V
Scientists have repurposed an adaptive immune system of single cell organisms to create a new type of gene-editing tool: CRISPR (clustered regularly interspaced short palindromic repeats)-Cas technology. Scientists in China have reported its use in the genome modification of non-viable human embryos. This has ignited a spirited debate about the moral, ethical, scientific, and social implications of human germline genome engineering. There have also been calls for regulations; however, FDA has yet to formally announce its oversight of clinical applications of CRISPR-Cas systems. This paper reviews FDA regulation of previously controversial biotechnology breakthroughs, recombinant DNA and human cloning. It then shows that FDA is well positioned to regulate CRISPR-Cas clinical applications, due to its legislative mandates, its existing regulatory frameworks for gene therapies and assisted reproductive technologies, and other considerations.
Dove, Edward S; Faraj, Samer A; Kolker, Eugene; Ozdemir, Vural
2012-01-01
Translation of pharmacogenomics to public health action is at the epicenter of the life sciences agenda. Post-genomics knowledge is simultaneously co-produced at multiple scales and locales by scientists, crowd-sourcing and biological citizens. The latter are entrepreneurial citizens who are autonomous, self-governing and increasingly conceptualizing themselves in biological terms, ostensibly taking responsibility for their own health, and engaging in patient advocacy and health activism. By studying these heterogeneous 'scientific cultures', we can locate innovative parameters of collective action to move pharmacogenomics to practice (personalized therapeutics). To this end, we reconceptualize knowledge-based innovation as a complex ecosystem comprising 'actors' and 'narrators'. For robust knowledge translation, we require a nested post-genomics technology governance system composed of first-order narrators (for example, social scientists, philosophers, bioethicists) situated at arm's length from innovation actors (for example, pharmacogenomics scientists). Yet, second-order narrators (for example, an independent and possibly crowd-funded think-tank of citizen scholars, marginalized groups and knowledge end-users) are crucial to prevent first-order narrators from gaining excessive power that can be misused in the course of steering innovations. To operate such 'self-calibrating' and nested innovation ecosystems, we introduce the concept of 'wiki-governance' to enable mutual and iterative learning among innovation actors and first- and second-order narrators. '[A] scientific expert is someone who knows more and more about less and less, until finally knowing (almost) everything about (almost) nothing.' [1] 'Ubuntu: I am because you are.' [2].
2012-01-01
Translation of pharmacogenomics to public health action is at the epicenter of the life sciences agenda. Post-genomics knowledge is simultaneously co-produced at multiple scales and locales by scientists, crowd-sourcing and biological citizens. The latter are entrepreneurial citizens who are autonomous, self-governing and increasingly conceptualizing themselves in biological terms, ostensibly taking responsibility for their own health, and engaging in patient advocacy and health activism. By studying these heterogeneous 'scientific cultures', we can locate innovative parameters of collective action to move pharmacogenomics to practice (personalized therapeutics). To this end, we reconceptualize knowledge-based innovation as a complex ecosystem comprising 'actors' and 'narrators'. For robust knowledge translation, we require a nested post-genomics technology governance system composed of first-order narrators (for example, social scientists, philosophers, bioethicists) situated at arm's length from innovation actors (for example, pharmacogenomics scientists). Yet, second-order narrators (for example, an independent and possibly crowd-funded think-tank of citizen scholars, marginalized groups and knowledge end-users) are crucial to prevent first-order narrators from gaining excessive power that can be misused in the course of steering innovations. To operate such 'self-calibrating' and nested innovation ecosystems, we introduce the concept of 'wiki-governance' to enable mutual and iterative learning among innovation actors and first- and second-order narrators. '[A] scientific expert is someone who knows more and more about less and less, until finally knowing (almost) everything about (almost) nothing.' [1] 'Ubuntu: I am because you are.' [2] PMID:23194449
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Guanhui; University of Chinese Academy of Sciences, Beijing; Dong, Hongjun
Highlights: • Genomes of a butanol tolerant strain and its parent strain were deciphered. • Comparative genomic and proteomic was applied to understand butanol tolerance. • None differentially expressed proteins have mutations in its corresponding genes. • Mutations in ribosome might be responsible for the global difference of proteomics. - Abstract: Clostridium acetobutylicum strain Rh8 is a butanol-tolerant mutant which can tolerate up to 19 g/L butanol, 46% higher than that of its parent strain DSM 1731. We previously performed comparative cytoplasm- and membrane-proteomic analyses to understand the mechanism underlying the improved butanol tolerance of strain Rh8. In this work,more » we further extended this comparison to the genomic level. Compared with the genome of the parent strain DSM 1731, two insertion sites, four deletion sites, and 67 single nucleotide variations (SNVs) are distributed throughout the genome of strain Rh8. Among the 67 SNVs, 16 SNVs are located in the predicted promoters and intergenic regions; while 29 SNVs are located in the coding sequence, affecting a total of 21 proteins involved in transport, cell structure, DNA replication, and protein translation. The remaining 22 SNVs are located in the ribosomal genes, affecting a total of 12 rRNA genes in different operons. Analysis of previous comparative proteomic data indicated that none of the differentially expressed proteins have mutations in its corresponding genes. Rchange Algorithms analysis indicated that the mutations occurred in the ribosomal genes might change the ribosome RNA thermodynamic characteristics, thus affect the translation strength of these proteins. Take together, the improved butanol tolerance of C. acetobutylicum strain Rh8 might be acquired through regulating the translational process to achieve different expression strength of genes involved in butanol tolerance.« less
Vanhove, Mathieu; Beale, Mathew A; Rhodes, Johanna; Chanda, Duncan; Lakhi, Shabir; Kwenda, Geoffrey; Molloy, Sile; Karunaharan, Natasha; Stone, Neil; Harrison, Thomas S; Bicanic, Tihana; Fisher, Matthew C
2017-04-01
Emerging infections caused by fungi have become a widely recognized global phenomenon and are causing an increasing burden of disease. Genomic techniques are providing new insights into the structure of fungal populations, revealing hitherto undescribed fine-scale adaptations to environments and hosts that govern their emergence as infections. Cryptococcal meningitis is a neglected tropical disease that is responsible for a large proportion of AIDS-related deaths across Africa; however, the ecological determinants that underlie a patient's risk of infection remain largely unexplored. Here, we use genome sequencing and ecological genomics to decipher the evolutionary ecology of the aetiological agents of cryptococcal meningitis, Cryptococcus neoformans and Cryptococcus gattii, across the central African country of Zambia. We show that the occurrence of these two pathogens is differentially associated with biotic (macroecological) and abiotic (physical) factors across two key African ecoregions, Central Miombo woodlands and Zambezi Mopane woodlands. We show that speciation of Cryptococcus has resulted in adaptation to occupy different ecological niches, with C. neoformans found to occupy Zambezi Mopane woodlands and C. gattii primarily recovered from Central Miombo woodlands. Genome sequencing shows that C. neoformans causes 95% of human infections in this region, of which over three-quarters belonged to the globalized lineage VNI. We show that VNI infections are largely associated with urbanized populations in Zambia. Conversely, the majority of C. neoformans isolates recovered in the environment belong to the genetically diverse African-endemic lineage VNB, and we show hitherto unmapped levels of genomic diversity within this lineage. Our results reveal the complex evolutionary ecology that underpins the reservoirs of infection for this, and likely other, deadly pathogenic fungi. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Global Genetic Response in a Cancer Cell: Self-Organized Coherent Expression Dynamics
Tsuchiya, Masa; Hashimoto, Midori; Takenaka, Yoshiko; Motoike, Ikuko N.; Yoshikawa, Kenichi
2014-01-01
Understanding the basic mechanism of the spatio-temporal self-control of genome-wide gene expression engaged with the complex epigenetic molecular assembly is one of major challenges in current biological science. In this study, the genome-wide dynamical profile of gene expression was analyzed for MCF-7 breast cancer cells induced by two distinct ErbB receptor ligands: epidermal growth factor (EGF) and heregulin (HRG), which drive cell proliferation and differentiation, respectively. We focused our attention to elucidate how global genetic responses emerge and to decipher what is an underlying principle for dynamic self-control of genome-wide gene expression. The whole mRNA expression was classified into about a hundred groups according to the root mean square fluctuation (rmsf). These expression groups showed characteristic time-dependent correlations, indicating the existence of collective behaviors on the ensemble of genes with respect to mRNA expression and also to temporal changes in expression. All-or-none responses were observed for HRG and EGF (biphasic statistics) at around 10–20 min. The emergence of time-dependent collective behaviors of expression occurred through bifurcation of a coherent expression state (CES). In the ensemble of mRNA expression, the self-organized CESs reveals distinct characteristic expression domains for biphasic statistics, which exhibits notably the presence of criticality in the expression profile as a route for genomic transition. In time-dependent changes in the expression domains, the dynamics of CES reveals that the temporal development of the characteristic domains is characterized as autonomous bistable switch, which exhibits dynamic criticality (the temporal development of criticality) in the genome-wide coherent expression dynamics. It is expected that elucidation of the biophysical origin for such critical behavior sheds light on the underlying mechanism of the control of whole genome. PMID:24831017
Comparative genomics of two super-shedder isolates of Escherichia coli O157:H7
Katani, Robab; Cote, Rebecca; Kudva, Indira T.; DebRoy, Chitrita; Arthur, Terrance M.
2017-01-01
Shiga toxin-producing Escherichia coli O157:H7 (O157) are zoonotic foodborne pathogens and of major public health concern that cause considerable intestinal and extra-intestinal illnesses in humans. O157 colonize the recto-anal junction (RAJ) of asymptomatic cattle who shed the bacterium into the environment through fecal matter. A small subset of cattle, termed super-shedders (SS), excrete O157 at a rate (≥ 104 CFU/g of feces) that is several orders of magnitude greater than other colonized cattle and play a major role in the prevalence and transmission of O157. To better understand microbial factors contributing to super-shedding we have recently sequenced two SS isolates, SS17 (GenBank accession no. CP008805) and SS52 (GenBank accession no. CP010304) and shown that SS isolates display a distinctive strongly adherent phenotype on bovine rectal squamous epithelial cells. Here we present a detailed comparative genomics analysis of SS17 and SS52 with other previously characterized O157 strains (EC4115, EDL933, Sakai, TW14359). The results highlight specific polymorphisms and genomic features shared amongst SS strains, and reveal several SNPs that are shared amongst SS isolates, including in genes involved in motility, adherence, and metabolism. Finally, our analyses reveal distinctive patterns of distribution of phage-associated genes amongst the two SS and other isolates. Together, the results of our comparative genomics studies suggest that while SS17 and SS52 share genomic features with other lineage I/II isolates, they likely have distinct recent evolutionary histories. Future comparative and functional genomic studies are needed to decipher the precise molecular basis for super shedding in O157. PMID:28797098
Comparative genomics of two super-shedder isolates of Escherichia coli O157:H7.
Katani, Robab; Cote, Rebecca; Kudva, Indira T; DebRoy, Chitrita; Arthur, Terrance M; Kapur, Vivek
2017-01-01
Shiga toxin-producing Escherichia coli O157:H7 (O157) are zoonotic foodborne pathogens and of major public health concern that cause considerable intestinal and extra-intestinal illnesses in humans. O157 colonize the recto-anal junction (RAJ) of asymptomatic cattle who shed the bacterium into the environment through fecal matter. A small subset of cattle, termed super-shedders (SS), excrete O157 at a rate (≥ 104 CFU/g of feces) that is several orders of magnitude greater than other colonized cattle and play a major role in the prevalence and transmission of O157. To better understand microbial factors contributing to super-shedding we have recently sequenced two SS isolates, SS17 (GenBank accession no. CP008805) and SS52 (GenBank accession no. CP010304) and shown that SS isolates display a distinctive strongly adherent phenotype on bovine rectal squamous epithelial cells. Here we present a detailed comparative genomics analysis of SS17 and SS52 with other previously characterized O157 strains (EC4115, EDL933, Sakai, TW14359). The results highlight specific polymorphisms and genomic features shared amongst SS strains, and reveal several SNPs that are shared amongst SS isolates, including in genes involved in motility, adherence, and metabolism. Finally, our analyses reveal distinctive patterns of distribution of phage-associated genes amongst the two SS and other isolates. Together, the results of our comparative genomics studies suggest that while SS17 and SS52 share genomic features with other lineage I/II isolates, they likely have distinct recent evolutionary histories. Future comparative and functional genomic studies are needed to decipher the precise molecular basis for super shedding in O157.
Chavda, Kalyan D.; Chen, Liang; Fouts, Derrick E.; Sutton, Granger; Brinkac, Lauren; Jenkins, Stephen G.; Bonomo, Robert A.
2016-01-01
ABSTRACT Knowledge regarding the genomic structure of Enterobacter spp., the second most prevalent carbapenemase-producing Enterobacteriaceae, remains limited. Here we sequenced 97 clinical Enterobacter species isolates that were both carbapenem susceptible and resistant from various geographic regions to decipher the molecular origins of carbapenem resistance and to understand the changing phylogeny of these emerging and drug-resistant pathogens. Of the carbapenem-resistant isolates, 30 possessed blaKPC-2, 40 had blaKPC-3, 2 had blaKPC-4, and 2 had blaNDM-1. Twenty-three isolates were carbapenem susceptible. Six genomes were sequenced to completion, and their sizes ranged from 4.6 to 5.1 Mbp. Phylogenomic analysis placed 96 of these genomes, 351 additional Enterobacter genomes downloaded from NCBI GenBank, and six newly sequenced type strains into 19 phylogenomic groups—18 groups (A to R) in the Enterobacter cloacae complex and Enterobacter aerogenes. Diverse mechanisms underlying the molecular evolutionary trajectory of these drug-resistant Enterobacter spp. were revealed, including the acquisition of an antibiotic resistance plasmid, followed by clonal spread, horizontal transfer of blaKPC-harboring plasmids between different phylogenomic groups, and repeated transposition of the blaKPC gene among different plasmid backbones. Group A, which comprises multilocus sequence type 171 (ST171), was the most commonly identified (23% of isolates). Genomic analysis showed that ST171 isolates evolved from a common ancestor and formed two different major clusters; each acquiring unique blaKPC-harboring plasmids, followed by clonal expansion. The data presented here represent the first comprehensive study of phylogenomic interrogation and the relationship between antibiotic resistance and plasmid discrimination among carbapenem-resistant Enterobacter spp., demonstrating the genetic diversity and complexity of the molecular mechanisms driving antibiotic resistance in this genus. PMID:27965456
Grad, Yonatan H.; Waldor, Matthew K.
2013-01-01
ABSTRACT The devastating Haitian cholera outbreak that began in October 2010 is the first known cholera epidemic in this island nation. Epidemiological and genomic data have provided strong evidence that United Nations security forces from Nepal introduced toxigenic Vibrio cholerae O1, the cause of epidemic cholera, to Haiti shortly before the outbreak arose. However, some have contended that indigenous V. cholerae contributed to the outbreak. In a recent paper (mBio 4:e00398-13, 2013), L. S. Katz et al. explored the nature and rate of changes in this ancient pathogen’s genome during an outbreak, based on whole-genome sequencing of 23 Haitian V. cholerae clinical isolates obtained over a 20-month period. Notably, they detected point mutations, deletions, and inversions but found no insertion of horizontally transmitted DNA, arguing strongly against the idea that autochthonous V. cholerae donated DNA to the outbreak strain. Furthermore, they found that Haitian epidemic V. cholerae isolates were virtually untransformable. Comparative genomic analyses revealed that the Haitian isolates were nearly identical to isolates from Nepal and that the Nepalese-Haitian isolates were distinguishable from isolates circulating elsewhere in the world. Reconstruction of the phylogeny of the Haitian isolates was consistent with a single introduction of V. cholerae to Haiti sometime between late July and late October 2010, dates remarkably concordant with epidemiological observations. In aggregate, this paper provides additional compelling evidence that the V. cholerae strain responsible for the Haitian cholera epidemic came from Nepal and illustrates the power of whole-genome-based analyses for epidemiology, pathogen evolution, and forensics. PMID:24023387
The DNA Methylome of Human Peripheral Blood Mononuclear Cells
Ye, Mingzhi; Zheng, Hancheng; Yu, Jian; Wu, Honglong; Sun, Jihua; Zhang, Hongyu; Chen, Quan; Luo, Ruibang; Chen, Minfeng; He, Yinghua; Jin, Xin; Zhang, Qinghui; Yu, Chang; Zhou, Guangyu; Sun, Jinfeng; Huang, Yebo; Zheng, Huisong; Cao, Hongzhi; Zhou, Xiaoyu; Guo, Shicheng; Hu, Xueda; Li, Xin; Kristiansen, Karsten; Bolund, Lars; Xu, Jiujin; Wang, Wen; Yang, Huanming; Wang, Jian; Li, Ruiqiang; Beck, Stephan; Wang, Jun; Zhang, Xiuqing
2010-01-01
DNA methylation plays an important role in biological processes in human health and disease. Recent technological advances allow unbiased whole-genome DNA methylation (methylome) analysis to be carried out on human cells. Using whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold per strand), we report a comprehensive (92.62%) methylome and analysis of the unique sequences in human peripheral blood mononuclear cells (PBMC) from the same Asian individual whose genome was deciphered in the YH project. PBMC constitute an important source for clinical blood tests world-wide. We found that 68.4% of CpG sites and <0.2% of non-CpG sites were methylated, demonstrating that non-CpG cytosine methylation is minor in human PBMC. Analysis of the PBMC methylome revealed a rich epigenomic landscape for 20 distinct genomic features, including regulatory, protein-coding, non-coding, RNA-coding, and repeat sequences. Integration of our methylome data with the YH genome sequence enabled a first comprehensive assessment of allele-specific methylation (ASM) between the two haploid methylomes of any individual and allowed the identification of 599 haploid differentially methylated regions (hDMRs) covering 287 genes. Of these, 76 genes had hDMRs within 2 kb of their transcriptional start sites of which >80% displayed allele-specific expression (ASE). These data demonstrate that ASM is a recurrent phenomenon and is highly correlated with ASE in human PBMCs. Together with recently reported similar studies, our study provides a comprehensive resource for future epigenomic research and confirms new sequencing technology as a paradigm for large-scale epigenomics studies. PMID:21085693
Bueno, Anibal; Rodríguez-López, Rocío; Reyes-Palomares, Armando; Rojano, Elena; Corpas, Manuel; Nevado, Julián; Lapunzina, Pablo; Sánchez-Jiménez, Francisca; Ranea, Juan A G
2018-06-26
Copy number variations (CNVs) are genomic structural variations (deletions, duplications, or translocations) that represent the 4.8-9.5% of human genome variation in healthy individuals. In some cases, CNVs can also lead to disease, being the etiology of many known rare genetic/genomic disorders. Despite the last advances in genomic sequencing and diagnosis, the pathological effects of many rare genetic variations remain unresolved, largely due to the low number of patients available for these cases, making it difficult to identify consistent patterns of genotype-phenotype relationships. We aimed to improve the identification of statistically consistent genotype-phenotype relationships by integrating all the genetic and clinical data of thousands of patients with rare genomic disorders (obtained from the DECIPHER database) into a phenotype-patient-genotype tripartite network. Then we assessed how our network approach could help in the characterization and diagnosis of novel cases in clinical genetics. The systematic approach implemented in this work is able to better define the relationships between phenotypes and specific loci, by exploiting large-scale association networks of phenotypes and genotypes in thousands of rare disease patients. The application of the described methodology facilitated the diagnosis of novel clinical cases, ranking phenotypes by locus specificity and reporting putative new clinical features that may suggest additional clinical follow-ups. In this work, the proof of concept developed over a set of novel clinical cases demonstrates that this network-based methodology might help improve the precision of patient clinical records and the characterization of rare syndromes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labonté, Jessica M.; Swan, Brandon K.; Poulos, Bonnie
Viral infections dynamically alter the composition and metabolic potential of marine microbial communities and the evolutionary trajectories of host populations with resulting feedback on biogeochemical cycles. It is quite possible that all microbial populations in the ocean are impacted by viral infections. Our knowledge of virus–host relationships, however, has been limited to a minute fraction of cultivated host groups. Here, we utilized single-cell sequencing to obtain genomic blueprints of viruses inside or attached to individual bacterial and archaeal cells captured in their native environment, circumventing the need for host and virus cultivation. Furthermore, a combination of comparative genomics, metagenomic fragmentmore » recruitment, sequence anomalies and irregularities in sequence coverage depth and genome recovery were utilized to detect viruses and to decipher modes of virus–host interactions. Members of all three tailed phage families were identified in 20 out of 58 phylogenetically and geographically diverse single amplified genomes (SAGs) of marine bacteria and archaea. At least four phage–host interactions had the characteristics of late lytic infections, all of which were found in metabolically active cells. One virus had genetic potential for lysogeny. Our findings include first known viruses of Thaumarchaeota, Marinimicrobia, Verrucomicrobia and Gammaproteobacteria clusters SAR86 and SAR92. Viruses were also found in SAGs of Alphaproteobacteria and Bacteroidetes. A high fragment recruitment of viral metagenomic reads confirmed that most of the SAG-associated viruses are abundant in the ocean. This study demonstrates that single-cell genomics, in conjunction with sequence-based computational tools, enable in situ, cultivation-independent insights into host–virus interactions in complex microbial communities.« less
Bajaj, Deepak; Das, Shouvik; Upadhyaya, Hari D.; Ranjan, Rajeev; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C. L. Laxmipathi; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.
