ERIC Educational Resources Information Center
Sagnak, Mesut
2016-01-01
Problem Statement: Scientists support that success cannot be achieved through schools with a bureaucratic structure in which top-down relation is emphasized but rather with a decentralized structure of authority. Scientists also posit that participative management is the best approach. Participation or participative leadership is defined as…
HIV and influenza share a similar structural blueprint
HIV uses a protein called the envelope glycoprotein spike to attach itself and fuse with the cell membrane; NCI scientists have now defined the structure of this spike in its pre-fusion state using cryo-electron microscopy
2000-04-20
Cindy Barnes of University Space Research Association (USRA) at NASA's Marshall Space Flight Center pipettes a protein solution in preparation to grow crystals as part of NASA's structural biology program. Research on Earth helps scientists define conditions and specimens they will use in space experiments.
Microgravity sciences application visiting scientist program
NASA Technical Reports Server (NTRS)
Glicksman, Martin; Vanalstine, James
1995-01-01
Marshall Space Flight Center pursues scientific research in the area of low-gravity effects on materials and processes. To facilitate these Government performed research responsibilities, a number of supplementary research tasks were accomplished by a group of specialized visiting scientists. They participated in work on contemporary research problems with specific objectives related to current or future space flight experiments and defined and established independent programs of research which were based on scientific peer review and the relevance of the defined research to NASA microgravity for implementing a portion of the national program. The programs included research in the following areas: protein crystal growth, X-ray crystallography and computer analysis of protein crystal structure, optimization and analysis of protein crystal growth techniques, and design and testing of flight hardware.
Gibbs, Kenneth D.; Griffin, Kimberly A.
2013-01-01
Interest in faculty careers decreases as graduate training progresses; however, the process underlying career-interest formation remains poorly defined. To better understand this process and whether/how it differs across social identity (i.e., race/ethnicity, gender), we conducted focus groups with 38 biomedical scientists who received PhDs between 2006 and 2011, including 23 women and 18 individuals from underrepresented minority (URM) backgrounds. Objective performance and quality of advisor relationships were not significantly different between scientists with high versus low interest in faculty careers. Career interests were fluid and formed in environments that generally lacked structured career development. Vicarious learning shaped similar outcome expectations about academic careers for all scientists; however, women and URMs recounted additional, distinct experiences and expectations. Scientists pursuing faculty careers described personal values, which differed by social identity, as their primary driver. For scientists with low interest in faculty careers, a combination of values, shared across social identity, and structural dynamics of the biomedical workforce (e.g., job market, grant funding, postdoc pay, etc.) played determinative roles. These findings illuminate the complexity of career choice and suggest attracting the best, most diverse academic workforce requires institutional leaders and policy makers go beyond developing individual skill, attending to individuals’ values and promoting institutional and systemic reforms. PMID:24297297
Gibbs, Kenneth D; Griffin, Kimberly A
2013-01-01
Interest in faculty careers decreases as graduate training progresses; however, the process underlying career-interest formation remains poorly defined. To better understand this process and whether/how it differs across social identity (i.e., race/ethnicity, gender), we conducted focus groups with 38 biomedical scientists who received PhDs between 2006 and 2011, including 23 women and 18 individuals from underrepresented minority (URM) backgrounds. Objective performance and quality of advisor relationships were not significantly different between scientists with high versus low interest in faculty careers. Career interests were fluid and formed in environments that generally lacked structured career development. Vicarious learning shaped similar outcome expectations about academic careers for all scientists; however, women and URMs recounted additional, distinct experiences and expectations. Scientists pursuing faculty careers described personal values, which differed by social identity, as their primary driver. For scientists with low interest in faculty careers, a combination of values, shared across social identity, and structural dynamics of the biomedical workforce (e.g., job market, grant funding, postdoc pay, etc.) played determinative roles. These findings illuminate the complexity of career choice and suggest attracting the best, most diverse academic workforce requires institutional leaders and policy makers go beyond developing individual skill, attending to individuals' values and promoting institutional and systemic reforms.
Stuart, Toby E; Ding, Waverly W
2006-07-01
The authors examine the conditions prompting university-employed life scientists to become entrepreneurs, defined to occur when a scientist (1) founds a biotechnology company, or (2) joins the scientific advisory board of a new biotechnology firm. This study draws on theories of social influence, socialization, and status dynamics to examine how proximity to colleagues in commercial science influences individuals' propensity to transition to entrepreneurship. To expose the mechanisms at work, this study also assesses how proximity effects change over time as for-profit science diffuses through the academy. Using adjusted proportional hazards models to analyze case-cohort data, the authors find evidence that the orientation toward commercial science of individuals' colleagues and coauthors, as well as a number of other workplace attributes, significantly influences scientists' hazards of transitioning to for-profit science.
The Normative Orientations of Climate Scientists.
Bray, Dennis; von Storch, Hans
2017-10-01
In 1942 Robert K. Merton tried to demonstrate the structure of the normative system of science by specifying the norms that characterized it. The norms were assigned the abbreviation CUDOs: Communism, Universalism, Disinterestedness, and Organized skepticism. Using the results of an on-line survey of climate scientists concerning the norms of science, this paper explores the climate scientists' subscription to these norms. The data suggests that while Merton's CUDOs remain the overall guiding moral principles, they are not fully endorsed or present in the conduct of climate scientists: there is a tendency to withhold results until publication, there is the intention of maintaining property rights, there is external influence defining research and the tendency to assign the significance of authored work according to the status of the author rather than content of the paper. These are contrary to the norms of science as proposed by Robert K. Merton.
New findings about old-growth forests.
Valerie Rapp
2003-01-01
Not all forests with old trees are scientifically defined as old growth. Among those that are, the variations are so striking that multiple definitions of old-growth forests are needed, even when the discussion is restricted to Pacific coast old-growth forests from southwestern Oregon to southwestern British Columbia.Scientists understand the basic structural...
Supervised and Unsupervised Learning Technology in the Study of Rodent Behavior
Gris, Katsiaryna V.; Coutu, Jean-Philippe; Gris, Denis
2017-01-01
Quantifying behavior is a challenge for scientists studying neuroscience, ethology, psychology, pathology, etc. Until now, behavior was mostly considered as qualitative descriptions of postures or labor intensive counting of bouts of individual movements. Many prominent behavioral scientists conducted studies describing postures of mice and rats, depicting step by step eating, grooming, courting, and other behaviors. Automated video assessment technologies permit scientists to quantify daily behavioral patterns/routines, social interactions, and postural changes in an unbiased manner. Here, we extensively reviewed published research on the topic of the structural blocks of behavior and proposed a structure of behavior based on the latest publications. We discuss the importance of defining a clear structure of behavior to allow professionals to write viable algorithms. We presented a discussion of technologies that are used in automated video assessment of behavior in mice and rats. We considered advantages and limitations of supervised and unsupervised learning. We presented the latest scientific discoveries that were made using automated video assessment. In conclusion, we proposed that the automated quantitative approach to evaluating animal behavior is the future of understanding the effect of brain signaling, pathologies, genetic content, and environment on behavior. PMID:28804452
A question of style: method, integrity and the meaning of proper science.
Penders, Bart; Vos, Rein; Horstman, Klasien
2009-09-01
Controversies in science often centre on methodology and integrity; these are the gatekeepers of proper science. But what exactly defines proper science as proper is not universal, especially in collaborative fields of enquiry where different perspectives meet. These encounters often result in friction, yet may equally give rise to new perspectives on proper science. A tour of collaborative endeavours like structural biology and nutrigenomics highlights some of those frictions and the controversies that can result from the encounter of 'wet' and 'dry' science. Attuning scientists to the plurality of proper science may safeguard many a scientist's integrity from being questioned unjustly.
Sutherland, Tara D; Huson, Mickey G; Rapson, Trevor D
2018-01-01
Sequence-definable polymers are seen as a prerequisite for design of future materials, with many polymer scientists regarding such polymers as the holy grail of polymer science. Recombinant proteins are sequence-defined polymers. Proteins are dictated by DNA templates and therefore the sequence of amino acids in a protein is defined, and molecular biology provides tools that allow redesign of the DNA as required. Despite this advantage, proteins are underrepresented in materials science. In this publication we investigate the advantages and limitations of using proteins as templates for rational design of new materials. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Könnecke, Mark; Akeroyd, Frederick A; Bernstein, Herbert J; Brewster, Aaron S; Campbell, Stuart I; Clausen, Björn; Cottrell, Stephen; Hoffmann, Jens Uwe; Jemian, Pete R; Männicke, David; Osborn, Raymond; Peterson, Peter F; Richter, Tobias; Suzuki, Jiro; Watts, Benjamin; Wintersberger, Eugen; Wuttke, Joachim
2015-02-01
NeXus is an effort by an international group of scientists to define a common data exchange and archival format for neutron, X-ray and muon experiments. NeXus is built on top of the scientific data format HDF5 and adds domain-specific rules for organizing data within HDF5 files, in addition to a dictionary of well defined domain-specific field names. The NeXus data format has two purposes. First, it defines a format that can serve as a container for all relevant data associated with a beamline. This is a very important use case. Second, it defines standards in the form of application definitions for the exchange of data between applications. NeXus provides structures for raw experimental data as well as for processed data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Könnecke, Mark; Akeroyd, Frederick A.; Bernstein, Herbert J.
2015-01-30
NeXus is an effort by an international group of scientists to define a common data exchange and archival format for neutron, X-ray and muon experiments. NeXus is built on top of the scientific data format HDF5 and adds domain-specific rules for organizing data within HDF5 files, in addition to a dictionary of well defined domain-specific field names. The NeXus data format has two purposes. First, it defines a format that can serve as a container for all relevant data associated with a beamline. This is a very important use case. Second, it defines standards in the form of application definitionsmore » for the exchange of data between applications. NeXus provides structures for raw experimental data as well as for processed data.« less
Könnecke, Mark; Akeroyd, Frederick A.; Bernstein, Herbert J.; ...
2015-01-30
NeXus is an effort by an international group of scientists to define a common data exchange and archival format for neutron, X-ray and muon experiments. NeXus is built on top of the scientific data format HDF5 and adds domain-specific rules for organizing data within HDF5 files, in addition to a dictionary of well defined domain-specific field names. The NeXus data format has two purposes. First, it defines a format that can serve as a container for all relevant data associated with a beamline. This is a very important use case. Second, it defines standards in the form of application definitionsmore » for the exchange of data between applications. As a result, NeXus provides structures for raw experimental data as well as for processed data.« less
Vector Data Model: A New Model of HDF-EOS to Support GIS Applications in EOS
NASA Astrophysics Data System (ADS)
Chi, E.; Edmonds, R d
2001-05-01
NASA's Earth Science Data Information System (ESDIS) project has an active program of research and development of systems for the storage and management of Earth science data for Earth Observation System (EOS) mission, a key program of NASA Earth Science Enterprise. EOS has adopted an extension of the Hierarchical Data Format (HDF) as the format of choice for standard product distribution. Three new EOS specific datatypes - point, swath and grid - have been defined within the HDF framework. The enhanced data format is named HDF-EOS. Geographic Information Systems (GIS) are used by Earth scientists in EOS data product generation, visualization, and analysis. There are two major data types in GIS applications, raster and vector. The current HDF-EOS handles only raster type in the swath data model. The vector data model is identified and developed as a new HDFEOS format to meet the requirements of scientists working with EOS data products in vector format. The vector model is designed using a topological data structure, which defines the spatial relationships among points, lines, and polygons. The three major topological concepts that the vector model adopts are: a) lines connect to each other at nodes (connectivity), b) lines that connect to surround an area define a polygon (area definition), and c) lines have direction and left and right sides (contiguity). The vector model is implemented in HDF by mapping the conceptual model to HDF internal data models and structures, viz. Vdata, Vgroup, and their associated attribute structures. The point, line, and polygon geometry and attribute data are stored in similar tables. Further, the vector model utilizes the structure and product metadata, which characterize the HDF-EOS. Both types of metadata are stored as attributes in HDF-EOS files, and are encoded in text format by using Object Description Language (ODL) and stored as global attributes in HDF-EOS files. EOS has developed a series of routines for storing, retrieving, and manipulating vector data in category of access, definition, basic I/O, inquiry, and subsetting. The routines are tested and form a package, HDF-EOS/Vector. The alpha version of HDFEOS/Vector has been distributed through the HDF-EOS project web site at http://hdfeos.gsfc.nasa.gov. We are also developing translators between HDF-EOS vector format and variety of GIS formats, such as Shapefile. The HDF-EOS vector model enables EOS scientists to deliver EOS data in a way ready for Earth scientists to analyze using GIS software, and also provides EOS project a mechanism to store GIS data product in meaningful vector format with significant economy in storage.
ERIC Educational Resources Information Center
Gibbs, Kenneth D., Jr.; Griffin, Kimberly A.
2013-01-01
Interest in faculty careers decreases as graduate training progresses; however, the process underlying career-interest formation remains poorly defined. To better understand this process and whether/how it differs across social identity (i.e., race/ethnicity, gender), we conducted focus groups with 38 biomedical scientists who received PhDs…
Using morphological awareness instruction to improve written language skills.
Apel, Kenn; Werfel, Krystal
2014-10-01
Written English is a morphophonemic language. Researchers have documented that a conscious awareness of the morphological structure of English morphology is predictive of students' written language skills and that morphological awareness instruction leads to improvements in morphological awareness and in other written language skills. The purpose of this tutorial is to provide specific information to clinical scientists and other educators for integrating morphological awareness instruction into their written language instruction. The authors first define morphological awareness and provide an overview of the research on the effects of morphological awareness intervention on improving morphological awareness and written language skills. Measures used to assess morphological awareness ability are then discussed, followed by suggestions for how clinical scientists and other educators can provide morphological awareness instruction to improve the written language skills of the students they serve. By integrating morphological awareness instruction into the services they provide, clinical scientists and other educators will be providing their students with a strong tool to aid written language skills.
The Evolution of the Data Scientist.
NASA Astrophysics Data System (ADS)
Parsons, M. A.
2011-12-01
When did the data scientist come into being? The National Science Board formally defined the term in 2005. Prior to that, the term was used sporadically, but typically to refer to statisticians or analysts. Nevertheless, the data scientist function has existed for a long time. Those who performed the function were called data managers or librarians or curators. Their role with digital data was critical but ill defined and poorly understood, especially by outsiders. Today, the tem data scientist is gaining currency and the discipline is gaining prominence, but it is a very dynamic field. And while it may be better defined, the term is still poorly understood. This lack of understanding can partly be attributed to the dynamic and evolutionary nature of the field. Domain scientists have developed new expectations for technology and services that enhance their ability to handle massive and complex data and present new challenges to data scientists. In response, data scientists are redefining and adapting their role to these rapidly changing demands of data-driven science and the fourth paradigm. In this paper, I explore the recent evolution of the field of data science as a socio-technical discipline. I discuss what has changed as well as what has remained the same and how some things that seem new may be a recasting of old problems. I take the view that data science is necessarily an evolutionary field that will need to continue to adapt in response to known and unknown challenges in order to ensure a healthy data ecosystem.
Management of the Space Physics Analysis Network (SPAN)
NASA Technical Reports Server (NTRS)
Green, James L.; Thomas, Valerie L.; Butler, Todd F.; Peters, David J.; Sisson, Patricia L.
1990-01-01
Here, the purpose is to define the operational management structure and to delineate the responsibilities of key Space Physics Analysis Network (SPAN) individuals. The management structure must take into account the large NASA and ESA science research community by giving them a major voice in the operation of the system. Appropriate NASA and ESA interfaces must be provided so that there will be adequate communications facilities available when needed. Responsibilities are delineated for the Advisory Committee, the Steering Committee, the Project Scientist, the Project Manager, the SPAN Security Manager, the Internetwork Manager, the Network Operations Manager, the Remote Site Manager, and others.
NASA Astrophysics Data System (ADS)
Zhang, Yang; Yu, Da-Peng
2009-08-01
Tapered dielectric structures in metal have exhibited extraordinary performance in both surface plasmon polariton (SPP) waveguiding and SPP focusing. This is crucial to plasmonic research and industrial plasmonic device integration. We present a method that facilitates easy fabrication of smooth-surfaced sub-micron tapered structures in large scale simply with electron beam lithography (EBL). When a PMMA layer is spin-coated on previously-EBL-defined PMMA structures, steep edges can be transformed into a declining slope to form tapered PMMA structures, scaled from 10 nm to 1000 nm. Despite the simplicity of our method, patterns with PMMA surface smoothness can be well-positioned and replicated in large numbers, which therefore gives scientists easy access to research on the properties of tapered structures.
NASA Astrophysics Data System (ADS)
Scuderi, Louis A.; Weissmann, Gary S.; Hartley, Adrian J.; Yang, Xiaoping; Lancaster, Nicholas
2017-08-01
Aeolian science is faced with significant challenges that impact its ability to benefit from recent advances in information technology. The discipline deals with high-end systems in the form of ground and satellite based sensors, computer modeling and simulation, and wind tunnel experiments. Aeolian scientists also collect field data manually with observational methods that may differ significantly between studies with little agreement on even basic morphometric parameters and terminology. Data produced from these studies, while forming the core of research papers and reports, is rarely available to the community at large. Recent advances are also superimposed on an underlying semantic structure that dates to the 1800's or earlier that is confusing, with ambiguously defined, and at times even contradictory, meanings. The aeolian "world-view" does not always fit within neat increments nor is defined by crisp objects. Instead change is continuous and features are fuzzy. Development of an ontological framework to guide spatiotemporal research is the fundamental starting point for organizing data in aeolian science. This requires a "rethinking" of how we define, collect, process, store and share data along with the development of a community-wide collaborative approach designed to bring the discipline into a data rich future. There is also a pressing need to develop efficient methods to integrate, analyze and manage spatial and temporal data and to promote data produced by aeolian scientists so it is available for preparing diagnostic studies, as input into a range of environmental models, and for advising national and international bodies that drive research agendas. This requires the establishment of working groups within the discipline to deal with content, format, processing pipelines, knowledge discovery tools and database access issues unique to aeolian science. Achieving this goal requires the development of comprehensive and highly-organized databases, tools that allow aeolian scientists as well as those in related disciplines to access and analyze the wealth of data available, and a supporting infrastructure and community-wide effort that allows aeolian scientists to communicate their results in replicable ways to scientists and decision and policy makers. Fortunately, much of the groundwork required to move aeolian science into a data rich future has been developed in other data rich physical science fields, and within the computer science and information technology disciplines.
Recent advances in applying decision science to managing national forests
Marcot, Bruce G.; Thompson, Matthew P.; Runge, Michael C.; Thompson, Frank R.; McNulty, Steven; Cleaves, David; Tomosy, Monica; Fisher, Larry A.; Andrew, Bliss
2012-01-01
Management of federal public forests to meet sustainability goals and multiple use regulations is an immense challenge. To succeed, we suggest use of formal decision science procedures and tools in the context of structured decision making (SDM). SDM entails four stages: problem structuring (framing the problem and defining objectives and evaluation criteria), problem analysis (defining alternatives, evaluating likely consequences, identifying key uncertainties, and analyzing tradeoffs), decision point (identifying the preferred alternative), and implementation and monitoring the preferred alternative with adaptive management feedbacks. We list a wide array of models, techniques, and tools available for each stage, and provide three case studies of their selected use in National Forest land management and project plans. Successful use of SDM involves participation by decision-makers, analysts, scientists, and stakeholders. We suggest specific areas for training and instituting SDM to foster transparency, rigor, clarity, and inclusiveness in formal decision processes regarding management of national forests.
Contributions of cultural services to the ecosystem services agenda
Daniel, Terry C.; Muhar, Andreas; Arnberger, Arne; Aznar, Olivier; Boyd, James W.; Chan, Kai M. A.; Costanza, Robert; Elmqvist, Thomas; Flint, Courtney G.; Gobster, Paul H.; Grêt-Regamey, Adrienne; Lave, Rebecca; Muhar, Susanne; Penker, Marianne; Ribe, Robert G.; Schauppenlehner, Thomas; Sikor, Thomas; Soloviy, Ihor; Spierenburg, Marja; Taczanowska, Karolina; Tam, Jordan; von der Dunk, Andreas
2012-01-01
Cultural ecosystem services (ES) are consistently recognized but not yet adequately defined or integrated within the ES framework. A substantial body of models, methods, and data relevant to cultural services has been developed within the social and behavioral sciences before and outside of the ES approach. A selective review of work in landscape aesthetics, cultural heritage, outdoor recreation, and spiritual significance demonstrates opportunities for operationally defining cultural services in terms of socioecological models, consistent with the larger set of ES. Such models explicitly link ecological structures and functions with cultural values and benefits, facilitating communication between scientists and stakeholders and enabling economic, multicriterion, deliberative evaluation and other methods that can clarify tradeoffs and synergies involving cultural ES. Based on this approach, a common representation is offered that frames cultural services, along with all ES, by the relative contribution of relevant ecological structures and functions and by applicable social evaluation approaches. This perspective provides a foundation for merging ecological and social science epistemologies to define and integrate cultural services better within the broader ES framework. PMID:22615401
ECOLOGICAL POLICY: DEFINING APPROPRIATE ROLES FOR SCIENCE AND SCIENTISTS
Effectively resolving the typical ecological, natural resource, or environmental policy issue requires an array of scientific information as part of the input provided to decision-makers. In my experience, the ability of scientists (and scientific information) to constructively ...
ECOLOGICAL POLICY: DEFINING APPROPRIATE ROLES FOR SCIENCE AND SCIENTISTS - 2007
Resolving typical ecological policy issues requires an array of scientific information as part of the input provided to decision-makers. The ability of scientists (and scientific information) to constructively inform policy deliberations diminishes when what is offered as "scienc...
ECOLOGICAL POLICY: DEFINING APPROPRIATE ROLES FOR SCIENCE AND SCIENTISTS - 8/2006
Resolving many ecological policy issues requires an array of scientific information. The ability of scientists (and scientific information) to constructively inform policy deliberations diminishes when what is offered as "science" is inculcated with personal policy preferences. S...
Participatory Design of Human-Centered Cyberinfrastructure (Invited)
NASA Astrophysics Data System (ADS)
Pennington, D. D.; Gates, A. Q.
2010-12-01
Cyberinfrastructure, by definition, is about people sharing resources to achieve outcomes that cannot be reached independently. CI depends not just on creating discoverable resources, or tools that allow those resources to be processed, integrated, and visualized -- but on human activation of flows of information across those resources. CI must be centered on human activities. Yet for those CI projects that are directed towards observational science, there are few models for organizing collaborative research in ways that align individual research interests into a collective vision of CI-enabled science. Given that the emerging technologies are themselves expected to change the way science is conducted, it is not simply a matter of conducting requirements analysis on how scientists currently work, or building consensus among the scientists on what is needed. Developing effective CI depends on generating a new, creative vision of problem solving within a community based on computational concepts that are, in some cases, still very abstract and theoretical. The computer science theory may (or may not) be well formalized, but the potential for impact on any particular domain is typically ill-defined. In this presentation we will describe approaches being developed and tested at the CyberShARE Center of Excellence at University of Texas in El Paso for ill-structured problem solving within cross-disciplinary teams of scientists and computer scientists working on data intensive environmental and geoscience. These approaches deal with the challenges associated with sharing and integrating knowledge across disciplines; the challenges of developing effective teamwork skills in a culture that favors independent effort; and the challenges of evolving shared, focused research goals from ill-structured, vague starting points - all issues that must be confronted by every interdisciplinary CI project. We will introduce visual and semantic-based tools that can enable the collaborative research design process and illustrate their application in designing and developing useful end-to-end data solutions for scientists. Lastly, we will outline areas of future investigation within CyberShARE that we believe have the potential for high impact.
Parents who influence their children to become scientists: effects of gender and parental education.
Sonnert, Gerhard
2009-12-01
In this paper we report on testing the 'role-model' and 'opportunity-structure' hypotheses about the parents whom scientists mentioned as career influencers. According to the role-model hypothesis, the gender match between scientist and influencer is paramount (for example, women scientists would disproportionately often mention their mothers as career influencers). According to the opportunity-structure hypothesis, the parent's educational level predicts his/her probability of being mentioned as a career influencer (that is, parents with higher educational levels would be more likely to be named). The examination of a sample of American scientists who had received prestigious postdoctoral fellowships resulted in rejecting the role-model hypothesis and corroborating the opportunity-structure hypothesis. There were a few additional findings. First, women scientists were more likely than men scientists to mention parental influencers. Second, fathers were more likely than mothers to be mentioned as influencers. Third, an interaction was found between the scientist's gender and parental education when predicting a parent's nomination as influencer.
Christian Raetz: scientist and friend extraordinaire.
Dowhan, William; Nikaido, Hiroshi; Stubbe, JoAnne; Kozarich, John W; Wickner, William T; Russell, David W; Garrett, Teresa A; Brozek, Kathryn; Modrich, Paul
2013-01-01
Chris Raetz passed away on August 16, 2011, still at the height of his productive years. His seminal contributions to biomedical research were in the genetics, biochemistry, and structural biology of phospholipid and lipid A biosynthesis in Escherichia coli and other gram-negative bacteria. He defined the catalytic properties and structures of many of the enzymes responsible for the "Raetz pathway for lipid A biosynthesis." His deep understanding of chemistry, coupled with knowledge of medicine, biochemistry, genetics, and structural biology, formed the underpinnings for his contributions to the lipid field. He displayed an intense passion for science and a broad interest that came from a strong commitment to curiosity-driven research, a commitment he imparted to his mentees and colleagues. What follows is a testament to both Chris's science and humanity from his friends and colleagues.
Perspectives in Marine Citizen Science
Bear, Michael
2016-01-01
Citizen science can be defined as the process by which any non-scientist collects data or uses the scientific method under the guidance or mentorship of a scientist. This article presents an overview of several marine citizen-science projects as practiced by three non-profit organizations. PMID:27047591
Sport medicine and sport science practitioners' experiences of organizational change.
Wagstaff, C R D; Gilmore, S; Thelwell, R C
2015-10-01
Despite the emergence of and widespread uptake of a growing range of medical and scientific professions in elite sport, such environs present a volatile professional domain characterized by change and unprecedentedly high turnover of personnel. This study explored sport medicine and science practitioners' experiences of organizational change using a longitudinal design over a 2-year period. Specifically, data were collected in three temporally defined phases via 49 semi-structured interviews with 20 sport medics and scientists employed by three organizations competing in the top tiers of English football and cricket. The findings indicated that change occurred over four distinct stages; anticipation and uncertainty, upheaval and realization, integration and experimentation, normalization and learning. Moreover, these data highlight salient emotional, behavioral, and attitudinal experiences of medics and scientists, the existence of poor employment practices, and direct and indirect implications for on-field performance following organizational change. The findings are discussed in line with advances to extant change theory and applied implications for prospective sport medics and scientists, sport organizations, and professional bodies responsible for the training and development of neophyte practitioners. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Defining the genus Fusarium in a scientifically robust way that best preserves longstanding use
USDA-ARS?s Scientific Manuscript database
In this talk I will present the argument of a diverse group of scientists advocating a phylogenetic circumscription of the genus Fusarium, that includes virtually all Fusarium species of importance in plant pathology, mycotoxicology, medicine, and basic research. This will free scientists from any o...
Resolving typical ecological policy issues requires an array of scientific information as part of the input provided to decision-makers. The ability of scientists (and scientific information) to constructively inform policy deliberations diminishes when what is offered as ¿scienc...
Scientist | Center for Cancer Research
KEY ROLES/RESPONSIBILITIES The Scientist I will support research efforts to define the role of transcriptional regulators in myeloid cell development, and their potential role in leukemogenesis. This work will be accomplished performing both molecular and stem cell biology techniques, cloning and construction of retroviral vectors, quantitative RT-PCR, cloning of conditional
Orthia, Lindy A
2011-07-01
Much of the public understanding of science literature dealing with fictional scientists claims that scientist villains by their nature embody an antiscience critique. I characterize this claim and its founding assumptions as the "mad scientist" trope. I show how scientist villain characters from the science fiction television series Doctor Who undermine the trope via the programme's use of rhetorical strategies similar to Gilbert and Mulkay's empiricist and contingent repertoires, which define and patrol the boundaries between "science" and "non-science." I discuss three such strategies, including the literal framing of scientist villains as "mad." All three strategies exclude the characters from science, relieve science of responsibility for their villainy, and overtly or covertly contribute to the delivery of pro-science messages consistent with rationalist scientism. I focus on scientist villains from the most popular era of Doctor Who, the mid 1970s, when the show embraced the gothic horror genre.
NASA Technical Reports Server (NTRS)
Eller, E. L.
1976-01-01
The project scientists is in a position which rates very high in terms of behavioral study recommendations. His influence over objectives is generally considered to be important. He is highly autonomous in a moderately coordinated environment. He has diverse managerial and technical functions and the performance of these functions require him to grow beyond his role as an experimenter. However, the position within the line organization for those interviewed is also very stimulating, rating almost as high by the same criteria. The role of project scientist may not be the dominant means of professional growth for the experienced scientific investigators. The influence which the project scientist exerts on the project and the stimulation of that position for him are determined largely by his position outside the defined project scientist role. The role of the project scientist is changing because the environment of those who become project scientists is changing.
World Virtual Observatory Organization
NASA Astrophysics Data System (ADS)
Ignatyev, Mikhail; Pinigin, Gennadij
On the base of experience of our Unoversity and Observatory we investigate the seven blocks model of virtual organization for consolidation of resources. This model consists of the next blocks: 1.Population-scientists students robots and agents. 2.Aspiration of population groups. 3.Territory. 4.Production. 5.Ecology and safety. 6.Finance. 7. External relations - input and output flows of population information resources.The world virtual observatory is the virtual world which consists of three groups of variables - appearances essences and structured uncertainty which defines the number and distribution of arbitrary coefficients in equivalent equations. The consolodation of recources permit to create the large telescopes with distributed structure on our planet and cosmos. Virtual instruments can have the best characteristics by means of collective effects which have investigated in our paper.
Measuring co-authorship and networking-adjusted scientific impact.
Ioannidis, John P A
2008-07-23
Appraisal of the scientific impact of researchers, teams and institutions with productivity and citation metrics has major repercussions. Funding and promotion of individuals and survival of teams and institutions depend on publications and citations. In this competitive environment, the number of authors per paper is increasing and apparently some co-authors don't satisfy authorship criteria. Listing of individual contributions is still sporadic and also open to manipulation. Metrics are needed to measure the networking intensity for a single scientist or group of scientists accounting for patterns of co-authorship. Here, I define I(1) for a single scientist as the number of authors who appear in at least I(1) papers of the specific scientist. For a group of scientists or institution, I(n) is defined as the number of authors who appear in at least I(n) papers that bear the affiliation of the group or institution. I(1) depends on the number of papers authored N(p). The power exponent R of the relationship between I(1) and N(p) categorizes scientists as solitary (R>2.5), nuclear (R = 2.25-2.5), networked (R = 2-2.25), extensively networked (R = 1.75-2) or collaborators (R<1.75). R may be used to adjust for co-authorship networking the citation impact of a scientist. I(n) similarly provides a simple measure of the effective networking size to adjust the citation impact of groups or institutions. Empirical data are provided for single scientists and institutions for the proposed metrics. Cautious adoption of adjustments for co-authorship and networking in scientific appraisals may offer incentives for more accountable co-authorship behaviour in published articles.
NASA Technical Reports Server (NTRS)
Harrison, P. Ann
1993-01-01
All the NASA VEGetation Workbench (VEG) goals except the Learning System provide the scientist with several different techniques. When VEG is run, rules assist the scientist in selecting the best of the available techniques to apply to the sample of cover type data being studied. The techniques are stored in the VEG knowledge base. The design and implementation of an interface that allows the scientist to add new techniques to VEG without assistance from the developer were completed. A new interface that enables the scientist to add techniques to VEG without assistance from the developer was designed and implemented. This interface does not require the scientist to have a thorough knowledge of Knowledge Engineering Environment (KEE) by Intellicorp or a detailed knowledge of the structure of VEG. The interface prompts the scientist to enter the required information about the new technique. It prompts the scientist to enter the required Common Lisp functions for executing the technique and the left hand side of the rule that causes the technique to be selected. A template for each function and rule and detailed instructions about the arguments of the functions, the values they should return, and the format of the rule are displayed. Checks are made to ensure that the required data were entered, the functions compiled correctly, and the rule parsed correctly before the new technique is stored. The additional techniques are stored separately from the VEG knowledge base. When the VEG knowledge base is loaded, the additional techniques are not normally loaded. The interface allows the scientist the option of adding all the previously defined new techniques before running VEG. When the techniques are added, the required units to store the additional techniques are created automatically in the correct places in the VEG knowledge base. The methods file containing the functions required by the additional techniques is loaded. New rule units are created to store the new rules. The interface that allow the scientist to select which techniques to use is updated automatically to include the new techniques. Task H was completed. The interface that allows the scientist to add techniques to VEG was implemented and comprehensively tested. The Common Lisp code for the Add Techniques system is listed in Appendix A.
Isolationism and the Assault on the Possibility of Shared Truths
ERIC Educational Resources Information Center
Wagner, Paul A.
2011-01-01
Sociologists began defining the term "culture" long ago in order to serve the specific research interests of practicing scientists. The definitions served scientists' purpose well. The term culture became popular beyond even the discipline of sociology. For example, there is a normative sense of the term that serves practical pedagogical purposes…
A New Way of Thinking about Social Location in Science
ERIC Educational Resources Information Center
Schmaus, Warren
2008-01-01
The Durkheimian concept of the density of social relationships may prove more fruitful than the historical materialist notion of a social hierarchy for thinking about the social location of epistemic agents in science. To define a scientist's social location in terms of the density of her professional relationships with other scientists permits us…
New Madrid seismotectonic study. Activities during fiscal year 1977. [Regional study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buschbach, T.C.
1977-10-01
Approximately 30 highly qualified scientists are participating in a coordinated geological, geophysical, and seismological study of the area within a 200-mile radius of New Madrid, Missouri. The study is designed to define the structural setting and tectonic history of the area in order to realistically evaluate earthquake risks in the siting of nuclear facilities. The region studied includes Illinois, Indiana, Kentucky, Tennessee, Alabama, Arkansas, and Missouri. An inventory of existing data and supporting research in the area was prepared. New information from aeromagnetic, ground magnetic, and gravity surveys has been obtained, and the data are currently being processed.
ERIC Educational Resources Information Center
Ward, Dana
Suggesting that the concept of structure employed by political scientists in the analysis of belief systems is inadequate and misleading, the paper discusses Jean Piaget's concept of egocentrism as a theoretical alternative to belief systems analysis. The purpose of the paper is to provide political scientists with a short but comprehensive…
Axiope tools for data management and data sharing.
Goddard, Nigel H; Cannon, Robert C; Howell, Fred W
2003-01-01
Many areas of biological research generate large volumes of very diverse data. Managing this data can be a difficult and time-consuming process, particularly in an academic environment where there are very limited resources for IT support staff such as database administrators. The most economical and efficient solutions are those that enable scientists with minimal IT expertise to control and operate their own desktop systems. Axiope provides one such solution, Catalyzer, which acts as flexible cataloging system for creating structured records describing digital resources. The user is able specify both the content and structure of the information included in the catalog. Information and resources can be shared by a variety of means, including automatically generated sets of web pages. Federation and integration of this information, where needed, is handled by Axiope's Mercat server. Where there is a need for standardization or compatibility of the structures usedby different researchers this canbe achieved later by applying user-defined mappings in Mercat. In this way, large-scale data sharing can be achieved without imposing unnecessary constraints or interfering with the way in which individual scientists choose to record and catalog their work. We summarize the key technical issues involved in scientific data management and data sharing, describe the main features and functionality of Axiope Catalyzer and Axiope Mercat, and discuss future directions and requirements for an information infrastructure to support large-scale data sharing and scientific collaboration.
The Physics and Chemistry of Materials
NASA Astrophysics Data System (ADS)
Gersten, Joel I.; Smith, Frederick W.
2001-06-01
A comprehensive introduction to the structure, properties, and applications of materials This title provides the first unified treatment for the broad subject of materials. Authors Gersten and Smith use a fundamental approach to define the structure and properties of a wide range of solids on the basis of the local chemical bonding and atomic order present in the material. Emphasizing the physical and chemical origins of material properties, the book focuses on the most technologically important materials being utilized and developed by scientists and engineers. Appropriate for use in advanced materials courses, The Physics and Chemistry of Materials provides the background information necessary to assimilate the current academic and patent literature on materials and their applications. Problem sets, illustrations, and helpful tables complete this well-rounded new treatment. Five sections cover these important topics: * Structure of materials, including crystal structure, bonding in solids, diffraction and the reciprocal lattice, and order and disorder in solids * Physical properties of materials, including electrical, thermal, optical, magnetic, and mechanical properties * Classes of materials, including semiconductors, superconductors, magnetic materials, and optical materials in addition to metals, ceramics, polymers, dielectrics, and ferroelectrics * A section on surfaces, thin films, interfaces, and multilayers discusses the effects of spatial discontinuities in the physical and chemical structure of materials * A section on synthesis and processing examines the effects of synthesis on the structure and properties of various materials This book is enhanced by a Web-based supplement that offers advanced material together with an entire electronic chapter on the characterization of materials. The Physics and Chemistry of Materials is a complete introduction to the structure and properties of materials for students and an excellent reference for scientists and engineers.
The Scientist in the Casa: The Child as Scientist in the Making
ERIC Educational Resources Information Center
Sackett, Ginni
2016-01-01
If a parent were to ask what science and technology are offered in a Montessori preschool, Ginni Sackett provides a comprehensive reply. By precisely defining the words science and technology with an expansion of those definitions from renowned biologist E. O. Wilson, alongside the "experiences we offer every day to the children in our…
Martimianakis, Maria Athina Tina; Hodges, Brian D; Wasylenki, Donald
2009-01-01
Medical schools and departments of psychiatry around the world face challenges in integrating science with clinical teaching. This project was designed to identify attitudes toward the integration of science in clinical teaching and address barriers to collaboration between scientists and clinical teachers. The authors explored the interactions of 20 faculty members (10 scientists and 10 clinical teachers) taking part in a 1-year structured faculty development program, based on a partnership model, designed to encourage collaborative interaction between scientists and clinical teachers. Data were collected before, during, and after the program using participant observations, surveys, participant diaries, and focus groups. Qualitative data were analyzed iteratively using the method of meaning condensation, and further informed with descriptive statistics generated from the pre- and postsurveys. Scientists and clinicians were strikingly unfamiliar with each other's worldviews, work experiences, professional expectations, and approaches to teaching. The partnership model appeared to influence integration at a social level, and led to the identification of departmental structural barriers that aggravate the divide between scientists and clinical teachers. Issues related to the integration of social scientists in particular emerged. Creating a formal program to encourage interaction of scientists and clinical teachers provided a forum for identifying some of the barriers associated with the collaboration of scientists and clinical teachers. Our data point to directions for organizational structures and faculty development that support the integration of scientists from a wide range of disciplines with their clinical faculty colleagues.
What does it take to be a successful pediatric surgeon-scientist?
Watson, Carey; King, Alice; Mitra, Shaheel; Shaaban, Aimen F; Goldstein, Allan M; Morowitz, Michael J; Warner, Brad W; Crombleholme, Timothy M; Keswani, Sundeep G
2015-06-01
The factors that contribute to success as a pediatric surgeon-scientist are not well defined. The purpose of this study is to define a group of NIH-funded pediatric surgeons, assess their academic productivity, and elucidate factors that have contributed to their success. Pediatric surgeons were queried in the NIH report database to determine NIH funding awarded. Academic productivity was then assessed. An online survey was then targeted to NIH-funded pediatric surgeons. Since 1988, 83 pediatric surgeon-investigators have received major NIH funding. Currently, there are 37 pediatric surgeons with 43 NIH-sponsored awards. The mean h-index of this group of pediatric surgeons was 18 ± 1.1, mean number of publications (since 2001) was 21 ± 2.1, and both increase commensurate with academic rank. In response to the survey, 81% engaged in research during their surgical residency, and 48% were mentored by a pediatric surgeon-scientist. More than 60% of respondents had significant protected time and financial support. Factors felt to be most significant for academic success included mentorship, perseverance, and protected time. Mentorship, perseverance, institutional commitment to protected research time, and financial support are considered to be important to facilitate the successes of pediatric surgeon-scientists. These results will be useful to aspiring pediatric surgeon-scientists and departments wishing to develop a robust research program. Copyright © 2015 Elsevier Inc. All rights reserved.
Measurements, datasets and preliminary results from the RxCADRE project-2008, 2011 and 2012
Roger D. Ottmar; J. Kevin Hiers; Bret W. Butler; Craig B. Clements; Matthew B. Dickinson; Andrew T. Hudak; Joseph O' Brien; Brian E. Potter; Eric M. Rowell; Tara M. Strand; Thomas J. Zajkowski
2016-01-01
The lack of independent, quality-assured field data prevents scientists from effectively evaluating and advancing wildland fire models. To rectify this, scientists and technicians convened in the southeastern United States in 2008, 2011 and 2012 to collect wildland fire data in six integrated core science disciplines defined by the fire modelling community. These were...
What Do Learning Scientists Do? A Survey of the ISLS Membership
ERIC Educational Resources Information Center
Yoon, Susan A.; Hmelo-Silver, Cindy E.
2017-01-01
This study responds to a question that people working in the field of learning sciences get asked regularly: What do learning scientists do? Earlier attempts to answer this question came from a need to define a new field of educational research. Now that the International Society of the Learning Sciences (ISLS) has grown into a robust and…
Bioarchitecture: bioinspired art and architecture--a perspective.
Ripley, Renee L; Bhushan, Bharat
2016-08-06
Art and architecture can be an obvious choice to pair with science though historically this has not always been the case. This paper is an attempt to interact across disciplines, define a new genre, bioarchitecture, and present opportunities for further research, collaboration and professional cooperation. Biomimetics, or the copying of living nature, is a field that is highly interdisciplinary, involving the understanding of biological functions, structures and principles of various objects found in nature by scientists. Biomimetics can lead to biologically inspired design, adaptation or derivation from living nature. As applied to engineering, bioinspiration is a more appropriate term, involving interpretation, rather than direct copying. Art involves the creation of discrete visual objects intended by their creators to be appreciated by others. Architecture is a design practice that makes a theoretical argument and contributes to the discourse of the discipline. Bioarchitecture is a blending of art/architecture and biomimetics/bioinspiration, and incorporates a bioinspired design from the outset in all parts of the work at all scales. Herein, we examine various attempts to date of art and architecture to incorporate bioinspired design into their practice, and provide an outlook and provocation to encourage collaboration among scientists and designers, with the aim of achieving bioarchitecture.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).
Constructing a scientist: expert authority and public images of Rachel Carson.
Hecht, David K
2011-01-01
This article uses the voluminous public discourse around Rachel Carson and her controversial bestseller "Silent Spring" to explore Americans' views on science and scientists. Carson provides a particularly interesting case study because of intense and public debates over whether she was a scientist at all, and therefore whether her book should be granted legitimacy as science. Her career defied easy classification, as she acted variously as writer, activist, and environmentalist in addition to scientist. Defending her work as legitimate science, which many though not all commentators did, therefore became an act of defining what both science and scientists could and should be. This article traces the variety of nonscientific images and narratives readers and writers assigned to Carson, such as 'reluctant crusader' and 'scientist-poet'. It argues that nonscientific attributes were central to legitimating her as both admirable person and admirable scientist. It explores how debates over "Silent Spring" can be usefully read as debates over the desirability of putatively nonscientific attributes in the professional work of a scientist. And it examines the nature of Carson's very democratized image for changing notions of science and scientists in 1960s United States politics and culture.
Overcoming Breakdowns and Engaging the Public
NASA Astrophysics Data System (ADS)
Bowman, T. E.
2012-12-01
With strong climate science evidence readily available, why do major segments of the public remain disengaged? Decades of social science research and practical communications experience indicate that prioritizing and structuring information, choosing appropriate messengers, and adapting to audience interests and learning styles are vital, yet often ignored criteria. This session will explore key differences between communications models within the science community and effective outreach to non-scientist audiences. Here, prioritizing goals, understanding preconceptions and identifying intervention opportunities require careful examination. "Public engagement" is defined as encouraging and enabling people to make informed choices on their own behalf. Crucial barriers identified in economics, political psychology and audience segmentation research will be addressed, and recommendations for more effective engagement will emerge including: defining realistic goals, simplifying science content accurately, avoiding values conflicts that prevent learning, enlisting trusted messengers, and matching a call to action to the scale of the challenge in ways people can embrace.
Strangers at the Benchside: Research Ethics Consultation
Cho, Mildred K.; Tobin, Sara L.; Greely, Henry T.; McCormick, Jennifer; Boyce, Angie; Magnus, David
2008-01-01
Institutional ethics consultation services for biomedical scientists have begun to proliferate, especially for clinical researchers. We discuss several models of ethics consultation and describe a team-based approach used at Stanford University in the context of these models. As research ethics consultation services expand, there are many unresolved questions that need to be addressed, including what the scope, composition, and purpose of such services should be, whether core competencies for consultants can and should be defined, and how conflicts of interest should be mitigated. We make preliminary recommendations for the structure and process of research ethics consultation, based on our initial experiences in a pilot program. PMID:18570086
Structural racism and health inequities in the USA: evidence and interventions.
Bailey, Zinzi D; Krieger, Nancy; Agénor, Madina; Graves, Jasmine; Linos, Natalia; Bassett, Mary T
2017-04-08
Despite growing interest in understanding how social factors drive poor health outcomes, many academics, policy makers, scientists, elected officials, journalists, and others responsible for defining and responding to the public discourse remain reluctant to identify racism as a root cause of racial health inequities. In this conceptual report, the third in a Series on equity and equality in health in the USA, we use a contemporary and historical perspective to discuss research and interventions that grapple with the implications of what is known as structural racism on population health and health inequities. Structural racism refers to the totality of ways in which societies foster racial discrimination through mutually reinforcing systems of housing, education, employment, earnings, benefits, credit, media, health care, and criminal justice. These patterns and practices in turn reinforce discriminatory beliefs, values, and distribution of resources. We argue that a focus on structural racism offers a concrete, feasible, and promising approach towards advancing health equity and improving population health. Copyright © 2017 Elsevier Ltd. All rights reserved.
An organizing framework for wilderness values
John C. Bergstrom; J. Michael Bowker; H. Ken Cordell
2005-01-01
Scientists, philosophers, poets, and politicians have defined wilderness in various physical, biological, and metaphysical terms. Following a metaphysical line of thought, wilderness has been described as a subjective "idea" in the mind of the beholder (Oelschlaeger, 1991). The Wilderness Act uses many physical and biological terms to define statutory...
How to measure the internationality of scientific publications.
Buela-Casal, Gualberto; Zych, Izabela
2012-01-01
Although the term "internationality" has never been defined by consensus, it is commonly used as a synonym of quality. Even though its meaning has never been established, internationality is frequently used to evaluate scientists, publications, or universities in many different countries. The present investigation is based on the opinion about the meaning of the concept "internationality" of the members of scientific community, represented by a broad sample of 16,056 scientists from 109 countries working in all the fields of knowledge defined by UNESCO. The sample was randomly selected from the Web of Science database from the scientists who have published at least one article in one of the journals indexed by the database. A questionnaire based on eleven criteria was designed for the purpose of the study. As a result, the first measure of internationality has been obtained. The most important criteria of internationality are: the publication language, online access, and international publication standards. There are significant differences among geographic zones and fields of knowledge.
Measurements of Immune Responses for Establishing Correlates of Vaccine Protection Against HIV
Burgers, Wendy A.; Manrique, Amapola; McKinnon, Lyle R.; Reynolds, Matthew R.; Rolland, Morgane; Blish, Catherine; Chege, Gerald K.; Curran, Rhonda; Fischer, William; Herrera, Carolina; Sather, D. Noah
2012-01-01
Abstract Well-defined correlates of protective immunity are an essential component of rational vaccine development. Despite years of basic science and three HIV vaccine efficacy trials, correlates of immunological protection from HIV infection remain undefined. In December 2010, a meeting of scientists engaged in basic and translational work toward developing HIV-1 vaccines was convened. The goal of this meeting was to discuss current opportunities and optimal approaches for defining correlates of protection, both for ongoing and future HIV-1 vaccine candidates; specific efforts were made to engage young scientists. We discuss here the highlights from the meeting regarding the progress made and the way forward for a protective HIV-1 vaccine. PMID:21861777
Evaluating the Skill of Students to Determine Soil Morphology Characteristics
ERIC Educational Resources Information Center
Post, Donald F.; Parikh, Sanjai J.; Papp, Rae Ann; Ferriera, Laerta
2006-01-01
Precise and accurate pedon descriptions prepared by field scientists using standard techniques with defined terminology and methodology are essential in describing soil pedons. The accuracy of field measurements generally are defined in terms of how well they agree with objective criteria (e.g., laboratory analysis), such as mechanical analysis…
The role of inspiration in scientific scholarship and discovery: views of theistic scientists.
O'Grady, Kari A; Richards, P Scott
2011-01-01
This qualitative research study examined the ways those who identify themselves as theistic scientists and scholars experience inspiration, as defined as divine guidance or influence, in their scientific scholarship and discovery. It also explored participants' beliefs about how scientists and scholars can seek and prepare to receive inspiration in their work. Open-ended surveys of 450 participants from the behavioral and natural sciences and from a variety of religious backgrounds were analyzed for content themes in the areas of experiences with inspiration, preparing to receive inspiration, and further thoughts on inspiration in science. The themes extracted indicated that these scientists and scholars have experienced inspiration throughout all stages of the research process. They also believe that certain practices and virtues, such as openness to inspiration and nurturing a relationship with God, can help scientists and scholars be more prepared to receive inspiration in their work. Copyright © 2011 Elsevier Inc. All rights reserved.
Cambon, Linda; Alla, François
2013-01-01
It is becoming increasingly necessary, in France, to develop a more efficient public health policy and define research in terms of the perspective of its use for public decisions and clinical practice. One possible solution consists of knowledge transfer and sharing based on a continuous exchange and interaction process between scientists and potential users of research data - field workers and health policy decision-makers. Such a process would involve collaboration with users to help them apply the evidence produced by research as well as the mobilization of research scientists to develop research more adapted to needs. This article defines the goals of development of knowledge transfer in the French setting. The conceptual bases are defined and four strategic axes and their operational modalities are developed. This proposal also integrates all of the public authorities concerned: promote knowledge transfer; reinforce observation and diffusion of evidence and its usability; promote the development of more adapted public health research by facilitating research scientist /research data user relationships; assist the various parties in the exchange and sharing of knowledge. Apart from improving the efficiency of health policies, the development of knowledge transfer and sharing would also strengthen the credibility of certain intervention strategies, especially in the field of prevention, by designing evidence-based strategies.
ERIC Educational Resources Information Center
Yore, Larry D.; Florence, Marilyn K.; Pearson, Terry W.; Weaver, Andrew J.
2006-01-01
This autobiographical case study of two scientists involved in earlier studies documents a profile of each scientist. These profiles were used to develop semi-structured interview protocols and email surveys for each scientist. The central issues of these data collections were whether these modern, evaluativist scientists believe that the…
The evolving role of data scientist during 20 years of the British Atmospheric Data Centre (Invited)
NASA Astrophysics Data System (ADS)
Pascoe, S.; Parton, G.; Pascoe, C.; Guillory, A.; da Costa, E. D.
2013-12-01
In 2014 The British Atmospheric Data Centre (BADC), now part of the Centre of Environmental Data Archival (CEDA), will celebrate its 20th anniversary. During its lifetime, most BADC staff have defined themselves as data scientists by virtue of being scientists by background and "data workers" by practice. However, the definition of data scientist has been ill defined until recently. As the term has become popularised in the world of business and general information technology, we ask ourselves to what extent the popular definition fits our profession. We observe that data science, as practised at CEDA, encompasses several roles which overlap and compliment each other as we strive to be enablers of data exploitation. For us a data scientist's skills include elements of data curation, software engineering, data infrastructure management and data-intensive research. As data science has evolved the balance between these roles has shifted in response to changes in technology, demands of the research community and funding drivers. We have had to balance our role as enablers of data exploitation, by providing services and infrastructure to the geo-science community, with our role as pioneers of data exploitation itself. By telling the story of how these roles have evolved during the 20 year history of the BADC, we aim to explore the maturing role of data scientist as practised within the geo-sciences and contrast that role with its recently popularised usage. Looking forward we will address questions about how centres of expertise, such as CEDA, can best increase the data capabilities of geo-science research as a whole in order to facilitate the transition to data-intensive science.
Ethics in research: current issues for dental researchers and their professional society.
Frankel, M S
1994-11-01
Values associated with scientific investigations affect the conduct, evaluation, and reporting of research and lead to ethical issues for scientists engaged in dental research. This essay examines the relationship between scientists and the larger society in which they work, and how that relationship defines the boundaries of scientific freedom and autonomy, on the one hand, and scientific responsibility and accountability, on the other. Values underlie disputes over data sharing, perceptions of conflict of interest, and scientists' commitment to research integrity. Professional societies, such as the IADR, can be a major influence in shaping the moral tone and ethical climate for research through the adoption of standards, the development of educational programs designed to reinforce those standards, and the public recognition of responsible conduct on the part of scientists.
Frodeman, R.
2000-01-01
Scientists employed by agencies of the US government (and by extension, those working at universities who are recipients of federal grants) have distinctive responsibilities to the community that supports their work. Traditionally, such public scientists retreated behind a veil of objectivity thought to define scientific knowledge. But this approach today fails on both epistemological and political grounds. Most striking is the fact that the very stance of principled distance from societal debates has opened the scientist to charges of irrelevance. What is the distinctive role of federal science agencies in society? Is there a way out of the dilemma in which government scientists are seen as irrelevant, or if relevant, biased? It is argued here that the notion of a public self offers a means out of this dilemma. (C) 2000 Published by Elsevier Science Ltd.
Communicating about bioenergy sustainability.
Dale, Virginia H; Kline, Keith L; Perla, Donna; Lucier, Al
2013-02-01
Defining and measuring sustainability of bioenergy systems are difficult because the systems are complex, the science is in early stages of development, and there is a need to generalize what are inherently context-specific enterprises. These challenges, and the fact that decisions are being made now, create a need for improved communications among scientists as well as between scientists and decision makers. In order for scientists to provide information that is useful to decision makers, they need to come to an agreement on how to measure and report potential risks and benefits of diverse energy alternatives in a way that allows decision makers to compare options. Scientists also need to develop approaches that contribute information about problems and opportunities relevant to policy and decision making. The need for clear communication is especially important at this time when there is a plethora of scientific papers and reports and it is difficult for the public or decision makers to assess the merits of each analysis. We propose three communication guidelines for scientists whose work can contribute to decision making: (1) relationships between the question and the analytical approach should be clearly defined and make common sense; (2) the information should be presented in a manner that non-scientists can understand; and (3) the implications of methods, assumptions, and limitations should be clear. The scientists' job is to analyze information to build a better understanding of environmental, cultural, and socioeconomic aspects of the sustainability of energy alternatives. The scientific process requires transparency, debate, review, and collaboration across disciplines and time. This paper serves as an introduction to the papers in the special issue on "Sustainability of Bioenergy Systems: Cradle to Grave" because scientific communication is essential to developing more sustainable energy systems. Together these four papers provide a framework under which the effects of bioenergy can be assessed and compared to other energy alternatives to foster sustainability.
