ERIC Educational Resources Information Center
Halversen, Catherine; Tran, Lynn Uyen
2010-01-01
Communicating Ocean Sciences to Informal Audiences (COSIA) is a college course that creates and develops partnerships between science educators in informal science education institutions, such as museums, science centers and aquariums, and ocean scientists in colleges and universities. For the course, a scientist and educator team-teach…
NASA Astrophysics Data System (ADS)
Bianchini, Julie A.; Whitney, David J.; Breton, Therese D.; Hilton-Brown, Bryan A.
2002-01-01
This study examined the perceptions and self-reported practices of 18 scientists participating in a yearlong seminar series designed to explore issues of gender and ethnicity in science. Scientists and seminar were part of the Promoting Women and Scientific Literacy project, a curriculum transformation and professional development initiative undertaken by science, science education, and women's studies faculty at their university. Researchers treated participating scientists as critical friends able to bring clarity to and raise questions about conceptions of inclusion in science education. Through questionnaires and semistructured interviews, we explored their (a) rationales for differential student success in undergraduate science education; (b) self-reports of ways they structure, teach, and assess courses to promote inclusion; and (c) views of androcentric and ethnocentric bias in science. Statistical analysis of questionnaires yielded few differences in scientists' views and reported practices by sex or across time. Qualitative analysis of interviews offered insight into how scientists can help address the problem of women and ethnic minorities in science education; constraints encountered in attempts to implement pedagogical and curricular innovations; and areas of consensus and debate across scientists and science studies scholars' descriptions of science. From our findings, we provided recommendations for other professional developers working with scientists to promote excellence and equity in undergraduate science education.
Finding Meaningful Roles for Scientists in science Education Reform
NASA Astrophysics Data System (ADS)
Evans, Brenda
Successful efforts to achieve reform in science education require the active and purposeful engagement of professional scientists. Working as partners with teachers, school administrators, science educators, parents, and other stakeholders, scientists can make important contributions to the improvement of science teaching and learning in pre-college classrooms. The world of a practicing university, corporate, or government scientist may seem far removed from that of students in an elementary classroom. However, the science knowledge and understanding of all future scientists and scientifically literate citizens begin with their introduction to scientific concepts and phenomena in childhood and the early grades. Science education is the responsibility of the entire scientific community and is not solely the responsibility of teachers and other professional educators. Scientists can serve many roles in science education reform including the following: (1) Science Content Resource, (2) Career Role Model, (3) Interpreter of Science (4) Validator for the Importance of Learning Science and Mathematics, (5) Champion of Real World Connections and Value of Science, (6) Experience and Access to Funding Sources, (7) Link for Community and Business Support, (8) Political Supporter. Special programs have been developed to assist scientists and engineers to be effective partners and advocates of science education reform. We will discuss the rationale, organization, and results of some of these partnership development programs.
Promoting Diversity Through Polar Interdisciplinary Coordinated Education (Polar ICE)
NASA Astrophysics Data System (ADS)
McDonnell, J. D.; Hotaling, L. A.; Garza, C.; Van Dyk, P. B.; Hunter-thomson, K. I.; Middendorf, J.; Daniel, A.; Matsumoto, G. I.; Schofield, O.
2017-12-01
Polar Interdisciplinary Coordinated Education (ICE) is an education and outreach program designed to provide public access to the Antarctic and Arctic regions through polar data and interactions with the scientists. The program provides multi-faceted science communication training for early career scientists that consist of a face-to face workshop and opportunities to apply these skills. The key components of the scientist training workshop include cultural competency training, deconstructing/decoding science for non-expert audiences, the art of telling science stories, and networking with members of the education and outreach community and reflecting on communication skills. Scientists partner with educators to provide professional development for K-12 educators and support for student research symposia. Polar ICE has initiated a Polar Literacy initiative that provides both a grounding in big ideas in polar science and science communication training designed to underscore the importance of the Polar Regions to the public while promoting interdisciplinary collaborations between scientists and educators. Our ultimate objective is to promote STEM identity through professional development of scientists and educators while developing career awareness of STEM pathways in Polar science.
Scientist-Educator Partnerships: the Cornerstone of Astrophysics E/PO
NASA Astrophysics Data System (ADS)
Meinke, Bonnie K.; Smith, Denise A.; Lawton, Brandon; Eisenhamer, Bonnie; Jirdeh, Hussein
2015-11-01
For nearly two decades, NASA has partnered scientists and educators by embedding Education and Public Outreach (E/PO) programs and funding in its science missions and research activities. This enables scientist and educators to work side-by-side in translating cutting-edge NASA science and technology for classrooms, museums, and public venues.The Office of Public Outreach at the Space Telescope Science Institute (STScI) is uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. As home to both Hubble Space Telescope and the future James Webb Space Telescope, STScI leverages the expertise of its scientists to create partnerships with its collocated Education Team to translate cutting-edge NASA science into new and effective learning tools. In addition, STScI is home of the NASA Science Mission Directorate (SMD) Astrophysics Science E/PO Forum, which facilitates connections both within the SMD E/PO community and beyond to scientists and educators across all NASA Astrophysics missions. These collaborations strengthen partnerships, build best practices, and enhance coherence for NASA SMD-funded E/PO missions and programs.We will present examples of astronomers’ engagement in our E/PO efforts, such as NASA Science4Girls.
Impact of a Scientist-Teacher Collaborative Model on Students, Teachers, and Scientists
NASA Astrophysics Data System (ADS)
Shein, Paichi Pat; Tsai, Chun-Yen
2015-09-01
Collaborations between the K-12 teachers and higher education or professional scientists have become a widespread approach to science education reform. Educational funding and efforts have been invested to establish these cross-institutional collaborations in many countries. Since 2006, Taiwan initiated the High Scope Program, a high school science curriculum reform to promote scientific innovation and inquiry through an integration of advanced science and technology in high school science curricula through partnership between high school teachers and higher education scientists and science educators. This study, as part of this governmental effort, a scientist-teacher collaborative model (STCM) was constructed by 8 scientists and 4 teachers to drive an 18-week high school science curriculum reform on environmental education in a public high school. Partnerships between scientists and teachers offer opportunities to strengthen the elements of effective science teaching identified by Shulman and ultimately affect students' learning. Mixed methods research was used for this study. Qualitative methods of interviews were used to understand the impact on the teachers' and scientists' science teaching. A quasi-experimental design was used to understand the impact on students' scientific competency and scientific interest. The findings in this study suggest that the use of the STCM had a medium effect on students' scientific competency and a large effect on students' scientific individual and situational interests. In the interviews, the teachers indicated how the STCM allowed them to improve their content knowledge and pedagogical content knowledge (PCK), and the scientists indicated an increased knowledge of learners, knowledge of curriculum, and PCK.
Scientists and Science Education: Working at the Interface
NASA Astrophysics Data System (ADS)
DeVore, E. K.
2004-05-01
"Are we alone?" "Where did we come from?" "What is our future?" These questions lie at the juncture of astronomy and biology: astrobiology. It is intrinsically interdisciplinary in its study of the origin, evolution and future of life on Earth and beyond. The fundamental concepts of origin and evolution--of both living and non-living systems--are central to astrobiology, and provide powerful themes for unifying science teaching, learning, and appreciation in classrooms and laboratories, museums and science centers, and homes. Research scientists play a key role in communicating the nature of science and joy of scientific discovery with the public. Communicating the scientific discoveries with the public brings together diverse professionals: research scientists, graduate and undergraduate faculty, educators, journalists, media producers, web designers, publishers and others. Working with these science communicators, research scientists share their discoveries through teaching, popular articles, lectures, broadcast and print media, electronic publication, and developing materials for formal and informal education such as textbooks, museum exhibits and documentary television. There's lots of activity in science communication. Yet, the NSF and NASA have both identified science education as needing improvement. The quality of schools and the preparation of teachers receive national attention via "No Child Left Behind" requirements. The number of students headed toward careers in science, technology, engineering and mathematics (STEM) is not sufficient to meet national needs. How can the research community make a difference? What role can research scientists fulfill in improving STEM education? This talk will discuss the interface between research scientists and science educators to explore effective roles for scientists in science education partnerships. Astronomy and astrobiology education and outreach projects, materials, and programs will provide the context for this discussion.
Scientists Involved in K-12 Education
NASA Astrophysics Data System (ADS)
Robigou, V.
2004-12-01
The publication of countless reports documenting the dismal state of science education in the 1980s, and the Third International Mathematics and Science Study (TIMMS) report (1996) called for a wider involvement of the scientific community in K-12 education and outreach. Improving science education will not happen without the collaboration of educators and scientists working in a coordinated manner and it requires a long-term, continuous effort. To contribute effectively to K-12 education all scientists should refer to the National Science Education Standards, a set of policies that guide the development of curriculum and assessment. Ocean scientists can also specifically refer to the COSEE recommendations (www.cosee.org) that led to the creation of seven regional Centers for Ocean Sciences Education Excellence. Scientists can get involved in K-12 education in a multitude of ways. They should select projects that will accommodate time away from their research and teaching obligations, their talent, and their interest but also contribute to the education reform. A few examples of effective involvement are: 1) collaborating with colleagues in a school of education that can lead to better education of all students and future teachers, 2) acting as a resource for a national program or a local science fair, 3) serving on the advisory board of a program that develops educational material, 4) speaking out at professional meetings about the value of scientists' involvement in education, 5) speaking enthusiastically about the teaching profession. Improving science education in addition to research can seem a large, overwhelming task for scientists. As a result, focusing on projects that will fit the scientist's needs as well as benefit the science reform is of prime importance. It takes an enormous amount of work and financial and personnel resources to start a new program with measurable impact on students. So, finding the right opportunity is a priority, and stepping-in pre-existing programs to contribute right away without having to re-invent the wheel is a good approach. Education and outreach sessions are expanding at professional, scientific meetings such as AGU, and provide an excellent start for those in search of new educational experiences. Contacting a regional COSEE is also a very effective way to get involved.
ERIC Educational Resources Information Center
Walsh, Elizabeth M.
2012-01-01
Preparing a generation of citizens to respond to the impacts of climate change will require collaborative interactions between natural scientists, learning scientists, educators and learners. Promoting effective involvement of scientists in climate change education is especially important as climate change science and climate impacts are…
NASA Astrophysics Data System (ADS)
Buxner, S.; Cobabe-Ammann, E. A.; Hsu, B. C.; Sharma, M.; Peticolas, L. M.; Schwerin, T. G.; Shipp, S. S.; Smith, D.
2012-12-01
Sharing the excitement of ongoing scientific discoveries is an important aspect of scientific activity for researchers. Directly engaging scientists in education and public outreach (E/PO) activities has the benefit of directly connecting the public to those who engage in scientific activities. A shortage of training in education methods, public speaking, and working with various public audiences increases barriers to engaging scientists in these types in E/PO activities. NASA's Science Mission Directorate (SMD) Education and Public forums (astrophysics, earth science, heliophysics, and planetary science) support scientists currently involved in E/PO and who are interested in becoming involved in E/PO through a variety of avenues. Over the past three years, the forums have developed a variety of resources to help engage scientists in education and public outreach. We will showcase the following resources developed through the SMD E/PO cross-forum efforts: Professional development resources for writing NASA SMD E/PO proposals (webinars and other online tools), ongoing professional development at scientific conferences to increase scientist engagement in E/PO activities, toolkits for scientists interested in best practices in E/PO (online guides for K-12 education and public outreach), toolkits to inform scientists of science education resources developed within each scientific thematic community, EarthSpace (a community web space where instructors can find and share about teaching space and earth sciences in the undergraduate classroom, including class materials news and funding opportunities, and the latest education research, http://www.lpi.usra.edu/earthspace/), thematic resources for teaching about SMD science topics, and an online database of scientists interested in connecting with education programs. Learn more about the Forum and find resources at http://smdepo.org/.
NASA Astrophysics Data System (ADS)
Buxner, Sanlyn; Shupla, C.; CoBabe-Ammann, E.; Dalton, H.; Shipp, S.
2013-10-01
The Planetary Science Education and Public Outreach (E/PO) Forum has helped to create two tools that are designed to help scientists and higher-education science faculty make stronger connections with their audiences: EarthSpace, an education clearinghouse for the undergraduate classroom; and NASA SMD Scientist Speaker’s Bureau, an online portal to help bring science - and scientists - to the public. Are you looking for Earth and space science higher education resources and materials? Come explore EarthSpace, a searchable database of undergraduate classroom materials for faculty teaching Earth and space sciences at both the introductory and upper division levels! In addition to classroom materials, EarthSpace provides news and information about educational research, best practices, and funding opportunities. All materials submitted to EarthSpace are peer reviewed, ensuring that the quality of the EarthSpace materials is high and also providing important feedback to authors. Your submission is a reviewed publication! Learn more, search for resources, join the listserv, sign up to review materials, and submit your own at http://www.lpi.usra.edu/earthspace. Join the new NASA SMD Scientist Speaker’s Bureau, an online portal to connect scientists interested in getting involved in E/PO projects (e.g., giving public talks, classroom visits, and virtual connections) with audiences! The Scientist Speaker’s Bureau helps educators and institutions connect with NASA scientists who are interested in giving presentations, based upon the topic, logistics, and audience. The information input into the database will be used to help match scientists (you!) with the requests being placed by educators. All Earth and space scientists funded by NASA - and/or engaged in active research using NASA’s science - are invited to become part of the Scientist Speaker’s Bureau. Submit your information into the short form at http://www.lpi.usra.edu/education/speaker.
Scientists and Educators: Joining Forces to Enhance Ocean Science Literacy
NASA Astrophysics Data System (ADS)
Keener-Chavis, P.
2004-12-01
The need for scientists to work with educators to enhance the general public's understanding of science has been addressed for years in reports like Science for All Americans (1990), NSF in a Changing World (1995), Turning to the Sea: America's Ocean Future (1999), Discovering the Earth's Final Frontier, A U.S. Strategy for Ocean Exploration (2000), and most recently, the U.S. Commission on Ocean Policy Report (2004). As reported in The National Science Foundation's Center for Ocean Science Education Excellence (COSEE) Workshop Report (2000), "The Ocean Sciences community did not answer (this) call, even though their discovery that the ocean was a more critical driving force in the natural environment than previously thought possessed great educational significance." It has been further acknowledged that "rapid and extensive improvement of science education is unlikely to occur until it becomes clear to scientists that they have an obligation to become involved in elementary- and secondary-level science (The Role of Scientists in the Professional Development of Science Teachers, National Research Council, 1996.) This presentation will focus on teachers' perceptions of how scientists conduct research, scientists' perceptions of how teachers should teach, and some misconceptions between the two groups. Criteria for high-quality professional development for teachers working with scientists will also be presented, along with a brief overview of the National Oceanic and Atmospheric Administration's Ocean Exploration program efforts to bring teachers and ocean scientists together to further ocean science literacy at the national level through recommendations put forth in the U.S. Commission on Ocean Policy Report (2004).
Engaging Scientists in NASA Education and Public Outreach: Tools for Scientist Engagement
NASA Astrophysics Data System (ADS)
Buxner, Sanlyn; Meinke, B. K.; Hsu, B.; Shupla, C.; Grier, J. A.; E/PO Community, SMD
2014-01-01
The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community through a coordinated effort to enhance the coherence and efficiency of SMD-funded E/PO programs. The Forums foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present tools and resources to support astronomers’ engagement in E/PO efforts. Among the tools designed specifically for scientists are a series of one-page E/PO-engagement Tips and Tricks guides, a sampler of electromagnetic-spectrum-related activities, and NASA SMD Scientist Speaker’s Bureau (http://www.lpi.usra.edu/education/speaker). Scientists can also locate resources for interacting with diverse audiences through a number of online clearinghouses, including: NASA Wavelength, a digital collection of peer-reviewed Earth and space science resources for educators of all levels (http://nasawavelength.org), and EarthSpace (http://www.lpi.usra.edu/earthspace), a community website where faculty can find and share teaching resources for the undergraduate Earth and space sciences classroom. Learn more about the opportunities to become involved in E/PO and to share your science with students, educators, and the general public at http://smdepo.org.
Women scientists' scientific and spiritual ways of knowing
NASA Astrophysics Data System (ADS)
Buffington, Angela Cunningham
While science education aims for literacy regarding scientific knowledge and the work of scientists, the separation of scientific knowing from other knowing may misrepresent the knowing of scientists. The majority of science educators K-university are women. Many of these women are spiritual and integrate their scientific and spiritual ways of knowing. Understanding spiritual women of science would inform science education and serve to advance the scientific reason and spirituality debate. Using interviews and grounded theory, this study explores scientific and spiritual ways of knowing in six women of science who hold strong spiritual commitments and portray science to non-scientists. From various lived experiences, each woman comes to know through a Passive knowing of exposure and attendance, an Engaged knowing of choice, commitment and action, an Mindful/Inner knowing of prayer and meaning, a Relational knowing with others, and an Integrated lifeworld knowing where scientific knowing, spiritual knowing, and other ways of knowing are integrated. Consequences of separating ways of knowing are discussed, as are connections to current research, implications to science education, and ideas for future research. Understanding women scientists' scientific/ spiritual ways of knowing may aid science educators in linking academic science to the life-worlds of students.
Scientists: Get Involved in Planetary Science Education and Public Outreach! Here’s How!
NASA Astrophysics Data System (ADS)
Buxner, Sanlyn; Dalton, H.; Shipp, S.; CoBabe-Ammann, E.; Scalice, D.; Bleacher, L.; Wessen, A.
2013-10-01
The Planetary Science Education and Public Outreach (E/PO) Forum is a team of educators, scientists, and outreach professionals funded by NASA’s Science Mission Directorate (SMD) that supports SMD scientists currently involved in E/PO - or interested in becoming involved in E/PO efforts - to find ways to do so through a variety of avenues. There are many current and future opportunities and resources for scientists to become engaged in E/PO. The Forum provides tools for responding to NASA SMD E/PO funding opportunities (webinars and online proposal guides), a one-page Tips and Tricks guide for scientists to engage in education and public outreach, and a sampler of activities organized by thematic topic and NASA’s Big Questions in planetary science. Scientists can also locate resources for interacting with diverse audiences through a number of online clearinghouses, including: NASA Wavelength, a digital collection of peer-reviewed Earth and space science resources for educators of all levels (http://nasawavelength.org); the Year of the Solar System website (http://solarsystem.nasa.gov/yss), a presentation of thematic resources that includes background information, missions, the latest in planetary science news, and educational products, for use in the classroom and out, for teaching about the solar system organized by topic - volcanism, ice, astrobiology, etc.; and EarthSpace (http://www.lpi.usra.edu/earthspace), a community website where faculty can find and share resources and information about teaching Earth and space sciences in the undergraduate classroom, including class materials, news, funding opportunities, and the latest education research. Also recently developed, the NASA SMD Scientist Speaker’s Bureau (http://www.lpi.usra.edu/education/speaker) offers an online portal to connect scientists interested in getting involved in E/PO projects - giving public talks, classroom visits, and virtual connections - with audiences. Learn more about the opportunities to become involved in E/PO and to share your science with students, educators, and the general public at http://smdepo.org.