2015-01-01
The study identified 9045 high-quality SNPs employing both genome-wide GBS- and candidate gene-based SNP genotyping assays in 172, including 93 cultivated (desi and kabuli) and 79 wild chickpea accessions. The GWAS in a structured population of 93 sequenced accessions detected 15 major genomic loci exhibiting significant association with seed coat color. Five seed color-associated major genomic loci underlying robust QTLs mapped on a high-density intra-specific genetic linkage map were validated by QTL mapping. The integration of association and QTL mapping with gene haplotype-specific LD mapping and transcript profiling identified novel allelic variants (non-synonymous SNPs) and haplotypes in a MATE secondary transporter gene regulating light/yellow brown and beige seed coat color differentiation in chickpea. The down-regulation and decreased transcript expression of beige seed coat color-associated MATE gene haplotype was correlated with reduced proanthocyanidins accumulation in the mature seed coats of beige than light/yellow brown seed colored desi and kabuli accessions for their coloration/pigmentation. This seed color-regulating MATE gene revealed strong purifying selection pressure primarily in LB/YB seed colored desi and wild Cicer reticulatum accessions compared with the BE seed colored kabuli accessions. The functionally relevant molecular tags identified have potential to decipher the complex transcriptional regulatory gene function of seed coat coloration and for understanding the selective sweep-based seed color trait evolutionary pattern in cultivated and wild accessions during chickpea domestication. The genome-wide integrated approach employed will expedite marker-assisted genetic enhancement for developing cultivars with desirable seed coat color types in chickpea. PMID:26635822
The Importance of Biological Databases in Biological Discovery.
Baxevanis, Andreas D; Bateman, Alex
2015-06-19
Biological databases play a central role in bioinformatics. They offer scientists the opportunity to access a wide variety of biologically relevant data, including the genomic sequences of an increasingly broad range of organisms. This unit provides a brief overview of major sequence databases and portals, such as GenBank, the UCSC Genome Browser, and Ensembl. Model organism databases, including WormBase, The Arabidopsis Information Resource (TAIR), and those made available through the Mouse Genome Informatics (MGI) resource, are also covered. Non-sequence-centric databases, such as Online Mendelian Inheritance in Man (OMIM), the Protein Data Bank (PDB), MetaCyc, and the Kyoto Encyclopedia of Genes and Genomes (KEGG), are also discussed. Copyright © 2015 John Wiley & Sons, Inc.
First moves of the USSR Human Genome Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayev, A.A.
1991-01-01
The USSR Human Genome Project is an intrinsic part of genetic research that still has to recover from the hard ordeal of the past. The imperious influence of Trofim Lysenko and his concepts inhibited the progress of genetics, which had been developing quite successfully before him, and suppressed and often physically destroyed many of our outstanding scientists. Human genome studies were discussed for the first time at a general meeting of the USSR Academy of Sciences in 1988. As early as December 1988, the USSR Council of Ministers adopted a resolution on the creation of a Human Genome Project, whichmore » since 1989 exists in the USSR as one of the national projects.« less
Ramírez-Vargas, Gabriel; Goh, Shan; Rodríguez, César
2018-01-01
Until recently, Clostridium difficile phages were limited to Myoviruses and Siphoviruses of medium genome length (32-57 kb). Here we report the finding of phiCD5763, a Siphovirus with a large extrachromosomal circular genome (132.5 kb, 172 ORFs) and a large capsid (205.6 ± 25.6 nm in diameter) infecting MLST Clade 1 strains of C. difficile . Two subgroups of big phage genomes similar to phiCD5763 were identified in 32 NAP CR1 /RT012/ST-54 C. difficile isolates from Costa Rica and in whole genome sequences (WGS) of 41 C. difficile isolates of Clades 1, 2, 3, and 4 from Canada, USA, UK, Belgium, Iraq, and China. Through comparative genomics we discovered another putative big phage genome in a non-NAP CR1 isolate from Costa Rica, phiCD2955, which represents other big phage genomes found in 130 WGS of MLST Clade 1 and 2 isolates from Canada, USA, Hungary, France, Austria, and UK. phiCD2955 (131.6 kb, 172 ORFs) is related to a previously reported C. difficile phage genome, phiCD211/phiCDIF1296T. Detailed genome analyses of phiCD5763, phiCD2955, phiCD211/phiCDIF1296T, and seven other putative C. difficile big phage genome sequences of 131-136 kb reconstructed from publicly available WGS revealed a modular gene organization and high levels of sequence heterogeneity at several hotspots, suggesting that these genomes correspond to biological entities undergoing recombination. Compared to other C. difficile phages, these big phages have unique predicted terminase, capsid, portal, neck and tail proteins, receptor binding proteins (RBPs), recombinases, resolvases, primases, helicases, ligases, and hypothetical proteins. Moreover, their predicted gene load suggests a complex regulation of both phage and host functions. Overall, our results indicate that the prevalence of C. difficile big bacteriophages is more widespread than realized and open new avenues of research aiming to decipher how these viral elements influence the biology of this emerging pathogen.
Studt, Lena; Niehaus, Eva-Maria; Espino, Jose J.; Huß, Kathleen; Michielse, Caroline B.; Albermann, Sabine; Wagner, Dominik; Bergner, Sonja V.; Connolly, Lanelle R.; Fischer, Andreas; Reuter, Gunter; Kleigrewe, Karin; Bald, Till; Wingfield, Brenda D.; Ophir, Ron; Freeman, Stanley; Hippler, Michael; Smith, Kristina M.; Brown, Daren W.; Proctor, Robert H.; Münsterkötter, Martin; Freitag, Michael; Humpf, Hans-Ulrich; Güldener, Ulrich; Tudzynski, Bettina
2013-01-01
The fungus Fusarium fujikuroi causes “bakanae” disease of rice due to its ability to produce gibberellins (GAs), but it is also known for producing harmful mycotoxins. However, the genetic capacity for the whole arsenal of natural compounds and their role in the fungus' interaction with rice remained unknown. Here, we present a high-quality genome sequence of F. fujikuroi that was assembled into 12 scaffolds corresponding to the 12 chromosomes described for the fungus. We used the genome sequence along with ChIP-seq, transcriptome, proteome, and HPLC-FTMS-based metabolome analyses to identify the potential secondary metabolite biosynthetic gene clusters and to examine their regulation in response to nitrogen availability and plant signals. The results indicate that expression of most but not all gene clusters correlate with proteome and ChIP-seq data. Comparison of the F. fujikuroi genome to those of six other fusaria revealed that only a small number of gene clusters are conserved among these species, thus providing new insights into the divergence of secondary metabolism in the genus Fusarium. Noteworthy, GA biosynthetic genes are present in some related species, but GA biosynthesis is limited to F. fujikuroi, suggesting that this provides a selective advantage during infection of the preferred host plant rice. Among the genome sequences analyzed, one cluster that includes a polyketide synthase gene (PKS19) and another that includes a non-ribosomal peptide synthetase gene (NRPS31) are unique to F. fujikuroi. The metabolites derived from these clusters were identified by HPLC-FTMS-based analyses of engineered F. fujikuroi strains overexpressing cluster genes. In planta expression studies suggest a specific role for the PKS19-derived product during rice infection. Thus, our results indicate that combined comparative genomics and genome-wide experimental analyses identified novel genes and secondary metabolites that contribute to the evolutionary success of F. fujikuroi as a rice pathogen. PMID:23825955
Deciphering the fine-structure of tribal admixture in the Bedouin population using genomic data
Markus, B; Alshafee, I; Birk, O S
2014-01-01
The Bedouin Israeli population is highly inbred and structured with a very high prevalence of recessive diseases. Many studies in the past two decades focused on linkage analysis in large, multiple consanguineous pedigrees of this population. The advent of high-throughput technologies motivated researchers to search for rare variants shared between smaller pedigrees, integrating data from clinically similar yet seemingly non-related sporadic cases. However, such analyses are challenging because, without pedigree data, there is no prior knowledge regarding possible relatedness between the sporadic cases. Here, we describe models and techniques for the study of relationships between pedigrees and use them for the inference of tribal co-ancestry, delineating the complex social interactions between different tribes in the Negev Bedouins of southern Israel. Through our analysis, we differentiate between tribes that share many yet small genomic segments because of co-ancestry versus tribes that share larger segments because of recent admixture. The emergent pattern is well correlated with the prevalence of rare mutations in the different tribes. Tribes that do not intermarry, mostly because of social restrictions, hold private mutations, whereas tribes that do intermarry demonstrate a genetic flow of mutations between them. Thus, social structure within an inbred community can be delineated through genomic data, with implications to genetic counseling and genetic mapping. PMID:24084643
Deciphering the fine-structure of tribal admixture in the Bedouin population using genomic data.
Markus, B; Alshafee, I; Birk, O S
2014-02-01
The Bedouin Israeli population is highly inbred and structured with a very high prevalence of recessive diseases. Many studies in the past two decades focused on linkage analysis in large, multiple consanguineous pedigrees of this population. The advent of high-throughput technologies motivated researchers to search for rare variants shared between smaller pedigrees, integrating data from clinically similar yet seemingly non-related sporadic cases. However, such analyses are challenging because, without pedigree data, there is no prior knowledge regarding possible relatedness between the sporadic cases. Here, we describe models and techniques for the study of relationships between pedigrees and use them for the inference of tribal co-ancestry, delineating the complex social interactions between different tribes in the Negev Bedouins of southern Israel. Through our analysis, we differentiate between tribes that share many yet small genomic segments because of co-ancestry versus tribes that share larger segments because of recent admixture. The emergent pattern is well correlated with the prevalence of rare mutations in the different tribes. Tribes that do not intermarry, mostly because of social restrictions, hold private mutations, whereas tribes that do intermarry demonstrate a genetic flow of mutations between them. Thus, social structure within an inbred community can be delineated through genomic data, with implications to genetic counseling and genetic mapping.
Networking Omic Data to Envisage Systems Biological Regulation.
Kalapanulak, Saowalak; Saithong, Treenut; Thammarongtham, Chinae
To understand how biological processes work, it is necessary to explore the systematic regulation governing the behaviour of the processes. Not only driving the normal behavior of organisms, the systematic regulation evidently underlies the temporal responses to surrounding environments (dynamics) and long-term phenotypic adaptation (evolution). The systematic regulation is, in effect, formulated from the regulatory components which collaboratively work together as a network. In the drive to decipher such a code of lives, a spectrum of technologies has continuously been developed in the post-genomic era. With current advances, high-throughput sequencing technologies are tremendously powerful for facilitating genomics and systems biology studies in the attempt to understand system regulation inside the cells. The ability to explore relevant regulatory components which infer transcriptional and signaling regulation, driving core cellular processes, is thus enhanced. This chapter reviews high-throughput sequencing technologies, including second and third generation sequencing technologies, which support the investigation of genomics and transcriptomics data. Utilization of this high-throughput data to form the virtual network of systems regulation is explained, particularly transcriptional regulatory networks. Analysis of the resulting regulatory networks could lead to an understanding of cellular systems regulation at the mechanistic and dynamics levels. The great contribution of the biological networking approach to envisage systems regulation is finally demonstrated by a broad range of examples.
The vent microbiome: patterns and drivers
NASA Astrophysics Data System (ADS)
Pachiadaki, M.
2015-12-01
Microbial processes within deep-sea hydrothermal vents affect the global biogeochemical cycles. Still, there are significant gaps in our understanding of the microbiology and the biogeochemistry of deep-sea hydrothermal systems. Vents differ in temperature, host rock composition and fluid chemistry; factors that are hypothesized to shape the distribution of the microbial communities, their metabolic capabilities and their activities. Using large-scale single cell genomics, we obtained insights into the genomic content of several linkages of a diffuse flow vent. The genomes show high metabolic versatility. Sulfur oxidation appears to be predominant but there is the potential of using a variety of e- donors and acceptors to obtain energy. To further assess the ecological importance of the vent auto- and heterotrophs, the global biogeography of the analyzed lineages will be investigated by fragment recruitment of metagenomes produced from the same site as well as other hydrothermal systems. Metatranscriptomic and metaproteomic data will be integrated to examine the expression of the predominant metabolic pathways and thus the main energy sources driving chemoautotrophic production. The comparative analysis of the key players and associated pathways among various vent sites that differ in physicochemical characteristics is anticipated to decipher the patterns and drivers of the global dispersion and the local diversification of the vent microbiome.
Defining the biological bases of individual differences in musicality.
Gingras, Bruno; Honing, Henkjan; Peretz, Isabelle; Trainor, Laurel J; Fisher, Simon E
2015-03-19
Advances in molecular technologies make it possible to pinpoint genomic factors associated with complex human traits. For cognition and behaviour, identification of underlying genes provides new entry points for deciphering the key neurobiological pathways. In the past decade, the search for genetic correlates of musicality has gained traction. Reports have documented familial clustering for different extremes of ability, including amusia and absolute pitch (AP), with twin studies demonstrating high heritability for some music-related skills, such as pitch perception. Certain chromosomal regions have been linked to AP and musical aptitude, while individual candidate genes have been investigated in relation to aptitude and creativity. Most recently, researchers in this field started performing genome-wide association scans. Thus far, studies have been hampered by relatively small sample sizes and limitations in defining components of musicality, including an emphasis on skills that can only be assessed in trained musicians. With opportunities to administer standardized aptitude tests online, systematic large-scale assessment of musical abilities is now feasible, an important step towards high-powered genome-wide screens. Here, we offer a synthesis of existing literatures and outline concrete suggestions for the development of comprehensive operational tools for the analysis of musical phenotypes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Hwang, Young Sun; Seo, Minseok; Choi, Hee Jung; Kim, Sang Kyung; Kim, Heebal; Han, Jae Yong
2018-04-01
The chicken is a valuable model organism, especially in evolutionary and embryology research because its embryonic development occurs in the egg. However, despite its scientific importance, no transcriptome data have been generated for deciphering the early developmental stages of the chicken because of practical and technical constraints in accessing pre-oviposited embryos. Here, we determine the entire transcriptome of pre-oviposited avian embryos, including oocyte, zygote, and intrauterine embryos from Eyal-giladi and Kochav stage I (EGK.I) to EGK.X collected using a noninvasive approach for the first time. We also compare RNA-sequencing data obtained using a bulked embryo sequencing and single embryo/cell sequencing technique. The raw sequencing data were preprocessed with two genome builds, Galgal4 and Galgal5, and the expression of 17,108 and 26,102 genes was quantified in the respective builds. There were some differences between the two techniques, as well as between the two genome builds, and these were affected by the emergence of long intergenic noncoding RNA annotations. The first transcriptome datasets of pre-oviposited early chicken embryos based on bulked and single embryo sequencing techniques will serve as a valuable resource for investigating early avian embryogenesis, for comparative studies among vertebrates, and for novel gene annotation in the chicken genome.
Tost, Jörg
2016-01-01
DNA methylation is the most studied epigenetic modification, and altered DNA methylation patterns have been identified in cancer and more recently also in many other complex diseases. Furthermore, DNA methylation is influenced by a variety of environmental factors, and the analysis of DNA methylation patterns might allow deciphering previous exposure. Although a large number of techniques to study DNA methylation either genome-wide or at specific loci have been devised, they all are based on a limited number of principles for differentiating the methylation state, viz., methylation-specific/methylation-dependent restriction enzymes, antibodies or methyl-binding proteins, chemical-based enrichment, or bisulfite conversion. Second-generation sequencing has largely replaced microarrays as readout platform and is also becoming more popular for locus-specific DNA methylation analysis. In this chapter, the currently used methods for both genome-wide and locus-specific analysis of 5-methylcytosine and as its oxidative derivatives, such as 5-hydroxymethylcytosine, are reviewed in detail, and the advantages and limitations of each approach are discussed. Furthermore, emerging technologies avoiding PCR amplification and allowing a direct readout of DNA methylation are summarized, together with novel applications, such as the detection of DNA methylation in single cells or in circulating cell-free DNA.
Human genome and open source: balancing ethics and business.
Marturano, Antonio
2011-01-01
The Human Genome Project has been completed thanks to a massive use of computer techniques, as well as the adoption of the open-source business and research model by the scientists involved. This model won over the proprietary model and allowed a quick propagation and feedback of research results among peers. In this paper, the author will analyse some ethical and legal issues emerging by the use of such computer model in the Human Genome property rights. The author will argue that the Open Source is the best business model, as it is able to balance business and human rights perspectives.
Genome Science and Personalized Cancer Treatment
Gray, Joe
2017-12-09
August 4, 2009 Berkeley Lab lecture: Results from the Human Genome Project are enabling scientists to understand how individual cancers form and progress. This information, when combined with newly developed drugs, can optimize the treatment of individual cancers. Joe Gray, director of Berkeley Labs Life Sciences Division and Associate Laboratory Director for Life and Environmental Sciences, will focus on this approach, its promise, and its current roadblocks â particularly with regard to breast cancer.
Conversion of amino-acid sequence in proteins to classical music: search for auditory patterns
2007-01-01
We have converted genome-encoded protein sequences into musical notes to reveal auditory patterns without compromising musicality. We derived a reduced range of 13 base notes by pairing similar amino acids and distinguishing them using variations of three-note chords and codon distribution to dictate rhythm. The conversion will help make genomic coding sequences more approachable for the general public, young children, and vision-impaired scientists. PMID:17477882
Genomic newborn screening: public health policy considerations and recommendations.