Biotechnology Protein Expression and Purification Facility
NASA Technical Reports Server (NTRS)
2003-01-01
The purpose of the Project Scientist Core Facility is to provide purified proteins, both recombinant and natural, to the Biotechnology Science Team Project Scientists and the NRA-Structural Biology Test Investigators. Having a core facility for this purpose obviates the need for each scientist to develop the necessary expertise and equipment for molecular biology, protein expression, and protein purification. Because of this, they are able to focus their energies as well as their funding on the crystallization and structure determination of their target proteins.
Defining Operational Space Suit Requirements for Commercial Orbital Spaceflight
NASA Technical Reports Server (NTRS)
Alpert, Brian K.
2015-01-01
As the commercial spaceflight industry transitions from suborbital brevity to orbital outposts, spacewalking will become a major consideration for tourists, scientists, and hardware providers. The challenge exists to develop a space suit designed for the orbital commercial spaceflight industry. The unique needs and requirements of this industry will drive space suit designs and costs that are unlike any existing product. Commercial space tourists will pay for the experience of a lifetime, while scientists may not be able to rely on robotics for all operations and external hardware repairs. This study was aimed at defining space suit operational and functional needs across the spectrum of spacewalk elements, identifying technical design drivers and establishing appropriate options. Recommendations from the analysis are offered for consideration
NCI Scientists Solve Structure of Protein that Enables MERS Virus to Spread | Poster
Scientists at the Frederick National Lab have produced three crystal structures that reveal a specific part of a protein that can be targeted to fight the Middle East respiratory syndrome coronavirus (MERS-CoV), which causes an emerging viral respiratory illness. Senior Investigator David Waugh, Ph.D., Macromolecular Crystallography Laboratory, has solved the structure of an
Pupovac, Vanja; Prijić-Samaržija, Snježana; Petrovečki, Mladen
2017-02-01
The prevalence and characteristics of research misconduct have mainly been studied in highly developed countries. In moderately or poorly developed countries such as Croatia, data on research misconduct are scarce. The primary aim of this study was to determine the rates at which scientists report committing or observing the most serious forms of research misconduct, such as falsification , fabrication, plagiarism, and violation of authorship rules in the Croatian scientific community. Additionally, we sought to determine the degree of development and the extent of implementation of the system for defining and regulating research misconduct in a typical scientific community in Croatia. An anonymous questionnaire was distributed among 1232 Croatian scientists at the University of Rijeka in 2012/2013 and 237 (19.2 %) returned the survey. Based on the respondents who admitted having committed research misconduct, 9 (3.8 %) admitted to plagiarism, 22 (9.3 %) to data falsification, 9 (3.8 %) to data fabrication, and 60 (25.3 %) respondents admitted to violation of authorship rules. Based on the respondents who admitted having observed research misconduct of fellow scientists, 72 (30.4 %) observed plagiarism, 69 (29.1 %) observed data falsification, 46 (19.4 %) observed data fabrication, and 132 (55.7 %) respondents admitted having observed violation of authorship rules. The results of our study indicate that the efficacy of the system for managing research misconduct in Croatia is poor. At the University of Rijeka there is no document dedicated exclusively to research integrity, describing the values that should be fostered by a scientist and clarifying the forms of research misconduct and what constitutes a questionable research practice. Scientists do not trust ethical bodies and the system for defining and regulating research misconduct; therefore the observed cases of research misconduct are rarely reported. Finally, Croatian scientists are not formally educated about responsible conduct of research at any level of their formal education. All mentioned indicate possible reasons for higher rates of research misconduct among Croatian scientists in comparison with scientists in highly developed countries.
On Responsibility of Scientists
NASA Astrophysics Data System (ADS)
Burdyuzha, Vladimir
The situation of modern world is analised. It is impossible for our Civilization when at least half of the World Scientists are engaged in research intended to solve military problems. Civilization cannot be called reasonable so long as it spends a huge portion of national incomes on armaments. For resolution of our global problems International Scientific Center - Brain Trust of planet must be created, the status of which should be defined and sealed by the UN organization.
Scientific habits of mind: A reform of structure and relationships
NASA Astrophysics Data System (ADS)
Mooney, Linda Beth
This research was designed to broaden current elementary science reform efforts by including the voices of our young scientists. Ten high school students who were defined as possessing both coherent science knowledge and scientific habits of mind were selected for the study. Through a three-part series of in-depth, phenomenological interviews, these students revealed early childhood experiences from birth through age ten to which they attributed their development of science knowledge and scientific habits of mind. Educational connoisseurship and criticism provided the framework through which the experiences were analyzed. The research revealed the overwhelming role of scientific habits of mind in the current success of these young scientists. Scientific habits of mind were developed through the structures and relationships in the home. Parents of the participants provided a non-authoritarian, fun, playful, tolerant atmosphere in which messes and experimentation were the norm. Large blocks of uninterrupted, unstructured time and space that "belonged" to the child allowed these children to follow where curiosity led. Frequently, the parent modeled scientific habits of mind. Good discipline in the minds of these families had nothing to do with punishments, rewards, or rules. The parents gave the children responsibilities, "free rein," and their trust, and the children blossomed in that trust and mutual respect. Parents recognized and supported the uniqueness, autonomy, interests, and emotions of the child. Above all, the young scientists valued the time, freedom, patience, and emotional support provided by their parents. For girls, construction toys, hot wheels, sand boxes, and outdoor experiences were particularly important. Art classes, free access to art media, sewing, music, and physical activity facilitated observational skills and spatial relationship development. The girls knew that doing traditionally masculine and feminine activities were acceptable and celebrated by both parents. The time has come to include scientific habits of mind in science education reform. The time has come for science education reform to espouse fun and playfulness, large blocks of unstructured time, responsibility and trust, emotional support, and caring teacher-child relationships. The time has come to listen to the voices of our young scientists.
NASA Astrophysics Data System (ADS)
Wright, D. J.
2013-12-01
In the early 1990s the author came of age as the technology driving the geographic information system or GIS was beginning to successfully 'handle' geospatial data at a range of scales and formats, and a wide array of information technology products emerged from an expanding GIS industry. However, that small community struggled to reflect the diverse research efforts at play in understanding the deeper issues surrounding geospatial data, and the impediments to that effective use of that data. It was from this need that geographic information science or GIScience arose, to ensure in part that GIS did not fall into the trap of being a technology in search of applications, a one-time, one-off, non-intellectual 'bag of tricks' with no substantive theory underpinning it, and suitable only for a static period of time (e.g., Goodchild, 1992). The community has since debated the issue of "tool versus science' which has also played a role in defining GIS as an actual profession. In turn, GIS has contributed to "methodological versus substantive" questions in science, leading to understandings of how the Earth works versus how the Earth should look. In the author's experience, the multidimensional structuring and scaling data, with integrative and innovative approaches to analyzing, modeling, and developing extensive and spatial data from selected places on land and at sea, have revealed how theory and application are in no way mutually exclusive, and it may often be application that advances theory, rather than vice versa. Increasingly, both the system and science of geographic information have welcomed strong collaborations among computer scientists, information scientists, and domain scientists to solve complex scientific questions. As such, they have paralleled the emergence and acceptance of "data science." And now that we are squarely in an era of regional- to global-scale observation and simulation of the Earth, produce data that are too big, move too fast, and do not fit the structures and processing capacity of conventional database systems, and the author reflects on how the potential of the GIS/GIScience world to contribute to the training and professional advancement of data science.
Bessner, Daniel
2015-01-01
Historians argue that in the early Cold War an interdisciplinary research culture defined the RAND Corporation. However, a significant epistemological gap divided the members of RAND's Social Science Division (SSD) from the rest of the organization. While the social scientists used qualitative methods, most RAND researchers embraced quantified approaches and derided the social sciences as unscientific. This encouraged RAND's social scientists to develop a political-military simulation that embraced everything-politics, culture, and psychology-that RAND's other analysts largely ignored. Yet the fact that the SSD embraced gaming, a heuristic practiced throughout RAND, suggests that the political simulation was nonetheless inspired by social scientists' engagement with their colleagues. This indicates that the concept of interdisciplinarity should move beyond its implication of collaboration to incorporate instances in which research agendas are defined against but also shaped by colleagues in other disciplines. Such a rethinking of the term may make it possible to trace how varieties of interdisciplinary interaction historically informed knowledge production. © 2014 Wiley Periodicals, Inc.
Building mud castles: a perspective from brick-laying termites.
Zachariah, Nikita; Das, Aritra; Murthy, Tejas G; Borges, Renee M
2017-07-05
Animal constructions such as termite mounds have received scrutiny by architects, structural engineers, soil scientists and behavioural ecologists but their basic building blocks remain uncharacterized and the criteria used for material selection unexplored. By conducting controlled experiments on Odontotermes obesus termites, we characterize the building blocks of termite mounds and determine the key elements defining material choice and usage by these accomplished engineers. Using biocement and a self-organized process, termites fabricate, transport and assemble spherical unitary structures called boluses that have a bimodal size distribution, achieving an optimal packing solution for mound construction. Granular, hydrophilic, osmotically inactive, non-hygroscopic materials with surface roughness, rigidity and containing organic matter are the easiest to handle and are crucial determinants of mass transfer during mound construction. We suggest that these properties, along with optimal moisture availability, are important predictors of the global geographic distribution of termites.
Forensic scientists' conclusions: how readable are they for non-scientist report-users?
Howes, Loene M; Kirkbride, K Paul; Kelty, Sally F; Julian, Roberta; Kemp, Nenagh
2013-09-10
Scientists have an ethical responsibility to assist non-scientists to understand their findings and expert opinions before they are used as decision-aids within the criminal justice system. The communication of scientific expert opinion to non-scientist audiences (e.g., police, lawyers, and judges) through expert reports is an important but under-researched issue. Readability statistics were used to assess 111 conclusions from a proficiency test in forensic glass analysis. The conclusions were written using an average of 23 words per sentence, and approximately half of the conclusions were expressed using the active voice. At an average Flesch-Kincaid Grade level of university undergraduate (Grade 13), and Flesch Reading Ease score of difficult (42), the conclusions were written at a level suitable for people with some tertiary education in science, suggesting that the intended non-scientist readers would find them difficult to read. To further analyse the readability of conclusions, descriptive features of text were used: text structure; sentence structure; vocabulary; elaboration; and coherence and unity. Descriptive analysis supported the finding that texts were written at a level difficult for non-scientists to read. Specific aspects of conclusions that may pose difficulties for non-scientists were located. Suggestions are included to assist scientists to write conclusions with increased readability for non-scientist readers, while retaining scientific integrity. In the next stage of research, the readability of expert reports in their entirety is to be explored. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Sidhu, Ravinder; Yeoh, Brenda; Chang, Sushila
2015-01-01
This paper investigates the geographic and professional mobility of scientists employed in Singapore's publicly funded research institutes in various techno-and lifescience specialisations. Using Bourdieu's conceptual framework, we analyse the capital portfolios of individual scientists against the structures of power which have informed…
Superheroes and supervillains: reconstructing the mad-scientist stereotype in school science
NASA Astrophysics Data System (ADS)
Avraamidou, Lucy
2013-04-01
Background. Reform recommendations around the world call for an understanding about the nature of science and the work of scientists. However, related research findings provide evidence that students hold stereotypical views of scientists and the nature of their work. Purpose The aim of this case study was to examine the impact of an intervention on 15 elementary school students' views of scientists. Sample An urban, fifth-grade, European elementary school classroom defined the context of this study. Design and method The intervention was an 11-week-long investigation of a local problem concerning water quality. In carrying out this investigation the students collaborated with a young metrology scientist to collect and analyse authentic data that would help them to construct a claim about the quality of the water. The students' initial views of scientists were investigated through a drawing activity, classroom discussions and interviews. Results Analysis of these data indicated that all students but one girl held very stereotypical views on scientists and the nature of their work. Analysis of interviews with each student and classroom discussions after the intervention illustrated that they reconstructed their stereotypical views of scientists and the nature of their work owing to their personal engagement in the investigation and their collaboration with the scientist. Conclusions The findings of this study suggest that more in-depth study into project-based approaches, out-of-school learning and school-scientist partnerships is warranted, for the purpose of determining appropriate pedagogies that support students in developing up-to-date understanding about scientists and the nature of their work.
Chesapeake Bay impact structure: A blast from the past
Powars, David S.; Edwards, Lucy E.; Gohn, Gregory S.; Horton, J. Wright
2015-10-28
Since its discovery in the early 1990s, scientists have conducted deep drilling and geophysical surveys of the impact structure to find out more about its size, composition, structure, age, and biological effects and to understand its lingering influences on the regional groundwater system. These efforts culminated in the drilling of a 1-mile-deep, continuously sampled corehole in 2005 by an international group of scientists and agencies.
Hatzenbuehler, Mark L.
2016-01-01
Psychological research has provided essential insights into how stigma operates to disadvantage those who are targeted by it. At the same time, stigma research has been criticized for being too focused on the perceptions of stigmatized individuals and on micro-level interactions, rather than attending to structural forms of stigma. This article describes the relatively new field of research on structural stigma, which is defined as societal-level conditions, cultural norms, and institutional policies that constrain the opportunities, resources, and wellbeing of the stigmatized. I review emerging evidence that structural stigma related to mental illness and sexual orientation (1) exerts direct and synergistic effects on stigma processes that have long been the focus of psychological inquiry (e.g., concealment, rejection sensitivity); (2) serves as a contextual moderator of the efficacy of psychological interventions; and (3) contributes to numerous adverse health outcomes for members of stigmatized groups—ranging from dysregulated physiological stress responses to premature mortality—indicating that structural stigma represents an under-recognized mechanism producing health inequalities. Each of these pieces of evidence suggests that structural stigma is relevant to psychology and therefore deserves the attention of psychological scientists interested in understanding and ultimately reducing the negative effects of stigma. PMID:27977256
NASA Astrophysics Data System (ADS)
Love, A. M.
2003-12-01
Many graduate students, researchers and scientists may not be aware that there are other career opportunities available to them as scientists besides the traditional academic, government, industrial and private sector tracks. Subject specialists with science backgrounds are in great demand. Knowledge management and information services affiliated with science and research is an exciting and creative profession. Contributing to, finding and delivering the range of information now emerging from new and established disciplines in all formats defines Information Science and Librarianship with a multitude of opportunities. This poster will offer information to encourage students and researchers with these skills and backgrounds to consider Information and Library Science as an exciting career path.
"The Volunteer Monitor" Newsletter: A National Publication for Citizen Scientists (Invited)
NASA Astrophysics Data System (ADS)
Ely, E.
2009-12-01
Citizen scientists have many communication tools available, including listservs, blogs, websites, and online discussion groups. What is the role of traditional publications such as newsletters or journals in this new environment? This presentation will summarize lessons learned from the 20-year history of The Volunteer Monitor newsletter, a national publication that provides a networking and information-sharing forum for citizen scientists engaged in water quality monitoring. The presenter, who has been the editor of The Volunteer Monitor since 1990, will emphasize practical tips for editors or prospective editors. Topics will include defining the publication's mission and target audience, obtaining submissions, communicating with authors, and applying basic journalistic techniques to enhance the usefulness and readability of articles.
The Social Scientist as Public Intellectual: Critical Reflections in a Changing World
ERIC Educational Resources Information Center
Gattone, Charles
2006-01-01
What is the role of the social scientist in public affairs? How have changes in the structure of the university system and the culture of academia reshaped the opportunities and constraints facing contemporary scholars? "The Social Scientist as Public Intellectual" addresses these and other questions by reviewing the ideas of seminal…
Quality assurance of multiport image-guided minimally invasive surgery at the lateral skull base.
Nau-Hermes, Maria; Schmitt, Robert; Becker, Meike; El-Hakimi, Wissam; Hansen, Stefan; Klenzner, Thomas; Schipper, Jörg
2014-01-01
For multiport image-guided minimally invasive surgery at the lateral skull base a quality management is necessary to avoid the damage of closely spaced critical neurovascular structures. So far there is no standardized method applicable independently from the surgery. Therefore, we adapt a quality management method, the quality gates (QG), which is well established in, for example, the automotive industry and apply it to multiport image-guided minimally invasive surgery. QG divide a process into different sections. Passing between sections can only be achieved if previously defined requirements are fulfilled which secures the process chain. An interdisciplinary team of otosurgeons, computer scientists, and engineers has worked together to define the quality gates and the corresponding criteria that need to be fulfilled before passing each quality gate. In order to evaluate the defined QG and their criteria, the new surgery method was applied with a first prototype at a human skull cadaver model. We show that the QG method can ensure a safe multiport minimally invasive surgical process at the lateral skull base. Therewith, we present an approach towards the standardization of quality assurance of surgical processes.
Quality Assurance of Multiport Image-Guided Minimally Invasive Surgery at the Lateral Skull Base
Nau-Hermes, Maria; Schmitt, Robert; Becker, Meike; El-Hakimi, Wissam; Hansen, Stefan; Klenzner, Thomas; Schipper, Jörg
2014-01-01
For multiport image-guided minimally invasive surgery at the lateral skull base a quality management is necessary to avoid the damage of closely spaced critical neurovascular structures. So far there is no standardized method applicable independently from the surgery. Therefore, we adapt a quality management method, the quality gates (QG), which is well established in, for example, the automotive industry and apply it to multiport image-guided minimally invasive surgery. QG divide a process into different sections. Passing between sections can only be achieved if previously defined requirements are fulfilled which secures the process chain. An interdisciplinary team of otosurgeons, computer scientists, and engineers has worked together to define the quality gates and the corresponding criteria that need to be fulfilled before passing each quality gate. In order to evaluate the defined QG and their criteria, the new surgery method was applied with a first prototype at a human skull cadaver model. We show that the QG method can ensure a safe multiport minimally invasive surgical process at the lateral skull base. Therewith, we present an approach towards the standardization of quality assurance of surgical processes. PMID:25105146
2004-03-04
A tree trunk structure photographed in the La Selva region of the Costa Rican rain forest as part of NASA's AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to do. NASA's AIRSAR technolgy provides two essential elements to the ground-based scientists. First, it tests and provides accurate measurements of the forest structure. Secondly, AirSAR can study a larger area of the forest versus the smaller area that can be tested and plotted by the ground scientists. It also provides a unique one-of-a-kind system of measurement that obtains important information for the scientists, such as where forests are located and what exactly is in them.
Annette Puttkammer; Vita Wright
2001-01-01
Opportunities for unique visitor experiences are among the defining attributes of wilderness. In order to understand and protect these experiences, natural and social scientists have pursued an ever-expanding program of wildland recreation research. While much of the early research sought to identify simple relationships between setting attributes and visitor...
Center for computation and visualization of geometric structures. Final report, 1992 - 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-01
This report describes the overall goals and the accomplishments of the Geometry Center of the University of Minnesota, whose mission is to develop, support, and promote computational tools for visualizing geometric structures, for facilitating communication among mathematical and computer scientists and between these scientists and the public at large, and for stimulating research in geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chianelli, R.
2005-01-12
Development of synchrotron techniques for the determination of the structure of disordered, amorphous and surface materials has exploded over the past twenty years due to the increasing availability of high flux synchrotron radiation and the continuing development of increasingly powerful synchrotron techniques. These techniques are available to materials scientists who are not necessarily synchrotron scientists through interaction with effective user communities that exist at synchrotrons such as the Stanford Synchrotron Radiation Laboratory (SSRL). In this article we review the application of multiple synchrotron characterization techniques to two classes of materials defined as ''surface compounds.'' One class of surface compounds aremore » materials like MoS{sub 2-x}C{sub x} that are widely used petroleum catalysts used to improve the environmental properties of transportation fuels. These compounds may be viewed as ''sulfide supported carbides'' in their catalytically active states. The second class of ''surface compounds'' is the ''Maya Blue'' pigments that are based on technology created by the ancient Maya. These compounds are organic/inorganic ''surface complexes'' consisting of the dye indigo and palygorskite, a common clay. The identification of both surface compounds relies on the application of synchrotron techniques as described in this report.« less
Growing a Global Perspective: Utilizing Graduate Students as Scientists in the Classroom
NASA Astrophysics Data System (ADS)
Martinez, A.; Prouhet, T.; Kincaid, J.; Williams, N.; Simms, M.; Evans, R.
2006-12-01
Advancing Geospatial Skills in Science and Social Sciences (AGSSS) is a NSF GK12 program designed to produce scientists with an interest in and skills related to education by bringing graduate students (termed Fellows) into science and social science classrooms. The AGSSS program is unique in the GK-12 program because of its emphasis on spatial thinking with and through geospatial technologies. Spatial thinking is defined as the knowledge, skills, and habits of mind to use concepts of space, tools of representation, and processes of reasoning to structure problems, find answers and express solutions to these problems. Working collaboratively, Fellows assist teachers in using technologies (many freely available) such as virtual globes, GIS, GPS, NASA's ISSEarthKAM, and online databases. Fellows also customize existing curricula based on teacher requests to focus on spatial thinking and skill development. Preliminary results of the program reveal that students' use of geospatial technologies in interactive lessons that highlight real world processes and global perspectives encourages the development of higher order thinking skills. Fellows perceive three primary benefits: developing collaboration and communication skills, solidifying their own understandings of spatial thinking and becoming more aware and skilled in working in educational settings.
Carl Sagan and Joseph Shklovsky: Intelligent Life in the Universe
NASA Astrophysics Data System (ADS)
Kurt, Vladimir
J. S. Shklovsky and Carl Sagan played an outstanding role in modern astronomy. Their names are well known not only to professional astronomers, but also to millions of educated people in many countries, which are interested in modern state of science research. Among these trends of modern science, which are difficult to define, are such problems, as the creation of Solar system, the origin of life on Earth, the evolution of living organisms on Earth from the simplest viruses to Homo Sapiens, the evolution of intelligence and technology. Finally, both outstanding scientists were deeply interested in the problem of SETI (Search Extraterrestrial Intelligence), i.e. search of extraterrestrial civilizations and methods of making contacts with them. And both scientists were high professionals in their fields. Joseph Shklovsky was a theoretical astronomer in all fields of modern astronomy (geophysics and physics of the upper atmosphere of the Earth, Sun and Solar Corona, Interplanetary Medium and Solar Wind, Interstellar Medium, Supernova and their remnants, the Galaxy and galaxies, Quasars and Cosmology). There is hardly a field in modern astrophysics (except perhaps the theory of the interior structure of stars), where Joseph Shklovsky has not l a bright stamp of his talent…
Hamaker, Bruce R; Tuncil, Yunus E
2014-11-25
Even though there are many factors that determine the human colon microbiota composition, diet is an important one because most microorganisms in the colon obtain energy for their growth by degrading complex dietary compounds, particularly dietary fibers. While fiber carbohydrates that escape digestion in the upper gastrointestinal tract are recognized to have a range of structures, the vastness in number of chemical structures from the perspective of the bacteria is not well appreciated. In this article, we introduce the concept of "discrete structure" that is defined as a unique chemical structure, often within a fiber molecule, which aligns with encoded gene clusters in bacterial genomes. The multitude of discrete structures originates from the array of different fiber types coupled with structural variations within types due to genotype and growing environment, anatomical parts of the grain or plant, discrete regions within polymers, and size of oligosaccharides and small polysaccharides. These thousands of discrete structures conceivably could be used to favor bacteria in the competitive colon environment. A global framework needs to be developed to better understand how dietary fibers can be used to obtain predicted changes in microbiota composition for improved health. This will require a multi-disciplinary effort that includes biological scientists, clinicians, and carbohydrate specialists. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Climate for Women in Academic Science: The Good, the Bad, and the Changeable
ERIC Educational Resources Information Center
Settles, Isis H.; Cortina, Lilia M.; Malley, Janet; Stewart, Abigail J.
2006-01-01
Deficits theory posits that women scientists have not yet achieved parity with men scientists because of structural aspects of the scientific environment that provide them with fewer opportunities and more obstacles than men. The current study of 208 faculty women scientists tested this theory by examining the effect of personal negative…
Bioinspired Photonic Pigments from Colloidal Self-Assembly.
Goerlitzer, Eric S A; Klupp Taylor, Robin N; Vogel, Nicolas
2018-05-07
The natural world is a colorful environment. Stunning displays of coloration have evolved throughout nature to optimize camouflage, warning, and communication. The resulting flamboyant visual effects and remarkable dynamic properties, often caused by an intricate structural design at the nano- and microscale, continue to inspire scientists to unravel the underlying physics and to recreate the observed effects. Here, the methodologies to create bioinspired photonic pigments using colloidal self-assembly approaches are considered. The physics governing the interaction of light with structural features and natural examples of structural coloration are briefly introduced. It is then outlined how the self-assembly of colloidal particles, acting as wavelength-scale building blocks, can be particularly useful to replicate coloration from nature. Different coloration effects that result from the defined structure of the self-assembled colloids are introduced and it is highlighted how these optical properties can be translated into photonic pigments by modifications of the assembly processes. The importance of absorbing elements, as well as the role of surface chemistry and wettability to control structural coloration is discussed. Finally, approaches to integrate dynamic control of coloration into such self-assembled photonic pigments are outlined. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cannon, Robert C; Gleeson, Padraig; Crook, Sharon; Ganapathy, Gautham; Marin, Boris; Piasini, Eugenio; Silver, R Angus
2014-01-01
Computational models are increasingly important for studying complex neurophysiological systems. As scientific tools, it is essential that such models can be reproduced and critically evaluated by a range of scientists. However, published models are currently implemented using a diverse set of modeling approaches, simulation tools, and computer languages making them inaccessible and difficult to reproduce. Models also typically contain concepts that are tightly linked to domain-specific simulators, or depend on knowledge that is described exclusively in text-based documentation. To address these issues we have developed a compact, hierarchical, XML-based language called LEMS (Low Entropy Model Specification), that can define the structure and dynamics of a wide range of biological models in a fully machine readable format. We describe how LEMS underpins the latest version of NeuroML and show that this framework can define models of ion channels, synapses, neurons and networks. Unit handling, often a source of error when reusing models, is built into the core of the language by specifying physical quantities in models in terms of the base dimensions. We show how LEMS, together with the open source Java and Python based libraries we have developed, facilitates the generation of scripts for multiple neuronal simulators and provides a route for simulator free code generation. We establish that LEMS can be used to define models from systems biology and map them to neuroscience-domain specific simulators, enabling models to be shared between these traditionally separate disciplines. LEMS and NeuroML 2 provide a new, comprehensive framework for defining computational models of neuronal and other biological systems in a machine readable format, making them more reproducible and increasing the transparency and accessibility of their underlying structure and properties.
Cannon, Robert C.; Gleeson, Padraig; Crook, Sharon; Ganapathy, Gautham; Marin, Boris; Piasini, Eugenio; Silver, R. Angus
2014-01-01
Computational models are increasingly important for studying complex neurophysiological systems. As scientific tools, it is essential that such models can be reproduced and critically evaluated by a range of scientists. However, published models are currently implemented using a diverse set of modeling approaches, simulation tools, and computer languages making them inaccessible and difficult to reproduce. Models also typically contain concepts that are tightly linked to domain-specific simulators, or depend on knowledge that is described exclusively in text-based documentation. To address these issues we have developed a compact, hierarchical, XML-based language called LEMS (Low Entropy Model Specification), that can define the structure and dynamics of a wide range of biological models in a fully machine readable format. We describe how LEMS underpins the latest version of NeuroML and show that this framework can define models of ion channels, synapses, neurons and networks. Unit handling, often a source of error when reusing models, is built into the core of the language by specifying physical quantities in models in terms of the base dimensions. We show how LEMS, together with the open source Java and Python based libraries we have developed, facilitates the generation of scripts for multiple neuronal simulators and provides a route for simulator free code generation. We establish that LEMS can be used to define models from systems biology and map them to neuroscience-domain specific simulators, enabling models to be shared between these traditionally separate disciplines. LEMS and NeuroML 2 provide a new, comprehensive framework for defining computational models of neuronal and other biological systems in a machine readable format, making them more reproducible and increasing the transparency and accessibility of their underlying structure and properties. PMID:25309419
The Science Race: Training and Utilization of Scientists and Engineers, US and USSR.
ERIC Educational Resources Information Center
Ailes, Catherine P.; Rushing, Francis W.
This book represents a comparison of the systems of training and utilization of scientists/engineers in the United States and Soviet Union. Chapter 1 provides a general description of the economic structure and organization in which the training of scientists/engineers is conducted and in which such trained personnel are employed. In chapters 2-5,…
The Rehabilitation Medicine Scientist Training Program
Whyte, John; Boninger, Michael; Helkowski, Wendy; Braddom-Ritzler, Carolyn
2016-01-01
Physician scientists are seen as important in healthcare research. However, the number of physician scientists and their success in obtaining NIH funding have been declining for many years. The shortage of physician scientists in Physical Medicine and Rehabilitation is particularly severe, and can be attributed to many of the same factors that affect physician scientists in general, as well as to the lack of well developed models for research training. In 1995, the Rehabilitation Medicine Scientist Training Program (RMSTP) was funded by a K12 grant from the National Center of Medical Rehabilitation Research (NCMRR), as one strategy for increasing the number of research-productive physiatrists. The RMSTP's structure was revised in 2001 to improve the level of preparation of incoming trainees, and to provide a stronger central mentorship support network. Here we describe the original and revised structure of the RMSTP and review subjective and objective data on the productivity of the trainees who have completed the program. These data suggest that RMSTP trainees are, in general, successful in obtaining and maintaining academic faculty positions and that the productivity of the cohort trained after the revision, in particular, shows impressive growth after about 3 years of training. PMID:19847126
NCI Scientists Solve Structure of Protein that Enables MERS Virus to Spread | Poster
Scientists at the Frederick National Lab have produced three crystal structures that reveal a specific part of a protein that can be targeted to fight the Middle East respiratory syndrome coronavirus (MERS-CoV), which causes an emerging viral respiratory illness. Senior Investigator David Waugh, Ph.D., Macromolecular Crystallography Laboratory, has solved the structure of an enzyme known as the 3C-like protease (3CLpro), which, if blocked, can prevent the virus from replicating...
Scientists Taking a Nature of Science Course: Beliefs and Learning Outcomes of Career Switchers
ERIC Educational Resources Information Center
Peters-Burton, Erin
2016-01-01
The purpose of the study was to examine what scientists studying to become teachers know about the nature of science (NOS) before, during and after a course focused on NOS. The 16 scientists had an average of 9.7 years of work experience. The course was structured to teach knowledge about the aspects of NOS, demonstrate effective methods of…
Structural stigma: Research evidence and implications for psychological science.
Hatzenbuehler, Mark L
2016-11-01
Psychological research has provided essential insights into how stigma operates to disadvantage those who are targeted by it. At the same time, stigma research has been criticized for being too focused on the perceptions of stigmatized individuals and on microlevel interactions, rather than attending to structural forms of stigma. This article describes the relatively new field of research on structural stigma, which is defined as societal-level conditions, cultural norms, and institutional policies that constrain the opportunities, resources, and well-being of the stigmatized. I review emerging evidence that structural stigma related to mental illness and sexual orientation (a) exerts direct and synergistic effects on stigma processes that have long been the focus of psychological inquiry (e.g., concealment, rejection sensitivity), (b) serves as a contextual moderator of the efficacy of psychological interventions, and (c) contributes to numerous adverse health outcomes for members of stigmatized groups-ranging from dysregulated physiological stress responses to premature mortality-indicating that structural stigma represents an underrecognized mechanism producing health inequalities. Each of these pieces of evidence suggests that structural stigma is relevant to psychology and therefore deserves the attention of psychological scientists interested in understanding and ultimately reducing the negative effects of stigma. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Appraisal of the papers of biomedical scientists and physicians for a medical archives.
Anderson, P G
1985-01-01
Numerous medical libraries house archival collections. This article discusses criteria for selecting personal papers of biomedical scientists and physicians for a medical archives and defines key terms, such as appraisal, manuscripts, papers, records, and series. Appraisal focuses on both collection and series levels. Collection-level criteria include the significance of a scientist's career and the uniqueness, coverage, and accessibility of the manuscripts. Series frequently found among medically related manuscripts are enumerated and discussed. Types of organizational records and the desirability of accessioning them along with manuscripts are considered. Advantages of direct communication with creators of manuscripts are described. The initial appraisal process is not the last word: reevaluation of materials must take place during processing and can be resumed long afterwards. PMID:4052673
Schmidt, C W
2001-01-01
Scientists expect that mapping the human genome will lead to a host of innovations in biology and research. For example, it may become possible to use DNA microarrays to accurately diagnose cancer and infectious disease subtypes and to predict clinical outcomes. Scientists might also use the genome to look at the interactions of the environment, genetic makeup, and toxic exposures, including the ability of certain beneficial genes to detoxify the body and resist disease. But despite the great potential of the field of genomics, scientists caution that public expectations need to be tempered by reality. People are as much a product of their environment as they are of their genes, say experts, and to suggest that genetics is the sole determinant that defines humans as individuals stretches the science beyond the current data. PMID:11171541
2010-01-01
Abstract Any definition is intricately connected to a theory that gives it meaning. Accordingly, this article discusses various definitions of life held in the astrobiology community by considering their connected “theories of life.” These include certain “list” definitions and a popular definition that holds that life is a “self-sustaining chemical system capable of Darwinian evolution.” We then act as “anthropologists,” studying what scientists do to determine which definition-theories of life they constructively hold as they design missions to seek non-terran life. We also look at how constructive beliefs about biosignatures change as observational data accumulate. And we consider how a definition centered on Darwinian evolution might itself be forced to change as supra-Darwinian species emerge, including in our descendents, and consider the chances of our encountering supra-Darwinian species in our exploration of the Cosmos. Last, we ask what chemical structures might support Darwinian evolution universally; these structures might be universal biosignatures. Key Words: Evolution—Life—Life detection—Biosignatures. Astrobiology 10, 1021–1030. PMID:21162682
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Kisailus; Lara Estroff; Himadri S. Gupta
The technical presentations and discussions at this symposium disseminated and assessed current research and defined future directions in biomaterials research, with a focus on structure-function relationships in biological and biomimetic composites. The invited and contributed talks covered a diverse range of topics from fundamental biology, physics, chemistry, and materials science to potential applications in developing areas such as light-weight composites, multifunctional and smart materials, biomedical engineering, and nanoscaled sensors. The invited speakers were chosen to create a stimulating program with a mixture of established and junior faculty, industrial and academic researchers, and American and international experts in the field. Thismore » symposium served as an excellent introduction to the area for younger scientists (graduate students and post-doctoral researchers). Direct interactions between participants also helped to promote potential future collaborations involving multiple disciplines and institutions.« less
Andrean examples of mega-geomorphology themes
NASA Technical Reports Server (NTRS)
Bloom, A. L.
1985-01-01
Geomorphic (or physiographic) provinces have been a well known and useful method of regional landform classification for a century. Every earth scientist will recognize a phrase such as Appalachian Plateau or Southern Rocky Mountains as defining a discrete region of consistent geologic structure that has experienced a similar interval of erosion by a similar process or set of processes. The geomorphic provinces formalized in the United States by Fenneman in the 1920's continue to be highly satisfactory even though some boundaries were only vaguely drawn. Mosaics of LANDSAT images illustrate better than any earlier maps the validity and coherence of Fenneman's provinces. The concept of geomorphic provinces has been used subconsciously or intuitively, to describe the relief of the ocean floor and the topography of the Moon and other planets.
The Computational Infrastructure for Geodynamics as a Community of Practice
NASA Astrophysics Data System (ADS)
Hwang, L.; Kellogg, L. H.
2016-12-01
Computational Infrastructure for Geodynamics (CIG), geodynamics.org, originated in 2005 out of community recognition that the efforts of individual or small groups of researchers to develop scientifically-sound software is impossible to sustain, duplicates effort, and makes it difficult for scientists to adopt state-of-the art computational methods that promote new discovery. As a community of practice, participants in CIG share an interest in computational modeling in geodynamics and work together on open source software to build the capacity to support complex, extensible, scalable, interoperable, reliable, and reusable software in an effort to increase the return on investment in scientific software development and increase the quality of the resulting software. The group interacts regularly to learn from each other and better their practices formally through webinar series, workshops, and tutorials and informally through listservs and hackathons. Over the past decade, we have learned that successful scientific software development requires at a minimum: collaboration between domain-expert researchers, software developers and computational scientists; clearly identified and committed lead developer(s); well-defined scientific and computational goals that are regularly evaluated and updated; well-defined benchmarks and testing throughout development; attention throughout development to usability and extensibility; understanding and evaluation of the complexity of dependent libraries; and managed user expectations through education, training, and support. CIG's code donation standards provide the basis for recently formalized best practices in software development (geodynamics.org/cig/dev/best-practices/). Best practices include use of version control; widely used, open source software libraries; extensive test suites; portable configuration and build systems; extensive documentation internal and external to the code; and structured, human readable input formats.
Tough Ceramic Mimics Mother of Pearl
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritchie, Robert
2008-12-05
Berkeley Lab scientists have mimicked the structure of mother of pearl to create what may well be the toughest ceramic ever produced. http://newscenter.lbl.gov/press-releases/2008/12/05/scientists-create-tough-ceramic-that-mimics-mother-of-pearl/
Tough Ceramic Mimics Mother of Pearl
Ritchie, Robert
2017-12-12
Berkeley Lab scientists have mimicked the structure of mother of pearl to create what may well be the toughest ceramic ever produced. http://newscenter.lbl.gov/press-releases/2008/12/05/scientists-create-tough-ceramic-that-mimics-mother-of-pearl/
One perspective on spatial variability in geologic mapping
Markewich, H.W.; Cooper, S.C.
1991-01-01
This paper discusses some of the differences between geologic mapping and soil mapping, and how the resultant maps are interpreted. The role of spatial variability in geologic mapping is addressed only indirectly because in geologic mapping there have been few attempts at quantification of spatial differences. This is largely because geologic maps deal with temporal as well as spatial variability and consider time, age, and origin, as well as composition and geometry. Both soil scientists and geologists use spatial variability to delineate mappable units; however, the classification systems from which these mappable units are defined differ greatly. Mappable soil units are derived from systematic, well-defined, highly structured sets of taxonomic criteria; whereas mappable geologic units are based on a more arbitrary heirarchy of categories that integrate many features without strict values or definitions. Soil taxonomy is a sorting tool used to reduce heterogeneity between soil units. Thus at the series level, soils in any one series are relatively homogeneous because their range of properties is small and well-defined. Soil maps show the distribution of soils on the land surface. Within a map area, soils, which are often less than 2 m thick, show a direct correlation to topography and to active surface processes as well as to parent material.
Krauser, Joel; Walles, Markus; Wolf, Thierry; Graf, Daniel; Swart, Piet
2012-01-01
Generation and interpretation of biotransformation data on drugs, i.e. identification of physiologically relevant metabolites, defining metabolic pathways and elucidation of metabolite structures, have become increasingly important to the drug development process. Profiling using 14C or 3H radiolabel is defined as the chromatographic separation and quantification of drug-related material in a given biological sample derived from an in vitro, preclinical in vivo or clinical study. Metabolite profiling is a very time intensive activity, particularly for preclinical in vivo or clinical studies which have defined limitations on radiation burden and exposure levels. A clear gap exists for certain studies which do not require specialized high volume automation technologies, yet these studies would still clearly benefit from automation. Use of radiolabeled compounds in preclinical and clinical ADME studies, specifically for metabolite profiling and identification are a very good example. The current lack of automation for measuring low level radioactivity in metabolite profiling requires substantial capacity, personal attention and resources from laboratory scientists. To help address these challenges and improve efficiency, we have innovated, developed and implemented a novel and flexible automation platform that integrates a robotic plate handling platform, HPLC or UPLC system, mass spectrometer and an automated fraction collector. PMID:22723932
Hollywood Science: Good for Hollywood, Bad for Science?
NASA Astrophysics Data System (ADS)
Perkowitz, Sidney
2009-03-01
Like it or not, most science depicted in feature films is in the form of science fiction. This isn't likely to change any time soon, if only because science fiction films are huge moneymakers for Hollywood. But beyond that, these films are a powerful cultural force. They reach millions as they depict scientific ideas from DNA and cloning to space science, whether correctly or incorrectly; reflect contemporary issues of science and society like climate change, nuclear power and biowarfare; inspire young people to become scientists; and provide defining images -- or stereotypes -- of scientists for the majority of people who've never met a real one. Certainly, most scientists feel that screen depictions of science and scientists are badly distorted. Many are, but not always. In this talk, based on my book Hollywood Science [1], I'll show examples of good and bad screen treatments of science, scientists, and their impact on society. I'll also discuss efforts to improve how science is treated in film and ways to use even bad movie science to convey real science. [4pt] [1] Sidney Perkowitz, Hollywood Science: Movies, Science, and the End of the World (Columbia University Press, New York, 2007). ISBN: 978-0231142809
Web-based Toolkit for Dynamic Generation of Data Processors
NASA Astrophysics Data System (ADS)
Patel, J.; Dascalu, S.; Harris, F. C.; Benedict, K. K.; Gollberg, G.; Sheneman, L.
2011-12-01
All computation-intensive scientific research uses structured datasets, including hydrology and all other types of climate-related research. When it comes to testing their hypotheses, researchers might use the same dataset differently, and modify, transform, or convert it to meet their research needs. Currently, many researchers spend a good amount of time performing data processing and building tools to speed up this process. They might routinely repeat the same process activities for new research projects, spending precious time that otherwise could be dedicated to analyzing and interpreting the data. Numerous tools are available to run tests on prepared datasets and many of them work with datasets in different formats. However, there is still a significant need for applications that can comprehensively handle data transformation and conversion activities and help prepare the various processed datasets required by the researchers. We propose a web-based application (a software toolkit) that dynamically generates data processors capable of performing data conversions, transformations, and customizations based on user-defined mappings and selections. As a first step, the proposed solution allows the users to define various data structures and, in the next step, can select various file formats and data conversions for their datasets of interest. In a simple scenario, the core of the proposed web-based toolkit allows the users to define direct mappings between input and output data structures. The toolkit will also support defining complex mappings involving the use of pre-defined sets of mathematical, statistical, date/time, and text manipulation functions. Furthermore, the users will be allowed to define logical cases for input data filtering and sampling. At the end of the process, the toolkit is designed to generate reusable source code and executable binary files for download and use by the scientists. The application is also designed to store all data structures and mappings defined by a user (an author), and allow the original author to modify them using standard authoring techniques. The users can change or define new mappings to create new data processors for download and use. In essence, when executed, the generated data processor binary file can take an input data file in a given format and output this data, possibly transformed, in a different file format. If they so desire, the users will be able modify directly the source code in order to define more complex mappings and transformations that are not currently supported by the toolkit. Initially aimed at supporting research in hydrology, the toolkit's functions and features can be either directly used or easily extended to other areas of climate-related research. The proposed web-based data processing toolkit will be able to generate various custom software processors for data conversion and transformation in a matter of seconds or minutes, saving a significant amount of researchers' time and allowing them to focus on core research issues.
Prebiotic mechanisms, functions and application
USDA-ARS?s Scientific Manuscript database
In October 2012, a group of scientists met at the 10th Meeting of the International Scientific Association of Probiotics and Prebiotics (ISAPP) in Cork, Ireland to discuss issues surrounding prebiotics and their development. This article summarises outputs from the meeting. Various prebiotic defin...
Defining the impact of non-native species.
Jeschke, Jonathan M; Bacher, Sven; Blackburn, Tim M; Dick, Jaimie T A; Essl, Franz; Evans, Thomas; Gaertner, Mirijam; Hulme, Philip E; Kühn, Ingolf; Mrugała, Agata; Pergl, Jan; Pyšek, Petr; Rabitsch, Wolfgang; Ricciardi, Anthony; Richardson, David M; Sendek, Agnieszka; Vilà, Montserrat; Winter, Marten; Kumschick, Sabrina
2014-10-01
Non-native species cause changes in the ecosystems to which they are introduced. These changes, or some of them, are usually termed impacts; they can be manifold and potentially damaging to ecosystems and biodiversity. However, the impacts of most non-native species are poorly understood, and a synthesis of available information is being hindered because authors often do not clearly define impact. We argue that explicitly defining the impact of non-native species will promote progress toward a better understanding of the implications of changes to biodiversity and ecosystems caused by non-native species; help disentangle which aspects of scientific debates about non-native species are due to disparate definitions and which represent true scientific discord; and improve communication between scientists from different research disciplines and between scientists, managers, and policy makers. For these reasons and based on examples from the literature, we devised seven key questions that fall into 4 categories: directionality, classification and measurement, ecological or socio-economic changes, and scale. These questions should help in formulating clear and practical definitions of impact to suit specific scientific, stakeholder, or legislative contexts. © 2014 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.
Blue Marble Matches: Using Earth for Planetary Comparisons
NASA Technical Reports Server (NTRS)
Graff, Paige Valderrama
2009-01-01
Goal: This activity is designed to introduce students to geologic processes on Earth and model how scientists use Earth to gain a better understanding of other planetary bodies in the solar system. Objectives: Students will: 1. Identify common descriptor characteristics used by scientists to describe geologic features in images. 2. Identify geologic features and how they form on Earth. 3. Create a list of defining/distinguishing characteristics of geologic features 4. Identify geologic features in images of other planetary bodies. 5. List observations and interpretations about planetary body comparisons. 6. Create summary statements about planetary body comparisons.
Public affairs events at Fall Meeting
NASA Astrophysics Data System (ADS)
Uhlenbrock, Kristan
2012-02-01
AGU's Public Affairs team presented two workshop luncheons and hosted 17 oral and poster sessions at the 2011 Fall Meeting. Topics ranged from defining the importance of the geosciences, to climate change science for communities and institutions. The workshop luncheon "How to Be a Congressional Science Fellow or Mass Media Fellow" was a well-attended event with more than 115 participants. The luncheon provided the opportunity for audience members to ask fellow scientists about their experiences working either in Congress or as a reporter for a news organization. For scientists looking to expand their expertise outside the academic environment, these AGU fellowships are fantastic opportunities.
NASA Technical Reports Server (NTRS)
2004-01-01
Scientists have found clues about the nature of martian soil through analyzing wheel marks from the Mars Exploration Rover Spirit in this image. The image was taken by Spirit's rear hazard-identification camera just after the rover drove approximately 1 meter (3 feet) northwest off the Columbia Memorial Station (lander platform) early Thursday morning. That the wheel tracks are shallow indicates the soil has plenty of strength to support the moving rover. The well-defined track characteristics suggest the presence of very fine particles in the martian soil (along with larger particles). Scientists also think the soil may have some cohesive properties.
Linguistics and Information Science
ERIC Educational Resources Information Center
Montgomery, Christine A.
1972-01-01
This paper defines the relationship between linguistics and information science in terms of a common interest in natural language. The concept of a natural language information system is introduced as a framework for reviewing automated language processing efforts by computational linguists and information scientists. (96 references) (Author)
A feeling of flow: exploring junior scientists' experiences with dictation of scientific articles.
Spanager, Lene; Danielsen, Anne Kjaergaard; Pommergaard, Hans-Christian; Burcharth, Jakob; Rosenberg, Jacob
2013-08-10
Science involves publishing results, but many scientists do not master this. We introduced dictation as a method of producing a manuscript draft, participating in writing teams and attending a writing retreat to junior scientists in our department. This study aimed to explore the scientists' experiences with this process. Four focus group interviews were conducted and comprised all participating scientists (n = 14). Each transcript was transcribed verbatim and coded independently by two interviewers. The coding structure was discussed until consensus and from this the emergent themes were identified. Participants were 7 PhD students, 5 scholarship students and 2 clinical research nurses. Three main themes were identified: 'Preparing and then letting go' indicated that dictating worked best when properly prepared. 'The big dictation machine' described benefits of writing teams when junior scientists got feedback on both content and structure of their papers. 'Barriers to and drivers for participation' described flow-like states that participants experienced during the dictation. Motivation and a high level of preparation were pivotal to be able to dictate a full article in one day. The descriptions of flow-like states seemed analogous to the theoretical model of flow which is interesting, as flow is usually deemed a state reserved to skilled experts. Our findings suggest that other academic groups might benefit from using the concept including dictation of manuscripts to encourage participants' confidence in their writing skills.
Professional Ethics for Climate Scientists
NASA Astrophysics Data System (ADS)
Peacock, K.; Mann, M. E.
2014-12-01
Several authors have warned that climate scientists sometimes exhibit a tendency to "err on the side of least drama" in reporting the risks associated with fossil fuel emissions. Scientists are often reluctant to comment on the implications of their work for public policy, despite the fact that because of their expertise they may be among those best placed to make recommendations about such matters as mitigation and preparedness. Scientists often have little or no training in ethics or philosophy, and consequently they may feel that they lack clear guidelines for balancing the imperative to avoid error against the need to speak out when it may be ethically required to do so. This dilemma becomes acute in cases such as abrupt ice sheet collapse where it is easier to identify a risk than to assess its probability. We will argue that long-established codes of ethics in the learned professions such as medicine and engineering offer a model that can guide research scientists in cases like this, and we suggest that ethical training could be regularly incorporated into graduate curricula in fields such as climate science and geology. We recognize that there are disanalogies between professional and scientific ethics, the most important of which is that codes of ethics are typically written into the laws that govern licensed professions such as engineering. Presently, no one can legally compel a research scientist to be ethical, although legal precedent may evolve such that scientists are increasingly expected to communicate their knowledge of risks. We will show that the principles of professional ethics can be readily adapted to define an ethical code that could be voluntarily adopted by scientists who seek clearer guidelines in an era of rapid climate change.
[Citizens' veillance on environmental health through ICT and Genomics].
Tallacchini, Mariachiara; Biggeri, Annibale
2014-01-01
In the last decade three different phenomena have merged: the widespread use of ICT devices to collect and potentially share personal and scientific data, and to build networked communities; biobanking for genomics, namely the organized storage of human biological samples and information; and the collaboration between scientists and citizens in creating knowledge, namely peer-production of knowledge, for shared social goals. These different forms of knowledge, technical tools, and skills have merged in community based scientific and social, as well as legal, initiatives, where scientists and citizens use genetic information and ICT as powerful ways to gain more control over their health and the environment. These activities can no longer be simply qualified as epidemiological research and surveillance. Instead, they can be framed as new forms of citizens' participatory "veillance:" an attitude of cognitive proactive alertness towards the protection of common goods. This paper illustrates two Italian case-studies where citizens and scientists, by making use of both ICT and biobanking, have joined with the goal of protecting environmental health in highly polluted contexts. The statute of these initiatives still needs to be defined as to both the validity of the underlying citizen science and the lack of adequate legal tools for structuring them. However, as to their scientific quality and use of sophisticated technologies, these activities cannot be compared to previous experiences, such as those inspired by so-called popular epidemiology. Moreover, the deep awareness towards the data to be transparent, reliable, and accessible, as well as towards funding mechanisms to be crowdsourced, allows these experiences to go beyond the mere confrontation with institutional knowledge, and to represent a potential model for knowledge production for institutional implementation.
Reflections concerning triply-periodic minimal surfaces.
Schoen, Alan H
2012-10-06
In recent decades, there has been an explosion in the number and variety of embedded triply-periodic minimal surfaces (TPMS) identified by mathematicians and materials scientists. Only the rare examples of low genus, however, are commonly invoked as shape templates in scientific applications. Exact analytic solutions are now known for many of the low genus examples. The more complex surfaces are readily defined with numerical tools such as Surface Evolver software or the Landau-Ginzburg model. Even though table-top versions of several TPMS have been placed within easy reach by rapid prototyping methods, the inherent complexity of many of these surfaces makes it challenging to grasp their structure. The problem of distinguishing TPMS, which is now acute because of the proliferation of examples, has been addressed by Lord & Mackay (Lord & Mackay 2003 Curr. Sci. 85, 346-362).
Guo, Hanqi; Phillips, Carolyn L; Peterka, Tom; Karpeyev, Dmitry; Glatz, Andreas
2016-01-01
We propose a method for the vortex extraction and tracking of superconducting magnetic flux vortices for both structured and unstructured mesh data. In the Ginzburg-Landau theory, magnetic flux vortices are well-defined features in a complex-valued order parameter field, and their dynamics determine electromagnetic properties in type-II superconductors. Our method represents each vortex line (a 1D curve embedded in 3D space) as a connected graph extracted from the discretized field in both space and time. For a time-varying discrete dataset, our vortex extraction and tracking method is as accurate as the data discretization. We then apply 3D visualization and 2D event diagrams to the extraction and tracking results to help scientists understand vortex dynamics and macroscale superconductor behavior in greater detail than previously possible.
Reflections concerning triply-periodic minimal surfaces
Schoen, Alan H.
2012-01-01
In recent decades, there has been an explosion in the number and variety of embedded triply-periodic minimal surfaces (TPMS) identified by mathematicians and materials scientists. Only the rare examples of low genus, however, are commonly invoked as shape templates in scientific applications. Exact analytic solutions are now known for many of the low genus examples. The more complex surfaces are readily defined with numerical tools such as Surface Evolver software or the Landau–Ginzburg model. Even though table-top versions of several TPMS have been placed within easy reach by rapid prototyping methods, the inherent complexity of many of these surfaces makes it challenging to grasp their structure. The problem of distinguishing TPMS, which is now acute because of the proliferation of examples, has been addressed by Lord & Mackay (Lord & Mackay 2003 Curr. Sci. 85, 346–362). PMID:24098851
Health Informatics Scientists' Perception About Big Data Technology.
Minou, John; Routsis, Fotios; Gallos, Parisis; Mantas, John
2017-01-01
The aim of this paper is to present the perceptions of the Health Informatics Scientists about the Big Data Technology in Healthcare. An empirical study was conducted among 46 scientists to assess their knowledge about the Big Data Technology and their perceptions about using this technology in healthcare. Based on the study findings, 86.7% of the scientists had knowledge of Big data Technology. Furthermore, 59.1% of the scientists believed that Big Data Technology refers to structured data. Additionally, 100% of the population believed that Big Data Technology can be implemented in Healthcare. Finally, the majority does not know any cases of use of Big Data Technology in Greece while 57,8% of the them mentioned that they knew use cases of the Big Data Technology abroad.
The discovery of the structure of DNA
NASA Astrophysics Data System (ADS)
Squires, G. L.
2003-04-01
On 25 April 1953, Nature published a letter by Francis Crick and James Watson, at the Cavendish Laboratory, Cambridge, proposing a structure for DNA. This letter marked the beginning of a revolution in biology. Besides Crick and Watson, two other scientists, Rosalind Franklin and Maurice Wilkins, played key roles in the discovery. After sketching the early careers of the four scientists, the present article gives an account of the physics and chemistry involved in the discovery, and the events leading up to it.