From Laboratories to Classrooms: Involving Scientists in Science Education
NASA Astrophysics Data System (ADS)
DeVore, E. K.
2001-12-01
Scientists play a key role in science education: the adventure of making new discoveries excites and motivates students. Yet, American science education test scores lag behind those of other industrial countries, and the call for better science, math and technology education is widespread. Thus, improving American science, math and technological literacy is a major educational goal for the NSF and NASA. Today, funding for research often carries a requirement that the scientist be actively involved in education and public outreach (E/PO) to enhance the science literacy of students, teachers and citizens. How can scientists contribute effectively to E/PO? What roles can scientists take in E/PO? And, how can this be balanced with research requirements and timelines? This talk will focus on these questions, with examples drawn from the author's projects that involve scientists in working with K-12 teacher professional development and with K-12 curriculum development and implementation. Experiences and strategies for teacher professional development in the research environment will be discussed in the context of NASA's airborne astronomy education and outreach projects: the Flight Opportunities for Science Teacher EnRichment project and the future Airborne Ambassadors Program for NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA). Effective partnerships with scientists as content experts in the development of new classroom materials will be described with examples from the SETI Institute's Life in the Universe curriculum series for grades 3-9, and Voyages Through Time, an integrated high school science course. The author and the SETI Institute wish to acknowledge funding as well as scientific and technical support from the National Science Foundation, the National Aeronautics and Space Administration, the Hewlett Packard Company, the Foundation for Microbiology, and the Combined Federated Charities.
NASA Astrophysics Data System (ADS)
Metoyer, S.; Prouhet, T.; Radencic, S.
2007-12-01
The nature of science and the nature of learning are often assumed to have little practical relationship to each other. Scientists conduct research and science teachers teach. Rarely do the scientist and the science teacher have an opportunity to learn from each other. Here we describe results from a program funded by NSF, the Information Technology in Science (ITS) Center for Teaching and Learning. The ITS Center provided the support and structure necessary for successful long-term collaboration among scientists, science teachers, and education researchers that has resulted in the creation of new science education specialists. These specialists are not only among the science teachers, but also include avid recruits to science education from the scientists themselves. Science teachers returned to their classrooms armed with new knowledge of content, inquiry, and ideas for technology tools that could support and enhance students' scientific literacy. Teachers developed and implemented action research plans as a means of exploring educational outcomes of their use and understanding of new technologies and inquiry applied to the classroom. In other words, they tried something different in the class related to authentic inquiry and technology. They then assessed the students' to determine if there was an impact to the students in some way. Many of the scientists, on the other hand, report that they have modified their instructional practices for undergraduate courses based on their experiences with the teachers and the ITS Center. Some joined other collaborative projects pairing scientists and educators. And, many of the scientists continue on-going communication with the science teachers serving as mentors, collaborators, and as an "expert" source for the students to ask questions to. In order to convey the success of this partnership, we illustrate and discuss four interdependent components. First, costs and benefits to the science teacher are discussed through case studies, survey results, and descriptive categories. Costs and benefits to the scientist are discussed through the use of case studies, surveys, and observations. Third, student learning outcomes from a case study are presented. It is argued that the partnership created the opportunity for the integration of imaginative tools of science (specifically GIS in the case study) and authentic science inquiry. The last component is the discussion of the various tools of science utilized by the scientists for their research, taught to the science teachers by the scientists, and then taught to the students by the science teachers. At each step the technology was modified to fit the levels and applications of the specific science teacher, the grade level taught, and the content area taught. Examples of imaginative tools utilized include Geographic Information System (GIS), Global Positioning System (GPS), Google Earth, time-lapse photography, digital microscopy, and Excel. In summary, by examining this collaborative partnership through the lens of the scientists, the science teachers, and the science teachers' students it is evident that this partnership has created new science education specialists and can ultimately improve scientific literacy in K-12 students. Reference: NRC (2005). How Students Learn. The National Academies Press. Washington D.C.
Infrared Astronomy in Science and Education
ERIC Educational Resources Information Center
Mayeur, Paul Anthony
2013-01-01
This dissertation looks at the effects of an educator-scientist partnership on the creation of an inquiry based science lesson for the middle school classroom. The lesson was initially created by a scientist following their science research, but changed as the scientist began working with teachers. The changes in the lesson show that scientists…
Working with Scientists Who Interact with Public Audiences
NASA Astrophysics Data System (ADS)
Schatz, D.; Witzel, L.; Gurton, S.; McCann, S. E.
2015-11-01
President Obama has called for all STEM-based federal employees to share their expertise and passion with the public. Alan Leshner, Executive Director of AAAS, has advocated the same for all scientists. But what are the best ways to prepare scientists as effective science communicators? How do scientists find resources to become better science communicators? How do scientists connect with other scientists interested in education and outreach? This panel, with representatives from an informal science education institution, a university, and a professional association, offered insights to answer these questions from their experience of working with scientists engaged with public audiences.
A Scientist's Guide to Achieving Broader Impacts through K-12 STEM Collaboration.
Komoroske, Lisa M; Hameed, Sarah O; Szoboszlai, Amber I; Newsom, Amanda J; Williams, Susan L
2015-03-01
The National Science Foundation and other funding agencies are increasingly requiring broader impacts in grant applications to encourage US scientists to contribute to science education and society. Concurrently, national science education standards are using more inquiry-based learning (IBL) to increase students' capacity for abstract, conceptual thinking applicable to real-world problems. Scientists are particularly well suited to engage in broader impacts via science inquiry outreach, because scientific research is inherently an inquiry-based process. We provide a practical guide to help scientists overcome obstacles that inhibit their engagement in K-12 IBL outreach and to attain the accrued benefits. Strategies to overcome these challenges include scaling outreach projects to the time available, building collaborations in which scientists' research overlaps with curriculum, employing backward planning to target specific learning objectives, encouraging scientists to share their passion, as well as their expertise with students, and transforming institutional incentives to support scientists engaging in educational outreach.
NASA Astrophysics Data System (ADS)
Buxner, Sanlyn; Bracey, Georgia; Summer, Theresa; Cobb, Whitney; Gay, Pamela L.; Finkelstein, Keely D.; Gurton, Suzanne; Felix-Strishock, Lisa; Kruse, Brian; Lebofsky, Larry A.; Jones, Andrea J.; Tweed, Ann; Graff, Paige; Runco, Susan; Noel-Storr, Jacob; CosmoQuest Team
2016-10-01
CosmoQuest is a Citizen Science Virtual Research Facility that engages scientists, educators, students, and the public in analyzing NASA images. Often, these types of citizen science activities target enthusiastic members of the public, and additionally engage students in K-12 and college classrooms. To support educational engagement, we are developing a pipeline in which formal and informal educators and facilitators use the virtual research facility to engage students in real image analysis that is framed to provide meaningful science learning. This work also contributes to the larger project to produce publishable results. Community scientists are being solicited to propose CosmoQuest Science Projects take advantage of the virtual research facility capabilities. Each CosmoQuest Science Project will result in formal education materials, aligned with Next Generation Science Standards including the 3-dimensions of science learning; core ideas, crosscutting concepts, and science and engineering practices. Participating scientists will contribute to companion educational materials with support from the CosmoQuest staff of data specialists and education specialists. Educators will be trained through in person and virtual workshops, and classrooms will have the opportunity to not only work with NASA data, but interface with NASA scientists. Through this project, we are bringing together subject matter experts, classrooms, and informal science organizations to share the excitement of NASA SMD science with future citizen scientists. CosmoQuest is funded through individual donations, through NASA Cooperative Agreement NNX16AC68A, and through additional grants and contracts that are listed on our website, cosmoquest.org.
Avenues for Scientist Involvement in Earth and Space Science Education and Public Outreach (Invited)
NASA Astrophysics Data System (ADS)
Peticolas, L. M.; Gross, N. A.; Hsu, B. C.; Shipp, S. S.; Buxner, S.; Schwerin, T. G.; Smith, D.; Meinke, B. K.
2013-12-01
NASA's Science Mission Directorate (SMD) Science Education and Public Outreach (E/PO) Forums are charged with engaging, extending, supporting, and coordinating the community of E/PO professionals and scientists involved in Earth and space science education activities. This work is undertaken to maximize the effectiveness and efficiency of the overall national NASA science education and outreach effort made up of individual efforts run by these education professionals. This includes facilitating scientist engagement in education and outreach. A number of resources and opportunities for involvement are available for scientists involved in - or interested in being involved in - education or outreach. The Forums provide opportunities for earth and space scientists to stay informed, communicate, collaborate, leverage existing programs and partnerships, and become more skilled education practitioners. Interested scientists can receive newsletters, participate in monthly calls, interact through an online community workspace, and attend E/PO strategic meetings. The Forums also provide professional development opportunities on a myriad of topics, from common pre-conceptions in science, to program evaluation, to delivering effective workshops. Thematic approaches, such as Earth Science Week (http://www.earthsciweek.org), and the Year of the Solar System (http://solarsystem.nasa.gov/yss) are coordinated by the Forums; through these efforts resources are presented topically, in a manner that can be easily ported into diverse learning environments. Information about the needs of audiences with which scientists interact - higher education, K-12 education, informal education, and public - are provided by SMD's Audience-Based Working Groups. Their findings and recommendations are made available to inform the activities and products of E/PO providers so they are able to better serve these audiences. Also available is a 'one-stop shop' of SMD E/PO products and resources that can be used in conjunction with E/PO activities, NASA Wavelength (http://nasawavelength.org). Further supporting higher-education efforts, the Forums coordinate a network of science faculty, bringing them together at science conferences to share resources and experiences and to discuss pertinent education research. An online higher education clearinghouse, EarthSpace (http://www.lpi.usra.edu/earthspace), has been developed to provide faculty with news and funding information, the latest education research and resources for teaching undergraduates, and undergraduate course materials, including lectures, labs, and homework. This presentation will explore the Science E/PO Forums' pathways and tools available to support scientists involved in - or interested in being involved in - E/PO.
Opportunities and Resources for Scientist Participation in Education and Public Outreach
NASA Astrophysics Data System (ADS)
Buxner, Sanlyn; CoBabe-Ammann, E.; Shipp, S.; Hsu, B.
2012-10-01
Active engagement of scientists in Education and Public Outreach (E/PO) activities results in benefits for both the audience and scientists. Most scientists are trained in research but have little formal training in education. The Planetary Science Education and Public Outreach (E/PO) Forum helps the Science Mission Directorate support scientists currently involved in E/PO and to help scientists who are interested in becoming involved in E/PO efforts find ways to do so through a variety of avenues. We will present current and future opportunities and resources for scientists to become engaged in education and public outreach. These include upcoming NASA SMD E/PO funding opportunities, professional development resources for writing NASA SMD E/PO proposals (webinars and other online tools), toolkits for scientists interested in best practices in E/PO (online guides for K-12 education and public outreach), EarthSpace (a community web space where instructors can find and share about teaching space and earth sciences in the undergraduate classroom, including class materials news and funding opportunities, and the latest education research), thematic resources for teaching about the solar system (archived resources from Year of the Solar System), and an online database of scientists interested in connecting with education programs. Learn more about the Forum and find resources at http://smdepo.org/.
NASA Astrophysics Data System (ADS)
Buxner, S.; Grier, J.; Meinke, B. K.; Gross, N. A.; Woroner, M.
2014-12-01
The NASA Science Education and Public Outreach (E/PO) Forums support the NASA Science Mission Directorate (SMD) and its E/PO community by enhancing the coherency and efficiency of SMD-funded E/PO programs. The Forums foster collaboration and partnerships between scientists with content expertise and educators with pedagogy expertise. We will present tools to engage and resources to support scientists' engagement in E/PO efforts. Scientists can get connected to educators and find support materials and links to resources to support their E/PO work through the online SMD E/PO community workspace (http://smdepo.org) The site includes resources for scientists interested in E/PO including one page guides about "How to Get Involved" and "How to Increase Your Impact," as well as the NASA SMD Scientist Speaker's Bureau to connect scientists to audiences across the country. Additionally, there is a set of online clearinghouses that provide ready-made lessons and activities for use by scientists and educators: NASA Wavelength (http://nasawavelength.org/) and EarthSpace (http://www.lpi.usra.edu/earthspace/). The NASA Forums create and partner with organizations to provide resources specifically for undergraduate science instructors including slide sets for Earth and Space Science classes on the current topics in astronomy and planetary science. The Forums also provide professional development opportunities at professional science conferences each year including AGU, LPSC, AAS, and DPS to support higher education faculty who are teaching undergraduate courses. These offerings include best practices in instruction, resources for teaching planetary science and astronomy topics, and other special topics such as working with diverse students and the use of social media in the classroom. We are continually soliciting ways that we can better support scientists' efforts in effectively engaging in E/PO. Please contact Sanlyn Buxner (buxner@psi.edu) or Jennifer Grier (jgrier@psi.edu) to give us feedback on these resources or others you would like to see.
NASA Astrophysics Data System (ADS)
Ritchie, Stephen M.; Kidman, Gillian; Vaughan, Tanya
2007-01-01
Members of particular communities produce and reproduce cultural practices. This is an important consideration for those teacher educators who need to prepare appropriate learning experiences and programs for scientists, as they attempt to change careers to science teaching. We know little about the transition of career-changing scientists as they encounter different contexts and professional cultures, and how their changing identities might impact on their teaching practices. In this narrative inquiry of the stories told by and shared between career-changing scientists in a teacher-preparation program, we identify cover stories of science and teaching. More importantly, we show how uncovering these stories became opportunities for one of these scientists to learn about what sorts of stories of science she tells or should tell in science classrooms and how these stories might impact on her identities as a scientist-teacher in transition. We highlight self-identified contradictions and treat these as resources for further professional learning. Suggestions for improving the teacher-education experiences of scientist-teachers are made. In particular, teacher educators might consider the merits of creating opportunities for career-changing scientists to share their stories and for these stories to be retold for different audiences.
Scientists Interacting With University Science Educators
NASA Astrophysics Data System (ADS)
Spector, B. S.
2004-12-01
Scientists with limited time to devote to educating the public about their work will get the greatest multiplier effect for their investment of time by successfully interacting with university science educators. These university professors are the smallest and least publicized group of professionals in the chain of people working to create science literate citizens. They connect to all aspects of formal and informal education, influencing everything from what and how youngsters and adults learn science to legislative rulings. They commonly teach methods of teaching science to undergraduates aspiring to teach in K-12 settings and experienced teachers. They serve as agents for change to improve science education inside schools and at the state level K-16, including what science content courses are acceptable for teacher licensure. University science educators are most often housed in a College of Education or Department of Education. Significant differences in culture exist in the world in which marine scientists function and that in which university science educators function, even when they are in the same university. Subsequently, communication and building relationships between the groups is often difficult. Barriers stem from not understanding each other's roles and responsibilities; and different reward systems, assumptions about teaching and learning, use of language, approaches to research, etc. This presentation will provide suggestions to mitigate the barriers and enable scientists to leverage the multiplier effect saving much time and energy while ensuring the authenticity of their message is maintained. Likelihood that a scientist's message will retain its authenticity stems from criteria for a university science education position. These professors have undergraduate degrees in a natural science (e.g., biology, chemistry, physics, geology), and usually a master's degree in one of the sciences, a combination of natural sciences, or a master's including about eighteen hours in a natural science. Their doctorates in science education include in-depth understanding of how people construct basic science concepts and ways to mitigate conceptions not consistent with current science. They have learned ways to transform scientific information to various audiences enabling learners to construct meaningful understanding of science phenomena, the nature of science, and its historical and philosophical underpinnings. Lessons learned from current and past innovations will be presented.
Internet Links for Science Education: Student-Scientist Partnerships.
ERIC Educational Resources Information Center
Cohen, Karen C., Ed.
This volume focuses on Student-Scientist Partnerships (SSPs) and illustrates the workings and effectiveness of this new paradigm and growing force in science education. The chapters are: chapter 1, "Student-Scientist Partnerships: Shrewd Maneuvers" (Robert F. Tinker); chapter 2, "The GLOBE Program: A Model for International Environmental…
Promoting Pre-college Science Education
NASA Astrophysics Data System (ADS)
Lee, R. L.
1999-11-01
The Fusion Education Program, with support from DOE, continues to promote pre-college science education for students and teachers using multiple approaches. An important part of our program is direct scientist-student interaction. Our ``Scientist in a Classroom'' program allows students to interact with scientists and engage in plasma science activities in the students' classroom. More than 1000 students from 11 schools have participated in this exciting program. Also, this year more than 800 students and teachers have visited the DIII--D facility and interacted with scientists to cover a broad range of technical and educational issues. Teacher-scientist interaction is imperative in professional development and each year more than 100 teachers attend workshops produced by the fusion education team. We also participate in unique learning opportunities. Members of the team, in collaboration with the San Diego County Office of Education, held a pioneering Internet-based Physics Olympiad for American and Siberian students. Our teamwork with educators helps shape material that is grade appropriate, relevant, and stimulates thinking in educators and students.