Friedman, Jan M; Cornel, Martina C; Goldenberg, Aaron J; Lister, Karla J; Sénécal, Karine; Vears, Danya F
2017-02-21
The use of genome-wide (whole genome or exome) sequencing for population-based newborn screening presents an opportunity to detect and treat or prevent many more serious early-onset health conditions than is possible today. The Paediatric Task Team of the Global Alliance for Genomics and Health's Regulatory and Ethics Working Group reviewed current understanding and concerns regarding the use of genomic technologies for population-based newborn screening and developed, by consensus, eight recommendations for clinicians, clinical laboratory scientists, and policy makers. Before genome-wide sequencing can be implemented in newborn screening programs, its clinical utility and cost-effectiveness must be demonstrated, and the ability to distinguish disease-causing and benign variants of all genes screened must be established. In addition, each jurisdiction needs to resolve ethical and policy issues regarding the disclosure of incidental or secondary findings to families and ownership, appropriate storage and sharing of genomic data. The best interests of children should be the basis for all decisions regarding the implementation of genomic newborn screening.
Kim, Sung-Hou
2017-12-11
Berkeley Lab scientists have created a unique new tool for analyzing and comparing long sets of data, be it the genomes of mammals or viruses, or the works of Shakespeare. The results of the Shakespeare analysis surprised scholars with their accuracy.
TCGA researchers identify 4 subtypes of stomach cancer
Stomach cancers fall into four distinct molecular subtypes, researchers with The Cancer Genome Atlas (TCGA) Network have found. Scientists report that this discovery could change how researchers think about developing treatments for stomach cancer, also c
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sung-Hou Kim
2009-02-09
Berkeley Lab scientists have created a unique new tool for analyzing and comparing long sets of data, be it the genomes of mammals or viruses, or the works of Shakespeare. The results of the Shakespeare analysis surprised scholars with their accuracy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sung-Hou
2009-02-09
Berkeley Lab scientists have created a unique new tool for analyzing and comparing long sets of data, be it the genomes of mammals or viruses, or the works of Shakespeare. The results of the Shakespeare analysis surprised scholars with their accuracy.
A novel tree-based procedure for deciphering the genomic spectrum of clinical disease entities.
Mbogning, Cyprien; Perdry, Hervé; Toussile, Wilson; Broët, Philippe
2014-01-01
Dissecting the genomic spectrum of clinical disease entities is a challenging task. Recursive partitioning (or classification trees) methods provide powerful tools for exploring complex interplay among genomic factors, with respect to a main factor, that can reveal hidden genomic patterns. To take confounding variables into account, the partially linear tree-based regression (PLTR) model has been recently published. It combines regression models and tree-based methodology. It is however computationally burdensome and not well suited for situations for which a large number of exploratory variables is expected. We developed a novel procedure that represents an alternative to the original PLTR procedure, and considered different selection criteria. A simulation study with different scenarios has been performed to compare the performances of the proposed procedure to the original PLTR strategy. The proposed procedure with a Bayesian Information Criterion (BIC) achieved good performances to detect the hidden structure as compared to the original procedure. The novel procedure was used for analyzing patterns of copy-number alterations in lung adenocarcinomas, with respect to Kirsten Rat Sarcoma Viral Oncogene Homolog gene (KRAS) mutation status, while controlling for a cohort effect. Results highlight two subgroups of pure or nearly pure wild-type KRAS tumors with particular copy-number alteration patterns. The proposed procedure with a BIC criterion represents a powerful and practical alternative to the original procedure. Our procedure performs well in a general framework and is simple to implement.
Yimer, Solomon A; Namouchi, Amine; Zegeye, Ephrem Debebe; Holm-Hansen, Carol; Norheim, Gunnstein; Abebe, Markos; Aseffa, Abraham; Tønjum, Tone
2016-06-30
A deeply rooted phylogenetic lineage of Mycobacterium tuberculosis (M. tuberculosis) termed lineage 7 was discovered in Ethiopia. Whole genome sequencing of 30 lineage 7 strains from patients in Ethiopia was performed. Intra-lineage genome variation was defined and unique characteristics identified with a focus on genes involved in DNA repair, recombination and replication (3R genes). More than 800 mutations specific to M. tuberculosis lineage 7 strains were identified. The proportion of non-synonymous single nucleotide polymorphisms (nsSNPs) in 3R genes was higher after the recent expansion of M. tuberculosis lineage 7 strain started. The proportion of nsSNPs in genes involved in inorganic ion transport and metabolism was significantly higher before the expansion began. A total of 22346 bp deletions were observed. Lineage 7 strains also exhibited a high number of mutations in genes involved in carbohydrate transport and metabolism, transcription, energy production and conversion. We have identified unique genomic signatures of the lineage 7 strains. The high frequency of nsSNP in 3R genes after the phylogenetic expansion may have contributed to recent variability and adaptation. The abundance of mutations in genes involved in inorganic ion transport and metabolism before the expansion period may indicate an adaptive response of lineage 7 strains to enable survival, potentially under environmental stress exposure. As lineage 7 strains originally were phylogenetically deeply rooted, this may indicate fundamental adaptive genomic pathways affecting the fitness of M. tuberculosis as a species.
Sedimentary Deposits within Ius Chasma
2015-07-15
Sedimentary deposits are common within Valles Marineris. Most larger chasmata contain kilometer-thick light-toned layered deposits composed of sulfates. However, some of the chasmata, like Ius Chasma shown in this image from NASA Mars Reconnaissance Orbiter, lack these deposits or have much thinner deposits. The light-toned deposits in Ius Chasma are observed both along the floor and inner wallrock materials. Some of the light-toned deposits appear to post-date formation of the chasma floor, whereas other deposits appear to lie beneath wallrock materials, indicating they are older. By examining the stratigraphy using digital terrain models and 3D images, it should be possible to decipher the relative ages of the different geologic units. CRISM data may also provide insight into the mineralogy, which will tell scientists about the aqueous conditions that emplaced the light-toned deposits. http://photojournal.jpl.nasa.gov/catalog/PIA19855
Holmes, Christina; Carlson, Siobhan M.; McDonald, Fiona; Jones, Mavis; Graham, Janice
2016-01-01
Richard Lewontin proposed that the ability of a scientific field to create a narrative for public understanding garners it social relevance. This article applies Lewontin's conceptual framework of the functions of science (manipulatory and explanatory) to compare and explain the current differences in perceived societal relevance of genetics/genomics and proteomics. We provide three examples to illustrate the social relevance and strong cultural narrative of genetics/genomics for which no counterpart exists for proteomics. We argue that the major difference between genetics/genomics and proteomics is that genomics has a strong explanatory function, due to the strong cultural narrative of heredity. Based on qualitative interviews and observations of proteomics conferences, we suggest that the nature of proteins, lack of public understanding, and theoretical complexity exacerbates this difference for proteomics. Lewontin's framework suggests that social scientists may find that omics sciences affect social relations in different ways than past analyses of genetics. PMID:27134568
Improving Microbial Genome Annotations in an Integrated Database Context
Chen, I-Min A.; Markowitz, Victor M.; Chu, Ken; Anderson, Iain; Mavromatis, Konstantinos; Kyrpides, Nikos C.; Ivanova, Natalia N.
2013-01-01
Effective comparative analysis of microbial genomes requires a consistent and complete view of biological data. Consistency regards the biological coherence of annotations, while completeness regards the extent and coverage of functional characterization for genomes. We have developed tools that allow scientists to assess and improve the consistency and completeness of microbial genome annotations in the context of the Integrated Microbial Genomes (IMG) family of systems. All publicly available microbial genomes are characterized in IMG using different functional annotation and pathway resources, thus providing a comprehensive framework for identifying and resolving annotation discrepancies. A rule based system for predicting phenotypes in IMG provides a powerful mechanism for validating functional annotations, whereby the phenotypic traits of an organism are inferred based on the presence of certain metabolic reactions and pathways and compared to experimentally observed phenotypes. The IMG family of systems are available at http://img.jgi.doe.gov/. PMID:23424620
Holmes, Christina; Carlson, Siobhan M; McDonald, Fiona; Jones, Mavis; Graham, Janice
2016-01-02
Richard Lewontin proposed that the ability of a scientific field to create a narrative for public understanding garners it social relevance. This article applies Lewontin's conceptual framework of the functions of science (manipulatory and explanatory) to compare and explain the current differences in perceived societal relevance of genetics/genomics and proteomics. We provide three examples to illustrate the social relevance and strong cultural narrative of genetics/genomics for which no counterpart exists for proteomics. We argue that the major difference between genetics/genomics and proteomics is that genomics has a strong explanatory function, due to the strong cultural narrative of heredity. Based on qualitative interviews and observations of proteomics conferences, we suggest that the nature of proteins, lack of public understanding, and theoretical complexity exacerbates this difference for proteomics. Lewontin's framework suggests that social scientists may find that omics sciences affect social relations in different ways than past analyses of genetics.
Strigolactone biology: genes, functional genomics, epigenetics and applications.
Makhzoum, Abdullah; Yousefzadi, Morteza; Malik, Sonia; Gantet, Pascal; Tremouillaux-Guiller, Jocelyne
2017-03-01
Strigolactones (SLs) represent an important new plant hormone class marked by their multifunctional role in plant and rhizosphere interactions. These compounds stimulate hyphal branching in arbuscular mycorrhizal fungi (AMF) and seed germination of root parasitic plants. In addition, they are involved in the control of plant architecture by inhibiting bud outgrowth as well as many other morphological and developmental processes together with other plant hormones such as auxins and cytokinins. The biosynthetic pathway of SLs that are derived from carotenoids was partially decrypted based on the identification of mutants from a variety of plant species. Only a few SL biosynthetic and regulated genes and related regulatory transcription factors have been identified. However, functional genomics and epigenetic studies started to give first elements on the modality of the regulation of SLs related genes. Since they control plant architecture and plant-rhizosphere interaction, SLs start to be used for agronomical and biotechnological applications. Furthermore, the genes involved in the SL biosynthetic pathway and genes regulated by SL constitute interesting targets for plant breeding. Therefore, it is necessary to decipher and better understand the genetic determinants of their regulation at different levels.
Modeling cancer metabolism on a genome scale
Yizhak, Keren; Chaneton, Barbara; Gottlieb, Eyal; Ruppin, Eytan
2015-01-01
Cancer cells have fundamentally altered cellular metabolism that is associated with their tumorigenicity and malignancy. In addition to the widely studied Warburg effect, several new key metabolic alterations in cancer have been established over the last decade, leading to the recognition that altered tumor metabolism is one of the hallmarks of cancer. Deciphering the full scope and functional implications of the dysregulated metabolism in cancer requires both the advancement of a variety of omics measurements and the advancement of computational approaches for the analysis and contextualization of the accumulated data. Encouragingly, while the metabolic network is highly interconnected and complex, it is at the same time probably the best characterized cellular network. Following, this review discusses the challenges that genome-scale modeling of cancer metabolism has been facing. We survey several recent studies demonstrating the first strides that have been done, testifying to the value of this approach in portraying a network-level view of the cancer metabolism and in identifying novel drug targets and biomarkers. Finally, we outline a few new steps that may further advance this field. PMID:26130389
Deciphering principles of transcription regulation in eukaryotic genomes
Nguyen, Dat H; D'haeseleer, Patrik
2006-01-01
Transcription regulation has been responsible for organismal complexity and diversity in the course of biological evolution and adaptation, and it is determined largely by the context-dependent behavior of cis-regulatory elements (CREs). Therefore, understanding principles underlying CRE behavior in regulating transcription constitutes a fundamental objective of quantitative biology, yet these remain poorly understood. Here we present a deterministic mathematical strategy, the motif expression decomposition (MED) method, for deriving principles of transcription regulation at the single-gene resolution level. MED operates on all genes in a genome without requiring any a priori knowledge of gene cluster membership, or manual tuning of parameters. Applying MED to Saccharomyces cerevisiae transcriptional networks, we identified four functions describing four different ways that CREs can quantitatively affect gene expression levels. These functions, three of which have extrema in different positions in the gene promoter (short-, mid-, and long-range) whereas the other depends on the motif orientation, are validated by expression data. We illustrate how nature could use these principles as an additional dimension to amplify the combinatorial power of a small set of CREs in regulating transcription. PMID:16738557
A genomic window into the virulence of Histophilus somni.
Sandal, Indra; Inzana, Thomas J
2010-02-01
Histophilus somni is an obligate inhabitant of the respiratory and genital mucosal surfaces of bovines and ovines. An individual strain can be a primary pathogen, an opportunistic pathogen, or a commensal, but can also move between these classifications if introduced into an appropriate site (e.g. the lungs) under conditions that favor bacterial persistence. H. somni is one of the bacterial agents responsible for bovine respiratory disease complex and can also cause a variety of systemic diseases in cattle and sheep. Isolates from disease sites, such as the lungs, heart, and brain, express a wide array of virulence factors (including biofilm formation) designed to evade host defense mechanisms. By contrast, some isolates from the healthy genital tract often lack many of these virulence factors. The genomic sequences of two bovine isolates, one from pneumonic lung and the other from healthy prepuce, have aided in deciphering the differences in phenotype and virulence between the two strains, and reveal their striking genetic similarity to Haemophilus influenzae and other members of the Pasteurellaceae. (c) 2009 Elsevier Ltd. All rights reserved.
Listeria monocytogenes, a down-to-earth pathogen
Vivant, Anne-Laure; Garmyn, Dominique; Piveteau, Pascal
2013-01-01
Listeria monocytogenes is the causative agent of the food-borne life threatening disease listeriosis. This pathogenic bacterium received much attention in the endeavor of deciphering the cellular mechanisms that underlie the onset of infection and its ability to adapt to the food processing environment. Although information is available on the presence of L. monocytogenes in many environmental niches including soil, water, plants, foodstuff and animals, understanding the ecology of L. monocytogenes in outdoor environments has received less attention. Soil is an environmental niche of pivotal importance in the transmission of this bacterium to plants and animals. Soil composition, microbial communities and macrofauna are extrinsic edaphic factors that direct the fate of L. monocytogenes in the soil environment. Moreover, farming practices may further affect its incidence. The genome of L. monocytogenes presents an extensive repertoire of genes encoding transport proteins and regulators, a characteristic of the genome of ubiquitous bacteria. Postgenomic analyses bring new insights in the process of soil adaptation. In the present paper focussing on soil, we review these extrinsic and intrinsic factors that drive environmental adaptation of L. monocytogenes. PMID:24350062
Listeria monocytogenes, a down-to-earth pathogen.
Vivant, Anne-Laure; Garmyn, Dominique; Piveteau, Pascal
2013-01-01
Listeria monocytogenes is the causative agent of the food-borne life threatening disease listeriosis. This pathogenic bacterium received much attention in the endeavor of deciphering the cellular mechanisms that underlie the onset of infection and its ability to adapt to the food processing environment. Although information is available on the presence of L. monocytogenes in many environmental niches including soil, water, plants, foodstuff and animals, understanding the ecology of L. monocytogenes in outdoor environments has received less attention. Soil is an environmental niche of pivotal importance in the transmission of this bacterium to plants and animals. Soil composition, microbial communities and macrofauna are extrinsic edaphic factors that direct the fate of L. monocytogenes in the soil environment. Moreover, farming practices may further affect its incidence. The genome of L. monocytogenes presents an extensive repertoire of genes encoding transport proteins and regulators, a characteristic of the genome of ubiquitous bacteria. Postgenomic analyses bring new insights in the process of soil adaptation. In the present paper focussing on soil, we review these extrinsic and intrinsic factors that drive environmental adaptation of L. monocytogenes.
Gao, Yan; Ni, Xiaohui; Guo, Hua; Su, Zhe; Ba, Yi; Tong, Zhongsheng; Guo, Zhi; Yao, Xin; Chen, Xixi; Yin, Jian; Yan, Zhao; Guo, Lin; Liu, Ying; Bai, Fan; Xie, X Sunney; Zhang, Ning
2017-08-01
Copy number alteration (CNA) is a major contributor to genome instability, a hallmark of cancer. Here, we studied genomic alterations in single primary tumor cells and circulating tumor cells (CTCs) from the same patient. Single-nucleotide variants (SNVs) in single cells from both samples occurred sporadically, whereas CNAs among primary tumor cells emerged accumulatively rather than abruptly, converging toward the CNA in CTCs. Focal CNAs affecting the MYC gene and the PTEN gene were observed only in a minor portion of primary tumor cells but were present in all CTCs, suggesting a strong selection toward metastasis. Single-cell structural variant (SV) analyses revealed a two-step mechanism, a complex rearrangement followed by gene amplification, for the simultaneous formation of anomalous CNAs in multiple chromosome regions. Integrative CNA analyses of 97 CTCs from 23 patients confirmed the convergence of CNAs and revealed single, concurrent, and mutually exclusive CNAs that could be the driving events in cancer metastasis. © 2017 Gao et al.; Published by Cold Spring Harbor Laboratory Press.
Genome Science and Personalized Cancer Treatment (LBNL Summer Lecture Series)
Gray, Joe [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Division and Associate Lab. Director for Life and Environmental Sciences
2018-05-04
Summer Lecture Series 2009: Results from the Human Genome Project are enabling scientists to understand how individual cancers form and progress. This information, when combined with newly developed drugs, can optimize the treatment of individual cancers. Joe Gray, director of Berkeley Labs Life Sciences Division and Associate Laboratory Director for Life and Environmental Sciences, will focus on this approach, its promise, and its current roadblocks â particularly with regard to breast cancer.
Harvey, Benjamin Simeon; Ji, Soo-Yeon
2017-01-01
As microarray data available to scientists continues to increase in size and complexity, it has become overwhelmingly important to find multiple ways to bring forth oncological inference to the bioinformatics community through the analysis of large-scale cancer genomic (LSCG) DNA and mRNA microarray data that is useful to scientists. Though there have been many attempts to elucidate the issue of bringing forth biological interpretation by means of wavelet preprocessing and classification, there has not been a research effort that focuses on a cloud-scale distributed parallel (CSDP) separable 1-D wavelet decomposition technique for denoising through differential expression thresholding and classification of LSCG microarray data. This research presents a novel methodology that utilizes a CSDP separable 1-D method for wavelet-based transformation in order to initialize a threshold which will retain significantly expressed genes through the denoising process for robust classification of cancer patients. Additionally, the overall study was implemented and encompassed within CSDP environment. The utilization of cloud computing and wavelet-based thresholding for denoising was used for the classification of samples within the Global Cancer Map, Cancer Cell Line Encyclopedia, and The Cancer Genome Atlas. The results proved that separable 1-D parallel distributed wavelet denoising in the cloud and differential expression thresholding increased the computational performance and enabled the generation of higher quality LSCG microarray datasets, which led to more accurate classification results.
DroSpeGe: rapid access database for new Drosophila species genomes.
Gilbert, Donald G
2007-01-01
The Drosophila species comparative genome database DroSpeGe (http://insects.eugenes.org/DroSpeGe/) provides genome researchers with rapid, usable access to 12 new and old Drosophila genomes, since its inception in 2004. Scientists can use, with minimal computing expertise, the wealth of new genome information for developing new insights into insect evolution. New genome assemblies provided by several sequencing centers have been annotated with known model organism gene homologies and gene predictions to provided basic comparative data. TeraGrid supplies the shared cyberinfrastructure for the primary computations. This genome database includes homologies to Drosophila melanogaster and eight other eukaryote model genomes, and gene predictions from several groups. BLAST searches of the newest assemblies are integrated with genome maps. GBrowse maps provide detailed views of cross-species aligned genomes. BioMart provides for data mining of annotations and sequences. Common chromosome maps identify major synteny among species. Potential gain and loss of genes is suggested by Gene Ontology groupings for genes of the new species. Summaries of essential genome statistics include sizes, genes found and predicted, homology among genomes, phylogenetic trees of species and comparisons of several gene predictions for sensitivity and specificity in finding new and known genes.
Cristancho, Marco A.; Botero-Rozo, David Octavio; Giraldo, William; Tabima, Javier; Riaño-Pachón, Diego Mauricio; Escobar, Carolina; Rozo, Yomara; Rivera, Luis F.; Durán, Andrés; Restrepo, Silvia; Eilam, Tamar; Anikster, Yehoshua; Gaitán, Alvaro L.