North American Journal of Psychology, 1999.
ERIC Educational Resources Information Center
McCutcheon, Lynn E., Ed.
1999-01-01
"North American Journal of Psychology" publishes scientific papers of general interest to psychologists and other social scientists. Articles included in volume 1 issue 1 (June 1999) are: "Generalist Looks at His Career in Teaching: Interview with Dr. Phil Zimbardo"; "Affective Information in Videos"; "Infant Communication"; "Defining Projective…
Ask the Cognitive Scientist: "Grit" Is Trendy, but Can It Be Taught?
ERIC Educational Resources Information Center
Willingham, Daniel T.
2016-01-01
A newly identified character trait defined as "passion and perseverance for long-term goals," grit adds to our understanding of student behavior. While certain parts of grit can be taught, research is only beginning to examine how educators can do so.
Varpio, Lara; Gruppen, Larry; Hu, Wendy; O'Brien, Bridget; Ten Cate, Olle; Humphrey-Murto, Susan; Irby, David M; van der Vleuten, Cees; Hamstra, Stanley J; Durning, Steven J
2017-02-01
Health professions education scholarship (HPES) is an important and growing field of inquiry. Problematically, consistent use of terminology regarding the individual roles and organizational structures that are active in this field are lacking. This inconsistency impedes the transferability of current and future findings related to the roles and organizational structures of HPES. Based on data collected during interviews with HPES leaders in Canada, Australia, New Zealand, the United States, and the Netherlands, the authors constructed working definitions for some of the professional roles and an organizational structure that support HPES. All authors reviewed the definitions to ensure relevance across multiple countries. The authors define and offer illustrative examples of three professional roles in HPES (clinician educator, HPES research scientist, and HPES administrative leader) and an organizational structure that can support HPES participation (HPES unit). These working definitions are foundational and not all-encompassing and, thus, are offered as stimulus for international dialogue and understanding. With these working definitions, scholars and administrative leaders can examine HPES roles and organizational structures across and between national contexts to decide how lessons learned in other contexts can be applied to their local contexts. Although rigorously constructed, these definitions need to be vetted by the international HPES community. The authors argue that these definitions are sufficiently transferable to support such scholarly investigation and debate.
Sizing up earthquake damage: Differing points of view
Hough, S.; Bolen, A.
2007-01-01
When a catastrophic event strikes an urban area, many different professionals hit the ground running. Emergency responders respond, reporters report, and scientists and engineers collect and analyze data. Journalists and scientists may share interest in these events, but they have very different missions. To a journalist, earthquake damage is news. To a scientist or engineer, earthquake damage represents a valuable source of data that can help us understand how strongly the ground shook as well as how particular structures responded to the shaking.
An Earth System Scientist Network for Student and Scientist Partnerships
NASA Astrophysics Data System (ADS)
Ledley, T. S.
2001-05-01
Successful student and scientist partnerships require that there is a mutual benefit from the partnership. This means that the scientist needs to be able to see the advantage of having students work on his/her project, and the students and teachers need to see that the students contribute to the project and develop the skills in inquiry and the content knowledge in the geosciences that are desired. Through the Earth System Scientist Network (ESSN) for Student and Scientist Partnerships project we are working toward developing scientific research projects for the participation of high school students. When these research projects are developed they will be posted on the ESSN web site that will appear in the Digital Library for Earth System Education (DLESE). In DLESE teachers and students who are interested in participating in a research program will be able to examine the criteria for each project and select the one that matches their needs and situation. In this paper we will report on how the various ESSN research projects are currently being developed to assure that both the scientist and the students benefit from the partnership. The ESSN scientists are working with a team of scientists and educators to 1) completely define the research question that the students will be addressing, 2) determine what role the students will have in the project, 3) identify the data that the students and teachers will work with, 4) map out the scientific protocols that the students will follow, and 5) determine the background and support materials needed to facilitate students successfully participating in the project. Other issues that the team is addressing include 1) identifying the selection criteria for the schools, 2) identifying rewards and recognition for the students and teacher by the scientist, and 3) identifying issues in Earth system science, relevant to the scientists data, that the students and teachers could use as a guide help develop students investigative skills and content knowledge in the geosciences. The importance of fully developing each of these aspects of the ESSN research projects and how they can differ between projects will be discussed.
Teaching Elementary Particle Physics: Part I
ERIC Educational Resources Information Center
Hobson, Art
2011-01-01
I'll outline suggestions for teaching elementary particle physics, often called "high energy physics," in high school or introductory college courses for non-scientists or scientists. Some presentations of this topic simply list the various particles along with their properties, with little overarching structure. Such a laundry list approach is a…
Science Lives: School Choices and "Natural Tendencies"
ERIC Educational Resources Information Center
Salehjee, Saima; Watts, Mike
2015-01-01
An analysis of 12 semi-structured interviews with university-based scientists and non-scientists illustrates their life journeys towards, or away from, science and the strengths and impact of life occurrences leading them to choose science or non-science professions. We have adopted narrative approaches and used Mezirow's transformative learning…
ERIC Educational Resources Information Center
Marcum-Dietrich, Nanette
2010-01-01
In the scientific community, the symposium is one formal structure of conversation. Scientists routinely hold symposiums to gather and talk about a common topic. To model this method of communication in the classroom, the author designed an activity in which students conduct their own science symposiums. This article presents the science symposium…
ERIC Educational Resources Information Center
Horne, Patricia Lynne
2010-01-01
The purpose of this research was to determine the nature of the relationship between urban elementary fifth graders, environmental workers, and the environment. The study examined 320 urban fifth grade elementary students' drawings of environmental scientists (DAEST) and environmental caretakers (DAECT). Additionally, semi-structured interviews…
Representations of Scientists in Canadian High School and College Textbooks
ERIC Educational Resources Information Center
van Eijck, Michiel; Roth, Wolff-Michael
2008-01-01
This study investigated the representations of a select group of scientists (n = 10) in a sample of Canadian high school and college textbooks. Drawing on semiotic and cultural-historical activity theoretical frameworks, we conducted two analyses. A coarse-grained, quantitative analysis of the prevalence and structure of these representations…
Core competencies for pharmaceutical physicians and drug development scientists
Silva, Honorio; Stonier, Peter; Buhler, Fritz; Deslypere, Jean-Paul; Criscuolo, Domenico; Nell, Gerfried; Massud, Joao; Geary, Stewart; Schenk, Johanna; Kerpel-Fronius, Sandor; Koski, Greg; Clemens, Norbert; Klingmann, Ingrid; Kesselring, Gustavo; van Olden, Rudolf; Dubois, Dominique
2013-01-01
Professional groups, such as IFAPP (International Federation of Pharmaceutical Physicians and Pharmaceutical Medicine), are expected to produce the defined core competencies to orient the discipline and the academic programs for the development of future competent professionals and to advance the profession. On the other hand, PharmaTrain, an Innovative Medicines Initiative project, has become the largest public-private partnership in biomedicine in the European Continent and aims to provide postgraduate courses that are designed to meet the needs of professionals working in medicines development. A working group was formed within IFAPP including representatives from PharmaTrain, academic institutions and national member associations, with special interest and experience on Quality Improvement through education. The objectives were: to define a set of core competencies for pharmaceutical physicians and drug development scientists, to be summarized in a Statement of Competence and to benchmark and align these identified core competencies with the Learning Outcomes (LO) of the PharmaTrain Base Course. The objectives were successfully achieved. Seven domains and 60 core competencies were identified and aligned accordingly. The effective implementation of training programs using the competencies or the PharmaTrain LO anywhere in the world may transform the drug development process to an efficient and integrated process for better and safer medicines. The PharmaTrain Base Course might provide the cognitive framework to achieve the desired Statement of Competence for Pharmaceutical Physicians and Drug Development Scientists worldwide. PMID:23986704
Leadership: a new frontier in conservation science.
Manolis, Jim C; Chan, Kai M; Finkelstein, Myra E; Stephens, Scott; Nelson, Cara R; Grant, Jacqualine B; Dombeck, Michael P
2009-08-01
Leadership is a critical tool for expanding the influence of conservation science, but recent advances in leadership concepts and practice remain underutilized by conservation scientists. Furthermore, an explicit conceptual foundation and definition of leadership in conservation science are not available in the literature. Here we drew on our diverse leadership experiences, our reading of leadership literature, and discussions with selected conservation science leaders to define conservation-science leadership, summarize an exploratory set of leadership principles that are applicable to conservation science, and recommend actions to expand leadership capacity among conservation scientists and practitioners. We define 2 types of conservation-science leadership: shaping conservation science through path-breaking research, and advancing the integration of conservation science into policy, management, and society at large. We focused on the second, integrative type of leadership because we believe it presents the greatest opportunity for improving conservation effectiveness. We identified 8 leadership principles derived mainly from the "adaptive leadership" literature: recognize the social dimension of the problem; cycle frequently through action and reflection; get and maintain attention; combine strengths of multiple leaders; extend your reach through networks of relationships; strategically time your effort; nurture productive conflict; and cultivate diversity. Conservation scientists and practitioners should strive to develop themselves as leaders, and the Society for Conservation Biology, conservation organizations, and academia should support this effort through professional development, mentoring, teaching, and research.
A data model for environmental scientists
NASA Astrophysics Data System (ADS)
Kapeljushnik, O.; Beran, B.; Valentine, D.; van Ingen, C.; Zaslavsky, I.; Whitenack, T.
2008-12-01
Environmental science encompasses a wide range of disciplines from water chemistry to microbiology, ecology and atmospheric sciences. Studies often require working across disciplines which differ in their ways of describing and storing data such that it is not possible to devise a monolithic one-size-fits-all data solution. Based on our experiences with Consortium of the Universities for the Advancement of Hydrologic Science Inc. (CUAHSI) Observations Data Model, Berkeley Water Center FLUXNET carbon-climate work and by examining standards like EPA's Water Quality Exchange (WQX), we have developed a flexible data model that allows extensions without need to altering the schema such that scientists can define custom metadata elements to describe their data including observations, analysis methods as well as sensors and geographical features. The data model supports various types of observations including fixed point and moving sensors, bottled samples, rasters from remote sensors and models, and categorical descriptions (e.g. taxonomy) by employing user-defined-types when necessary. It leverages ADO .NET Entity Framework to provide the semantic data models for differing disciplines, while maintaining a common schema below the entity layer. This abstraction layer simplifies data retrieval and manipulation by hiding the logic and complexity of the relational schema from users thus allows programmers and scientists to deal directly with objects such as observations, sensors, watersheds, river reaches, channel cross-sections, laboratory analysis methods and samples as opposed to table joins, columns and rows.
Citizen Science: Opportunities for Girls' Development of Science Identity
NASA Astrophysics Data System (ADS)
Brien, Sinead Carroll
Many students in the United States, particularly girls, have lost interest in science by the time they reach high school and do not pursue higher degrees or careers in science. Several science education researchers have found that the ways in which youth see themselves and position themselves in relation to science can influence whether they pursue science studies and careers. I suggest that participation in a citizen science program, which I define as a program in which girls interact with professional scientists and collect data that contributes to scientific research, could contribute to changing girls' perceptions of science and scientists, and promote their science identity work. I refer to science identity as self-recognition and recognition by others that one thinks scientifically and does scientific work. I examined a case study to document and analyze the relationship between girls' participation in a summer citizen science project and their development of science identity. I observed six girls between the ages of 16 and 18 during the Milkweed and Monarch Project, taking field notes on focal girls' interactions with other youth, adults, and the scientist, conducted highly-structured interviews both pre-and post- girls' program participation, and interviewed the project scientist and educator. I qualitatively analyzed field notes and interview responses for themes in girls' discussion of what it meant to think scientifically, roles they took on, and how they recognized themselves as thinking scientifically. I found that girls who saw themselves as thinking scientifically during the program seemed to demonstrate shifts in their science identity. The aspects of the citizen science program that seemed to most influence shifts in these girls' science identities were 1) the framing of the project work as "real science, 2) that it involved ecological field work, and 3) that it created a culture that valued data and scientific work. However, some of the girls only saw themselves as completing a repetitive task of data collection, and these evidenced no change in science identity. This indicates that science identity work might require more explicit attention by educators and scientists to girls' perceptions of science and scientific thinking, and discussion of how this is related to the project work and the roles they are playing within the citizen science project.
NASA Technical Reports Server (NTRS)
Freed, Alan D.
1997-01-01
Logarithmic strain is the preferred measure of strain used by materials scientists, who typically refer to it as the "true strain." It was Nadai who gave it the name "natural strain," which seems more appropriate. This strain measure was proposed by Ludwik for the one-dimensional extension of a rod with length l. It was defined via the integral of dl/l to which Ludwik gave the name "effective specific strain." Today, it is after Hencky, who extended Ludwik's measure to three-dimensional analysis by defining logarithmic strains for the three principal directions.
Towards interoperable and reproducible QSAR analyses: Exchange of datasets.
Spjuth, Ola; Willighagen, Egon L; Guha, Rajarshi; Eklund, Martin; Wikberg, Jarl Es
2010-06-30
QSAR is a widely used method to relate chemical structures to responses or properties based on experimental observations. Much effort has been made to evaluate and validate the statistical modeling in QSAR, but these analyses treat the dataset as fixed. An overlooked but highly important issue is the validation of the setup of the dataset, which comprises addition of chemical structures as well as selection of descriptors and software implementations prior to calculations. This process is hampered by the lack of standards and exchange formats in the field, making it virtually impossible to reproduce and validate analyses and drastically constrain collaborations and re-use of data. We present a step towards standardizing QSAR analyses by defining interoperable and reproducible QSAR datasets, consisting of an open XML format (QSAR-ML) which builds on an open and extensible descriptor ontology. The ontology provides an extensible way of uniquely defining descriptors for use in QSAR experiments, and the exchange format supports multiple versioned implementations of these descriptors. Hence, a dataset described by QSAR-ML makes its setup completely reproducible. We also provide a reference implementation as a set of plugins for Bioclipse which simplifies setup of QSAR datasets, and allows for exporting in QSAR-ML as well as old-fashioned CSV formats. The implementation facilitates addition of new descriptor implementations from locally installed software and remote Web services; the latter is demonstrated with REST and XMPP Web services. Standardized QSAR datasets open up new ways to store, query, and exchange data for subsequent analyses. QSAR-ML supports completely reproducible creation of datasets, solving the problems of defining which software components were used and their versions, and the descriptor ontology eliminates confusions regarding descriptors by defining them crisply. This makes is easy to join, extend, combine datasets and hence work collectively, but also allows for analyzing the effect descriptors have on the statistical model's performance. The presented Bioclipse plugins equip scientists with graphical tools that make QSAR-ML easily accessible for the community.
Towards interoperable and reproducible QSAR analyses: Exchange of datasets
2010-01-01
Background QSAR is a widely used method to relate chemical structures to responses or properties based on experimental observations. Much effort has been made to evaluate and validate the statistical modeling in QSAR, but these analyses treat the dataset as fixed. An overlooked but highly important issue is the validation of the setup of the dataset, which comprises addition of chemical structures as well as selection of descriptors and software implementations prior to calculations. This process is hampered by the lack of standards and exchange formats in the field, making it virtually impossible to reproduce and validate analyses and drastically constrain collaborations and re-use of data. Results We present a step towards standardizing QSAR analyses by defining interoperable and reproducible QSAR datasets, consisting of an open XML format (QSAR-ML) which builds on an open and extensible descriptor ontology. The ontology provides an extensible way of uniquely defining descriptors for use in QSAR experiments, and the exchange format supports multiple versioned implementations of these descriptors. Hence, a dataset described by QSAR-ML makes its setup completely reproducible. We also provide a reference implementation as a set of plugins for Bioclipse which simplifies setup of QSAR datasets, and allows for exporting in QSAR-ML as well as old-fashioned CSV formats. The implementation facilitates addition of new descriptor implementations from locally installed software and remote Web services; the latter is demonstrated with REST and XMPP Web services. Conclusions Standardized QSAR datasets open up new ways to store, query, and exchange data for subsequent analyses. QSAR-ML supports completely reproducible creation of datasets, solving the problems of defining which software components were used and their versions, and the descriptor ontology eliminates confusions regarding descriptors by defining them crisply. This makes is easy to join, extend, combine datasets and hence work collectively, but also allows for analyzing the effect descriptors have on the statistical model's performance. The presented Bioclipse plugins equip scientists with graphical tools that make QSAR-ML easily accessible for the community. PMID:20591161
Learning from Latinos: Contexts, Families, and Child Development in Motion
ERIC Educational Resources Information Center
Fuller, Bruce; Garcia Coll, Cynthia
2010-01-01
Two generations ago, Latino children and families were often defined as disadvantaged, even "culturally deprived," by psychologists, social scientists, and pediatric researchers. Since then, empirical work from several disciplines has yielded remarkable discoveries regarding the strengths of Latino families and resulting benefits for children.…
ERIC Educational Resources Information Center
Kite, Vance; Park, Soonhye
2018-01-01
In 2006 Jeanette Wing, a professor of computer science at Carnegie Mellon University, proposed computational thinking (CT) as a literacy just as important as reading, writing, and mathematics. Wing defined CT as a set of skills and strategies computer scientists use to solve complex, computational problems (Wing 2006). The computer science and…
ERIC Educational Resources Information Center
Sloan, Lloyd Ren, Ed.; Starr, B. James, Ed.
Recognizing the need to increase the number of people from ethnically defined populations serving as research scientists in the mental health field, the National Institute of Mental Health (NIMH) created the Minority Access to Research Careers program in 1979. This program, now known as the Career Opportunities in Research Education and Training…
Recent development in modeling and analysis of functionally graded materials and structures
NASA Astrophysics Data System (ADS)
Gupta, Ankit; Talha, Mohammad
2015-11-01
In this article, an extensive review related to the structural response of the functionally graded materials (FGMs) and structures have been presented. These are high technology materials developed by a group scientist in the late 1980's in Japan. The emphasis has been made here, to present the structural characteristics of FGMs plates/shells under thermo-electro-mechanical loadings under various boundary and environmental conditions. This paper also provides an overview of different fabrication procedures and the future research directions which is required to implement these materials in the design and analysis appropriately. The expected outcome of present review can be treated as milestone for future studies in the area of high technology materials and structures, and would be definitely advantageous for the researchers, scientists, and designers working in this field.
Research, the lifeline of medicine.
Kornberg, A
1976-05-27
Advances in medicine spring from discoveries in physics, chemistry and biology. Among key contributions to the diagnosis, treatment and prevention of cardiovascular and pulmonary diseases, a recent Comroe-Dripps analysis shows two thirds to have been basic rather than applied research. Without a firm foundation in basic knowledge innovations perceived as advances prove hollow and collapse. Strong social, economic and political pressures now threaten acquisition of basic knowledge. Scientists feel driven to undertake excessively complex problems and gamble against the historical record that science generally progresses by tackling discrete and well defined questions. Regardless of circumstances, professional standards require the physician and scientist to be creative and enlarge the fund of knowledge.
A Distributed Data Architecture for 2001 Mars Odyssey Data Distribution
NASA Technical Reports Server (NTRS)
Crichton, Daniel J.; Hughes, J. Steven; Kelly, Sean
2003-01-01
Newer instruments and communications techniques have given scientists unprecedented amounts of data, more than can be feasibly distributed through traditional methods such as mailed CD-ROM's. Leveraging the web makes sense since it enables scientists to request specific data and retrieve products as soon as they're available. Yet defining the middleware system to support such an application has remained just out of reach, until Odyssey. For the first time ever, data from all Odyssey mission instruments were made available through a single system immediately upon delivery to the Planetary Data System (PDS). The Object Oriented Data Technology (OODT) software made such an application possible.
The retina as a window to the brain-from eye research to CNS disorders.
London, Anat; Benhar, Inbal; Schwartz, Michal
2013-01-01
Philosophers defined the eye as a window to the soul long before scientists addressed this cliché to determine its scientific basis and clinical relevance. Anatomically and developmentally, the retina is known as an extension of the CNS; it consists of retinal ganglion cells, the axons of which form the optic nerve, whose fibres are, in effect, CNS axons. The eye has unique physical structures and a local array of surface molecules and cytokines, and is host to specialized immune responses similar to those in the brain and spinal cord. Several well-defined neurodegenerative conditions that affect the brain and spinal cord have manifestations in the eye, and ocular symptoms often precede conventional diagnosis of such CNS disorders. Furthermore, various eye-specific pathologies share characteristics of other CNS pathologies. In this Review, we summarize data that support examination of the eye as a noninvasive approach to the diagnosis of select CNS diseases, and the use of the eye as a valuable model to study the CNS. Translation of eye research to CNS disease, and deciphering the role of immune cells in these two systems, could improve our understanding and, potentially, the treatment of neurodegenerative disorders.
Political Science and Political Geography: Neglected Areas, Areas for Development.
ERIC Educational Resources Information Center
Laponce, J. A.
1983-01-01
Since at least the 1950s, political scientists have tended to ignore the possible contributions of political geography to political science because of a move away from considering spatial factors on political structure. Political scientists need to use more information from geography to enhance their understanding of political power and conflict.…
Explaining Scientists' Plans for International Mobility from a Life Course Perspective
ERIC Educational Resources Information Center
Netz, Nicolai; Jaksztat, Steffen
2017-01-01
We identify factors influencing young scientists' plans for research stays abroad by embedding theories of social inequality, educational decision making, and migration into a life course framework. We test the developed model of international academic mobility by calculating a structural equation model using data from an online survey of…
Cancer Prevention Fellowship Program (CPFP) | Division of Cancer Prevention
The Cancer Prevention Fellowship provides a strong foundation for scientists and clinicians to train in the field of cancer prevention and control. This structured, multidisciplinary program offers early career scientists from different health disciplines a variety of postdoctoral training opportunities . | Training to form a strong foundation in cancer prevention and control
Andrew Liehr and the structure of Jahn-Teller surfaces
NASA Astrophysics Data System (ADS)
Chibotaru, Liviu F.; Iwahara, Naoya
2017-05-01
The present article is an attempt to draw attention to a seminal work by Andrew Liehr “Topological aspects of conformational stability problem” [1, 2] issued more than half century ago. The importance of this work stems from two aspects of static Jahn-Teller and pseudo-Jahn-Teller problems fully developed by the author. First, the work of Liehr offers an almost complete overview of adiabatic potential energy surfaces for most known Jahn-Teller problems including linear, quadratic and higher-order vibronic couplings. Second, and most importantly, it identifies the factors defining the structure of Jahn-Teller surfaces. Among them, one should specially mention the minimax principle stating that the distorted Jahn-Teller systems tend to preserve the highest symmetry consistent with the loss of their orbital degeneracy. We believe that the present short reminiscence not only will introduce a key Jahn-Teller scientist to the young members of the community but also will serve as a vivid example of how a complete understanding of a complex problem, which the Jahn-Teller effect certainly was in the beginning of 1960s, can be achieved.
Rethinking Approaches to Exploration and Analysis of Big Data in Earth Science
NASA Astrophysics Data System (ADS)
Graves, S. J.; Maskey, M.
2015-12-01
With increasing amounts of data available for exploration and analysis, there are increasing numbers of users that need information extracted from the data for very specific purposes. Many of the specific purposes may not have even been considered yet so how do computational and data scientists plan for this diverse and not well defined set of possible users? There are challenges to be considered in the computational architectures, as well as the organizational structures for the data to allow for the best possible exploration and analytical capabilities. Data analytics need to be a key component in thinking about the data structures and types of storage of these large amounts of data, coming from a variety of sensing platforms that may be space based, airborne, in situ and social media. How do we provide for better capabilities for exploration and anaylsis at the point of collection for real-time or near real-time requirements? This presentation will address some of the approaches being considered and the challenges the computational and data science communities are facing in collaboration with the Earth Science research and application communities.
Wellness interventions for anesthesiologists.
Saadat, Haleh; Kain, Zeev N
2018-06-01
The review examines the different preventive measures that have been found to be useful to abolish or decrease the negative effects of burnout and increase resilience in anesthesiologists. Studies in anesthesiology cite autonomy, control of the work environment, professional relationships, leadership, and organizational justice as the most important factors in job satisfaction. Factors such as difficulty in balancing personal and professional life, poor attention to wellness, work alcoholism, and genetic factors increase an individual's susceptibility to burnout. Exposure to chronic or repeated stress instigates a spectrum of autonomic, endocrine, immunologic, and behavioral responses that activate the sympathetic-adrenal-medullary and hypothalamic-pituitary-adrenal axis. Investigating the difference in psychobiologic reactivity, as well as defining the psychological symptoms that are characteristic to individuals vulnerable to stress-induced illness, would enable scientists to better look into the modalities to eradicate the negative effects. Recent studies have shown that a combination of individual and structural changes in institutions can increase resilience in physicians. Burnout is a pathological syndrome that is triggered by constant levels of high stress. A combination of individual efforts as well as structural interventions can help to increase wellbeing in physicians.
NASA Astrophysics Data System (ADS)
1993-01-01
This meeting, organized by the Paul Scherrer Institute's Department of Applied Solid State Physics, will be held from 27 30 March 1994 at the Hotel Regina-Titlis, Engelberg, Switzerland. The aim is to bring together scientists from two important fields of current research and increasing industrial relevance. Optical metrology is a traditional discipline of applied optics which reached the nanometre scale a long time ago. Nanotechnology is setting new limits and represents a major challenge to metrology, as well as offering new opportunities to optics. The meeting is intended to help define a common future for optical metrology and nanotechnology. Topics to be covered include: nanometre position control and measuring techniques ultrahigh precision interferometry scanning probe microscopy (AFM, SNOM, etc.) surface modification by scanning probe methods precision surface fabrication and characterization nanolithography micro-optics, diffractive optics components, including systems and applications subwavelength optical structures synthetic optical materials structures and technologies for X-ray optics. For further information please contact: Jens Gobrecht (Secretary), Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland.Tel. (41)56992529; Fax (41) 5698 2635.
Diversity of Approaches to Structuring University-Based Earth System Science Education
NASA Astrophysics Data System (ADS)
Aron, J.; Ruzek, M.; Johnson, D. R.
2004-12-01
Over the past quarter century, the "Earth system science" paradigm has emerged among the interdisciplinary science community, emphasizing interactions among components hitherto considered within separate disciplines: atmosphere (air); hydrosphere (water); biosphere (life); lithosphere (land); anthroposphere (human dimension); and exosphere (solar system and beyond). How should the next generation of Earth system scientists learn to contribute to this interdisciplinary endeavor? There is no one simple answer. The Earth System Science Education program, funded by NASA, has addressed this question by supporting faculty at U.S. universities who develop new courses, curricula and degree programs in their institutional contexts. This report demonstrates the diversity of approaches to structuring university-based Earth system science education, focusing on the 18 current grantees of the Earth System Science Education Program for the 21st Century (ESSE21). One of the most fundamental characteristics is the departmental structure for teaching Earth system science. The "home" departments of the Earth system science faculty range from Earth sciences and physics to agronomy and social work. A brand-new institution created an interdisciplinary Institute for Earth Systems Science and Policy without traditional "parent" departments. Some institutions create new degree programs as majors or as minors while others work within existing degree programs to add or revise courses. A university may also offer multiple strands, such as a degree in the Science of the Earth System and a degree in the Human Dimensions of the Earth System. Defining a career path is extremely important to students considering Earth system science programs and a major institutional challenge for all programs in Earth system science education. How will graduate programs assess prospective students? How will universities and government agencies assess prospective faculty and scientists? How will government agencies allocate funds to interdisciplinary Earth system science and technology? Finally, how should the Earth system science education community evolve?
Ecology and management of commercially harvested chanterelle mushrooms.
David Pilz; Lorelei Norvell; Eric Danell; Randy Molina
2003-01-01
During the last two decades, the chanterelle mushroom harvest from Pacific Northwest forests has become a multimillion dollar industry, yet managers, harvesters, and scientists lack a current synthesis of information about chanterelles. We define chanterelles and then discuss North American species, their place among chanterelle species around the world, international...
An Economic Theory of News Selection.
ERIC Educational Resources Information Center
McManus, John
Over the years, journalists, social scientists, and government commissions have defined news in a variety of ways, but their definitions consistently lack the notion that, above all, news is a commodity and must sell. Within the journalism profession, and particularly in television news, the potential for conflict between a media corporation's…
Beyond Cliche--Reclaiming the Concept of Sustainability
ERIC Educational Resources Information Center
Fuller, Robert J.
2010-01-01
In closing his 2008 Myer Lecture, the scientist and environmentalist Dr. Tim Flannery said that this century will be defined by the search for sustainability. How perilous therefore that nowadays there is so much overuse of the word "sustainability" that it has become a cliche. Today's tertiary students studying architecture and…
African (Black) Psychology: Issues and Synthesis.
ERIC Educational Resources Information Center
Baldwin, Joseph A.
1986-01-01
Reviews the recent attempts of Black psychologists and social scientists to formulate a conceptual-operational framework for the study of psychological phenomena as they bear on the cultural-survival conditions of Black-African people. Outlines issues and problems in the attempt to define African (Black) psychology and discusses its relation to…
The Language of Biotechnology: A Dictionary of Terms.
ERIC Educational Resources Information Center
Walker, John M.; Cox, Michael
This dictionary attempts to define routinely used specialized language in the various areas of biotechnology, and remain suitable for use by scientists involved in unrelated disciplines. Viewing biotechnology as the practical application of biological systems to the manufacturing and service industries, and to the management of the environment,…
Darwinism Defined: The Difference Between Fact and Theory.
ERIC Educational Resources Information Center
Gould, Stephen Jay
1987-01-01
Discusses various developments in both science and theology following the work of Charles Darwin on evolution. Differentiates between the facts regarding evolution and the theory of natural selection as a mechanism for evolutionary change. Warns that the differences between facts and theory have not been adequately emphasized by scientists. (TW)
BASIC STEPS IN DESIGNING SCIENCE LABORATORIES.
ERIC Educational Resources Information Center
WHITNEY, FRANK L.
PLANNERS OF CURRENT UNIVERSITY LABORATORIES OFTEN MAKE THE SAME MISTAKES MADE BY INDUSTRIAL LABORATORIES 20 YEARS AGO. THIS CAN BE REMEDIED BY INCREASED COMMUNICATION BETWEEN SCIENTISTS AND DESIGNERS IN SEMINARS DEFINING THE BASIC NEEDS OF A PARTICULAR LABORATORY SITUATION. ELECTRONIC AND MECHANICAL EQUIPMENT ACCOUNT FOR OVER 50 PER CENT OF TOTAL…
How We Write: Understanding Scholarly Writing through Metaphor
ERIC Educational Resources Information Center
Boyd, Michelle
2012-01-01
This article introduces the "writing metaphor" and examines why political scientists should consider developing one to describe their own writing process. Drawing on the author's experience with writing accountability groups, it defines the components of the writing metaphor, provides an example, and discusses its advantages and disadvantages. The…
Interior Structure of Ceres Artist Concept
2016-08-03
This artist's concept shows a diagram of how the inside of Ceres could be structured, based on data about the dwarf planet's gravity field from NASA's Dawn mission. Using information about Ceres' gravity and topography, scientists found that Ceres is "differentiated," which means that it has compositionally distinct layers at different depths. The densest layer is at the core, which scientists suspect is made of hydrated silicates. Above that is a volatile-rich shell, topped with a crust of mixed materials. This research teaches scientists about what internal processes could have occurred during the early history of Ceres. It appears that, during a heating phase early in the history of Ceres, water and other light materials partially separated from rock. These light materials and water then rose to the outer layer of Ceres. http://photojournal.jpl.nasa.gov/catalog/PIA20867
Research &Discover: A Pipeline of the Next Generation of Earth System Scientists
NASA Astrophysics Data System (ADS)
Hurtt, G. C.; Einaudi, F.; Moore, B.; Salomonson, V.; Campbell, J.
2006-12-01
In 2002, the University of New Hampshire (UNH) and NASA Goddard Space Flight Center (GSFC) started the educational initiative Research &Discover with the goals to: (i) recruit outstanding young scientists into research careers in Earth science and Earth remote sensing (broadly defined), and (ii) support Earth science graduate students enrolled at UNH through a program of collaborative partnerships with GSFC scientists and UNH faculty. To meet these goals, the program consists of a linked set of educational opportunities that begins with a paid summer research internship at UNH for students following their Junior year of college, and is followed by a second paid summer internship at GSFC for students following their Senior year of college. These summer internships are then followed by two-year fellowship opportunities at UNH for graduate studies jointly supervised by UNH faculty and GSFC scientists. After 5 years of implementation, the program has awarded summer research internships to 22 students, and graduate research fellowships to 6 students. These students have produced more than 78 scientific research presentations, 5 undergraduate theses, 2 Masters theses, and 4 peer-reviewed publications. More than 80% of alums are actively pursuing careers in Earth sciences now. In the process, the program has engaged 19 faculty from UNH and 15 scientists from GSFC as advisors/mentors. New collaborations between these scientists have resulted in new joint research proposals, and the development, delivery, and assessment of a new course in Earth System Science at UNH. Research &Discover represents an educational model of collaboration between a national lab and university to create a pipeline of the next generation of Earth system scientists.
NASA Astrophysics Data System (ADS)
Hutson, Matthew
2018-05-01
In their adaptability, young children demonstrate common sense, a kind of intelligence that, so far, computer scientists have struggled to reproduce. Gary Marcus, a developmental cognitive scientist at New York University in New York City, believes the field of artificial intelligence (AI) would do well to learn lessons from young thinkers. Researchers in machine learning argue that computers trained on mountains of data can learn just about anything—including common sense—with few, if any, programmed rules. But Marcus says computer scientists are ignoring decades of work in the cognitive sciences and developmental psychology showing that humans have innate abilities—programmed instincts that appear at birth or in early childhood—that help us think abstractly and flexibly. He believes AI researchers ought to include such instincts in their programs. Yet many computer scientists, riding high on the successes of machine learning, are eagerly exploring the limits of what a naïve AI can do. Computer scientists appreciate simplicity and have an aversion to debugging complex code. Furthermore, big companies such as Facebook and Google are pushing AI in this direction. These companies are most interested in narrowly defined, near-term problems, such as web search and facial recognition, in which blank-slate AI systems can be trained on vast data sets and work remarkably well. But in the longer term, computer scientists expect AIs to take on much tougher tasks that require flexibility and common sense. They want to create chatbots that explain the news, autonomous taxis that can handle chaotic city traffic, and robots that nurse the elderly. Some computer scientists are already trying. Such efforts, researchers hope, will result in AIs that sit somewhere between pure machine learning and pure instinct. They will boot up following some embedded rules, but will also learn as they go.
Roth, Wendy D; Sonnert, Gerhard
2011-06-01
This paper explicates a central conflict that can affect science research organizations, the conflict between the anti-bureaucratic stance believed to advance science and concerns for gender equity rooted in the universalist ethos of science. We present a case study of a science research organization, using employment and publication records, a survey of 308 employees, and qualitative interviews with 60 employees. We show how anti-bureaucratic organizational structures perpetuate gender inequities for both female scientists and non-scientists.
Global Change science in Latin America: How can we get more scientists doing it at home?
NASA Astrophysics Data System (ADS)
Jobbagy, E. G.; Pineiro, G.
2007-05-01
The need for a stronger research community in Latin America (LA) is increasingly acknowledged by most countries in the region. Tools to cope with natural and social shifts as well as novel scientific knowledge of international value are being demanded. What are the main challenges and opportunities to feel these needs? Although funding is traditionally pointed out as the main barrier for (global change) science development in LA, we propose that some aspects of the prevailing scientific culture are also of fundamental importance. We define them as a) "inferiority complex", yielding low expectation on the potential impact of LA science at the international level, pushing researchers seeking success to look for it outside LA, and making many home-based researchers to create a self-defensive attitude against returning colleagues; b) "disciplinary and hierarchical focus" shaping national agencies, universities, and scientific unions along structured traditional fields that make the acceptance and development of cross-cutting Earth System science difficult; and c) "academic isolation", stemming from a mutual distrust between scientist and policy makers. The often overlooked opportunities of global change science in LA include d) a "complementary perspective" on global change issues in LA among southern and northern researchers, derived from their different cultural context, e) a "complementary global change laboratory" in LA hosting a dynamic and often unique set of land use changes; f) "highly efficient research systems" capable of training student and publish paper at very low costs. We argue that creative capacity building programs should tackle a-b-c and take advantage of d-e-f by propitiating teams that develop effective North-South and regional links to train new young scientist doing global change research in their own countries. In addition, capacity building in the continent needs to go beyond formal training and deal with the process of young scientist insertion at home. Financial support programs that foster their international connection and their start-up process have already demonstrated a strong potential to overcome the scientific constrains of the region.
scientist with a background in electronic structure calculations for semiconducting materials. He joined Program. Research Interests His research interests include prediction of band-structure, optical , electrical, and transport properties from electronic structure theory; photovoltaic and thermoelectric
The epigenetic lorax: gene–environment interactions in human health
Latham, Keith E; Sapienza, Carmen; Engel, Nora
2012-01-01
Over the last decade, we have witnessed an explosion of information on genetic factors underlying common human diseases and disorders. This ‘human genomics’ information revolution has occurred as a backdrop to a rapid increase in the rates of many human disorders and diseases. For example, obesity, Type 2 diabetes, asthma, autism spectrum disorder and attention deficit hyperactivity disorder have increased at rates that cannot be due to changes in the genetic structure of the population, and are difficult to ascribe to changes in diagnostic criteria or ascertainment. A likely cause of the increased incidence of these disorders is increased exposure to environmental factors that modify gene function. Many environmental factors that have epidemiological association with common human disorders are likely to exert their effects through epigenetic alterations. This general mechanism of gene–environment interaction poses special challenges for individuals, educators, scientists and public policy makers in defining, monitoring and mitigating exposures. PMID:22920179
Optimal design in pediatric pharmacokinetic and pharmacodynamic clinical studies.
Roberts, Jessica K; Stockmann, Chris; Balch, Alfred; Yu, Tian; Ward, Robert M; Spigarelli, Michael G; Sherwin, Catherine M T
2015-03-01
It is not trivial to conduct clinical trials with pediatric participants. Ethical, logistical, and financial considerations add to the complexity of pediatric studies. Optimal design theory allows investigators the opportunity to apply mathematical optimization algorithms to define how to structure their data collection to answer focused research questions. These techniques can be used to determine an optimal sample size, optimal sample times, and the number of samples required for pharmacokinetic and pharmacodynamic studies. The aim of this review is to demonstrate how to determine optimal sample size, optimal sample times, and the number of samples required from each patient by presenting specific examples using optimal design tools. Additionally, this review aims to discuss the relative usefulness of sparse vs rich data. This review is intended to educate the clinician, as well as the basic research scientist, whom plan on conducting a pharmacokinetic/pharmacodynamic clinical trial in pediatric patients. © 2015 John Wiley & Sons Ltd.
MacDonald, Shannon E; Sharpe, Heather M; Shikako-Thomas, Keiko; Larsen, Bodil; MacKay, Lyndsay
2013-01-01
The transition from trainee to career clinician-scientist can be a stressful and challenging time, particularly for those entering the less established role of nonphysician clinician-scientist. These individuals are typically PhD-prepared clinicians in the allied health professions, who have either a formal or informal joint appointment between a clinical institution and an academic or research institution. The often poorly defined boundaries and expectations of these developing roles can pose additional challenges for the trainee-to-career transition.It is important for these trainees to consider what they want and need in a position in order to be successful, productive, and fulfilled in both their professional and personal lives. It is also critical for potential employers, whether academic or clinical (or a combination of both), to be fully aware of the supports and tools necessary to recruit and retain new nonphysician clinician-scientists. Issues of relevance to the trainee and the employer include finding and negotiating a position; the importance of mentorship; the value of effective time management, particularly managing clinical and academic time commitments; and achieving work-life balance. Attention to these issues, by both the trainee and those in a position to hire them, will facilitate a smooth transition to the nonphysician clinician-scientist role and ultimately contribute to individual and organizational success.
NASA Astrophysics Data System (ADS)
Varga, M.; Worcester, J.
2017-12-01
The Union of Concerned Scientists (UCS) Science Network is a community of over 20,000 scientists, engineers, economists, public health specialists, and technical experts that inform and advocate for science-based solutions to some of our nation's most pressing problems. The role of the community manager here is to train and prepare Science Network members to be effective advocates for science-based decision making, and also to identify opportunities for them to put their skills and expertise into action on science and public health issues. As an organizational asset, but also an important resource to its members, it is crucial that the Science Network demonstrate its impact. But measuring impact when it comes to engagement and advocacy can be difficult. Here we will define a glossary of terms relating to community management and scientist engagement, delve into tracking and measurement of actions taken within a community, and connect the dots between tracking metrics and measuring impact. Measuring impact in community management is a growing field, and here we will also suggest future research that will help standardize impact measurement, as well as bring attention to the growing and unique role that scientist communities can have on policy and public engagement goals. This work has been informed by the American Association for the Advancement of Science's inaugural cohort of the Community Engagement Fellows Program.
NASA Astrophysics Data System (ADS)
Kotcher, J.; Vraga, E.; Myers, T.; Stenhouse, N.; Roser-Renouf, C.; Maibach, E.
2014-12-01
The question of what type of role scientists, or experts more generally, should play in policy debates is a perennial point of discussion within the scientific community. It is often thought that communication containing some form of policy advocacy is likely to compromise the perceived credibility of the individual scientist engaged in such behavior, with the possibility that it may also harm the credibility of the scientific community more broadly. Rather than evaluating statements in a binary fashion as representing either pure objectivity or pure advocacy, one recent model proposes that public communication by scientists should instead be thought of as falling along a continuum based upon the extent of normative judgment implicit in a statement. This approach predicts that as the extent of normative judgment increases, it poses a relatively greater risk to a scientist's perceived credibility. Though such a model is conceptually useful, little empirical social science research has systematically explored how individuals form judgments about different types of advocacy to examine common assumptions about the relative risks associated with such behaviors. In this presentation, we will report results from a national online experiment (N=1200) that examines audience responses to fictional social media posts written by either a climate scientist or a television weathercaster. Following the above model, the posts represent differing degrees of advocacy defined by the extent of normative judgment implicit in each statement. In instances where a specific policy is advocated, we examine whether participants' reactions are shaped by the extent to which the policy mentioned is congruent with one's political ideology. We hope this study will serve as an exemplar of applied science communication research that can begin to help inform scientists and other experts about the potential implications of different communication options they may choose from in deciding how to engage with policy.
Perspectives of clinician and biomedical scientists on interdisciplinary health research.
Laberge, Suzanne; Albert, Mathieu; Hodges, Brian D
2009-11-24
Interdisciplinary health research is a priority of many funding agencies. We surveyed clinician and biomedical scientists about their views on the value and funding of interdisciplinary health research. We conducted semistructured interviews with 31 biomedical and 30 clinician scientists. The scientists were selected from the 2000-2006 membership lists of peer-review committees of the Canadian Institutes of Health Research. We investigated respondents' perspectives on the assumption that collaboration across disciplines adds value to health research. We also investigated their perspectives on funding agencies' growing support of interdisciplinary research. The 61 respondents expressed a wide variety of perspectives on the value of interdisciplinary health research, ranging from full agreement (22) to complete disagreement (11) that it adds value; many presented qualified viewpoints (28). More than one-quarter viewed funding agencies' growing support of interdisciplinary research as appropriate. Most (44) felt that the level of support was unwarranted. Arguments included the belief that current support leads to the creation of artificial teams and that a top-down process of imposing interdisciplinary structures on teams constrains scientists' freedom. On both issues we found contrasting trends between the clinician and the biomedical scientists. Despite having some positive views about the value of interdisciplinary research, scientists, especially biomedical scientists, expressed reservations about the growing support of interdisciplinary research.
NASA Astrophysics Data System (ADS)
Bianchini, Julie A.; Whitney, David J.; Breton, Therese D.; Hilton-Brown, Bryan A.
2002-01-01
This study examined the perceptions and self-reported practices of 18 scientists participating in a yearlong seminar series designed to explore issues of gender and ethnicity in science. Scientists and seminar were part of the Promoting Women and Scientific Literacy project, a curriculum transformation and professional development initiative undertaken by science, science education, and women's studies faculty at their university. Researchers treated participating scientists as critical friends able to bring clarity to and raise questions about conceptions of inclusion in science education. Through questionnaires and semistructured interviews, we explored their (a) rationales for differential student success in undergraduate science education; (b) self-reports of ways they structure, teach, and assess courses to promote inclusion; and (c) views of androcentric and ethnocentric bias in science. Statistical analysis of questionnaires yielded few differences in scientists' views and reported practices by sex or across time. Qualitative analysis of interviews offered insight into how scientists can help address the problem of women and ethnic minorities in science education; constraints encountered in attempts to implement pedagogical and curricular innovations; and areas of consensus and debate across scientists and science studies scholars' descriptions of science. From our findings, we provided recommendations for other professional developers working with scientists to promote excellence and equity in undergraduate science education.
Defining a middle ground for philosophers and production: bioethics.
Davis, S L; Croney, C C
2004-03-01
From the perspective of most animal scientists and producers, animal agriculture has become increasingly contentious over the last 10 to 20 years. Furthermore, our critics seem to be extremists whose views are biased and unreasonable. But guess what? The critics say the same thing about animal producers and scientists (us). So where is the middle ground and how do we get there? Should we even worry about trying to define the middle ground? Are these contentious issues a fad that will go away? Are these "extremist" critics so far outside reason that they will be ignored by society? Ignoring "them" is not likely to work because we have seen society changing its mind (developing a new social ethic) with regard to farm animals, in part because of what these critics are saying. As a result, it is vitally important for us to know and understand what is happening and why. For example, there isn't just one voice among the critics. There is actually a spectrum of opinion among the group which conventional agriculturalists usually call their critics. The WCC-204 committee generally agrees that the key to finding the middle ground between what is perceived as a polarized set of issues between "us" (animal scientists and producers) and "them" (philosopher critics) is for both sides to learn about the reasons why each side says what they do. Only then can all parties rationally begin to identify where the middle ground lies.
Cold War salons, social science, and the cure for modern society.
Cohen-Cole, Jamie
2009-06-01
This essay examines how post-World War II Americans linked their understanding of domestic society and international affairs by using a common lens of psychological and characterological analysis for both. That lens was fashioned by social scientists and developed to study conformity and its opposite, creative and autonomous selfhood. Creativity offered a means to achieve the liberal national society they desired. Social scientists managed their technical definitions of conformity and autonomy as a way of defining reasonable political sentiment. This essay details how, ultimately, the forms of self and sociality they advocated for America were grounded in the kinds of community and interpersonal interaction they valued in their own professional lives.
The role of academic institutions in leveraging engagement and action on climate change
NASA Astrophysics Data System (ADS)
Hill, T. M.; Palca, J.
2016-12-01
Growing global concern over the impact of climate change places climate scientists at the forefront of communicating risks, impacts, and adaptation strategies to non-scientists. Academic institutions can play a leadership role in providing support, incentives, and structures that encourage scientific engagement on this, and other, complex societal and scientific issues. This presentation will focus on `best practices' in supporting university scientists in communicating their science and engaging in thoughtful dialogue with decision makers, managers, media, and public audiences. For example, institutions that can provide significant administrative support for science communication (press officers, training workshops) may decrease barriers between academic science and public knowledge. Additionally, financial (or similar) support in the form of teaching releases and institutional awards can be utilized to acknowledge the time and effort spent in engagement. This presentation will feature examples from universities, professional societies and other institutions where engagement on climate science is structurally encouraged and supported.
3rd annual symposium of chemical and pharmaceutical structure analysis.
Weng, Naidong; Zheng, Jenny; Lee, Mike
2012-08-01
The 3rd Annual Symposium on Chemical and Pharmaceutical Structure Analysis was once again held in Shanghai, where a rich history of 'East meets West' continued. This meeting is dedicated to bringing together scientists from pharmaceutical companies, academic institutes, CROs and instrument vendors to discuss current challenges and opportunities on the forefront of pharmaceutical research and development. The diversified symposia and roundtables are highly interactive events where scientists share their experiences and visions in a collegial setting. The symposium highlighted speakers and sessions that provided first-hand experiences as well as the latest guidance and industrial/regulatory thinking, which was reflected by the theme of this year's meeting 'From Bench to Decision Making - from Basics to Application.' In addition to the highly successful Young Scientist Excellence Award, new events were featured at this year's meeting, such as the Executive Roundtable and the inaugural Innovator Award.
Visualizing Distributions from Multi-Return Lidar Data to Understand Forest Structure
NASA Technical Reports Server (NTRS)
Kao, David L.; Kramer, Marc; Luo, Alison; Dungan, Jennifer; Pang, Alex
2004-01-01
Spatially distributed probability density functions (pdfs) are becoming relevant to the Earth scientists and ecologists because of stochastic models and new sensors that provide numerous realizations or data points per unit area. One source of these data is from multi-return airborne lidar, a type of laser that records multiple returns for each pulse of light sent towards the ground. Data from multi-return lidar is a vital tool in helping us understand the structure of forest canopies over large extents. This paper presents several new visualization tools that allow scientists to rapidly explore, interpret and discover characteristic distributions within the entire spatial field. The major contribution from-this work is a paradigm shift which allows ecologists to think of and analyze their data in terms of the distribution. This provides a way to reveal information on the modality and shape of the distribution previously not possible. The tools allow the scientists to depart from traditional parametric statistical analyses and to associate multimodal distribution characteristics to forest structures. Examples are given using data from High Island, southeast Alaska.
NASA Astrophysics Data System (ADS)
Yore, Larry D.; Florence, Marilyn K.; Pearson, Terry W.; Weaver, Andrew J.
2006-02-01
This autobiographical case study of two scientists involved in earlier studies documents a profile of each scientist. These profiles were used to develop semi-structured interview protocols and email surveys for each scientist. The central issues of these data collections were whether these modern, evaluativist scientists believe that the review react revise process of publishing a peer-reviewed research report simply improves the quality of the language or actually changes the science, and how their metacognitive awareness and executive control were demonstrated in their science inquiry and science writing. The scientists served both as informants and co-authors. Both scientists believed that writing and revising research reports improved the science as well as the clarity of the text; that their use of absolutist language related to their beliefs about inquiry and not about science knowledge; that addressing comments about their writing forced them to assess, monitor, and regulate their science inquiries and research reports; and that traditional forms of knowledge about nature and natural events were valuable information sources that stress description rather than physical causality
Minutes of TOPEX/POSEIDON Science Working Team Meeting and Ocean Tides Workshop
NASA Technical Reports Server (NTRS)
Fu, Lee-Lueng (Editor)
1995-01-01
This third TOPEX/POSEIDON Science Working Team meeting was held on December 4, 1994 to review progress in defining ocean tide models, precision Earth orbits, and various science algorithms. A related workshop on ocean tides convened to select the best models to be used by scientists in the Geophysical Data Records.
The Directional Spectrum of Pedagogical Action in the Context of Foreign Scholars' Views
ERIC Educational Resources Information Center
Mozgovyi, Victor
2017-01-01
The article deals with the study of crucial features and functions of the direction of pedagogical action in educational practices of Ukraine and the Russian Federation. Using the descriptional characteristics presented by scientists and pedagogues-scholars from the mentioned countries we have defined common and distinct features of the phenomenon…
Know Your Discipline: Teaching the Philosophy of Computer Science
ERIC Educational Resources Information Center
Tedre, Matti
2007-01-01
The diversity and interdisciplinarity of computer science and the multiplicity of its uses in other sciences make it hard to define computer science and to prescribe how computer science should be carried out. The diversity of computer science also causes friction between computer scientists from different branches. Computer science curricula, as…
Survey of Reader Preferences Concerning the Format of NASA Technical Reports.
ERIC Educational Resources Information Center
Pinelli, Thomas E.; And Others
This report presents the results of internal and external surveys of engineers and scientists at Langley Research Center and in the academic and industrial communities concerning the format of technical reports of the National Aeronautics and Space Administration (NASA). After stating the purpose of the study and defining the terms, the report…
USDA-ARS?s Scientific Manuscript database
In this letter, we advocate recognizing the genus Fusarium as the sole name for a group that includes virtually all Fusarium species of importance in plant pathology, mycotoxicology, medicine and basic research. This phylogenetically-guided circumscription will free scientists from any obligation to...
Inquiry Based Teaching in Turkey: A Content Analysis of Research Reports
ERIC Educational Resources Information Center
Kizilaslan, Aydin; Sozbilir, Mustafa; Yasar, M. Diyaddin
2012-01-01
Inquiry-based learning [IBL] enhances students' critical thinking abilities and help students to act as a scientist through using scientific method while learning. Specifically, inquiry as a teaching approach has been defined in many ways, the most important one is referred to nature of constructing knowledge while the individuals possess a…
ERIC Educational Resources Information Center
Motluk, Alison
2003-01-01
Does the language one speaks influence the way he thinks? Does it help define his world view? Anyone who has tried to master a foreign tongue has at least considered the possibility. Little linguistic peculiarities, though amusing, don't change the objective world people are describing. So how can they alter the way they think? Scientists and…
Designing and using phenological studies to define management strategies for aquatic plants
USDA-ARS?s Scientific Manuscript database
Scientists and managers alike have recognized that weed management activities in the past were timed more for the convenience of the applicator or response of the resource manager than in consideration of the biology of the target plant. A thorough understanding of the life history and phenology of...
University Students' Conceptions about the Concept of Gene: Interest of Historical Approach
ERIC Educational Resources Information Center
Boujemaa, Agorram; Pierre, Clement; Sabah, Selmaoui; Salaheddine, Khzami; Jamal, Chafik; Abdellatif, Chiadli
2010-01-01
Concepts of genetics are often difficult to teach, specifically the central concept of gene. Even the scientists disagree when defining this concept. This paper investigates university students' understanding about the gene and its functions. The results show the dominance of two conceptions of the gene: the Neoclassical model and the Mendelian…
Guidelines for Dealing with Faculty Conflicts of Commitment and Conflicts of Interest in Research.
ERIC Educational Resources Information Center
Academic Medicine, 1990
1990-01-01
Incidents of scientists allowing personal or outside interests to cloud their professional judgment in conducting research are alarming and unacceptable. The Association of American Medical Colleges' Ad Hoc Committee on Misconduct and Conflict of Interest in Research offers a conceptual framework and defines institutional and individual…
Defining Old Growth: Implications For Management
David L. White; F. Thomas Lloyd
1994-01-01
USDA Forest Service (USFS), with the help of scientists from The Nature Conservancy (TNC), Forest Service Research and ther organizations, is developing old-growth definitions for 35 forest types within the Eastern United States (U.S.). Old-growth forests were officially recognized as a resource by the USFS in 1988 and shortly thereafter, the Eastern Old-Growth...
ERIC Educational Resources Information Center
Schwebel, Andrew I.
1993-01-01
Notes that interpersonal conflict among family members and between spouses can cause dissatisfaction and threaten feasibility of marriage. Defines Family Defense Mechanisms (FDMs) as fixed patterns of behaviors that, when followed by spouses and other family members, enable them to better manage their interpersonal differences and conflict.…
Interactivity Between Proteges and Scientists in an Electronic Mentoring Program
ERIC Educational Resources Information Center
Bonnett, Cara; Wildemuth, Barbara M.; Sonnenwald, Diane H.