Infrared astronomy in science and education
NASA Astrophysics Data System (ADS)
Mayeur, Paul Anthony
This dissertation looks at the effects of an educator-scientist partnership on the creation of an inquiry based science lesson for the middle school classroom. The lesson was initially created by a scientist following their science research, but changed as the scientist began working with teachers. The changes in the lesson show that scientists and educators may not agree on what is considered appropriate for a science lesson because of time commitment and grade level. However, by working together the partnership is able to reach a compromise of the lesson that allows for the students to get the best possible outcome. This dissertation also shows that science research is a method of inquiry, which can be brought to the classroom through inquiry education. The science research the lesson followed looks at the interstellar dust cloud DC 314.8-5.1, which is unique because of the cloud's proximity to a B-type star with no known association. This thesis did a survey of the area looking for background sources that can be used for future spectroscopical studies. Further, the survey led to the discovery of two possible young stellar objects. In order to fuel educator-scientist interaction and to bring inquiry education into the middle school classroom a scientist created a web-based science lesson that incorporated real NASA data into the middle-school classroom. This lesson was based on the scientist's research in infrared astronomy within the broader context of astrobiology. The lesson includes students plotting real data; in the process the students learn about infrared radiation, star color, and the wavelength/temperature relationship. These are all topics that were studied in the scientist's research, which led the scientist to the idea of creating a lesson for the middle-school classroom. This lesson is based on the principles of inquiry-based learning. Inquiry lessons can bring together these ideas into one place and hopefully inspire new generations to explore the world and universe through science. The scientist then worked with five teachers to edit the lesson for each teacher's classroom. For four of five teachers the lesson changed from an online based lesson that used Excel to a PowerPoint presentation and paper graphing. It is shown here that partnerships between scientists and educators are beneficial for both parties as it allows scientists to understand how to communicate their scientific findings to the general public, while allowing teachers to stay updated with the most advanced science research.
Growing scientists: A partnership between a university and a school district
NASA Astrophysics Data System (ADS)
Woods, Teresa Marie
Precollege science education in the United States has virtually always been influenced by university scientists to one degree or another. Partnership models for university scientist---school district collaborations are being advocated to replace outreach models. Although the challenges for such partnerships are well documented, the means of fostering successful and sustainable science education partnerships are not well studied. This study addresses this need by empirically researching a unique scientist-educator partnership between a university and a school district utilizing case study methods. The development of the partnership, emerging issues, and multiple perspectives of participants were examined in order to understand the culture of the partnership and identify means of fostering successful science education partnerships. The findings show the partnership was based on a strong network of face-to-face relationships that fostered understanding, mutual learning and synergy. Specific processes instituted ensured equity and respect, and created a climate of trust so that an evolving common vision was maintained. The partnership provided synergy and resilience during the recent economic crisis, indicating the value of partnerships when public education institutions must do more with less. High staff turnover, however, especially of a key leader, threatened the partnership, pointing to the importance of maintaining multiple-level integration between institutions. The instrumental roles of a scientist-educator coordinator in bridging cultures and nurturing the collaborative environment are elucidated. Intense and productive collaborations between teams of scientists and educators helped transform leading edge disciplinary science content into school science learning. The innovative programs that resulted not only suggest important roles science education partnerships can play in twenty-first century learning, but they also shed light on the processes of educational innovation itself. Further, the program and curriculum development revealed insights into areas of teaching and learning. Multiple perspectives of participants were considered in this study, with student perspectives demonstrating the critical importance of investigating student views in future studies. When educational institutions increasingly need to address a diverse population, and scientists increasingly want to recruit diverse students into the fields of science, partnerships show promise in creating a seamless K-20+ continuum of science education.
A Tale of Two scientists and their Involvement in Education & Outreach
NASA Astrophysics Data System (ADS)
McDonnell, J.
2004-12-01
Many scientists, when faced with developing an education and outreach plan for their research proposals, are unclear on what kinds of impacts they can have on broader non scientist audiences. Many scientists feel their only options are to develop a website or invite a teacher to get involved in their sampling or research cruises. Scientists, who are constrained by time and resources, are not aware of the range of education and outreach options available to them and of the great value their involvement can bring to the public. In an recent survey at the National Science Foundation sponsored ORION conference (January 2004), respondents stated that the greatest public benefits to having scientists involved in public education are (1) that they can present the benefits and relevance of research (26%), (2) focus awareness on environmental issues (26%), (3) serve as models for teachers and motivators for children (25%) and (4) increase public understanding, awareness and appreciation of science (about 22%). As a member of the Mid-Atlantic Center for Ocean Sciences Education Excellence (MACOSEE), the Institute of Marine & Coastal Sciences (IMCS) at Rutgers University is dedicated to helping scientists and educators realize the benefits of working together to advance ocean discovery and make known the vital role of the ocean in our lives. A website called "Scientist Connection" (www.macosee.net) was developed to help busy scientists choose a role in education and outreach that will make the most of their talent and time. The goal of the web site is to help scientists produce a worthwhile education project that complements and enriches their research. In this session, the author will present two case studies that demonstrate very different but effective approaches to scientist's involvement in education and outreach projects. In the first case, we will chronicle how a team of biologists and oceanographers in the Rutgers University, Coastal Ocean Observation Laboratory (or COOLroom) developed the education and outreach capacity to serve thousands of boaters, fisherman, and tourists daily with their real-time data products from experimental coastal observing systems. We also will touch on how scientists and educators at IMCS leveraged additional grants to support the translation of data and information from the coastal observatories into an instructional product called COOL Classroom, usable by educators and the public. This case study will show how MACOSEE is striving to use observing systems to provide the scientific backbone for an integrated program of science and education that improves user access to, and understanding of, modern ocean science and how it affects our daily lives. In the second case, we will show how Rutgers scientists are working with print media to support education and outreach. We will tell the story of how a small newspaper pilot project grew into a university wide mechanism for scientists to reach a half a million newspaper readers for minimal cost and time investment to the scientist.
A Scientist's Guide to Science Denial
NASA Astrophysics Data System (ADS)
Rosenau, J.
2012-12-01
Why are so many scientifically uncontroversial topics, from evolution and the age of the earth to climate change and vaccines, so contentious in society? The American public respects science and scientists, yet seems remarkably unaware of - or resistant to accepting - what scientists have learned about the world around us. This resistance holds back science education and undermines public policy discussions. Scientists and science communicators often react to science denial as if it were a question of scientific knowledge, and respond by trying to correct false scientific claims. Many independent lines of evidence show that science denial is not primarily about science. People reject scientific claims which seem to conflict with their personal identity - often because they believe that accepting those claims would threaten some deeply-valued cultural, political, or religious affiliation. Only by identifying, addressing, and defusing the underlying political and cultural concerns can educators, scientists, and science communicators undo the harm done by science denial.
Next Generation Science Partnerships
NASA Astrophysics Data System (ADS)
Magnusson, J.
2016-02-01
I will provide an overview of the Next Generation Science Standards (NGSS) and demonstrate how scientists and educators can use these standards to strengthen and enhance their collaborations. The NGSS are rich in content and practice and provide all students with an internationally-benchmarked science education. Using these state-led standards to guide outreach efforts can help develop and sustain effective and mutually beneficial teacher-researcher partnerships. Aligning outreach with the three dimensions of the standards can help make research relevant for target audiences by intentionally addressing the science practices, cross-cutting concepts, and disciplinary core ideas of the K-12 science curriculum that drives instruction and assessment. Collaborations between researchers and educators that are based on this science framework are more sustainable because they address the needs of both scientists and educators. Educators are better able to utilize science content that aligns with their curriculum. Scientists who learn about the NGSS can better understand the frameworks under which educators work, which can lead to more extensive and focused outreach with teachers as partners. Based on this model, the International Ocean Discovery Program (IODP) develops its education materials in conjunction with scientists and educators to produce accurate, standards-aligned activities and curriculum-based interactions with researchers. I will highlight examples of IODP's current, successful teacher-researcher collaborations that are intentionally aligned with the NGSS.
NASA Astrophysics Data System (ADS)
Marshall, Eric
2009-03-01
Science centers, professional associations, corporations and university research centers share the same mission of education and outreach, yet come from ``different worlds.'' This gap may be bridged by working together to leverage unique strengths in partnership. Front-end evaluation results for the development of new resources to support these (mostly volunteer-based) partnerships elucidate the factors which lead to a successful relationship. Maintaining a science museum-scientific community partnership requires that all partners devote adequate resources (time, money, etc.). In general, scientists/engineers and science museum professionals often approach relationships with different assumptions and expectations. The culture of science centers is distinctly different from the culture of science. Scientists/engineers prefer to select how they will ultimately share their expertise from an array of choices. Successful partnerships stem from clearly defined roles and responsibilities. Scientists/engineers are somewhat resistant to the idea of traditional, formal training. Instead of developing new expertise, many prefer to offer their existing strengths and expertise. Maintaining a healthy relationship requires the routine recognition of the contributions of scientists/engineers. As professional societies, university research centers and corporations increasingly engage in education and outreach, a need for a supportive infrastructure becomes evident. Work of TryScience.org/VolTS (Volunteers TryScience), the MRS NISE Net (Nanoscale Informal Science Education Network) subcommittee, NRCEN (NSF Research Center Education Network), the IBM On Demand Community, and IEEE Educational Activities exemplify some of the pieces of this evolving infrastructure.
Survey of K-12 Science Teachers' Educational Product Needs from Planetary Scientists
ERIC Educational Resources Information Center
Slater, Stephanie J.; Slater, Timothy F.; Olsen, Julia K.
2009-01-01
Most education reform documents of the last two decades call for students to have authentic science inquiry experiences that mimic scientific research using real scientific data. In order for professional planetary scientists to provide the most useful data and professional development for K-12 teachers in support of science education reform, an…
Scientists, Spirituality and Education for Life.
ERIC Educational Resources Information Center
Harlen, Wynne
1986-01-01
In August 1985, almost 300 scientists and science educators came together in Bangalore, India, from over 70 different countries, including both developed and developing nations, to take part in a conference on science and technology, education, and future human needs. The conference is described. (RM)
Building Ocean Learning Communities: A COSEE Science and Education Partnership
NASA Astrophysics Data System (ADS)
Robigou, V.; Bullerdick, S.; Anderson, A.
2007-12-01
The core mission of the Centers for Ocean Sciences Education Excellence (COSEE) is to promote partnerships between research scientists and educators through a national network of regional and thematic centers. In addition, the COSEEs also disseminate best practices in ocean sciences education, and promote ocean sciences as a charismatic interdisciplinary vehicle for creating a more scientifically literate workforce and citizenry. Although each center is mainly funded through a peer-reviewed grant process by the National Science Foundation (NSF), the centers form a national network that fosters collaborative efforts among the centers to design and implement initiatives for the benefit of the entire network and beyond. Among these initiatives the COSEE network has contributed to the definition, promotion, and dissemination of Ocean Literacy in formal and informal learning settings. Relevant to all research scientists, an Education and Public Outreach guide for scientists is now available at www.tos.org. This guide highlights strategies for engaging scientists in Ocean Sciences Education that are often applicable in other sciences. To address the challenging issue of ocean sciences education informed by scientific research, the COSEE approach supports centers that are partnerships between research institutions, formal and informal education venues, advocacy groups, industry, and others. The COSEE Ocean Learning Communities, is a partnership between the University of Washington College of Ocean and Fishery Sciences and College of Education, the Seattle Aquarium, and a not-for-profit educational organization. The main focus of the center is to foster and create Learning Communities that cultivate contributing, and ocean sciences-literate citizens aware of the ocean's impact on daily life. The center is currently working with volunteer groups around the Northwest region that are actively involved in projects in the marine environment and to empower these diverse groups including research scientists, formal and informal educators, business representatives, and non-profit groups to identify ocean-related problems, and develop solutions to share with their own communities. COSEE OLC practices and studies the skills of developing these collaborations.
NASA Astrophysics Data System (ADS)
Foster, S. Q.
2002-12-01
With the establishment of an Office of Education and Outreach (EO) in 2000 and the adoption of a five-year EO strategic plan in 2001, the University Corporation for Atmospheric Research (UCAR) committed to augment the involvement of AGU scientists and their partners in education and public outreach activities that represent the full spectrum of research in the atmospheric and related sciences. In 2002, a comprehensive program is underway which invites scientists from UCAR, the National Center for Atmospheric Research (NCAR), and UCAR Office of Programs (UOP) into partnership with EO through volunteer orientation workshops, program specific training, skill-building in pedagogy, access to classroom resources, and program and instructor evaluation. Scientists contribute in one or several of the following roles: program partners who bridge research to education through collaborative grant proposals; science content advisors for publications, web sites, exhibits, and informal science events; science mentors for high school and undergraduate students; NCAR Mesa Laboratory tour guides; scientists in the schools; science education ambassadors to local and national community events; science speakers for EO programs, conferences, and meetings of local organization; and science wizards offering demonstrations at public events for children and families. This new EO initiative seeks to match the expertise and specific interests of scientists with appropriate activities, while also serving as a communications conduit through which ideas for new activities and resources can be seeded and eventually developed into viable, fully funded programs.
NASA Astrophysics Data System (ADS)
Podrasky, A.; Covitt, B. A.; Woessner, W.
2017-12-01
The availability of clean water to support human uses and ecological integrity has become an urgent interest for many scientists, decision makers and citizens. Likewise, as computational capabilities increasingly revolutionize and become integral to the practice of science, technology, engineering and math (STEM) disciplines, the STEM+ Computing (STEM+C) Partnerships program seeks to integrate the use of computational approaches in K-12 STEM teaching and learning. The Comp Hydro project, funded by a STEM+C grant from the National Science Foundation, brings together a diverse team of scientists, educators, professionals and citizens at sites in Arizona, Colorado, Maryland and Montana to foster water literacy, as well as computational science literacy, by integrating authentic, place- and data- based learning using physical, mathematical, computational and conceptual models. This multi-state project is currently engaging four teams of six teachers who work during two academic years with educators and scientists at each site. Teams work to develop instructional units specific to their region that integrate hydrologic science and computational modeling. The units, currently being piloted in high school earth and environmental science classes, provide a classroom context to investigate student understanding of how computation is used in Earth systems science. To develop effective science instruction that is rich in place- and data- based learning, effective collaborations between researchers, educators, scientists, professionals and citizens are crucial. In this poster, we focus on project implementation in Montana, where an instructional unit has been developed and is being tested through collaboration among University scientists, researchers and educators, high school teachers and agency and industry scientists and engineers. In particular, we discuss three characteristics of effective collaborative science education design for developing and implementing place- and data- based science education to support students in developing socio-scientific and computational literacy sufficient for making decisions about real world issues such as groundwater contamination. These characteristics include that science education experiences are real, responsive/accessible and rigorous.
What Scientists Say: Scientists' Views of Nature of Science and Relation to Science Context
ERIC Educational Resources Information Center
Schwartz, Renee; Lederman, Norman
2008-01-01
The purpose of this study is to examine practicing scientists' views of nature of science (NOS) and explore possible relationships between these views and science context. Science educators emphasize teaching NOS through inquiry-based learning experiences throughout science disciplines. Yet aspects of NOS that are agreed upon as relevant to…
We Need You! The Importance of Scientist Involvement in Education and Public Outreach (E/PO)
NASA Astrophysics Data System (ADS)
Buxner, S.; Hsu, B. C.; Meinke, B. K.; Shipp, S. S.; Schwerin, T. G.; Peticolas, L. M.; Smith, D.; Dalton, H.
2013-12-01
Active engagement of scientists in education and public outreach (E/PO) activities is beneficial for scientists, classrooms, and the general public. Scientist visibility in the public arena is important to garner public support, whose tax dollars fund scientific programs. Scientists are important disseminators of current, accurate scientific knowledge. They also, perhaps more importantly, understand the nature and process of science and have the means of understanding and addressing many of the issues facing society. Research has shown that while the public is interested in science, not all members are necessarily scientifically literate; additionally there is evidence than many students are not prepared for, or choosing to participate in science careers. And yet, a scientifically engaged, literate, and supportive public is a necessary partner in addressing important global challenges of the future. E/PO is a wonderful opportunity for scientists to demonstrate that science is interesting, exciting, fun, challenging, and relevant to society. In doing so, they can transfer ownership of science to the public through a variety of vehicles by increasing access to scientific thought and discovery. Through partnerships with E/PO professionals, teachers, or journalists, scientists can improve their communication and teaching skills, whether in an E/PO setting or their higher education careers. Sharing with the public what scientists do is an effective way to engage people in the scientific process and to express scientists' enthusiasm for what they do. Scientist involvement in E/PO also shows the public that scientists are real people and provides important role models for the next generation of scientists. There are many opportunities to get involved in E/PO! Find information on EarthSpace, a national clearinghouse for higher education materials in Earth and space science through an abstract by Nicholas Gross, et al. Learn about NASA Science Mission Directorate (SMD)'s Scientist Speaker's Bureau in an abstract by Heather Dalton, et al. Discover the many resources and opportunities provided by NASA SMD's Science E/PO Forums in abstracts by Stephanie Shipp, et al. and Laura Peticolas, et al. Join the fun - get involved in E/PO!
NASA Astrophysics Data System (ADS)
Wegner, K.; Herrin, S.; Schmidt, C.
2015-12-01
Scientists play an integral role in the development of climate literacy skills - for both teachers and students alike. By partnering with local scientists, teachers can gain valuable insights into the science practices highlighted by the Next Generation Science Standards (NGSS), as well as a deeper understanding of cutting-edge scientific discoveries and local impacts of climate change. For students, connecting to local scientists can provide a relevant connection to climate science and STEM skills. Over the past two years, the Climate Voices Science Speakers Network (climatevoices.org) has grown to a robust network of nearly 400 climate science speakers across the United States. Formal and informal educators, K-12 students, and community groups connect with our speakers through our interactive map-based website and invite them to meet through face-to-face and virtual presentations, such as webinars and podcasts. But creating a common language between scientists and educators requires coaching on both sides. In this presentation, we will present the "nitty-gritty" of setting up scientist-educator collaborations, as well as the challenges and opportunities that arise from these partnerships. We will share the impact of these collaborations through case studies, including anecdotal feedback and metrics.
NASA Technical Reports Server (NTRS)
Wegner, Kristin; Herrin, Sara; Schmidt, Cynthia
2015-01-01
Scientists play an integral role in the development of climate literacy skills - for both teachers and students alike. By partnering with local scientists, teachers can gain valuable insights into the science practices highlighted by the Next Generation Science Standards (NGSS), as well as a deeper understanding of cutting-edge scientific discoveries and local impacts of climate change. For students, connecting to local scientists can provide a relevant connection to climate science and STEM skills. Over the past two years, the Climate Voices Science Speakers Network (climatevoices.org) has grown to a robust network of nearly 400 climate science speakers across the United States. Formal and informal educators, K-12 students, and community groups connect with our speakers through our interactive map-based website and invite them to meet through face-to-face and virtual presentations, such as webinars and podcasts. But creating a common language between scientists and educators requires coaching on both sides. In this presentation, we will present the "nitty-gritty" of setting up scientist-educator collaborations, as well as the challenges and opportunities that arise from these partnerships. We will share the impact of these collaborations through case studies, including anecdotal feedback and metrics.