2014-01-01
Coffee leaf rust caused by the fungus Hemileia vastatrix is the most damaging disease to coffee worldwide. The pathogen has recently appeared in multiple outbreaks in coffee producing countries resulting in significant yield losses and increases in costs related to its control. New races/isolates are constantly emerging as evidenced by the presence of the fungus in plants that were previously resistant. Genomic studies are opening new avenues for the study of the evolution of pathogens, the detailed description of plant-pathogen interactions and the development of molecular techniques for the identification of individual isolates. For this purpose we sequenced 8 different H. vastatrix isolates using NGS technologies and gathered partial genome assemblies due to the large repetitive content in the coffee rust hybrid genome; 74.4% of the assembled contigs harbor repetitive sequences. A hybrid assembly of 333 Mb was built based on the 8 isolates; this assembly was used for subsequent analyses. Analysis of the conserved gene space showed that the hybrid H. vastatrix genome, though highly fragmented, had a satisfactory level of completion with 91.94% of core protein-coding orthologous genes present. RNA-Seq from urediniospores was used to guide the de novo annotation of the H. vastatrix gene complement. In total, 14,445 genes organized in 3921 families were uncovered; a considerable proportion of the predicted proteins (73.8%) were homologous to other Pucciniales species genomes. Several gene families related to the fungal lifestyle were identified, particularly 483 predicted secreted proteins that represent candidate effector genes and will provide interesting hints to decipher virulence in the coffee rust fungus. The genome sequence of Hva will serve as a template to understand the molecular mechanisms used by this fungus to attack the coffee plant, to study the diversity of this species and for the development of molecular markers to distinguish races/isolates. PMID:25400655
NASA Astrophysics Data System (ADS)
Anantharaman, K.; Brown, C. T.; Hug, L. A.; Sharon, I.; Castelle, C. J.; Shelton, A.; Bonet, B.; Probst, A. J.; Thomas, B. C.; Singh, A.; Wilkins, M.; Williams, K. H.; Tringe, S. G.; Beller, H. R.; Brodie, E.; Hubbard, S. S.; Banfield, J. F.
2015-12-01
Microorganisms drive the transformations of carbon compounds in the terrestrial subsurface, a key reservoir of carbon on earth, and impact other linked biogeochemical cycles. Our current knowledge of the microbial ecology in this environment is primarily based on 16S rRNA gene sequences that paint a biased picture of microbial community composition and provide no reliable information on microbial metabolism. Consequently, little is known about the identity and metabolic roles of the uncultivated microbial majority in the subsurface. In turn, this lack of understanding of the microbial processes that impact the turnover of carbon in the subsurface has restricted the scope and ability of biogeochemical models to capture key aspects of the carbon cycle. In this study, we used a culture-independent, genome-resolved metagenomic approach to decipher the metabolic capabilities of microorganisms in an aquifer adjacent to the Colorado River, near Rifle, CO, USA. We sequenced groundwater and sediment samples collected across fifteen different geochemical regimes. Sequence assembly, binning and manual curation resulted in the recovery of 2,542 high-quality genomes, 27 of which are complete. These genomes represent 1,300 non-redundant organisms comprising both abundant and rare community members. Phylogenetic analyses involving ribosomal proteins and 16S rRNA genes revealed the presence of up to 34 new phyla that were hitherto unknown. Less than 11% of all genomes belonged to the 4 most commonly represented phyla that constitute 93% of all currently available genomes. Genome-specific analyses of metabolic potential revealed the co-occurrence of important functional traits such as carbon fixation, nitrogen fixation and use of electron donors and electron acceptors. Finally, we predict that multiple organisms are often required to complete redox pathways through a complex network of metabolic handoffs that extensively cross-link subsurface biogeochemical cycles.
Zhu, Xun; Xie, Shangbo; Armengaud, Jean; Xie, Wen; Guo, Zhaojiang; Kang, Shi; Wu, Qingjun; Wang, Shaoli; Xia, Jixing; He, Rongjun; Zhang, Youjun
2016-06-01
The diamondback moth, Plutella xylostella (L.), is the major cosmopolitan pest of brassica and other cruciferous crops. Its larval midgut is a dynamic tissue that interfaces with a wide variety of toxicological and physiological processes. The draft sequence of the P. xylostella genome was recently released, but its annotation remains challenging because of the low sequence coverage of this branch of life and the poor description of exon/intron splicing rules for these insects. Peptide sequencing by computational assignment of tandem mass spectra to genome sequence information provides an experimental independent approach for confirming or refuting protein predictions, a concept that has been termed proteogenomics. In this study, we carried out an in-depth proteogenomic analysis to complement genome annotation of P. xylostella larval midgut based on shotgun HPLC-ESI-MS/MS data by means of a multialgorithm pipeline. A total of 876,341 tandem mass spectra were searched against the predicted P. xylostella protein sequences and a whole-genome six-frame translation database. Based on a data set comprising 2694 novel genome search specific peptides, we discovered 439 novel protein-coding genes and corrected 128 existing gene models. To get the most accurate data to seed further insect genome annotation, more than half of the novel protein-coding genes, i.e. 235 over 439, were further validated after RT-PCR amplification and sequencing of the corresponding transcripts. Furthermore, we validated 53 novel alternative splicings. Finally, a total of 6764 proteins were identified, resulting in one of the most comprehensive proteogenomic study of a nonmodel animal. As the first tissue-specific proteogenomics analysis of P. xylostella, this study provides the fundamental basis for high-throughput proteomics and functional genomics approaches aimed at deciphering the molecular mechanisms of resistance and controlling this pest. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Gao, Jian; Li, Qiye; Wang, Zongji; Zhou, Yang; Martelli, Paolo; Li, Fang; Xiong, Zijun; Wang, Jian; Yang, Huanming; Zhang, Guojie
2017-07-01
The Chinese crocodile lizard, Shinisaurus crocodilurus, is the only living representative of the monotypic family Shinisauridae under the order Squamata. It is an obligate semi-aquatic, viviparous, diurnal species restricted to specific portions of mountainous locations in southwestern China and northeastern Vietnam. However, in the past several decades, this species has undergone a rapid decrease in population size due to illegal poaching and habitat disruption, making this unique reptile species endangered and listed in the Convention on International Trade in Endangered Species of Wild Fauna and Flora Appendix II since 1990. A proposal to uplist it to Appendix I was passed at the Convention on International Trade in Endangered Species of Wild Fauna and Flora Seventeenth meeting of the Conference of the Parties in 2016. To promote the conservation of this species, we sequenced the genome of a male Chinese crocodile lizard using a whole-genome shotgun strategy on the Illumina HiSeq 2000 platform. In total, we generated ∼291 Gb of raw sequencing data (×149 depth) from 13 libraries with insert sizes ranging from 250 bp to 40 kb. After filtering for polymerase chain reaction-duplicated and low-quality reads, ∼137 Gb of clean data (×70 depth) were obtained for genome assembly. We yielded a draft genome assembly with a total length of 2.24 Gb and an N50 scaffold size of 1.47 Mb. The assembled genome was predicted to contain 20 150 protein-coding genes and up to 1114 Mb (49.6%) of repetitive elements. The genomic resource of the Chinese crocodile lizard will contribute to deciphering the biology of this organism and provides an essential tool for conservation efforts. It also provides a valuable resource for future study of squamate evolution. © The Authors 2017. Published by Oxford University Press.
Phage Therapy in the Era of Synthetic Biology.
Barbu, E Magda; Cady, Kyle C; Hubby, Bolyn
2016-10-03
For more than a century, bacteriophage (or phage) research has enabled some of the most important discoveries in biological sciences and has equipped scientists with many of the molecular biology tools that have advanced our understanding of replication, maintenance, and expression of genetic material. Phages have also been recognized and exploited as natural antimicrobial agents and nanovectors for gene therapy, but their potential as therapeutics has not been fully exploited in Western medicine because of challenges such as narrow host range, bacterial resistance, and unique pharmacokinetics. However, increasing concern related to the emergence of bacteria resistant to multiple antibiotics has heightened interest in phage therapy and the development of strategies to overcome hurdles associated with bacteriophage therapeutics. Recent progress in sequencing technologies, DNA manipulation, and synthetic biology allowed scientists to refactor the entire bacterial genome of Mycoplasma mycoides, thereby creating the first synthetic cell. These new strategies for engineering genomes may have the potential to accelerate the construction of designer phage genomes with superior therapeutic potential. Here, we discuss the use of phage as therapeutics, as well as how synthetic biology can create bacteriophage with desirable attributes. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.
Sapientia: accelerating rare disease diagnosis and treatment.
Furness, Mike
2016-09-01
Congenica (Cambridge, UK) is a world leading developer of genome-based discovery and diagnostic technologies. The UK company is a spin-out from the Wellcome Trust Sanger Institute (Cambridge, UK) and was founded by scientists and clinicians at the leading edge of genomic analysis. Congenica's Sapientia™ technology platform allows whole-genome sequence analysis to be easily interpreted and presented within a clinically actionable diagnostic report. It is based on pioneering research from Wellcome Trust Sanger Institute, National Health Service clinicians and regional genetic testing laboratories and validated by Genomics England Ltd (London, UK). Sapientia used for medical diagnosis in hospitals including Great Ormond Street Hospital (London, UK), Manchester Centre for Genomic Medicine (Manchester, UK), Birmingham Women's Hospital (Birmingham, UK) and for new drug development by pharmaceutical companies. This profile follows the journey from proof of concept to clinical diagnosis.
The Genome Portal of the Department of Energy Joint Genome Institute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nordberg, Henrik; Cantor, Michael; Dushekyo, Serge
2014-03-14
The JGI Genome Portal (http://genome.jgi.doe.gov) provides unified access to all JGI genomic databases and analytical tools. A user can search, download and explore multiple data sets available for all DOE JGI sequencing projects including their status, assemblies and annotations of sequenced genomes. Genome Portal in the past 2 years was significantly updated, with a specific emphasis on efficient handling of the rapidly growing amount of diverse genomic data accumulated in JGI. A critical aspect of handling big data in genomics is the development of visualization and analysis tools that allow scientists to derive meaning from what are otherwise terrabases ofmore » inert sequence. An interactive visualization tool developed in the group allows us to explore contigs resulting from a single metagenome assembly. Implemented with modern web technologies that take advantage of the power of the computer's graphical processing unit (gpu), the tool allows the user to easily navigate over a 100,000 data points in multiple dimensions, among many biologically meaningful parameters of a dataset such as relative abundance, contig length, and G+C content.« less
Integrated genome browser: visual analytics platform for genomics.
Freese, Nowlan H; Norris, David C; Loraine, Ann E
2016-07-15
Genome browsers that support fast navigation through vast datasets and provide interactive visual analytics functions can help scientists achieve deeper insight into biological systems. Toward this end, we developed Integrated Genome Browser (IGB), a highly configurable, interactive and fast open source desktop genome browser. Here we describe multiple updates to IGB, including all-new capabilities to display and interact with data from high-throughput sequencing experiments. To demonstrate, we describe example visualizations and analyses of datasets from RNA-Seq, ChIP-Seq and bisulfite sequencing experiments. Understanding results from genome-scale experiments requires viewing the data in the context of reference genome annotations and other related datasets. To facilitate this, we enhanced IGB's ability to consume data from diverse sources, including Galaxy, Distributed Annotation and IGB-specific Quickload servers. To support future visualization needs as new genome-scale assays enter wide use, we transformed the IGB codebase into a modular, extensible platform for developers to create and deploy all-new visualizations of genomic data. IGB is open source and is freely available from http://bioviz.org/igb aloraine@uncc.edu. © The Author 2016. Published by Oxford University Press.
Intelligent software for laboratory automation.
Whelan, Ken E; King, Ross D
2004-09-01
The automation of laboratory techniques has greatly increased the number of experiments that can be carried out in the chemical and biological sciences. Until recently, this automation has focused primarily on improving hardware. Here we argue that future advances will concentrate on intelligent software to integrate physical experimentation and results analysis with hypothesis formulation and experiment planning. To illustrate our thesis, we describe the 'Robot Scientist' - the first physically implemented example of such a closed loop system. In the Robot Scientist, experimentation is performed by a laboratory robot, hypotheses concerning the results are generated by machine learning and experiments are allocated and selected by a combination of techniques derived from artificial intelligence research. The performance of the Robot Scientist has been evaluated by a rediscovery task based on yeast functional genomics. The Robot Scientist is proof that the integration of programmable laboratory hardware and intelligent software can be used to develop increasingly automated laboratories.
The rice genome revolution: from an ancient grain to Green Super Rice.
Wing, Rod A; Purugganan, Michael D; Zhang, Qifa
2018-06-05
Rice is a staple crop for half the world's population, which is expected to grow by 3 billion over the next 30 years. It is also a key model for studying the genomics of agroecosystems. This dual role places rice at the centre of an enormous challenge facing agriculture: how to leverage genomics to produce enough food to feed an expanding global population. Scientists worldwide are investigating the genetic variation among domesticated rice species and their wild relatives with the aim of identifying loci that can be exploited to breed a new generation of sustainable crops known as Green Super Rice.
2012-01-01
Background Natrialba magadii is an aerobic chemoorganotrophic member of the Euryarchaeota and is a dual extremophile requiring alkaline conditions and hypersalinity for optimal growth. The genome sequence of Nab. magadii type strain ATCC 43099 was deciphered to obtain a comprehensive insight into the genetic content of this haloarchaeon and to understand the basis of some of the cellular functions necessary for its survival. Results The genome of Nab. magadii consists of four replicons with a total sequence of 4,443,643 bp and encodes 4,212 putative proteins, some of which contain peptide repeats of various lengths. Comparative genome analyses facilitated the identification of genes encoding putative proteins involved in adaptation to hypersalinity, stress response, glycosylation, and polysaccharide biosynthesis. A proton-driven ATP synthase and a variety of putative cytochromes and other proteins supporting aerobic respiration and electron transfer were encoded by one or more of Nab. magadii replicons. The genome encodes a number of putative proteases/peptidases as well as protein secretion functions. Genes encoding putative transcriptional regulators, basal transcription factors, signal perception/transduction proteins, and chemotaxis/phototaxis proteins were abundant in the genome. Pathways for the biosynthesis of thiamine, riboflavin, heme, cobalamin, coenzyme F420 and other essential co-factors were deduced by in depth sequence analyses. However, approximately 36% of Nab. magadii protein coding genes could not be assigned a function based on Blast analysis and have been annotated as encoding hypothetical or conserved hypothetical proteins. Furthermore, despite extensive comparative genomic analyses, genes necessary for survival in alkaline conditions could not be identified in Nab. magadii. Conclusions Based on genomic analyses, Nab. magadii is predicted to be metabolically versatile and it could use different carbon and energy sources to sustain growth. Nab. magadii has the genetic potential to adapt to its milieu by intracellular accumulation of inorganic cations and/or neutral organic compounds. The identification of Nab. magadii genes involved in coenzyme biosynthesis is a necessary step toward further reconstruction of the metabolic pathways in halophilic archaea and other extremophiles. The knowledge gained from the genome sequence of this haloalkaliphilic archaeon is highly valuable in advancing the applications of extremophiles and their enzymes. PMID:22559199
Kleiber, Morgan L; Diehl, Eric J; Laufer, Benjamin I; Mantha, Katarzyna; Chokroborty-Hoque, Aniruddho; Alberry, Bonnie; Singh, Shiva M
2014-01-01
There is abundant evidence that prenatal alcohol exposure leads to a range of behavioral and cognitive impairments, categorized under the term fetal alcohol spectrum disorders (FASDs). These disorders are pervasive in Western cultures and represent the most common preventable source of neurodevelopmental disabilities. The genetic and epigenetic etiology of these phenotypes, including those factors that may maintain these phenotypes throughout the lifetime of an affected individual, has become a recent topic of investigation. This review integrates recent data that has progressed our understanding FASD as a continuum of molecular events, beginning with cellular stress response and ending with a long-term "footprint" of epigenetic dysregulation across the genome. It reports on data from multiple ethanol-treatment paradigms in mouse models that identify changes in gene expression that occur with respect to neurodevelopmental timing of exposure and ethanol dose. These studies have identified patterns of genomic alteration that are dependent on the biological processes occurring at the time of ethanol exposure. This review also adds to evidence that epigenetic processes such as DNA methylation, histone modifications, and non-coding RNA regulation may underlie long-term changes to gene expression patterns. These may be initiated by ethanol-induced alterations to DNA and histone methylation, particularly in imprinted regions of the genome, affecting transcription which is further fine-tuned by altered microRNA expression. These processes are likely complex, genome-wide, and interrelated. The proposed model suggests a potential for intervention, given that epigenetic changes are malleable and may be altered by postnatal environment. This review accentuates the value of mouse models in deciphering the molecular etiology of FASD, including those processes that may provide a target for the ammelioration of this common yet entirely preventable disorder.
Kleiber, Morgan L.; Diehl, Eric J.; Laufer, Benjamin I.; Mantha, Katarzyna; Chokroborty-Hoque, Aniruddho; Alberry, Bonnie; Singh, Shiva M.
2014-01-01
There is abundant evidence that prenatal alcohol exposure leads to a range of behavioral and cognitive impairments, categorized under the term fetal alcohol spectrum disorders (FASDs). These disorders are pervasive in Western cultures and represent the most common preventable source of neurodevelopmental disabilities. The genetic and epigenetic etiology of these phenotypes, including those factors that may maintain these phenotypes throughout the lifetime of an affected individual, has become a recent topic of investigation. This review integrates recent data that has progressed our understanding FASD as a continuum of molecular events, beginning with cellular stress response and ending with a long-term “footprint” of epigenetic dysregulation across the genome. It reports on data from multiple ethanol-treatment paradigms in mouse models that identify changes in gene expression that occur with respect to neurodevelopmental timing of exposure and ethanol dose. These studies have identified patterns of genomic alteration that are dependent on the biological processes occurring at the time of ethanol exposure. This review also adds to evidence that epigenetic processes such as DNA methylation, histone modifications, and non-coding RNA regulation may underlie long-term changes to gene expression patterns. These may be initiated by ethanol-induced alterations to DNA and histone methylation, particularly in imprinted regions of the genome, affecting transcription which is further fine-tuned by altered microRNA expression. These processes are likely complex, genome-wide, and interrelated. The proposed model suggests a potential for intervention, given that epigenetic changes are malleable and may be altered by postnatal environment. This review accentuates the value of mouse models in deciphering the molecular etiology of FASD, including those processes that may provide a target for the ammelioration of this common yet entirely preventable disorder. PMID:24917881
Listeriomics: an Interactive Web Platform for Systems Biology of Listeria
Koutero, Mikael; Tchitchek, Nicolas; Cerutti, Franck; Lechat, Pierre; Maillet, Nicolas; Hoede, Claire; Chiapello, Hélène; Gaspin, Christine
2017-01-01
ABSTRACT As for many model organisms, the amount of Listeria omics data produced has recently increased exponentially. There are now >80 published complete Listeria genomes, around 350 different transcriptomic data sets, and 25 proteomic data sets available. The analysis of these data sets through a systems biology approach and the generation of tools for biologists to browse these various data are a challenge for bioinformaticians. We have developed a web-based platform, named Listeriomics, that integrates different tools for omics data analyses, i.e., (i) an interactive genome viewer to display gene expression arrays, tiling arrays, and sequencing data sets along with proteomics and genomics data sets; (ii) an expression and protein atlas that connects every gene, small RNA, antisense RNA, or protein with the most relevant omics data; (iii) a specific tool for exploring protein conservation through the Listeria phylogenomic tree; and (iv) a coexpression network tool for the discovery of potential new regulations. Our platform integrates all the complete Listeria species genomes, transcriptomes, and proteomes published to date. This website allows navigation among all these data sets with enriched metadata in a user-friendly format and can be used as a central database for systems biology analysis. IMPORTANCE In the last decades, Listeria has become a key model organism for the study of host-pathogen interactions, noncoding RNA regulation, and bacterial adaptation to stress. To study these mechanisms, several genomics, transcriptomics, and proteomics data sets have been produced. We have developed Listeriomics, an interactive web platform to browse and correlate these heterogeneous sources of information. Our website will allow listeriologists and microbiologists to decipher key regulation mechanism by using a systems biology approach. PMID:28317029
Orchestrating high-throughput genomic analysis with Bioconductor
Huber, Wolfgang; Carey, Vincent J.; Gentleman, Robert; Anders, Simon; Carlson, Marc; Carvalho, Benilton S.; Bravo, Hector Corrada; Davis, Sean; Gatto, Laurent; Girke, Thomas; Gottardo, Raphael; Hahne, Florian; Hansen, Kasper D.; Irizarry, Rafael A.; Lawrence, Michael; Love, Michael I.; MacDonald, James; Obenchain, Valerie; Oleś, Andrzej K.; Pagès, Hervé; Reyes, Alejandro; Shannon, Paul; Smyth, Gordon K.; Tenenbaum, Dan; Waldron, Levi; Morgan, Martin
2015-01-01
Bioconductor is an open-source, open-development software project for the analysis and comprehension of high-throughput data in genomics and molecular biology. The project aims to enable interdisciplinary research, collaboration and rapid development of scientific software. Based on the statistical programming language R, Bioconductor comprises 934 interoperable packages contributed by a large, diverse community of scientists. Packages cover a range of bioinformatic and statistical applications. They undergo formal initial review and continuous automated testing. We present an overview for prospective users and contributors. PMID:25633503
Biogeoscience from a Metallomic and Proteomic Perspective
NASA Astrophysics Data System (ADS)
Anbar, A. D.; Shock, E.