2006-01-01
Interactivity is defined by Henri (1992) as a three-step process involving communication of information, a response to this information, and a reply to that first response. It is a key dimension of computer-mediated communication, particularly in the one-on-one communication involved in an electronic mentoring program. This report analyzes the…
Common Characteristics of Models in Present-Day Scientific Practice
ERIC Educational Resources Information Center
Van Der Valk, Ton; Van Driel, Jan H.; De Vos, Wobbe
2007-01-01
Teaching the use of models in scientific research requires a description, in general terms, of how scientists actually use models in their research activities. This paper aims to arrive at defining common characteristics of models that are used in present-day scientific research. Initially, a list of common features of models and modelling, based…
Identifying Obstacles to Incorporating Ocean Content into California Secondary Classrooms
ERIC Educational Resources Information Center
Stock, Jennifer
2010-01-01
The ocean is the dominant feature on this planet that makes all life on Earth possible. Marine educators and scientists across the country have identified essential principles and concepts that define what an "ocean literate" person should know, but there is a lack of comprehensive ocean content coverage in secondary classrooms across…
Air Pollution, A Scientists' Institute for Public Information Workbook.
ERIC Educational Resources Information Center
Nadler, Allen A.; And Others
Documentation is given on the known and potential effects of air pollution on human health, weather conditions, and biosphere. Practical applications of this information are discussed, with special reference to the Federal Air Quality Act and to the planning of urban expressways. Problems in defining standards of air quality are discussed.…
Cultivating Critique: A (Humanoid) Response to the Online Teaching of Critical Thinking
ERIC Educational Resources Information Center
Waggoner, Matt
2013-01-01
The Turing era, defined by British mathematician and computer science pioneer Alan Turing's question about whether or not computers can think, is not over. Philosophers and scientists will continue to haggle over whether thought necessitates intentionality, and whether computation can rise to that level. Meanwhile, another frontier is emerging in…
Buckley, Lorrene A; Salunke, Smita; Thompson, Karen; Baer, Gerri; Fegley, Darren; Turner, Mark A
2018-02-05
A public workshop entitled "Challenges and strategies to facilitate formulation development of pediatric drug products" focused on current status and gaps as well as recommendations for risk-based strategies to support the development of pediatric age-appropriate drug products. Representatives from industry, academia, and regulatory agencies discussed the issues within plenary, panel, and case-study breakout sessions. By enabling practical and meaningful discussion between scientists representing the diversity of involved disciplines (formulators, nonclinical scientists, clinicians, and regulators) and geographies (eg, US, EU), the Excipients Safety workshop session was successful in providing specific and key recommendations for defining paths forward. Leveraging orthogonal sources of data (eg. food industry, agro science), collaborative data sharing, and increased awareness of the existing sources such as the Safety and Toxicity of Excipients for Paediatrics (STEP) database will be important to address the gap in excipients knowledge needed for risk assessment. The importance of defining risk-based approaches to safety assessments for excipients vital to pediatric formulations was emphasized, as was the need for meaningful stakeholder (eg, patient, caregiver) engagement. Copyright © 2017 Elsevier B.V. All rights reserved.
The Emergence of Organizing Structure in Conceptual Representation
ERIC Educational Resources Information Center
Lake, Brenden M.; Lawrence, Neil D.; Tenenbaum, Joshua B.
2018-01-01
Both scientists and children make important structural discoveries, yet their computational underpinnings are not well understood. Structure discovery has previously been formalized as probabilistic inference about the right structural form--where form could be a tree, ring, chain, grid, etc. (Kemp & Tenenbaum, 2008). Although this approach…
A case study of data integration for aquatic resources using semantic web technologies
Gordon, Janice M.; Chkhenkeli, Nina; Govoni, David L.; Lightsom, Frances L.; Ostroff, Andrea C.; Schweitzer, Peter N.; Thongsavanh, Phethala; Varanka, Dalia E.; Zednik, Stephan
2015-01-01
Use cases, information modeling, and linked data techniques are Semantic Web technologies used to develop a prototype system that integrates scientific observations from four independent USGS and cooperator data systems. The techniques were tested with a use case goal of creating a data set for use in exploring potential relationships among freshwater fish populations and environmental factors. The resulting prototype extracts data from the BioData Retrieval System, the Multistate Aquatic Resource Information System, the National Geochemical Survey, and the National Hydrography Dataset. A prototype user interface allows a scientist to select observations from these data systems and combine them into a single data set in RDF format that includes explicitly defined relationships and data definitions. The project was funded by the USGS Community for Data Integration and undertaken by the Community for Data Integration Semantic Web Working Group in order to demonstrate use of Semantic Web technologies by scientists. This allows scientists to simultaneously explore data that are available in multiple, disparate systems beyond those they traditionally have used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan D. Maughan
2006-11-01
Mentoring is an established strategy for learning that has its root in antiquity. Most, if not all, successful scientists and engineers had an effective mentor at some point in their career. In the context of scientists and engineers, mentoring has been undefined. Reports addressing critical concerns regarding the future of science and engineering in the U.S. mention the practice of mentoring a priori, leaving organizations without guidance in its application. Preliminary results from this study imply that formal mentoring can be effective when properly defined and operationalized. Recognizing the uniqueness of the individual in a symbiotic mentor-protégé relationship significantly influencesmore » a protégé’s learning experience which carries repercussions into their career intentions. The mentor-protégé relationship is a key factor in succession planning and preserving and disseminating critical information and tacit knowledge essential to the development of leadership in the science and technological industry.« less
NASA Astrophysics Data System (ADS)
Hodges, K. V.
2007-12-01
Earth science --- when defined as the study of all biological, chemical, and physical processes that interact to define the behavior of the Earth system --- has direct societal relevance equal to or greater than that any other branch of science. However, "geology", "geoscience", and "Earth science" departments are contracting at many universities and even disappearing at some. This irony speaks volumes about the limitations of the traditional university structure that partitions educational and research programs into specific disciplines, each housed in its own department. Programs that transcend disciplinary boundaries are difficult to fit into the traditional structure and are thus highly vulnerable to threats such as chronic underfunding by university administrations, low enrollments in more advanced subjects, and being largely forgotten during capital campaigns. Dramatic improvements in this situation will require a different way of thinking about earth science programs by university administrations. As Earth scientists, our goal must not be to protect "traditional" geology departments, but rather to achieve a sustainable programmatic future for broader academic programs that focus on Earth evolution from past, present, and future perspectives. The first step toward meeting this goal must be to promote a more holistic definition of Earth science that includes modes of inquiry more commonly found in engineering and social science departments. We must think of Earth science as a meta-discipline that includes core components of physics, geology, chemistry, biology, and the emerging science of complexity. We must recognize that new technologies play an increasingly important role in our ability to monitor global environmental change, and thus our educational programs must include basic training in the modes of analysis employed by engineers as well as those employed by scientists. One of the most important lessons we can learn from the engineering community is the value of systems-level thinking, and it makes good sense to make this the essential mantra of Earth science undergraduate and graduate programs of the future. We must emphasize that Earth science plays a central role in understanding processes that have shaped our planet since the origin of our species, processes that have thus influenced the rise and fall of human societies. By studying the co-evolution of Earth and human societies, we lay a critical part of the foundation for future environmental policymaking. If we can make this point persuasively, Earth science might just be the "next great science".
The superdeep well of the Kola Peninsula
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlovsky, Y.A.
1986-01-01
The structure of continental crusts is a subject of ever increasing importance in the geological sciences. Over 15 years ago, Soviet scientist began drilling a superdeep well on the Kola Peninsula near Murmansk. The well has reached a depth of 12 km and is thereby the deepest well in the world, yielding a vast amount of information on the structure of the continental crust. The geological, geophysical and technological data from the Kola well were initially published in a monographic account entitled ''Kol'skaja sverchglubokaja''. This English translation makes the results available to non-Soviet scientists as well.
Diffusion, decolonializing, and participatory action research.
Woodward, William R; Hetley, Richard S
2007-03-01
Miki Takasuna describes knowledge transfer between elite communities of scientists, a process by which ideas become structurally transformed in the host culture. By contrast, a process that we have termed knowledge transfer by deelitization occurs when (a) participatory action researchers work with a community to identify a problem involving oppression or exploitation. Then (b) community members suggest solutions and acquire the tools of analysis and action to pursue social actions. (c) Disadvantaged persons thereby become more aware of their own abilities and resources, and persons with special expertise become more effective. (d) Rather than detachment and value neutrality, this joint process involves advocacy and structural transformation. In the examples of participatory action research documented here, Third World social scientists collaborated with indigenous populations to solve problems of literacy, community-building, land ownership, and political voice. Western social scientists, inspired by these non-Western scientists, then joined in promoting PAR both in the Third World and in Europe and the Americas, e.g., adapting it for solving problems of people with disabilities or disenfranchised women. Emancipatory goals such as these may even help North American psychologists to break free of some methodological chains and to bring about social and political change.
2004-09-20
ISS009-E-23808 (20 September 2004) --- A fringing coral reef in the Red Sea is featured in this image photographed by an Expedition 9 crewmember on the International Space Station (ISS). The Sudanese coast of the Red Sea is a well known destination for divers due to clear water and abundance of coral reefs (or shiaab in Arabic). According to NASA scientists studying the ISS imagery, reefs are formed primarily from precipitation of calcium carbonate by corals; massive reef structures are built over thousands of years of succeeding generations of coral. In the Red Sea, fringing reefs form on shallow shelves of less than 50 meters depth along the coastline. This photograph illustrates the intricate morphology of the reef system located along the coast between Port Sudan to the northwest and the Tokar River delta to the southeast. Close to shore, fringing reefs border the coastline. Farther offshore grows a larger, more complicated barrier reef structure. Different parts of the reef structure show up as variable shades of light blue. Deeper water channels (darker blue) define the boundaries for individual reefs within the greater barrier reef system. Such a complex pattern of reefs may translate into greater ecosystem diversity through a wide variety of local reef environments.
Earth Observations taken by the Expedition 13 crew
2006-05-06
ISS013-E-14843 (6 May 2006) --- Calcite Quarry, Michigan is featured in this image photographed by an Expedition 13 crewmember on the International Space Station. While the Great Lakes region of North America is well known for its importance to shipping between the United States, Canada, and the Atlantic Ocean, it is also the location of an impressive structure in the continent's bedrock -- the Michigan Basin, NASA scientists point out. The Basin looks much like a large bull's-eye defined by the arrangement of exposed rock layers, which all tilt inwards towards the center forming a huge bowl-shaped structure. While this "bowl" is not readily apparent while on the ground, detailed mapping of the rock units on a regional scale revealed the structure to geologists. The outer layers of the Basin include thick deposits of carbonates (limestone and dolomite). These carbonate rocks are mined throughout the Great Lakes region using large open-pit mines. The largest carbonate mine in the world, Calcite Quarry, is depicted in this image. The mine has been active for over 85 years; the worked area (grey region in image center) measures approximately 7 kilometers long by 4 kilometers wide, and is crossed by several access roads (white) into various areas of the mine.
Clues to Ceres' Internal Structure
2017-10-26
This frame from an animation shows Ceres as seen by NASA's Dawn spacecraft from its high-altitude mapping orbit at 913 miles (1,470 kilometers) above the surface. The colorful map overlaid at right shows variations in Ceres' gravity field measured by Dawn, and gives scientists hints about the dwarf planet's internal structure. Red colors indicate more positive values, corresponding to a stronger gravitational pull than expected, compared to scientists' pre-Dawn model of Ceres' internal structure; blue colors indicate more negative values, corresponding to a weaker gravitational pull. The animation was created by projecting a map of Ceres onto a rotating sphere. The image scale is about 450 feet (140 meters) per pixel. The animations are available at https://photojournal.jpl.nasa.gov/catalog/PIA22083
Scenario Planning Provides a Framework for Climate Change Adaptation in the National Park Service
NASA Astrophysics Data System (ADS)
Welling, L. A.
2012-12-01
Resource management decisions must be based on future expectations. Abundant evidence suggests climate change will have highly consequential effects on the Nation's natural and cultural resources, but specific impacts are difficult to accurately predict. This situation of too much information but not enough specificity can often lead to either paralysis or denial for decision makers. Scenario planning is an emerging tool for climate change adaptation that provides a structured framework for identifying and exploring critical drivers of change and their uncertain outcomes. Since 2007, the National Park Service (NPS) has been working with its partners to develop and apply a scenario-based approach for adaptation planning that integrates quantitative, model-driven, climate change projections with qualitative, participatory exercises to explore management and policy options under a range of future conditions. Major outcomes of this work are (1) increased understanding of key scientific results and uncertainties, (2) incorporation of alternative perspectives into park and landscape level planning, (3) identification of "no brainer" and "no gainer" actions, (4) strengthening of regional science-management partnerships, and (5) overall improved capacity for flexible decision making. The basic approach employed by NPS for scenario planning follows a typical adaptive management process: define the focal question, assess the relevant science, explore plausible futures, identify effective strategies, prioritize and implement actions, and monitor results. Many science and management partners contributed to the process, including NOAA Regional Integrated Science and Assessment teams (RISAs) and Regional Climate Centers (RCCs), USGS Research Centers, and other university and government scientists. The Global Business Network, an internationally recognized leader in scenario development, provided expert facilitation and training techniques. Climate science input is provided through global and regional circulation models and downscaling to arrive at climate driver information that is relevant for parks and the landscapes within which they are found. Considerable effort is necessary to synthesize the information and to effectively communicate uncertainties about both values and trend (e.g. scientists have higher confidence in the trend of temperature over a given time period than the value). Drivers that are determined to be highly consequential and uncertain are used to create management-relevant scenarios using various techniques, including a structured 2X2 matrix approach, a succession of rapid combinations using multiple variables, and the development of a base, "least change" scenario from which alternatives are then constructed. Socio-economic factors are also considered as essential factors that define the full decision environment within which management and policy decisions are made. Resulting scenarios incorporate information about impacts to natural and cultural resources as well as facilities and visitor experience. The NPS conducted prototypes for scenario planning in each of seven regions and has begun to incorporate elements of the process into all planning requirements. A significant outcome of this work is managers and scientists alike understand climate and ecosystem models provide tools for exploring the future rather than predicting it.
Earth Observations taken by Expedition 34 crewmember
2013-01-15
ISS034-E-029105 (15 Jan. 2013) --- One of the Expedition 34 crew members aboard the Earth-orbiting International Space Station photographed this image of the Piccaninny impact structure, located within the semi-arid Purnululu National Park and World Heritage site in Australia. The structure is believed by most scientists to have been formed less than 360 million years ago. Specifically, the 7.5 kilometer diameter structure forms a roughly circular plateau within the striking sandstone cone towers of the Bungle Bungle Range. Geological evidence indicating an impact structure includes regional folding and faulting patterns both within and surrounding the plateau. Features confirming an impact, such as shock textures (indicating rapid compression, melting, and fracturing during impact) in rocks and minerals have not yet been found; this, according to scientists, is perhaps due to removal during erosion of an original crater.
Professional identity in clinician-scientists: brokers between care and science.
Kluijtmans, Manon; de Haan, Else; Akkerman, Sanne; van Tartwijk, Jan
2017-06-01
Despite increasing numbers of publications, science often fails to significantly improve patient care. Clinician-scientists, professionals who combine care and research activities, play an important role in helping to solve this problem. However, despite the ascribed advantages of connecting scientific knowledge and inquiry with health care, clinician-scientists are scarce, especially amongst non-physicians. The education of clinician-scientists can be complex because they must form professional identities at the intersection of care and research. The successful education of clinician-scientists requires insight into how these professionals view their professional identity and how they combine distinct practices. This study sought to investigate how recently trained nurse- and physiotherapist-scientists perceive their professional identities and experience the crossing of boundaries between care and research. Semi-structured interviews were conducted with 14 nurse- and physiotherapist-scientists at 1 year after they had completed MSc research training. Interviews were thematically analysed using insights from the theoretical frameworks of dialogical self theory and boundary crossing. After research training, the initial professional identity, of clinician, remained important for novice clinician-scientists, whereas the scientist identity was experienced as additional and complementary. A meta-identity as broker, referred to as a 'bridge builder', seemed to mediate competing demands or tensions between the two positions. Obtaining and maintaining a dual work position were experienced as logistically demanding; nevertheless, it was considered beneficial for crossing the boundaries between care and research because it led to reflection on the health profession, knowledge integration, inquiry and innovation in care, improved data collection, and research with a focus on clinical applicability. Novice clinician-scientists experience dual professional identities as care providers and scientists. The meta-position of being a broker who connects care and research is seen as core to the unique clinician-scientist identity. To develop this role, identity formation and boundary-crossing competencies merit explicit attention within clinician-scientist programmes. © 2017 The Authors Medical Education published by Association for the Study of Medical Education and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Hatheway, B.
2013-12-01
After three years of running a climate science professional development program for secondary teachers, project staff from UCAR and UNC-Greeley have learned the benefits of ample time for interaction between teachers and scientists, informal educators, and their peers. This program gave us the opportunity to develop and refine strategies that leverage teacher-scientist partnerships to improve teachers' ability to teach climate change. First, we prepared both teachers and scientists to work together. Each cohort of teachers took an online course that emphasized climate change content and pedagogy and built a learning community. Scientists were recruited based on their enthusiasm for working with teachers and coached to present materials in an accessible way. Second, the teachers and scientists collaborated during a four-week summer workshop at UCAR. During the workshop, teachers met with a wide range of climate and atmospheric scientists to learn about research, selected a specific scientist's research they would like to adapt for their classrooms, and developed and refined activities based on that research. The program includes strong mentoring from a team of science educators, structured peer feedback, and ample opportunity to interact with the scientists by asking questions, accessing data, or checking resources. This new model of professional development fosters teacher-scientist partnerships. By the end of the four-week workshop, the teachers have built customized activities based on the cutting-edge research being conducted by participating scientists, developed plans to implement and assess those activities, and further strengthened the learning-community that they will rely on for support during the following academic year. This session will provide information about how this model, which differs from the more common model of engaging teachers in research under the direction of scientists, was successful and accomplished positive outcomes for both the teachers and scientists who participated. Lessons learned that will improve this model will also be discussed.
NASA Astrophysics Data System (ADS)
Horne, Patricia Lynne
The purpose of this research was to determine the nature of the relationship between urban elementary fifth graders, environmental workers, and the environment. The study examined 320 urban fifth grade elementary students' drawings of environmental scientists (DAEST) and environmental caretakers (DAECT). Additionally, semi-structured interviews were included to elucidate student illustrations. The study's sample represented one-third of all fifth graders in the mid-Atlantic school district selected for this research. Approximately 5% of participants were chosen for follow-up semi-structured interviews based on their illustrations. A general conclusion is some of the stereotypes, particularly related to gender, revealed in prior research (Barman, 1999, Chambers, 1983; Huber & Burton, 1995; Schibeci & Sorensen's, 1983; Sumrall, 1995) are evident among many elementary students. Male environmental scientists were drawn twice as often as female environmental scientists. Females were represented in more pictures of environmental caretakers than environmental scientists. Students overwhelmingly drew environmental scientists (98.1%) and environmental caretakers (76.5%) working alone. Wildlife was noticeably absent from most drawings (85%). Where wildlife was included, it was most often birds (6.9%) and fish (3.1%). More than one species was evident in only 2.5% of the pictures. Fifty percent of environmental caretakers were shown picking up trash from land. Actions such as reducing resource use occurred in only 13 out of 319 pictures (4.1%). Pictures of environmental caretakers sharing knowledge were even less common (2.5%). Almost 22% of females drew multiple individuals compared to 18.5% drawn by males. Females were more likely to show individuals collaborating (22.4% to 16.8%) while males were more likely to show individuals working in opposition (5.2% to 2.0%).
NASA Astrophysics Data System (ADS)
Viso, Michel
The committee for Space research was established by the International Council of Scientific Union during the year following the launch of Sputnik 1(October 4th, 1957) which opened the space Era. The committee was the main point of contact in the, then, bipolarized world between scientists from the eastern and western countries. This committee remained the main and sometimes the sole point of contact for the scientists from both parties. During this period, called “cold war” the exchanges were very difficult and language barrier was also a major obstacle in exchanges. Beyond its former, strong political significance, COSPAR aims at promoting the space research, the exchanges of results, information. It was often the starting point of actual scientific cooperation. Even COSPAR has a continuous activity, the focal point for most of the space scientists is the general assembly which was held every year from 1958 up to 1980, then once every other year. The governing body is composed of representatives of various institutions and scientific unions. With the present structure by commissions and sub-commissions, the general assembly are quite big events with numerous scientists working in parallel sessions. The number of oral presentations and poster is continuously increasing. COSPAR is the best and perhaps the unique place for space scientists to exchange and enlarge their vision of space science. While structured in specialized commissions individuals can build up their own interdisciplinary program. Beyond the commissions there are several groups of interests, cross disciplinary and not linked to a single scientific domain: these are the panels. Some are supposed to be transient; some are supposed to be indefinite. The panels can propose advices and recommendations which could be used by the space agencies or other institutions. The officers of the panels are appointed by the COSPAR Bureau. COSPAR is an international cooperative body for scientists. It is the ideal place for young scientist to extend their knowledge not only in their own field but also in other disciplines to prepare their own future and their future research. COSPAR is editing two scientific journals and a bulletin. Just use them!! You are scientists, you are interested in space sciences or science in space; COSPAR is good for you!
Taylor, Sara; Bennett, Katie M; Deignan, Joshua L; Hendrix, Ericka C; Orton, Susan M; Verma, Shalini; Schutzbank, Ted E
2014-05-01
Molecular diagnostics is a rapidly growing specialty in the clinical laboratory assessment of pathology. Educational programs in medical laboratory science and specialized programs in molecular diagnostics must address the training of clinical scientists in molecular diagnostics, but the educational curriculum for this field is not well defined. Moreover, our understanding of underlying genetic contributions to specific diseases and the technologies used in molecular diagnostics laboratories change rapidly, challenging providers of training programs in molecular diagnostics to keep their curriculum current and relevant. In this article, we provide curriculum recommendations to molecular diagnostics training providers at both the baccalaureate and master's level of education. We base our recommendations on several factors. First, we considered National Accrediting Agency for Clinical Laboratory Sciences guidelines for accreditation of molecular diagnostics programs, because educational programs in clinical laboratory science should obtain its accreditation. Second, the guidelines of several of the best known certifying agencies for clinical laboratory scientists were incorporated into our recommendations. Finally, we relied on feedback from current employers of molecular diagnostics scientists, regarding the skills and knowledge that they believe are essential for clinical scientists who will be performing molecular testing in their laboratories. We have compiled these data into recommendations for a molecular diagnostics curriculum at both the baccalaureate and master's level of education. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Scientists' perception of ethical issues in nanomedicine: a case study.
Silva Costa, Helena; Sethe, Sebastian; Pêgo, Ana P; Olsson, I Anna S
2011-06-01
Research and development in nanomedicine has been accompanied by the consideration of ethical issues; however, little is known about how researchers working in this area perceive such issues. This case-study explores scientists' attitude towards and knowledge of ethical issues. Data were collected by semi-structured interviews with 22 nanomedicine practitioners and subject to content analysis. We found that scientists reflect with ambiguity on the reputed novelty of nanomedicine and what the ethical issues and risks are in their work. Respondents see no necessity for a paradigm shift in ethical considerations, but view ethical issues in nanomedicine as overlapping with those of other areas of biomedical research. Most respondents discuss ethical issues they faced in scientific work with their colleagues, but expect benefit from additional information and training on ethics. Our findings that scientists are motivated to reflect on ethical issues in their work, can contribute to the design of new strategies, including training programs, to engage scientists in ethical discussion and stimulate their responsibility as nanomedicine practitioners.
Stigma in science: the case of earthquake prediction.
Joffe, Helene; Rossetto, Tiziana; Bradley, Caroline; O'Connor, Cliodhna
2018-01-01
This paper explores how earthquake scientists conceptualise earthquake prediction, particularly given the conviction of six earthquake scientists for manslaughter (subsequently overturned) on 22 October 2012 for having given inappropriate advice to the public prior to the L'Aquila earthquake of 6 April 2009. In the first study of its kind, semi-structured interviews were conducted with 17 earthquake scientists and the transcribed interviews were analysed thematically. The scientists primarily denigrated earthquake prediction, showing strong emotive responses and distancing themselves from earthquake 'prediction' in favour of 'forecasting'. Earthquake prediction was regarded as impossible and harmful. The stigmatisation of the subject is discussed in the light of research on boundary work and stigma in science. The evaluation reveals how mitigation becomes the more favoured endeavour, creating a normative environment that disadvantages those who continue to pursue earthquake prediction research. Recommendations are made for communication with the public on earthquake risk, with a focus on how scientists portray uncertainty. © 2018 The Author(s). Disasters © Overseas Development Institute, 2018.
Teaching Elementary Particle Physics: Part I1
NASA Astrophysics Data System (ADS)
Hobson, Art
2011-01-01
I'll outline suggestions for teaching elementary particle physics, often called high energy physics, in high school or introductory college courses for non-scientists or scientists. Some presentations of this topic simply list the various particles along with their properties, with little overarching structure. Such a laundry list approach is a great way to make a fascinating topic meaningless. Students need a conceptual framework from which to view the elementary particles. That conceptual framework is quantum field theory (QFT). Teachers and students alike tend to quake at this topic, but bear with me. We're talking here about concepts, not technicalities. My approach will be conceptual and suitable for non-scientists and scientists; if mathematical details are added in courses for future scientists, they should be simple and sparse. Introductory students should not be expected to do QFT, but only to understand its concepts. Those concepts take some getting used to, but they are simple and can be understood by any literate person, be she plumber, attorney, musician, or physicist.
NASA Astrophysics Data System (ADS)
Morelli, T. L.; Hallett, L. M.; Gerber, L. R.; Moritz, M.; Schwartz, M.; Stephenson, N.; Tank, J. L.; Williamson, M. A.; Woodhouse, C. A.
2016-12-01
As scientists seek to make their research more relevant and impactful, a growing number are interested in translational approaches that yield scientific and applied outcomes through iterative collaboration between scientists and practitioners. This is particularly true in the field of ecology, where many of its experts are interested in the resource management and conservation implications of their research. Unfortunately, the pathways to translational ecology are not always apparent. Here we will outline a set of principles to guide academic scientists in the process of translational ecology and provide concrete examples of novel outcomes. We will highlight structural aspects of collaborations, such as how to initiate and sustain projects in ways that meet the needs of all participants. We will also outline common pitfalls for scientists and practitioners, and ways in which translational research can help overcome them. Throughout we will use pressing environmental challenges to emphasize opportunities that exist within current institutional frameworks, while also highlighting ways in which institutions are changing to facilitate effective translational research.
Tongue-tied: Confused meanings for common fire terminology can lead to fuels mismanagement
Theresa B. Jain; Russell T. Graham; David S. Pilliod
2004-01-01
The ineffective and inconsistent use of terminology among fire managers, scientists, resource managers and the public is a constant problem in resource management. In fire management and fire science, the terms fire severity, burn severity and fire intensity are defined in a variety of ways, used inconsistently and, in some cases, interchangeably.
Disturbance Detection in Snow Using Polarimetric Imagery of the Visible Spectrum
2010-12-01
37 1. Wide- Angle Image .............................................................................37 2. Telephoto Lens Image...known qualitative results regarding polarization is that of Brewster’s angle . Sir David Brewster , a self-taught scientist and inventor, was deeply...refractive indices of materials in which they traversed ( Brewster , 1815). Coulson accurately defines Brewster’s angle : Light which is reflected at a
Ecosystem Services have received increased scientific attention for a decade, yet the natural and social scientists working on mainstreaming these concepts are still struggling with the task. FEGS (Final Ecosystem Goods and Services) are an informative and useful concept as they...
Requirements and specifications of the space telescope for scientific operations
NASA Technical Reports Server (NTRS)
West, D. K.
1976-01-01
Requirements for the scientific operations of the Space Telescope and the Science Institute are used to develop operational interfaces between user scientists and the NASA ground system. General data systems are defined for observatory scheduling, daily science planning, and science data management. Hardware, software, manpower, and space are specified for several science institute locations and support options.
ERIC Educational Resources Information Center
Damonte, Kathleen
2004-01-01
The term acid rain describes rain, snow, or fog that is more acidic than normal precipitation. To understand what acid rain is, it is first necessary to know what an acid is. Acids can be defined as substances that produce hydrogen ions (H+), when dissolved in water. Scientists indicate how acidic a substance is by a set of numbers called the pH…
ERIC Educational Resources Information Center
Wong, Chee Leong; Chu, Hye-Eun; Yap, Kueh Chin
2016-01-01
Currently, there is no agreement among scientists and science educators on whether heat should be defined as a "process of energy transfer" or "form of energy." For example, students may conceive of heat as "molecular kinetic energy," but the interpretation of this alternative conception is dependent on educational…
Ecosystem services and urban greenways: What's the public's perspective?
Lincoln R. Larson; Samuel J. Keith; Mariela Fernandez; Jeffrey C. Hallo; C. Scott Shafer; Viniece Jennings
2016-01-01
Ecosystem services (ES) are an important tool for quantifying the value of nature, yet there are often disconnects between services defined and measured by scientists and those that are realized and appreciated by the general public. Our study explored public perceptions of urban ES by examining benefits associated with greenways in two U.S. cities. Respondents (n =460...
Effects of roads on wildlife in Arizona: How far have we traveled?
Hsiang Ling Chen; John L. Koprowski
2013-01-01
Roads are conspicuous and pervasive features of landscapes and represent one of the most significant anthropogenic impacts on natural areas and wildlife. The Madrean Archipelago is defined by natural levels of fragmentation due to geography; however, human population growth and transportation needs threaten to exacerbate levels of isolation in the region. Scientists,...
The Scientific-Technological Revolution and the Formation of the New Man
ERIC Educational Resources Information Center
Soviet Education, 1976
1976-01-01
This issue contains the proceedings of a round table discussion by Ukranian educators, philosophers, and social scientists on the education of the new Soviet man in the era of scientific-technological revolution. The "new man" is defined as the builder of communism, the participant in the transition to an advanced industrial economy.…
Culture: Yes; Organization; No!
1983-09-01
Posner. " Socialization Practices, Job Satisfaction and Commitment." Presentation, Western Division, Academy of Management, March, 1983. April, 1983... corporate culture by organizational scientists and managers in government and industry. A premise prevalent in current formulations Is that an...culture in organizational settings. COMPONENTS OF A DEFINITION What is culture? A dictionary defines culture as: the totality of socially transmitted
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiley, H. S.
2009-05-01
Why we sometimes need scientists to misbehave publicly Unlike most professional fields, science doesn’t have a formalized authority structure, and we scientists don’t need a license to ply our trade. Instead, science is a field that depends almost completely on the honor and integrity of its individuals. The community’s reaction to instances of misbehavior serves to reinforce this social compact, helping to keep everyone in line, so to speak.
Information and the Ecology of Scholars
ERIC Educational Resources Information Center
Blackburn, Thomas R.
1973-01-01
Suggests a logical basis for the use of ecological concepts in modeling a special subculture; that of scholars (and in particular scientists), who produce, barter, and structure information as an ecosystem produces, exchanges, and structures biomass. (JR)
Challenges in translational research: the views of addiction scientists.
Ostergren, Jenny E; Hammer, Rachel R; Dingel, Molly J; Koenig, Barbara A; McCormick, Jennifer B
2014-01-01
To explore scientists' perspectives on the challenges and pressures of translating research findings into clinical practice and public health policy. We conducted semi-structured interviews with a purposive sample of 20 leading scientists engaged in genetic research on addiction. We asked participants for their views on how their own research translates, how genetic research addresses addiction as a public health problem and how it may affect the public's view of addiction. Most scientists described a direct translational route for their research, positing that their research will have significant societal benefits, leading to advances in treatment and novel prevention strategies. However, scientists also pointed to the inherent pressures they feel to quickly translate their research findings into actual clinical or public health use. They stressed the importance of allowing the scientific process to play out, voicing ambivalence about the recent push to speed translation. High expectations have been raised that biomedical science will lead to new prevention and treatment modalities, exerting pressure on scientists. Our data suggest that scientists feel caught in the push for immediate applications. This overemphasis on rapid translation can lead to technologies and applications being rushed into use without critical evaluation of ethical, policy, and social implications, and without balancing their value compared to public health policies and interventions currently in place.
Vannevar Bush: Fifty Years Later
NASA Astrophysics Data System (ADS)
Lagowski, J. J.
1995-12-01
It is ironic that the 50th anniversary year of Vannevar Bush's Report to President Truman entitled "Science the Endless Frontier", which put into motion the eminently successful current system of education of scientists in this country occurs at a time when serious questions are being asked about the usefulness of that very system. Bush viewed his proposal to establish a national research foundation (later to be called the National Science Foundation) as a "social compact." Judgment of scientific merit would be delegated to expert peers in return for scientific progress, which would ultimately benefit the nation in terms of scientific needs--military security, economic productivity, and enhanced quality of life. Bush wanted the funding of basic research intertwined with training, and preferred to use universities for this purpose rather than industrial or national labs. Bush viewed college and university scientists as teachers and investigators. He believed university-based research would uniquely encourage and engage the next generation of scientists as no other institutional arrangement could. Bush did not trust industry's commitment to basic research, an instinct that proved prophetic. The academic reserve of scientists (PhD's in training and postdoctoral students) that existed before World War II, and upon which the United States could draw for its needs, which were primarily associated with defense efforts, was probably one of the defining factors in Bush's suggested strategy. Currently, that reserve of talent has gotten so large that it is the obvious throttle in the pipeline slowing the continued development of the university research enterprise. Since 1977, the rate at which we have trained new scientists exceeds an average of 4% annually. Since 1987, the "science work force"--PhD's--has grown at three times the rate of the general labor supply. Temporary positions for postdoctoral scientists have grown even faster (over 5% per year since 1989). To compound the problem, the 1990 Immigration Reform Act resulted in a tripling of job-based visas, with scientists representing nearly one-third of the total. In 1979, two of every three postdoctoral scientists were U.S.-born; in 1992, the ratio was about one to one. Over that period, the cohort of postdoctoral scientists grew from 18,000 to 33,000. Adding to the coincidence of events that have compounded one another is the admission of 20,000 Chinese scientists in a ten-year period, the sudden and unexpected availability of Russian scientists, the elimination of many industrial laboratories as a result of downsizing, changes in the mandatory retirement age for faculty, and the disappearance of the Cold War, which all but eliminated the need for scientists for national security purposes. Is it any wonder that postdoctoral scientists have been called the migrant workers of today's high-tech society? What once was a reservoir of enthusiastic talent is becoming a dumping ground for credentialed and capable scientists exiled from the main stream of their disciplines. From a broader point of view, the problems facing U.S. science are those of our society: an imposing deficit that is shrinking discretionary funding; the end of the Cold War, which has refocused spending for national security; and a robust science work force that can no longer expand. The business world's response to these societal problems is, basically, downsizing, which often means the elimination of large segments of the work force, usually at the middle-management level. The initial academic response to these same problems is either to insist on more resources being made available, usually through federal agencies, in an attempt to maintain the status quo, or to engage in some form of "academic birth control." The former strategy is unrealistic because it just perpetuates the problem; there will never be enough research professorships in the academic world for every aspiring PhD produced in a discipline. The latter strategy will invariably decrease the flow of truly new knowledge in a discipline, a process that will eventually affect the viability of our technology base. Some argue for a third view, namely, expanding the career options for PhD's by altering the details of the training process. If there was a flaw in the Bush plan, it was to be found in the implicit premise that an ever-growing supply of scientists would stimulate new demand for scientific expertise, not just in government and universities, but in industry and the professional venues. Bush probably never expected that, because of federal funding, university scientists would in 50 years produce not just the national reserve of scientists he sought to develop, but a growing number of young PhD's, many of whom wanted nothing more--and nothing less--than to be university scientists themselves. Bush probably never guessed at the efficiency of the process for the education of scientists he set into motion. The absence of a plan to complement supply with demand is one source of the inherent structural problem in American science today. Young PhD's do not receive a sufficiently versatile training to do anything other than academic scientific research. Science as a way of knowing is clearly a sound foundation for a variety of careers. Numerous opportunities exist that can use the skills of the scientist while rewarding creativity, autonomy, problem-solving, industriousness, and the yearning for knowledge--all the characteristics associated with well-trained scientists. The challenge for academe is to refine or adapt Vannevar Bush's original "social contract" into a new one, more appropriate for the 21st century.
Dynamic Collaboration Infrastructure for Hydrologic Science
NASA Astrophysics Data System (ADS)
Tarboton, D. G.; Idaszak, R.; Castillo, C.; Yi, H.; Jiang, F.; Jones, N.; Goodall, J. L.
2016-12-01
Data and modeling infrastructure is becoming increasingly accessible to water scientists. HydroShare is a collaborative environment that currently offers water scientists the ability to access modeling and data infrastructure in support of data intensive modeling and analysis. It supports the sharing of and collaboration around "resources" which are social objects defined to include both data and models in a structured standardized format. Users collaborate around these objects via comments, ratings, and groups. HydroShare also supports web services and cloud based computation for the execution of hydrologic models and analysis and visualization of hydrologic data. However, the quantity and variety of data and modeling infrastructure available that can be accessed from environments like HydroShare is increasing. Storage infrastructure can range from one's local PC to campus or organizational storage to storage in the cloud. Modeling or computing infrastructure can range from one's desktop to departmental clusters to national HPC resources to grid and cloud computing resources. How does one orchestrate this vast number of data and computing infrastructure without needing to correspondingly learn each new system? A common limitation across these systems is the lack of efficient integration between data transport mechanisms and the corresponding high-level services to support large distributed data and compute operations. A scientist running a hydrology model from their desktop may require processing a large collection of files across the aforementioned storage and compute resources and various national databases. To address these community challenges a proof-of-concept prototype was created integrating HydroShare with RADII (Resource Aware Data-centric collaboration Infrastructure) to provide software infrastructure to enable the comprehensive and rapid dynamic deployment of what we refer to as "collaborative infrastructure." In this presentation we discuss the results of this proof-of-concept prototype which enabled HydroShare users to readily instantiate virtual infrastructure marshaling arbitrary combinations, varieties, and quantities of distributed data and computing infrastructure in addressing big problems in hydrology.
Gross, Charles
2016-01-01
Scientific misconduct has been defined as fabrication, falsification, and plagiarism. Scientific misconduct has occurred throughout the history of science. The US government began to take systematic interest in such misconduct in the 1980s. Since then, a number of studies have examined how frequently individual scientists have observed scientific misconduct or were involved in it. Although the studies vary considerably in their methodology and in the nature and size of their samples, in most studies at least 10% of the scientists sampled reported having observed scientific misconduct. In addition to studies of the incidence of scientific misconduct, this review considers the recent increase in paper retractions, the role of social media in scientific ethics, several instructional examples of egregious scientific misconduct, and potential methods to reduce research misconduct.
Raos, Nenad
2002-09-01
In spite of a popular belief that every scientist knows how to write a professional paper, it is a sad fact that only a few scientists are really good writers. Hence the need for this paper. The process of writing is divided in three general steps (preparing, writing, and editing). In the first step, it is necessary to comprehend the future text as the whole. In the next step, one has to deal with its composition. In the third step, it is important to divide editing in precisely defined actions (adding and checking data, grammatical and stylistic corrections, spell-checking). The article also addresses certain differences between English and Croatian related to the meaning of words of Latin origin and provides examples of stylistic editing of scientific texts.
A measure for the impact of research
Aragón, Alejandro M.
2013-01-01
The last few years have seen the proliferation of measures that quantify the scientific output of researchers. Yet, most of these measures focus on productivity, thus fostering the “publish or perish” paradigm. This article proposes a measure that aims at quantifying the impact of research de-emphasizing productivity, thus providing scientists an alternative, conceivably fairer, evaluation of their work. The measure builds from a published manuscript, the literature's most basic building block. The impact of an article is defined as the number of lead authors that have been influenced by it. Thus, the measure aims at quantifying the manuscript's reach, putting emphasis on scientists rather than on raw citations. The measure is then extrapolated to researchers and institutions. PMID:23575957
Assuring the quality, safety, and efficacy of DNA vaccines.
Robertson, J S; Griffiths, E
2001-02-01
Scientists in academia whose research is aimed at the development of a novel vaccine or approach to vaccination may not always be fully aware of the regulatory process by which a candidate vaccine becomes a licensed product. It is useful for such scientists to be aware of these processes as the development of a novel vaccine could be problematic owing to the starting material often being developed in a research laboratory under ill-defined conditions. This paper examines the regulatory process with respect to the development of a DNA vaccine. DNA vaccines present unusual safety considerations that must be addressed during preclinical safety studies, including adverse immunopathology, genotoxicity through integration into a vaccinees chromosomes, and the potential for the formation of anti-DNA antibodies.
Assuring the quality, safety, and efficacy of DNA vaccines.
Robertson, James S; Griffiths, Elwyn
2006-01-01
Scientists in academia whose research is aimed at the development of a novel vaccine or approach to vaccination may not always be fully aware of the regulatory process by which a candidate vaccine becomes a licensed product. It is useful for such scientists to be aware of these processes, as the development of a novel vaccine could be problematic as a result of the starting material often being developed in a research laboratory under ill-defined conditions. This chapter examines the regulatory process with respect to the development of a DNA vaccine. DNA vaccines present unusual safety considerations which must be addressed during nonclinical safety studies, including adverse immunopathology, genotoxicity through integration into a vaccinee's chromosomes and the potential for the formation of anti-DNA antibodies.
Scientific impact: the story of your big hit
NASA Astrophysics Data System (ADS)
Sinatra, Roberta; Wang, Dashun; Deville, Pierre; Song, Chaoming; Barabasi, Albert-Laszlo
2014-03-01
A gradual increase in performance through learning and practice characterize most trades, from sport to music or engineering, and common sense suggests this to be true in science as well. This prompts us to ask: what are the precise patterns that lead to scientific excellence? Does performance indeed improve throughout a scientific career? Are there quantifiable signs of an impending scientific hit? Using citation-based measures as a proxy of impact, we show that (i) major discoveries are not preceded by works of increasing impact, nor are followed by work of higher impact, (ii) the precise time ranking of the highest impact work in a scientist's career is uniformly random, with the higher probability to have a major discovery in the middle of scientific careers being due only to changes in productivity, (iii) there is a strong correlation between the highest impact work and average impact of a scientist's work. These findings suggest that the impact of a paper is drawn randomly from an impact distribution that is unique for each scientist. We present a model which allows to reconstruct the individual impact distribution, making possible to create synthetic careers that exhibit the same properties of the real data and to define a ranking based on the overall impact of a scientist. RS acknowledges support from the James McDonnell Foundation.
Field-aligned currents in the undisturbed polar ionosphere
NASA Astrophysics Data System (ADS)
Kroehl, H. W.
1989-09-01
Field-aligned currents, FAC's, which couple ionospheric currents at high latitudes with magnetospheric currents have become an essential cornerstone to our understanding of plasma dynamics in the polar region and in the earth's magnetosphere. Initial investigators of polar electrodynamics including the aurora were unable to distinguish between the ground magnetic signatures of a purely two-dimensional current and those from a three-dimensional current system, ergo many scientists ignored the possible existence of these vertical currents. However, data from magnetometers and electrostatic analyzers flown on low-altitude, polar-orbiting satellites proved beyond any reasonable doubt that field-aligned currents existed, and that different ionospheric regions were coupled to different magnetospheric regions which were dominated by different electrodynamic processes, e.g., magnetospheric convection electric fields, magnetospheric substorms and parallel electric fields. Therefore, to define the “undisturbed” polar ionosphere and its structure and dynamics, one needs to consider these electrodynamic processes, to select times for analysis when they are not strongly active and to remember that the polar ionosphere may be disturbed when the equatorial, mid-latitude and sub-auroral ionospheres are not. In this paper we will define the principle high-latitude current systems, describe the effects of FAC's associated with these systems, review techniques which would minimize these effects and present our description of the “undisturbed” polar ionosphere.
Behavior driven testing in ALMA telescope calibration software
NASA Astrophysics Data System (ADS)
Gil, Juan P.; Garces, Mario; Broguiere, Dominique; Shen, Tzu-Chiang
2016-07-01
ALMA software development cycle includes well defined testing stages that involves developers, testers and scientists. We adapted Behavior Driven Development (BDD) to testing activities applied to Telescope Calibration (TELCAL) software. BDD is an agile technique that encourages communication between roles by defining test cases using natural language to specify features and scenarios, what allows participants to share a common language and provides a high level set of automated tests. This work describes how we implemented and maintain BDD testing for TELCAL, the infrastructure needed to support it and proposals to expand this technique to other subsystems.
Challenging paradigms in estuarine ecology and management
NASA Astrophysics Data System (ADS)
Elliott, M.; Whitfield, A. K.
2011-10-01
For many years, estuarine science has been the 'poor relation' in aquatic research - freshwater scientists ignored estuaries as they tended to get confused by salt and tides, and marine scientists were more preoccupied by large open systems. Estuaries were merely regarded by each group as either river mouths or sea inlets respectively. For the past four decades, however, estuaries (and other transitional waters) have been regarded as being ecosystems in their own right. Although often not termed as such, this has led to paradigms being generated to summarise estuarine structure and functioning and which relate to both the natural science and management of these systems. This paper defines, details and affirms these paradigms that can be grouped into those covering firstly the science (definitions, scales, linkages, productivity, tolerances and variability) and secondly the management (pressures, valuation, health and services) of estuaries. The more 'science' orientated paradigms incorporate the development and types of ecotones, the nature of stressed and variable systems (with specific reference to resilience and redundancy), the relationship between generalists and specialists produced by environmental tolerance, the relevance of scale in relation to functioning and connectivity, the sources of production and degree of productivity, the biodiversity-ecosystem functioning and the stress-subsidy debates. The more 'management' targeted paradigms include the development and effects of exogenic unmanaged pressures and endogenic managed pressures, the perception of health and the ability to manage estuaries (related to internal and external influences), and the influence of all of these on the production of ecosystem services and societal benefits.
A guide to the visual analysis and communication of biomolecular structural data.
Johnson, Graham T; Hertig, Samuel
2014-10-01
Biologists regularly face an increasingly difficult task - to effectively communicate bigger and more complex structural data using an ever-expanding suite of visualization tools. Whether presenting results to peers or educating an outreach audience, a scientist can achieve maximal impact with minimal production time by systematically identifying an audience's needs, planning solutions from a variety of visual communication techniques and then applying the most appropriate software tools. A guide to available resources that range from software tools to professional illustrators can help researchers to generate better figures and presentations tailored to any audience's needs, and enable artistically inclined scientists to create captivating outreach imagery.
NASA Astrophysics Data System (ADS)
Walsh, E.; McGowan, V. C.
2015-12-01
The Next Generation Science Standards promote a vision in which learners engage in authentic knowledge in practice to tackle personally consequential science problems in the classroom. However, there is not yet a clear understanding amongst researchers and educators of what authentic practice looks like in a classroom and how this can be accomplished. This study explores these questions by examining interactions between scientists and students on a social media platform during two pilot enactments of a project-based curriculum focusing on the ecological impacts of climate change. During this unit, scientists provided feedback to students on infographics, visual representations of scientific information meant to communicate to an audience about climate change. We conceptualize the feedback and student work as boundary objects co-created by students and scientists moving between the school and scientific contexts, and analyze the structure and content of the scientists' feedback. We find that when giving feedback on a particular practice (e.g. argumentation), scientists would provide avenues, critiques and questions that incorporated many other practices (e.g. data analysis, visual communication); thus, scientists encouraged students to participate systemically in practices instead of isolating one particular practice. In addition, scientists drew attention to particular habits of mind that are valued in the scientific community and noted when students' work aligned with scientific values. In this way, scientists positioned students as capable of participating "scientifically." While traditionally, incorporating scientific inquiry in a classroom has emphasized student experimentation and data generation, in this work, we found that engaging with scientists around established scientific texts and data sets provided students with a platform for developing expertise in other important scientific practices during argment construction.
2013-01-01
Animals have been described as segmented for more than 2,000 years, yet a precise definition of segmentation remains elusive. Here we give the history of the definition of segmentation, followed by a discussion on current controversies in defining a segment. While there is a general consensus that segmentation involves the repetition of units along the anterior-posterior (a-p) axis, long-running debates exist over whether a segment can be composed of only one tissue layer, whether the most anterior region of the arthropod head is considered segmented, and whether and how the vertebrate head is segmented. Additionally, we discuss whether a segment can be composed of a single cell in a column of cells, or a single row of cells within a grid of cells. We suggest that ‘segmentation’ be used in its more general sense, the repetition of units with a-p polarity along the a-p axis, to prevent artificial classification of animals. We further suggest that this general definition be combined with an exact description of what is being studied, as well as a clearly stated hypothesis concerning the specific nature of the potential homology of structures. These suggestions should facilitate dialogue among scientists who study vastly differing segmental structures. PMID:24345042
Hannibal, Roberta L; Patel, Nipam H
2013-12-17
Animals have been described as segmented for more than 2,000 years, yet a precise definition of segmentation remains elusive. Here we give the history of the definition of segmentation, followed by a discussion on current controversies in defining a segment. While there is a general consensus that segmentation involves the repetition of units along the anterior-posterior (a-p) axis, long-running debates exist over whether a segment can be composed of only one tissue layer, whether the most anterior region of the arthropod head is considered segmented, and whether and how the vertebrate head is segmented. Additionally, we discuss whether a segment can be composed of a single cell in a column of cells, or a single row of cells within a grid of cells. We suggest that 'segmentation' be used in its more general sense, the repetition of units with a-p polarity along the a-p axis, to prevent artificial classification of animals. We further suggest that this general definition be combined with an exact description of what is being studied, as well as a clearly stated hypothesis concerning the specific nature of the potential homology of structures. These suggestions should facilitate dialogue among scientists who study vastly differing segmental structures.
Lee, Gloria; Kranzler, Jay D; Ramasamy, Ravichandran; Gold-von Simson, Gabrielle
2018-01-01
PhDs and post-doctoral biomedical graduates, in greater numbers, are choosing industry based careers. However, most scientists do not have formal training in business strategies and venture creation and may find senior management positions untenable. To fill this training gap, "Biotechnology Industry: Structure and Strategy" was offered at New York University School of Medicine (NYUSOM). The course focuses on the business aspects of translational medicine and research translation and incorporates the practice of business case discussions, mock negotiation, and direct interactions into the didactic. The goal is to teach scientists at an early career stage how to create solutions, whether at the molecular level or via the creation of devices or software, to benefit those with disease. In doing so, young, talented scientists can develop a congruent mindset with biotechnology/industry executives. Our data demonstrates that the course enhances students' knowledge of the biotechnology industry. In turn, these learned skills may further encourage scientists to seek leadership positions in the field. Implementation of similar courses and educational programs will enhance scientists' training and inspire them to become innovative leaders in the discovery and development of therapeutics.
Characterizing the Background Corona with SDO/AIA
NASA Technical Reports Server (NTRS)
Napier, Kate; Alexander, Caroline; Winebarger, Amy
2014-01-01
Characterizing the nature of the solar coronal background would enable scientists to more accurately determine plasma parameters, and may lead to a better understanding of the coronal heating problem. Because scientists study the 3D structure of the Sun in 2D, any line-of-sight includes both foreground and background material, and thus, the issue of background subtraction arises. By investigating the intensity values in and around an active region, using multiple wavelengths collected from the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) over an eight-hour period, this project aims to characterize the background as smooth or structured. Different methods were employed to measure the true coronal background and create minimum intensity images. These were then investigated for the presence of structure. The background images created were found to contain long-lived structures, including coronal loops, that were still present in all of the wavelengths, 131, 171, 193, 211, and 335 A. The intensity profiles across the active region indicate that the background is much more structured than previously thought.
Gordon F. Kirkbright bursary award, 2019
NASA Astrophysics Data System (ADS)
2018-09-01
The Gordon F. Kirkbright bursary award is a prestigious annual award that assists a promising early career scientist of any nation to attend a recognised scientific meeting or visit a place of learning. (We define early career as being either a student, or an employee in a non-tenured academic post or in industry, within 7 years of award of PhD excluding career breaks).
Defining Openness: Updating the Concept of "Open" for a Connected World
ERIC Educational Resources Information Center
Brent, Isabelle; Gibbs, Graham R.; Gruszczynska, Anna Katarzyna
2012-01-01
The field of Social Research Methods is shared not only by the social sciences, but by many other disciplines. There is therefore enormous scope for the creation and re-use of open educational resources (OERs) in this area. However, our work with social scientists on a number of recent projects suggests that barriers exist to OER creation and use…
ERIC Educational Resources Information Center
Charrow, Veda R.
This paper studies legal language from three perspectives. First, legal language is defined as the variety of English that lawyers, judges, and other members of the legal community use in the course of their work. In a second section, it reviews descriptions of legal language by lawyers, linguists, and social scientists. These studies indicate…
ERIC Educational Resources Information Center
Bornmann, Lutz; Haunschild, Robin
2017-01-01
Bibliometrics is successful in measuring impact because the target is clearly defined: the publishing scientist who is still active and working. Thus, citations are a target-oriented metric which measures impact on science. In contrast, societal impact measurements based on altmetrics are as a rule intended to measure impact in a broad sense on…
Bitty A. Roy
2012-01-01
The terms "resistance" and "tolerance" have been used by different scientists to refer to different things, and they have often been measured (and thus operationally defined) in ways that confuse the two concepts with each other. In keeping with the emerging consensus on resistance and tolerance, the following conceptual distinction is useful:...
Meeting the Technology Portion of the Science and Technology Goal of Quality Education.
ERIC Educational Resources Information Center
Pennsylvania State Dept. of Education, Harrisburg. Bureau of Curriculum Services.
One of the goals of quality education in Pennsylvania is to help every student acquire knowledge, understanding, and appreciation of science and technology. This publication, which focuses on the technology component of this goal, is an initial effort by a team of scientists and science educators to define technology as it should be presented in…
ERIC Educational Resources Information Center
Wright, Tanya S.; Gotwals, Amelia Wenk
2017-01-01
In this article, the authors first review the research literature to show why supporting talk from the start of school is important for students' long-term literacy development. The authors then define and describe disciplinary talk and argue that it is an important entry point into science and disciplinary literacy learning for young students.…
Confronting illusions of knowledge: how should we learn?
Sally Duncan
1999-01-01
Adaptive management. What is it and how can it help us learn? Bernard Bormann, a PNW Research Station scientist, is leading a study on the subject. He defines the term this way: the management of complex natural systems by building on common sense and learning from experience. Experience can often mean change. The challenge of implementing adaptive management is how to...
USDA-ARS?s Scientific Manuscript database
Scientists at ARS developed tolerant industrial yeast that is able to reduce major chemical classes of inhibitors into less toxic or none toxic compounds while producing ethanol. Using genomic studies, we defined mechanisms of in situ detoxification involved in novel gene functions, vital cofactor r...