A Scientist's Guide to Achieving Broader Impacts through K–12 STEM Collaboration
Komoroske, Lisa M.; Hameed, Sarah O.; Szoboszlai, Amber I.; Newsom, Amanda J.; Williams, Susan L.
2015-01-01
The National Science Foundation and other funding agencies are increasingly requiring broader impacts in grant applications to encourage US scientists to contribute to science education and society. Concurrently, national science education standards are using more inquiry-based learning (IBL) to increase students’ capacity for abstract, conceptual thinking applicable to real-world problems. Scientists are particularly well suited to engage in broader impacts via science inquiry outreach, because scientific research is inherently an inquiry-based process. We provide a practical guide to help scientists overcome obstacles that inhibit their engagement in K–12 IBL outreach and to attain the accrued benefits. Strategies to overcome these challenges include scaling outreach projects to the time available, building collaborations in which scientists’ research overlaps with curriculum, employing backward planning to target specific learning objectives, encouraging scientists to share their passion, as well as their expertise with students, and transforming institutional incentives to support scientists engaging in educational outreach. PMID:26955078
Everyone Learns: The Joys of Sharing Your Science with Students and Educators
NASA Technical Reports Server (NTRS)
deColstounBrown, Eric
2010-01-01
Have you found yourself asking questions such as: "What needs to be considered when working with students? How can I best communicate my science to the public? I have an idea for an educational project, but how do I get money to make it happen?"? During this presentation, we will present case studies where scientists have engaged in meaningful dialogues and experiences with students, teachers, museum and science center staff, and the general public. We will also present products and programs that are ready-made opportunities for scientists looking to get their feet wet in education and public outreach. As a result of this presentation, attendees will be made aware of existing efforts that enable scientists to get involved in education and public outreach as well as NASA opportunities for scientists to fund their educational projects.
Avenues for Scientist Involvement in Planetary Science Education and Public Outreach
NASA Astrophysics Data System (ADS)
Shipp, S. S.; Buxner, S.; Cobabe-Ammann, E. A.; Dalton, H.; Bleacher, L.; Scalice, D.
2012-12-01
The Planetary Science Education and Public Outreach (E/PO) Forum is charged by NASA's Science Mission Directorate (SMD) with engaging, extending, and supporting the community of E/PO professionals and scientists involved in planetary science education activities in order to help them more effectively and efficiently share NASA science with all learners. A number of resources and opportunities for involvement are available for planetary scientists involved in - or interested in being involved in - E/PO. The Forum provides opportunities for community members to stay informed, communicate, collaborate, leverage existing programs and partnerships, and become more skilled education practitioners. Interested planetary scientists can receive newsletters, participate in monthly calls, interact through an online community workspace, and attend annual E/PO community meetings and meetings of opportunity at science and education conferences. The Forum also provides professional development opportunities on a myriad of topics, from common pre-conceptions in planetary science to program evaluation, to delivering effective workshops. Thematic approaches, such as the Year of the Solar System (http://solarsystem.nasa.gov/yss), are coordinated by the Forum; through these efforts resources are presented topically, in a manner that can be easily ported into diverse learning environments. Information about the needs of audiences with which scientists interact - higher education, K-12 education, informal education, and public - currently is being researched by SMD's Audience-Based Working Groups. Their findings and recommendations will be made available to inform the activities and products of E/PO providers so they are able to better serve these audiences. Also in production is a "one-stop-shop" of SMD E/PO products and resources that can be used in conjunction with E/PO activities. Further supporting higher-education efforts, the Forum coordinates a network of planetary science faculty, bringing them together at science conferences to share resources and experiences and to discuss pertinent education research. An online higher education clearinghouse, (EarthSpace - http://www.lpi.usra.edu/earthspace), has been developed to provide faculty with news and funding information, the latest education research and resources for teaching undergraduates, and undergraduate course materials, including lectures, labs, and homework. The presentation will explore the Planetary Science E/PO Forum pathways and tools available to support scientists involved in - or interested in being involved in - E/PO.
Collaborating with Scientists in Education and Public Engagement
NASA Astrophysics Data System (ADS)
Shupla, Christine; Shaner, Andrew; Smith Hackler, Amanda
2016-10-01
The Education and Public Engagement team at the Lunar and Planetary Institute (LPI) is developing a scientific advisory board, to gather input from planetary scientists for ways that LPI can help them with public engagement, such as connecting them to opportunities, creating useful resources, and providing training. The advisory board will assist in outlining possible roles of scientists in public engagement, provide feedback on LPI scientist engagement efforts, and encourage scientists to participate in various education and public engagement events.LPI's scientists have participated in a variety of education programs, including teacher workshops, family events, public presentations, informal educator trainings, and communication workshops. Scientists have helped conduct hands-on activities, participated in group discussions, and given talks, while sharing their own career paths and interests; these activities have provided audiences with a clearer vision of how science is conducted and how they can become engaged in science themselves.This poster will share the status and current findings of the scientist advisory board, and the lessons learned regarding planetary scientists' needs, abilities, and interests in participating in education and public engagement programs.
Collaborating with Scientists in Education and Public Engagement
NASA Astrophysics Data System (ADS)
Shupla, C. B.; Shaner, A. J.; Hackler, A. S.
2016-12-01
The Education and Public Engagement team at the Lunar and Planetary Institute (LPI) is developing a scientific advisory board, to gather input from planetary scientists for ways that LPI can help them with public engagement (such as connecting them to opportunities, creating useful resources, and providing training). The advisory board will also assist in outlining possible roles of scientists in public engagement, provide feedback on LPI scientist engagement efforts, and encourage scientists to participate in various education and public engagement events. LPI's scientists have participated in a variety of education programs, including teacher workshops, family events, public presentations, informal educator trainings, and communication workshops. Scientists have helped conduct hands-on activities, participated in group discussions, and given talks, while sharing their own career paths and interests; these activities have provided audiences with a clearer vision of how science is conducted and how they can become engaged in science themselves. We will share the status and current findings of the scientist advisory board, and the resulting lessons learned regarding scientists' needs, abilities, and interests in participating in education and public engagement programs.
NASA Astrophysics Data System (ADS)
Meese, D.; Shipp, S. S.; Porter, M.; Bruccoli, A.
2002-12-01
Scientists involved in the NSF-funded Teachers Experiencing Antarctica and the Arctic (TEA) Program integrate a K-12 science teacher into their polar field project. Objectives of the program include: having the science teacher immersed in the experience of research; 2) through the teacher, leveraging the research experience to better inform teaching practices; and 3) sharing the experience with the broader educational and general community. The scientist - or qualified team member - stays involved with the teacher throughout the program as a mentor. Preparation of the teacher involves a week-long orientation presented by the TEA Program, and a two week pre-expedition visit at the scientist's institution. Orientation acquaints teachers with program expectations, logistical information, and an overview of polar science. While at the scientist's institution, the teacher meets the team, prepares for the field, and strengthens content knowledge. In the field, the teacher is a team member and educational liaison, responding to questions from students and colleagues by e-mail, and posting electronic journals describing the research experience. Upon return, the teachers work closely with colleagues to bring the experience of research into classrooms through creation of activities, design of longer-term student investigations, and presentations at scientific, educational, and community meetings. Interaction with the scientific team continues with a visit by the scientist to the teacher's classrooms, collaboration on presentations at scientific meetings, and consultation on classroom activities. In some cases, the teacher may participate in future expeditions. The involvement by scientists in mentor relationships, such as those of the TEA Program, is critical to improving science education. Many teachers of science have not had the opportunity to participate in field research, which offers valuable first-hand experience about the nature of science, as well as about specific content. The value to the scientist lies in deepening the understanding of current science education, increasing exposure to new ways to communicate information, and developing a path to having the research shared with the classroom and community via the TEA teacher's outreach. This long-term interaction between a scientist and a teacher can result in meaningful impact through increasing depth of understanding - not just about science content, but about the process of science. Equipped with this understanding based on experience, the teacher can multiply the impact with colleagues and students.
NASA Astrophysics Data System (ADS)
Hellman, Leslie G.
This qualitative study uses children's writing to explore the divide between a conception of Science as a humanistic discipline reliant on creativity, ingenuity and out of the box thinking and a persistent public perception of science and scientists as rigid and methodical. Artifacts reviewed were 506 scripts written during 2014 and 2016 by 5th graders participating in an out-of classroom, mentor supported, free-choice 10-week arts and literacy initiative. 47% (237) of these scripts were found to contain content relating to Science, Scientists, Science Education and the Nature of Science. These 237 scripts were coded for themes; characteristics of named scientist characters were tracked and analyzed. Findings included NOS understandings being expressed by representation of Science and Engineering Practices; Ingenuity being primarily linked to Engineering tasks; common portrayals of science as magical or scientists as villains; and a persistence in negative stereotypes of scientists, including a lack of gender equity amongst the named scientist characters. Findings suggest that representations of scientists in popular culture highly influence the portrayals of scientists constructed by the students. Recommendations to teachers include encouraging explicit consideration of big-picture NOS concepts such as ethics during elementary school and encouraging the replacement of documentary or educational shows with more engaging fictional media.
Lessons Learned at LPI for Scientists in Education and Public Outreach
NASA Astrophysics Data System (ADS)
Shupla, C. B.; Kramer, G. Y.; Gross, J.; Shaner, A. J.; Dalton, H.; Grier, J.; Buxner, S.; Shipp, S. S.; Hackler, A. S.
2015-12-01
The Lunar and Planetary Institute (LPI) has engaged scientists in a variety of education programs, including teacher workshops, family events, public presentations, informal educator trainings, communication workshops, and outreach events. Scientists have helped conduct hands-on activities, participated in group discussions, and given talks, while sharing their own career paths and interests; these activities have provided audiences with a clearer vision of how science is conducted and how they can become engaged in science themselves. We will share the lessons we have learned through these experiences, including the value of collaborations between scientists and educators, the importance of understanding the audience's interests and knowledge, and the insights that audiences gain during unstructured discussion and interactions with scientists. LPI has also worked with the NASA Science Mission Directorate E/PO community to determine ways to enable scientists and engineers to engage in E/PO and STEM learning, including examining the research and programs for becoming involved in the preparation of future teachers (see the Menu of Opportunities at http://www.lpi.usra.edu/education/pre_service_edu/). We will share key research-based best practices that are recommended for scientists and engineers interested in participating in E/PO activities.
NASA Astrophysics Data System (ADS)
Meinke, Bonnie K.; Smith, Denise A.; Bleacher, Lora; Hauck, Karin; Soeffing, Cassie; NASA SMD E/PO Community
2015-01-01
The NASA Astrophysics Science Education and Public Outreach Forum (SEPOF) coordinates the work of individual NASA Science Mission Directorate (SMD) Astrophysics EPO projects and their teams to bring the NASA science education resources and expertise to libraries nationwide. The Astrophysics Forum assists scientists and educators with becoming involved in SMD E/PO (which is uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise) and makes SMD E/PO resources and expertise accessible to the science and education communities. The NASA Science4Girls and Their Families initiative partners NASA science education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families. As such, the initiative engages girls in all four NASA science discipline areas (Astrophysics, Earth Science, Planetary Science, and Heliophysics), which enables audiences to experience the full range of NASA science topics and the different career skills each requires. The events focus on engaging this particular underserved and underrepresented audience in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences.
NASA Astrophysics Data System (ADS)
Congressman Vernon Ehlers (R, MI) has offered three bills in the House of Representatives that support K-12 science, math, engineering, and technology (SMET) education (Eos, April 18, 2000). Although no dollar amounts are mentioned, the three bills contain numerous provisions for improving and expanding SMET education activities at the Department of Education and the National Science Foundation, and for tax incentives for pre-service teacher education and in-service professional development. Of particular interest is Section 15 of H.R. 4271, the National Science Education Act, which directs the NSF to provide scholarships for K-12 teachers to participate in research programs in government agencies, colleges and universities, or private research establishments. Such scholarships could support AGU's Science Teacher and Research Scientist (STaRS) effort, which is intended to provide opportunities for teachers to participate in research under the direction of AGU scientists, and for those same scientists to participate in science teaching under the teachers' direction.
Science Education and Public Outreach in Asia - experiences in ACCENT
NASA Astrophysics Data System (ADS)
Schuepbach, E.
2006-12-01
ACCENT is the European Network of Excellence in Atmospheric Composition Change (www.accent- network.org). Its Task Training and Education aims at disseminating ACCENT results to a variety of target groups, including emerging countries. Until now, fellowships have been offered for early-career scientists to participate in European science training events. A teacher training workshop has concentrated on cross- cultural aspects of PhD supervision. The involvement of new Associated Partners from Asia has triggered reflections on science education and outreach to politicians and the public in this part of the world. Joint educational and outreach programmes and products are currently developed with China and Mongolia for training activities scheduled in autumn 2006 and autumn 2007. First experiences in joint science education programmes for early-career scientists will be presented, and the challenges associated with communicating science to non-scientists in Asia will be discussed.
Helping teachers change science instruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Consuegra, G.F.
1994-12-31
Scientists and science educators jointly believe that science is important to society. So strong are these beliefs that many educational and scientific organizations have issued reports and recommendations calling for systemic revisions to science education. Collectively these documents describe an enlightened view of science and science education. Such a view includes identifying key concepts, skills, and attitudes in science for the scientifically literate citizen, and describes effective instructional strategies, delineates characteristics of successful science programs for others to imitate and emulate, and lists resources for educators, scientists, and parents to use. The effects of these resources have been clearly visiblemore » over the past five years. Science process-based objectives provide infrastructure and promote modern and traditional science teachers` efforts to provide science programming that supports scientific literacy needed for the 21st century.« less
Analysis of the Image of Scientists Portrayed in the Lebanese National Science Textbooks
NASA Astrophysics Data System (ADS)
Yacoubian, Hagop A.; Al-Khatib, Layan; Mardirossian, Taline
2017-07-01
This article presents an analysis of how scientists are portrayed in the Lebanese national science textbooks. The purpose of this study was twofold. First, to develop a comprehensive analytical framework that can serve as a tool to analyze the image of scientists portrayed in educational resources. Second, to analyze the image of scientists portrayed in the Lebanese national science textbooks that are used in Basic Education. An analytical framework, based on an extensive review of the relevant literature, was constructed that served as a tool for analyzing the textbooks. Based on evidence-based stereotypes, the framework focused on the individual and work-related characteristics of scientists. Fifteen science textbooks were analyzed using both quantitative and qualitative measures. Our analysis of the textbooks showed the presence of a number of stereotypical images. The scientists are predominantly white males of European descent. Non-Western scientists, including Lebanese and/or Arab scientists are mostly absent in the textbooks. In addition, the scientists are portrayed as rational individuals who work alone, who conduct experiments in their labs by following the scientific method, and by operating within Eurocentric paradigms. External factors do not influence their work. They are engaged in an enterprise which is objective, which aims for discovering the truth out there, and which involves dealing with direct evidence. Implications for science education are discussed.
Identity Matching to Scientists: Differences that Make a Difference?
NASA Astrophysics Data System (ADS)
Andersen, Hanne Moeller; Krogh, Lars Brian; Lykkegaard, Eva
2014-06-01
Students' images of science and scientists are generally assumed to influence their related subject choices and aspirations for tertiary education within science and technology. Several research studies have shown that many young people hold rather stereotypical images of scientists, making it hard for them to see themselves as future scientists. Adolescents' educational choices are important aspects of their identity work, and recent theories link individual choice to the perceived match between self and prototypical persons associated with that choice. In the present study, we have investigated images of scientists among the segment of the upper secondary school students (20 % of the cohort) from which future Danish scientists are recruited. Their images were rather realistic, only including vague and predominantly positive stereotypical ideas. With a particular Science-and-Me (SAM) interview methodology, we inquired into the match between self- and prototypical-scientists ( N = 30). We found high perceived similarity within a core of epistemological characteristics, while dissimilarities typically related to a social domain. However, combining interview data with survey data, we found no significant statistical relation between prototype match and aspirations for tertiary education within science and technology. Importantly, the SAM dialogue revealed how students negotiate perceived differences, and we identified four negotiation patterns that all tend to reduce the impact of mismatches on educational aspirations. Our study raises questions about methodological issues concerning the traditional use of self-to-prototype matching as an explanatory model of educational choice.
NASA Astrophysics Data System (ADS)
Murry, Adam T.
Science has been identified as a crucial element in the competitiveness and sustainability of America in the global economy. American citizens, especially minority populations, however, are not pursuing science education or careers. Past research has implicated ‘attitudes toward science’ as an important factor in the public’s participation in science. I applied Ajzen’s (1991) Theory of Planned Behavior to attitudes toward science to predict science-related sustainability-action intentions and evaluated whether scientists and Native Americans differed in their general attitudes toward science, cultural values, and specific beliefs about science. Analyses revealed that positive attitude toward science and the cultural value of individualism predicted intentions to engage with science-related sustainability actions. Unexpectedly, scientists and Native Americans did not differ in their cultural values or positive attitude toward science. However, Natives Americans held significantly more negative attitude toward science than scientists. Implications for science education and attitudes towards science theory and application are discussed.
Reinventing Biostatistics Education for Basic Scientists
Weissgerber, Tracey L.; Garovic, Vesna D.; Milin-Lazovic, Jelena S.; Winham, Stacey J.; Obradovic, Zoran; Trzeciakowski, Jerome P.; Milic, Natasa M.
2016-01-01
Numerous studies demonstrating that statistical errors are common in basic science publications have led to calls to improve statistical training for basic scientists. In this article, we sought to evaluate statistical requirements for PhD training and to identify opportunities for improving biostatistics education in the basic sciences. We provide recommendations for improving statistics training for basic biomedical scientists, including: 1. Encouraging departments to require statistics training, 2. Tailoring coursework to the students’ fields of research, and 3. Developing tools and strategies to promote education and dissemination of statistical knowledge. We also provide a list of statistical considerations that should be addressed in statistics education for basic scientists. PMID:27058055
NASA Astrophysics Data System (ADS)
Shipp, S. S.; Buxner, S.; Schwerin, T. G.; Hsu, B. C.; Peticolas, L. M.; Smith, D.; Meinke, B. K.