2004-12-01
In the wake of the genomics revolution, life scientists are expanding their focus from the genome to the "proteome" - the assemblage of all proteins in a cell - and the "metallome" - the distribution of inorganic species in a cell. The proteome and metallome are tightly connected because proteins and protein products are intimately involved in the transport and homeostasis of inorganic elements, and because many enzymes depend on inorganic elements for catalytic activity. Together, they are at the heart of metabolic function. Unlike the relatively static genome, the proteome and metallome are extremely dynamic, changing rapidly in response to environmental cues. They are substantially more complex than the genome; for example, in humans, some 30,000 genes code for approximately 500,000 proteins. Metaphorically, the proteome and metallome constitute the complex, dynamic "language" by which the genome and the environment communicate. Therefore biogeochemists, like life scientists, are moving beyond a strictly genomic perspective. Research guided by proteomic and metallomic perspectives and methodologies should provide new insights into the connections between life and the inorganic Earth in modern environments, and the evolution of these connections through time. For example, biogeochemical research in modern environments, such as Yellowstone hot springs, is hindered by the gap between genomic determinations of metabolic potential in ecosystems and geochemical characterizations of the energetic boundary conditions faced by these ecosystems; genomics tells us "who is there" and geochemistry tells us "what they might be doing", but neither genomics nor geochemistry easily provide quantitative information about which metabolisms are actually active or a framework for understanding why ecosystems do not fully exploit the energy available in their surroundings. Such questions are fundamentally kinetic rather than thermodynamic and therefore demand that we characterize and understand the proteins and inorganic elements used by organisms to catalyze reactions and capture energy from their surroundings. Similar challenges are faced when attempting to map the evolutionary relationships inferred from phylogenetic analyses of genomes to ecological histories determined by geochemists and paleobiologists - for example, ongoing efforts to understand the evolutionary history of eukaryotes and metazoa - because the driving forces for the evolution and ecological radiation of organisms lie at the intersection of metabolism and environment, and hence in the gap between genomes and geochemistry. Future progress in understanding the biogeochemistry of modern and ancient environments will be spurred by integrating proteomic and metallomic methods and perspectives.
Privacy, anonymity and subjectivity in genomic research.
McGonigle, Ian; Shomron, Noam
2016-01-14
The use of non-anonymized human genome data is becoming increasingly popular in research. Here we review the proceedings of a special meeting on this topic that took place at European Molecular Biology Organization (EMBO) in December 2014. The main points discussed centered on how to achieve 'anonymity,' 'trust,' and 'protection of data' in relation to new genomic technologies and research. Following our report of this meeting, we also raise three further issues for future consideration: the harmonization of international law in relation to genetic data protection; the complex issues around the 'dividual' nature of genetic data; and the growing commercial value of personal data. In conclusion, we stress the importance of scientists working in the area of genomic research engaging in interdisciplinary collaborations with humanities and social science scholars and addressing these complicated issues.
Schoof, Heiko; Zaccaria, Paolo; Gundlach, Heidrun; Lemcke, Kai; Rudd, Stephen; Kolesov, Grigory; Arnold, Roland; Mewes, H. W.; Mayer, Klaus F. X.
2002-01-01
Arabidopsis thaliana is the first plant for which the complete genome has been sequenced and published. Annotation of complex eukaryotic genomes requires more than the assignment of genetic elements to the sequence. Besides completing the list of genes, we need to discover their cellular roles, their regulation and their interactions in order to understand the workings of the whole plant. The MIPS Arabidopsis thaliana Database (MAtDB; http://mips.gsf.de/proj/thal/db) started out as a repository for genome sequence data in the European Scientists Sequencing Arabidopsis (ESSA) project and the Arabidopsis Genome Initiative. Our aim is to transform MAtDB into an integrated biological knowledge resource by integrating diverse data, tools, query and visualization capabilities and by creating a comprehensive resource for Arabidopsis as a reference model for other species, including crop plants. PMID:11752263
Advancing Genomics through the Global Invertebrate Genomics Alliance (GIGA)
Voolstra, Christian R.; Wörheide, Gert; Lopez, Jose V.
2017-01-01
The Global Invertebrate Genomics Alliance (GIGA), a collaborative network of diverse scientists, marked its second anniversary with a workshop in Munich, Germany, where international attendees focused on discussing current progress, milestones and bioinformatics resources. The community determined the recruitment and training talented researchers as one of the most pressing future needs and identified opportunities for network funding. GIGA also promotes future research efforts to prioritize taxonomic diversity and create new synergies. Here, we announce the generation of a central and simple data repository portal with a wide coverage of available sequence data, via the compagen platform, in parallel with more focused and specialized organism databases to globally advance invertebrate genomics. Therefore this article serves the objectives of GIGA by disseminating current progress and future prospects in the science of invertebrate genomics with the aim of promotion and facilitation of interdisciplinary and international research. PMID:28603454
Advancing Genomics through the Global Invertebrate Genomics Alliance (GIGA).
Voolstra, Christian R; Wörheide, Gert; Lopez, Jose V
2017-03-01
The Global Invertebrate Genomics Alliance (GIGA), a collaborative network of diverse scientists, marked its second anniversary with a workshop in Munich, Germany, where international attendees focused on discussing current progress, milestones and bioinformatics resources. The community determined the recruitment and training talented researchers as one of the most pressing future needs and identified opportunities for network funding. GIGA also promotes future research efforts to prioritize taxonomic diversity and create new synergies. Here, we announce the generation of a central and simple data repository portal with a wide coverage of available sequence data, via the compagen platform, in parallel with more focused and specialized organism databases to globally advance invertebrate genomics. Therefore this article serves the objectives of GIGA by disseminating current progress and future prospects in the science of invertebrate genomics with the aim of promotion and facilitation of interdisciplinary and international research.
Sharing Data to Build a Medical Information Commons: From Bermuda to the Global Alliance.
Cook-Deegan, Robert; Ankeny, Rachel A; Maxson Jones, Kathryn
2017-08-31
The Human Genome Project modeled its open science ethos on nematode biology, most famously through daily release of DNA sequence data based on the 1996 Bermuda Principles. That open science philosophy persists, but daily, unfettered release of data has had to adapt to constraints occasioned by the use of data from individual people, broader use of data not only by scientists but also by clinicians and individuals, the global reach of genomic applications and diverse national privacy and research ethics laws, and the rising prominence of a diverse commercial genomics sector. The Global Alliance for Genomics and Health was established to enable the data sharing that is essential for making meaning of genomic variation. Data-sharing policies and practices will continue to evolve as researchers, health professionals, and individuals strive to construct a global medical and scientific information commons.
Protein Structures Revealed at Record Pace
Hura, Greg
2017-12-11
The structure of a protein in days -- not months or years -- ushers in a new era in genomics research. Berkeley Lab scientists have developed a high-throughput protein pipeline that could expedite the development of biofuels and elucidate how proteins carry out lifes vital functions.
Protein Structures Revealed at Record Pace
Greg Hura
2017-12-09
The structure of a protein in days -- not months or years -- ushers in a new era in genomics research. Berkeley Lab scientists have developed a high-throughput protein pipeline that could expedite the development of biofuels and elucidate how proteins carry out lifes vital functions.
Single cell transcriptomics to explore the immune system in health and disease†
Regev, Aviv; Teichmann, Sarah A.
2017-01-01
The immune system varies in cell types, states, and locations. The complex networks, interactions and responses of immune cells produce diverse cellular ecosystems composed of multiple cell types, accompanied by genetic diversity in antigen receptors. Within this ecosystem, innate and adaptive immune cells maintain and protect tissue function, integrity and homeostasis upon changes in functional demands and diverse insults. Characterizing this inherent complexity requires studies at single-cell resolution. Recent advances such as, massively-parallel single cell RNA-Seq and sophisticated computational methods are catalysing a revolution in our understanding of immunology. Here, we provide an overview of the state of single cell genomics methods and an outlook on the use of single-cell techniques to decipher the adaptive and innate components of immunity. PMID:28983043
Lamichhane, Santosh; Sen, Partho; Dickens, Alex M; Orešič, Matej; Bertram, Hanne Christine
2018-04-30
It is well established that gut microbes and their metabolic products regulate host metabolism. The interactions between the host and its gut microbiota are highly dynamic and complex. In this review we present and discuss the metabolomic strategies to study the gut microbial ecosystem. We highlight the metabolic profiling approaches to study faecal samples aimed at deciphering the metabolic product derived from gut microbiota. We also discuss how metabolomics data can be integrated with metagenomics data derived from gut microbiota and how such approaches may lead to better understanding of the microbial functions. Finally, the emerging approaches of genome-scale metabolic modelling to study microbial co-metabolism and host-microbe interactions are highlighted. Copyright © 2018 Elsevier Inc. All rights reserved.
Singh, Garima; Roy, Jyoti; Rout, Pratiti; Mallick, Bibekanand
2018-01-01
PIWI-interacting (piRNAs), ~23-36 nucleotide-long small non-coding RNAs (sncRNAs), earlier believed to be germline-specific, have now been identified in somatic cells, including cancer cells. These sncRNAs impact critical biological processes by fine-tuning gene expression at post-transcriptional and epigenetic levels. The expression of piRNAs in ovarian cancer, the most lethal gynecologic cancer is largely uncharted. In this study, we investigated the expression of PIWILs by qRT-PCR and western blotting and then identified piRNA transcriptomes in tissues of normal ovary and two most prevalent epithelial ovarian cancer subtypes, serous and endometrioid by small RNA sequencing. We detected 219, 256 and 234 piRNAs in normal ovary, endometrioid and serous ovarian cancer samples respectively. We observed piRNAs are encoded from various genomic regions, among which introns harbor the majority of them. Surprisingly, piRNAs originated from different genomic contexts showed the varied level of conservations across vertebrates. The functional analysis of predicted targets of differentially expressed piRNAs revealed these could modulate key processes and pathways involved in ovarian oncogenesis. Our study provides the first comprehensive piRNA landscape in these samples and a useful resource for further functional studies to decipher new mechanistic views of piRNA-mediated gene regulatory networks affecting ovarian oncogenesis. The RNA-seq data is submitted to GEO database (GSE83794).
Plant Microbe Interactions in Post Genomic Era: Perspectives and Applications
Imam, Jahangir; Singh, Puneet K.; Shukla, Pratyoosh
2016-01-01
Deciphering plant–microbe interactions is a promising aspect to understand the benefits and the pathogenic effect of microbes and crop improvement. The advancement in sequencing technologies and various ‘omics’ tool has impressively accelerated the research in biological sciences in this area. The recent and ongoing developments provide a unique approach to describing these intricate interactions and test hypotheses. In the present review, we discuss the role of plant-pathogen interaction in crop improvement. The plant innate immunity has always been an important aspect of research and leads to some interesting information like the adaptation of unique immune mechanisms of plants against pathogens. The development of new techniques in the post - genomic era has greatly enhanced our understanding of the regulation of plant defense mechanisms against pathogens. The present review also provides an overview of beneficial plant–microbe interactions with special reference to Agrobacterium tumefaciens-plant interactions where plant derived signal molecules and plant immune responses are important in pathogenicity and transformation efficiency. The construction of various Genome-scale metabolic models of microorganisms and plants presented a better understanding of all metabolic interactions activated during the interactions. This review also lists the emerging repertoire of phytopathogens and its impact on plant disease resistance. Outline of different aspects of plant-pathogen interactions is presented in this review to bridge the gap between plant microbial ecology and their immune responses. PMID:27725809
Wright, Caroline F; McRae, Jeremy F; Clayton, Stephen; Gallone, Giuseppe; Aitken, Stuart; FitzGerald, Tomas W; Jones, Philip; Prigmore, Elena; Rajan, Diana; Lord, Jenny; Sifrim, Alejandro; Kelsell, Rosemary; Parker, Michael J; Barrett, Jeffrey C; Hurles, Matthew E; FitzPatrick, David R; Firth, Helen V
2018-01-11
PurposeGiven the rapid pace of discovery in rare disease genomics, it is likely that improvements in diagnostic yield can be made by systematically reanalyzing previously generated genomic sequence data in light of new knowledge.MethodsWe tested this hypothesis in the United Kingdom-wide Deciphering Developmental Disorders study, where in 2014 we reported a diagnostic yield of 27% through whole-exome sequencing of 1,133 children with severe developmental disorders and their parents. We reanalyzed existing data using improved variant calling methodologies, novel variant detection algorithms, updated variant annotation, evidence-based filtering strategies, and newly discovered disease-associated genes.ResultsWe are now able to diagnose an additional 182 individuals, taking our overall diagnostic yield to 454/1,133 (40%), and another 43 (4%) have a finding of uncertain clinical significance. The majority of these new diagnoses are due to novel developmental disorder-associated genes discovered since our original publication.ConclusionThis study highlights the importance of coupling large-scale research with clinical practice, and of discussing the possibility of iterative reanalysis and recontact with patients and health professionals at an early stage. We estimate that implementing parent-offspring whole-exome sequencing as a first-line diagnostic test for developmental disorders would diagnose >50% of patients.GENETICS in MEDICINE advance online publication, 11 January 2018; doi:10.1038/gim.2017.246.
Champoiseau, P; Daugrois, J-H; Pieretti, I; Cociancich, S; Royer, M; Rott, P
2006-10-01
ABSTRACT Pathogenicity of 75 strains of Xanthomonas albilineans from Guadeloupe was assessed by inoculation of sugarcane cv. B69566, which is susceptible to leaf scald, and 19 of the strains were selected as representative of the variation in pathogenicity observed based on stalk colonization. In vitro production of albicidin varied among these 19 strains, but the restriction fragment length polymorphism pattern of their albicidin biosynthesis genes was identical. Similarly, no genomic variation was found among strains by pulsed-field gel electrophoresis. Some variation among strains was found by amplified fragment length polymorphism, but no relationship between this genetic variation and variation in pathogenicity was found. Only 3 (pilB, rpfA, and xpsE) of 40 genes involved in pathogenicity of bacterial species closely related to X. albilineans could be amplified by polymerase chain reaction from total genomic DNA of all nine strains tested of X. albilineans differing in pathogenicity in Guadeloupe. Nucleotide sequences of these genes were 100% identical among strains, and a phylogenetic study with these genes and housekeeping genes efp and ihfA suggested that X. albilineans is on an evolutionary road between the X. campestris group and Xylella fastidiosa, another vascular plant pathogen. Sequencing of the complete genome of Xanthomonas albilineans could be the next step in deciphering molecular mechanisms involved in pathogenicity of X. albilineans.
Titeux, Matthias; Izmiryan, Araksya; Hovnanian, Alain
2017-05-01
Stunning technological advances in genomics have led to spectacular breakthroughs in the understanding of the underlying defects, biological pathways and therapeutic targets of skin diseases leading to new therapeutic interventions. Next-generation sequencing has revolutionized the identification of disease-causing genes and has a profound impact in deciphering gene and protein signatures in rare and frequent skin diseases. Gene addition strategies have shown efficacy in junctional EB and in recessive dystrophic EB (RDEB). TALENs and Cripsr/Cas9 have emerged as highly efficient new tools to edit genomic sequences to creat new models and to correct or disrupt mutated genes to treat human diseases. Therapeutic approaches have not been limited to DNA modification and strategies at the mRNA, protein and cellular levels have also emerged, some of which have already proven clinical efficacy in RDEB. Improved understanding of the pathogenesis of skin disorders has led to the development of specific drugs or repurposing of existing medicines as in basal cell nevus syndrome, alopecia areata, melanoma and EB simplex. These discoveries pave the way for improved targeted personalized medicine for rare and frequent diseases. It is likely that a growing number of orphan skin diseases will benefit from combinatory new therapies in a near future. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Accurate identification of RNA editing sites from primitive sequence with deep neural networks.
Ouyang, Zhangyi; Liu, Feng; Zhao, Chenghui; Ren, Chao; An, Gaole; Mei, Chuan; Bo, Xiaochen; Shu, Wenjie
2018-04-16
RNA editing is a post-transcriptional RNA sequence alteration. Current methods have identified editing sites and facilitated research but require sufficient genomic annotations and prior-knowledge-based filtering steps, resulting in a cumbersome, time-consuming identification process. Moreover, these methods have limited generalizability and applicability in species with insufficient genomic annotations or in conditions of limited prior knowledge. We developed DeepRed, a deep learning-based method that identifies RNA editing from primitive RNA sequences without prior-knowledge-based filtering steps or genomic annotations. DeepRed achieved 98.1% and 97.9% area under the curve (AUC) in training and test sets, respectively. We further validated DeepRed using experimentally verified U87 cell RNA-seq data, achieving 97.9% positive predictive value (PPV). We demonstrated that DeepRed offers better prediction accuracy and computational efficiency than current methods with large-scale, mass RNA-seq data. We used DeepRed to assess the impact of multiple factors on editing identification with RNA-seq data from the Association of Biomolecular Resource Facilities and Sequencing Quality Control projects. We explored developmental RNA editing pattern changes during human early embryogenesis and evolutionary patterns in Drosophila species and the primate lineage using DeepRed. Our work illustrates DeepRed's state-of-the-art performance; it may decipher the hidden principles behind RNA editing, making editing detection convenient and effective.