Indices of marine degradation: Their utility
NASA Astrophysics Data System (ADS)
O'Connor, Joel S.; Dewling, Richard T.
1986-05-01
Improved definition of pollutant effects in coastal marine environments is needed for two principal reasons. First, we need better understanding of how much pollutant degradation exists. Then we need more agreement on its social importance. Only then can society decide more consistently and equitably how much pollutant impact is tolerable and how much is too much. Scientists alone cannot define “unreasonable degradation” in a social sense, of course, but we can define quantitative scales of degradation and (together with nonscientists) specify ranges on these scales of “warning” and “alarm.” Rationales are presented for the urgency of these improvements. A strategy is described for indexing the socially relevant features of coastal environments at greatest risk from pollutants. The strategy differs from most existing environmental indices in several respects. Each of the 11 indices proposed is constrained by the following design criteria: (1) socially relevant, (2) simple and easily understood by laymen, (3) scientifically defensible, (4) quantitative and expressed probabilistically, and (5) acceptable in terms of cost. Evaluations of the draft indices are being completed by more than 50 collaborating scientists. One index is described to illustrate the utility of simple, socially relevant measures of marine degradation.
The 2008 Lindau Nobel Laureate Meeting: Robert Huber, Chemistry 1988. Interview by Klaus J. Korak.
Huber, Robert
2008-11-25
Robert Huber and his colleagues, Johann Deisenhofer and Hartmut Michel, elucidated the three-dimensional structure of the Rhodopseudomonas viridis photosynthetic reaction center. This membrane protein complex is a basic component of photosynthesis - a process fundamental to life on Earth - and for their work, Huber and his colleagues received the 1988 Nobel Prize in Chemistry. Because structural information is central to understanding virtually any biological process, Huber likens their discovery to "switching on the light" for scientists trying to understand photosynthesis. Huber marvels at the growth of structural biology since the time he entered the field, when crystallographers worked with hand-made instruments and primitive computers, and only "a handful" of crystallographers would meet annually in the Bavarian Alps. In the "explosion" of structural biology since his early days of research, Huber looks to the rising generation of scientists to solve the remaining mysteries in the field - such as the mechanisms that underlie protein folding. A strong proponent of science mentorship, Huber delights in meeting young researchers at the annual Nobel Laureate Meetings in Lindau, Germany. He hopes that among these young scientists is an "Einstein of biology" who, he says with a twinkle in his eye, "doesn't know it yet." The interview was conducted by JoVE co-founder Klaus J. Korak at the Lindau Nobel Laureate Meeting 2008 in Lindau, Germany.
The 2008 Lindau Nobel Laureate Meeting: Robert Huber, Chemistry 1988
Huber, Robert
2008-01-01
Robert Huber and his colleagues, Johann Deisenhofer and Hartmut Michel, elucidated the three-dimensional structure of the Rhodopseudomonas viridis photosynthetic reaction center. This membrane protein complex is a basic component of photosynthesis – a process fundamental to life on Earth – and for their work, Huber and his colleagues received the 1988 Nobel Prize in Chemistry. Because structural information is central to understanding virtually any biological process, Huber likens their discovery to “switching on the light” for scientists trying to understand photosynthesis. Huber marvels at the growth of structural biology since the time he entered the field, when crystallographers worked with hand-made instruments and primitive computers, and only “a handful” of crystallographers would meet annually in the Bavarian Alps. In the “explosion” of structural biology since his early days of research, Huber looks to the rising generation of scientists to solve the remaining mysteries in the field – such as the mechanisms that underlie protein folding. A strong proponent of science mentorship, Huber delights in meeting young researchers at the annual Nobel Laureate Meetings in Lindau, Germany. He hopes that among these young scientists is an “Einstein of biology” who, he says with a twinkle in his eye, “doesn’t know it yet.” The interview was conducted by JoVE co-founder Klaus J. Korak at the Lindau Nobel Laureate Meeting 2008 in Lindau, Germany. PMID:19066525
Casadevall, Arturo; Fang, Ferric C
2014-04-01
As the body of scientific knowledge in a discipline increases, there is pressure for specialization. Fields spawn subfields that then become entities in themselves that promote further specialization. The process by which scientists join specialized groups has remarkable similarities to the guild system of the middle ages. The advantages of specialization of science include efficiency, the establishment of normative standards, and the potential for greater rigor in experimental research. However, specialization also carries risks of monopoly, monotony, and isolation. The current tendency to judge scientific work by the impact factor of the journal in which it is published may have roots in overspecialization, as scientists are less able to critically evaluate work outside their field than before. Scientists in particular define themselves through group identity and adopt practices that conform to the expectations and dynamics of such groups. As part of our continuing analysis of issues confronting contemporary science, we analyze the emergence and consequences of specialization in science, with a particular emphasis on microbiology, a field highly vulnerable to balkanization along microbial phylogenetic boundaries, and suggest that specialization carries significant costs. We propose measures to mitigate the detrimental effects of scientific specialism.
Fang, Ferric C.
2014-01-01
As the body of scientific knowledge in a discipline increases, there is pressure for specialization. Fields spawn subfields that then become entities in themselves that promote further specialization. The process by which scientists join specialized groups has remarkable similarities to the guild system of the middle ages. The advantages of specialization of science include efficiency, the establishment of normative standards, and the potential for greater rigor in experimental research. However, specialization also carries risks of monopoly, monotony, and isolation. The current tendency to judge scientific work by the impact factor of the journal in which it is published may have roots in overspecialization, as scientists are less able to critically evaluate work outside their field than before. Scientists in particular define themselves through group identity and adopt practices that conform to the expectations and dynamics of such groups. As part of our continuing analysis of issues confronting contemporary science, we analyze the emergence and consequences of specialization in science, with a particular emphasis on microbiology, a field highly vulnerable to balkanization along microbial phylogenetic boundaries, and suggest that specialization carries significant costs. We propose measures to mitigate the detrimental effects of scientific specialism. PMID:24421049
The case for policy-relevant conservation science.
Rose, David C
2015-06-01
Drawing on the "evidence-based" (Sutherland et al. 2013) versus "evidence-informed" debate (Adams & Sandbrook 2013), which has become prominent in conservation science, I argue that science can be influential if it holds a dual reference (Lentsch & Weingart 2011) that contributes to the needs of policy makers whilst maintaining technical rigor. In line with such a strategy, conservation scientists are increasingly recognizing the usefulness of constructing narratives through which to enhance the influence of their evidence (Leslie et al. 2013; Lawton & Rudd 2014). Yet telling stories alone is rarely enough to influence policy; instead, these narratives must be policy relevant. To ensure that evidence is persuasive alongside other factors in a complex policy-making process, conservation scientists could follow 2 steps: reframe within salient political contexts and engage more productively in boundary work, which is defined as the ways in which scientists "construct, negotiate, and defend the boundary between science and policy" (Owens et al. 2006:640). These will both improve the chances of evidence-informed conservation policy. © 2015 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Marshall, Eric
2009-03-01
Science centers, professional associations, corporations and university research centers share the same mission of education and outreach, yet come from ``different worlds.'' This gap may be bridged by working together to leverage unique strengths in partnership. Front-end evaluation results for the development of new resources to support these (mostly volunteer-based) partnerships elucidate the factors which lead to a successful relationship. Maintaining a science museum-scientific community partnership requires that all partners devote adequate resources (time, money, etc.). In general, scientists/engineers and science museum professionals often approach relationships with different assumptions and expectations. The culture of science centers is distinctly different from the culture of science. Scientists/engineers prefer to select how they will ultimately share their expertise from an array of choices. Successful partnerships stem from clearly defined roles and responsibilities. Scientists/engineers are somewhat resistant to the idea of traditional, formal training. Instead of developing new expertise, many prefer to offer their existing strengths and expertise. Maintaining a healthy relationship requires the routine recognition of the contributions of scientists/engineers. As professional societies, university research centers and corporations increasingly engage in education and outreach, a need for a supportive infrastructure becomes evident. Work of TryScience.org/VolTS (Volunteers TryScience), the MRS NISE Net (Nanoscale Informal Science Education Network) subcommittee, NRCEN (NSF Research Center Education Network), the IBM On Demand Community, and IEEE Educational Activities exemplify some of the pieces of this evolving infrastructure.
NASA Astrophysics Data System (ADS)
Kopanitsa, Natalia O.
2015-01-01
In October 15-17, 2014 International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering (TSUAB2014) took place at Tomsk State University of Architecture and Building (Tomsk, Russia). The Conference became a discussion platform for researchers in the fields of studying structure and properties of advanced building materials and included open lectures of leading scientists and oral presentations of master, postgraduate and doctoral students. A special session was devoted to reports of school children who further plan on starting a research career. The Conference included an industrial exhibition where companies displayed the products and services they supply. The companies also gave presentations of their products within the Conference sessions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorenstein, David
The objectives of this program are to promote the mission of the Department of Energy (DOE) Science, Technology, Engineering, Math (STEM) Program by recruiting students to science and engineering disciplines with the intent of mentoring and supporting the next generation of scientists; to foster interdisciplinary and collaborative research under the sponsorship of ANH for the discovery and design of nano-based materials and devices with novel structures, functions, and properties; and to prepare a diverse work force of scientists, engineers, and clinicians by utilizing the unique intellectual and physical resources to develop novel nanotechnology paradigms for clinical application.
Scientific management of Space Telescope
NASA Technical Reports Server (NTRS)
Odell, C. R.
1981-01-01
A historical summay is given on the science management of the Space Telescope, the inception of which began in 1962, when scientists and engineers first recommended the development of a nearly diffraction limited substantial-size optical telescope. Phase A, the feasibility requirements generation phase, began in 1971 and consisted largely of NASA scientists and a NASA design. Phase B, the preliminary design phase, established a tiered structure of scientists, led by the Large Space Telescope operations and Management Work Group. A Mission Operations Working Group headed six instrument definition teams to develop the essential instrument definitions. Many changes took place during Phase B, before design and development, which began in 1978 and still continues today.
1972-06-01
introduction of sewage from commercial or private structures -- Monthly sampling of sewage treatment effluents -- Resistance of Vibrio parahemolyticus in oyster...of microorganisms in animal diseases and the effect of V. parahemolyticus and other vibrios on recruitment of commercial mollusks and crustaceans 575...Microbiology; including a survey of areas of the Chesapeake Bay for Vibrio parahaemalyticus * 18 Barnard, Thomas Alexander MA Assistant Marine Scientist
The mobility of elite life scientists: Professional and personal determinants
Azoulay, Pierre; Ganguli, Ina; Zivin, Joshua Graff
2017-04-01
As scientists’ careers unfold, mobility can allow researchers to find environments where they are more productive and more effectively contribute to the generation of new knowledge. In this paper, we examine the determinants of mobility of elite academics within the life sciences, including individual productivity measures and for the first time, measures of the peer environment and family factors. Using a unique data set compiled from the career histories of 10,051 elite life scientists in the U.S., we paint a nuanced picture of mobility. Prolific scientists are more likely to move, but this impulse is constrained by recent NIH funding. The quality of peer environments both near and far is an additional factor that influences mobility decisions. We also identify a significant role for family structure. Scientists appear to be unwilling to move when their children are between the ages of 14–17, and this appears to be more pronounced for mothers than fathers. These results suggest that elite scientists find it costly to disrupt the social networks of their children during adolescence and take these costs into account when making career decisions.
The Mobility of Elite Life Scientists: Professional and Personal Determinants
Azoulay, Pierre; Ganguli, Ina; Zivin, Joshua Graff
2017-01-01
As scientists’ careers unfold, mobility can allow researchers to find environments where they are more productive and more effectively contribute to the generation of new knowledge. In this paper, we examine the determinants of mobility of elite academics within the life sciences, including individual productivity measures and for the first time, measures of the peer environment and family factors. Using a unique data set compiled from the career histories of 10,051 elite life scientists in the U.S., we paint a nuanced picture of mobility. Prolific scientists are more likely to move, but this impulse is constrained by recent NIH funding. The quality of peer environments both near and far is an additional factor that influences mobility decisions. We also identify a significant role for family structure. Scientists appear to be unwilling to move when their children are between the ages of 14-17, and this appears to be more pronounced for mothers than fathers. These results suggest that elite scientists find it costly to disrupt the social networks of their children during adolescence and take these costs into account when making career decisions. PMID:29058845
Emancipation through interaction--how eugenics and statistics converged and diverged.
Louçã, Francisco
2009-01-01
The paper discusses the scope and influence of eugenics in defining the scientific programme of statistics and the impact of the evolution of biology on social scientists. It argues that eugenics was instrumental in providing a bridge between sciences, and therefore created both the impulse and the institutions necessary for the birth of modern statistics in its applications first to biology and then to the social sciences. Looking at the question from the point of view of the history of statistics and the social sciences, and mostly concentrating on evidence from the British debates, the paper discusses how these disciplines became emancipated from eugenics precisely because of the inspiration of biology. It also relates how social scientists were fascinated and perplexed by the innovations taking place in statistical theory and practice.
[An essay about science and linguistics].
Cugini, P
2011-01-01
Both the methodology and epistemology of science provided the criteria by which the scientific research can describe and interpret data and results of its observational or experimental studies. When the scientist approaches the conclusive inference, it is mandatory to think that both the knowledge and truth imply the use of words semantically and etymologically (semiologically) appropriate, especially if neologisms are required. Lacking a vocabulary, there will be the need of popularizing the inference to the linguistics of the context to which the message is addressed. This could imply a discrepancy among science, knowledge, truth and linguistics, that can be defined "semiologic bias". To avoid this linguistic error, the scientist must feel the responsibility to provide the scientific community with the new words that are semantically and etymologically coherent with what it has been scientifically discovered.
Bridging the practitioner-scientist gap in group psychotherapy research.
Lau, Mark A; Ogrodniczuk, John; Joyce, Anthony S; Sochting, Ingrid
2010-04-01
Bridging the practitioner-scientist gap requires a different clinical research paradigm: participatory research that encourages community agency-academic partnerships. In this context, clinicians help define priorities, determine the type of evidence that will have an impact on their practice (affecting the methods that are used to produce the evidence), and develop strategies for translating, implementing, and disseminating their findings into evidence-based practice. Within this paradigm, different roles are assumed by the partners, and sometimes these roles are blended. This paper will consider the perspectives of people who assume these different roles (clinician, researcher, and clinician-researcher) with group psychotherapy as the specific focus. Finally, the establishment of a practice-research network will be discussed as a potentially promising way to better engage group therapists in research.
State-Transition Structures in Physics and in Computation
NASA Astrophysics Data System (ADS)
Petri, C. A.
1982-12-01
In order to establish close connections between physical and computational processes, it is assumed that the concepts of “state” and of “transition” are acceptable both to physicists and to computer scientists, at least in an informal way. The aim of this paper is to propose formal definitions of state and transition elements on the basis of very low level physical concepts in such a way that (1) all physically possible computations can be described as embedded in physical processes; (2) the computational aspects of physical processes can be described on a well-defined level of abstraction; (3) the gulf between the continuous models of physics and the discrete models of computer science can be bridged by simple mathematical constructs which may be given a physical interpretation; (4) a combinatorial, nonstatistical definition of “information” can be given on low levels of abstraction which may serve as a basis to derive higher-level concepts of information, e.g., by a statistical or probabilistic approach. Conceivable practical consequences are discussed.
Field Science--the Nature and Utility of Scientific Fields.
Casadevall, Arturo; Fang, Ferric C
2015-09-08
Fields are the fundamental sociological units of science. Despite their importance, relatively little has been written about their emergence, composition, structure, and function in the scientific enterprise. This essay considers the nature of fields and their important role in maintaining information and providing normative standards for scientific work. We suggest that fields arise naturally as a consequence of increasing information and scientific specialization. New fields tend to emerge as research communities grow, which may reflect biologically determined optima for the size of human groups. The benefits of fields include the organization of scientists with similar interests into communities that collectively define the next important problems to pursue. In the discipline of microbiology, fields are often organized on the basis of phylogenetic differences between microorganisms being studied. Although fields are essential to the proper functioning of science, their emergence can restrict access by outsiders and sustain dogmas that hinder progress. We suggest mechanisms to improve the functioning of scientific fields and to promote interdisciplinary interaction between fields. Copyright © 2015 Casadevall and Fang.
Abou Samra, Haifa; McGrath, Jacqueline M; Estes, Tracy
2013-06-01
No instrument exists that measures student perceptions of the faculty role. Such a measure is necessary to evaluate the efficacy of interventions aimed at attracting students to the faculty career path. We developed the Nurse Educator Scale (NES). The initial scale items were generated using the social cognitive career theory (SCCT) constructs and were reviewed by an expert panel to ensure content validity. Exploratory factor analysis was used. The optimized 25-item, 7-point Likert scale has a Cronbach's alpha reliability coefficient of 0.85, with a total variance of 42%. The underlying factor structure supported three defining characteristics congruent with SCCT: outcome expectations (alpha = 0.79), relevant knowledge (alpha = 0.67), and social influence (alpha = 0.80). A stand-alone, item-measuring goal setting was also supported. The NES provides a valid and reliable measure of students' intentions and motivations to pursue a future career as a nurse educator or scientist. Copyright 2013, SLACK Incorporated.
The politics of researching global health politics
Rushton, Simon
2015-01-01
In this comment, I build on Shiffman’s call for the global health community to more deeply investigate structural and productive power. I highlight two challenges we must grapple with as social scientists carrying out the types of investigation that Shiffman proposes: the politics of challenging the powerful; and the need to investigate types of expertise that have traditionally been thought of as ‘outside’ global health. In doing so, I argue that moving forward with the agenda Shiffman sets out requires social scientists interested in the global politics of health to be reflexive about our own exercise of structural and productive power and the fact that researching global health politics is itself a political undertaking. PMID:25905482
Goodman, Dan F M; Brette, Romain
2009-09-01
"Brian" is a simulator for spiking neural networks (http://www.briansimulator.org). The focus is on making the writing of simulation code as quick and easy as possible for the user, and on flexibility: new and non-standard models are no more difficult to define than standard ones. This allows scientists to spend more time on the details of their models, and less on their implementation. Neuron models are defined by writing differential equations in standard mathematical notation, facilitating scientific communication. Brian is written in the Python programming language, and uses vector-based computation to allow for efficient simulations. It is particularly useful for neuroscientific modelling at the systems level, and for teaching computational neuroscience.
Designing protein-based biomaterials for medical applications.
Gagner, Jennifer E; Kim, Wookhyun; Chaikof, Elliot L
2014-04-01
Biomaterials produced by nature have been honed through billions of years, evolving exquisitely precise structure-function relationships that scientists strive to emulate. Advances in genetic engineering have facilitated extensive investigations to determine how changes in even a single peptide within a protein sequence can produce biomaterials with unique thermal, mechanical and biological properties. Elastin, a naturally occurring protein polymer, serves as a model protein to determine the relationship between specific structural elements and desirable material characteristics. The modular, repetitive nature of the protein facilitates the formation of well-defined secondary structures with the ability to self-assemble into complex three-dimensional architectures on a variety of length scales. Furthermore, many opportunities exist to incorporate other protein-based motifs and inorganic materials into recombinant protein-based materials, extending the range and usefulness of these materials in potential biomedical applications. Elastin-like polypeptides (ELPs) can be assembled into 3-D architectures with precise control over payload encapsulation, mechanical and thermal properties, as well as unique functionalization opportunities through both genetic and enzymatic means. An overview of current protein-based materials, their properties and uses in biomedicine will be provided, with a focus on the advantages of ELPs. Applications of these biomaterials as imaging and therapeutic delivery agents will be discussed. Finally, broader implications and future directions of these materials as diagnostic and therapeutic systems will be explored. Copyright © 2013 Elsevier Ltd. All rights reserved.
Designing Protein-Based Biomaterials for Medical Applications
Gagner, Jennifer E.; Kim, Wookhyun; Chaikof, Elliot L.
2013-01-01
Biomaterials produced by nature have been honed through billions of years, evolving exquisitely precise structure-function relationships that scientists strive to emulate. Advances in genetic engineering have facilitated extensive investigations to determine how changes in even a single peptide within a protein sequence can produce biomaterials with unique thermal, mechanical and biological properties. Elastin, a naturally occurring protein polymer, serves as a model protein to determine the relationship between specific structural elements and desirable material characteristics. The modular, repetitive nature of the protein facilitates the formation of well-defined secondary structures with the ability to self-assemble into complex three-dimensional architectures on a variety of length scales. Furthermore, many opportunities exist to incorporate other protein-based motifs and inorganic materials into recombinant protein-based materials, extending the range and usefulness of these materials in potential biomedical applications. Elastin-like polypeptides can be assembled into 3D architectures with precise control over payload encapsulation, mechanical and thermal properties, as well as unique functionalization opportunities through both genetic and enzymatic means. An overview of current protein-based materials, their properties and uses in biomedicine will be provided, with a focus on the advantages of elastin-like polypeptides. Applications of these biomaterials as imaging and therapeutic delivery agents will be discussed. Finally, broader implications and future directions of these materials as diagnostic and therapeutic systems will be explored. PMID:24121196
Homological scaffolds of brain functional networks
Petri, G.; Expert, P.; Turkheimer, F.; Carhart-Harris, R.; Nutt, D.; Hellyer, P. J.; Vaccarino, F.
2014-01-01
Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186–198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects—homological cycles—associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle, we apply these tools to compare resting-state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin—the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo. PMID:25401177
Protein Structures Revealed at Record Pace
Hura, Greg
2017-12-11
The structure of a protein in days -- not months or years -- ushers in a new era in genomics research. Berkeley Lab scientists have developed a high-throughput protein pipeline that could expedite the development of biofuels and elucidate how proteins carry out lifes vital functions.
Protein Structures Revealed at Record Pace
Greg Hura
2017-12-09
The structure of a protein in days -- not months or years -- ushers in a new era in genomics research. Berkeley Lab scientists have developed a high-throughput protein pipeline that could expedite the development of biofuels and elucidate how proteins carry out lifes vital functions.
NASA Astrophysics Data System (ADS)
Grier, J. A.; Atkinson, D. H.; Barlow, N.; Griffin, I.; Hoffman, J.; Kelly-Serrato, B.; Kesthelyi, L.; Klein, M.; Klug, S.; Kolvoord, B.; Lanagan, P.; Lebofsky, L. A.; Lindstrom, M.; Lopes, R.; Lowes, L.; Manifold, J.; Mastrapa, R.; Milazzo, M.; Miner, E.; Morris, P.; Runyon, C.; Sohus, A.; Urquhart, M.; Warasila, R. L.; Withers, P.; Wood, Chuck
2001-11-01
Education and Public Outreach (E/PO) activities are an integral part of NASA's mandated mission and detailed in its Strategic Plan. The Office of Space Science Solar System Exploration (OSS SSE) E/PO program has made great strides in defining priorities and achieving its goals in the last five years. The Education and Public Outreach panel for NASA's Decadal Survey has generated a list of key issues to be addressed for the years 2003-2013 to assist the OSS SSE in future prioritization and planning. Key issues under discussion include: improving the involvement of planetary science professionals in E/PO activities; combating scientific elitism; examining the association between E/PO programs and public relations; re-examining funding E/PO activities from an audience perspective as opposed to a mission-centered perspective; improving access to resources for scientists, educators, students and partner organizations; promoting communication between educational programs at NASA; and reaching traditionally underrepresented groups, women, minorities and the disabled with science education programs. The panel is developing a list of specific recommendations to be implemented to improve OSS SSE E/PO activities in the next decade. These recommendations deal with topics such as: the production of evaluated resource web sites for scientists and educators; the development of a policy of long-term funding for the maintenance of web sites and other tools after they are created; methods for reaching those who do not have computer access through television and public programs; and the development of a reward system to recognize and encourage scientist involvement in E/PO activities. Such key issues and recommendations will be presented, along with materials from current programs and initiatives for E/PO in the OSS SSE.
NASA Astrophysics Data System (ADS)
Heacock, Lucy Vogel
The continuous underrepresentation of women in science, technology, engineering, and math (STEM), referred to as the leaky pipeline, has been examined from multiple perspectives internationally, while the attitudes and perceptions of preadolescent girls regarding STEM remain largely ignored. Employing a constructivist paradigm, this qualitative case study explored the perceptions and attitudes of 40 public elementary school female students across three grade levels regarding science, scientists, and career aspirations. Mixed-methods data collections included three survey instruments combined with semi-structured interviews. Self-efficacy, stereotype threat, and career choice theory provided the framework for the overarching research question: What are the attitudes and perceptions of female preadolescent students at the third, fourth, and fifth grade levels regarding science and scientists, and how might these dispositions affect their early development of STEM career aspirations and interests? The Three-Dimensions of Student Attitude Towards Science (TDSAS) instrument informed the exploration of self-efficacy; the modified Draw-A-Scientist Test (mDAST) and Rubric informed the exploration of stereotype threat; and the STEM-Career Interest Survey (CIS) informed the exploration of career aspirations. Semi-structured interviews were conducted with six participants. Results from this study indicated that the majority of the preadolescent girls thought science was an important topic to study and displayed an attitude of self-confident ability to learn science and be successful in science class. They highly enjoyed scientific experimentation and deeply valued problem solving. While they inferred they did not experience gender bias, the girls did engage in stereotyping scientists. Over half the girls expected to use science in their future careers, while a minority had already determined they wanted to be scientists when they grow up. The study concludes with recommendations for education stakeholders and for future research.
The first part of this presentation will address concerns expressed by some scientist that the screening and testing protocols for endocrine disrupting chemicals (EDCs) are 1) unable to adequately detect the low dose effects of EDCs, 2) they are unable to define the shape of the ...
Reconstructing the Prostate Cancer Transcriptional Regulatory Network
2010-07-01
the Medical Scientist Training Program. The funders had no role in study design , data collection and analysis , decision to publish, or preparation of...reverse analysis , building a cell line subtype classifier to classify 86 breast tumors (from the original Stanford/Norway study defining the five tumor...Army position, policy or decision unless so designated by other documentation. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public
ERIC Educational Resources Information Center
Levkovych, Uliana
2014-01-01
This paper defines formation of the concept of "competence", attaches importance to the invariant of professional qualification, and explains core competencies of the marketer. The general and extensive use of the term "competence" in professional education and training has been indicated. It has been noted that recently the…
ERIC Educational Resources Information Center
Slebodnick, Edward B.; And Others
Volume 1 of the study reports a work effort to define and give guidelines for the acquisition of cost-effective alternative continuing education (CE) systems to prevent the technological obsolescence of Air Force military scientific and engineering officer personnel. A detailed background survey of the problem was conducted using questionnaires,…
ERIC Educational Resources Information Center
??lekhina, ??rina Borisovna
2015-01-01
The present study examines the professional development problems of a high school teacher. A high school teacher is both a scientist and a teacher. Teaching and research activities are integrated by using methodical activity. Methodical competency of a teacher is defined as a basis in the context of Competence-based Education. The methodical…
Holm, René; Porter, Christopher J H; Edwards, Glenn A; Müllertz, Anette; Kristensen, Henning G; Charman, William N
2003-09-01
The potential for lipidic self-microemulsifying drug delivery systems (SMEDDS) containing triglycerides with a defined structure, where the different fatty acids on the glycerol backbone exhibit different metabolic fate, to improve the lymphatic transport and the portal absorption of a poorly water-soluble drug, halofantrine, were investigated in fasted lymph cannulated canines. Two different structured triglycerides were incorporated into the SMEDDS; 1,3-dioctanoyl-2-linoleyl-sn-glycerol (C8:0-C18:2-C8:0) (MLM) and 1,3-dilinoyl-2-octanoyl-sn-glycerol (C18:2-C8:0-C18:2) (LML). A previously optimised SMEDDS formulation for halofantrine, comprising of triglyceride, Cremophor EL, Maisine 35-1 and ethanol was selected for bioavailability assessment. The extent of lymphatic transport via the thoracic duct was 17.9% of the dose for the animals dosed with the MLM SMEDDS and 27.4% for LML. Also the plasma availability was affected by the triglyceride incorporated into the multi-component delivery system and availabilities of 56.9% (MLM) and 37.2% (LML) were found. These data indicate that the pharmaceutical scientist can use the structure of the lipid to affect the relative contribution of the two absorption pathways. The MLM formulation produced a total bioavailability of 74.9%, which is higher than the total absorption previously observed after post-prandial administration. This could indicate the utility of disperse lipid-base formulations based on structured triglycerides for the oral delivery of halofantrine, and potentially other lipophilic drugs.
Memorial to Robert Leland Smith 1920-2016
Bacon, Charles R.
2016-01-01
Robert L. Smith, renowned volcanologist and distinguished scientist with the U.S. Geological Survey (USGS), was a world authority on ash-flow tuffs, silicic volcanism, and caldera structures. Bob died peacefully in Sacramento, California, June 17, 2016, a few days short of his ninety-sixth birthday. His publications on ash flows and their deposits brought about an international revolution in understanding of explosive silicic volcanism and, in his fifty-year career, he profoundly influenced USGS programs and countless scientists.
2013-09-30
glider endurance line off Vietnam, repeating NAGA sections that have not been occupied since the early 1960s, operated by Vietnamese scientists...1959-1961 NAGA expedition, using AUV gliders. We propose train the Vietnamese scientists by inviting and supporting them to visit OSU for a 1-2...biogeochemistry of the Vietnamese East Sea, including changes since the NAGA Expeditions In addition to planning, we have also been successful in bringing
2012-09-30
repeating NAGA sections that have not been occupied since the early 1960s, operated by Vietnamese scientists trained at OSU. We propose to conduct...endurance line off Vietnam in collaboration with Vietnamese scientists. Specifically, we proposed to recreate the 1959-1961 NAGA expedition, using AUV...including changes since the NAGA Expeditions In addition to planning, we have also been successful in bringing the RV Revelle to Da Nang, Vietnam from
X-ray Vision for Aerosol Scientists: LCLS Snapshots of Soot (Narrated)
None
2018-01-26
This short conceptual animation depicts how scientists can now simultaneously capture fractal morphology (structure), chemical composition and nanoscale imagery of individual aerosol particles in flight. These particles, known as "PM2.5" because they are smaller than 2.5 microns in diameter, affect climate by interacting with sunlight and impact human health by entering the lungs. The single LCLS laser pulses travel to the Atomic, Molecular and Optical Sciences (AMO) laboratory in the Near Experimental Hall. As we zoom in, we see deep inside a simplified aerosol inlet, where the complex fractal structure of the soot particles, each one completely unique, is shown. Individual soot particles are then delivered into the pulses of the LCLS beam, which destroys them. X-rays are scattered to the detector before the particle is destroyed, giving information about the morphology of the particle. Ion fragments released in the explosion are sent into a mass spectrometer, which measures their mass-to-charge ratio -- giving scientists information about the chemical composition of the particle. Many different particles are analyzed in this manner, allowing scientists to probe variations in the particles due to changes in their environment before being sent through the aerosol inlet. The final visual of aerosols emitted from a factory is representative of the goal that such LCLS aerosol dynamics experiments can provide critical feedback into modeling and understanding combustion, aerosol processes in manufacturing or aerosol effects on climate change.
Narrative and "anti-narrative" in science: How scientists tell stories, and don't.
Padian, Kevin
2018-06-04
Narratives are common to all branches of science, not only to the humanities. Scientists tell stories about how the things we study work, develop, and evolve, and about how we come to be interested in them. Here I add a third domain (Secularity) to Gould's two "non-overlapping magisteria" of Science and Religion, and I review previous work on the parallels in elements between story-telling in literature and science. The stories of each domain have different criteria for judging them valid or useful. In science, especially historical sciences such as biology and geology, particular scientific methods and approaches both structure and test our narratives. Relying on the narrative assumptions of how certain processes, such as natural selection, are supposed to work is treacherous unless they are tested by appropriate historical patterns, such as phylogeny, and rooted in the process of natural mechanisms. The structure of scientific explanation seen in peer-reviewed papers and grant proposals obscures true narrative within a formulaic sequence of "question, methods, materials" and so on that is quite different from the classic narrative of folk-tales and novels, producing an "anti-narrative" that must be "un-learned" before it can be communicated to non-scientists. By adopting some of the techniques of classic story-telling, scientists can become more effective in making our ideas clear, educating the public, and even attracting funding.
Breakthrough: Record-Setting Cavity
Ciovati, Gianluigi
2018-02-06
Gianluigi "Gigi" Ciovati, a superconducting radiofrequency scientist, discusses how scientists at the U.S. Department of Energy's Jefferson Lab in Newport News, VA, used ARRA funds to fabricate a niobium cavity for superconducting radiofrequency accelerators that has set a world record for energy efficiency. Jefferson Lab's scientists developed a new, super-hot treatment process that could soon make it possible to produce cavities more quickly and at less cost, benefitting research and healthcare around the world. Accelerators are critical to our efforts to study the structure of matter that builds our visible universe. They also are used to produce medical isotopes and particle beams for diagnosing and eradicating disease. And they offer the potential to power future nuclear power plants that produce little or no radioactive waste.around the world. Accelerators are critical to our efforts to study the structure of matter that builds our visible universe. They also are used to produce medical isotopes and particle beams for diagnosing and eradicating disease. And they offer the potential to power future nuclear power plants that produce little or no radioactive waste.
Crystal Structure of Protein Reveals Target for Drugs Against Lethal MERS Virus | FNLCR Staging
A research team of scientists from the National Cancer Institute and the Frederick National Laboratory for Cancer Research recently identified the structure of a key protein of the virus that causes the highly lethal Middle East Respiratory Syndrome.
Science as Structured Imagination
ERIC Educational Resources Information Center
De Cruz, Helen; De Smedt, Johan
2010-01-01
This paper offers an analysis of scientific creativity based on theoretical models and experimental results of the cognitive sciences. Its core idea is that scientific creativity--like other forms of creativity--is structured and constrained by prior ontological expectations. Analogies provide scientists with a powerful epistemic tool to overcome…
NASA Astrophysics Data System (ADS)
Patchen, Terri; Smithenry, Dennis W.
2015-02-01
Researchers have theorized that integrating authentic science activities into classrooms will help students learn how working scientists collaboratively construct knowledge, but few empirical studies have examined students' experiences with these types of activities. Utilizing data from a comparative, mixed-methods study, we considered how integrating a complex, collaborative participant structure into a secondary school chemistry curriculum shapes students' perceptions of what constitutes "science." We found that the implementation of this participant structure expanded student perceptions of chemistry learning beyond the typical focus on science content knowledge to include the acquisition of collaboration skills. This support for the collaborative construction of knowledge, in addition to the appropriation of scientific content, establishes the conditions for what science educators and scientists say they want: students who can work together to solve science problems. Radical shifts towards such collaborative participant structures are necessary if we are to modify student perceptions of science and science classrooms in ways that are aligned with recent calls for science education reform.
Developing School-Scientist Partnerships: Lessons for Scientists from Forests-of-Life
NASA Astrophysics Data System (ADS)
Falloon, Garry; Trewern, Ann
2013-02-01
The concept of partnerships between schools and practicing scientists came to prominence in the United States in the mid 1980s. The call by government for greater private sector involvement in education to raise standards in science achievement saw a variety of programmes developed, ranging from short-term sponsorships through to longer-term, project-based interactions. Recently, school-scientist partnerships (SSPs) have been rekindled as a means of assisting schools to motivate and inspire students in science, improve levels of teachers' science knowledge, and increase awareness of the type and variety of career opportunities available in the sciences (Rennie and Howitt, 2009). This article summarises research that used an interpretive case study method to examine the performance of a two-year SSP pilot between a government-owned science research institute, and 200 students from two Intermediate (years 7 and 8) schools in New Zealand. It explored the experiences of scientists involved in the partnerships, and revealed difficulties in bridging the void that existed between the outcomes-driven, commercially-focused world of research scientists, and the more process-oriented, tightly structured, and conservative world of teachers and schools. Findings highlight the pragmatic realities of establishing partnerships, from the perspective of scientists. These include acute awareness of the nature of school systems, conventions and environments; the science, technological and pedagogical knowledge of teachers; teacher workload issues and pressures, curriculum priorities and access to science resources. The article identifies areas where time and effort should be invested to ensure successful partnership outcomes.
Gap between science and media revisited: Scientists as public communicators
Peters, Hans Peter
2013-01-01
The present article presents an up-to-date account of the current media relations of scientists, based on a comprehensive analysis of relevant surveys. The evidence suggests that most scientists consider visibility in the media important and responding to journalists a professional duty—an attitude that is reinforced by universities and other science organizations. Scientific communities continue to regulate media contacts with their members by certain norms that compete with the motivating and regulating influences of public information departments. Most scientists assume a two-arena model with a gap between the arenas of internal scientific and public communication. They want to meet the public in the public arena, not in the arena of internal scientific communication. Despite obvious changes in science and in the media system, the orientations of scientists toward the media, as well as the patterns of interaction with journalists, have their roots in the early 1980s. Although there is more influence on public communication from the science organizations and more emphasis on strategic considerations today, the available data do not indicate abrupt changes in communication practices or in the relevant beliefs and attitudes of scientists in the past 30 y. Changes in the science–media interface may be expected from the ongoing structural transformation of the public communication system. However, as yet, there is little evidence of an erosion of the dominant orientation toward the public and public communication within the younger generation of scientists. PMID:23940312
Gap between science and media revisited: scientists as public communicators.
Peters, Hans Peter
2013-08-20
The present article presents an up-to-date account of the current media relations of scientists, based on a comprehensive analysis of relevant surveys. The evidence suggests that most scientists consider visibility in the media important and responding to journalists a professional duty--an attitude that is reinforced by universities and other science organizations. Scientific communities continue to regulate media contacts with their members by certain norms that compete with the motivating and regulating influences of public information departments. Most scientists assume a two-arena model with a gap between the arenas of internal scientific and public communication. They want to meet the public in the public arena, not in the arena of internal scientific communication. Despite obvious changes in science and in the media system, the orientations of scientists toward the media, as well as the patterns of interaction with journalists, have their roots in the early 1980s. Although there is more influence on public communication from the science organizations and more emphasis on strategic considerations today, the available data do not indicate abrupt changes in communication practices or in the relevant beliefs and attitudes of scientists in the past 30 y. Changes in the science-media interface may be expected from the ongoing structural transformation of the public communication system. However, as yet, there is little evidence of an erosion of the dominant orientation toward the public and public communication within the younger generation of scientists.
Vestigial Biological Structures: A Classroom-Applicable Test of Creationist Hypotheses
ERIC Educational Resources Information Center
Senter, Phil; Ambrocio, Zenis; Andrade, Julia B.; Foust, Katanya K.; Gaston, Jasmine E.; Lewis, Ryshonda P.; Liniewski, Rachel M.; Ragin, Bobby A.; Robinson, Khanna L.; Stanley, Shane G.
2015-01-01
Lists of vestigial biological structures in biology textbooks are so short that some young-Earth creationist authors claim that scientists have lost confidence in the existence of vestigial structures and can no longer identify any verifiable ones. We tested these hypotheses with a method that is easily adapted to biology classes. We used online…
An algorithm for automated layout of process description maps drawn in SBGN.
Genc, Begum; Dogrusoz, Ugur
2016-01-01
Evolving technology has increased the focus on genomics. The combination of today's advanced techniques with decades of molecular biology research has yielded huge amounts of pathway data. A standard, named the Systems Biology Graphical Notation (SBGN), was recently introduced to allow scientists to represent biological pathways in an unambiguous, easy-to-understand and efficient manner. Although there are a number of automated layout algorithms for various types of biological networks, currently none specialize on process description (PD) maps as defined by SBGN. We propose a new automated layout algorithm for PD maps drawn in SBGN. Our algorithm is based on a force-directed automated layout algorithm called Compound Spring Embedder (CoSE). On top of the existing force scheme, additional heuristics employing new types of forces and movement rules are defined to address SBGN-specific rules. Our algorithm is the only automatic layout algorithm that properly addresses all SBGN rules for drawing PD maps, including placement of substrates and products of process nodes on opposite sides, compact tiling of members of molecular complexes and extensively making use of nested structures (compound nodes) to properly draw cellular locations and molecular complex structures. As demonstrated experimentally, the algorithm results in significant improvements over use of a generic layout algorithm such as CoSE in addressing SBGN rules on top of commonly accepted graph drawing criteria. An implementation of our algorithm in Java is available within ChiLay library (https://github.com/iVis-at-Bilkent/chilay). ugur@cs.bilkent.edu.tr or dogrusoz@cbio.mskcc.org Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
An algorithm for automated layout of process description maps drawn in SBGN
Genc, Begum; Dogrusoz, Ugur
2016-01-01
Motivation: Evolving technology has increased the focus on genomics. The combination of today’s advanced techniques with decades of molecular biology research has yielded huge amounts of pathway data. A standard, named the Systems Biology Graphical Notation (SBGN), was recently introduced to allow scientists to represent biological pathways in an unambiguous, easy-to-understand and efficient manner. Although there are a number of automated layout algorithms for various types of biological networks, currently none specialize on process description (PD) maps as defined by SBGN. Results: We propose a new automated layout algorithm for PD maps drawn in SBGN. Our algorithm is based on a force-directed automated layout algorithm called Compound Spring Embedder (CoSE). On top of the existing force scheme, additional heuristics employing new types of forces and movement rules are defined to address SBGN-specific rules. Our algorithm is the only automatic layout algorithm that properly addresses all SBGN rules for drawing PD maps, including placement of substrates and products of process nodes on opposite sides, compact tiling of members of molecular complexes and extensively making use of nested structures (compound nodes) to properly draw cellular locations and molecular complex structures. As demonstrated experimentally, the algorithm results in significant improvements over use of a generic layout algorithm such as CoSE in addressing SBGN rules on top of commonly accepted graph drawing criteria. Availability and implementation: An implementation of our algorithm in Java is available within ChiLay library (https://github.com/iVis-at-Bilkent/chilay). Contact: ugur@cs.bilkent.edu.tr or dogrusoz@cbio.mskcc.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26363029
Lincoln, Don
2018-01-16
After a century of study, scientists have come to the realization that the ordinary matter made of atoms is a minority in the universe. In order to explain observations, it appears that there exists a new and undiscovered kind of matter, called dark matter, that is five times more prevalent than ordinary matter. The evidence for this new matterâs existence is very strong, but scientists know only a little about its nature. In todayâs video, Fermilabâs Dr. Don Lincoln talks about an exciting and unconventional idea, specifically that dark matter might have a very complex set of structures and interactions. While this idea is entirely speculative, it is an interesting hypothesis and one that scientists are investigating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drouhard, Margaret MEG G; Steed, Chad A; Hahn, Steven E
In this paper, we propose strategies and objectives for immersive data visualization with applications in materials science using the Oculus Rift virtual reality headset. We provide background on currently available analysis tools for neutron scattering data and other large-scale materials science projects. In the context of the current challenges facing scientists, we discuss immersive virtual reality visualization as a potentially powerful solution. We introduce a prototype immersive visual- ization system, developed in conjunction with materials scientists at the Spallation Neutron Source, which we have used to explore large crystal structures and neutron scattering data. Finally, we offer our perspective onmore » the greatest challenges that must be addressed to build effective and intuitive virtual reality analysis tools that will be useful for scientists in a wide range of fields.« less
Earthquake Hazard and the Environmental Seismic Intensity (ESI) Scale
NASA Astrophysics Data System (ADS)
Serva, Leonello; Vittori, Eutizio; Comerci, Valerio; Esposito, Eliana; Guerrieri, Luca; Michetti, Alessandro Maria; Mohammadioun, Bagher; Mohammadioun, Georgianna C.; Porfido, Sabina; Tatevossian, Ruben E.
2016-05-01
The main objective of this paper was to introduce the Environmental Seismic Intensity scale (ESI), a new scale developed and tested by an interdisciplinary group of scientists (geologists, geophysicists and seismologists) in the frame of the International Union for Quaternary Research (INQUA) activities, to the widest community of earth scientists and engineers dealing with seismic hazard assessment. This scale defines earthquake intensity by taking into consideration the occurrence, size and areal distribution of earthquake environmental effects (EEE), including surface faulting, tectonic uplift and subsidence, landslides, rock falls, liquefaction, ground collapse and tsunami waves. Indeed, EEEs can significantly improve the evaluation of seismic intensity, which still remains a critical parameter for a realistic seismic hazard assessment, allowing to compare historical and modern earthquakes. Moreover, as shown by recent moderate to large earthquakes, geological effects often cause severe damage"; therefore, their consideration in the earthquake risk scenario is crucial for all stakeholders, especially urban planners, geotechnical and structural engineers, hazard analysts, civil protection agencies and insurance companies. The paper describes background and construction principles of the scale and presents some case studies in different continents and tectonic settings to illustrate its relevant benefits. ESI is normally used together with traditional intensity scales, which, unfortunately, tend to saturate in the highest degrees. In this case and in unpopulated areas, ESI offers a unique way for assessing a reliable earthquake intensity. Finally, yet importantly, the ESI scale also provides a very convenient guideline for the survey of EEEs in earthquake-stricken areas, ensuring they are catalogued in a complete and homogeneous manner.
Homepages of German dental schools - a target group-oriented evaluation.
Wehlers, A; Schäfer, I; Sehner, S; Kahl-Nieke, B; Kuhnigk, O
2014-08-01
The Internet represents the central communication medium in higher education. University applicants, students, teachers and scientists use the Internet when seeking information on medicine. The homepages of dental schools are not just sources of information, but also a means of presenting the school. No comparative studies have been undertaken concerning the content and extent of their Internet sites so far. Based on the literature and assessments of medical school websites, 136 criteria were defined within the setting of a Delphi procedure and drawn upon for a standardised evaluation of the websites of all 30 German dental schools. Structure and extent of the content of the websites were evaluated. Possible influencing factors, such as financial resources and number of applicants, were investigated. The results yielded by the homepages varied considerably. The best Internet site received 84% of the possible points, the poorest 38%. On average, 62% of the criteria were fulfilled. Influencing factors, such as the amount of funding by the particular state government, could not be detected. Two-thirds of the dental schools addressed students, three-fourth teachers and scientists as target groups. More than 50% did not address applicants. Specific requirements regarding barrier-free accessibility of information were hardly met. Individual faculties already have homepages of a high quality; for others, there is a need for improvement. General recommendations for university websites should be discussed at the European level to ensure a uniform standard of quality. The criteria presented here offer faculties the possibility to reflect upon their own Internet sites. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Cook, Kristin Leigh
Responding to calls for an empirical glimpse into a socioscientific issues (SSI)-based curriculum that aims to promote democratic participation, enhance students' connections to science, and empower students for the betterment of society (Dos Santos, 2008; Sadler, Barab, & Scott, 2007; Tal & Kedmi, 2006; Fusco & Barton, 2001; Hodson, 2003), this critical case study of 24 pre-service teachers (PSTs) enrolled in a scientific inquiry course offers curricular suggestions to empower learners to connect with the dynamic and socially-mediated process of science. In effect, incorporating nature of science-focused and place-based inquiry into a collaboration between PSTs and scientists were essential elements in enhancing students' connections to and feelings of inclusion in SSI. Propelled beyond a deficit model of public participation in science, the PSTs did indeed experience a public debate model and in some cases a knowledge production model in their collaborative efforts with scientists (Callon, 1999; Pouliot, 2009). While all of the PSTs engaged in rich discussion of their perspectives with scientists to enhance the investigation of their inquiry, some experienced a redistribution of the roles of participation in the production of scientific knowledge that was integrated into the scientists' decision-making processes. The materialization of these models depended on the structures of the student-scientists collaboration and the ways in which these malleable structures were flexed and negotiated. In effect, this study contributes to the literature on the potentials of SSI by providing an example of an educational approach that engages learners in a community practice as active participants in decision-making processes regarding socio-scientific issues, as well as focuses on empowering learners to be involved in the generation of scientific knowledge that contributes to their community.
Actionable Science Lessons Emerging from the Department of Interior Climate Science Center Network
NASA Astrophysics Data System (ADS)
McMahon, G.; Meadow, A. M.; Mikels-Carrasco, J.
2015-12-01
The DOI Advisory Committee on Climate Change and Natural Resource Science (ACCCNRS) has recommended that co-production of actionable science be the core programmatic focus of the Climate Science Center enterprise. Efforts by the Southeast Climate Science Center suggest that the complexity of many climate adaptation decision problems (many stakeholders that can influence implementation of a decision; the problems that can be viewed at many scales in space and time; dynamic objectives with competing values; complex, non-linear systems) complicates development of research-based information that scientists and non-scientists view as comprehensible, trustworthy, legitimate, and accurate. Going forward, organizers of actionable science efforts should consider inclusion of a broad set of stakeholders, beyond formal decisionmakers, and ensure that sufficient resources are available to explore the interests and values of this broader group. Co-produced research endeavors should foster agency and collaboration across a wide range of stakeholders. We recognize that stakeholder agency may be constrained by scientific or political power structures that limit the ability to initiate discussion, make claims, and call things into question. Co-production efforts may need to be preceded by more descriptive assessments that summarize existing climate science in ways that stakeholders can understand and link with their concerns. Such efforts can build rapport and trust among scientists and non-scientists, and may help stakeholders and scientists alike to frame adaptation decision problems amenable to a co-production effort. Finally, university and government researchers operate within an evaluation structure that rewards researcher-driven science that, at the extreme, "throws information over the fence" in the hope that information users will make better decisions. Research evaluation processes must reward more consultative, collaborative, and collegial research approaches if researchers are to widely adopt co-production methods
Scientists' Views about Attribution of Global Warming
NASA Astrophysics Data System (ADS)
Verheggen, Bart; Strengers, Bart; Cook, John; van Dorland, Rob; Vringer, Kees; Peters, Jeroen; Visser, Hans; Meyer, Leo
2015-04-01
What do scientists think? That is an important question when engaging in science communication, in which an attempt is made to communicate the scientific understanding to a lay audience. To address this question we undertook a large and detailed survey among scientists studying various aspects of climate change , dubbed "perhaps the most thorough survey of climate scientists ever" by well-known climate scientist and science communicator Gavin Schmidt. Among more than 1800 respondents we found widespread agreement that global warming is predominantly caused by human greenhouse gases. This consensus strengthens with increased expertise, as defined by the number of self-reported articles in the peer-reviewed literature. 90% of respondents with more than 10 climate-related peer-reviewed publications (about half of all respondents), agreed that anthropogenic greenhouse gases are the dominant cause of recent global warming, i.e. having contributed more than half of the observed warming. With this survey we specified what the consensus position entails with much greater specificity than previous studies. The relevance of this consensus for science communication will be discussed. Another important result from our survey is that the main attribution statement in IPCC's fourth assessment report (AR4) may lead to an underestimate of the greenhouse gas contribution to warming, because it implicitly includes the lesser known masking effect of cooling aerosols. This shows the importance of the exact wording in high-profile reports such as those from IPCC in how the statement is perceived, even by fellow scientists. The phrasing was improved in the most recent assessment report (AR5). Respondents who characterized the human influence on climate as insignificant, reported having the most frequent media coverage regarding their views on climate change. This shows that contrarian opinions are amplified in the media in relation to their prevalence in the scientific community. This is related to what is sometimes referred to as "false balance" in media reporting and may partly explain the divergence between public and scientific opinion regarding climate change.
Characterizing the True Background Corona with SDO/AIA
NASA Technical Reports Server (NTRS)
Napier, Kate; Winebarger, Amy; Alexander, Caroline
2014-01-01
Characterizing the nature of the solar coronal background would enable scientists to more accurately determine plasma parameters, and may lead to a better understanding of the coronal heating problem. Because scientists study the 3D structure of the Sun in 2D, any line of sight includes both foreground and background material, and thus, the issue of background subtraction arises. By investigating the intensity values in and around an active region, using multiple wavelengths collected from the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) over an eight-hour period, this project aims to characterize the background as smooth or structured. Different methods were employed to measure the true coronal background and create minimum intensity images. These were then investigated for the presence of structure. The background images created were found to contain long-lived structures, including coronal loops, that were still present in all of the wavelengths, 193 Angstroms,171 Angstroms,131 Angstroms, and 211 Angstroms. The intensity profiles across the active region indicate that the background is much more structured than previously thought.
Mixed Methods: Incorporating multiple learning styles into a measurements course
NASA Astrophysics Data System (ADS)
Pallone, Arthur
2010-03-01
The best scientists and engineers regularly combine creative and critical skill sets. As faculty, we are responsible to provide future scientists and engineers with those skills sets. EGR 390: Engineering Measurements at Murray State University is structured to actively engage students in the processes that develop and enhance those skills. Students learn through a mix of traditional lecture and homework, active discussion of open-ended questions, small group activities, structured laboratory exercises, oral and written communications exercises, student chosen team projects, and peer evaluations. Examples of each of these activities, the skill set addressed by each activity, outcomes from and effectiveness of each activity and recommendations for future directions in the EGR 390 course as designed will be presented.
Benefits of an inclusive US education system.
Gantt, Elisabeth
2013-01-01
Presented is a historical perspective of one scientist's journey from war-torn Europe to the opportunities presented by a flexible US educational system. It celebrates the opening of the science establishment that began in the 1950s and its fostering of basic research, and recognizes individuals who were instrumental in guiding the author's education as well as those with whom she later participated in collaborative algal plant research. The initial discovery and later elucidation of phycobilisome structure are elaborated, including the structural connection with photosystem II. Furthermore, she summarizes some of her laboratory's results on carotenoids and its exploration of the isoprenoid pathway in cyanobacteria. Finally, she comments on the gender gap and how her generation benefited when opportunities for women scientists were enlarged.
Breaking free from chemical spreadsheets.
Segall, Matthew; Champness, Ed; Leeding, Chris; Chisholm, James; Hunt, Peter; Elliott, Alex; Garcia-Martinez, Hector; Foster, Nick; Dowling, Samuel
2015-09-01
Drug discovery scientists often consider compounds and data in terms of groups, such as chemical series, and relationships, representing similarity or structural transformations, to aid compound optimisation. This is often supported by chemoinformatics algorithms, for example clustering and matched molecular pair analysis. However, chemistry software packages commonly present these data as spreadsheets or form views that make it hard to find relevant patterns or compare related compounds conveniently. Here, we review common data visualisation and analysis methods used to extract information from chemistry data. We introduce a new framework that enables scientists to work flexibly with drug discovery data to reflect their thought processes and interact with the output of algorithms to identify key structure-activity relationships and guide further optimisation intuitively. Copyright © 2015 Elsevier Ltd. All rights reserved.
The University Scientist's Role in Promoting Collaborative K-12 Professional Development
NASA Astrophysics Data System (ADS)
Schuster, D.; Brown, L. L.; Carlsen, W. S.