2013-12-01
NASA's Science Mission Directorate (SMD) Education and Public Outreach (E/PO) Forums help to engage, extend, support, and coordinate the efforts of the community of E/PO professionals and scientists involved in Earth and space science education activities. This work is undertaken to maximize the effectiveness and efficiency of the overall national NASA science education and outreach effort made up of individual efforts run by these education professionals. This includes facilitating scientist engagement in education and outreach. The Forums have been developing toolkits and pathways to support planetary, Earth, astrophysics, and heliophysics scientists who are - or who are interested in becoming - involved in E/PO. These tools include: 1) Pathways to learn about SMD and E/PO community announcements and opportunities, share news about E/PO programs, let the E/PO community know you are interested in becoming involved, and discover education programs needing scientist input and/or support. These pathways include weekly e-news, the SMD E/PO online community workspace, monthly community calls, conferences and meetings of opportunity. 2) Portals to help you find out what education resources already exist, obtain resources to share with students of all levels - from K-12 to graduate students, - and disseminate your materials. These include E/PO samplers and toolkits (sampling of resources selected for scientists who work with students, teachers, and the public), the one-stop shop of reviewed resources from the NASA Earth and space science education portfolio NASAWavelength.org, and the online clearinghouse of Earth and space science higher education materials EarthSpace (http://www.lpi.usra.edu/earthspace). 3) Connections to education specialists who can help you design and implement meaningful E/PO programs - small to large. Education specialists can help you understand what research says about how people learn and effective practices for achieving your goals, place your programs in context (e.g., Beyond IYA, Sun-Earth Day, launch events, 50 Years of Solar System Exploration, Earth Science Week), and get your programs and products disseminated. 4) Connections to education professionals to collaborate with you on educational programs, involve intended audience members as partners to guide your programs, reach a broader audience, and insure impact with external partners through the E/PO community contact database and workspace profiles, conferences, meetings, and SMD E/PO community annual retreats. Recently developed, the NASA SMD Scientist Speaker's Bureau (http://www.lpi.usra.edu/education/speaker) offers an online portal to connect scientists interested in getting involved in E/PO projects - giving public talks, classroom visits, and virtual connections - with audiences. Learn more about the Forums and the opportunities to become involved in E/PO and to share your science with students, educators, and the general public at http://smdepo.org.
How high school science-related experiences influenced science career persistence
NASA Astrophysics Data System (ADS)
Shaw, Andrew D.
The events of 9/11 brought into focus two ongoing trends that were present before this tragedy and have continued since: (1) The United States needs more scientists if it is to ensure its freedoms and maintain its economy. (2) The number of scientists in the "pipeline" is declining because of the diminished presence of foreign scientists (they are wanted in their own countries), the under-representation of minorities and women, and the reduced numbers of students able and willing to take on the scholastic rigors necessary for a science or engineering degree. Though much has been written about improving science education, and numerous projects have been conducted to promote it, few education researchers have questioned the scientists themselves about the experiences, practices, and people that positively influenced them, particularly during their pre-college years. Towards this end, thirty-two scientists were interviewed in order to address four research questions: (1) How did practicing scientists' personal relationships with their science teachers influence their decision to pursue a career in science? (2) What pedagogical methods (e.g. lectures, demonstrations, "hands-on" work, problem solving, small groups) used in their high school science courses, if any, played a significant role in propelling certain students towards a career as a practicing scientist? (3) What high school science-related support structures (e.g. labs, equipment, textbooks, technology), if any, played a significant role in propelling certain students towards a career as a practicing scientist? (4) What high school science-related educational activities (e.g. science fairs, clubs, summer internships), if any, played a significant role in propelling certain students towards a career as a practicing scientist? Some of the scientists reported that they knew they were headed towards a career in science before they even entered high school, while others did not make a decision about a science career until after they had graduated from college. The prevailing conviction, however, was that the encouragement from others (though not exclusively by teachers), the excellence of teaching (regardless of pedagogical style), and the richness of science related experiences were the most influential factors in either maintaining or initiating a persistence in science towards a career.
NASA Astrophysics Data System (ADS)
Buxner, S.; Grier, J.; Meinke, B. K.; Schneider, N. M.; Low, R.; Schultz, G. R.; Manning, J. G.; Fraknoi, A.; Gross, N. A.; Shipp, S. S.
2015-12-01
For the past six years, the NASA Science Education and Public Outreach (E/PO) Forums have supported the NASA Science Mission Directorate (SMD) and its E/PO community by enhancing the coherency and efficiency of SMD-funded E/PO programs. The Forums have fostered collaboration and partnerships between scientists with content expertise and educators with pedagogy expertise. As part of this work, in collaboration with the AAS Division of Planetary Sciences, we have interviewed SMD scientists, and more recently engineers, to understand their needs, barriers, attitudes, and understanding of education and outreach work. Respondents told us that they needed additional resources and professional development to support their work in education and outreach, including information about how to get started, ways to improve their communication, and strategies and activities for their teaching and outreach. In response, the Forums have developed and made available a suite of tools to support scientists and engineers in their E/PO efforts. These include "getting started" guides, "tips and tricks" for engaging in E/PO, vetted lists of classroom and outreach activities, and resources for college classrooms. NASA Wavelength (http://nasawavelength.org/), an online repository of SMD funded activities that have been reviewed by both educators and scientists for quality and accuracy, provides a searchable database of resources for teaching as well as ready-made lists by topic and education level, including lists for introductory college classrooms. Additionally, we have also supported scientists at professional conferences through organizing oral and poster sessions, networking activities, E/PO helpdesks, professional development workshops, and support for students and early careers scientists. For more information and to access resources for scientists and engineers, visit http://smdepo.org.
Scientist or science-stuffed? Discourses of science in North American medical education.
Whitehead, Cynthia
2013-01-01
The dominance of biomedical science in medical education has been contested throughout the past century, with recurring calls for more social science and humanities content. The centrality of biomedicine is frequently traced back to Abraham Flexner's 1910 report, 'Medical Education in the United States and Canada'. However, Flexner advocated for a scientist-doctor, rather than a curriculum filled with science content. Examination of the discourses of science since Flexner allows us to explore the place of various knowledge forms in medical education. A Foucauldian critical discourse analysis was performed, examining the discourses of scientific medicine in Flexner's works and North American medical education articles in subsequent decades. Foucault's methodological principles were used to identify statements, keywords and metaphors that emerged in the development of the discourses of scientific medicine, with particular attention to recurring arguments and shifts in the meaning and use of terms. Flexner's scientist-doctor was an incisive thinker who drew upon multiple forms of knowledge. In the post-Flexner medical education reforms, the perception of science as a discursive object embedded in the curriculum became predominant over that of the scientist as the discursive subject who uses science. Science was then considered core curricular content and was discursively framed as impossibly vast. A parallel discourse, one of the insufficiency of biomedical science for the proper training of doctors, has existed over the past century, even as the humanities and social sciences have remained on the margins in medical school curricula. That discourses of scientific medicine have reinforced the centrality of biomedicine in medical education helps to explain the persistent marginalisation of other important knowledge domains. Medical educators need to be aware of the effects of these discourses on understandings of medical knowledge, particularly when contemplating curricular reform. © Blackwell Publishing Ltd 2013.
NASA Astrophysics Data System (ADS)
Goehring, L.; Carlsen, W.; Fisher, C. R.; Kerlin, S.; Trautmann, N.; Petersen, W.
2011-12-01
Science education reform since the mid-1990's has called for a "new way of teaching and learning about science that reflects how science itself is done, emphasizing inquiry as a way of achieving knowledge and understanding about the world" (NRC, 1996). Scientists and engineers, experts in inquiry thinking, have been called to help model these practices for students and demonstrate scientific habits of mind. The question, however, is "how best to involve these experts?" given the very real challenges of limited availability of scientists, varying experience with effective pedagogy, widespread geographic distribution of schools, and the sheer number of students involved. Technology offers partial solutions to enable Student-Scientist Interactions (SSI). The FLEXE Project has developed online FLEXE Forums to support efficient, effective SSIs, making use of web-based and database technology to facilitate communication between students and scientists. More importantly, the FLEXE project has approached this question of "how best to do this?" scientifically, combining program evaluation with hypothesis-based research explicitly testing the effects of such SSIs on student learning and attitudes towards science. FLEXE Forums are designed to showcase scientific practices and habits of mind through facilitated interaction between students and scientists. Through these Forums, students "meet" working scientists and learn about their research and the environments in which they work. Scientists provide students with intriguing "real-life" datasets and challenge students to analyze and interpret the data through guiding questions. Students submit their analyses to the Forum, and scientists provide feedback and connect the instructional activity with real-life practice, showcasing their activities in the field. In the FLEXE project, Forums are embedded within inquiry-based instructional units focused on essential learning concepts, and feature the deep-sea environment in contrast to students' local environments to deepen students' understanding of earth systems processes. This presentation will provide an overview of the FLEXE project, a partnership between the Ridge2000 research scientists, science learning researchers, and educators, and will report findings from pilot studies implemented in collaboration with the GLOBE program, a worldwide network of scientists, science educators, and their students. FLEXE Forums have been tested with approximately 1400 students in the US, Germany, Australia and Thailand in 2009, and 1100 students in the US, Thailand, England and Costa Rica in 2010. Description of research methods (e.g., educational hypotheses, assessment of student learning and attitudes through analysis of student writing, and "quick question" surveys) and results will be shared, along with current tests examining the transferability of the approach to other scientists/science educator teams.
Sharing Planetary Science on a Regional Scale
NASA Astrophysics Data System (ADS)
Runyon, C. R.; Colgan, M.
2001-12-01
Fifteen southeastern Space Grant Consortia (AL, AK, DL, DC, FL, GA, KY, LA, MD, Mississippi, NC, PR, SC, TN, VI, VA) have joined together to form the Office of Space Science (OSS) Southeastern Regional Clearing House, or SERCH. The objectives of SERCH are to produce a network of science educators and OSS scientists, to assess the region's educational needs and strengths, and to tailor OSS education material and data to the need of the southeastern educators and students. SERCH serves as a facilitator and broker of services by a two-way interface between the southeastern region's diverse educational community and national scientists and engineers involved in OSS's flight missions and research programs. Our goal is to make SERCH a "one-stop educational service center" for the science, mathematics and technology educators needing OSS material and OSS scientists needing help in developing educational material. We promote the development of partnerships among educators and scientists to accomplish the educational and outreach missions of the OSS. These partnerships create and sustain educational programs that are effective, locally useful, yet national in scope. Our strategies include respecting the diversity of our audiences, listening to their needs and working closely with both the product developers and end-users to ensure that the materials and resources are effective, scientifically correct and fun to use.
Science Under Attack! Public Policy, Science Education and the Emperor's New Clothes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krass, Lawrence
2005-12-05
The popular debate about the teaching of intelligent design in public schools is but one quandary for scientists and policy makers. Given recent developments which have worked to breed a general distrust of science, it is evident that researchers and politicians alike should be wary of using popular opinion as a guide for policy and pedagogy when it comes to science in public education. Dr. Krauss will qualify this complex issue and will address how educators, policy makers and scientists can work effectively to prevent public misconceptions of science.
Science Under Attack! Public Policy, Science Education, and the Emperor's New Clothes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krauss, Lawrence
2005-12-05
The popular debate about the teaching of intelligent design in public schools is but one quandary for scientists and policy makers. Given recent developments which have worked to breed a general distrust of science, it is evident that researchers and politicians alike should be wary of using popular opinion as a guide for policy and pedagogy when it comes to science in public education. Dr. Krauss will qualify this complex issue and will address how educators, policy makers and scientists can work effectively to prevent public misconceptions of science.
ERIC Educational Resources Information Center
Williams, Wendy, M.; Papierno, Paul, B.; Makel, Matthew, C.; Ceci, Stephen, J.
2004-01-01
We describe a new educational program developed by the Cornell Institute for Research on Children (CIRC), a research and outreach center funded by the National Science Foundation. Thinking Life A Scientist targets students from groups historically underrepresented in science (i.e., girls, people of color, and people from disadvantaged…
Education and training of future wetland scientists and managers
Wilcox, D.A.
2008-01-01
Wetland science emerged as a distinct discipline in the 1980s. In response, courses addressing various aspects of wetland science and management were developed by universities, government agencies, and private firms. Professional certification of wetland scientists began in the mid-1990s to provide confirmation of the quality of education and experience of persons involved in regulatory, management, restoration/construction, and research involving wetland resources. The education requirements for certification and the need for persons with specific wetland training to fill an increasing number of wetland-related positions identified a critical need to develop curriculum guidelines for an undergraduate wetland science and management major for potential accreditation by the Society of Wetland Scientists. That proposed major contains options directed toward either wetland science or management. Both options include required basic courses to meet the general education requirements of many universities, required upper-level specialized courses that address critical aspects of physical and biological sciences applicable to wetlands, and a minimum of four additional upper-level specialized courses that can be used to tailor a degree to students' interests. The program would be administered by an independent review board that would develop guidelines and evaluate university applications for accreditation. Students that complete the required coursework will fulfill the education requirements for professional wetland scientist certification and possess qualifications that make them attractive candidates for graduate school or entry-level positions in wetland science or management. Universities that offer this degree program could gain an advantage in recruiting highly qualified students with an interest in natural resources. Alternative means of educating established wetland scientists are likewise important, especially to provide specialized knowledge and experience or updates related to new management discoveries, policies, and regulations. ?? 2008 The Society of Wetland Scientists.
ERIC Educational Resources Information Center
Rampal, A.
1992-01-01
Examines trends in teachers' beliefs about scientists and the nature of science. Discusses teachers' questionnaire responses on the following qualities of scientists: minimum educational qualifications; creativity; temperament; stereotyped image; and personal beliefs about indigenous systems of medicine and astrology. (Contains 63 references.)…
Forging Educational Partnerships Between Science Centers and Ocean, Earth and Atmospheric Scientists
NASA Astrophysics Data System (ADS)
Miller, M. K.
2006-12-01
When most people think about science education, they usually consider classrooms as ideal venues for communicating and disseminating knowledge. But most learning that we humans engage in happens outside of the classroom and after we finish our formal education. That is where informal science education picks up the ball. The forums for these learning opportunities are diverse: museum exhibits, the Web, documentaries, and after school settings are becoming increasingly important as venues to keep up with the ever changing world of science. . The Exploratorium and other science centers act as transformers between the world of science and the public. As such they are ideal partners for scientists who would like to reach a large and diverse audience of families, adults, teens, and teachers. In this session, Senior Science Producer Mary Miller will discuss the ways that the Exploratorium engages working scientists in helping the museum-going public and Web audiences understand the process and results of scientific research.
NASA Astrophysics Data System (ADS)
Anderson, Dayle; Moeed, Azra
2017-05-01
Current curriculum demands require primary teachers to teach about the Nature of Science; yet, few primary teachers have had opportunity to learn about science as a discipline. Prior schooling and vicarious experiences of science may shape their beliefs about science and, as a result, their science teaching. This qualitative study describes the impact on teacher beliefs about science and science education of a programme where 26 New Zealand primary (elementary) teachers worked fulltime for 6 months alongside scientists, experiencing the nature of work in scientific research institutes. During the 6 months, teachers were supported, through a series of targeted professional development days, to make connections between their experiences working with scientists, the curriculum and the classroom. Data for the study consisted of mid- and end-of-programme written teacher reports and open-ended questionnaires collected at three points, prior to and following 6 months with the science host and after 6 to 12 months back in school. A shift in many teachers' beliefs was observed after the 6 months of working with scientists in combination with curriculum development days; for many, these changes were sustained 6 to 12 months after returning to school. Beliefs about the aims of science education became more closely aligned with the New Zealand curriculum and its goal of developing science for citizenship. Responses show greater appreciation of the value of scientific ways of thinking, deeper understanding about the nature of scientists' work and the ways in which science and society influence each other.
Involving scientists in public and pre-college education at Princeton University
NASA Astrophysics Data System (ADS)
Steinberg, D. J.
2011-12-01
The Princeton Center for Complex Materials (PCCM) is a National Science Foundation (NSF) funded Materials Research Science and Engineering Center (MRSEC). As a MRSEC, it is part of the PCCM's mission to inspire and educate school children, teachers and the public about STEM and materials science. Research shows that it is critical to excite students at a young age and maintain that excitement, and without that these students are two to three times less likely to have any interest in science and engineering and pursue science careers as adults. We conduct over a dozen different education programs at Princeton University, in which scientists and engineers are directly involved with students, teachers and the public. As an ongoing MRSEC education and outreach program, we have developed many successful educational partnerships to increase our impact. The scientists and engineers who participate in our programs are leading experts in their research field and excellent communicators to their peers. They are not experts in precollege pedagogy or in communication to the public. Scientists often require some preparation in order to have the greatest chance of success. The amount and type of professional development required for these scientists to succeed in education programs depends on many factors. These include the age of the audience, the type of interaction, and the time involved. Also different researchers require different amount of help, advice, and training. Multiple education programs that involve Princeton University researchers will be discussed here. We will focus on what has worked best when preparing scientists and engineers for involvement in education programs. The Princeton University Materials Academy (PUMA) is a three week total immersion in science for minority high school students involving many faculty and their research groups. Our Making Stuff day reaches 100's of middle school students in which faculty interact directly with students and teachers at activity tables give auditorium presentations. Teacher development programs and holiday lectures will be highlighted as well.
ERIC Educational Resources Information Center
Dresselhaus, Mildred S.
A number of problems exist in society which require the cooperation of physical and social scientists. One of these problems is the current crisis in science education. There are several aspects to this problem, including the declining interest of students in math and science at a time when functioning in our society requires more, not less,…
NASA Astrophysics Data System (ADS)
Lehr, Jane L.