Illuminating odors: when optogenetics brings to light unexpected olfactory abilities
Grimaud, Julien
2016-01-01
For hundreds of years, the sense of smell has generated great interest in the world literature, oenologists, and perfume makers but less of scientists. Only recently this sensory modality has gained new attraction in neuroscience when original tools issued from physiology, anatomy, or molecular biology were available to decipher how the brain makes sense of olfactory cues. However, this move was promptly dampened by the difficulties of developing quantitative approaches to study the relationship between the physical characteristics of stimuli and the sensations they create. An upswing of olfactory investigations occurred when genetic tools could be used in combination with devices borrowed from the physics of light (a hybrid technique called optogenetics) to scrutinize the olfactory system and to provide greater physiological precision for studying olfactory-driven behaviors. This review aims to present the most recent studies that have used light to activate components of the olfactory pathway, such as olfactory receptor neurons, or neurons located further downstream, while leaving intact others brain circuits. With the use of optogenetics to unravel the mystery of olfaction, scientists have begun to disentangle how the brain makes sense of smells. In this review, we shall discuss how the brain recognizes odors, how it memorizes them, and how animals make decisions based on odorants they are capable of sensing. Although this review deals with olfaction, the role of light will be central throughout. PMID:27194792
DOE Office of Scientific and Technical Information (OSTI.GOV)
Methe, Barbara
As we enter the 21st century, the sustainability of the biosphere is a global challenge that can best be met with a global response. This includes how we train and promote our next generation of research scientists in the emerging arenas of genome-enabled biology and a bio-based economy. It is this fundamental issue that formed the motivation for designing and conducting a shortcourse entitled “FACILIS 2014: Microbially-driven facilitation systems in environmental biotechnology” (hereafter “FACILIS”) presented here by the European Commission (EC)-United States (US) Task Force on Biotechnology Research. This WG was established in 1994 under the umbrella of the US-ECmore » Task Force on Biotechnology Research, a transatlantic collaborative group overseen by the US Office of Science and Technology Policy (OSTP) and the EC. The Environmental Biotechnology Working Group maintains several goals, including establishing research links between scientists in EU countries and the US and fostering the careers of junior scientists from both sides of the Atlantic to the global nature of scientific cooperation. To that end, a shortcourse was held at the University of Milan in Italy on July 12-25 2014 organized around cross-cutting themes of genomic science and designed to attract a stellar group of interdisciplinary early carrier researchers. A total of 22 students, 10 from the US and 12 from the EU participated. The course provided them with hands-on experience with the latest scientific methods in genomics and bioinformatics; using a format that combines lectures, laboratory research and field work with the final goal to enable researchers to finally turn data into knowledge.« less
Mohanta, Tapan Kumar; Kumar, Pradeep; Bae, Hanhong
2017-02-03
Ca 2+ ion is a versatile second messenger that operate in a wide ranges of cellular processes that impact nearly every aspect of life. Ca 2+ regulates gene expression and biotic and abiotic stress responses in organisms ranging from unicellular algae to multi-cellular higher plants through the cascades of calcium signaling processes. In this study, we deciphered the genomics and evolutionary aspects of calcium signaling event of calmodulin (CaM) and calmodulin like- (CML) proteins. We studied the CaM and CML gene family of 41 different species across the plant lineages. Genomic analysis showed that plant encodes more calmodulin like-protein than calmodulins. Further analyses showed, the majority of CMLs were intronless, while CaMs were intron rich. Multiple sequence alignment showed, the EF-hand domain of CaM contains four conserved D-x-D motifs, one in each EF-hand while CMLs contain only one D-x-D-x-D motif in the fourth EF-hand. Phylogenetic analysis revealed that, the CMLs were evolved earlier than CaM and later diversified. Gene expression analysis demonstrated that different CaM and CMLs genes were express differentially in different tissues in a spatio-temporal manner. In this study we provided in detailed genome-wide identifications and characterization of CaM and CML protein family, phylogenetic relationships, and domain structure. Expression study of CaM and CML genes were conducted in Glycine max and Phaseolus vulgaris. Our study provides a strong foundation for future functional research in CaM and CML gene family in plant kingdom.
The genome diversity and karyotype evolution of mammals
2011-01-01
The past decade has witnessed an explosion of genome sequencing and mapping in evolutionary diverse species. While full genome sequencing of mammals is rapidly progressing, the ability to assemble and align orthologous whole chromosome regions from more than a few species is still not possible. The intense focus on building of comparative maps for companion (dog and cat), laboratory (mice and rat) and agricultural (cattle, pig, and horse) animals has traditionally been used as a means to understand the underlying basis of disease-related or economically important phenotypes. However, these maps also provide an unprecedented opportunity to use multispecies analysis as a tool for inferring karyotype evolution. Comparative chromosome painting and related techniques are now considered to be the most powerful approaches in comparative genome studies. Homologies can be identified with high accuracy using molecularly defined DNA probes for fluorescence in situ hybridization (FISH) on chromosomes of different species. Chromosome painting data are now available for members of nearly all mammalian orders. In most orders, there are species with rates of chromosome evolution that can be considered as 'default' rates. The number of rearrangements that have become fixed in evolutionary history seems comparatively low, bearing in mind the 180 million years of the mammalian radiation. Comparative chromosome maps record the history of karyotype changes that have occurred during evolution. The aim of this review is to provide an overview of these recent advances in our endeavor to decipher the karyotype evolution of mammals by integrating the published results together with some of our latest unpublished results. PMID:21992653
Global Gene Expression Patterns and Somatic Mutations in Sporadic Intracranial Aneurysms.
Li, Zhili; Tan, Haibin; Shi, Yi; Huang, Guangfu; Wang, Zhenyu; Liu, Ling; Yin, Cheng; Wang, Qi
2017-04-01
High-throughput sequencing technologies can expand our understanding of the pathologic basis of intracranial aneurysms (IAs). Our study was aimed to decipher the gene expression signature and genetic factors associated with IAs. We determined the gene expression levels of 3 cases of IAs by RNA sequencing. Bioinformatics analysis was conducted to identify the differentially expressed genes (DEGs) and uncover their biological function. In addition, whole genome sequencing was performed on an additional 6 cases of IAs to detect the potential somatic alterations in DEGs. Compared with the normal arterial tissue, 1709 genes were differentially expressed in IAs arterial tissue. The most significantly up-regulated gene and down-regulated gene, H19 and HIST1H3J, may be essential for tumorigenesis of IAs. Hub protein of IKBKG in protein-protein interaction network was probably involved in the inflammation process in aneurysms. Another 2 hub proteins, ACTB and MKI67IP, as well as up-regulated genes, might be abnormally activated in aneurysms and involved in the pathogenesis of IAs. Further whole genome sequencing and filtering yielded 4 candidate somatic single nucleotide variants including MUC3B, and BLM may be involved in the pathogenesis of IAs. Even though, our results do not support the hypothesis of somatic mutations occurred in the DEGs. Two-dimensional genomic data from transcriptome and whole genome sequencing indicated that no somatic mutations occurred in DEGs. In addition, 3 DEGs (IKBKG, ACTB, and MKI67IP) and 2 mutant genes (MUC3B and BLM) were essential in IAs. Copyright © 2017 Elsevier Inc. All rights reserved.
Khan, Muhammad Hafeez Ullah; Khan, Shahid U; Muhammad, Ali; Hu, Limin; Yang, Yang; Fan, Chuchuan
2018-06-01
Clustered regularly interspaced palindromic repeats associated protein Cas9 (CRISPR-Cas9), originally an adaptive immunity system of prokaryotes, is revolutionizing genome editing technologies with minimal off-targets in the present era. The CRISPR/Cas9 is now highly emergent, advanced, and highly specific tool for genome engineering. The technology is widely used to animal and plant genomes to achieve desirable results. The present review will encompass how CRISPR-Cas9 is revealing its beneficial role in characterizing plant genetic functions, genomic rearrangement, how it advances the site-specific mutagenesis, and epigenetics modification in plants to improve the yield of field crops with minimal side-effects. The possible pitfalls of using and designing CRISPR-Cas9 for plant genome editing are also discussed for its more appropriate applications in plant biology. Therefore, CRISPR/Cas9 system has multiple benefits that mostly scientists select for genome editing in several biological systems. © 2017 Wiley Periodicals, Inc.
Hanssen, Lucien; Gremmen, Bart
2013-08-01
The Centre for BioSystems Genomics (CBSG) is a Dutch public-private partnership in plant genomics active in potato and tomato research and exploitation. Its Societal Interface Group (SIG) has been developed to inform its communication strategy and governance practice. This new instrument identifies and discusses early signals from society by bringing together people from different societal backgrounds with members of CBSG management. This interactive learning process facilitates the inclusion of public concerns and needs in scientific developments in the field of plant genomics, and simultaneously enables genomics scientists to search for more societal aims, meanings, and starting points for their research agenda. Analysis of the SIG sessions revealed that the input of public expertise is not threatening or irrational, but provides the opportunity to harness the creative potential of future users highly relevant for the development of societal practices in which plant genomics plays a role.
QUAST: quality assessment tool for genome assemblies.
Gurevich, Alexey; Saveliev, Vladislav; Vyahhi, Nikolay; Tesler, Glenn
2013-04-15
Limitations of genome sequencing techniques have led to dozens of assembly algorithms, none of which is perfect. A number of methods for comparing assemblers have been developed, but none is yet a recognized benchmark. Further, most existing methods for comparing assemblies are only applicable to new assemblies of finished genomes; the problem of evaluating assemblies of previously unsequenced species has not been adequately considered. Here, we present QUAST-a quality assessment tool for evaluating and comparing genome assemblies. This tool improves on leading assembly comparison software with new ideas and quality metrics. QUAST can evaluate assemblies both with a reference genome, as well as without a reference. QUAST produces many reports, summary tables and plots to help scientists in their research and in their publications. In this study, we used QUAST to compare several genome assemblers on three datasets. QUAST tables and plots for all of them are available in the Supplementary Material, and interactive versions of these reports are on the QUAST website. http://bioinf.spbau.ru/quast . Supplementary data are available at Bioinformatics online.
Wei, Lei; Wang, Jianmin; Lampert, Erika; Schlanger, Simon; DePriest, Adam D.; Hu, Qiang; Gomez, Eduardo Cortes; Murakam, Mitsuko; Glenn, Sean T.; Conroy, Jeffrey; Morrison, Carl; Azabdaftari, Gissou; Mohler, James L.; Liu, Song; Heemers, Hannelore V.
2018-01-01
Background Next-generation sequencing is revealing genomic heterogeneity in localized prostate cancer (CaP). Incomplete sampling of CaP multiclonality has limited the implications for molecular subtyping, stratification, and systemic treatment. Objective To determine the impact of genomic and transcriptomic diversity within and among intraprostatic CaP foci on CaP molecular taxonomy, predictors of progression, and actionable therapeutic targets. Design, setting, and participants Four consecutive patients with clinically localized National Comprehensive Cancer Network intermediate- or high-risk CaP who did not receive neoadjuvant therapy underwent radical prostatectomy at Roswell Park Cancer Institute in June–July 2014. Presurgical information on CaP content and a customized tissue procurement procedure were used to isolate nonmicroscopic and noncontiguous CaP foci in radical prostatectomy specimens. Three cores were obtained from the index lesion and one core from smaller lesions. RNA and DNA were extracted simultaneously from 26 cores with ≥90% CaP content and analyzed using whole-exome sequencing, single-nucleotide polymorphism arrays, and RNA sequencing. Outcome measurements and statistical analysis Somatic mutations, copy number alternations, gene expression, gene fusions, and phylogeny were defined. The impact of genomic alterations on CaP molecular classification, gene sets measured in Oncotype DX, Prolaris, and Decipher assays, and androgen receptor activity among CaP cores was determined. Results and limitations There was considerable variability in genomic alterations among CaP cores, and between RNA- and DNA-based platforms. Heterogeneity was found in molecular grouping of individual CaP foci and the activity of gene sets underlying the assays for risk stratification and androgen receptor activity, and was validated in independent genomic data sets. Determination of the implications for clinical decision-making requires follow-up studies. Conclusions Genomic make-up varies widely among CaP foci, so care should be taken when making treatment decisions based on a single biopsy or index lesions. Patient summary We examined the molecular composition of individual cancers in a patient’s prostate. We found a lot of genetic diversity among these cancers, and concluded that information from a single cancer biopsy is not sufficient to guide treatment decisions. PMID:27451135
Health Detectives: Uncovering the Mysteries of Disease (LBNL Science at the Theater)
Bissell, Mina; Canaria, Christie; Celnicker, Susan; Karpen, Gary
2018-06-20
In this April 23, 2012 Science at the Theater event, Berkeley Lab scientists discuss how they uncover the mysteries of disease in unlikely places. Speakers and topics include: World-renowned cancer researcher Mina Bissell's pioneering research on the role of the cellular microenvironment in breast cancer has changed the conversation about the disease. How does DNA instability cause disease? To find out, Christie Canaria images neural networks to study disorders such as Huntington's disease. Fruit flies can tell us a lot about ourselves. Susan Celniker explores the fruit fly genome to learn how our genome works. DNA is not destiny. Gary Karpen explores how environmental factors shape genome function and disease through epigenetics.
Mobile Genetic Elements: In Silico, In Vitro, In Vivo
Arkhipova, Irina R.; Rice, Phoebe A.
2016-01-01
Mobile genetic elements (MGEs), also called transposable elements (TEs), represent universal components of most genomes and are intimately involved in nearly all aspects of genome organization, function, and evolution. However, there is currently a gap between fast-paced TE discovery in silico, stimulated by exponential growth of comparative genomic studies, and a limited number of experimental models amenable to more traditional in vitro and in vivo studies of structural, mechanistic, and regulatory properties of diverse MGEs. Experimental and computational scientists came together to bridge this gap at a recent conference, “Mobile Genetic Elements: in silico, in vitro, in vivo,” held at the Marine Biological Laboratory (MBL) in Woods Hole, MA, USA. PMID:26822117
GENETICALLY MODIFIED FOODS: TECHNOLOGICAL BREAKTHROUGH OR ECOLOGICAL NIGHMARE?
Fifty years ago, Wastson and Crick described the structure of DNA, setting the stage for the past decade's biotechnology revolution. Scientists have now broken the code of the entire human genome, and delineated the function of multiple genes; similar strides are being taken with...
Dean, Caroline; Osborn, Mary; Oshlack, Alicia; Thornton, Janet
2012-01-01
To coincide with International Women's Day, Genome Biology asked several female scientists about their experience of an academic career, how they managed to balance an active research career with family life, and what should be done to encourage more women to pursue research careers to stop the 'leaky' pipeline.
User Facilities | Argonne National Laboratory
, including biology and medicine. More than 7,000 scientists conduct experiments at Argonne user facilities Transformations IGSBInstitute for Genomics and Systems Biology IMEInstitute for Molecular Engineering JCESRJoint Science Center SBCStructural Biology Center Energy.gov U.S. Department of Energy Office of Science
Facts, values, and journalism.
Gilbert, Susan
2017-03-01
At a time of fake news, hacks, leaks, and unverified reports, many people are unsure whom to believe. How can we communicate in ways that make individuals question their assumptions and learn? My colleagues at The Hastings Center and many journalists and scientists are grappling with this question and have, independently, reached the same first step: recognize that facts can't be fully understood without probing their connection to values. "Explaining the basics is important, of course, but we also need to diversify our approach to the coverage of science-particularly as it intersects with the matrix of cultural, religious, social, and political values of our readers," said an article in Undark, an online magazine of science journalism. An editorial in Nature called for scientists to engage directly with citizens in debates over climate change and genome editing, noting that "the ethical issues can be critically dependent on the science, for example, in understanding where the boundaries between non-heritable and heritable genome modifications might be." We're here to help. © 2017 The Hastings Center.
Epigenomic diversification within the genus Lupinus
Bewick, Adam J.; Hasterok, Robert; Schmitz, Robert J.; Naganowska, Barbara
2017-01-01
Deciphering the various chemical modifications of both DNA and the histone compound of chromatin not only leads to a better understanding of the genome-wide organisation of epigenetic landmarks and their impact on gene expression but may also provide some insights into the evolutionary processes. Although both histone modifications and DNA methylation have been widely investigated in various plant genomes, here we present the first study for the genus Lupinus. Lupins, which are members of grain legumes (pulses), are beneficial for food security, nutrition, health and the environment. In order to gain a better understanding of the epigenetic organisation of genomes in lupins we applied the immunostaining of methylated histone H3 and DNA methylation as well as whole-genome bisulfite sequencing. We revealed variations in the patterns of chromatin modifications at the chromosomal level among three crop lupins, i.e. L. angustifolius (2n = 40), L. albus (2n = 50) and L. luteus (2n = 52), and the legume model plant Medicago truncatula (2n = 16). Different chromosomal patterns were found depending on the specific modification, e.g. H3K4me2 was localised in the terminal parts of L. angustifolius and M. truncatula chromosomes, which is in agreement with the results that have been obtained for other species. Interestingly, in L. albus and L. luteus this modification was limited to one arm in the case of all of the chromosomes in the complement. Additionally, H3K9me2 was detected in all of the analysed species except L. luteus. DNA methylation sequencing (CG, CHG and CHH contexts) of aforementioned crop but also wild lupins such as L. cosentinii (2n = 32), L. digitatus (2n = 36), L. micranthus (2n = 52) and L. pilosus (2n = 42) supported the range of interspecific diversity. The examples of epigenetic modifications illustrate the diversity of lupin genomes and could be helpful for elucidating further epigenetic changes in the evolution of the lupin genome. PMID:28640886
Epigenomic diversification within the genus Lupinus.
Susek, Karolina; Braszewska-Zalewska, Agnieszka; Bewick, Adam J; Hasterok, Robert; Schmitz, Robert J; Naganowska, Barbara
2017-01-01
Deciphering the various chemical modifications of both DNA and the histone compound of chromatin not only leads to a better understanding of the genome-wide organisation of epigenetic landmarks and their impact on gene expression but may also provide some insights into the evolutionary processes. Although both histone modifications and DNA methylation have been widely investigated in various plant genomes, here we present the first study for the genus Lupinus. Lupins, which are members of grain legumes (pulses), are beneficial for food security, nutrition, health and the environment. In order to gain a better understanding of the epigenetic organisation of genomes in lupins we applied the immunostaining of methylated histone H3 and DNA methylation as well as whole-genome bisulfite sequencing. We revealed variations in the patterns of chromatin modifications at the chromosomal level among three crop lupins, i.e. L. angustifolius (2n = 40), L. albus (2n = 50) and L. luteus (2n = 52), and the legume model plant Medicago truncatula (2n = 16). Different chromosomal patterns were found depending on the specific modification, e.g. H3K4me2 was localised in the terminal parts of L. angustifolius and M. truncatula chromosomes, which is in agreement with the results that have been obtained for other species. Interestingly, in L. albus and L. luteus this modification was limited to one arm in the case of all of the chromosomes in the complement. Additionally, H3K9me2 was detected in all of the analysed species except L. luteus. DNA methylation sequencing (CG, CHG and CHH contexts) of aforementioned crop but also wild lupins such as L. cosentinii (2n = 32), L. digitatus (2n = 36), L. micranthus (2n = 52) and L. pilosus (2n = 42) supported the range of interspecific diversity. The examples of epigenetic modifications illustrate the diversity of lupin genomes and could be helpful for elucidating further epigenetic changes in the evolution of the lupin genome.