2004-12-01
Comprehensive K-12 science teacher professional development is dependent upon the successful interaction between the university and K-12 communities (National Research Council, 2001), which can be realized through partnerships between university scientists and K-12 science teachers. This paper will identify some best practices of university scientists in the professional development of science teachers, first by citing the professional development and science education literature (Loucks-Horsley, Hewson, Love, & Stiles, 1998; National Research Council, 1996a, 1996b), and then by highlighting how these best practices were actualized in summer workshops for science educators offered at Penn State. Each summer the Pennsylvania Space Grant Consortium supports seven one-week courses for secondary science teachers taught by university scientists from disciplines representative of NASA's research interests. Approximately 100 teachers enroll in these two-credit, graduate-level workshops from a variety of locations and contexts throughout the United States. These summer courses share a number of important features (duration, general format, teacher recruitment and admission, location, number of participants, etc.), making them a unique dataset for comparative research on science teacher professional development. By recognizing the role of university scientists relating to both practice and standards of professional development, we identify areas in which teachers could be empowered to lead and, alternatively, where scientists and administrators should improve and continue to direct-- both supporting a culture of collaboration that builds K-12 science teacher capacity (Fullan, 2001, 2003; Hawley & Valli, 1999). In our observations and analysis of the evaluations, three best practices, as defined by the literature, appeared to distinguish the exceptional workshops: First, teachers give high marks and make affirmative comments about workshops with clearly presented curricular goals. Second, teachers respond well to workshops and the university scientists who taught them when they are treated as professionals. Third, teachers welcome the opportunity to be integrally involved in the planning, implementation, and evaluation of the workshops. By identifying best practices and delineating the roles of university scientists in K-12 professional development, teachers, university faculty, and policy makers are better equipped to improve the quality of professional development programs at all levels; school, district, university, and state, ultimately actualizing the symbiotic relationship that needs to exists between professional development and school improvement efforts (Fullan, 2001, 2003; Hawley & Valli, 1999).
Transnational migration of Mexican scientists: A circuit between Mexico and the EEUU
NASA Astrophysics Data System (ADS)
Tinoco Herrera, Mario Luis
The experience and meaning of migration for a group of Mexican scientists participating in the construction of a migratory circuit between Mexico and US within the field of agricultural sciences is the object of this study. I define this migratory circuit of scientists as a social, historical and cultural process, and draw from transnational migration theories to analyze it. From this perspective, I view the migratory circuit of Mexican scientists to be a field of social relationships extended across Mexico and the US. In studying the migratory experience and its significance, I draw upon the methods of historical reconstruction of the circuit of scientists between Mexico and the US, participatory observation, informal narratives, testimonies and their analysis. This study focuses on three crucial moments of their migratory experience: (1) the moment prior to their trip to the US; (2) their academic training at a research center in the US; and (3) their return to a research center in Mexico. At the same time, this study highlights three key factors that determine and ascribe different meanings to the experiences of this migratory circuit: gender, academic trajectory, and the belonging to a migratory circuit. The findings from this study have shown that the experiences of migration and their multiple meanings are complex, heterogeneous and paradoxical. The complexity lies in the challenges of academic responsibilities and their near total integration and transformation of the participants' social life, as well as family life. These migratory experiences are further differentiated and problematic because of the various perceptions and sense of value that are mediated by gender, academic trajectory, and belonging to a circuit of migration; and, they are paradoxical because even though the experiences, perceptions and meanings are different and, at times, challenging, every single participant has described their experience as positive.
Imaging: Guiding the Clinical Translation of Cardiac Stem Cell Therapy
Nguyen, Patricia K.; Lan, Feng; Wang, Yongming; Wu, Joseph C.
2011-01-01
Stem cells have been touted as the holy grail of medical therapy with promises to regenerate cardiac tissue, but it appears the jury is still out on this novel therapy. Using advanced imaging technology, scientists have discovered that these cells do not survive nor engraft long-term. In addition, only marginal benefit has been observed in large animal studies and human trials. However, all is not lost. Further application of advanced imaging technology will help scientists unravel the mysteries of stem cell therapy and address the clinical hurdles facing its routine implementation. In this review, we will discuss how advanced imaging technology will help investigators better define the optimal delivery method, improve survival and engraftment, and evaluate efficacy and safety. Insights gained from this review may direct the development of future preclinical investigations and clinical trials. PMID:21960727
Lightman, Bernard
2016-01-01
Focusing on the editors, journalists and authors who worked on the new ‘popular science’ periodicals and books from the 1860s to the 1880s, this piece will discuss how they conceived of their readers as co-participants in the creation of knowledge. The transformation of nineteenth-century publishing opened up opportunities for making science more accessible to a new polity of middle and working class readers. Editors, journalists and authors responded to the communications revolution, and the larger developments that accompanied it, by defining the exemplary scientist in opposition to the emerging conception of the professional scientist, by rejecting the notion that the laboratory was the sole legitimate site of scientific discovery and by experimenting with new ways of communicating scientific knowledge to their audience.
Life sciences experiments in the first Spacelab mission
NASA Technical Reports Server (NTRS)
Huffstetler, W. J.; Rummel, J. A.
1978-01-01
The development of the Shuttle Transportation System (STS) by the United States and the Spacelab pressurized modules and pallets by the European Space Agency (ESA) presents a unique multi-mission space experimentation capability to scientists and researchers of all disciplines. This capability is especially pertinent to life scientists involved in all areas of biological and behavioral research. This paper explains the solicitation, evaluation, and selection process involved in establishing life sciences experiment payloads. Explanations relative to experiment hardware development, experiment support hardware (CORE) concepts, hardware integration and test, and concepts of direct Principal Investigator involvement in the missions are presented as they are being accomplished for the first Spacelab mission. Additionally, discussions of future plans for life sciences dedicated Spacelab missions are included in an attempt to define projected capabilities for space research in the 1980s utilizing the STS.
Diversifying Science: Underrepresented Student Experiences in Structured Research Programs
ERIC Educational Resources Information Center
Hurtado, Sylvia; Cabrera, Nolan L.; Lin, Monica H.; Arellano, Lucy; Espinosa, Lorelle L.
2009-01-01
Targeting four institutions with structured science research programs for undergraduates, this study focuses on how underrepresented students experience science. Several key themes emerged from focus group discussions: learning to become research scientists, experiences with the culture of science, and views on racial and social stigma.…
Two Argonne scientists named 2012 AAAS fellows | Argonne National
"contributions to understanding structural dynamics of molecular excited states with special . "I'm really interested in how molecules respond to light and how light could influence molecular is being honored for her "contributions to understanding structural dynamics of molecular
Coherent structures in wall-bounded turbulence.
Dennis, David J C
2015-01-01
The inherent difficulty of understanding turbulence has led to researchers attacking the topic in many different ways over the years of turbulence research. Some approaches have been more successful than others, but most only deal with part of the problem. One approach that has seen reasonable success (or at least popularity) is that of attempting to deconstruct the complex and disorganised turbulent flow field into to a set of motions that are in some way organised. These motions are generally called "coherent structures". There are several strands to this approach, from identifying the coherent structures within the flow, defining their characteristics, explaining how they are created, sustained and destroyed, to utilising their features to model the turbulent flow. This review considers research on coherent structures in wall-bounded turbulent flows: a class of flow which is extremely interesting to many scientists (mainly, but not exclusively, physicists and engineers) due to their prevalence in nature, industry and everyday life. This area has seen a lot of activity, particularly in recent years, much of which has been driven by advances in experimental and computational techniques. However, several ideas, developed many years ago based on flow visualisation and intuition, are still both informative and relevant. Indeed, much of the more recent research is firmly indebted to some of the early pioneers of the coherent structures approach. Therefore, in this review, selected historical research is discussed along with the more contemporary advances in an attempt to provide the reader with a good overview of how the field has developed and to highlight the perspicacity of some of the early researchers, as well as providing an overview of our current understanding of the role of coherent structures in wall-bounded turbulent flows.
What do lollipops and influenza have in common?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekiert, Damian
2012-06-22
Human drug trials have begun to test a new way to treat influenza that has the potential to create a universal vaccine. The powerful x-ray beams from the Advanced Light Source at Argonne National Laboratory outside of Chicago enabled scientists to see the structure of the influenza virus clear enough to discover a key commonality among influenza strains. Scientist Damien Ekiert, who won a 2012 award for his work in this discovery, explains why drug manufacturers could capitalize on this.
Binary Colloidal Alloy Test-5: Three-Dimensional Melt
NASA Technical Reports Server (NTRS)
Yodh, Arjun G.
2008-01-01
Binary Colloidal Alloy Test - 5: Three-Dimensional Melt (BCAT-5-3DMelt) photographs initially randomized colloidal samples in microgravity to determine their resulting structure over time. BCAT-5-3D-Melt will allow the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-3D-Melt will look at the mechanisms of melting using three-dimensional temperature sensitive colloidal crystals. Results will help scientists develop fundamental physics concepts previously shadowed by the effects of gravity.
Developing an online programme in computational biology.
Vincent, Heather M; Page, Christopher
2013-11-01
Much has been written about the need for continuing education and training to enable life scientists and computer scientists to manage and exploit the different types of biological data now becoming available. Here we describe the development of an online programme that combines short training courses, so that those who require an educational programme can progress to complete a formal qualification. Although this flexible approach fits the needs of course participants, it does not fit easily within the organizational structures of a campus-based university.
Big Data: An Opportunity for Collaboration with Computer Scientists on Data-Driven Science
NASA Astrophysics Data System (ADS)
Baru, C.
2014-12-01
Big data technologies are evolving rapidly, driven by the need to manage ever increasing amounts of historical data; process relentless streams of human and machine-generated data; and integrate data of heterogeneous structure from extremely heterogeneous sources of information. Big data is inherently an application-driven problem. Developing the right technologies requires an understanding of the applications domain. Though, an intriguing aspect of this phenomenon is that the availability of the data itself enables new applications not previously conceived of! In this talk, we will discuss how the big data phenomenon creates an imperative for collaboration among domain scientists (in this case, geoscientists) and computer scientists. Domain scientists provide the application requirements as well as insights about the data involved, while computer scientists help assess whether problems can be solved with currently available technologies or require adaptaion of existing technologies and/or development of new technologies. The synergy can create vibrant collaborations potentially leading to new science insights as well as development of new data technologies and systems. The area of interface between geosciences and computer science, also referred to as geoinformatics is, we believe, a fertile area for interdisciplinary research.
2004-03-04
A butterfly photographed in the La Selva region of the Costa Rican rain forest as part of NASA's AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to do. NASA's AIRSAR technolgy provides two essential elements to the ground-based scientists. First, it tests and provides accurate measurements of the forest structure. Secondly, AirSAR can study a larger area of the forest versus the smaller area that can be tested and plotted by the ground scientists. It also provides a unique one-of-a-kind system of measurement that obtains important information for the scientists, such as where forests are located and what exactly is in them.
2004-03-04
A lizard photographed in the La Selva region of the Costa Rican rain forest as part of NASA's AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to do. NASA's AIRSAR technolgy provides two essential elements to the ground-based scientists. First, it tests and provides accurate measurements of the forest structure. Secondly, AirSAR can study a larger area of the forest versus the smaller area that can be tested and plotted by the ground scientists. It also provides a unique one-of-a-kind system of measurement that obtains important information for the scientists, such as where forests are located and what exactly is in them.
2004-03-04
A plant photographed in the La Selva region of the Costa Rican rain forest as part of NASA's AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to do. NASA's AIRSAR technolgy provides two essential elements to the ground-based scientists. First, it tests and provides accurate measurements of the forest structure. Secondly, AirSAR can study a larger area of the forest versus the smaller area that can be tested and plotted by the ground scientists. It also provides a unique one-of-a-kind system of measurement that obtains important information for the scientists, such as where forests are located and what exactly is in them.
2004-03-04
A unique tree trunk photographed in La Selva region of the Costa Rican rain forest as part of NASA's AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to do. NASA's AIRSAR technolgy provides two essential elements to the ground-based scientists. First, it tests and provides accurate measurements of the forest structure. Secondly, AirSAR can study a larger area of the forest versus the smaller area that can be tested and plotted by the ground scientists. It also provides a unique one-of-a-kind system of measurement that obtains important information for the scientists, such as where forests are located and what exactly is in them.
2004-03-04
A tree frog photographed in the La Selva region of the Costa Rican rain forest as part of NASA's AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to do. NASA's AIRSAR technolgy provides two essential elements to the ground-based scientists. First, it tests and provides accurate measurements of the forest structure. Secondly, AirSAR can study a larger area of the forest versus the smaller area that can be tested and plotted by the ground scientists. It also provides a unique one-of-a-kind system of measurement that obtains important information for the scientists, such as where forests are located and what exactly is in them.
Lee, Gloria; Kranzler, Jay D; Ramasamy, Ravichandran; Gold-von Simson, Gabrielle
2018-01-01
PhDs and post-doctoral biomedical graduates, in greater numbers, are choosing industry based careers. However, most scientists do not have formal training in business strategies and venture creation and may find senior management positions untenable. To fill this training gap, “Biotechnology Industry: Structure and Strategy” was offered at New York University School of Medicine (NYUSOM). The course focuses on the business aspects of translational medicine and research translation and incorporates the practice of business case discussions, mock negotiation, and direct interactions into the didactic. The goal is to teach scientists at an early career stage how to create solutions, whether at the molecular level or via the creation of devices or software, to benefit those with disease. In doing so, young, talented scientists can develop a congruent mindset with biotechnology/industry executives. Our data demonstrates that the course enhances students’ knowledge of the biotechnology industry. In turn, these learned skills may further encourage scientists to seek leadership positions in the field. Implementation of similar courses and educational programs will enhance scientists’ training and inspire them to become innovative leaders in the discovery and development of therapeutics. PMID:29657853
2004-03-04
This photograph shows a stream in the La Selva region of the Costa Rican rain forest, taken during NASA's AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to do. NASA's AIRSAR technolgy provides two essential elements to the ground-based scientists. First, it tests and provides accurate measurements of the forest structure. Secondly, AirSAR can study a larger area of the forest versus the smaller area that can be tested and plotted by the ground scientists. It also provides a unique one-of-a-kind system of measurement that obtains important information for the scientists, such as where forests are located and what exactly is in them.
Surveying Space Scientists' Attitudes, Involvement, and Needs in Education and Public Outreach
NASA Astrophysics Data System (ADS)
Grier, J.; Buxner, S.; Schneider, N. M.
2014-12-01
Empowering scientists in education and public outreach (E/PO) activities is an important component of the work of the NASA Science Mission Directorate (SMD) E/PO Forums. This work includes understanding the attitudes of scientists towards E/PO, why they do or do not engage in E/PO activities, and what resources and professional development they need to be the most efficient in their E/PO efforts. The Planetary Science E/PO Forum has conducted both surveys and interviews of space scientists regarding E/PO to ascertain how they (the Forum) and the professional societies to which those scientists belong, can help to meet their needs in E/PO. Specifically, a recent series of semi-structured interviews with members of the American Astronomical Society Division of Planetary Sciences (AAS-DPS) has helped pinpoint specific areas that can be addressed. This presentation will discuss our survey methods, responses to questions, and compare those to previous research. We will describe new products and other resources developed in response to expressed needs, as well as offer information to continue the conversation about how professional societies can better meet the needs of their members in E/PO.
Perception of Motion in Statistically-Defined Displays
1989-04-15
psychophysical study before. He was paid $7.50/hour for his participation. Also, to insure high motivation , he received an additional one cent for every...correct response. This was the same motivational device used in the earlier work on motion discrimination (Ball and Sekuler, 1982). The observer...scientists, physiologists, and people interested in computer vision. Finally, one of the main motives for studying motion perception is a desire to
Specific Impulse and Mass Flow Rate Error
NASA Technical Reports Server (NTRS)
Gregory, Don A.
2005-01-01
Specific impulse is defined in words in many ways. Very early in any text on rocket propulsion a phrase similar to .specific impulse is the thrust force per unit propellant weight flow per second. will be found.(2) It is only after seeing the mathematics written down does the definition mean something physically to scientists and engineers responsible for either measuring it or using someone.s value for it.
A trait based approach to defining valued mentoring qualities
NASA Astrophysics Data System (ADS)
Pendall, E.
2012-12-01
Graduate training in the sciences requires strong personal interactions among faculty, senior lab members and more junior members. Within the lab-group setting we learn to frame problems, to conduct research and to communicate findings. The result is that individual scientists are partly shaped by a few influential mentors. We have all been influenced by special relationships with mentors, and on reflection we may find that certain qualities have been especially influential in our career choices. In this presentation I will discuss favorable mentoring traits as determined from an informal survey of scientists in varying stages of careers and from diverse backgrounds. Respondents addressed questions about traits they value in their mentors in several categories: 1) personal qualities such as approachability, humor and encouragement; background including gender, ethnicity, and family status; 2) scientific qualities including discipline or specialization, perceived stature in discipline, seniority, breadth of perspective, and level of expectations; and 3) community-oriented qualities promoted by mentors, such as encouraging service contributions and peer-mentoring within the lab group. The results will be compared among respondents by gender, ethnicity, stage of career, type of work, and subdiscipline within the broadly defined Biogeoscience community. We hope to contribute to the growing discussion on building a diverse and balanced scientific workforce.
Evans, Michael S
2009-01-01
In this paper, I examine how scientific disciplines define their boundaries by defining the publics with whom they engage. The case study is an episode in the development of early American sociology. In response to the dual challenge of credibility set up by the conflict between religious Baconian science and secular positivist science, key actors engaged in specific strategies of boundary-work to create their desired "sociological public"--a hybrid form of science-public relations that appealed to hostile university scientists while excluding a supportive religious audience from participation in the production of scientific knowledge. Using this case, I offer two specific insights. First I illustrate how, in the pursuit of scientific credibility, actors engage in boundary-work to differentiate audiences, not just practitioners. Such defining of publics is constitutive of scientific disciplines in their formative stage. Second, I demonstrate how audience boundaries can be redefined through the capture of existing boundary objects. Specifically, the removal of informational content in key boundary objects creates durable boundaries that are difficult to overcome.
Data scientist: the sexiest job of the 21st century.
Davenport, Thomas H; Patil, D J
2012-10-01
Back in the 1990s, computer engineer and Wall Street "quant" were the hot occupations in business. Today data scientists are the hires firms are competing to make. As companies wrestle with unprecedented volumes and types of information, demand for these experts has raced well ahead of supply. Indeed, Greylock Partners, the VC firm that backed Facebook and LinkedIn, is so worried about the shortage of data scientists that it has a recruiting team dedicated to channeling them to the businesses in its portfolio. Data scientists are the key to realizing the opportunities presented by big data. They bring structure to it, find compelling patterns in it, and advise executives on the implications for products, processes, and decisions. They find the story buried in the data and communicate it. And they don't just deliver reports: They get at the questions at the heart of problems and devise creative approaches to them. One data scientist who was studying a fraud problem, for example, realized it was analogous to a type of DNA sequencing problem. Bringing those disparate worlds together, he crafted a solution that dramatically reduced fraud losses. In this article, Harvard Business School's Davenport and Greylock's Patil take a deep dive on what organizations need to know about data scientists: where to look for them, how to attract and develop them, and how to spot a great one.
NASA Astrophysics Data System (ADS)
Dashoush, Nermeen
This dissertation reports on an ethnographic study to examine and detail emerging practices in a community of practice comprised of an elementary teacher and a scientist (microbiologist). The study was conducted in order to design a model for professional development. It also aimed to contribute to the limited research involving elementary educators and their work with scientists. Furthermore, extra attention was given to understanding how both the elementary teacher and the scientist benefitted from their participation in the community of practice created from working together in teaching and learning science as a form of professional development. This was in accordance with a community of practice framework, which details that a healthy community is one without a perception of hierarchy among members (Wenger, 1998). The elementary teacher and scientist as participants collaborated in the creation of a science unit for an afterschool program. A wide variety of data was collected, including: interviews, transcribed meetings, and online journals from both participants. The data was coded for reoccurring themes surrounding practices and shifts in perception about science teaching and learning that emerged from this community of practice as professional development. The findings have implications for practices that could be used as a foundational structure in future collaborations involving elementary teachers and scientists for elementary science professional development.
The Cosmopolitanization of Science: Experience from Chinese Stem Cell Scientists.
Zhang, Joy Yueyue
2010-09-01
It is commonly perceived that the 'globalization of science' may result in a 'Westernization of science'. In this paper, however, I use the case of stem cell science in China to demonstrate that developing countries are sometimes able to effectively shape the norms of global/local scientific exchange. Based on interviews with 38 stem cell scientists in six Chinese cities in early 2008, this paper elucidates Chinese scientists' outlook towards cross-border collaborations and the effects that the internationalization of science has had on everyday laboratory operations. Findings suggest that although there still exists an asymmetry of scientific influence, and in many aspects China is still 'catching-up' to the West, there is also a changing nature of communication beyond borders. One key aspect of recent international scientific development is the growing necessity for local stakeholders to acquire a global mindset and to compare, reflect and accommodate diverse interests. This is what I define as the 'cosmopolitanization of science'. The study empirically examines the sociological and methodological implications of the cosmopolitanization process and further develops Ulrich Beck's cosmopolitan theory by delineating four main features of the 'cosmopolitanization of science': shared future benefits, passive ethicization, reflexive negotiation, and continuous performance.
NASA space life sciences research and education support program
NASA Technical Reports Server (NTRS)
Jones, Terri K.
1995-01-01
USRA's Division of Space Life Sciences (DSLS) was established in 1983 as the Division of Space Biomedicine to facilitate participation of the university community in biomedical research programs at the NASA Johnson Space Center (JSC). The DSLS is currently housed in the Center for Advanced Space Studies (CASS), sharing quarters with the Division of Educational Programs and the Lunar and Planetary Institute. The DSLS provides visiting scientists for the Johnson Space Center; organizes conferences, workshops, meetings, and seminars; and, through subcontracts with outside institutions, supports NASA-related research at more than 25 such entities. The DSLS has considerable experience providing visiting scientists, experts, and consultants to work in concert with NASA Life Sciences researchers to define research missions and goals and to perform a wide variety of research administration and program management tasks. The basic objectives of this contract have been to stimulate, encourage, and assist research and education in the NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad have been recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system.
Shenkin, Susan D.; Pernet, Cyril; Nichols, Thomas E.; Poline, Jean-Baptiste; Matthews, Paul M.; van der Lugt, Aad; Mackay, Clare; Lanyon, Linda; Mazoyer, Bernard; Boardman, James P.; Thompson, Paul M.; Fox, Nick; Marcus, Daniel S.; Sheikh, Aziz; Cox, Simon R.; Anblagan, Devasuda; Job, Dominic E.; Dickie, David Alexander; Rodriguez, David; Wardlaw, Joanna M.
2017-01-01
Brain imaging is now ubiquitous in clinical practice and research. The case for bringing together large amounts of image data from well-characterised healthy subjects and those with a range of common brain diseases across the life course is now compelling. This report follows a meeting of international experts from multiple disciplines, all interested in brain image biobanking. The meeting included neuroimaging experts (clinical and non-clinical), computer scientists, epidemiologists, clinicians, ethicists, and lawyers involved in creating brain image banks. The meeting followed a structured format to discuss current and emerging brain image banks; applications such as atlases; conceptual and statistical problems (e.g. defining ‘normality’); legal, ethical and technological issues (e.g. consents, potential for data linkage, data security, harmonisation, data storage and enabling of research data sharing). We summarise the lessons learned from the experiences of a wide range of individual image banks, and provide practical recommendations to enhance creation, use and reuse of neuroimaging data. Our aim is to maximise the benefit of the image data, provided voluntarily by research participants and funded by many organisations, for human health. Our ultimate vision is of a federated network of brain image biobanks accessible for large studies of brain structure and function. PMID:28232121
Lee, Irene; Berdis, Anthony J
2016-01-01
Historically, the study of proteins has relied heavily on characterizing the activity of a single purified protein isolated from other cellular components. This classic approach allowed scientists to unambiguously define the intrinsic kinetic and chemical properties of that protein. The ultimate hope was to extrapolate this information toward understanding how the enzyme or receptor behaves within its native cellular context. These types of detailed in vitro analyses were necessary to reduce the innate complexities of measuring the singular activity and biochemical properties of a specific enzyme without interference from other enzymes and potential competing substrates. However, recent developments in fields encompassing cell biology, molecular imaging, and chemical biology now provide the unique chemical tools and instrumentation to study protein structure, function, and regulation in their native cellular environment. These advancements provide the foundation for a new field, coined physiological enzymology, which quantifies the function and regulation of enzymes and proteins at the cellular level. In this Special Edition, we explore the area of Physiological Enzymology and Protein Function through a series of review articles that focus on the tools and techniques used to measure the cellular activity of proteins inside living cells. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. Copyright © 2015 Elsevier B.V. All rights reserved.
Shenkin, Susan D; Pernet, Cyril; Nichols, Thomas E; Poline, Jean-Baptiste; Matthews, Paul M; van der Lugt, Aad; Mackay, Clare; Lanyon, Linda; Mazoyer, Bernard; Boardman, James P; Thompson, Paul M; Fox, Nick; Marcus, Daniel S; Sheikh, Aziz; Cox, Simon R; Anblagan, Devasuda; Job, Dominic E; Dickie, David Alexander; Rodriguez, David; Wardlaw, Joanna M
2017-06-01
Brain imaging is now ubiquitous in clinical practice and research. The case for bringing together large amounts of image data from well-characterised healthy subjects and those with a range of common brain diseases across the life course is now compelling. This report follows a meeting of international experts from multiple disciplines, all interested in brain image biobanking. The meeting included neuroimaging experts (clinical and non-clinical), computer scientists, epidemiologists, clinicians, ethicists, and lawyers involved in creating brain image banks. The meeting followed a structured format to discuss current and emerging brain image banks; applications such as atlases; conceptual and statistical problems (e.g. defining 'normality'); legal, ethical and technological issues (e.g. consents, potential for data linkage, data security, harmonisation, data storage and enabling of research data sharing). We summarise the lessons learned from the experiences of a wide range of individual image banks, and provide practical recommendations to enhance creation, use and reuse of neuroimaging data. Our aim is to maximise the benefit of the image data, provided voluntarily by research participants and funded by many organisations, for human health. Our ultimate vision is of a federated network of brain image biobanks accessible for large studies of brain structure and function. Copyright © 2017 Elsevier Inc. All rights reserved.
Quantitative descriptions of rice plant architecture and their application
Li, Xumeng; Wang, Xiaohui; Peng, Yulin; Wei, Hailin; Zhu, Xinguang; Chang, Shuoqi; Li, Ming; Li, Tao; Huang, Huang
2017-01-01
Plant architecture is an important agronomic trait, and improving plant architecture has attracted the attention of scientists for decades, particularly studies to create desirable plant architecture for high grain yields through breeding and culture practices. However, many important structural phenotypic traits still lack quantitative description and modeling on structural-functional relativity. This study defined new architecture indices (AIs) derived from the digitalized plant architecture using the virtual blade method. The influences of varieties and crop management on these indices and the influences of these indices on biomass accumulation were analyzed using field experiment data at two crop growth stages: early and late panicle initiation. The results indicated that the vertical architecture indices (LAI, PH, 90%-DRI, MDI, 90%-LI) were significantly influenced by variety, water, nitrogen management and the interaction of water and nitrogen, and compact architecture indices (H-CI, Q-CI, 90%-LI, 50%-LI) were significantly influenced by nitrogen management and the interaction of variety and water. Furthermore, there were certain trends in the influence of variety, water, and nitrogen management on AIs. Biomass accumulation has a positive linear correlation with vertical architecture indices and has a quadratic correlation with compact architecture indices, respectively. Furthermore, the combination of vertical and compact architecture indices is the indicator for evaluating the effects of plant architecture on biomass accumulation. PMID:28545144
Quantitative descriptions of rice plant architecture and their application.
Li, Xumeng; Wang, Xiaohui; Peng, Yulin; Wei, Hailin; Zhu, Xinguang; Chang, Shuoqi; Li, Ming; Li, Tao; Huang, Huang
2017-01-01
Plant architecture is an important agronomic trait, and improving plant architecture has attracted the attention of scientists for decades, particularly studies to create desirable plant architecture for high grain yields through breeding and culture practices. However, many important structural phenotypic traits still lack quantitative description and modeling on structural-functional relativity. This study defined new architecture indices (AIs) derived from the digitalized plant architecture using the virtual blade method. The influences of varieties and crop management on these indices and the influences of these indices on biomass accumulation were analyzed using field experiment data at two crop growth stages: early and late panicle initiation. The results indicated that the vertical architecture indices (LAI, PH, 90%-DRI, MDI, 90%-LI) were significantly influenced by variety, water, nitrogen management and the interaction of water and nitrogen, and compact architecture indices (H-CI, Q-CI, 90%-LI, 50%-LI) were significantly influenced by nitrogen management and the interaction of variety and water. Furthermore, there were certain trends in the influence of variety, water, and nitrogen management on AIs. Biomass accumulation has a positive linear correlation with vertical architecture indices and has a quadratic correlation with compact architecture indices, respectively. Furthermore, the combination of vertical and compact architecture indices is the indicator for evaluating the effects of plant architecture on biomass accumulation.
Alonso, Meghan M
2017-01-01
Commercializing a diagnostic or life science product often encompasses different goals than that of research and grant funding. There are several necessary steps, and a strategy needs to be well defined in order to be successful. Product development requires input from and between various groups within a company and, for academia, outside entities. The product development stakeholder groups/entities are research, marketing, development, regulatory, manufacturing, clinical, safety/efficacy, and quality. After initial research and development, much of the work in product development can be outsourced or jointly created using public-private partnerships. This chapter serves as an overview of the product development process and provides a guide to best define a product strategy.
Goodman, Dan F. M.; Brette, Romain
2009-01-01
“Brian” is a simulator for spiking neural networks (http://www.briansimulator.org). The focus is on making the writing of simulation code as quick and easy as possible for the user, and on flexibility: new and non-standard models are no more difficult to define than standard ones. This allows scientists to spend more time on the details of their models, and less on their implementation. Neuron models are defined by writing differential equations in standard mathematical notation, facilitating scientific communication. Brian is written in the Python programming language, and uses vector-based computation to allow for efficient simulations. It is particularly useful for neuroscientific modelling at the systems level, and for teaching computational neuroscience. PMID:20011141
Researchers at the Frederick National Lab (FNL) have collaborated in solving the three-dimensional structure of a key protein in Alzheimer’s disease, providing new insight into the basic mechanisms that give rise to the devastating illness. The pro
A Longitudinal Perspective on Inductive Reasoning Tasks. Illuminating the Probability of Change
ERIC Educational Resources Information Center
Ifenthaler, Dirk; Seel, Norbert M.
2011-01-01
Cognitive scientists have studied internal cognitive structures, processes, and systems for decades in order to understand how they function in human learning. Nevertheless, questions concerning the diagnosis of changes in these cognitive structures while solving inductive reasoning tasks are still being scrutinized. This paper reports findings…
Fermi discovers giant gamma-ray bubbles in the Milky Way
2017-12-08
NASA image release November 9, 2010 To view a video about this story go to: www.flickr.com/photos/gsfc/5162413062 Using data from NASA's Fermi Gamma-ray Space Telescope, scientists have recently discovered a gigantic, mysterious structure in our galaxy. This never-before-seen feature looks like a pair of bubbles extending above and below our galaxy's center. But these enormous gamma-ray emitting lobes aren't immediately visible in the Fermi all-sky map. However, by processing the data, a group of scientists was able to bring these unexpected structures into sharp relief. Each lobe is 25,000 light-years tall and the whole structure may be only a few million years old. Within the bubbles, extremely energetic electrons are interacting with lower-energy light to create gamma rays, but right now, no one knows the source of these electrons. Are the bubbles remnants of a massive burst of star formation? Leftovers from an eruption by the supermassive black hole at our galaxy's center? Or or did these forces work in tandem to produce them? Scientists aren't sure yet, but the more they learn about this amazing structure, the better we'll understand the Milky Way. To learn more go to: www.nasa.gov/mission_pages/GLAST/news/new-structure.html NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio
[The boycott against German scientists and the German language after World War I].
Reinbothe, R
2013-12-01
After the First World War, the Allied academies of sciences staged a boycott against German scientists and the German language. The objective of the boycott was to prevent the re-establishment of the prewar dominance of German scientists, the German language and German publications in the area of international scientific cooperation. Therefore the Allies excluded German scientists and the German language from international associations, congresses and publications, while they created new international scientific organizations under their leadership. Medical associations and congresses were also affected, e. g. congresses on surgery, ophthalmology and tuberculosis. Allied physicians replaced the "International Anti-Tuberculosis Association" founded in Berlin in 1902 with the "Union Internationale contre la Tuberculose"/"International Union against Tuberculosis", founded in Paris in 1920. Only French and English were used as the official languages of the new scientific organizations, just as in the League of Nations. The boycott was based on the fact that the German scientists had denied German war guilt and war crimes and glorified German militarism in a manifesto "To The Civilized World!" in 1914. The boycott first started in 1919 and had to be abolished in 1926, when Germany became a member of the League of Nations. Many German and foreign physicians as well as other scientists protested against the boycott. Some German scientists and institutions even staged a counter-boycott impeding the resumption of international collaboration. The boycott entailed an enduring decline of German as an international scientific language. After the Second World War scientists of the victorious Western Powers implemented a complete reorganization of the international scientific arena, based on the same organizational structures and language restrictions they had built up in 1919/1920. At the same time scientists from the U.S.A. staged an active language and publication policy, in order to establish the dominance of English in the international scientific arena. © Georg Thieme Verlag KG Stuttgart · New York.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slater, Lee D.
2009-05-11
This project provided travel awards for scientists engaged in research relevant to the DOE mission to participate in the American Geophysical Union (AGU) Chapman Conference on Biogeophysics held October 13-16, 2008, in Portland, Maine (http://www.agu.org/meetings/chapman/2008/fcall/). The objective of this Chapman Conference was to bring together geophysicists, biophysicists, geochemists, geomicrobiologists, and environmental microbiologists that are leaders in their field and have a personal interest in exploring this new interdisciplinary field or are conducting multidisciplinary research with potential impact on biogeophysics in order to define the current state of the science, identify the critical questions facing the community and to generate amore » roadmap for establishing biogeophysics as a critical subdiscipline of earth science research. The sixty participants were an international group of academics, graduate students and scientists at government laboratories engaged in biogeophysics related research. Scientists from Europe, Israel and China traveled to engage North American colleagues in this highly focused 3.5 day meeting. The group included an approximately equal mix of microbiologists, biogeochemists and near surface geophysicists. The recipients of the DOE travel awards were [1] Dennis Bazylinski (University of Nevada, Las Vegas), [2] Yuri Gorby (Craig Venter Institute), [3] Carlos Santamarina (Georgia Tech), [4] Susan Hubbard (Lawrence Berkeley Laboratory), [5] Roelof Versteeg (Idaho National Laboratory), [6] Eric Roden (University of Wisconsin), [7] George Luther (University of Delaware), and [8] Jinsong Chen (Lawrence Berkeley Laboratory)« less
NASA Astrophysics Data System (ADS)
Lee, O. A.
2016-12-01
Significant changes to the Arctic marine environment is anticipated as a result of decreasing sea ice and increasing anthropogenic activity that may occur with increasing access to ice-free waters. Two different collaboration efforts between scientists and artists on projects related to changes in the Alaskan Arctic waters are compared to present different outcomes from two collaboration strategies. The first collaboration involved a funded project to develop visualizations of change on the North Slope as part of an outreach effort for the North Slope Science Initiative Scenarios project. The second collaboration was a voluntary art-science collaboration to develop artwork about changing sea ice habitat for walrus as one contribution to a featured art show during the 2016 Arctic Science Summit Week. Both collaboration opportunities resulted in compelling visualizations. However the funded collaboration provided for more iterative discussions between the scientist and the collaborators for the film and animation products throughout the duration of the project. This ensured that the science remained an important focal point. In contrast, the product of the voluntary collaboration effort was primarily driven by the artist's perspective, although the discussions with the scientist played a role in connecting the content of the three panels in the final art and sculpture piece. This comparison of different levels of scientist-involvement and resources used to develop the visualizations highlights the importance of defining the intended audience and expectations for all collaborators early.
1996-06-18
NASA scientist, in the Space Sciences lab at Marshall, works with capillary optics that generate more intense X-rays than conventional sources. This capability is useful in studying the structure of important proteins.
X-ray Vision for Aerosol Scientists: LCLS Snapshots of Soot (Narrated)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-10-22
This short conceptual animation depicts how scientists can now simultaneously capture fractal morphology (structure), chemical composition and nanoscale imagery of individual aerosol particles in flight. These particles, known as "PM2.5" because they are smaller than 2.5 microns in diameter, affect climate by interacting with sunlight and impact human health by entering the lungs. The single LCLS laser pulses travel to the Atomic, Molecular and Optical Sciences (AMO) laboratory in the Near Experimental Hall. As we zoom in, we see deep inside a simplified aerosol inlet, where the complex fractal structure of the soot particles, each one completely unique, is shown.more » Individual soot particles are then delivered into the pulses of the LCLS beam, which destroys them. X-rays are scattered to the detector before the particle is destroyed, giving information about the morphology of the particle. Ion fragments released in the explosion are sent into a mass spectrometer, which measures their mass-to-charge ratio -- giving scientists information about the chemical composition of the particle. Many different particles are analyzed in this manner, allowing scientists to probe variations in the particles due to changes in their environment before being sent through the aerosol inlet. The final visual of aerosols emitted from a factory is representative of the goal that such LCLS aerosol dynamics experiments can provide critical feedback into modeling and understanding combustion, aerosol processes in manufacturing or aerosol effects on climate change.« less
Building Knowledge Graphs for NASA's Earth Science Enterprise
NASA Astrophysics Data System (ADS)
Zhang, J.; Lee, T. J.; Ramachandran, R.; Shi, R.; Bao, Q.; Gatlin, P. N.; Weigel, A. M.; Maskey, M.; Miller, J. J.
2016-12-01
Inspired by Google Knowledge Graph, we have been building a prototype Knowledge Graph for Earth scientists, connecting information and data in NASA's Earth science enterprise. Our primary goal is to advance the state-of-the-art NASA knowledge extraction capability by going beyond traditional catalog search and linking different distributed information (such as data, publications, services, tools and people). This will enable a more efficient pathway to knowledge discovery. While Google Knowledge Graph provides impressive semantic-search and aggregation capabilities, it is limited to search topics for general public. We use the similar knowledge graph approach to semantically link information gathered from a wide variety of sources within the NASA Earth Science enterprise. Our prototype serves as a proof of concept on the viability of building an operational "knowledge base" system for NASA Earth science. Information is pulled from structured sources (such as NASA CMR catalog, GCMD, and Climate and Forecast Conventions) and unstructured sources (such as research papers). Leveraging modern techniques of machine learning, information retrieval, and deep learning, we provide an integrated data mining and information discovery environment to help Earth scientists to use the best data, tools, methodologies, and models available to answer a hypothesis. Our knowledge graph would be able to answer questions like: Which articles discuss topics investigating similar hypotheses? How have these methods been tested for accuracy? Which approaches have been highly cited within the scientific community? What variables were used for this method and what datasets were used to represent them? What processing was necessary to use this data? These questions then lead researchers and citizen scientists to investigate the sources where data can be found, available user guides, information on how the data was acquired, and available tools and models to use with this data. As a proof of concept, we focus on a well-defined domain - Hurricane Science linking research articles and their findings, data, people and tools/services. Modern information retrieval, natural language processing machine learning and deep learning techniques are applied to build the knowledge network.
Visualization and Analysis of Geology Word Vectors for Efficient Information Extraction
NASA Astrophysics Data System (ADS)
Floyd, J. S.
2016-12-01
When a scientist begins studying a new geographic region of the Earth, they frequently begin by gathering relevant scientific literature in order to understand what is known, for example, about the region's geologic setting, structure, stratigraphy, and tectonic and environmental history. Experienced scientists typically know what keywords to seek and understand that if a document contains one important keyword, then other words in the document may be important as well. Word relationships in a document give rise to what is known in linguistics as the context-dependent nature of meaning. For example, the meaning of the word `strike' in geology, as in the strike of a fault, is quite different from its popular meaning in baseball. In addition, word order, such as in the phrase `Cretaceous-Tertiary boundary,' often corresponds to the order of sequences in time or space. The context of words and the relevance of words to each other can be derived quantitatively by machine learning vector representations of words. Here we show the results of training a neural network to create word vectors from scientific research papers from selected rift basins and mid-ocean ridges: the Woodlark Basin of Papua New Guinea, the Hess Deep rift, and the Gulf of Mexico basin. The word vectors are statistically defined by surrounding words within a given window, limited by the length of each sentence. The word vectors are analyzed by their cosine distance to related words (e.g., `axial' and `magma'), classified by high dimensional clustering, and visualized by reducing the vector dimensions and plotting the vectors on a two- or three-dimensional graph. Similarity analysis of `Triassic' and `Cretaceous' returns `Jurassic' as the nearest word vector, suggesting that the model is capable of learning the geologic time scale. Similarity analysis of `basalt' and `minerals' automatically returns mineral names such as `chlorite', `plagioclase,' and `olivine.' Word vector analysis and visualization allow one to extract information from hundreds of papers or more and find relationships in less time than it would take to read all of the papers. As machine learning tools become more commonly available, more and more scientists will be able to use and refine these tools for their individual needs.
Scientists' conceptions of scientific inquiry: Revealing a private side of science
NASA Astrophysics Data System (ADS)
Reiff, Rebecca R.
Science educators, philosophers, and pre-service teachers have contributed to conceptualizing inquiry but missing from the inquiry forum is an in-depth research study concerning science faculty conceptions of scientific inquiry. The science education literature has tended to focus on certain aspects of doing, teaching, and understanding scientific inquiry without linking these concepts. As a result, conceptions of scientific inquiry have been disjointed and are seemingly unrelated. Furthermore, confusion surrounding the meaning of inquiry has been identified as a reason teachers are not using inquiry in instruction (Welch et al., 1981). Part of the confusion surrounding scientific inquiry is it has been defined differently depending on the context (Colburn, 2000; Lederman, 1998; Shymansky & Yore, 1980; Wilson & Koran, 1976). This lack of a common conception of scientific inquiry is the reason for the timely nature of this research. The result of scientific journeys is not to arrive at a stopping point or the final destination, but to refuel with questions to drive the pursuit of knowledge. A three-member research team conducted Interviews with science faculty members using a semi-structured interview protocol designed to probe the subject's conceptions of scientific inquiry. The participants represented a total of 52 science faculty members from nine science departments (anthropology, biology, chemistry, geology, geography, school of health, physical education and recreation (HPER), medical sciences, physics, and school of environmental science) at a large mid-western research university. The method of analysis used by the team was grounded theory (Strauss & Corbin, 1990; Glaser & Strauss, 1967), in which case the frequency of concepts, patterns, and themes were coded to categorize scientists' conceptions of scientific inquiry. The results from this study address the following components: understanding and doing scientific inquiry, attributes of scientists engaged in inquiry investigations, the relationship of scientific inquiry to the nature of science, whether the process of scientific inquiry follows the traditional scientific method, and the similarities and differences in conceptualizations of scientific inquiry across science disciplines. These findings represent a private side of science, which can be useful in characterizing key features of scientific inquiry to be incorporated into K--16 teaching practices.
Using the Critical Zone Observatory Network to Put Geology into Environmental Science
NASA Astrophysics Data System (ADS)
Brantley, S. L.
2017-12-01
The use of observatories to study the environment in the U.S.A. arguably began in 1910. Since then, many environmental observatories were set up to study impacts of land use change. At that time, observatories did not emphasize geological structure. Around 2004, scientists in the U.S.A. began to emphasize the need to study the Earth's surface as one integrated system that includes the geological underpinnings. In 2007, the Geosciences Directorate within the U.S. National Science Foundation established the Critical Zone Observatory (CZO) program. Today the CZO network has grown to 9 observatories, and 45 countries now host such observatories. A CZO is an observatory that promotes the study of the entire layer of Earth's surface from vegetation canopy to groundwater as one entity. The observatories are somewhat similar to other NSF-funded observatories such as Long Term Ecological Research (LTER) sites but they differ in that they emphasize the history of the landscape and how it mediates today's fluxes. LTERs largely focus on ecological science. The concepts of CZ science and CZOs - developed by the Geosciences Directorate - have been extraordinarily impactful: we now have deeper understanding of how surficial processes respond to tectonic, climatic, and anthropogenic drivers. One reason CZOs succeed is that they host scientists who make measurements in one place that cross timescales from that of the meteorologist to the geologist. The NSF Geosciences Directorate has thus promoted insights showing that many of the unexplained mysteries of "catchment science" or "ecosystem science" can be explained by the underlying geological story of a site. The scientific challenges of this endeavor are dwarfed, however, by cultural challenges. Specifically, while both CZOs and observatories such as LTERs struggle to publish many types of data from different disciplines in a continually changing cyber-world, only CZO scientists find they must repeatedly explain why such observatories and data are even necessary. LTERs have enjoyed funding since the 1980s whereas continued funding for CZOs has always been under intense scrutiny. These misgivings must be articulated and solved so that humans can integrate disparate observations to learn to sustain their natural environment - which is often defined by the geological substrate.
Climate Research by K-12 Students: Can They Do It? Will Anybody Care?
NASA Astrophysics Data System (ADS)
Brooks, D. R.
2011-12-01
Starting from the premise that engaging students in authentic science research is an activity that benefits science education in general, it is first necessary to consider whether students, in collaboration with teachers and climate scientists, can do climate-related research that actually has scientific value. A workshop held in November 2010, co-sponsored by NSF and NOAA, addressed this question. It took as its starting point this "scientific interest" test: "If students conduct a climate-related research project according to protocols designed in collaboration with climate scientists, when they get done, will any of those scientists care whether they did it or not?" If the answer to this question is "yes," then the project may constitute authentic research, but if the answer is "no," then the project may have educational value, but it is not research. This test is important because only when climate scientists (and other stakeholders interested in climate and climate change) are invested in the outcomes of student research will meaningful student research programs with sustainable support be forthcoming. The absence of climate-related projects in high-level student science fair competitions indicates that, currently, the investment and infrastructure required to support student climate research is lacking. As a result, climate science is losing the battle for the "hearts and minds" of today's best students. The critical task for student climate research is to define projects that are theoretically and practically accessible. This excludes the "big questions" of climate science, such as "Is Earth getting warmer?", but includes many observationally based projects that can help to refine our understanding of climate and climate change. The characteristics of collaborative climate research with students include: 1. carefully drawn distinctions between inquiry-based "learning about" activities and actual research; 2. an identified audience of potential stakeholders who will care about the results of the research; 3. clearly defined expectations, logistics, and outcomes for all participants. Some examples of appropriate data-based research topics include: 1. monitoring black carbon, atmospheric aerosols, and water vapor; 2. pyranometry at sufficiently high temporal resolution to study cloud patterns; 3. urban heat island and other microclimate effects; 4. monitoring benthic habitats and seafloor temperatures; 5. monitoring free-floating ocean buoys to help in the establishment of mobile marine sanctuaries; 6. monitoring surface reflectivity to generate highly localized normalized difference vegetation indices; 7. tracking habitats for vector-borne disease carriers in developing countries. Both education and science communities need to work harder to support student climate research. Educational institutions must build authentic student research into their mission statements. Scientists need to be more aware of the constraints under which teachers and their students must operate on a day-to-day basis. But, students can participate in authentic climate research if educators and scientists expect them to do real research, are honest with them about what is required to do real research, and are willing to provide persistent ongoing support.
Chisholm, Alison; Price, David B; Pinnock, Hilary; Lee, Tan Tze; Roa, Camilo; Cho, Sang-Heon; David-Wang, Aileen; Wong, Gary; van der Molen, Thys; Ryan, Dermot; Castillo-Carandang, Nina; Yong, Yee Vern
2017-01-05
REALISE Asia-an online questionnaire-based study of Asian asthma patients-identified five patient clusters defined in terms of their control status and attitude towards their asthma (categorised as: 'Well-adjusted and at least partly controlled'; 'In denial about symptoms'; 'Tolerating with poor control'; 'Adrift and poorly controlled'; 'Worried with multiple symptoms'). We developed consensus recommendations for tailoring management of these attitudinal-control clusters. An expert panel undertook a three-round electronic Delphi (e-Delphi): Round 1: panellists received descriptions of the attitudinal-control clusters and provided free text recommendations for their assessment and management. Round 2: panellists prioritised Round 1 recommendations and met (or joined a teleconference) to consolidate the recommendations. Round 3: panellists voted and prioritised the remaining recommendations. Consensus was defined as Round 3 recommendations endorsed by >50% of panellists. Highest priority recommendations were those receiving the highest score. The multidisciplinary panellists (9 clinicians, 1 pharmacist and 1 health social scientist; 7 from Asia) identified consensus recommendations for all clusters. Recommended pharmacological (e.g., step-up/down; self-management; simplified regimen) and non-pharmacological approaches (e.g., trigger management, education, social support; inhaler technique) varied substantially according to each cluster's attitude to asthma and associated psychosocial drivers of behaviour. The attitudinal-control clusters defined by REALISE Asia resonated with the international panel. Consensus was reached on appropriate tailored management approaches for all clusters. Summarised and incorporated into a structured management pathway, these recommendations could facilitate personalised care. Generalisability of these patient clusters should be assessed in other socio-economic, cultural and literacy groups and nationalities in Asia.
Microrobotics: Swimmers by design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aranson, Igor S.
2016-03-16
Scientists have created soft microrobots whose body shapes can be controlled by structured light, and which self-propel by means of travelling-wave body deformations similar to those exhibited by swimming protozoa.
Microrobotics: Swimmers by design
NASA Astrophysics Data System (ADS)
Aranson, Igor S.
2016-03-01
Scientists have created soft microrobots whose body shapes can be controlled by structured light, and which self-propel by means of travelling-wave body deformations similar to those exhibited by swimming protozoa.
NASA Astrophysics Data System (ADS)
Bruylants, Gilles; Bartik, Kristin; Reisse, Jacques
2010-04-01
Many scientists, including one of the authors of the present paper, have devoted time to try to find a definition for life (Bersini and Reisse 2007). It is clear that a consensus will never be reached but, more importantly, it seems that the issue itself could be without major interest. It is indeed impossible to define a “natural” frontier between non-living and living systems and therefore also impossible to define dichotomic criteria which could be used in order to classify systems in one of these two classes (living or non-living). Fuzzy logic provides a natural way to deal with problems where class membership lacks sharply defined criteria. It also offers the possibility to avoid losing time with unnecessary controversies such as deciding whether a virus is, or is not, a living system.
Bruylants, Gilles; Bartik, Kristin; Reisse, Jacques
2010-04-01
Many scientists, including one of the authors of the present paper, have devoted time to try to find a definition for life (Bersini and Reisse 2007). It is clear that a consensus will never be reached but, more importantly, it seems that the issue itself could be without major interest. It is indeed impossible to define a "natural" frontier between non-living and living systems and therefore also impossible to define dichotomic criteria which could be used in order to classify systems in one of these two classes (living or non-living). Fuzzy logic provides a natural way to deal with problems where class membership lacks sharply defined criteria. It also offers the possibility to avoid losing time with unnecessary controversies such as deciding whether a virus is, or is not, a living system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Richen; Guo, Hanqi; Yuan, Xiaoru
Most of the existing approaches to visualize vector field ensembles are to reveal the uncertainty of individual variables, for example, statistics, variability, etc. However, a user-defined derived feature like vortex or air mass is also quite significant, since they make more sense to domain scientists. In this paper, we present a new framework to extract user-defined derived features from different simulation runs. Specially, we use a detail-to-overview searching scheme to help extract vortex with a user-defined shape. We further compute the geometry information including the size, the geo-spatial location of the extracted vortexes. We also design some linked views tomore » compare them between different runs. At last, the temporal information such as the occurrence time of the feature is further estimated and compared. Results show that our method is capable of extracting the features across different runs and comparing them spatially and temporally.« less
How high school science-related experiences influenced science career persistence
NASA Astrophysics Data System (ADS)
Shaw, Andrew D.
The events of 9/11 brought into focus two ongoing trends that were present before this tragedy and have continued since: (1) The United States needs more scientists if it is to ensure its freedoms and maintain its economy. (2) The number of scientists in the "pipeline" is declining because of the diminished presence of foreign scientists (they are wanted in their own countries), the under-representation of minorities and women, and the reduced numbers of students able and willing to take on the scholastic rigors necessary for a science or engineering degree. Though much has been written about improving science education, and numerous projects have been conducted to promote it, few education researchers have questioned the scientists themselves about the experiences, practices, and people that positively influenced them, particularly during their pre-college years. Towards this end, thirty-two scientists were interviewed in order to address four research questions: (1) How did practicing scientists' personal relationships with their science teachers influence their decision to pursue a career in science? (2) What pedagogical methods (e.g. lectures, demonstrations, "hands-on" work, problem solving, small groups) used in their high school science courses, if any, played a significant role in propelling certain students towards a career as a practicing scientist? (3) What high school science-related support structures (e.g. labs, equipment, textbooks, technology), if any, played a significant role in propelling certain students towards a career as a practicing scientist? (4) What high school science-related educational activities (e.g. science fairs, clubs, summer internships), if any, played a significant role in propelling certain students towards a career as a practicing scientist? Some of the scientists reported that they knew they were headed towards a career in science before they even entered high school, while others did not make a decision about a science career until after they had graduated from college. The prevailing conviction, however, was that the encouragement from others (though not exclusively by teachers), the excellence of teaching (regardless of pedagogical style), and the richness of science related experiences were the most influential factors in either maintaining or initiating a persistence in science towards a career.
NASA Technical Reports Server (NTRS)
DiNardo, Anne Marie
2016-01-01
Colorado-based Black Swift Technologies (BST) created a small unmanned aircraft system(sUAS) to help NASA get a clearer picture of soil moisture through the Small Business Innovation Research (SBIR) program. Soil moisture is defined in terms of volume of water per unit volume of soil. Using BSTs sUAS, NASA scientists can gather ground truth measurements for a clearer observation by getting closer to the source. This can help rule out misleading results generated by satellite imagery.
Xcel Energy Comanche Station: Pueblo, Colorado (Data)
Stoffel, T.; Andreas, A.
2007-06-20
A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.
Using an ultrafast, high-intensity radiation source called an X-ray free-electron laser (XFEL), scientists have captured an atomic-level picture of an RNA structure called a riboswitch as it reorganizes itself to regulate protein production. The structure they visualized has never before been seen, and likely exists for only milliseconds after the riboswitch first encounters
Positive Cardiovascular Health: A Timely Convergence.
Labarthe, Darwin R; Kubzansky, Laura D; Boehm, Julia K; Lloyd-Jones, Donald M; Berry, Jarett D; Seligman, Martin E P
2016-08-23
Two concepts, positive health and cardiovascular health, have emerged recently from the respective fields of positive psychology and preventive cardiology. These parallel constructs are converging to foster positive cardiovascular health and a growing collaboration between psychologists and cardiovascular scientists to achieve significant improvements in both individual and population cardiovascular health. We explore these 2 concepts and note close similarities in the measures that define them, the health states that they aim to produce, and their intended long-term clinical and public health outcomes. We especially examine subjective health assets, such as optimism, that are a core focus of positive psychology, but have largely been neglected in preventive cardiology. We identify research to date on positive cardiovascular health, discuss its strengths and limitations thus far, and outline directions for further engagement of cardiovascular scientists with colleagues in positive psychology to advance this new field. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
SFA 2.0- Watershed Structure and Controls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Ken
2015-01-23
Berkeley Lab Earth Scientist Ken Williams explains the watershed research within the Sustainable Systems SFA 2.0 project—including identification and monitoring of primary factors that control watershed biogeochemical functioning.