This dissertation contributes to efforts to rethink the meanings of democracy, scientific literacy, and non-scientist citizenship in the United States. Beginning with questions that emerged from action research and exploring the socio-political forces that shape educational practices, it shows why non-science educators who teach for social justice must first recognize formal science education as a primary site of training for (future) non-scientist citizens and then prepare to intervene in the dominant model of scientifically literate citizenship offered by formal science education. This model of citizenship defines (and limits) appropriate behavior for non-scientist citizens as acquiescing to the authority of science and the state by actively demarcating science from non-science, experts from non-experts, and the rational from the irrational. To question scientific authority is to be scientifically illiterate. This vision of 'acquiescent democracy' seeks to end challenges to the authority of science and the state by ensuring that scientific knowledge is privileged in all personal and public decision-making practices, producing a situation in which it becomes natural for non-scientist citizens to enroll scientific knowledge to naturalize oppression within our schools and society. It suggests that feminist and equity-oriented science educators, by themselves, are unable or unwilling to challenge certain assumptions in the dominant model of scientifically literate citizenship. Therefore, it is the responsibility of non-science educators who teach for social justice to articulate oppositional models of non-scientist citizenship and democracy in their classrooms and to challenge the naturalized authority of scientific knowledge in all aspects of our lives. It demonstrates how research in the field of Science & Technology Studies can serve as one resource in our efforts to intervene in the dominant model of scientifically literate citizenship and to support a model of democracy that encourages the critical engagement of and opposition to scientific knowledge and the state.
Science in action: An interdisciplinary science education program
NASA Technical Reports Server (NTRS)
Horton, Linda L.
1992-01-01
Science in Action is an education outreach program for pre-collegiate students. It is based on the concept that, in order to interest students in science, they must see science and scientists at work. The program encompasses the full range of scientific disciplines - the core sciences, engineering, and mathematics. A unique aspect of the program is the involvement and support of scientists and engineers representing local professional societies, industries, business, and academic institutions. An outline of the program is given.
NASA Astrophysics Data System (ADS)
Bianchini, Julie A.; Cavazos, Lynnette M.; Helms, Jenifer V.
2000-08-01
To provide insight into issues of gender and ethnicity in science education, we examine the views of approximately 60 secondary science teachers and university scientists from three different research projects. In each project, participants and researcher explored the intersection of professional and personal identities; views of the nature of science; beliefs related to students' experiences in science education; and kinds of curricular and instructional strategies used to promote access and equity for all students. Participants' interviews were analyzed qualitatively for patterns across these four dimensions of inclusive science education. Analysis of data revealed a wide range of beliefs and experiences along each dimension. From our findings, we argue for careful examination of the ways identities shape instructors' professional experiences and educational practices; critical, constructive conversations about feminist science studies scholarship between professional developers and science teachers or scientists; and reasoned reflection on how views of students can inform recommendations for inclusive content and instruction. We conclude with the call for increased sophistication in the conceptualization and implementation of solutions to the problem of women and ethnic minorities in science education, for balancing recognition of systematic gender and ethnic bias with sensitivity to instructors and students' diverse interests and experiences.
Engaging Scientists in NASA Education and Public Outreach: Informal Science Education and Outreach
NASA Astrophysics Data System (ADS)
Lawton, Brandon L.; Smith, D. A.; Bartolone, L.; Meinke, B. K.; Discovery Guides Collaborative, Universe; Collaborative, NASAScience4Girls; SEPOF Informal Education Working Group; E/PO Community, SMD
2014-01-01
The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community through a coordinated effort to enhance the coherence and efficiency of SMD-funded E/PO programs. The Forums foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present opportunities for the astronomy community to participate in collaborations supporting the NASA SMD efforts in the Informal Science Education and Outreach communities. Members of the Informal Science Education and Outreach communities include museum/science center/planetarium professionals, librarians, park rangers, amateur astronomers, and other out-of-school-time educators. The Forums’ efforts for the Informal Science Education and Outreach communities include a literature review, appraisal of informal educators’ needs, coordination of audience-based NASA resources and opportunities, and professional development. Learn how to join in our collaborative efforts to reach the informal science education and outreach communities based upon mutual needs and interests.
NASA Astrophysics Data System (ADS)
Staudigel, H.; Helly, M.; Helly, J.; Koppers, A.; Massel-Symons, C.; Miller, S.
2004-12-01
The ERESE (Enduring Resources in Earth Science Education) project involves a close collaboration between teachers, librarians, educators, data archive managers and scientists in Earth sciences and information technology, to create a digital library environment for Earth science education. We report here on an ongoing (NSF-NSDL) project involving teachers' professional development in the pedagogy of plate tectonics in middle and high schools. This work included efforts in scientific database development in terms of contents and search tools, the development of an inquiry based learning approach, a two week professional development workshop attended by 15 teachers from across the nation, a classroom implementation of lesson plans developed by the teachers at the workshop and an evaluation/validation process for the success of their pedagogic approaches. This ERESE project offers a novel path for both science teaching and professional outreach for scientists, and includes four key components: (1) A true, long-term research partnership between educators and scientists, guiding each other with respect to the authenticity of the science taught and the educational soundness of a scientists' elaborations on science concepts. (2) Expansion of existing scientific databases through the use of metadata that tie scientific materials to a particular expert level and teaching goal. (3) The design of interfaces that make data accessible to the educational community. (4) The use of an inquiry based teaching approach that integrates the scientist-educator collaboration and the data base developments. Our pedagogic approach includes the development of a central hypotheses by the student in response to an initial general orientation and presentation of a well chosen central provocative phenomenon by the teacher. Then, the student develops a research plan that is devoted to address this hypothesis through the use of the materials provided by a scientific database allowing a students prove or disprove their hypothesis and to explore the limits of the (current) understanding of a particular science question. Our first experience with this ERESE project involved a steep learning curve, but the initial results are very promising, providing true professional development for educators as well as for the scientists, whereby the former learn about new ways of teaching science and the latter learn to communicate with teachers.
Identity Matching to Scientists: Differences That Make a Difference?
ERIC Educational Resources Information Center
Andersen, Hanne Moeller; Krogh, Lars Brian; Lykkegaard, Eva
2014-01-01
Students' images of science and scientists are generally assumed to influence their related subject choices and aspirations for tertiary education within science and technology. Several research studies have shown that many young people hold rather stereotypical images of scientists, making it hard for them to see themselves as future scientists.…
Green Action through Education: A Model for Fostering Positive Attitudes about STEM
ERIC Educational Resources Information Center
Wheland, Ethel R.; Donovan, William J.; Dukes, J. Thomas; Qammar, Helen K.; Smith, Gregory A.; Williams, Bonnie L.
2013-01-01
This paper describes an innovative collaboration between instructors of non-STEM (science, technology, engineering, and mathematics) courses and scientists who teach STEM courses in the GATE (Green Action Through Education) learning community. The scientists in this project presented engaging science--in such diverse locations as a sewage…
Michael Polanyi on the Education and Knowledge of Scientists.
ERIC Educational Resources Information Center
Jacobs, Struan
2000-01-01
Explains why teachers addressing the nature of science should know the work of Michael Polanyi. Outlines Polanyi's intellectual career and examines his ideas on the education of scientists, research, and knowledge. Polanyi presaged Kuhn, Feyerabend, and the constructivists, yet insisted that science produces true knowledge about reality. (Contains…
Should Scientists Be Involved in Teaching Science Writing and If So, How?
ERIC Educational Resources Information Center
Goodell, Rae
Realizing the importance of writing skills in communicating with other professionals and in educating the public, scientists and scientific institutions have renewed their interest in the writing education of science students. Informal surveys show that technological and engineering schools are reinstituting writing requirements and staffing the…
Symbiosis on Campus: Collaborations of Scientists and Science Educators.
ERIC Educational Resources Information Center
Duggan-Haas, Don; Moscovici, Hedy; McNulty, Brendan; Gilmer, Penny J.; Eick, Charles J.; Wilson, John
This symposium will provide insights into collaborations among scientists and science educators in a variety of contexts-large research universities, small state and private institutions, and collaborations involving both pre- service and in-service programs. The session will begin with a brief framing of these collaborations as management of the…
NASA Astrophysics Data System (ADS)
Strang, C.; Lemus, J.; Schoedinger, S.
2006-12-01
Ocean sciences were idiosyncratically left out of the National Science Education Standards and most state standards, resulting in a decline in the public's attention to ocean issues. Concepts about the ocean are hardly taught in K-12 schools, and hardly appear in K-12 curriculum materials, textbooks, assessments or standards. NGS, COSEE, NMEA, NOAA, the US Commission on Ocean Policy, the Pew Ocean Commission have all urgently called for inclusion of the ocean in science standards as a means to increase ocean literacy nationwide. There has never been consensus, however, about what ocean literacy is or what concepts should be included in future standards. Scientists interested in education and outreach activities have not had a framework to guide them in prioritizing the content they present or in determining how that content fits into the context of what K-12 students and the public need to know about science in general. In 2004, an on-line workshop on Ocean Literacy Through Science Standards began the process of developing consensus about what that framework should include. Approximately 100 ocean scientists and educators participated in the workshop, followed by a series of meetings and extensive review by leading scientists, resulting in a series of draft documents and statements. The importance of community-wide involvement and consensus was reinforced through circulation of the draft documents for public comment April -May, 2005. The community agreed on an Ocean Literacy definition, tagline, seven ocean principles, 44 concepts and a matrix aligning the concepts to the National Science Education Standards (NSES). The elements are described in more detail in the final Ocean Literacy brochure. Broad ownership of the resulting documents is a tribute to the inclusiveness of the process used to develop them. The emerging consensus on Ocean Literacy has become an instrument for change, and has served as an important tool guiding the ocean sciences education efforts of scientists, educators, and most importantly, has provided a common language for scientists and educators working together. In this past year, a similar community-wide effort has been mounted to develop an "Ocean Literacy Scope and Sequence" to serve as a critical companion to "Ocean Literacy: The Essential Principles of Ocean Sciences Grades K-12." The Scope and Sequence shows how the principles and concepts develop and build in logical and developmentally sound learning progressions across grade spans K-12. This document will provide further guidance to teachers, curriculum developers, textbook writers, and ocean scientists, as to what concepts about the ocean are appropriate to introduce at various grade spans. It will show the relationship between the new discoveries of cutting edge science and the basic science concepts on which they are built and which students are accountable to understand. Those concerned about science education and about the future health of the ocean must be poised to influence the development of science standards by local educational agencies, state departments of education and professional societies and associations. In order to be effective, we must have tools, products, documents, web sites that contain agreed upon science content and processes related to the ocean.
Working with NASA's OSS E/PO Support Network
NASA Astrophysics Data System (ADS)
Miner, E. D.; Lowes, L. L.
2001-11-01
With greater and greater emphasis on the inclusion of a public engagement component in all government-supported research funding, many members of the DPS are finding it difficult to find sufficient time and funding to develop a wide-reaching and effective E/PO program. NASA's Office of Space Science, over the last five years, has built a Support Network to assist its funded scientists to establish partnerships with local and/or national science formal or informal education organizations, who are anxious to connect with and use the expertise of space scientists. The OSS Support Network consists of four theme-based 'Forums,' including the Solar System Exploration (SSE) Forum, specifically designed for working with planetary scientists, and seven regional 'Brokers-Facilitators' who are more familiar with partnership and other potential avenues for involvement by scientists. The services provided by the Support Network are free to both the scientists and their potential partners and is not limited to NASA-funded scientists. In addition to its assistance to space scientists, the Support Network is involved in a number of other overarching efforts, including support of a Solar System Ambassador Program, a Solar System Educator Program, Space Place (web and e-mail science products for libraries and small planetariums and museums), an on-line Space Science Resource Directory, annual reports of Space Science E/PO activity, identifying and filling in 'holes' and 'over-populations' in a solar system E/PO product matrix of grade level versus product versus content, research on product effectiveness, and scientific and educational evaluation of space science products. Forum and Broker-Facilitator contact information is available at http://spacescience.nasa.gov/education/resources/ecosystem/index.htm. Handouts with additional information will be available at the meeting.
Science Education Partnerships. Manual for Scientists and K-12 Teachers.
ERIC Educational Resources Information Center
Sussman, Art, Ed.
Many involved in science education reform agree that one ingredient of future science education programs should be effective partnerships. Partnerships often will embrace people and organizations who traditionally have not been involved in science education. This book offers "how to" guidelines for forming effective science education…
NASA Astrophysics Data System (ADS)
Glenn, S.; McDonnell, J.; Halversen, C.; Zimmerman, T.; Ingram, L.
2007-12-01
Ocean observatories have already demonstrated their ability to maintain long-term time series, capture episodic events, provide context for improved shipboard sampling, and improve accessibility to a broader range of participants. Communicating Ocean Sciences, an already existing college course from COSEE-California has demonstrated its ability to teach future scientists essential communication skills. The NSF-funded Communicating Ocean Sciences to Informal Audiences (COSIA) project has leveraged these experiences and others to demonstrate a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. The COSIA effort is one of the pathfinders for ensuring that the new scientific results from the increasing U.S. investments in ocean observatories is effectively communicated to the nation, and will serve as a model for other fields. Our presentation will describe a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. COSIA established partnerships between informal science education institutions and universities nationwide to facilitate quality outreach by scientists and the delivery of rigorous, cutting edge science by informal educators while teaching future scientists (college students) essential communication skills. The COSIA model includes scientist-educator partnerships that develop and deliver a college course that teaches communication skills through the understanding of learning theory specifically related to informal learning environments and the practice of these skills at aquariums and science centers. The goals of COSIA are to: provide a model for establishing substantive, long-term partnerships between scientists and informal science education institutions to meet their respective outreach needs; provide future scientists with experiences delivering outreach and promoting the broader impact of research; and provide diverse role models and inquiry-based ocean sciences activities for children and families visiting informal institutions. The following COSIA partners have taught the course: Hampton University - Virginia Aquarium; Oregon State University - Hatfield Marine Science Visitor's Center; Rutgers University - Liberty Science Center; University of California, Berkeley - Lawrence Hall of Science; University of Southern California - Aquarium of the Pacific; and Scripps Institution of Oceanography - Birch Aquarium. Communicating Ocean Sciences has also been taught at Stanford, Woods Hole Oceanographic Institute, University of Oregon (GK-12 program), University of Washington, and others. Data from surveys of students demonstrates improvement in their understanding of how people learn and how to effectively communicate. Providing college students with a background in current learning theory, and applying that theory through practical science communication experiences, will empower future generations of scientists to meet the communication challenges they will encounter in their careers.
Addressing the Misconceptions of Middle School Students About Becoming a Scientist or Engineer
NASA Technical Reports Server (NTRS)
Newsom, H. E.; Sorge, C.; Hagerty, J. J.
2000-01-01
Assessment of our educational outreach program shows that students and their parents are excited about space science, but stereotypes about science and scientists drastically effect student attitudes about science and pursuing a technical career.
Engaging Scientists in Meaningful E/PO: NASA Science4Girls and Their Families
NASA Astrophysics Data System (ADS)
Meinke, B. K.; Smith, D. A.; Bleacher, L.; Hauck, K.; Soeffing, C.
2014-12-01
The NASA Science Mission Directorate (SMD) Science Education and Public Outreach Forums coordinate the participation of SMD education and public outreach (EPO) programs in Women's History Month through the NASA Science4Girls and Their Families initiative. The initiative partners NASA science education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families. These NASA science education programs are mission- and grant-based E/PO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. As such, the initiative engages girls in all four NASA science discipline areas (Astrophysics, Earth Science, Planetary Science, and Heliophysics), which enables audiences to experience the full range of NASA science topics and the different career skills each requires. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences.
Hanford`s innovations for science education
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, D.
1996-12-31
In recognition of declining science literacy in the United States and a projected shortfall of scientists, engineers and technologists to address environmental problems nationally and internationally during the 21st century, Westinghouse Hanford Company has launched several innovative science education projects at the US Department of Energy Hanford Site. The Hanford Site is very rich in resources that can be brought to bear on the problem: world-class technical experts, state of the art facilities and equipment, and the largest environmental laboratory in the world. During the past two years, several innovative science education initiatives have been conceived and pursued at themore » secondary education level including the International Academy for the Environment (residential high school with an environmental theme), Environmental BATTmobile Program (mobile middle school science education program), and Multicultural Experiences in Math and Science (education program based on cultural contributions to math and science). Hanford scientists, engineers and administrators have worked with the education community (K-12 and college-university) to develop innovative approaches to science education.« less
Particle Physics Education Sites
: top 4000 Years of Women in Science - history and biographies of prominent female scientists and biographies of prominent female scientists. African Americans in the Sciences - profiles from the
Science Educational Outreach Programs That Benefit Students and Scientists
Enyeart, Peter; Gracia, Brant; Wessel, Aimee; Jarmoskaite, Inga; Polioudakis, Damon; Stuart, Yoel; Gonzalez, Tony; MacKrell, Al; Rodenbusch, Stacia; Stovall, Gwendolyn M.; Beckham, Josh T.; Montgomery, Michael; Tasneem, Tania; Jones, Jack; Simmons, Sarah; Roux, Stanley
2016-01-01
Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs—"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist”—that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities. PMID:26844991
NASA Astrophysics Data System (ADS)
Smith, Denise A.; Mendez, B.; Shipp, S.; Schwerin, T.; Stockman, S.; Cooper, L. P.; Sharma, M.
2010-01-01
Scientists, engineers, educators, and public outreach professionals have a rich history of creatively using NASA's pioneering scientific discoveries and technology to engage and educate youth and adults nationwide in core science, technology, engineering, and mathematics topics. We introduce four new Science Education and Public Outreach Forums that will work in partnership with the community and NASA's Science Mission Directorate (SMD) to ensure that current and future SMD-funded education and public outreach (E/PO) activities form a seamless whole, with easy entry points for general public, students, K-12 formal and informal science educators, faculty, scientists, engineers, and E/PO professionals alike. The new Science Education and Public Outreach Forums support the astrophysics, heliophysics, planetary and Earth science divisions of NASA SMD in three core areas: 1) E/PO community engagement and development activities will provide clear paths of involvement for scientists and engineers interested - or potentially interested - in participating in SMD-funded E/PO activities. Collaborations with scientists and engineers are vital for infusing current, accurate SMD mission and research findings into educational products and activities. Forum activities will also yield readily accessible information on effective E/PO strategies, resources, and expertise; context for individual E/PO activities; and opportunities for collaboration. 2) A rigorous analysis of SMD-funded K-12 formal, informal, and higher education products and activities will help the community and SMD to understand how the existing collection supports education standards and audience needs, and to strategically identify areas of opportunity for new materials and activities. 3) Finally, a newly convened Coordinating Committee will work across the four SMD science divisions to address systemic issues and integrate related activities. By supporting the NASA E/PO community and facilitating coordination of E/PO activities, the NASA-SEPOF partnerships will lead to more effective, sustainable, and efficient utilization of NASA science discoveries and learning experiences.