Report on DOE support for GSC13 travel award
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Jack Anthony
2012-04-18
Consortium. The 3-day conference was held at the Kingkey Palace Hotel, Shenzhen, China, on March 5-7th, 2012, and was hosted by the Beijing Genomics Institute (BGI). The meeting was entitled ‘From Genomes to Interactions to Communities to Models’ and aimed to be a scientific meeting that highlighted the role of data standards associated with genomic, metagenomic and amplicon sequence data, and the contextual information associated with the sample that data was generated from. To this end the meeting focused on genomic projects for animals, plants, fungi and viruses, metagenomic studies in host-microbe interactions, and community dynamics in microbial communities. Inmore » addition the meeting hosted a Genomic Observatories Network session, a GSC biodiversity working group session, and a Microbiology of the Built Environment session sponsored by the Alfred P. Sloan Foundation. The meeting was very well organized by the local hosts at BGI, and all attendees reported that they were very happy with the outcome, service and quality of the science presented. Highlights were keynotes by Rita Colwell, Mitch Sogin and Jim Tiedje. The 5 attendees paid for by the DOE award were Daniel Smith and Jared Wilkening (University of Chicago); Patrick Chain (Los Alamos National Laboratory), Austin Davis-Richardson (University of Florida) and Greg Caporoaso (University of Northern Arizona). Each attendee was able to either present or become involved with the attending scientists, and each reported that they had got something significant out of the meeting. Here are detailed their personal accounts of the GSC13 meeting. We thank DOE for the helping to fund this valuable outreach initiative, and for supporting the attendance of these bright young scientists at this important meeting.« less
Oncogenomic portals for the visualization and analysis of genome-wide cancer data
Klonowska, Katarzyna; Czubak, Karol; Wojciechowska, Marzena; Handschuh, Luiza; Zmienko, Agnieszka; Figlerowicz, Marek; Dams-Kozlowska, Hanna; Kozlowski, Piotr
2016-01-01
Somatically acquired genomic alterations that drive oncogenic cellular processes are of great scientific and clinical interest. Since the initiation of large-scale cancer genomic projects (e.g., the Cancer Genome Project, The Cancer Genome Atlas, and the International Cancer Genome Consortium cancer genome projects), a number of web-based portals have been created to facilitate access to multidimensional oncogenomic data and assist with the interpretation of the data. The portals provide the visualization of small-size mutations, copy number variations, methylation, and gene/protein expression data that can be correlated with the available clinical, epidemiological, and molecular features. Additionally, the portals enable to analyze the gathered data with the use of various user-friendly statistical tools. Herein, we present a highly illustrated review of seven portals, i.e., Tumorscape, UCSC Cancer Genomics Browser, ICGC Data Portal, COSMIC, cBioPortal, IntOGen, and BioProfiling.de. All of the selected portals are user-friendly and can be exploited by scientists from different cancer-associated fields, including those without bioinformatics background. It is expected that the use of the portals will contribute to a better understanding of cancer molecular etiology and will ultimately accelerate the translation of genomic knowledge into clinical practice. PMID:26484415
Oncogenomic portals for the visualization and analysis of genome-wide cancer data.
Klonowska, Katarzyna; Czubak, Karol; Wojciechowska, Marzena; Handschuh, Luiza; Zmienko, Agnieszka; Figlerowicz, Marek; Dams-Kozlowska, Hanna; Kozlowski, Piotr
2016-01-05
Somatically acquired genomic alterations that drive oncogenic cellular processes are of great scientific and clinical interest. Since the initiation of large-scale cancer genomic projects (e.g., the Cancer Genome Project, The Cancer Genome Atlas, and the International Cancer Genome Consortium cancer genome projects), a number of web-based portals have been created to facilitate access to multidimensional oncogenomic data and assist with the interpretation of the data. The portals provide the visualization of small-size mutations, copy number variations, methylation, and gene/protein expression data that can be correlated with the available clinical, epidemiological, and molecular features. Additionally, the portals enable to analyze the gathered data with the use of various user-friendly statistical tools. Herein, we present a highly illustrated review of seven portals, i.e., Tumorscape, UCSC Cancer Genomics Browser, ICGC Data Portal, COSMIC, cBioPortal, IntOGen, and BioProfiling.de. All of the selected portals are user-friendly and can be exploited by scientists from different cancer-associated fields, including those without bioinformatics background. It is expected that the use of the portals will contribute to a better understanding of cancer molecular etiology and will ultimately accelerate the translation of genomic knowledge into clinical practice.
Large-scale gene function analysis with the PANTHER classification system.
Mi, Huaiyu; Muruganujan, Anushya; Casagrande, John T; Thomas, Paul D
2013-08-01
The PANTHER (protein annotation through evolutionary relationship) classification system (http://www.pantherdb.org/) is a comprehensive system that combines gene function, ontology, pathways and statistical analysis tools that enable biologists to analyze large-scale, genome-wide data from sequencing, proteomics or gene expression experiments. The system is built with 82 complete genomes organized into gene families and subfamilies, and their evolutionary relationships are captured in phylogenetic trees, multiple sequence alignments and statistical models (hidden Markov models or HMMs). Genes are classified according to their function in several different ways: families and subfamilies are annotated with ontology terms (Gene Ontology (GO) and PANTHER protein class), and sequences are assigned to PANTHER pathways. The PANTHER website includes a suite of tools that enable users to browse and query gene functions, and to analyze large-scale experimental data with a number of statistical tests. It is widely used by bench scientists, bioinformaticians, computer scientists and systems biologists. In the 2013 release of PANTHER (v.8.0), in addition to an update of the data content, we redesigned the website interface to improve both user experience and the system's analytical capability. This protocol provides a detailed description of how to analyze genome-wide experimental data with the PANTHER classification system.
Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology
Latendresse, Mario; Paley, Suzanne M.; Krummenacker, Markus; Ong, Quang D.; Billington, Richard; Kothari, Anamika; Weaver, Daniel; Lee, Thomas; Subhraveti, Pallavi; Spaulding, Aaron; Fulcher, Carol; Keseler, Ingrid M.; Caspi, Ron
2016-01-01
Pathway Tools is a bioinformatics software environment with a broad set of capabilities. The software provides genome-informatics tools such as a genome browser, sequence alignments, a genome-variant analyzer and comparative-genomics operations. It offers metabolic-informatics tools, such as metabolic reconstruction, quantitative metabolic modeling, prediction of reaction atom mappings and metabolic route search. Pathway Tools also provides regulatory-informatics tools, such as the ability to represent and visualize a wide range of regulatory interactions. This article outlines the advances in Pathway Tools in the past 5 years. Major additions include components for metabolic modeling, metabolic route search, computation of atom mappings and estimation of compound Gibbs free energies of formation; addition of editors for signaling pathways, for genome sequences and for cellular architecture; storage of gene essentiality data and phenotype data; display of multiple alignments, and of signaling and electron-transport pathways; and development of Python and web-services application programming interfaces. Scientists around the world have created more than 9800 Pathway/Genome Databases by using Pathway Tools, many of which are curated databases for important model organisms. PMID:26454094
Laniau, Julie; Frioux, Clémence; Nicolas, Jacques; Baroukh, Caroline; Cortes, Maria-Paz; Got, Jeanne; Trottier, Camille; Eveillard, Damien; Siegel, Anne
2017-01-01
The emergence of functions in biological systems is a long-standing issue that can now be addressed at the cell level with the emergence of high throughput technologies for genome sequencing and phenotyping. The reconstruction of complete metabolic networks for various organisms is a key outcome of the analysis of these data, giving access to a global view of cell functioning. The analysis of metabolic networks may be carried out by simply considering the architecture of the reaction network or by taking into account the stoichiometry of reactions. In both approaches, this analysis is generally centered on the outcome of the network and considers all metabolic compounds to be equivalent in this respect. As in the case of genes and reactions, about which the concept of essentiality has been developed, it seems, however, that some metabolites play crucial roles in system responses, due to the cell structure or the internal wiring of the metabolic network. We propose a classification of metabolic compounds according to their capacity to influence the activation of targeted functions (generally the growth phenotype) in a cell. We generalize the concept of essentiality to metabolites and introduce the concept of the phenotypic essential metabolite (PEM) which influences the growth phenotype according to sustainability, producibility or optimal-efficiency criteria. We have developed and made available a tool, Conquests , which implements a method combining graph-based and flux-based analysis, two approaches that are usually considered separately. The identification of PEMs is made effective by using a logical programming approach. The exhaustive study of phenotypic essential metabolites in six genome-scale metabolic models suggests that the combination and the comparison of graph, stoichiometry and optimal flux-based criteria allows some features of the metabolic network functionality to be deciphered by focusing on a small number of compounds. By considering the best combination of both graph-based and flux-based techniques, the Conquests python package advocates for a broader use of these compounds both to facilitate network curation and to promote a precise understanding of metabolic phenotype.
Zhao, Ming-Tao; Shao, Ning-Yi; Hu, Shijun; Ma, Ning; Srinivasan, Rajini; Jahanbani, Fereshteh; Lee, Jaecheol; Zhang, Sophia L; Snyder, Michael P; Wu, Joseph C
2017-11-10
Regulatory DNA elements in the human genome play important roles in determining the transcriptional abundance and spatiotemporal gene expression during embryonic heart development and somatic cell reprogramming. It is not well known how chromatin marks in regulatory DNA elements are modulated to establish cell type-specific gene expression in the human heart. We aimed to decipher the cell type-specific epigenetic signatures in regulatory DNA elements and how they modulate heart-specific gene expression. We profiled genome-wide transcriptional activity and a variety of epigenetic marks in the regulatory DNA elements using massive RNA-seq (n=12) and ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing; n=84) in human endothelial cells (CD31 + CD144 + ), cardiac progenitor cells (Sca-1 + ), fibroblasts (DDR2 + ), and their respective induced pluripotent stem cells. We uncovered 2 classes of regulatory DNA elements: class I was identified with ubiquitous enhancer (H3K4me1) and promoter (H3K4me3) marks in all cell types, whereas class II was enriched with H3K4me1 and H3K4me3 in a cell type-specific manner. Both class I and class II regulatory elements exhibited stimulatory roles in nearby gene expression in a given cell type. However, class I promoters displayed more dominant regulatory effects on transcriptional abundance regardless of distal enhancers. Transcription factor network analysis indicated that human induced pluripotent stem cells and somatic cells from the heart selected their preferential regulatory elements to maintain cell type-specific gene expression. In addition, we validated the function of these enhancer elements in transgenic mouse embryos and human cells and identified a few enhancers that could possibly regulate the cardiac-specific gene expression. Given that a large number of genetic variants associated with human diseases are located in regulatory DNA elements, our study provides valuable resources for deciphering the epigenetic modulation of regulatory DNA elements that fine-tune spatiotemporal gene expression in human cardiac development and diseases. © 2017 American Heart Association, Inc.
Frioux, Clémence; Nicolas, Jacques; Baroukh, Caroline; Cortes, Maria-Paz; Got, Jeanne; Trottier, Camille; Eveillard, Damien
2017-01-01
Background The emergence of functions in biological systems is a long-standing issue that can now be addressed at the cell level with the emergence of high throughput technologies for genome sequencing and phenotyping. The reconstruction of complete metabolic networks for various organisms is a key outcome of the analysis of these data, giving access to a global view of cell functioning. The analysis of metabolic networks may be carried out by simply considering the architecture of the reaction network or by taking into account the stoichiometry of reactions. In both approaches, this analysis is generally centered on the outcome of the network and considers all metabolic compounds to be equivalent in this respect. As in the case of genes and reactions, about which the concept of essentiality has been developed, it seems, however, that some metabolites play crucial roles in system responses, due to the cell structure or the internal wiring of the metabolic network. Results We propose a classification of metabolic compounds according to their capacity to influence the activation of targeted functions (generally the growth phenotype) in a cell. We generalize the concept of essentiality to metabolites and introduce the concept of the phenotypic essential metabolite (PEM) which influences the growth phenotype according to sustainability, producibility or optimal-efficiency criteria. We have developed and made available a tool, Conquests, which implements a method combining graph-based and flux-based analysis, two approaches that are usually considered separately. The identification of PEMs is made effective by using a logical programming approach. Conclusion The exhaustive study of phenotypic essential metabolites in six genome-scale metabolic models suggests that the combination and the comparison of graph, stoichiometry and optimal flux-based criteria allows some features of the metabolic network functionality to be deciphered by focusing on a small number of compounds. By considering the best combination of both graph-based and flux-based techniques, the Conquests python package advocates for a broader use of these compounds both to facilitate network curation and to promote a precise understanding of metabolic phenotype. PMID:29038751
2012-01-01
Background Most modern citrus cultivars have an interspecific origin. As a foundational step towards deciphering the interspecific genome structures, a reference whole genome sequence was produced by the International Citrus Genome Consortium from a haploid derived from Clementine mandarin. The availability of a saturated genetic map of Clementine was identified as an essential prerequisite to assist the whole genome sequence assembly. Clementine is believed to be a ‘Mediterranean’ mandarin × sweet orange hybrid, and sweet orange likely arose from interspecific hybridizations between mandarin and pummelo gene pools. The primary goals of the present study were to establish a Clementine reference map using codominant markers, and to perform comparative mapping of pummelo, sweet orange, and Clementine. Results Five parental genetic maps were established from three segregating populations, which were genotyped with Single Nucleotide Polymorphism (SNP), Simple Sequence Repeats (SSR) and Insertion-Deletion (Indel) markers. An initial medium density reference map (961 markers for 1084.1 cM) of the Clementine was established by combining male and female Clementine segregation data. This Clementine map was compared with two pummelo maps and a sweet orange map. The linear order of markers was highly conserved in the different species. However, significant differences in map size were observed, which suggests a variation in the recombination rates. Skewed segregations were much higher in the male than female Clementine mapping data. The mapping data confirmed that Clementine arose from hybridization between ‘Mediterranean’ mandarin and sweet orange. The results identified nine recombination break points for the sweet orange gamete that contributed to the Clementine genome. Conclusions A reference genetic map of citrus, used to facilitate the chromosome assembly of the first citrus reference genome sequence, was established. The high conservation of marker order observed at the interspecific level should allow reasonable inferences of most citrus genome sequences by mapping next-generation sequencing (NGS) data in the reference genome sequence. The genome of the haploid Clementine used to establish the citrus reference genome sequence appears to have been inherited primarily from the ‘Mediterranean’ mandarin. The high frequency of skewed allelic segregations in the male Clementine data underline the probable extent of deviation from Mendelian segregation for characters controlled by heterozygous loci in male parents. PMID:23126659
Silicon Era of Carbon-Based Life: Application of Genomics and Bioinformatics in Crop Stress Research
Li, Man-Wah; Qi, Xinpeng; Ni, Meng; Lam, Hon-Ming
2013-01-01
Abiotic and biotic stresses lead to massive reprogramming of different life processes and are the major limiting factors hampering crop productivity. Omics-based research platforms allow for a holistic and comprehensive survey on crop stress responses and hence may bring forth better crop improvement strategies. Since high-throughput approaches generate considerable amounts of data, bioinformatics tools will play an essential role in storing, retrieving, sharing, processing, and analyzing them. Genomic and functional genomic studies in crops still lag far behind similar studies in humans and other animals. In this review, we summarize some useful genomics and bioinformatics resources available to crop scientists. In addition, we also discuss the major challenges and advancements in the “-omics” studies, with an emphasis on their possible impacts on crop stress research and crop improvement. PMID:23759993
HOWDY: an integrated database system for human genome research
Hirakawa, Mika
2002-01-01
HOWDY is an integrated database system for accessing and analyzing human genomic information (http://www-alis.tokyo.jst.go.jp/HOWDY/). HOWDY stores information about relationships between genetic objects and the data extracted from a number of databases. HOWDY consists of an Internet accessible user interface that allows thorough searching of the human genomic databases using the gene symbols and their aliases. It also permits flexible editing of the sequence data. The database can be searched using simple words and the search can be restricted to a specific cytogenetic location. Linear maps displaying markers and genes on contig sequences are available, from which an object can be chosen. Any search starting point identifies all the information matching the query. HOWDY provides a convenient search environment of human genomic data for scientists unsure which database is most appropriate for their search. PMID:11752279
hackseq: Catalyzing collaboration between biological and computational scientists via hackathon.
2017-01-01
hackseq ( http://www.hackseq.com) was a genomics hackathon with the aim of bringing together a diverse set of biological and computational scientists to work on collaborative bioinformatics projects. In October 2016, 66 participants from nine nations came together for three days for hackseq and collaborated on nine projects ranging from data visualization to algorithm development. The response from participants was overwhelmingly positive with 100% (n = 54) of survey respondents saying they would like to participate in future hackathons. We detail key steps for others interested in organizing a successful hackathon and report excerpts from each project.
hackseq: Catalyzing collaboration between biological and computational scientists via hackathon
2017-01-01
hackseq ( http://www.hackseq.com) was a genomics hackathon with the aim of bringing together a diverse set of biological and computational scientists to work on collaborative bioinformatics projects. In October 2016, 66 participants from nine nations came together for three days for hackseq and collaborated on nine projects ranging from data visualization to algorithm development. The response from participants was overwhelmingly positive with 100% (n = 54) of survey respondents saying they would like to participate in future hackathons. We detail key steps for others interested in organizing a successful hackathon and report excerpts from each project. PMID:28417000
2012-01-01
To coincide with International Women's Day, Genome Biology asked several female scientists about their experience of an academic career, how they managed to balance an active research career with family life, and what should be done to encourage more women to pursue research careers to stop the 'leaky' pipeline. PMID:22405408
Schmidt, Thomas L; Rašić, Gordana; Zhang, Dongjing; Zheng, Xiaoying; Xi, Zhiyong; Hoffmann, Ary A
2017-10-01
Aedes albopictus is a highly invasive disease vector with an expanding worldwide distribution. Genetic assays using low to medium resolution markers have found little evidence of spatial genetic structure even at broad geographic scales, suggesting frequent passive movement along human transportation networks. Here we analysed genetic structure of Aedes albopictus collected from 12 sample sites in Guangzhou, China, using thousands of genome-wide single nucleotide polymorphisms (SNPs). We found evidence for passive gene flow, with distance from shipping terminals being the strongest predictor of genetic distance among mosquitoes. As further evidence of passive dispersal, we found multiple pairs of full-siblings distributed between two sample sites 3.7 km apart. After accounting for geographical variability, we also found evidence for isolation by distance, previously undetectable in Ae. albopictus. These findings demonstrate how large SNP datasets and spatially-explicit hypothesis testing can be used to decipher processes at finer geographic scales than formerly possible. Our approach can be used to help predict new invasion pathways of Ae. albopictus and to refine strategies for vector control that involve the transformation or suppression of mosquito populations.
Nie, Yan; Viola, Cristina; Bieniossek, Christoph; Trowitzsch, Simon; Vijay-achandran, Lakshmi Sumitra; Chaillet, Maxime; Garzoni, Frederic; Berger, Imre
2009-01-01
We are witnessing tremendous advances in our understanding of the organization of life. Complete genomes are being deciphered with ever increasing speed and accuracy, thereby setting the stage for addressing the entire gene product repertoire of cells, towards understanding whole biological systems. Advances in bioinformatics and mass spectrometric techniques have revealed the multitude of interactions present in the proteome. Multiprotein complexes are emerging as a paramount cornerstone of biological activity, as many proteins appear to participate, stably or transiently, in large multisubunit assemblies. Analysis of the architecture of these assemblies and their manifold interactions is imperative for understanding their function at the molecular level. Structural genomics efforts have fostered the development of many technologies towards achieving the throughput required for studying system-wide single proteins and small interaction motifs at high resolution. The present shift in focus towards large multiprotein complexes, in particular in eukaryotes, now calls for a likewise concerted effort to develop and provide new technologies that are urgently required to produce in quality and quantity the plethora of multiprotein assemblies that form the complexome, and to routinely study their structure and function at the molecular level. Current efforts towards this objective are summarized and reviewed in this contribution. PMID:20514218
Nie, Bei; Yang, Min; Fu, Weiling; Liang, Zhiqing
2015-07-07
The surface invasive cleavage assay, because of its innate accuracy and ability for self-signal amplification, provides a potential route for the mapping of hundreds of thousands of human SNP sites. However, its performance on a high density DNA array has not yet been established, due to the unusual "hairpin" probe design on the microarray and the lack of chemical stability of commercially available substrates. Here we present an applicable method to implement a nanocrystalline diamond thin film as an alternative substrate for fabricating an addressable DNA array using maskless light-directed photochemistry, producing the most chemically stable and biocompatible system for genetic analysis and enzymatic reactions. The surface invasive cleavage reaction, followed by degenerated primer ligation and post-rolling circle amplification is consecutively performed on the addressable diamond DNA array, accurately mapping SNP sites from PCR-amplified human genomic target DNA. Furthermore, a specially-designed DNA array containing dual probes in the same pixel is fabricated by following a reverse light-directed DNA synthesis protocol. This essentially enables us to decipher thousands of SNP alleles in a single-pot reaction by the simple addition of enzyme, target and reaction buffers.