1996-12-16
A NASA scientist displays Space Shuttle Main Engine (SSME) turbine component which underwent air flow tests at Marshall's Structures and Dynamics Lab. Such studies could improve efficiency of aircraft engines, and lower operational costs.
Motivated Proteins: A web application for studying small three-dimensional protein motifs
Leader, David P; Milner-White, E James
2009-01-01
Background Small loop-shaped motifs are common constituents of the three-dimensional structure of proteins. Typically they comprise between three and seven amino acid residues, and are defined by a combination of dihedral angles and hydrogen bonding partners. The most abundant of these are αβ-motifs, asx-motifs, asx-turns, β-bulges, β-bulge loops, β-turns, nests, niches, Schellmann loops, ST-motifs, ST-staples and ST-turns. We have constructed a database of such motifs from a range of high-quality protein structures and built a web application as a visual interface to this. Description The web application, Motivated Proteins, provides access to these 12 motifs (with 48 sub-categories) in a database of over 400 representative proteins. Queries can be made for specific categories or sub-categories of motif, motifs in the vicinity of ligands, motifs which include part of an enzyme active site, overlapping motifs, or motifs which include a particular amino acid sequence. Individual proteins can be specified, or, where appropriate, motifs for all proteins listed. The results of queries are presented in textual form as an (X)HTML table, and may be saved as parsable plain text or XML. Motifs can be viewed and manipulated either individually or in the context of the protein in the Jmol applet structural viewer. Cartoons of the motifs imposed on a linear representation of protein secondary structure are also provided. Summary information for the motifs is available, as are histograms of amino acid distribution, and graphs of dihedral angles at individual positions in the motifs. Conclusion Motivated Proteins is a publicly and freely accessible web application that enables protein scientists to study small three-dimensional motifs without requiring knowledge of either Structured Query Language or the underlying database schema. PMID:19210785
The collagen microfibril model, a tool for biomaterials scientists
USDA-ARS?s Scientific Manuscript database
Animal hides, a major byproduct of the meat industry, are a rich source of collagen, a structural protein of the extracellular matrix that gives strength and form to the skin, tendons and bones of mammals. The structure of fibrous collagen, a long triple helix that self-associates in a staggered arr...
ERIC Educational Resources Information Center
Niaz, Mansoor; Aguilera, Damarys; Maza, Arelys; Liendo, Gustavo
2002-01-01
Reports on a study aimed at facilitating freshman general chemistry students' understanding of atomic structure based on the work of Thomson, Rutherford, and Bohr. Hypothesizes that classroom discussions based on arguments/counterarguments of the heuristic principles on which these scientists based their atomic models can facilitate students'…
"Because We Can": Pluralism and Structural Reform in Education
ERIC Educational Resources Information Center
Glatter, Ron
2017-01-01
This article revisits a major paper published a decade ago by the political scientist Christopher Pollitt about the highly activist approach to the reform of public services taken in England in recent years. In education, the pace has accelerated since that paper appeared. The weaknesses of the current structures and processes resulting from this…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azadi, Paratoo
2015-09-24
The Complex Carbohydrate Research Center (CCRC) of the University of Georgia holds a symposium yearly that highlights a broad range of carbohydrate research topics. The 8th Annual Georgia Glycoscience Symposium entitled “Integrating Models of Plant Cell Wall Structure, Biosynthesis and Assembly” was held on April 7, 2014 at the CCRC. The focus of symposium was on the role of glycans in plant cell wall structure and synthesis. The goal was to have world leaders in conjunction with graduate students, postdoctoral fellows and research scientists to propose the newest plant cell wall models. The symposium program closely followed the DOE’s missionmore » and was specifically designed to highlight chemical and biochemical structures and processes important for the formation and modification of renewable plant cell walls which serve as the basis for biomaterial and biofuels. The symposium was attended by both senior investigators in the field as well as students including a total attendance of 103, which included 80 faculty/research scientists, 11 graduate students and 12 Postdoctoral students.« less
The Value of Methodical Management: Optimizing Science Results
NASA Astrophysics Data System (ADS)
Saby, Linnea
2016-01-01
As science progresses, making new discoveries in radio astronomy becomes increasingly complex. Instrumentation must be incredibly fine-tuned and well-understood, scientists must consider the skills and schedules of large research teams, and inter-organizational projects sometimes require coordination between observatories around the globe. Structured and methodical management allows scientists to work more effectively in this environment and leads to optimal science output. This report outlines the principles of methodical project management in general, and describes how those principles are applied at the National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia.
Mirel, Barbara
2009-02-13
Current usability studies of bioinformatics tools suggest that tools for exploratory analysis support some tasks related to finding relationships of interest but not the deep causal insights necessary for formulating plausible and credible hypotheses. To better understand design requirements for gaining these causal insights in systems biology analyses a longitudinal field study of 15 biomedical researchers was conducted. Researchers interacted with the same protein-protein interaction tools to discover possible disease mechanisms for further experimentation. Findings reveal patterns in scientists' exploratory and explanatory analysis and reveal that tools positively supported a number of well-structured query and analysis tasks. But for several of scientists' more complex, higher order ways of knowing and reasoning the tools did not offer adequate support. Results show that for a better fit with scientists' cognition for exploratory analysis systems biology tools need to better match scientists' processes for validating, for making a transition from classification to model-based reasoning, and for engaging in causal mental modelling. As the next great frontier in bioinformatics usability, tool designs for exploratory systems biology analysis need to move beyond the successes already achieved in supporting formulaic query and analysis tasks and now reduce current mismatches with several of scientists' higher order analytical practices. The implications of results for tool designs are discussed.
Mind-to-paper is an effective method for scientific writing.
Rosenberg, Jacob; Burcharth, Jakob; Pommergaard, Hans Christian; Danielsen, Anne Kjærgaard
2013-03-01
The problem of initiating the writing process is a well-known phenomenon, especially for young and inexperienced scientists. The purpose of this paper is to present an effective method to overcome this problem and increase writing efficiency among inexperienced scientists. Twelve young scientists within the medical/surgical fields were introduced to the mind-to-paper concept. The first and last article drafts produced by each of the scientists were scored for language complexity (LIX number, Flesch Reading Ease Scale and Gunning Fog), flow, structure, length and use of references; and the results were compared. All participants produced one full article draft during each of the three dictation days. When comparing the first and last article draft regarding time used, no significant difference was detected. In general, the manuscripts were of high quality on all evaluated parameters, but language complexity had increased in the final manuscript. Mind-to-paper dictation for scientific writing is an effective method for production of scientific papers of good initial quality, even when used for the first time by inexperienced scientists. We conclude that practicing this concept produces papers of an adequate language complexity, and that dictation as a writing tool allows for fast transfer of ideas and thoughts to written text. not relevant. not relevant.
The proposed EROSpace institute, a national center operated by space grant universities
Smith, Paul L.; Swiden, LaDell R.; Waltz, Frederick A.
1993-01-01
The "EROSpace Institute" is a proposed visiting scientist program in associated with the U.S. Geological Survey's EROS Data Center (EDC). The Institute would be operated by a consortium of universities, possible drawn from NASA's Space Grant College and Fellowship Program consortia and the group of 17 capability-enhancement consortia, or perhaps from consortia though out the nation with a topical interest in remote sensing. The National Center for Atmospheric Research or the Goddard Institute for Space Studies provide models for the structure of such an institute. The objectives of the Institute are to provide ready access to the body of data housed at the EDC and to increase the cadre of knowledgeable and trained scientists able to deal with the increasing volume of remote sensing data to become available from the Earth Observing System. The Institute would have a staff of about 100 scientists at any one time, about half permanent staff, and half visiting scientists. The latter would include graduate and undergraduate students, as well as faculty on temporary visits, summer fellowships, or sabbatical leaves. The Institute would provide office and computing facilities, as well as Internet linkages to the home institutions so that scientists could continue to participate in the program from their home base.
NASA Astrophysics Data System (ADS)
Viers, J. H.
2013-12-01
Integrating citizen scientists into ecological informatics research can be difficult due to limited opportunities for meaningful engagement given vast data streams. This is particularly true for analysis of remotely sensed data, which are increasingly being used to quantify ecosystem services over space and time, and to understand how land uses deliver differing values to humans and thus inform choices about future human actions. Carbon storage and sequestration are such ecosystem services, and recent environmental policy advances in California (i.e., AB 32) have resulted in a nascent carbon market that is helping fuel the restoration of riparian forests in agricultural landscapes. Methods to inventory and monitor aboveground carbon for market accounting are increasingly relying on hyperspatial remotely sensed data, particularly the use of light detection and ranging (LiDAR) technologies, to estimate biomass. Because airborne discrete return LiDAR can inexpensively capture vegetation structural differences at high spatial resolution (< 1 m) over large areas (> 1000 ha), its use is rapidly increasing, resulting in vast stores of point cloud and derived surface raster data. While established algorithms can quantify forest canopy structure efficiently, the highly complex nature of native riparian forests can result in highly uncertain estimates of biomass due to differences in composition (e.g., species richness, age class) and structure (e.g., stem density). This study presents the comparative results of standing carbon estimates refined with field data collected by citizen scientists at three different sites, each capturing a range of agricultural, remnant forest, and restored forest cover types. These citizen science data resolve uncertainty in composition and structure, and improve allometric scaling models of biomass and thus estimates of aboveground carbon. Results indicate that agricultural land and horticulturally restored riparian forests store similar amounts of aboveground carbon (< 50 Mg/ha), but significantly less than naturally recruiting riparian forests (50 - 200 Mg/ha). Monitoring and assessment of dynamic ecosystem processes and functions will increasingly use data intensive methodologies; however, this research shows the utility of engaging citizen scientists in developing more robust data streams that not only reduces uncertainty, but also provide invaluable opportunities for improved education and outreach.
Integrated interdisciplinary training in the radiological sciences.
Brenner, D J; Vazquez, M; Buonanno, M; Amundson, S A; Bigelow, A W; Garty, G; Harken, A D; Hei, T K; Marino, S A; Ponnaiya, B; Randers-Pehrson, G; Xu, Y
2014-02-01
The radiation sciences are increasingly interdisciplinary, both from the research and the clinical perspectives. Beyond clinical and research issues, there are very real issues of communication between scientists from different disciplines. It follows that there is an increasing need for interdisciplinary training courses in the radiological sciences. Training courses are common in biomedical academic and clinical environments, but are typically targeted to scientists in specific technical fields. In the era of multidisciplinary biomedical science, there is a need for highly integrated multidisciplinary training courses that are designed for, and are useful to, scientists who are from a mix of very different academic fields and backgrounds. We briefly describe our experiences running such an integrated training course for researchers in the field of biomedical radiation microbeams, and draw some conclusions about how such interdisciplinary training courses can best function. These conclusions should be applicable to many other areas of the radiological sciences. In summary, we found that it is highly beneficial to keep the scientists from the different disciplines together. In practice, this means not segregating the training course into sections specifically for biologists and sections specifically for physicists and engineers, but rather keeping the students together to attend the same lectures and hands-on studies throughout the course. This structure added value to the learning experience not only in terms of the cross fertilization of information and ideas between scientists from the different disciplines, but also in terms of reinforcing some basic concepts for scientists in their own discipline.
Lingard, Lorelei; Zhang, Peter; Strong, Michael; Steele, Margaret; Yoo, John; Lewis, James
2017-10-01
Physician-scientists are a population in decline globally. Solutions to reverse this decline often have focused on the training pipeline. Less attention has been paid to reducing attrition post training, when physician-scientists take up faculty roles. However, this period is a known time of vulnerability because of the pressures of clinical duties and the long timeline to securing independent research funding. This narrative review explored existing knowledge regarding how best to support physician-scientists for success in their faculty roles. The authors searched the Medline, Embase, ERIC, and Cochrane Library databases for articles published from 2000 to 2016 on this topic and interviewed key informants in 2015 to solicit their input on the review results. The authors reviewed 78 articles and interviewed 16 key informants. From the literature, they developed a framework of organizational (facilitate mentorship, foster community, value the physician-scientist role, minimize financial barriers) and individual (develop professional and research skills) strategies for supporting physician-scientists. They also outlined key knowledge gaps representing topics either rarely or never addressed in the reviewed articles (percent research time, structural hypocrisy, objective assessment, group metrics, professional identity). The key informants confirmed the identified strategies and discussed how the gaps were particularly important and impactful. This framework offers a basis for assessing an organization's existing support strategies, identifying outstanding needs, and developing targeted programming. The identified gaps require attention, as they threaten to undermine the benefits of existing support strategies.
MacDonald, Elizabeth A; Donovan, Eric; Nishimura, Yukitoshi; Case, Nathan A; Gillies, D Megan; Gallardo-Lacourt, Bea; Archer, William E; Spanswick, Emma L; Bourassa, Notanee; Connors, Martin; Heavner, Matthew; Jackel, Brian; Kosar, Burcu; Knudsen, David J; Ratzlaff, Chris; Schofield, Ian
2018-03-01
A glowing ribbon of purple light running east-west in the night sky has recently been observed by citizen scientists. This narrow, subauroral, visible structure, distinct from the traditional auroral oval, was largely undocumented in the scientific literature and little was known about its formation. Amateur photo sequences showed colors distinctly different from common types of aurora and occasionally indicated magnetic field-aligned substructures. Observations from the Swarm satellite as it crossed the arc have revealed an unusual level of electron temperature enhancement and density depletion, along with a strong westward ion flow, indicating that a pronounced subauroral ion drift (SAID) is associated with this structure. These early results suggest the arc is an optical manifestation of SAID, presenting new opportunities for investigation of the dynamic SAID signatures from the ground. On the basis of the measured ion properties and original citizen science name, we propose to identify this arc as a Strong Thermal Emission Velocity Enhancement (STEVE).
Saving lives through better design standards
Çelebi, Mehmet; Spudich, Paul A.; Page, Robert A.; Stauffer, Peter H.
1995-01-01
Over the past 30 years, scientists have put together a more complete picture of how the ground shakes during earthquakes. They have learned that shaking near the source of earthquakes is far more severe than once thought and that soft ground shakes more strongly than hard rock.This knowledge has enabled engineers to improve design standards so that structures arebetter able to survive strong earthquakes. When the 1989 Loma Prieta earthquake struck, 42 people tragically lost their lives in the collapse of a half-mile-long section of the Cypress structure, an elevated double-decker freeway in Oakland, California.Yet adjacent parts of this structure withstood the magnitude 6.9 temblor—why? The part that collapsed was built on man-made fill over soft mud, whereas adjacent sections stood on older, firmer sand and gravel deposits. Following the collapse, scientists set out instruments in the area to record the earthquake's many strong aftershocks. These instruments showed that the softer ground shook more forcefully than the firmer material-even twice as violently
MacDonald, Elizabeth A.; Donovan, Eric; Nishimura, Yukitoshi; Case, Nathan A.; Gillies, D. Megan; Gallardo-Lacourt, Bea; Archer, William E.; Spanswick, Emma L.; Bourassa, Notanee; Connors, Martin; Heavner, Matthew; Jackel, Brian; Kosar, Burcu; Knudsen, David J.; Ratzlaff, Chris; Schofield, Ian
2018-01-01
A glowing ribbon of purple light running east-west in the night sky has recently been observed by citizen scientists. This narrow, subauroral, visible structure, distinct from the traditional auroral oval, was largely undocumented in the scientific literature and little was known about its formation. Amateur photo sequences showed colors distinctly different from common types of aurora and occasionally indicated magnetic field–aligned substructures. Observations from the Swarm satellite as it crossed the arc have revealed an unusual level of electron temperature enhancement and density depletion, along with a strong westward ion flow, indicating that a pronounced subauroral ion drift (SAID) is associated with this structure. These early results suggest the arc is an optical manifestation of SAID, presenting new opportunities for investigation of the dynamic SAID signatures from the ground. On the basis of the measured ion properties and original citizen science name, we propose to identify this arc as a Strong Thermal Emission Velocity Enhancement (STEVE). PMID:29546244
Automating the parallel processing of fluid and structural dynamics calculations
NASA Technical Reports Server (NTRS)
Arpasi, Dale J.; Cole, Gary L.
1987-01-01
The NASA Lewis Research Center is actively involved in the development of expert system technology to assist users in applying parallel processing to computational fluid and structural dynamic analysis. The goal of this effort is to eliminate the necessity for the physical scientist to become a computer scientist in order to effectively use the computer as a research tool. Programming and operating software utilities have previously been developed to solve systems of ordinary nonlinear differential equations on parallel scalar processors. Current efforts are aimed at extending these capabilities to systems of partial differential equations, that describe the complex behavior of fluids and structures within aerospace propulsion systems. This paper presents some important considerations in the redesign, in particular, the need for algorithms and software utilities that can automatically identify data flow patterns in the application program and partition and allocate calculations to the parallel processors. A library-oriented multiprocessing concept for integrating the hardware and software functions is described.
Baber, Z
2001-03-01
In this paper, the role of scientific knowledge, institutions and colonialism in mutually co-producing each other is analysed. Under the overarching rubric of colonial structures and imperatives, amateur scientists sought to deploy scientific expertise to expand the empire while at the same time seeking to take advantage of the opportunities to develop their careers as 'scientists'. The role of a complex interplay of structure and agency in the development of modern science, not just in India but in Britain too is analysed. The role of science and technology in the incorporation of South Asian into the modern world system, as well as the consequences of the emergent structures in understanding the trajectory of modern science in post-colonial India is examined. Overall, colonial rule did not simply diffuse modern science from the core to the periphery. Rather the colonial encounter led to the development of new forms of scientific knowledge and institutions both in the periphery and the core.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyrak-Nolte, Laura J.
Carbonate reservoirs pose a scientific and engineering challenge to geophysical prediction and monitoring of fluid flow in the subsurface. Difficulties in interpreting hydrological, reservoir and other exploration data arise because carbonates are composed of a hierarchy of geological structures, constituents and processes that span a wide spectrum of length and time scales. What makes this problem particularly challenging is that length scales associated with physical structure and processes are often not discrete, but overlap, preventing the definition of discrete elements at one scale to become the building blocks of the next scale. This is particularly true for carbonates where complicatedmore » depositional environments, subsequent post-deposition diagenesis and geochemical interactions result in pores that vary in scale from submicron to centimeters to fractures, variation in fabric composition with fossils, minerals and cement, as well as variations in structural features (e.g., oriented inter- and intra layered - interlaced bedding and/or discontinuous rock units). In addition, this complexity is altered by natural and anthropogenic processes such as changes in stress, fluid content, reactive fluid flow, etc. Thus an accurate geophysical assessment of the flow behavior of carbonate reservoirs requires a fundamental understanding of the interplay of textural and structural features subjected to physical processes that affect and occur on various length and time scales. To address this complexity related to carbonates, a Hedberg conference on “Fundamental Controls on Flow in Carbonates” was held July 8 to 13, 2012, to bring together industry and academic scientists to stimulate innovative ideas that can accelerate research advances related to flow prediction and recovery in carbonate reservoirs. Participants included scientist and engineers from multiple disciplines (such as hydrology, structural geology, geochemistry, reservoir engineering, geophysics, geomechanics, numerical modeling, physical experiments, sedimentology, well-testing, statistics, mathematics, visualization, etc.) who encompass experience as well as the latest advances in these multi-faceted fields. One of the goals was to include early career scientists and engineers (post-doctoral fellows, assistant professors, etc.). With this grant 10 early career scientists and engineers were supported to attend the conference. This reports contains a brief overview of the conference and the list of support participants supported by this grant. Full details of the outcomes of the conference are given in the publication found in the Attachment section of this report.« less
A workshop on leadership for MD/PhD students
Ciampa, Erin j.; Hunt, Aubrey A.; Arneson, Kyle O.; Mordes, Daniel A.; Oldham, William M.; Vin Woo, Kel; Owens, David A.; Cannon, Mark D.; Dermody, Terence S.
2011-01-01
Success in academic medicine requires scientific and clinical aptitude and the ability to lead a team effectively. Although combined MD/PhD training programs invest considerably in the former, they often do not provide structured educational opportunities in leadership, especially as applied to investigative medicine. To fill a critical knowledge gap in physician-scientist training, the Vanderbilt Medical Scientist Training Program (MSTP) developed a biennial two-day workshop in investigative leadership. MSTP students worked in partnership with content experts to develop a case-based curriculum and deliver the material. In its initial three offerings in 2006, 2008, and 2010, the workshop was judged by MSTP student attendees to be highly effective. The Vanderbilt MSTP Leadership Workshop offers a blueprint for collaborative student-faculty interactions in curriculum design and a new educational modality for physician-scientist training. PMID:21841905
How Academic Biologists and Physicists View Science Outreach
Ecklund, Elaine Howard; James, Sarah A.; Lincoln, Anne E.
2012-01-01
Scholars and pundits alike argue that U.S. scientists could do more to reach out to the general public. Yet, to date, there have been few systematic studies that examine how scientists understand the barriers that impede such outreach. Through analysis of 97 semi-structured interviews with academic biologists and physicists at top research universities in the United States, we classify the type and target audiences of scientists’ outreach activities. Finally, we explore the narratives academic scientists have about outreach and its reception in the academy, in particular what they perceive as impediments to these activities. We find that scientists’ outreach activities are stratified by gender and that university and disciplinary rewards as well as scientists’ perceptions of their own skills have an impact on science outreach. Research contributions and recommendations for university policy follow. PMID:22590526
NASA Astrophysics Data System (ADS)
Woodcock, R.
2013-12-01
Australia's AuScope provides world class research infrastructure as a framework for understanding the structure and evolution of the Australian continent. Since it conception in 2005, Data Scientists have led the Grid and Interoperability component of AuScope. The AuScope Grid is responsible for the effective management, curation, preservation and analysis of earth science data across the many organisations collaborating in AuScope. During this journey much was learned about technology and architectures but even more about organisations and people, and the role of Data Scientists in the science ecosystem. With the AuScope Grid now in operation and resulting techniques and technologies now underpinning Australian Government initiatives in solid earth and environmental information, it is beneficial to reflect upon the journey and observe what has been learned in order to make data science routine. The role of the Data Scientist is a hybrid one, of not quite belonging and yet highly valued. With the skills to support domain scientists with data and computational needs and communicate across domains, yet not quite able to do the domain science itself. A bridge between two worlds, there is tremendous satisfaction from a job well done, but paradoxically it is also best when it is unnoticeable. In the years since AuScope started much has changed for the Data Scientist. Initially misunderstood, Data Scientists are now a recognisable part of the science landscape in Australia. Whilst the rewards and incentives are still catching up, there is wealth of knowledge on the technical and soft skills required and recognition of the need for Data Scientists. These will be shared from the AuScope journey so other pilgrims may progress well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willen, E.
The development of superconducting wire and cable in the late 20th century enabled high field magnets and thus much higher beam collision energies in accelerators. These higher collision energies have allowed experiments to probe further into the structure of matter at the most fundamental, subatomic level. The behavior of the early universe, where these high energies prevailed, and its evolution over time are what these experiments seek to investigate. The subject has aroused the curiosity of not only scientists but of the public as well and has facilitated the support needed to build and operate such expensive machines and experiments.more » The path forward has not been easy, however. Success in most projects has been mixed with failure, progress with ineptitude. The building of high energy accelerators is mostly a story of capable people doing their best to develop new and unusual technology toward some defined goal, with success and failure in uneven measure along the way. It is also a story of administrative imperatives that have had unpredictable effects on a project’s success, depending mostly on the people in the administrative roles and the decisions that they have made.« less
Fusion Simulation Project Workshop Report
NASA Astrophysics Data System (ADS)
Kritz, Arnold; Keyes, David
2009-03-01
The mission of the Fusion Simulation Project is to develop a predictive capability for the integrated modeling of magnetically confined plasmas. This FSP report adds to the previous activities that defined an approach to integrated modeling in magnetic fusion. These previous activities included a Fusion Energy Sciences Advisory Committee panel that was charged to study integrated simulation in 2002. The report of that panel [Journal of Fusion Energy 20, 135 (2001)] recommended the prompt initiation of a Fusion Simulation Project. In 2003, the Office of Fusion Energy Sciences formed a steering committee that developed a project vision, roadmap, and governance concepts [Journal of Fusion Energy 23, 1 (2004)]. The current FSP planning effort involved 46 physicists, applied mathematicians and computer scientists, from 21 institutions, formed into four panels and a coordinating committee. These panels were constituted to consider: Status of Physics Components, Required Computational and Applied Mathematics Tools, Integration and Management of Code Components, and Project Structure and Management. The ideas, reported here, are the products of these panels, working together over several months and culminating in a 3-day workshop in May 2007.
Fall 2012 Graduate Engineering Internship Summary
NASA Technical Reports Server (NTRS)
Ehrlich, Joshua
2013-01-01
In the fall of 2012, I participated in the National Aeronautics and Space Administration (NASA) Pathways Intern Employment Program at the Kennedy Space Center (KSC) in Florida. This was my second internship opportunity with NASA, a consecutive extension from a summer 2012 internship. During my four-month tenure, I gained valuable knowledge and extensive hands-on experience with payload design and testing as well as composite fabrication for repair design on future space vehicle structures. As a systems engineer, I supported the systems engineering and integration team with the testing of scientific payloads such as the Vegetable Production System (Veggie). Verification and validation (V&V) of the Veggie was carried out prior to qualification testing of the payload, which incorporated a lengthy process of confirming design requirements that were integrated through one or more validatjon methods: inspection, analysis, demonstration, and testing. Additionally, I provided assistance in verifying design requirements outlined in the V&V plan with the requirements outlined by the scientists in the Science Requirements Envelope Document (SRED). The purpose of the SRED was to define experiment requirements intended for the payload to meet and carry out.
NASA Technical Reports Server (NTRS)
Bass, J; Agostini, L
1955-01-01
The theory of turbulence reached its full growth at the end of the 19th century as a result of the work by Boussinesq and Reynolds. It then underwent a long period of stagnation which ended under the impulse given to it by the development of wind tunnels caused by the needs of aviation. Numerous researchers, attempted to put Reynolds' elementary statistical theory into a more precise form. During the war, some isolated scientists - von Weizsacker and Heisenberg in Germany, Kolmogoroff in Russia, Onsager in the U.S.A. - started a program of research. By a system of assumptions which make it possible to approach the structure of turbulence in well-defined limiting conditions quantitatively, they obtained a certain number of laws on the correlations and the spectrum. Since the late reports have improved the mathematical language of turbulence, it was deemed advisable to start with a detailed account of the mathematical methods applicable to turbulence, inspired at first by the work of the French school, above all for the basic principles, then the work of the foreigners, above all for the theory of the spectrum.
Pharmaceutical cocrystals: a comparison of sulfamerazine with sulfamethazine
NASA Astrophysics Data System (ADS)
Lu, Jie; Li, Yi-Ping; Wang, Jing; Li, Zhen; Rohani, Sohrab; Ching, Chi-Bun
2011-11-01
Although there has been much debate about its definition among scientists, a cocrystal may be defined as a crystalline material that consists of two or more electrically neutral molecular species held together by non-covalent forces, and meanwhile all components are solids at room temperature. Obviously it is great to introduce predictable structural motifs to an active pharmaceutical ingredient (API) by design. One widely used approach to cocrystal design is based on the consideration of Δp Ka, which can represent the propensity of molecular species to form a cocrystal or a salt. In this work, p-aminobenzoic acid (PABA) was mixed with sulfamerazine (SMZ) or sulfamethazine (STH) by use of neat cogrinding and solvent-drop cogrinding. It was found that PABA and SMZ with a Δp Ka of 2.13 would form a binary eutectic, while PABA and STH with a larger Δp Ka of 2.59 can form a cocrystal in the ratio of 1:1. The phenomenon indicates that not only the Δp Ka but also the stereo-hindrance effect (geometric fit) should be considered during the design of pharmaceutical cocrystals.
Aguirre-Junco, Angel-Ricardo; Colombet, Isabelle; Zunino, Sylvain; Jaulent, Marie-Christine; Leneveut, Laurence; Chatellier, Gilles
2004-01-01
The initial step for the computerization of guidelines is the knowledge specification from the prose text of guidelines. We describe a method of knowledge specification based on a structured and systematic analysis of text allowing detailed specification of a decision tree. We use decision tables to validate the decision algorithm and decision trees to specify and represent this algorithm, along with elementary messages of recommendation. Edition tools are also necessary to facilitate the process of validation and workflow between expert physicians who will validate the specified knowledge and computer scientist who will encode the specified knowledge in a guide-line model. Applied to eleven different guidelines issued by an official agency, the method allows a quick and valid computerization and integration in a larger decision support system called EsPeR (Personalized Estimate of Risks). The quality of the text guidelines is however still to be developed further. The method used for computerization could help to define a framework usable at the initial step of guideline development in order to produce guidelines ready for electronic implementation.
Cancer control in India: a multinational approach involving the USA and the USSR.
Sutnick, A I; Saunders, J F; Puchkov, Y I
1982-01-01
Based on a long-standing cooperation in medicine and public health between the United States and the Soviet Union, and on the potential contributions to be made by scientists from both of these countries, the World Health Organization invited an American-Soviet collaborative team to recommend a cancer control program for the Government of India. The consultants defined the importance of cancer of the cervix uteri and of the oral cavity, which comprise one-half of India's cancer cases, as the basis for a cancer control program. They recommended incorporation of cancer control functions into the organizational structure of the Ministry of Health as well as specific recommendations in education, prevention, and early detection, diagnosis, treatment, and epidemiologic studies. The mission underscores the value of multinational cooperation on health care problems that are faced in common by the United States, the Soviet Union, and other countries of the world. In addition it serves as a basis for international friendship and understanding in the context of mutually productive activities which may provide a benefit for all nations. PMID:7091462
Building Magnets at Brookhaven National Laboratory: A Condensed Account
NASA Astrophysics Data System (ADS)
Willen, Erich
2017-09-01
The development of superconducting wire and cable in the late twentieth century enabled high-field magnets and thus much higher beam-collision energies in accelerators. These higher collision energies have allowed experimentalists to probe further into the structure of matter at the most fundamental, subatomic level. The behavior of the early universe, where these high energies prevailed, and its evolution over time are the realm their experiments seek to investigate. The subject has aroused the curiosity of the public as well as scientists and has facilitated the support needed to build and operate such expensive machines and experiments. The path forward has not been easy, however. Success in most projects has been mixed with failure, progress with ineptitude. The building of high energy accelerators is mostly a story of capable people doing their best to develop new and unusual technology toward some defined goal, facing both success and failure along the way. It is also a story of administrative imperatives that had unpredictable effects on a project's success, depending mostly on the people in the administrative roles and the decisions that they made.
2009-11-01
34 ( Engen , 1982). We next reduced the dimensionality of physico- chemical properties, and identified a primary axis of physico- chemical space. This axis...words, there is no scientist or perfumer who can predict the smell of a novel molecule by its physico- chemical structure, or the physico- chemical ...structure of a novel smell. Understanding this link between physico- chemical structure and percept has been elusive because the percept is in large
Ozmen, Ozgur; Yilmaz, Levent; Smith, Jeffrey
2016-02-09
Emerging cyber-infrastructure tools are enabling scientists to transparently co-develop, share, and communicate about real-time diverse forms of knowledge artifacts. In these environments, communication preferences of scientists are posited as an important factor affecting innovation capacity and robustness of social and knowledge network structures. Scientific knowledge creation in such communities is called global participatory science (GPS). Recently, using agent-based modeling and collective action theory as a basis, a complex adaptive social communication network model (CollectiveInnoSim) is implemented. This work leverages CollectiveInnoSim implementing communication preferences of scientists. Social network metrics and knowledge production patterns are used as proxy metrics to infer innovationmore » potential of emergent knowledge and collaboration networks. The objective is to present the underlying communication dynamics of GPS in a form of computational model and delineate the impacts of various communication preferences of scientists on innovation potential of the collaboration network. Ultimately, the insight gained can help policy-makers to design GPS environments and promote innovation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozmen, Ozgur; Yilmaz, Levent; Smith, Jeffrey
Emerging cyber-infrastructure tools are enabling scientists to transparently co-develop, share, and communicate about real-time diverse forms of knowledge artifacts. In these environments, communication preferences of scientists are posited as an important factor affecting innovation capacity and robustness of social and knowledge network structures. Scientific knowledge creation in such communities is called global participatory science (GPS). Recently, using agent-based modeling and collective action theory as a basis, a complex adaptive social communication network model (CollectiveInnoSim) is implemented. This work leverages CollectiveInnoSim implementing communication preferences of scientists. Social network metrics and knowledge production patterns are used as proxy metrics to infer innovationmore » potential of emergent knowledge and collaboration networks. The objective is to present the underlying communication dynamics of GPS in a form of computational model and delineate the impacts of various communication preferences of scientists on innovation potential of the collaboration network. Ultimately, the insight gained can help policy-makers to design GPS environments and promote innovation.« less
The 8th International Conference on Laser Ablation (COLA' 05); Journal of Physics: Conference Series
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, Wayne P.; Herman, Peter R.; Bauerle, Dieter W.
2007-09-01
Laser ablation encompasses a wide range of delicate to extreme light interactions with matter that present considerably challenging problems for scientists to study and understand. At the same time, laser ablation also represents a basic process of significant commercial importance in laser material processing—defining a multi-billion dollar industry today. These topics were widely addressed at the 8th International Conference on Laser Ablation (COLA), held in Banff, Canada on 11–16 September 2005. The meeting took place amongst the majestic and natural beauty of the Canadian Rocky Mountains at The Banff Centre, where delegates enjoyed many inspiring presentations and discussions in amore » unique campus learning environment. The conference brought together world leading scientists, students and industry representatives to examine the basic science of laser ablation and improve our understanding of the many physical, chemical and/or biological processes driven by the laser. The multi-disciplinary research presented at the meeting underlies some of our most important trends at the forefront of science and technology today that are represented in the papers collected in this volume. Here you will find new processes that are producing novel types of nanostructures and nano-materials with unusual and promising properties. Laser processes are described for delicately manipulating living cells or modifying their internal structure with unprecedented degrees of control and precision. Learn about short-pulse lasers that are driving extreme physical processes on record-fast time scales and opening new directions from material processing applications. The conference papers further highlight forefront application areas in pulsed laser deposition, nanoscience, analytical methods, materials, and microprocessing applications.« less
NASA Technical Reports Server (NTRS)
Sen, Syamal K.; Shaykhian, Gholam Ali
2011-01-01
MatLab(TradeMark)(MATrix LABoratory) is a numerical computation and simulation tool that is used by thousands Scientists and Engineers in many countries. MatLab does purely numerical calculations, which can be used as a glorified calculator or interpreter programming language; its real strength is in matrix manipulations. Computer algebra functionalities are achieved within the MatLab environment using "symbolic" toolbox. This feature is similar to computer algebra programs, provided by Maple or Mathematica to calculate with mathematical equations using symbolic operations. MatLab in its interpreter programming language form (command interface) is similar with well known programming languages such as C/C++, support data structures and cell arrays to define classes in object oriented programming. As such, MatLab is equipped with most of the essential constructs of a higher programming language. MatLab is packaged with an editor and debugging functionality useful to perform analysis of large MatLab programs and find errors. We believe there are many ways to approach real-world problems; prescribed methods to ensure foregoing solutions are incorporated in design and analysis of data processing and visualization can benefit engineers and scientist in gaining wider insight in actual implementation of their perspective experiments. This presentation will focus on data processing and visualizations aspects of engineering and scientific applications. Specifically, it will discuss methods and techniques to perform intermediate-level data processing covering engineering and scientific problems. MatLab programming techniques including reading various data files formats to produce customized publication-quality graphics, importing engineering and/or scientific data, organizing data in tabular format, exporting data to be used by other software programs such as Microsoft Excel, data presentation and visualization will be discussed.
Enhancing Public Participation to Improve Natural Resources Science and its Use in Decision Making
NASA Astrophysics Data System (ADS)
Glynn, P. D.; Shapiro, C. D.; Liu, S. B.
2015-12-01
The need for broader understanding and involvement in science coupled with social technology advances enabling crowdsourcing and citizen science have created greater opportunities for public participation in the gathering, interpretation, and use of geospatial information. The U.S. Geological Survey (USGS) is developing guidance for USGS scientists, partners, and interested members of the public on when and how public participation can most effectively be used in the conduct of scientific activities. Public participation can provide important perspectives and knowledge that cannot be obtained through traditional scientific methods alone. Citizen engagement can also provide increased efficiencies to USGS science and additional benefits to society including enhanced understanding, appreciation, and interest in geospatial information and its use in decision making.The USGS guidance addresses several fundamental issues by:1. Developing an operational definition of citizen or participatory science.2. Identifying the circumstances under which citizen science is appropriate for use and when its use is not recommended. 3. Describing structured processes for effective use of citizen science. 4. Defining the successful application of citizen science and identifying useful success metrics.The guidance is coordinated by the USGS Science and Decisions Center and developed by a multidisciplinary team of USGS scientists and managers. External perspectives will also be incorporated, as appropriate to align with other efforts such as the White House Office of Science and Technology Policy (OSTP) Citizen Science and Crowdsourcing Toolkit for the Federal government. The guidance will include the development of an economic framework to assess the benefits and costs of geospatial information developed through participatory processes. This economic framework considers tradeoffs between obtaining additional perspectives through enhanced participation with costs associated from obtaining geospatial information from multiple sources.
Enhanced Line Integral Convolution with Flow Feature Detection
NASA Technical Reports Server (NTRS)
Lane, David; Okada, Arthur
1996-01-01
The Line Integral Convolution (LIC) method, which blurs white noise textures along a vector field, is an effective way to visualize overall flow patterns in a 2D domain. The method produces a flow texture image based on the input velocity field defined in the domain. Because of the nature of the algorithm, the texture image tends to be blurry. This sometimes makes it difficult to identify boundaries where flow separation and reattachments occur. We present techniques to enhance LIC texture images and use colored texture images to highlight flow separation and reattachment boundaries. Our techniques have been applied to several flow fields defined in 3D curvilinear multi-block grids and scientists have found the results to be very useful.
2000-04-19
Dr. Marc Pusey (seated) and Dr. Craig Kundrot use computers to analyze x-ray maps and generate three-dimensional models of protein structures. With this information, scientists at Marshall Space Flight Center can learn how proteins are made and how they work. The computer screen depicts a proten structure as a ball-and-stick model. Other models depict the actual volume occupied by the atoms, or the ribbon-like structures that are crucial to a protein's function.
Using an ultrafast, high-intensity radiation source called an X-ray free-electron laser (XFEL), scientists have captured an atomic-level picture of an RNA structure called a riboswitch as it reorganizes itself to regulate protein production. The structure they visualized has never before been seen, and likely exists for only milliseconds after the riboswitch first encounters its activating molecule. Read more...
E-Science and Protein Crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Laniece E.; Powell, James E. Jr.
2012-08-09
Dr. Zoe Fisher is the instrument scientist for the Protein Crystallography Station (PCS) at the Los Alamos Neutron Science Center's (LANSC) Lujan Neutron Scattering Center. She helps schedule researchers who intend to use the instrument to collect data, and provides in depth support for their activities. Users submit proposals for beam/instrument time via LANSCE proposal review system. In 2012, there were about 20 proposals submitted for this instrument. The instrument scientists review the proposals online. Accepted proposals are scheduled via an aggregate calendar which takes into account staff and resource availability, and the scientist is notified via email when theirmore » proposal is accepted and their requested time is scheduled. The entire PCS data acquisition and processing workflow is streamlined through various locally developed and commercial software packages. One 24 hour period produces one 200 Mb file, giving a total of maybe 2-5 Gb of data for the entire run. This data is then transferred to a hard disk in Dr. Fisher's office where she views the data with the customer and compresses the data to a text format which she sends them. This compression translates the data from an electron density to structural coordinates, which are the products submitted to a protein structure database. As noted above, the raw experimental data is stored onsite at LANSCE on workstations maintained by the instrument scientist. It is extraordinarily rare for anyone to request this data, although the remote possibility of an audit by a funding organization motivates its limited preservation. The raw data is not rigorously backed up, but only stored on a single hard drive. Interestingly, only about 50% of the experimental data actually ends up deposited and described in peer reviewed publications; the data that is not published tends to either not be viable structures or is calibration data. Dr. Fisher does protein crystallography research using both neutron and x-ray scattering techniques. Many of the major funders as well as the major journals dealing with protein crystallography require deposition of the structural data in the Protein Data Bank (PDB). Files formatted for the PDB are automatically generated when the data is compressed. The header files in the PDB included experimental conditions of the experiment as well as experimental methods. Depending on the completeness and how 'hot' of a topic, it may not be needed to contact the original experimenter about using the data. Having said that, not all of the data is accurate and does requires some back and forth with the creators of the data. The RCSB PDB staff at Rutgers University goes through all submissions and works with the submitters to verify that the data meets their minimum standards of completeness and robustness. The Protein Data Bank (PDB) was initially created by Walter Hamilton at Brookhaven National Laboratory in 1971 after discussions about the value of scientists having access to structural biology data. Originally a partnership between Brookhaven and the Cambridge Crystallographic Data Center, the idea was conceived as a global initiative, which is certainly has become with partner sites in the US, Europe, and Japan. The PDB now contains structures determined from many different experimental techniques (Berman et al. 2012). Deposited structures are assigned a unique ID, and the structures are embargoed until the publication that references and describes them is published. The PDB staff often monitors these publications and takes the initiative to release protein structures when papers describing them are published. Dr. Fisher records setup and experimental details in word documents and inserts printed copies into paper lab notebooks. These details appear in the final published papers and the header files for structures in the PDB. Analysis of data collected at the PCS is performed with a combination of locally developed tools and commercial products which are capable of outputting data suitable for importing into the PDB. While the original output data from the LANL instrument is stored indefinitely on a hard disk, the analysis results in a text file that, as described above, which represents the structure of the protein, which can be modeled and explored via tools that scientists in this domain have access to and are familiar with. The entire process is well understood and well-supported by software used by researchers in this field. The incorporation of the PDB into research-analysis-publication is embraced by the international community of researchers in this field. There are mirror depository sites for the PDB in several countries. Curation of the submitted protein structures is rigorous, although Dr. Fisher noted that some structures are rushed to publication with what she termed 'bogus filler', which is possible since protein structures are 50-70% water.« less
SFA 2.0- Watershed Structure and Controls
Williams, Ken
2018-05-23
Berkeley Lab Earth Scientist Ken Williams explains the watershed research within the Sustainable Systems SFA 2.0 projectâincluding identification and monitoring of primary factors that control watershed biogeochemical functioning.
Pathways to Careers in Federal Highway Research
DOT National Transportation Integrated Search
2017-02-16
Our researchers at the Turner-Fairbank Highway Research Center are dedicated scientists and engineers. They are experts in more than 100 trans-portation-related fields including: CIVIL ENGINEERING STRUCTURAL ENGINEERING PAVEMENT ENGINEERING CHEMISTRY...
2012-06-28
This artist concept shows a possible scenario for the internal structure of Titan, as suggested by data from NASA Cassini spacecraft. Scientists have been trying to determine what is under Titan organic-rich atmosphere and icy crust.
Vision Forward for NASA's Astrophysics Education Program
NASA Astrophysics Data System (ADS)
Hasan, Hashima; Sheth, Kartik J.
2016-01-01
NASA has recently re-structured its Science Education program with the competitive selection of twenty-seven programs. Of these, ~60% are relevant to Astrophysics, and three have primarily Astrophysics content. A brief overview of the rationale for re-structuring will be presented. We have taken a strategic approach, building on our science-discipline based legacy and looking at new approaches given Stakeholder priorities. We plan to achieve our education goals with the selection of organizations that utilize NASA data, products, or processes to meet NASA's education objectives; and by enabling our scientists and engineers with education professionals, tools, and processes to better meet user needs. Highlights of the selected programs will be presented, and how they enable the vision going forward of achieving the goal of enabling NASA scientists and engineers to engage more effectively with learners of all ages.
Population genomics and the causes of local differentiation.
Tonsor, Stephen J
2012-11-01
Exactly 50 years ago, a revolution in empirical population genetics began with the introduction of methods for detecting allelic variation using protein electrophoresis (Throckmorton 1962; Hubby 1963; Lewontin & Hubby 1966). These pioneering scientists showed that populations are chock-full of genetic variation. This variation was a surprise that required a re-thinking of evolutionary genetic heuristics. Understanding the causes for the maintenance of this variation became and remains a major area of research. In the process of addressing the causes, this same group of scientists documented geographical genetic structure (Prakash et al. 1969), spawning the continued accumulation of what is now a huge case study catalogue of geographical differentiation (e.g. Loveless & Hamrick 1984; Linhart & Grant 1996). Geographical differentiation is clearly quite common. Yet, a truly general understanding of the patterns in and causes of spatial genetic structure across the genome remains elusive. To what extent is spatial structure driven by drift and phylogeography vs. geographical differences in environmental sources of selection? What proportion of the genome participates? A general understanding requires range-wide data on spatial patterning of variation across the entire genome. In this issue of Molecular Ecology, Lasky et al. (2012) make important strides towards addressing these issues, taking advantage of three contemporary revolutions in evolutionary biology. Two are technological: high-throughput sequencing and burgeoning computational power. One is cultural: open access to data from the community of scientists and especially data sets that result from large collaborative efforts. Together, these developments may at last put answers within reach.
Telescience - Optimizing aerospace science return through geographically distributed operations
NASA Technical Reports Server (NTRS)
Rasmussen, Daryl N.; Mian, Arshad M.
1990-01-01
The paper examines the objectives and requirements of teleoperations, defined as the means and process for scientists, NASA operations personnel, and astronauts to conduct payload operations as if these were colocated. This process is described in terms of Space Station era platforms. Some of the enabling technologies are discussed, including open architecture workstations, distributed computing, transaction management, expert systems, and high-speed networks. Recent testbedding experiments are surveyed to highlight some of the human factors requirements.
Urban Heat Island towards Urban Climate
NASA Astrophysics Data System (ADS)
Ningrum, Widya
2018-02-01
The urban heat island (UHI) is defined as the temperature difference between the urban and suburban areas and rural areas in the same region. Researchers have discussed several different techniques for evaluating the phenomenon. This paper reviews some of the causes and effects of urban heat islands, mainly on urban climate. Both directly and indirectly, the UHI influences multiple sectors. According to this, it is needed to develop a strategic mitigation between government and scientists to reduce the temperature.
Lowry Range Solar Station: Arapahoe County, Colorado (Data)
Yoder, M.; Andreas, A.
2008-05-30
A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.
Sun Spot One (SS1): San Luis Valley, Colorado (Data)
Stoffel, T.; Andreas, A.
2008-06-10
A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.
University of Nevada (UNLV): Las Vegas, Nevada (Data)
Stoffel, T.; Andreas, A.
2006-03-18
A partnership with the University of Nevada and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.
Nevada Power: Clark Station; Las Vegas, Nevada (Data)
Stoffel, T.; Andreas, A.
2006-03-27
A partnership with the University of Nevada and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.
Moon Zoo - Examples of Interesting Lunar Morphology
NASA Astrophysics Data System (ADS)
Cook, A. C.; Wilkinson, J.
2012-09-01
The MoonMappers citizen science project is part of CosmoQuest, a virtual research facility designed for the public. CosmoQuest seeks to take the best aspects of a research center - research, seminars, journal clubs, and community discussions - and provide them to a community of citizen scientists through a virtual facility. MoonMappers was the first citizen science project within CosmoQuest, and is being used to define best practices in getting the public to effectively learn and do science.
CosmoQuest MoonMappers: Citizen Lunar Exploration
NASA Astrophysics Data System (ADS)
Gay, P. L.; Antonenko, I.; Robbins, S. J.; Bracey, G.; Lehan, C.; Moore, J.; Huang, D.
2012-09-01
The MoonMappers citizen science project is part of CosmoQuest, a virtual research facility designed for the public. CosmoQuest seeks to take the best aspects of a research center - research, seminars, journal clubs, and community discussions - and provide them to a community of citizen scientists through a virtual facility. MoonMappers was the first citizen science project within CosmoQuest, and is being used to define best practices in getting the public to effectively learn and do science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lincoln, Don
The manner in which particle physicists investigate collisions in particle accelerators is a puzzling process. Using vaguely-defined “detectors,” scientists are able to somehow reconstruct the collisions and convert that information into physics measurements. In this video, Fermilab’s Dr. Don Lincoln sheds light on this mysterious technique. In a surprising analogy, he draws a parallel between experimental particle physics and bomb squad investigators and uses an explosive example to illustrate his points. Be sure to watch this video… it’s totally the bomb.
NASA Astrophysics Data System (ADS)
Lopez, Claude-Anne
2003-04-01
This talk will provide a snap shot of the scientific life of Benjamin Franklin from the perspective, not of Franklin's science, but of his social interactions with other great scientists of the enlightenment. We will find that the pursuit of science was cross-disciplinary -- indeed, the disciplinary boundaries as we know them today were not so well-defined -- and characterized by conviviality. I will focus in particular on Franklin's relationship with Lavoisier, based on the extensive documentary evidence drawn from Franklin's correspondence.
Landis, Margaret S; Bhattachar, Shobha; Yazdanian, Mehran; Morrison, John
2018-01-01
This commentary reflects the collective view of pharmaceutical scientists from four different organizations with extensive experience in the field of drug discovery support. Herein, engaging discussion is presented on the current and future approaches for the selection of the most optimal and developable drug candidates. Over the past two decades, developability assessment programs have been implemented with the intention of improving physicochemical and metabolic properties. However, the complexity of both new drug targets and non-traditional drug candidates provides continuing challenges for developing formulations for optimal drug delivery. The need for more enabled technologies to deliver drug candidates has necessitated an even more active role for pharmaceutical scientists to influence many key molecular parameters during compound optimization and selection. This enhanced role begins at the early in vitro screening stages, where key learnings regarding the interplay of molecular structure and pharmaceutical property relationships can be derived. Performance of the drug candidates in formulations intended to support key in vivo studies provides important information on chemotype-formulation compatibility relationships. Structure modifications to support the selection of the solid form are also important to consider, and predictive in silico models are being rapidly developed in this area. Ultimately, the role of pharmaceutical scientists in drug discovery now extends beyond rapid solubility screening, early form assessment, and data delivery. This multidisciplinary role has evolved to include the practice of proactively taking part in the molecular design to better align solid form and formulation requirements to enhance developability potential.
Words matter: Recommendations for clarifying coral disease nomenclature and terminology
Rogers, Caroline S.
2010-01-01
Coral diseases have caused significant losses on Caribbean reefs and are becoming a greater concern in the Pacific. Progress in coral disease research requires collaboration and communication among experts from many different disciplines. The lack of consistency in the use of terms and names in the recent scientific literature reflects the absence of an authority for naming coral diseases, a lack of consensus on the meaning of even some of the most basic terms as they apply to corals, and imprecision in the use of descriptive words. The lack of consensus partly reflects the complexity of this newly emerging field of research. Establishment of a nomenclature committee under the Coral Disease and Health Consortium (CDHC) could lead to more standardized definitions and could promote use of appropriate medical terminology for describing and communicating disease conditions in corals. This committee could also help to define disease terminology unique to corals where existing medical terminology is not applicable. These efforts will help scientists communicate with one another and with the general public more effectively. Scientists can immediately begin to reduce some of the confusion simply by explicitly defining the words they are using. In addition, digital photographs can be posted on the CDHC website and included in publications to document the macroscopic (gross) signs of the conditions observed on coral colonies along with precisely written characterizations and descriptions.
United Nations and human cloning: a slender and fortunate defence for biomedical research.
Edwards, R G
2003-12-01
Numerous biomedical scientists have contributed to the wide knowledge on the growth of preimplantation human embryos in vitro, now improving every aspect of the form of clinical care. These data were gained ethically in many countries, to open new vistas including the alleviation of infertility, preimplantation genetic diagnosis and stem cells, combined with some recent reports on human reproductive cloning. After detailed consultations with scientists, clinicians, ethicists and lawyers, many governments passed legislation permitting research under their own particular socially-defined conditions. Virtually all of them rejected reproductive cloning; a few have accepted therapeutic cloning. These legislatures saluted the many biomedical scientists striving to improve IVF and its derivatives, recognizing their immense medical potential. A motion recently placed before the United Nations then recommended a worldwide ban on all forms of human cloning. Proponents included the Vatican and many Roman Catholic countries, the USA and others. Opponents included Belgium, China, Japan, Brazil, UK, Germany and France. Mediation was achieved by Iran and other Muslim nations, and led to a motion passed by single vote for a two-year delay. This may be the first-ever proposal to ban worldwide a particular form of research. It sounds the alarm bells for further research. It raises questions about the UN being an appropriate forum for ethical decisions affecting the entire world and its future medicine. Large blocs of nations committed to particular religions and outlooks confronted each other, a situation in total contrast to the detailed and widespread consultations made by individual governments when deciding their own individual ethics. This event was clearly a narrow escape for free research as defined by each country's own jurisprudence. It also places research on human embryology and reproductive biomedicine into a more critical situation than before. Current liberalism in studies on assisted conception, clearly threatened by powerful adversaries, will have to be fortified to maintain the current impetus into newer forms of clinical care.
Professional development by scientists and teachers' understanding of the nature of science
NASA Astrophysics Data System (ADS)
Schuster, Dwight A.
The educational literature suggests that the success of professional development is contingent upon both a professional developer's presentation of the curriculum and his/her comprehension of the complex interactions that occur between instructor and the adult learner. While these suggestions appear forthright and logical, very little research has been conducted to demarcate how professional development approaches defined by these notions impact teacher knowledge. This study investigates the effects of scientist-delivered teacher professional development on teachers' understanding of the nature of science. Using a mixed-method comparative case study, my goal was to build theory focusing specifically on two dimensions of professional development: the pedagogical approaches used by the scientist-instructors and their views/treatment of teachers as professionals or as technicians. Seven credit-bearing summer courses from multiple scientific disciplines were studied, and each course shared a number of important features (duration, general format, teacher recruitment and admission, location, number of participants, etc.); consequently, they comprise a unique dataset for comparative research on science teacher professional development. A wide variety of data collection approaches were used, including interviews, questionnaires, a VNOS instrument, and systematic classroom observation by ten trained observers (each course was continuously observed by at least two observers). Analysis shows that teachers were more likely to experience change in their views about the nature of science in courses in which they were treated as professionals, compared to courses in which they were treated as technicians. It also shows that syllabi and participant reports tend to overstate the use of inquiry methods when reviewed in the light of close classroom observation. By recognizing and defining professional development contexts that build teachers' knowledge, this study suggests how university-based professional development for science educators can be improved, helping to actualize the collaborative relationships that need to exist between staff developers and discipline specialists. In conclusion, I use the findings from this study to expand the current literature and suggest how improved university-based professional development contexts can be created.