Scientists' Prioritization of Communication Objectives for Public Engagement.
Dudo, Anthony; Besley, John C
2016-01-01
Amid calls from scientific leaders for their colleagues to become more effective public communicators, this study examines the objectives that scientists' report drive their public engagement behaviors. We explore how scientists evaluate five specific communication objectives, which include informing the public about science, exciting the public about science, strengthening the public's trust in science, tailoring messages about science, and defending science from misinformation. We use insights from extant research, the theory of planned behavior, and procedural justice theory to identify likely predictors of scientists' views about these communication objectives. Results show that scientists most prioritize communication designed to defend science from misinformation and educate the public about science, and least prioritize communication that seeks to build trust and establish resonance with the public. Regression analyses reveal factors associated with scientists who prioritize each of the five specific communication objectives. Our findings highlight the need for communication trainers to help scientists select specific communication objectives for particular contexts and audiences.
Impact of a Scientist-Teacher Collaborative Model on Students, Teachers, and Scientists
ERIC Educational Resources Information Center
Shein, Paichi Pat; Tsai, Chun-Yen
2015-01-01
Collaborations between the K-12 teachers and higher education or professional scientists have become a widespread approach to science education reform. Educational funding and efforts have been invested to establish these cross-institutional collaborations in many countries. Since 2006, Taiwan initiated the High Scope Program, a high school…
The Impact of Scientist-Educator Collaborations: an early-career scientist's perspective
NASA Astrophysics Data System (ADS)
Roop, H. A.
2017-12-01
A decade ago, a forward-thinking faculty member exposed a group of aspiring scientists to the impacts and career benefits of working directly with K-12 students and educators. Ten years later, as one of those young scientists, it is clear that the relationships born out of this early experience can transform a researcher's impact and trajectory in science. Connections with programs like the NSF-funded PolarTREC program, the teacher-led Scientists in the Classroom effort, and through well-coordinated teacher training opportunities there are clear ways in which these partnerships can a) transform student learning; b) serve as a powerful and meaningful way to connect students to authentic research and researchers; and c) help researchers become more effective communicators by expanding their ability to connect their work to society. The distillation of science to K-12 students, with the expert eye of educators, makes scientists better at their work with tangible benefits to skills that matter in academia - securing funding, writing and communicating clearly and having high-value broader impacts. This invited abstract is submitted as part of this session's panel discussion and will explore in detail, with concrete examples, the mutual benefits of educator-scientist partnerships and how sustained engagement can transform the reach, connection and application of research science.
Aerospace scientists. We're tomorrow-minded people
NASA Technical Reports Server (NTRS)
Lewis, M. H.
1981-01-01
Brief job-related autobiographical sketches of scientists working on NASA space science projects are presented. Career and educational guidance is offered to students thinking about entering the space science field.
NSF and Science Education--Who, Why, and How Did It Work Out?
ERIC Educational Resources Information Center
Platt, Joseph B.
1975-01-01
The appreciable impact of the National Science Foundation on the education of scientists in the United States since the agency's founding was discussed. One of the major new challenges considered was the need for scientists and engineers to learn more about our society's economics, politics, and values. (Editor/RK)
Commercializing medical technology.
Scanlon, Kevin J; Lieberman, Mark A
2007-04-01
As medicine moves into the 21st century, life saving therapies will move from inception into medical products faster if there is a better synergy between science and business. Medicine appears to have 50-year innovative cycles of education and scientific discoveries. In the 1880's, the chemical industry in Germany was faced with the dilemma of modernization to exploit the new scientific discoveries. The solution was the spawning of novel technical colleges for training in these new chemical industries. The impact of those new employees and their groundbreaking compounds had a profound influence on medicine and medical education in Germany between 1880 and 1930. Germany dominated international science during this period and was a training center for scientists worldwide. This model of synergy between education and business was envied and admired in Europe, Asia and America. British science soon after evolved to dominate the field of science during the prewar and post World War (1930's-1970's) because the German scientists fled Hitler's government. These expatriated scientists had a profound influence on the teaching and training of British scientists, which lead to advances in medicine such as antibiotics. After the Second World War, the US government wisely funded the development of the medical infrastructure that we see today. British and German scientists in medicine moved to America because of this bountiful funding for their research. These expatriated scientists helped drive these medical advances into commercialized products by the 1980's. America has been the center of medical education and advances of biotechnology but will it continue? International scientists trained in America have started to return to Europe and Asia. These American-trained scientists and their governments are very aware of the commercial potential of biotechnology. Those governments are now more prepared to play an active role this new science. Germany, Ireland, Britain, Singapore, Taiwan and Israel are such examples of this government support for biotechnology in the 21st century. Will the US continue to maintain its domination of biotechnology in this century? Will the US education system adjust to the new dynamic of synergistic relationships between the education system, industry and government? This article will try to address these questions but also will help the reader understand who will emerge by 2015 as the leader in science and education.
Commercializing medical technology
Lieberman, Mark A.
2007-01-01
As medicine moves into the 21st century, life saving therapies will move from inception into medical products faster if there is a better synergy between science and business. Medicine appears to have 50-year innovative cycles of education and scientific discoveries. In the 1880’s, the chemical industry in Germany was faced with the dilemma of modernization to exploit the new scientific discoveries. The solution was the spawning of novel technical colleges for training in these new chemical industries. The impact of those new employees and their groundbreaking compounds had a profound influence on medicine and medical education in Germany between 1880 and 1930. Germany dominated international science during this period and was a training center for scientists worldwide. This model of synergy between education and business was envied and admired in Europe, Asia and America. British science soon after evolved to dominate the field of science during the prewar and post World War (1930’s–1970’s) because the German scientists fled Hitler’s government. These expatriated scientists had a profound influence on the teaching and training of British scientists, which lead to advances in medicine such as antibiotics. After the Second World War, the US government wisely funded the development of the medical infrastructure that we see today. British and German scientists in medicine moved to America because of this bountiful funding for their research. These expatriated scientists helped drive these medical advances into commercialized products by the 1980’s. America has been the center of medical education and advances of biotechnology but will it continue? International scientists trained in America have started to return to Europe and Asia. These American-trained scientists and their governments are very aware of the commercial potential of biotechnology. Those governments are now more prepared to play an active role this new science. Germany, Ireland, Britain, Singapore, Taiwan and Israel are such examples of this government support for biotechnology in the 21st century. Will the US continue to maintain its domination of biotechnology in this century? Will the US education system adjust to the new dynamic of synergistic relationships between the education system, industry and government? This article will try to address these questions but also will help the reader understand who will emerge by 2015 as the leader in science and education. PMID:19003196
Science Education and the Emergence of the Specialized Scientist in Nineteenth Century Greece
NASA Astrophysics Data System (ADS)
Tampakis, Konstantinos
2013-04-01
In this paper, I describe the strong and reciprocal relations between the emergence of the specialized expert in the natural sciences and the establishment of science education, in early Modern Greece. Accordingly, I show how science and public education interacted within the Greek state from its inception in the early 1830, to the first decade of the twentieth century, when the University of Athens established an autonomous Mathematics and Physics School. Several factors are taken into account, such as the negotiations of Western educational theories and practices within a local context, the discourses of the science savants of the University of Athens, the role of the influential Greek pedagogues of the era, the state as an agent which imposed restrictions or facilitated certain developments and finally the intellectual and cultural aspirations of the nation itself. Science education is shown to be of fundamental importance for Greek scientists. The inclusion of science within the school system preceded and promoted the appearance of a scientific community and the institution of science courses was instrumental for the emergence of the first trained Greek scientists. Thus, the conventional narrative that would have science appearing in the classrooms as an aftermath of the emergence of a scientific community is problematized.
Science experiences of citizen scientists in entomology research
NASA Astrophysics Data System (ADS)
Lynch, Louise I.
Citizen science is an increasingly popular collaboration between members of the public and the scientific community to pursue current research questions. In addition to providing researchers with much needed volunteer support, it is a unique and promising form of informal science education that can counter declining public science literacy, including attitudes towards and understanding of science. However, the impacts of citizen science programs on participants' science literacy remains elusive. The purpose of this study was to balance the top-down approach to citizen science research by exploring how adult citizen scientists participate in entomology research based on their perceptions and pioneer mixed methods research to investigate and explain the impacts of citizen science programs. Transference, in which citizen scientists transfer program impacts to people around them, was uncovered in a grounded theory study focused on adults in a collaborative bumble bee research program. Most of the citizen scientists involved in entomology research shared their science experiences and knowledge with people around them. In certain cases, expertise was attributed to the individual by others. Citizen scientists then have the opportunity to acquire the role of expert to those around them and influence knowledge, attitudinal and behavioral changes in others. An intervention explanatory sequential mixed methods design assessed how entomology-based contributory citizen science affects science self-efficacy, self-efficacy for environmental action, nature relatedness and attitude towards insects in adults. However, no statistically significant impacts were evident. A qualitative follow-up uncovered a discrepancy between statistically measured changes and perceived influences reported by citizen scientists. The results have important implications for understanding how citizen scientists learn, the role of citizen scientists in entomology research, the broader program impacts and the value of qualitative methodologies in citizen science research. Citizen science is championed for its ability to extend the geographic, temporal and spatial reach of a research team. It can also extend the educational reach through citizen scientists that have acquired the role of expert.
"Teaching Physics as one of the humanities": The history of (harvard) project Physics, 1961-1970
NASA Astrophysics Data System (ADS)
Meshoulam, David
In the United States after World War II, science had come to occupy a central place in the minds of policy makers, scientists, and the public. Negotiating different views between these groups proved a difficult task and spilled into debates over the role and scope of science education. To examine this process, this dissertation traces the history of Harvard Project Physics (HPP), a high-school physics curriculum from the 1960s that incorporated a humanistic and historical approach to teaching science. The narrative begins with the rise of General Education in the 1940s. Under the leadership of Harvard president James Conant, faculty at Harvard developed several Natural Science courses that connected science to history as a way to teach students about science and its relationship to culture. By the late 1950s this historical approach faced resistance from scientists who viewed it as misrepresenting their disciplines and called for students to learn specialized subject matter. With the support of the National Science Foundation (NSF), in the early 1960s scientists' vision of science education emerged in high-school classrooms across the country. By the mid 1960s, with the passage of the Civil Rights Act, the Elementary and Secondary Education Act, and the Daddario Amendment to the NSF, the political and education landscape began to change. These laws transformed the goals of two of the NSF and the Office of Education (USOE). These organizations faced demands to work together to develop projects that would speak to domestic concerns over equity and diversity. Their first joint educational venture was HPP. In order to succeed, HPP had to speak to the needs of disciplinary-minded scientists at the NSF, equity-minded educators at the USOE, and results-focused politicians in Congress. This work argues that HPP succeeded because it met the needs of these various stakeholders regarding the roles of science and education in American society.
Restoration Science in New York Harbor: It takes a (large, diverse and engaged) village
NASA Astrophysics Data System (ADS)
Newton, R.; Birney, L.; Janis, S.; Groome, M.; Palmer, M.; Bone, E.; O'Neil, J. M.; Hill, J.; Dennison, W.; Malinowski, P.; Kohne, L.; Molina, M.; Moore, G.; Woods, N.
2015-12-01
The Curriculum + Community Enterprise for Restoration Science (CCE-RS) facilitates partnerships between scientists and middle school educators on ecological restoration and environmental monitoring projects. The educational model is designed to wrap around the student, including classroom instruction, field science, after-school programs and engagement with the student's community. Its pillars include: a teacher training fellowship at Pace University, student curriculum, a digital platform, afterschool and summer mentoring, and community exhibits. The digital platform includes a tablet app tailored to the project's field protocols and linked to a database shared across schools and partnering institutions. Through the digital platform, data is integrated into a single citizen-science monitoring project, teachers share curriculum and best practices, and students link directly to their peers at other schools. Curriculum development has been collaborative between scientists, science education specialists, and secondary school teachers. The CCE-RS is rooted in project-based learning: the New York Harbor School has engaged high school students in environmental monitoring and oyster restoration in the Harbor for about the last decade. The science partners (U. of Maryland and Columbia) have been working with students and other citizen scientists in outdoor science over about the last decade. Local partners in outside-the-classroom education include the New York Academy of Sciences, The River Project, which will provide field education services, and Good Shepherd Services, which provides after-school programming in schools serving primarily poor families. Scientists on the project engage directly with teachers and informal educators in curriculum development and citizen-science outreach. We present the lessons learned from our first cohort of Fellows, the pedagogical model, and the digital platform, which is extensible to other ecological restoration settings.
ERIC Educational Resources Information Center
Schielack, Jane F., Ed.; Knight, Stephanie L., Ed.
2012-01-01
How can we use new technology to support and educate the science leaders of tomorrow? This unique book describes the design, development, and implementation of an effective science leadership program that promotes collaboration among scientists and science educators, provides authentic research experiences for educators, and facilitates adaptation…
NASA Astrophysics Data System (ADS)
Smith, Denise Anne; Peticolas, Laura; Schwerin, Theresa; Shipp, Stephanie; Lawton, Brandon L.; Meinke, Bonnie; Manning, James G.; Bartolone, Lindsay; Schultz, Gregory
2015-08-01
NASA’s Science Mission Directorate (SMD) created four competitively awarded Science Education and Public Outreach Forums (Astrophysics, Heliophysics, Planetary Science, Earth Science) in 2009. The NASA SMD education and public engagement community and Forum teams have worked together to share the science, the story, and the adventure of SMD's science missions with students, educators, and the public. In doing so, SMD's programs have emphasized collaboration between scientists with content expertise and educators with pedagogy expertise. The goal of the Education Forums has been to maximize program efficiency, effectiveness, and coherence by organizing collaborations that reduce duplication of effort; sharing best practices; aligning products to national education standards; creating and maintaining the NASA Wavelength online catalog of SMD education products; and disseminating metrics and evaluation findings. We highlight examples of our activities over the past six years, along with the role of the scientist-educator partnership and examples of program impact. We also discuss our community’s coordinated efforts to expand the Astro4Girls pilot program into the NASA Science4Girls and Their Families initiative, which partners NASA science education programs with public libraries to engage underrepresented audiences in science.
Science Education in the United States.
ERIC Educational Resources Information Center
Champagne, Audrey B.
1997-01-01
Discusses science education in the United States, which is in the midst of an unprecedented reform movement driven by national standards developed with support from the federal government. These standards are redefining the character of science education from kindergarten to the post-graduate education of scientists and science teachers. The new…
NASA Astrophysics Data System (ADS)
Schwerin, T. G.; Peticolas, L. M.; Shipp, S. S.; Smith, D. A.
2014-12-01
Since 1993, NASA has embedded education and public outreach (EPO) in its Earth and space science missions and research programs on the principle that science education is most effective when educators and scientists work hand-in-hand. Four Science EPO Forums organize the respective NASA Science Mission Directorate (SMD) Astrophysics, Earth Science, Heliophysics, and Planetary Science EPO programs into a coordinated, efficient, and effective nationwide effort. The result is significant, evaluated EPO impacts that support NASA's policy of providing a direct return-on-investment for the American public, advance STEM education and literacy, and enable students and educators to participate in the practices of science and engineering as embodied in the 2013 Next Generation Science Standards. This presentation by the leads of the four NASA SMD Science EPO Forums provides big-picture perspectives on NASA's effort to incorporate authentic science into the nation's STEM education and scientific literacy, highlighting tools that were developed to foster a collaborative community and examples of program effectiveness and impact. The Forums are led by: Astrophysics - Space Telescope Science Institute (STScI); Earth Science - Institute for Global Environmental Strategies (IGES); Heliophysics - University of California, Berkeley; and Planetary Science - Lunar and Planetary Institute (LPI).
Multiple Perspectives on the Topic of Scientists and Education and Public Outreach
NASA Astrophysics Data System (ADS)
Peticolas, L. M.
2011-12-01
This presentation aims to share the author's understanding of the complex topic of scientist involvement in and attitudes about Education and Public Outreach (E/PO) by approaching the topic from four viewpoints. The first perspective is from the author's own journey starting as a post-doctoral fellow engaged in limited ways in education and public outreach to full-time E/PO professional. The second perspective comes from discussions with scientists on the topic of E/PO. Evaluation data of scientists' involvement in a community college space science seminar series provides a third perspective. And the final perspective approaches the topic from the vantage point of research on scientist involvement in E/PO. From these multiple perspectives, there is evidence that that there exists ample passion for education and outreach in the scientific community. However, the path from passion to meaningful engagement of audiences and understandings of educational pedagogies continues to be difficult for a variety of reasons, such as: 1) a tendency to teach as one was taught rather than changing teaching practices based on research on how people learn, 2) a lack of time to collaborate and partner with appropriate educational professionals or institutions, 3) a lack of awareness (or a lack of time to develop an awareness) of an audience need or audience baseline understandings, and 4) a belief that science is supra-cultural and can be shared outside of a cultural context. It is suggested that the most effective way for scientists to engage in E/PO is to develop professional relationships with educators in the field of education and outreach for which the scientist is passionate (such as a middle school teacher if the passion lies in sharing science with middle school students.) E/PO professionals can also support and guide the passion with an understanding of best practices in E/PO. Spending time within the culture of the audience one wishes to work with can also be helpful in order to understand the view of science from within that culture. It has also been observed that professional evaluators have made excellent partners with scientists when scientists desire to move passion to meaningful engagement. This is likely to be because evaluators help to guide education efforts to meet goals and objectives set out in education programs and projects.
Adult-Rated Oceanography Part 2: Examples from the Trenches
NASA Astrophysics Data System (ADS)
Torres, M. E.; Collier, R.; Cowles, S.