The role of protein structural analysis in the next generation sequencing era.
Yue, Wyatt W; Froese, D Sean; Brennan, Paul E
2014-01-01
Proteins are macromolecules that serve a cell's myriad processes and functions in all living organisms via dynamic interactions with other proteins, small molecules and cellular components. Genetic variations in the protein-encoding regions of the human genome account for >85% of all known Mendelian diseases, and play an influential role in shaping complex polygenic diseases. Proteins also serve as the predominant target class for the design of small molecule drugs to modulate their activity. Knowledge of the shape and form of proteins, by means of their three-dimensional structures, is therefore instrumental to understanding their roles in disease and their potentials for drug development. In this chapter we outline, with the wide readership of non-structural biologists in mind, the various experimental and computational methods available for protein structure determination. We summarize how the wealth of structure information, contributed to a large extent by the technological advances in structure determination to date, serves as a useful tool to decipher the molecular basis of genetic variations for disease characterization and diagnosis, particularly in the emerging era of genomic medicine, and becomes an integral component in the modern day approach towards rational drug development.
Proteomics research in India: an update.
Reddy, Panga Jaipal; Atak, Apurva; Ghantasala, Saicharan; Kumar, Saurabh; Gupta, Shabarni; Prasad, T S Keshava; Zingde, Surekha M; Srivastava, Sanjeeva
2015-09-08
After a successful completion of the Human Genome Project, deciphering the mystery surrounding the human proteome posed a major challenge. Despite not being largely involved in the Human Genome Project, the Indian scientific community contributed towards proteomic research along with the global community. Currently, more than 76 research/academic institutes and nearly 145 research labs are involved in core proteomic research across India. The Indian researchers have been major contributors in drafting the "human proteome map" along with international efforts. In addition to this, virtual proteomics labs, proteomics courses and remote triggered proteomics labs have helped to overcome the limitations of proteomics education posed due to expensive lab infrastructure. The establishment of Proteomics Society, India (PSI) has created a platform for the Indian proteomic researchers to share ideas, research collaborations and conduct annual conferences and workshops. Indian proteomic research is really moving forward with the global proteomics community in a quest to solve the mysteries of proteomics. A draft map of the human proteome enhances the enthusiasm among intellectuals to promote proteomic research in India to the world.This article is part of a Special Issue entitled: Proteomics in India. Copyright © 2015 Elsevier B.V. All rights reserved.
Sordaria macrospora, a model organism to study fungal cellular development.
Engh, Ines; Nowrousian, Minou; Kück, Ulrich
2010-12-01
During the development of multicellular eukaryotes, the processes of cellular growth and organogenesis are tightly coordinated. Since the 1940s, filamentous fungi have served as genetic model organisms to decipher basic mechanisms underlying eukaryotic cell differentiation. Here, we focus on Sordaria macrospora, a homothallic ascomycete and important model organism for developmental biology. During its sexual life cycle, S. macrospora forms three-dimensional fruiting bodies, a complex process involving the formation of different cell types. S. macrospora can be used for genetic, biochemical and cellular experimental approaches since diverse tools, including fluorescence microscopy, a marker recycling system and gene libraries, are available. Moreover, the genome of S. macrospora has been sequenced and allows functional genomics analyses. Over the past years, our group has generated and analysed a number of developmental mutants which has greatly enhanced our fundamental understanding about fungal morphogenesis. In addition, our recent research activities have established a link between developmental proteins and conserved signalling cascades, ultimately leading to a regulatory network controlling differentiation processes in a eukaryotic model organism. This review summarizes the results of our recent findings, thus advancing current knowledge of the general principles and paradigms underpinning eukaryotic cell differentiation and development. Copyright © 2010 Elsevier GmbH. All rights reserved.
Applications of RNA Indexes for Precision Oncology in Breast Cancer.
Ma, Liming; Liang, Zirui; Zhou, Hui; Qu, Lianghu
2018-05-09
Precision oncology aims to offer the most appropriate treatments to cancer patients mainly based on their individual genetic information. Genomics has provided numerous valuable data on driver mutations and risk loci; however, it remains a formidable challenge to transform these data into therapeutic agents. Transcriptomics describes the multifarious expression patterns of both mRNAs and non-coding RNAs (ncRNAs), which facilitates the deciphering of genomic codes. In this review, we take breast cancer as an example to demonstrate the applications of these rich RNA resources in precision medicine exploration. These include the use of mRNA profiles in triple-negative breast cancer (TNBC) subtyping to inform corresponding candidate targeted therapies; current advancements and achievements of high-throughput RNA interference (RNAi) screening technologies in breast cancer; and microRNAs as functional signatures for defining cell identities and regulating the biological activities of breast cancer cells. We summarize the benefits of transcriptomic analyses in breast cancer management and propose that unscrambling the core signaling networks of cancer may be an important task of multiple-omic data integration for precision oncology. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Staton, Margaret; Best, Teodora; Khodwekar, Sudhir; Owusu, Sandra; Xu, Tao; Xu, Yi; Jennings, Tara; Cronn, Richard; Arumuganathan, A. Kathiravetpilla; Coggeshall, Mark; Gailing, Oliver; Liang, Haiying; Romero-Severson, Jeanne; Schlarbaum, Scott; Carlson, John E.
2015-01-01
Forest health issues are on the rise in the United States, resulting from introduction of alien pests and diseases, coupled with abiotic stresses related to climate change. Increasingly, forest scientists are finding genetic/genomic resources valuable in addressing forest health issues. For a set of ten ecologically and economically important native hardwood tree species representing a broad phylogenetic spectrum, we used low coverage whole genome sequencing from multiplex Illumina paired ends to economically profile their genomic content. For six species, the genome content was further analyzed by flow cytometry in order to determine the nuclear genome size. Sequencing yielded a depth of 0.8X to 7.5X, from which in silico analysis yielded preliminary estimates of gene and repetitive sequence content in the genome for each species. Thousands of genomic SSRs were identified, with a clear predisposition toward dinucleotide repeats and AT-rich repeat motifs. Flanking primers were designed for SSR loci for all ten species, ranging from 891 loci in sugar maple to 18,167 in redbay. In summary, we have demonstrated that useful preliminary genome information including repeat content, gene content and useful SSR markers can be obtained at low cost and time input from a single lane of Illumina multiplex sequence. PMID:26698853
An Ontology-Based GIS for Genomic Data Management of Rumen Microbes
Jelokhani-Niaraki, Saber; Minuchehr, Zarrin; Nassiri, Mohammad Reza
2015-01-01
During recent years, there has been exponential growth in biological information. With the emergence of large datasets in biology, life scientists are encountering bottlenecks in handling the biological data. This study presents an integrated geographic information system (GIS)-ontology application for handling microbial genome data. The application uses a linear referencing technique as one of the GIS functionalities to represent genes as linear events on the genome layer, where users can define/change the attributes of genes in an event table and interactively see the gene events on a genome layer. Our application adopted ontology to portray and store genomic data in a semantic framework, which facilitates data-sharing among biology domains, applications, and experts. The application was developed in two steps. In the first step, the genome annotated data were prepared and stored in a MySQL database. The second step involved the connection of the database to both ArcGIS and Protégé as the GIS engine and ontology platform, respectively. We have designed this application specifically to manage the genome-annotated data of rumen microbial populations. Such a GIS-ontology application offers powerful capabilities for visualizing, managing, reusing, sharing, and querying genome-related data. PMID:25873847
An Ontology-Based GIS for Genomic Data Management of Rumen Microbes.
Jelokhani-Niaraki, Saber; Tahmoorespur, Mojtaba; Minuchehr, Zarrin; Nassiri, Mohammad Reza
2015-03-01
During recent years, there has been exponential growth in biological information. With the emergence of large datasets in biology, life scientists are encountering bottlenecks in handling the biological data. This study presents an integrated geographic information system (GIS)-ontology application for handling microbial genome data. The application uses a linear referencing technique as one of the GIS functionalities to represent genes as linear events on the genome layer, where users can define/change the attributes of genes in an event table and interactively see the gene events on a genome layer. Our application adopted ontology to portray and store genomic data in a semantic framework, which facilitates data-sharing among biology domains, applications, and experts. The application was developed in two steps. In the first step, the genome annotated data were prepared and stored in a MySQL database. The second step involved the connection of the database to both ArcGIS and Protégé as the GIS engine and ontology platform, respectively. We have designed this application specifically to manage the genome-annotated data of rumen microbial populations. Such a GIS-ontology application offers powerful capabilities for visualizing, managing, reusing, sharing, and querying genome-related data.
Coverage of genomic medicine: information gap between lay public and scientists.
Sugawara, Yuya; Narimatsu, Hiroto; Fukao, Akira
2012-01-01
The sharing of information between the lay public and medical professionals is crucial to the conduct of personalized medicine using genomic information in the near future. Mass media, such as newspapers, can play an important role in disseminating scientific information. However, studies on the role of newspaper coverage of genome-related articles are highly limited. We investigated the coverage of genomic medicine in five major Japanese newspapers (Asahi, Mainichi, Yomiuri, Sankei, and Nikkei) using Nikkei Telecom and articles in scientific journals in PubMed from 1995 to 2009. The number of genome-related articles in all five newspapers temporarily increased in 2000, and began continuously decreasing thereafter from 2001 to 2009. Conversely, there was a continuous increasing trend in the number of genome-related articles in PubMed during this period. The numbers of genome-related articles among the five major newspapers from 1995 to 2009 were significantly different (P = 0.002). Commentaries, research articles, and articles about companies were the most frequent in 2001 and 2003, when the number of genome-related articles transiently increased in the five newspapers. This study highlights the significant gap between newspaper coverage and scientific articles in scientific journals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, E.
1996-09-27
The genome program has issued guidelines to ensure that sequencing is done on DNA from diverse sources who have given informed consent and are anonymous. Most current sources don`t meet those criteria. It may be the first question every nonexpert asks on learning about the Human Genome Project: Whose genome are we studying, anyway? It sounds naive, says one government scientist-so naive, in fact, that {open_quotes}we chuckle as we explain that we aren`t sequencing anyone`s genome in particular; we`re sequencing a representative genome{close_quotes} made up of a mosaic of DNA from a variety of anonymous sources. And Bruce Birren, amore » clone-maker now at the Massachusetts Institute of Technology`s (MIT`s) Whitehead Center for Genome Research says: {open_quotes}We spent many years pooh-poohing the question{close_quotes} of whose genome would be stored in the database. But now that labs have begun working on large stretches of human DNA-aiming to identify all 3 billion base pairs in the genetic code-the question no longer seems to laughable. To the distress of program managers in Bethesda, Maryland, the initial sources of DNA are not as diverse or as anonymous as they had assumed.« less
Vast potential for using the piggyBac transposon to engineer transgenic plants
USDA-ARS?s Scientific Manuscript database
The acceptance of bioengineered plants by some nations is hampered by a number of factors, including the random insertion of a transgene into the host genome. Emerging technologies, such as site-specific nucleases, are enabling plant scientists to promote recombination or mutations at specific plant...
Next generation sequencing of the genomes of 11 international RWA biotypes
USDA-ARS?s Scientific Manuscript database
Scientists researching poorly characterized species struggle to gain understanding of the species they study on a sub-cellular level due to the time and investment required to build up an informative knowledge base. This becomes problematic when a poorly characterized species is a pest of a major e...
With an interdisciplinary team of scientists from U.S. Government Agencies and Universities, we are utilizing zebrafish and fathead minnow to develop techniques for extrapolation of chemical stressor impacts across species, chemicals and endpoints. The linkage of responses acros...
USDA-ARS?s Scientific Manuscript database
Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient cro...
New Technique Identifies First Events in Translocations | Center for Cancer Research
A novel technique that enables scientists to measure and document tumor-inducing changes in genomic DNA is providing new insight into the earliest events involved in the formation of leukemias, lymphomas and sarcomas, and could potentially lead to the discovery of ways to stop those events.
Engineering approaches to immunotherapy.
Swartz, Melody A; Hirosue, Sachiko; Hubbell, Jeffrey A
2012-08-22
As the science of immunology grows increasingly mechanistic, motivation for developing quantitative, design-based engineering approaches has also evolved, both for therapeutic interventions and for elucidating immunological pathways in human disease. This has seeded the nascent field of "immunoengineering," which seeks to apply engineering analyses and design approaches to problems in translational immunology. For example, cell engineers are creating ways to tailor and use immune cells as living therapeutics; protein engineers are devising new methods of rapid antibody discovery; biomaterials scientists are guiding vaccine delivery and immune-cell activation with novel constructs; and systems immunologists are deciphering the evolution and maintenance of T and B cell receptor repertoires, which could help guide vaccine design. The field is multidisciplinary and collaborative, with engineers and immunologists working together to better understand and treat disease. We discuss the scientific progress in this young, yet rapidly evolving research area, which has yielded numerous start-up companies that are betting on impact in clinical and commercial translation in the near future.
Decipher the Molecular Response of Plant Single Cell Types to Environmental Stresses
Nourbakhsh-Rey, Mehrnoush; Libault, Marc
2016-01-01
The analysis of the molecular response of entire plants or organs to environmental stresses suffers from the cellular complexity of the samples used. Specifically, this cellular complexity masks cell-specific responses to environmental stresses and logically leads to the dilution of the molecular changes occurring in each cell type composing the tissue/organ/plant in response to the stress. Therefore, to generate a more accurate picture of these responses, scientists are focusing on plant single cell type approaches. Several cell types are now considered as models such as the pollen, the trichomes, the cotton fiber, various root cell types including the root hairmore » cell, and the guard cell of stomata. Among them, several have been used to characterize plant response to abiotic and biotic stresses. Lastly, in this review, we are describing the various -omic studies performed on these different plant single cell type models to better understand plant cell response to biotic and abiotic stresses.« less
Decipher the Molecular Response of Plant Single Cell Types to Environmental Stresses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nourbakhsh-Rey, Mehrnoush; Libault, Marc
The analysis of the molecular response of entire plants or organs to environmental stresses suffers from the cellular complexity of the samples used. Specifically, this cellular complexity masks cell-specific responses to environmental stresses and logically leads to the dilution of the molecular changes occurring in each cell type composing the tissue/organ/plant in response to the stress. Therefore, to generate a more accurate picture of these responses, scientists are focusing on plant single cell type approaches. Several cell types are now considered as models such as the pollen, the trichomes, the cotton fiber, various root cell types including the root hairmore » cell, and the guard cell of stomata. Among them, several have been used to characterize plant response to abiotic and biotic stresses. Lastly, in this review, we are describing the various -omic studies performed on these different plant single cell type models to better understand plant cell response to biotic and abiotic stresses.« less
Raman spectroscopy as a tool for ecology and evolution.
Germond, Arno; Kumar, Vipin; Ichimura, Taro; Moreau, Jerome; Furusawa, Chikara; Fujita, Hideaki; Watanabe, Tomonobu M
2017-06-01
Scientists are always on the lookout for new modalities of information which could reveal new biological features that are useful for deciphering the complexity of biological systems. Here, we introduce Raman spectroscopy as a prime candidate for ecology and evolution. To encourage the integration of this microscopy technique in the field of ecology and evolution, it is crucial to discuss first how Raman spectroscopy fits within the conceptual, technical and pragmatic considerations of ecology and evolution. In this paper, we show that the spectral information holds reliable indicators of intra- and interspecies variations, which can be related to the environment, selective pressures and fitness. Moreover, we show how the technical and pragmatic aspects of this modality (non-destructive, non-labelling, speed, relative low cost, etc.) enable it to be combined with more conventional methodologies. With this paper, we hope to open new avenues of research and extend the scope of available methodologies used in ecology and evolution. © 2017 The Authors.
Darwin's goldmine is still open: variation and selection run the world
Forterre, Patrick
2012-01-01
The scientific contribution of Darwin, still agonized in many religious circles, has now been recognized and celebrated by scientists from various disciplines. However, in recent years, several evolutionists have criticized Darwin as outdated, arguing that “Darwinism,” assimilated to the “tree of life,” cannot explain microbial evolution, or else was not operating in early life evolution. These critics either confuse “Darwinism” and old versions of “neo-Darwinism” or misunderstand the role of gene transfers in evolution. The core of Darwin explanation of evolution (variation/selection) remains necessary and sufficient to decipher the history of life. The enormous diversity of mechanisms underlying variations has been successfully interpreted by evolutionists in this framework and has considerably enriched the corpus of evolutionary biology without the necessity to kill the father. However, it remains for evolutionists to acknowledge interactions between cells and viruses (unknown for Darwin) as a major driving force in life evolution. PMID:22919695
Computational Methods to Predict Protein Interaction Partners
NASA Astrophysics Data System (ADS)
Valencia, Alfonso; Pazos, Florencio
In the new paradigm for studying biological phenomena represented by Systems Biology, cellular components are not considered in isolation but as forming complex networks of relationships. Protein interaction networks are among the first objects studied from this new point of view. Deciphering the interactome (the whole network of interactions for a given proteome) has been shown to be a very complex task. Computational techniques for detecting protein interactions have become standard tools for dealing with this problem, helping and complementing their experimental counterparts. Most of these techniques use genomic or sequence features intuitively related with protein interactions and are based on "first principles" in the sense that they do not involve training with examples. There are also other computational techniques that use other sources of information (i.e. structural information or even experimental data) or are based on training with examples.
Huo, Zhiguang; Tseng, George
2017-01-01
Cancer subtypes discovery is the first step to deliver personalized medicine to cancer patients. With the accumulation of massive multi-level omics datasets and established biological knowledge databases, omics data integration with incorporation of rich existing biological knowledge is essential for deciphering a biological mechanism behind the complex diseases. In this manuscript, we propose an integrative sparse K-means (is-K means) approach to discover disease subtypes with the guidance of prior biological knowledge via sparse overlapping group lasso. An algorithm using an alternating direction method of multiplier (ADMM) will be applied for fast optimization. Simulation and three real applications in breast cancer and leukemia will be used to compare is-K means with existing methods and demonstrate its superior clustering accuracy, feature selection, functional annotation of detected molecular features and computing efficiency. PMID:28959370
Huo, Zhiguang; Tseng, George
2017-06-01
Cancer subtypes discovery is the first step to deliver personalized medicine to cancer patients. With the accumulation of massive multi-level omics datasets and established biological knowledge databases, omics data integration with incorporation of rich existing biological knowledge is essential for deciphering a biological mechanism behind the complex diseases. In this manuscript, we propose an integrative sparse K -means (is- K means) approach to discover disease subtypes with the guidance of prior biological knowledge via sparse overlapping group lasso. An algorithm using an alternating direction method of multiplier (ADMM) will be applied for fast optimization. Simulation and three real applications in breast cancer and leukemia will be used to compare is- K means with existing methods and demonstrate its superior clustering accuracy, feature selection, functional annotation of detected molecular features and computing efficiency.