ERIC Educational Resources Information Center
Yayon, Malka; Scherz, Zahava
2008-01-01
"If protons, quarks, and other elementary particles are too small to be seen, how do scientists know they exist? And if these particles do exist, how can one estimate their size, structure, and or their arrangement in atoms?" These are some of the most frequently asked questions by students who study atomic theory. Atomic structure is an important…
Do General Physics Textbooks Discuss Scientists' Ideas about Atomic Structure? A Case in Korea
ERIC Educational Resources Information Center
Niaz, Mansoor; Kwon, Sangwoon; Kim, Nahyun; Lee, Gyoungho
2013-01-01
Research in science education has recognized the importance of teaching atomic structure within a history and philosophy of science perspective. The objective of this study is to evaluate general physics textbooks published in Korea based on the eight criteria developed in previous research. The result of this study shows that Korean general…
A Novice-Expert Study of Modeling Skills and Knowledge Structures about Air Quality
ERIC Educational Resources Information Center
Hsu, Ying-Shao; Lin, Li-Fen; Wu, Hsin-Kai; Lee, Dai-Ying; Hwang, Fu-Kwun
2012-01-01
This study compared modeling skills and knowledge structures of four groups as seen in their understanding of air quality. The four groups were: experts (atmospheric scientists), intermediates (upper-level graduate students in a different field), advanced novices (talented 11th and 12th graders), and novices (10th graders). It was found that when…
Escobar-Alvarez, Sindy N; Myers, Elizabeth R
2013-11-01
The Doris Duke Charitable Foundation Clinical Scientist Development Award (CSDA) supports early-career physician scientists in their transition to independent research funding. The authors aimed to analyze the characteristics associated with success in CSDA competitions, determine whether attainment of a CSDA is associated with receiving subsequent research funding, and assess whether alumni remain in research. In 2011, the authors tested for associations between gender, age, race/ethnicity, academic degree, National Institutes of Health (NIH) funding rank of the applicant's institution, and success in CSDA competitions. They compared NIH R01 grant attainment, defined as the percentage of individuals who received at least one R01 grant, between CSDA alumni and highly ranked but unsuccessful CSDA applicants (1998-2007). Finally, the authors surveyed alumni to learn more about their professional activities. Demographic factors were not predictors of success in CSDA competitions; academic degree and funding rank of the applicant's institution, however, were. A greater percentage of CSDA alumni than nonalumni received at least one R01 grant (62% [74/120] versus 42% [44/105]). For CSDA alumni who were 10 or more years from the start of their award, their median percent effort toward research activities was 68%. The factors associated with success in a CSDA competition included a combined clinical and doctoral research degree and affiliation with a well-funded institution. More alumni received NIH independent research funding than those who applied but did not receive the award. Thus, the CSDA is associated with physicians establishing independent and recognized research careers.
Modular and Orthogonal Synthesis of Hybrid Polymers and Networks
Liu, Shuang; Dicker, Kevin T.; Jia, Xinqiao
2015-01-01
Biomaterials scientists strive to develop polymeric materials with distinct chemical make-up, complex molecular architectures, robust mechanical properties and defined biological functions by drawing inspirations from biological systems. Salient features of biological designs include (1) repetitive presentation of basic motifs; and (2) efficient integration of diverse building blocks. Thus, an appealing approach to biomaterials synthesis is to combine synthetic and natural building blocks in a modular fashion employing novel chemical methods. Over the past decade, orthogonal chemistries have become powerful enabling tools for the modular synthesis of advanced biomaterials. These reactions require building blocks with complementary functionalities, occur under mild conditions in the presence of biological molecules and living cells and proceed with high yield and exceptional selectivity. These chemistries have facilitated the construction of complex polymers and networks in a step-growth fashion, allowing facile modulation of materials properties by simple variations of the building blocks. In this review, we first summarize features of several types of orthogonal chemistries. We then discuss recent progress in the synthesis of step growth linear polymers, dendrimers and networks that find application in drug delivery, 3D cell culture and tissue engineering. Overall, orthogonal reactions and modulular synthesis have not only minimized the steps needed for the desired chemical transformations but also maximized the diversity and functionality of the final products. The modular nature of the design, combined with the potential synergistic effect of the hybrid system, will likely result in novel hydrogel matrices with robust structures and defined functions. PMID:25572255
A tribute to a scientist extraordinaire - Ernest H. Starling (1866-1927).
Palanisamy, Vimala; Km, Prathibha
2015-01-01
One of the defining moments in the history of medicine came in the year 1902 with the discovery of Secretin, the first hormone to be isolated in the human body. The men credited with this milestone discovery, which went on to revolutionize medicine, are Ernest H. Starling and William M. Bayliss. Their contributions aided the transition of medical practice from empiricism towards rationalism. E.H. Starling introduced the word 'hormone', laying the foundation for the development of Endocrinology as a medical specialty. His extensive research in circulatory physiology including the study of the electric activity of the heart and capillary fluid shift has made his name a mainstay in its study. His interests were varied, where he contributed his scientific bend of mind to the study of different fields of Physiology and his non-conformist ideals to the study of the then prevalent educational system in Great Britain. In lieu with celebrating the 150th birth anniversary of E. H. Starling, a brilliant scientist and an educational reformist, a chronological construe of his academic pursuits and milestone achievements has been presented. One hopes that such recollections serve to inspire and invigorate the scientist inside everyone and also serve as guiding beacons to students and researchers.
NASA Astrophysics Data System (ADS)
Udu-gama, N.; Pandya, R.
2015-12-01
There is tremendous unmet and sometimes unrealized need for Earth and space science (ESS) expertise as part of civic decisions and local planning for climate change, natural hazards and natural resources. The Thriving Earth Exchange (TEX) helps AGU contribute that expertise to humanity in respectful, integrated ways. TEX brings ESS scientists together with local communities tackling issues of climate change, natural hazards and natural resources to co-design solutions that equitably integrate both scientific and community knowledge. To achieve this ambitious goal, TEX is partnering with organizations that are respected by and knowledgeable about communities both in the United States and internationally. Such partnerships include Rockefeller's 100 Resilient Cities Initiative, ICLEI USA, MIT's Climate Colab, among others. TEX works with these partners to approach communities who are ready to or already addressing ESS related issues. With partners, we help the communities define their goals, develop specific projects, and connect with relevant and helpful ESS scientists. We will also show how we help scientists and community leaders work productively together, and the tools we bring to support their innovation. It will highlight international examples, such as in the Pamir Mountains of Afghanistan-Tajikistan, Sri Lanka, and Ethiopia, and provide concrete examples of how these initiatives are helping TEX further expand the frontiers of collaborative research.
Atoms to Ecosystems: A Workshop for Science Journalists
NASA Astrophysics Data System (ADS)
Saltzman, J.; Bowman, C.; Brown, G. E.; Foster, A. L.; Nilsson, A.; Spormann, A. M.
2006-12-01
The Stanford Environmental Molecular Environmental Institute (EMSI) hosted a two-day workshop entitled "Atoms to Ecosystems: Effects of Contaminants on Humans & the Environment" for thirteen science journalists in June 2006. Reporters from local newspapers, freelance writers, and writers from university publications learned about the innovative research of four EMSI scientists and discussed the challenges of reporting on cutting-edge research. Through lectures, a lab tour, and discussions, the journalists and scientists had a very positive experience of learning from each other. The main topics were mercury, arsenic, and water, and the different approaches to understanding these important chemicals in our lives. The sessions on measuring the effect of cooking time on the concentration of mercury in ahi tuna and the challenges of creating a paradigm shift about the structure of water in the water community generated the most questions and conversations. Discussions focused on the challenges of reporting new discoveries; details, complexity, and generalities; reluctance and fears of scientists; and deadlines and the "so what?" factor in publishing. Scientists learned about that it is not always the importance of the story, but competition with other stories that can impact whether an editor chooses to publish a story. Press releases are very important, since most journalists don't have time to browse the science journals. Scientists are sometimes reluctant to talk with journalists because the reports often play out one angle, leave out the complexity of the issue, and may cause conflict with other scientists in the field. Journalists were asked to write a one-paragraph nugget at the end of the first day to assess their understanding of workshop material presented and to potentially submit to NSF. One day after the workshop, one participant published her writing sample in an online magazine. Overall, the journalists wrote that they were pleased with the workshop. They came to learn and talk to scientists, to learn more about mercury and arsenic, and to connect with other journalists. They all felt workshops like this are valuable for the content and background for future stories and interactions with scientists to establish relationships. Some journalists were impressed by the openness of the scientists to spend two days with journalists.
Using High-Powered Laser, Scientists Record Images of Chemical Interactions in RNA | Poster
A recent study at the Department of Energy’s Stanford Linear Accelerator Center National Accelerator Laboratory has literally shed new light on the structural interactions between RNA and another biomolecule.
The Role of Remote Sensing Displays in Earth Climate and Planetary Atmospheric Research
NASA Technical Reports Server (NTRS)
DelGenio, Anthony D.; Hansen, James E. (Technical Monitor)
2001-01-01
The communities of scientists who study the Earth's climate and the atmospheres of the other planets barely overlap, but the types of questions they pose and the resulting implications for the use and interpretation of remote sensing data sets have much in common. Both seek to determine the characteristic behavior of three-dimensional fluids that also evolve in time. Climate researchers want to know how and why the general patterns that define our climate today might be different in the next century. Planetary scientists try to understand why circulation patterns and clouds on Mars, Venus, or Jupiter are different from those on Earth. Both disciplines must aggregate large amounts of data covering long time periods and several altitudes to have a representative picture of the rapidly changing atmosphere they are studying. This emphasis separates climate scientists from weather forecasters, who focus at any one time on a limited number of images. Likewise, it separates planetary atmosphere researchers from planetary geologists, who rely primarily on single images (or mosaics of images covering the globe) to study two-dimensional planetary surfaces that are mostly static over the duration of a spacecraft mission yet reveal dynamic processes acting over thousands to millions of years. Remote sensing displays are usually two-dimensional projections that capture an atmosphere at an instant in time. How scientists manipulate and display such data, how they interpret what they see, and how they thereby understand the physical processes that cause what they see, are the challenges I discuss in this chapter. I begin by discussing differences in how novices and experts in the field relate displays of data to the real world. This leads to a discussion of the use and abuse of image enhancement and color in remote sensing displays. I then show some examples of techniques used by scientists in climate and planetary research to both convey information and design research strategies using remote sensing displays.
The Process of Science Communications at NASA/Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Horack, John M.; Treise, Deborah
1998-01-01
The communication of new scientific knowledge and understanding is an integral component of science research, essential for its continued survival. Like any learning- based activity, science cannot continue without communication between and among peers so that skeptical inquiry and learning can take place. This communication provides necessary organic support to maintain the development of new knowledge and technology. However, communication beyond the peer-community is becoming equally critical for science to survive as an enterprise into the 21st century. Therefore, scientists not only have a 'noble responsibility' to advance and communicate scientific knowledge and understanding to audiences within and beyond the peer-community, but their fulfillment of this responsibility is necessary to maintain the survival of the science enterprise. Despite the critical importance of communication to the viability of science, the skills required to perform effective science communications historically have not been taught as a part of the training of scientist, and the culture of science is often averse to significant communication beyond the peer community. Thus scientists can find themselves ill equipped and uncomfortable with the requirements of their job in the new millennium. At NASA/Marshall Space Flight Center, we have developed and implemented an integrated science communications process, providing an institutional capability to help scientist accurately convey the content and meaning of new scientific knowledge to a wide variety of audiences, adding intrinsic value to the research itself through communication, while still maintaining the integrity of the peer-review process. The process utilizes initial communication through the world-wide web at the site http://science.nasa.gov to strategically leverage other communications vehicles and to reach a wide-variety of audiences. Here we present and discuss the basic design of the science communications process, now in operation for nearly two years. Serving scientists in Earth Science, Microgravity Science, and Space Science. Critical features of the design are illustrated, and essential skills required to operate the process are defined. Measures of success will also be presented.
NASA Astrophysics Data System (ADS)
Lehr, Jane L.
This dissertation contributes to efforts to rethink the meanings of democracy, scientific literacy, and non-scientist citizenship in the United States. Beginning with questions that emerged from action research and exploring the socio-political forces that shape educational practices, it shows why non-science educators who teach for social justice must first recognize formal science education as a primary site of training for (future) non-scientist citizens and then prepare to intervene in the dominant model of scientifically literate citizenship offered by formal science education. This model of citizenship defines (and limits) appropriate behavior for non-scientist citizens as acquiescing to the authority of science and the state by actively demarcating science from non-science, experts from non-experts, and the rational from the irrational. To question scientific authority is to be scientifically illiterate. This vision of 'acquiescent democracy' seeks to end challenges to the authority of science and the state by ensuring that scientific knowledge is privileged in all personal and public decision-making practices, producing a situation in which it becomes natural for non-scientist citizens to enroll scientific knowledge to naturalize oppression within our schools and society. It suggests that feminist and equity-oriented science educators, by themselves, are unable or unwilling to challenge certain assumptions in the dominant model of scientifically literate citizenship. Therefore, it is the responsibility of non-science educators who teach for social justice to articulate oppositional models of non-scientist citizenship and democracy in their classrooms and to challenge the naturalized authority of scientific knowledge in all aspects of our lives. It demonstrates how research in the field of Science & Technology Studies can serve as one resource in our efforts to intervene in the dominant model of scientifically literate citizenship and to support a model of democracy that encourages the critical engagement of and opposition to scientific knowledge and the state.
NASA Technical Reports Server (NTRS)
2000-01-01
Dr. Marc Pusey (seated) and Dr. Craig Kundrot use computers to analyze x-ray maps and generate three-dimensional models of protein structures. With this information, scientists at Marshall Space Flight Center can learn how proteins are made and how they work. The computer screen depicts a proten structure as a ball-and-stick model. Other models depict the actual volume occupied by the atoms, or the ribbon-like structures that are crucial to a protein's function.
Marine Structural Steel Toughness Data Bank. Volume 2
1991-01-01
Administration Mr. Alexander Malakhoff Mr. Thom~as W. Alton Director, Structural Integrity Engineering Officer (N7) Subgroup (SEA 55NIMltryS)it omn...computerized data bank available to a wide range of engineers and material scientists. Included were raw data from material suppliers and data from papers and...well-documented numeric data for the full range of materials and types of data of interest. The Ship Structures Committee and the U.S. Coast Guard
Medical scientists' information practices in the research work context.
Roos, Annikki
2015-03-01
The aim of the study was to investigate the information practices of medical scientists in the research work context. This is a qualitative study based on semi-structured interviews. The interviews were transcribed and analysed in a web tool for qualitative analysis. Activity theory was used as the theoretical framework. The generating motives for the information related activity come from the core activity, research work. The motives result in actions such as searching and using information. Usability, accessibility and ease of use are the most important conditions that determine information related operations. Medical scientists search and use information most of all in the beginning and at the end of the research work. Information practices appear as an instrument producing activity to the central activity. Information services should be embedded in this core activity and in practice libraries should follow researchers' workflow and embed their tools and services in it. © 2015 Health Libraries Journal.
Journal Impact Factor Shapes Scientists’ Reward Signal in the Prospect of Publication
Paulus, Frieder Michel; Rademacher, Lena; Schäfer, Theo Alexander Jose; Müller-Pinzler, Laura; Krach, Sören
2015-01-01
The incentive structure of a scientist’s life is increasingly mimicking economic principles. While intensely criticized, the journal impact factor (JIF) has taken a role as the new currency for scientists. Successful goal-directed behavior in academia thus requires knowledge about the JIF. Using functional neuroimaging we examined how the JIF, as a powerful incentive in academia, has shaped the behavior of scientists and the reward signal in the striatum. We demonstrate that the reward signal in the nucleus accumbens increases with higher JIF during the anticipation of a publication and found a positive correlation with the personal publication record (pJIF) supporting the notion that scientists have incorporated the predominant reward principle of the scientific community in their reward system. The implications of this behavioral adaptation within the ecological niche of the scientist’s habitat remain unknown, but may also have effects which were not intended by the community. PMID:26555725
Ashwell, Douglas James
2016-04-01
The news media play an important role in informing the public about scientific and technological developments. Some argue that restructuring and downsizing result in journalists coming under increased pressure to produce copy, leading them to use more public relations material to meet their deadlines. This article explores science journalism in the highly commercialised media market of New Zealand. Using semi-structured interviews with scientists, science communication advisors and journalists, the study finds communication advisors and scientists believe most media outlets, excluding public service media, report science poorly. Furthermore, restructuring and staff cuts have placed the journalists interviewed under increasing pressure. While smaller newspapers appear to be printing press releases verbatim, metropolitan newspaper journalists still exercise control over their use of such material. The results suggest these journalists will continue to resist increasing their use of public relations material for some time to come. © The Author(s) 2014.
Science Lives: School choices and `natural tendencies'
NASA Astrophysics Data System (ADS)
Salehjee, Saima; Watts, Mike
2015-03-01
An analysis of 12 semi-structured interviews with university-based scientists and non-scientists illustrates their life journeys towards, or away from, science and the strengths and impact of life occurrences leading them to choose science or non-science professions. We have adopted narrative approaches and used Mezirow's transformative learning theory framework. The areas of discussion from the result have stressed on three main categories that include 'smooth transition', 'incremental wavering transition' and 'transformative transition'. The article concludes by discussing the key influences that shaped initial attitudes and direction in these people through natural inclination, environmental inspirations and perceptions of science.
Scientists Contemplate Tilting of Rock Layers on Mars
NASA Technical Reports Server (NTRS)
2005-01-01
Gazing across the landscape of the 'Columbia Hills' in Gusev Crater on Mars, scientists working with NASA's Mars Exploration Rover Spirit think they have been seeing hints of tilted rock layers across the area traversed by the rover. At 'Larry's Lookout,' pictured here, ridges of rock are stacked atop each other and tilted. Similar rock ridges are visible in the distance across the 'Tennessee Valley.' One possible explanation for these ridges is that they were formed by tilted layers of sediment that were more resistant to erosion and now stand in relief above the surrounding surface. Scientists hope to better understand the structure of the hills and perhaps determine how they were formed by observing how the orientation of layers in these outcrops changes throughout the region. Hypotheses include that the Columbia Hills are the remains of an ancient volcano, a remnant of an old impact crater formed by an asteroid or comet, or delta deposits formed where water flowed into Gusev Crater early in its history. Each of these hypotheses leads to a different prediction regarding bedding orientation and structure. Hills on the distant horizon may be the rim of a large impact crater many miles to the east of the Columbia Hills. Spirit took this image with its navigation camera on martian day, or sol, 438 (March 27, 2005).Iborra, Francisco J
2007-04-12
The cell nucleus is highly compartmentalized with well-defined domains, it is not well understood how this nuclear order is maintained. Many scientists are fascinated by the different set of structures observed in the nucleus to attribute functions to them. In order to distinguish functional compartments from non-functional aggregates, I believe is important to investigate the biophysical nature of nuclear organisation. The various nuclear compartments can be divided broadly as chromatin or protein and/or RNA based, and they have very different dynamic properties. The chromatin compartment displays a slow, constrained diffusional motion. On the other hand, the protein/RNA compartment is very dynamic. Physical systems with dynamical asymmetry go to viscoelastic phase separation. This phase separation phenomenon leads to the formation of a long-lived interaction network of slow components (chromatin) scattered within domains rich in fast components (protein/RNA). Moreover, the nucleus is packed with macromolecules in the order of 300 mg/ml. This high concentration of macromolecules produces volume exclusion effects that enhance attractive interactions between macromolecules, known as macromolecular crowding, which favours the formation of compartments. In this paper I hypothesise that nuclear compartmentalization can be explained by viscoelastic phase separation of the dynamically different nuclear components, in combination with macromolecular crowding and the properties of colloidal particles. I demonstrate that nuclear structure can satisfy the predictions of this hypothesis. I discuss the functional implications of this phenomenon.
Winter, Alfred; Takabayashi, Katsuhiko; Jahn, Franziska; Kimura, Eizen; Engelbrecht, Rolf; Haux, Reinhold; Honda, Masayuki; Hübner, Ursula H; Inoue, Sozo; Kohl, Christian D; Matsumoto, Takehiro; Matsumura, Yasushi; Miyo, Kengo; Nakashima, Naoki; Prokosch, Hans-Ulrich; Staemmler, Martin
2017-08-07
For more than 30 years, there has been close cooperation between Japanese and German scientists with regard to information systems in health care. Collaboration has been formalized by an agreement between the respective scientific associations. Following this agreement, two joint workshops took place to explore the similarities and differences of electronic health record systems (EHRS) against the background of the two national healthcare systems that share many commonalities. To establish a framework and requirements for the quality of EHRS that may also serve as a basis for comparing different EHRS. Donabedian's three dimensions of quality of medical care were adapted to the outcome, process, and structural quality of EHRS and their management. These quality dimensions were proposed before the first workshop of EHRS experts and enriched during the discussions. The Quality Requirements Framework of EHRS (QRF-EHRS) was defined and complemented by requirements for high quality EHRS. The framework integrates three quality dimensions (outcome, process, and structural quality), three layers of information systems (processes and data, applications, and physical tools) and three dimensions of information management (strategic, tactical, and operational information management). Describing and comparing the quality of EHRS is in fact a multidimensional problem as given by the QRF-EHRS framework. This framework will be utilized to compare Japanese and German EHRS, notably those that were presented at the second workshop.
Why nursing has not embraced the clinician--scientist role.
Mackay, Martha
2009-10-01
Reasons for the limited uptake of the clinician-scientist role within nursing are examined, specifically: the lack of consensus about the nature of nursing science; the varying approaches to epistemology; and the influence of post-modern thought on knowledge development in nursing. It is suggested that under-development of this role may be remedied by achieving agreement that science is a necessary, worthy pursuit for nursing, and that rigorous science conducted from a clinical perspective serves nursing well. Straddling practice and research is a powerful strategy for ensuring relevant research while forging strong links with practice. The clinician-scientist role, typically requiring a 75:25 ratio between research and clinical activities, is well established in medicine. Nursing, however, has been slow to institute the role; it is rare within North America, Australia, and western European countries, and almost non-existent outside those areas. Beyond structural obstacles, philosophical issues may explain nursing's reluctance to implement the role. Following a survey of clinician-scientist roles throughout the world, the nature of nursing science and epistemology, and the influence of post-modern thought on nursing attitudes to research are examined with respect to their influence on this role. The nurse clinician-scientist role holds promise for making strides in clinically relevant research, and for accelerating the knowledge cycle from clinical problem to research question to change in clinical practice.
NASA Astrophysics Data System (ADS)
Bleacher, L.; Hsu, B. C.; Campbell, B. A.; Hess, M.
2011-12-01
The Science Communication Working Group (SCWG) at NASA Goddard Space Flight Center (GSFC) has been in existence since late 2007. The SCWG is comprised of education and public outreach (E/PO) professionals, public affairs specialists, scientists, and engineers. The goals of the SCWG are to identify barriers to scientist and engineer engagement in E/PO activities and to enable those scientists and engineers who wish to contribute to E/PO to be able to do so. SCWG members have held meetings with scientists and engineers across GSFC to determine barriers to their involvement in E/PO. During these meetings, SCWG members presented examples of successful, ongoing E/PO projects, encouraged active research scientists and engineers to talk about their own E/PO efforts and what worked for them, discussed the E/PO working environment, discussed opportunities for getting involved in E/PO (particularly in high-impact efforts that do not take much time), handed out booklets on effective E/PO, and asked scientists and engineers what they need to engage in E/PO. The identified barriers were consistent among scientists in GSFC's four science divisions (Earth science, planetary science, heliophysics, and astrophysics). Common barriers included 1) lack of time, 2) lack of funding support, 3) lack of value placed on doing E/PO by supervisors, 4) lack of training on doing appropriate/effective E/PO for different audiences, 5) lack of awareness and information about opportunities, 6) lack of understanding of what E/PO really is, and 7) level of effort required to do E/PO. Engineers reported similar issues, but the issues of time and funding support were more pronounced due to their highly structured work day and environment. Since the barriers were identified, the SCWG has taken a number of steps to address and rectify them. Steps have included holding various events to introduce scientists and engineers to E/PO staff and opportunities including an E/PO Open House, brown bag seminars on various E/PO topics, and an E/PO proposal writing workshop. SCWG members have also worked to incorporate information about E/PO, including what it is, points of contact, and opportunities for participation, into ongoing training sessions at GSFC, such as New Employee Orientation, Road to Mission Success, and Project Scientist Training. In addition, SCWG members have met with GSFC's upper management to voice barriers and concerns raised by scientists and engineers. We will expand on the barriers, efforts to address them, and the results of those efforts.
Drilling to investigate processes in active tectonics and magmatism
NASA Astrophysics Data System (ADS)
Shervais, J.; Evans, J.; Toy, V.; Kirkpatrick, J.; Clarke, A.; Eichelberger, J.
2014-12-01
Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park City, Utah, in May 2013, was attended by 41 investigators from seven countries. Participants were asked to define compelling scientific justifications for examining problems that can be addressed by coordinated programs of continental scientific drilling and related site investigations. They were also asked to evaluate a wide range of proposed drilling projects, based on white papers submitted prior to the workshop. Participants working on faults and fault zone processes highlighted two overarching topics with exciting potential for future scientific drilling research: (1) the seismic cycle and (2) the mechanics and architecture of fault zones. Recommended projects target fundamental mechanical processes and controls on faulting, and range from induced earthquakes and earthquake initiation to investigations of detachment fault mechanics and fluid flow in fault zones. Participants working on active volcanism identified five themes: the volcano eruption cycle; eruption sustainability, near-field stresses, and system recovery; eruption hazards; verification of geophysical models; and interactions with other Earth systems. Recommended projects address problems that are transferrable to other volcanic systems, such as improved methods for identifying eruption history and constraining the rheological structure of shallow caldera regions. Participants working on chemical geodynamics identified four major themes: large igneous provinces (LIPs), ocean islands, continental hotspot tracks and rifts, and convergent plate margins (subduction zones). This workshop brought together a diverse group of scientists with a broad range of scientific experience and interests. A particular strength was the involvement of both early-career scientists, who will initiate and carry out these new research programs, and more senior researchers with many years of experience in scientific drilling and active tectonics research. Each of the themes and questions outlined above has direct benefits to society, including improving hazard assessment, direct monitoring of active systems for early warning, renewable and non-renewable resource and energy exploitation, and predicting the environmental impacts of natural hazards, emphasizing the central role that scientific drilling will play in future scientific and societal developments.
Physical Construction of the Chemical Atom: Is It Convenient to Go All the Way Back?
ERIC Educational Resources Information Center
Izquierdo-Aymerich, Merce; Aduriz-Bravo, Agustin
2009-01-01
In this paper we present an analysis of chemistry texts (mainly textbooks) published during the first half of the 20th century. We show the evolution of the explanations therein in terms of atoms and of atomic structure, when scientists were interpreting phenomena as evidence of the discontinuous, corpuscular structure of matter. In this process…
Scientists from CCR have generated a comprehensive structural map of Kaposi sarcoma-associated herpesvirus polyadenylated nuclear (PAN) RNA, a long non-coding RNA that helps the virus evade detection by its host’s immune system. The findings open new oppportunites to study the life cycle of this cancer-causing virus. Learn more...
Steve Zack; William F. Laudenslayer; Luke George; Carl Skinner; William Oliver
1999-01-01
At two different locations in northeast California, an interdisciplinary team of scientists is initiating long-term studies to quantify the effects of forest manipulations intended to accelerate andlor enhance late-successional structure of eastside pine forest ecosystems. One study, at Blacks Mountain Experimental Forest, uses a split-plot, factorial, randomized block...
USDA-ARS?s Scientific Manuscript database
Soil microtopography or soil roughness is a property of critical importance in many earth surface processes but is often difficult to measure. Advances in computer vision technologies have made image-based 3D depiction of the soil surface or Structure-from-Motion (SfM) available to many scientists ...
1994-02-01
within and between organizations. The technical report has been defined etymologically , according to report content and method (U.S. Department of...number) I AERONAUTICS 6 MATHEMATICAL & COMPUTER SCIENCES 2 ASTRONAUTICS 7 MATERIALS & CHEMISTRY 3 ENGINEERING 8 PHYSICS 4 GEOSCIENCES 9 SPACE SCIENCES 5...the application of your work? (Circle ONLY one number) 1 AERONAUTICS 6 MATHEMATICAL & COMPUTER SCIENCES 2 ASTRONAUTICS 7 MATERIALS & CHEMISTRY 3
[Franz Joseph Gall and his "talking skulls" established the basis of modern brain sciences].
Wolfgang, Regal; Michael, Nanut
2008-01-01
The anatomist and brain scientist Franz Joseph Gall (1758-1828) developed the "phrenology" in the early 19(th) century. At this time, his new teachings were more seen as a temporary fashion than science and were discredited. No more than hundred years ago, it was realised that the phrenology established the basis of modern brain sciences. By all means Gall was the first one to combine defined regions of the cerebral cortex with distinct cognitive functions.
Maxey, C.; Andreas, A.
2009-02-03
A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.
Olson, K.; Andreas, A.
2012-11-01
A partnership with the Natural Energy Laboratory of Hawaii Authority and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.
Quality Assurance handbook for air pollution measurement systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-08-01
The purpose of this volume of the QA Handbook is to provide information and guidance for both the meteorologist and the non-meteorologist who must make judgments about the validity of data and accuracy of measurement systems. Care has been taken to provide definitions to help those making these judgments to communicate without ambiguity. Methods are described in the handbook which will objectively define the quality of measurements so the non-meteorologist can communicate with the meteorologist or environmental scientist or engineer with precision of meaning.
Lessons Learned over Four Benchmark Exercises from the Community Structure-Activity Resource
Carlson, Heather A.
2016-01-01
Preparing datasets and analyzing the results is difficult and time-consuming, and I hope the points raised here will help other scientists avoid some of the thorny issues we wrestled with. PMID:27345761
ERIC Educational Resources Information Center
Walker, Jearl
1984-01-01
Discusses changes in the crystal structure of iron and steel when these materials are heated. Focuses on observations related to an experiment in which a 60-inch length of piano wire (No. 29 steel wire) is heated and then cooled. (JN)
Current Incentives for Scientists Lead to Underpowered Studies with Erroneous Conclusions.
Higginson, Andrew D; Munafò, Marcus R
2016-11-01
We can regard the wider incentive structures that operate across science, such as the priority given to novel findings, as an ecosystem within which scientists strive to maximise their fitness (i.e., publication record and career success). Here, we develop an optimality model that predicts the most rational research strategy, in terms of the proportion of research effort spent on seeking novel results rather than on confirmatory studies, and the amount of research effort per exploratory study. We show that, for parameter values derived from the scientific literature, researchers acting to maximise their fitness should spend most of their effort seeking novel results and conduct small studies that have only 10%-40% statistical power. As a result, half of the studies they publish will report erroneous conclusions. Current incentive structures are in conflict with maximising the scientific value of research; we suggest ways that the scientific ecosystem could be improved.
Structural equation modeling: building and evaluating causal models: Chapter 8
Grace, James B.; Scheiner, Samuel M.; Schoolmaster, Donald R.
2015-01-01
Scientists frequently wish to study hypotheses about causal relationships, rather than just statistical associations. This chapter addresses the question of how scientists might approach this ambitious task. Here we describe structural equation modeling (SEM), a general modeling framework for the study of causal hypotheses. Our goals are to (a) concisely describe the methodology, (b) illustrate its utility for investigating ecological systems, and (c) provide guidance for its application. Throughout our presentation, we rely on a study of the effects of human activities on wetland ecosystems to make our description of methodology more tangible. We begin by presenting the fundamental principles of SEM, including both its distinguishing characteristics and the requirements for modeling hypotheses about causal networks. We then illustrate SEM procedures and offer guidelines for conducting SEM analyses. Our focus in this presentation is on basic modeling objectives and core techniques. Pointers to additional modeling options are also given.
Current Incentives for Scientists Lead to Underpowered Studies with Erroneous Conclusions
Higginson, Andrew D.; Munafò, Marcus R.
2016-01-01
We can regard the wider incentive structures that operate across science, such as the priority given to novel findings, as an ecosystem within which scientists strive to maximise their fitness (i.e., publication record and career success). Here, we develop an optimality model that predicts the most rational research strategy, in terms of the proportion of research effort spent on seeking novel results rather than on confirmatory studies, and the amount of research effort per exploratory study. We show that, for parameter values derived from the scientific literature, researchers acting to maximise their fitness should spend most of their effort seeking novel results and conduct small studies that have only 10%–40% statistical power. As a result, half of the studies they publish will report erroneous conclusions. Current incentive structures are in conflict with maximising the scientific value of research; we suggest ways that the scientific ecosystem could be improved. PMID:27832072
Mentoring for Success in Tobacco Regulatory Science: A Qualitative Study
Russo, Abigail R.; Solis, Amy C.; Villanti, Andrea C.; Wipfli, Heather L.; Kern, Teresa T.; Lawley, Rachel K.; Collins, Lauren K.; Abudayyeh, Haneen S.; Chansky, Melanie C.; Glantz, Stanton A.; Samet, Jonathan M.; Benjamin, Emelia J.
2017-01-01
Objectives Our study explores the experiences of early career and senior scientists regarding mentorship and career trajectories in tobacco regulatory science (TRS). Methods We conducted 22 phone interviews with early career and senior tobacco regulatory scientists from July 2015 to January 2016. All interviews were conducted using a structured interview guide and analyzed using a thematic approach by 2 independent coders. Results TRS presents specific opportunities and challenges to scientists due to its focused goal of informing tobacco regulation. An understanding of US Food and Drug Administration (FDA) research priorities and how science can inform tobacco regulation are essential for effective mentorship in TRS. Careers in TRS can be pursued in various academic and non-academic professional roles; both offer the distinct ability to conduct science that impacts public policy. Early career and senior scientists identified the importance and challenge of providing broad training across the diverse disciplines of TRS. Conclusions Effective mentorship in TRS requires that mentors possess an in-depth understanding of the scientific, regulatory, and legislative processes inherent to tobacco regulatory policy-making. A training program for mentors specific to TRS has the potential to meet diverse professional needs of mentors and mentees aiming to impact tobacco policy. PMID:28758143
Atchison, Michael L
2009-01-01
There is a nationwide shortage of veterinarian-scientists in the United States. Barriers to recruiting veterinary students into research careers need to be identified, and mechanisms devised to reduce these barriers. Barriers to attracting veterinary students into research careers include ignorance of available research careers and of the training opportunities. Once admitted, students in research training programs often feel isolated, fitting into neither the veterinary environment nor the research environment. To address the above issues, it is necessary to advertise and educate the public about opportunities for veterinarian-scientists. Schools need to develop high-quality training programs that are well structured but retain appropriate flexibility. Sufficient resources are needed to operate these programs so that students do not graduate with significant debt. A community of veterinarian-scientists needs to be developed so that students do not feel isolated but, rather, are part of a large community of like-minded individuals. Because of the complexities of programs that train veterinarian-scientists, it is necessary to provide extensive advising and for faculty to develop a proactive, servant-leadership attitude. Finally, students must be made aware of career options after graduation.
Byrd, W Carson; Best, Latrica E
2016-01-01
As the social sciences expand their involvement in genetic and genomic research, more information is needed to understand how theoretical concepts are applied to genetic data found in social surveys. Given the layers of complexity of studying race in relation to genetics and genomics, it is important to identify the varying approaches used to discuss and operationalize race and identity by social scientists. The present study explores how social scientists have used race, ethnicity, and ancestry in studies published in four social science journals from 2000 to 2014. We identify not only how race, ethnicity, and ancestry are classified and conceptualized in this growing area of research, but also how these concepts are incorporated into the methodology and presentation of results, all of which structure the discussion of race, identity, and inequality. This research indicates the slippage between concepts, classifications, and their use by social scientists in their genetics-related research. The current study can assist social scientists with clarifying their use and interpretations of race and ethnicity with the incorporation of genetic data, while limiting possible misinterpretations of the complexities of the connection between genetics and the social world.
The Cretaceous/Tertiary (K/T) boundary: 25 Years of controversial discussion
NASA Astrophysics Data System (ADS)
Harting, M.; Wittler, F. A.
2006-05-01
The K/T transition is under geoscientific focus since many years. Ever since the discovery of the Chicxulub- Impact theory in the early 1980s, its ctrater and its subsurface structure in the late 1990s many scientists and media, Hollywood, and the general public have become convinced that a large meteorite caused the K/T boundary and killed the dinosaurs and other organisms in the late Maastrichtian. However, today a much more comprehensive and detailed scientific background is present. Many scientist today believe that there is doubt that the Chicxulub impact is the "smoking gun". Moreover, there is increasing evidence that the Chicxulub impact predates the K/T mass extinction by about 300.000 years and did not cause the end of the dinosaures or of other marine and terrestrial organisms. On the other hand, some scientist still fixed to the general theory of a catastropic event. Due to recent field work on highly important sites and drillings inside the Chicxulub Impact structure itself, major new results are present today. In general, these new evidence, such as multiple ejecta layer, in locations in the Gulf of Mexico, the Caribbean, the Tethys and beyond, could not be interpreted by secondary (e.g. sedimentological-) features (slumping, reworking). Unfortunately, due to the highly emotional and controversal discussion - sometimes more like a religious than a scientific fight - many scientist feel uncomfortable to join the K/T problem. In fact, in between only a couple of major groups in various Universities are focussed - and leading - the discussion. A more open interaction between various geoscientific disciplines and researcher may the key to solve the mystery of the Chicxulub Impact and its relation to the K/T boundary.
KISS for STRAP: user extensions for a protein alignment editor.
Gille, Christoph; Lorenzen, Stephan; Michalsky, Elke; Frömmel, Cornelius
2003-12-12
The Structural Alignment Program STRAP is a comfortable comprehensive editor and analyzing tool for protein alignments. A wide range of functions related to protein sequences and protein structures are accessible with an intuitive graphical interface. Recent features include mapping of mutations and polymorphisms onto structures and production of high quality figures for publication. Here we address the general problem of multi-purpose program packages to keep up with the rapid development of bioinformatical methods and the demand for specific program functions. STRAP was remade implementing a novel design which aims at Keeping Interfaces in STRAP Simple (KISS). KISS renders STRAP extendable to bio-scientists as well as to bio-informaticians. Scientists with basic computer skills are capable of implementing statistical methods or embedding existing bioinformatical tools in STRAP themselves. For bio-informaticians STRAP may serve as an environment for rapid prototyping and testing of complex algorithms such as automatic alignment algorithms or phylogenetic methods. Further, STRAP can be applied as an interactive web applet to present data related to a particular protein family and as a teaching tool. JAVA-1.4 or higher. http://www.charite.de/bioinf/strap/
Conceptualizing and communicating ecological river restoration: Chapter 2
Jacobson, Robert B.; Berkley, Jim
2011-01-01
We present a general conceptual model for communicating aspects of river restoration and management. The model is generic and adaptable to most riverine settings, independent of size. The model has separate categories of natural and social-economic drivers, and management actions are envisioned as modifiers of naturally dynamic systems. The model includes a decision-making structure in which managers, stakeholders, and scientists interact to define management objectives and performance evaluation. The model depicts a stress to the riverine ecosystem as either (1) deviation in the regimes (flow, sediment, temperature, light, biogeochemical, and genetic) by altering the frequency, magnitude, duration, timing, or rate of change of the fluxes or (2) imposition of a hard structural constraint on channel form. Restoration is depicted as naturalization of those regimes or removal of the constraint. The model recognizes the importance of river history in conditioning future responses. Three hierarchical tiers of essential ecosystem characteristics (EECs) illustrate how management actions typically propagate through physical/chemical processes to habitat to biotic responses. Uncertainty and expense in modeling or measuring responses increase in moving from tiers 1 to 3. Social-economic characteristics are shown in a parallel structure that emphasizes the need to quantify trade-offs between ecological and social-economic systems. Performance measures for EECs are also hierarchical, showing that selection of measures depend on participants’ willingness to accept uncertainty. The general form is of an adaptive management loop in which the performance measures are compared to reference conditions or success criteria and the information is fed back into the decision-making process.
Hettne, Kristina M; Dharuri, Harish; Zhao, Jun; Wolstencroft, Katherine; Belhajjame, Khalid; Soiland-Reyes, Stian; Mina, Eleni; Thompson, Mark; Cruickshank, Don; Verdes-Montenegro, Lourdes; Garrido, Julian; de Roure, David; Corcho, Oscar; Klyne, Graham; van Schouwen, Reinout; 't Hoen, Peter A C; Bechhofer, Sean; Goble, Carole; Roos, Marco
2014-01-01
One of the main challenges for biomedical research lies in the computer-assisted integrative study of large and increasingly complex combinations of data in order to understand molecular mechanisms. The preservation of the materials and methods of such computational experiments with clear annotations is essential for understanding an experiment, and this is increasingly recognized in the bioinformatics community. Our assumption is that offering means of digital, structured aggregation and annotation of the objects of an experiment will provide necessary meta-data for a scientist to understand and recreate the results of an experiment. To support this we explored a model for the semantic description of a workflow-centric Research Object (RO), where an RO is defined as a resource that aggregates other resources, e.g., datasets, software, spreadsheets, text, etc. We applied this model to a case study where we analysed human metabolite variation by workflows. We present the application of the workflow-centric RO model for our bioinformatics case study. Three workflows were produced following recently defined Best Practices for workflow design. By modelling the experiment as an RO, we were able to automatically query the experiment and answer questions such as "which particular data was input to a particular workflow to test a particular hypothesis?", and "which particular conclusions were drawn from a particular workflow?". Applying a workflow-centric RO model to aggregate and annotate the resources used in a bioinformatics experiment, allowed us to retrieve the conclusions of the experiment in the context of the driving hypothesis, the executed workflows and their input data. The RO model is an extendable reference model that can be used by other systems as well. The Research Object is available at http://www.myexperiment.org/packs/428 The Wf4Ever Research Object Model is available at http://wf4ever.github.io/ro.
Terminology and classification of muscle injuries in sport: The Munich consensus statement
Mueller-Wohlfahrt, Hans-Wilhelm; Haensel, Lutz; Mithoefer, Kai; Ekstrand, Jan; English, Bryan; McNally, Steven; Orchard, John; van Dijk, C Niek; Kerkhoffs, Gino M; Schamasch, Patrick; Blottner, Dieter; Swaerd, Leif; Goedhart, Edwin; Ueblacker, Peter
2013-01-01
Objective To provide a clear terminology and classification of muscle injuries in order to facilitate effective communication among medical practitioners and development of systematic treatment strategies. Methods Thirty native English-speaking scientists and team doctors of national and first division professional sports teams were asked to complete a questionnaire on muscle injuries to evaluate the currently used terminology of athletic muscle injury. In addition, a consensus meeting of international sports medicine experts was established to develop practical and scientific definitions of muscle injuries as well as a new and comprehensive classification system. Results The response rate of the survey was 63%. The responses confirmed the marked variability in the use of the terminology relating to muscle injury, with the most obvious inconsistencies for the term strain. In the consensus meeting, practical and systematic terms were defined and established. In addition, a new comprehensive classification system was developed, which differentiates between four types: functional muscle disorders (type 1: overexertion-related and type 2: neuromuscular muscle disorders) describing disorders without macroscopic evidence of fibre tear and structural muscle injuries (type 3: partial tears and type 4: (sub)total tears/tendinous avulsions) with macroscopic evidence of fibre tear, that is, structural damage. Subclassifications are presented for each type. Conclusions A consistent English terminology as well as a comprehensive classification system for athletic muscle injuries which is proven in the daily practice are presented. This will help to improve clarity of communication for diagnostic and therapeutic purposes and can serve as the basis for future comparative studies to address the continued lack of systematic information on muscle injuries in the literature. What are the new things Consensus definitions of the terminology which is used in the field of muscle injuries as well as a new comprehensive classification system which clearly defines types of athletic muscle injuries. Level of evidence Expert opinion, Level V. PMID:23080315
A self-defining hierarchical data system
NASA Technical Reports Server (NTRS)
Bailey, J.
1992-01-01
The Self-Defining Data System (SDS) is a system which allows the creation of self-defining hierarchical data structures in a form which allows the data to be moved between different machine architectures. Because the structures are self-defining they can be used for communication between independent modules in a distributed system. Unlike disk-based hierarchical data systems such as Starlink's HDS, SDS works entirely in memory and is very fast. Data structures are created and manipulated as internal dynamic structures in memory managed by SDS itself. A structure may then be exported into a caller supplied memory buffer in a defined external format. This structure can be written as a file or sent as a message to another machine. It remains static in structure until it is reimported into SDS. SDS is written in portable C and has been run on a number of different machine architectures. Structures are portable between machines with SDS looking after conversion of byte order, floating point format, and alignment. A Fortran callable version is also available for some machines.
Corrosion Monitoring Research of New York City Bridges : TechBrief
DOT National Transportation Integrated Search
2013-12-01
Understanding unsaturated expansive soil has always been a major challenge for soil scientists and engineers. Due to presence of high quantity of montmorillonite mineral in the Moreland clay in northern Louisiana, structural damage due to soil heave/...
Trophic Pathways of the Mid-North Atlantic
Because deep-sea fisheries are increasing as coastal fisheries decline, fisheries scientists need baseline data on deep-sea ecosystems prior to further development of deep-water fisheries. We present preliminary results and ongoing efforts to characterize the trophic structure a...
Developing 3D SEM in a broad biological context
Kremer, A; Lippens, S; Bartunkova, S; Asselbergh, B; Blanpain, C; Fendrych, M; Goossens, A; Holt, M; Janssens, S; Krols, M; Larsimont, J-C; Mc Guire, C; Nowack, MK; Saelens, X; Schertel, A; Schepens, B; Slezak, M; Timmerman, V; Theunis, C; Van Brempt, R; Visser, Y; GuÉRin, CJ
2015-01-01
When electron microscopy (EM) was introduced in the 1930s it gave scientists their first look into the nanoworld of cells. Over the last 80 years EM has vastly increased our understanding of the complex cellular structures that underlie the diverse functions that cells need to maintain life. One drawback that has been difficult to overcome was the inherent lack of volume information, mainly due to the limit on the thickness of sections that could be viewed in a transmission electron microscope (TEM). For many years scientists struggled to achieve three-dimensional (3D) EM using serial section reconstructions, TEM tomography, and scanning EM (SEM) techniques such as freeze-fracture. Although each technique yielded some special information, they required a significant amount of time and specialist expertise to obtain even a very small 3D EM dataset. Almost 20 years ago scientists began to exploit SEMs to image blocks of embedded tissues and perform serial sectioning of these tissues inside the SEM chamber. Using first focused ion beams (FIB) and subsequently robotic ultramicrotomes (serial block-face, SBF-SEM) microscopists were able to collect large volumes of 3D EM information at resolutions that could address many important biological questions, and do so in an efficient manner. We present here some examples of 3D EM taken from the many diverse specimens that have been imaged in our core facility. We propose that the next major step forward will be to efficiently correlate functional information obtained using light microscopy (LM) with 3D EM datasets to more completely investigate the important links between cell structures and their functions. Lay Description Life happens in three dimensions. For many years, first light, and then EM struggled to image the smallest parts of cells in 3D. With recent advances in technology and corresponding improvements in computing, scientists can now see the 3D world of the cell at the nanoscale. In this paper we present the results of high resolution 3D imaging in a number of diverse cells and tissues from multiple species. 3D reconstructions of cell structures often revealed them to be significantly more complex when compared to extrapolations made from 2D studies. Correlating functional 3D LM studies with 3D EM results opens up the possibility of making new strides in our understanding of how cell structure is connected to cell function. PMID:25623622
Ulrich, Connie M; Wallen, Gwenyth R; Cui, Naixue; Chittams, Jesse; Sweet, Monica; Plemmons, Dena
2015-01-01
Team science is advocated to speed the pace of scientific discovery, yet the goals of collaborative practice in nursing science and the responsibilities of nurse stakeholders are sparse and inconclusive. The purpose of this study was to examine nurse scientists' views on collaborative research as part of a larger study on standards of scientific conduct. Web-based descriptive survey of nurse scientists randomly selected from 50 doctoral graduate programs in the United States. Nearly forty percent of nurse respondents were not able to identify good collaborative practices for the discipline; more than three quarters did not know of any published guidelines available to them. Successful research collaborations were challenged by different expectations of authorship and data ownership, lack of timeliness and communication, poorly defined roles and responsibilities, language barriers, and when they involve junior and senior faculty working together on a project. Individual and organizational standards, practices, and policies for collaborative research needs clarification within the discipline. Copyright © 2015 Elsevier Inc. All rights reserved.
An open source Java web application to build self-contained Web GIS sites
NASA Astrophysics Data System (ADS)
Zavala Romero, O.; Ahmed, A.; Chassignet, E.; Zavala-Hidalgo, J.
2014-12-01
This work describes OWGIS, an open source Java web application that creates Web GIS sites by automatically writing HTML and JavaScript code. OWGIS is configured by XML files that define which layers (geographic datasets) will be displayed on the websites. This project uses several Open Geospatial Consortium standards to request data from typical map servers, such as GeoServer, and is also able to request data from ncWMS servers. The latter allows for the displaying of 4D data stored using the NetCDF file format (widely used for storing environmental model datasets). Some of the features available on the sites built with OWGIS are: multiple languages, animations, vertical profiles and vertical transects, color palettes, color ranges, and the ability to download data. OWGIS main users are scientists, such as oceanographers or climate scientists, who store their data in NetCDF files and want to analyze, visualize, share, or compare their data using a website.
Scientific Ethics in Chemical Education
NASA Astrophysics Data System (ADS)
Kovac, Jeffrey
1996-10-01
Scientific ethics is a subset of professional ethics, the special rules of conduct adhered to by people engaged in those pursuits called professions. It is distinct from, but consistent with, both ordinary morality and moral theory. The codes of professional ethics derive from the two bargains that define a profession: the internal code of practice and the external bargain between the profession and society. While the informal code of professional conduct is well understood by working scientists, it is rarely explicitly included in the chemistry curriculum. Instead, we have relied on informal methods to teach students scientific ethics, a strategy that is haphazard at best. In this paper I argue that scientific ethics can and must be taught as part of the chemistry curriculum and that this is the best done through the case-study method. Many decisions made by working scientists have both a technical and an ethical component. Students need to learn how to make good decisions in professional ethics. The alternative is, at best, sloppy science and, at worst, scientific misconduct.
Point-of-Care Technologies for Precision Cardiovascular Care and Clinical Research
King, Kevin; Grazette, Luanda P.; Paltoo, Dina N.; McDevitt, John T.; Sia, Samuel K.; Barrett, Paddy M.; Apple, Fred S.; Gurbel, Paul A.; Weissleder, Ralph; Leeds, Hilary; Iturriaga, Erin J.; Rao, Anupama; Adhikari, Bishow; Desvigne-Nickens, Patrice; Galis, Zorina S.; Libby, Peter
2016-01-01
Point-of-care technologies (POC or POCT) are enabling innovative cardiovascular diagnostics that promise to improve patient care across diverse clinical settings. The National Heart, Lung, and Blood Institute convened a working group to discuss POCT in cardiovascular medicine. The multidisciplinary working group, which included clinicians, scientists, engineers, device manufacturers, regulatory officials, and program staff, reviewed the state of the POCT field; discussed opportunities for POCT to improve cardiovascular care, realize the promise of precision medicine, and advance the clinical research enterprise; and identified barriers facing translation and integration of POCT with existing clinical systems. A POCT development roadmap emerged to guide multidisciplinary teams of biomarker scientists, technologists, health care providers, and clinical trialists as they: 1) formulate needs assessments; 2) define device design specifications; 3) develop component technologies and integrated systems; 4) perform iterative pilot testing; and 5) conduct rigorous prospective clinical testing to ensure that POCT solutions have substantial effects on cardiovascular care. PMID:26977455
Sacco, Donald F; Bruton, Samuel V; Brown, Mitch
2018-02-01
National Institutes of Health principal investigators reported their perceptions of the ethical defensibility, prevalence in their field, and their personal willingness to engage in questionable research practices (QRPs). Using ethical defensibility ratings, an exploratory factor analysis yielded a two-factor solution: behaviors considered unambiguously ethically indefensible and behaviors whose ethical defensibility was more ambiguous. In addition, increasing perceptions that QRPs affect science predicted reduced acceptability of QRPs, whereas increasing beliefs that QRPs are normative or necessary for career success predicted increased acceptability of QRPs. Perceptions that QRPs are risky were unrelated to QRP acceptability but predicted reduced extramural funding (i.e., researchers' lifetime extramural grants and total funding secured). These results identify risk (i.e., beliefs that QRPs are normative to stay competitive in one's field) and protective factors (i.e., beliefs that QRPs have a significant negative impact on society) related to QRP endorsement that could inform educational interventions for training research scientists.
McIDAS-V: A Data Analysis and Visualization Tool for Global Satellite Data
NASA Astrophysics Data System (ADS)
Achtor, T. H.; Rink, T. D.
2011-12-01
The Man-computer Interactive Data Access System (McIDAS-V) is a java-based, open-source, freely available system for scientists, researchers and algorithm developers working with atmospheric data. The McIDAS-V software tools provide powerful new data manipulation and visualization capabilities, including 4-dimensional displays, an abstract data model with integrated metadata, user defined computation, and a powerful scripting capability. As such, McIDAS-V is a valuable tool for scientists and researchers within the GEO and GOESS domains. The advancing polar and geostationary orbit environmental satellite missions conducted by several countries will carry advanced instrumentation and systems that will collect and distribute land, ocean, and atmosphere data. These systems provide atmospheric and sea surface temperatures, humidity sounding, cloud and aerosol properties, and numerous other environmental products. This presentation will display and demonstrate some of the capabilities of McIDAS-V to analyze and display high temporal and spectral resolution data using examples from international environmental satellites.
Recent Development of Prebiotic Research—Statement from an Expert Workshop
La Fata, Giorgio; Rastall, Robert A.; Lacroix, Christophe; Harmsen, Hermie J. M.; Mohajeri, M. Hasan; Weber, Peter
2017-01-01
A dietary prebiotic is defined as ‘a substrate that is selectively utilized by host microorganisms conferring a health benefit’. Although this definition evolved concomitantly with the knowledge and technological developments that accrued in the last twenty years, what qualifies as prebiotic continues to be a matter of debate. In this statement, we report the outcome of a workshop where academic experts working in the field of prebiotic research met with scientists from industry. The workshop covered three main topics: (i) evolution of the prebiotic concept/definition; (ii) the gut modeling in vitro technology PolyFermS to study prebiotic effects; and (iii) the potential novel microbiome-modulating effects associated with vitamins. The future of prebiotic research is very promising. Indeed, the technological developments observed in recent years provide scientists with powerful tools to investigate the complex ecosystem of gut microbiota. Combining multiple in vitro approaches with in vivo studies is key to understanding the mechanisms of action of prebiotics consumption and their potential beneficial effects on the host. PMID:29261110