2004-12-01
We will share experiences and specific examples from an ongoing Ocean Science and Math Collaborative Project between OSU faculty and Community College instructors from the Oregon system of adult education and workforce development. The participants represent such diverse instructional programs as workforce training, workplace education (cannery workers), adult basic education, adult secondary education (GED preparation), English to Speakers of Other Languages, Family Literacy, and Tribal Education (Confederated Tribes of the Siletz Indians). This collaborative project is designed to integrate ocean sciences into the science, math, and critical thinking curriculum through the professional development activities of adult educators. Our strategy is to tailor new and existing ocean science resources to the needs of adult education instructors. This project provides a wide range of opportunities in time and effort for scientist involvement. Some scientists have chosen to participate in short interviews or conversations with adult educators, which give added value through real-world connections in the context of the larger project. Other participating scientists have made larger time investments, which include presentations at workshops, hosting teacher-at-sea opportunities and leading project planning and implementation efforts. This project serves as an efficient model for scientists to address the broader impact goals of their research. It takes advantage of a variety of established educational outreach resources funded through NSF (e.g. the national COSEE network and GeoEducation grants), NOAA (e.g. SeaGrant education and Ocean Explorer) as well as State and Federal adult education programs (e.g. The National Institute for Literacy Science and Numeracy Special Collection). We recognize the value and creativity inherent in these resources, and we are developing a model to "tune" their presentation, as well as their connection to new oceanographic research, in a manner that fits the needs of the adult education community.
Informal science education: lifelong, life-wide, life-deep.
Sacco, Kalie; Falk, John H; Bell, James
2014-11-01
Informal Science Education: Lifelong, Life-Wide, Life-Deep Informal science education cultivates diverse opportunities for lifelong learning outside of formal K-16 classroom settings, from museums to online media, often with the help of practicing scientists.
ERIC Educational Resources Information Center
Rowan, Andrew N.
1981-01-01
Summarizes viewpoints on the use of animals in science experiments in the biology classroom, including those of teachers, education researchers, biomedical scientists, science education administrators, and animal welfare advocates. (Author/CS)
Scientists and Educators Working Together: Everyone Teaches, Everyone Learns
NASA Astrophysics Data System (ADS)
Lebofsky, Larry A.; Lebofsky, N. R.; McCarthy, D. W.; Canizo, T. L.; Schmitt, W.; Higgins, M. L.
2013-10-01
The primary author has been working with three of the authors (Lebofsky, McCarthy, and Cañizo) for nearly 25 years and Schmitt and Higgins for 17 and 8 years, respectively. This collaboration can be summed up with the phrase: “everyone teaches, everyone learns.” What NASA calls E/PO and educators call STEM/STEAM, requires a team effort. Exploration of the Solar System and beyond is a team effort, from research programs to space missions. The same is true for science education. Research scientists with a long-term involvement in science education have come together with science educators, classroom teachers, and informal science educators to create a powerful STEM education team. Scientists provide the science content and act as role models. Science educators provide the pedagogy and are the bridge between the scientists and the teacher. Classroom teachers and informal science educators bring their real-life experiences working in classrooms and in informal settings and can demonstrate scientists’ approaches to problem solving and make curriculum more engaging. Together, we provide activities that are grade-level appropriate, inquiry-based, tied to the literacy, math, and science standards, and connected directly to up-to-date science content and ongoing research. Our programs have included astronomy camps for youth and adults, professional development for teachers, in-school and after-school programs, family science events, and programs in libraries, science centers, and museums. What lessons have we learned? We are all professionals and can learn from each other. By engaging kids and having them participate in activities and ask questions, we can empower them to be the presenters for others, even their families. The activities highlighted on our poster represent programs and collaborations that date back more than two decades: Use models and engage the audience, do not just lecture. Connect the activity with ongoing science and get participants outside to look at the real sky: do a Moon journal, measure shadows, observe constellations, and look through a telescope—the sky is more than just string, balls, or a computer program.
Two Challenges to Communicating Climate Science
NASA Astrophysics Data System (ADS)
Oreskes, N.; Evans, J. H.; Feng, J.
2011-12-01
Climate scientists have been frustrated by the persistence of public opinion at odds with established scientific evidence about anthropogenic climate change. Traditionally, scientists have attributed the gap between scientific knowledge and public perception to scientific illiteracy, which could be remedied by a better and more abundant supply of well-communicated scientific information. Social scientific research, however, illustrates that this "deficit model" is insufficient to explain the current state of affairs: many individuals who reject the conclusions of climate scientists are highly educated, and some evidence suggests that, among certain demographics, more educated people are more likely than less educated ones to reject climate science. This talk explores two possible sources of resistance to, or outright rejection of, scientific conclusions about climate change: 1) the effects of long-standing organized efforts to challenge climate science and the credibility of climate scientists; 2) conservative Protestant religious beliefs concerning how factual claims about the earth are determined and how their significance is judged.
Scientists and Faith Communities in Dialogue - Finding Common Ground to Care for our Common Home
NASA Astrophysics Data System (ADS)
Jablonski, L. M.
2017-12-01
World-wide, faith communities are a key place for education and outreach to the general adult population. The sacred responsibility to care for the earth, living sustainability and concern for the poor are nearly universal priorities across faith communities. Scientists and people of faith share in common experiences of awe and wonder and ethical roles as citizens. The majority of faith communities have statements on climate changes, environmental justice, and stewardship, and respond with education, action plans and advocacy. People of faith are increasingly seeking science expertise to better understand the science and best solutions to implement. Transformation of point of view often requires heart-felt motivation (domain of religion) as well as knowledge (science). Scientists can participate in alleviating environmental justice by providing data and education to communities. Expert testimony is a critical service. Pope Francis' environmental encyclical Laudato si, engaged diverse scientists in its writing and outreach. Francis invites our continued dialogue with people of faith and goodwill of all societal sectors and fields to achieve an integral ecology that integrates science, economics, and impacts on the poor. For scientists to be most effective in sharing expertise, and building understanding and trust in scientific findings, skill- building is needed in: communication, finding common ground, intercultural competency, working with diverse populations and religious literacy. Educational initiatives bridging scientists and faith-communities will be highlighted including within: the Ecological Society of America, American Assn for Advancement of Sustainability in Higher Education, faith-based & Environmental Justice networks, Nature centers, Higher Education (including Seminary) Initiatives and the Hanley Sustainability Institute, and interfaith religious organizations engaged with scientists. Bridge-building and ongoing partnerships of scientists, EJ-impacted community members and people of faith are critical to addressing climate change and its impacts and countering environmental injustice. Such partnerships can help achieve the UN Sustainable Development Goals which address both human rights and environmental sustainability.
The 1978 Macmillan Education Lecture
ERIC Educational Resources Information Center
Williams, Shirley
1978-01-01
This is the text of the lecture of the British Secretary of State for Education and Science given at the 1978 Meeting of the Association for Science Education (ASE). Three themes are presented; (1) British innovative science curricula; (2) relationship between science and technology; and (3) science for non-scientist. (HM)
ERIC Educational Resources Information Center
Cisneros-Cohernour, Edith J.; Lopez-Avila, Maria T.; Barrera-Bustillos, Maria E.
2007-01-01
This paper presents findings of a project aimed to improve the quality of science education in Southeast Mexico by the creation of a community of practice among scientists, researchers and teachers, involved in the design, implementation and evaluation of a professional development program for mathematics, chemistry, biology and physics secondary…
The Development of a Conceptual Framework for New K-12 Science Education Standards (Invited)
NASA Astrophysics Data System (ADS)
Keller, T.
2010-12-01
The National Academy of Sciences has created a committee of 18 National Academy of Science and Engineering members, academic scientists, cognitive and learning scientists, and educators, educational policymakers and researchers to develop a framework to guide new K-12 science education standards. The committee began its work in January, 2010, released a draft of the framework in July, 2010, and intends to have the final framework in the first quarter of 2011. The committee was helped in early phases of the work by consultant design teams. The framework is designed to help realize a vision for science and engineering education in which all students actively engage in science and engineering practices in order to deepen their understanding of core ideas in science over multiple years of school. These three dimensions - core disciplinary ideas, science and engineering practices, and cross-cutting elements - must blend together to build an exciting, relevant, and forward looking science education. The framework will be used as a base for development of next generation K-12 science education standards.
NASA Astrophysics Data System (ADS)
Hills, D. J.; Fullerton, K.; Hoddick, C.; Ali, N.; Mosher, M. K.
2002-12-01
Bishop Museum developed the "X-treme Science: Exploring Oceans, Volcanoes, and Outer Space" museum exhibit in conjunction with NASA as part of their goal to increase educational outreach. A key element of the exhibit was the inclusion of real scientists describing what they do, and fostering the interaction between scientists and students. Highlights of the exhibit were interviews with local (Hawaii-based) scientists involved in current ocean, volcano, and space research. These interviews were based on questions that students provided, and were available during the exhibit at interactive kiosks. Lesson plans were developed by local teachers and scientists, and provided online to enhance the exhibit. However, one limitation of the museum exhibit was that not all students in the state could visit, or spend enough time with it. To serve more remote schools, and to provide for additional enrichment for those who did attend, the education department at Bishop Museum developed a traveling program with the X-treme Science exhibit as the basis. The Holoholo (Hawaiian for "fun outing") Science program brings a scientist into the classroom with a hands-on scientific inquiry activity. The activity is usually a simplified version of a problem that the scientist actually deals with. The students explore the activity, reach conclusions, and discuss their results. They are then given the opportunity to question the scientist about the activity and about what the scientist does. This allows students to understand that science is not something mystical, but rather something attainable. A key element of Holoholo remains the active participation of real-life scientists in the experience. The scientists who have participated in the program have had overwhelmingly positive experiences. Bishop Museum is developing a science learning center, with the objective of meeting local and national science standards using inquiry based science. The unifying theme of all three of these projects is involving students with active scientists who are accessible to them. AGU scientists are vital to realizing this goal.
NASA Astrophysics Data System (ADS)
Sigman, M.; Anderson, A.; Deans, N. L.; Dublin, R.; Dugan, D.; Matsumoto, G. I.; Warburton, J.
2012-12-01
Alaska marine ecosystem-based professional development workshops have proven to be a robust context for engaging scientists from a variety of disciplines in overcoming barriers to communication and collaboration among scientists and educators. Scientists came away from scientist-teacher workshops with effective K-12 outreach strategies as well as a deeper understanding about how to contribute meaningfully to K-12 education. The establishment of the Alaskan Center for Ocean Sciences Education Excellence (COSEE-AK) in 2009 was the catalyst for a series of professional development workshops related to the North Pacific Research Board's (NPRB) marine focus areas (Bering Sea/Aleutian Islands, Gulf of Alaska, and Arctic Ocean) for Integrated Ecosystem Research Programs (IERPs). During 2010-2012, COSEE-AK and NPRB partnered with the Arctic Research Consortium of the U.S. (ARCUS), the Alaska Ocean Observing System (AOOS), and the Monterey Bay Aquarium Research Institute (MBARI) to support a five-day professional development workshop focused on each ecosystem. The workshops brought together three types of participants: 1) Alaska-focused marine ecosystem scientists; 2) rural Alaskan teachers living within each ecosystem; and 3) teachers from outside Alaska who had research experiences with scientists in the ecosystem. Over the course of the workshops, we developed a workshop model with four objectives: 1) to increase the science content knowledge of educators and their ability to teach ecosystem science; 2) to provide the scientists an opportunity to have broader impacts from their research on educators and Alaska Native and rural students; 3) to increase the knowledge and skills of educator and scientist participants to provide effective learning experiences for K-12 students; and 4) to facilitate the collaborative development of lesson plans. A total of 28 scientists and 41 educators participated in the three workshops. The success of the workshop for the educators was evaluated by pre- and post-workshop surveys of their perceived increase in content knowledge in specific topics and increased confidence in teaching those topics. The experiences of the scientists were evaluated based on recorded one-on-one interviews. Preliminary results indicate that the Arctic Ocean workshop was the most successful of the three in meeting the workshop objectives for both teacher and scientist participants. The gain in teachers' level of knowledge and confidence was significant for five scientific topics. Scientists reported gains in their understanding of K-12 education, working with teachers, lesson plan design, and how to make their science relevant to Alaska Native students and communities. A comparison of scientists responses from all three workshops indicate that the factors unique to the Arctic Ocean Workshop which contributed to meeting the workshop objectives in terms of scientist engagement were: 1) the sustained involvement of the scientists throughout the workshop, 2) an effective ratio of scientists to teachers (1:1), with flexibility for smaller group work), and 3) the involvement of Alaska Native scientists, educators, and community members in the collaborative work. The lesson plans have been posted to the ARCUS (http://www.polartrec.com) and MBARI (http://www.mbari/earth) websites.
NASA Astrophysics Data System (ADS)
Wang, Hsingchi A.; Sshmidt, William H.
Throughout the history of enhancing the public scientific literacy, researchers have postulated that since every citizen is expected to have informal opinions on the relationships among government, education, and issues of scientific research and development, it is imperative that appreciation of the past complexities of science and society and the nature of scientific knowledge be a part of the education of both scientists and non-scientists. HPSS inclusion has been found to be an effective way to reach the goal of enhancing science literacy for all citizens. Although reports stated that HPSS inclusion is not a new educational practice in other part of the world, nevertheless, no large scale study has ever been attempted to report the HPSS educational conditions around the world. This study utilizes the rich data collected by TIMSS to unveil the current conditions of HPSS in the science education of about forty TIMSS countries. Based on the analysis results, recommendations to science educators of the world are provided.
Multicultural Science Education: Theory, Practice, and Promise
ERIC Educational Resources Information Center
Hines, S. Maxwell, Ed.
2007-01-01
As a relatively new area of investigation, the study of multicultural education as it relates to science teaching and learning has spawned numerous interpretations by researchers and authors worldwide. The contributors of this international volume--among them are science teacher educators, science teachers, scientists, researchers, program…
Canopy in the Clouds: Integrating Science and Media to Inspire a New Generation of Scientists
NASA Astrophysics Data System (ADS)
Goldsmith, G. R.; Fulton, A. D.; Witherill, C. D.
2008-12-01
Innovative approaches to science education are critical for inspiring a new generation of scientists. In a world where students are inundated with digital media inviting them to explore exciting, emerging disciplines, science often lags behind in using progressive media techniques. Additionally, science education media often neglects to include the scientists conducting research, thereby disconnecting students from the excitement, adventure, and beauty of conducting research in the field. Here we present initial work from a science education media project entitled Canopy in the Clouds. In particular, we address the goals and approach of the project, the logistics associated with generating educational material at a foreign field site, and the challenges associated with effectively integrating science and media. Canopy in the Clouds is designed to engage students in research, motivate a new generation of young scientists, and promote conservation from the perspective of a current research project being conducted in the canopy of a tropical montane cloud forest located in Monteverde, Costa Rica. The project seeks to generate curriculum based on multiple, immersive forms of novel digital media that attract and maintain student attention. By doing so from the perspective of an adventurous research project in a beautiful and highly biodiverse region, we hope to engage students in science and enhance bioliteracy. However, there are considerable logistic considerations associated with such an approach, including safety, travel, permitting, and equipment maintenance. Additionally, the goals of both the scientific research and the educational media project must be balanced in order to meet objectives in a timely fashion. Finally, materials generated in the field must be translated to viable final products and distributed. Work associated with Canopy in the Clouds will thus provide insight into this process and can serve to inform future science education and outreach efforts.
NASA Astrophysics Data System (ADS)
Quinn, Helen
2016-03-01
I make a distinction between science outreach work and science education work, and my stress in this talk will be on the latter, though I have done both. Using my own career in physics and education as an example, as well as some examples of the contributions of other physicists, I will discuss the variety of ways in which scientists can contribute to science education at the pre-college level. I will argue for the need for more scientists to undertake this work as a serious professional commitment. In order to do so effectively a scientist must take the time to learn about science education and research on learning, and about how the education systems and policies that one is trying to impact function and are controlled. While working with individual teachers and/or their students provides a valuable service to those individuals, working at the State and National policy level, or with those developing curriculum materials, professional development for teachers and assessment strategies aligned to the broadly adopted Next Generation Science Standards can have much broader impacts. These standards have been adopted by over 14 states and have strongly influenced the science standards of a number of others. I will talk about my role in developing the vision of ``three-dimensional'' science education embodied in those standards, explain the fundamental components of that vision, and discuss the work that still needs to be done to realize that vision over the coming years.
NASA Astrophysics Data System (ADS)
Smith, Denise A.; Peticolas, L.; Schwerin, T.; Shipp, S.
2014-01-01
The NASA Science Mission Directorate (SMD) Education and Public Outreach (E/PO) program provides a direct return on the public’s investment in NASA’s science missions and research programs through a comprehensive suite of educational resources and opportunities for students, educators, and the public. Four Science Education and Public Outreach Forums work with SMD-funded missions, research programs, and grantees to organize individual E/PO activities into a coordinated, effective, and efficient nationwide effort, with easy entry points for scientists, educators, and the public. We outline the Forums’ role in 1) facilitating communication and collaboration among SMD E/PO programs, scientists, and educators; 2) supporting utilization of best practices and educational research; 3) creating clear paths of involvement for scientists interested in SMD E/PO; and, 4) enabling efficient and effective use of NASA content and education products. Our work includes a cross-Forum collaboration to inventory existing SMD education materials; identify and analyze gaps; and interconnect and organize materials in an accessible manner for multiple audiences. The result is NASAWavelength.org, a one-stop-shop for all NASA SMD education products, including tools to help users identify resources based upon their needs and national education standards. The Forums have also collaborated with the SMD E/PO community to provide a central point of access to metrics, evaluation findings, and impacts for SMD-funded E/PO programs (http://smdepo.org/page/5324). We also present opportunities for the astronomy community to participate in collaborations supporting NASA SMD efforts in the K - 12 Formal Education, Informal Education and Outreach, Higher Education and Research Scientist communities. See Bartolone et al., Lawton et al., Meinke et al., and Buxner et al. (this conference), respectively, to learn about Forum resources and opportunities specific to each of these communities.
NEON Citizen Science: Planning and Prototyping
NASA Astrophysics Data System (ADS)
Newman, S. J.; Henderson, S.; Gardiner, L. S.; Ward, D.; Gram, W.
2011-12-01
The National Ecological Observatory Network (NEON) will be a national resource for ecological research and education. NEON citizen science projects are being designed to increase awareness and educate citizen scientists about the impacts of climate change, land-use change, and invasive species on continental-scale ecological processes as well as expand NEON data collection capacity by enabling laypersons to collect geographically distributed data. The citizen science area of the NEON web portal will enable citizen scientists to collect, contribute, interpret, and visualize scientific data, as well as access training modules, collection protocols and targeted learning experiences related to citizen science project topics. For NEON, citizen science projects are a means for interested people to interact with and contribute to NEON science. Investigations at vast spatial and temporal scales often require rapid acquisition of large amounts of data from a geographically distributed population of "human sensors." As a continental-scale ecological observatory, NEON is uniquely positioned to develop strategies to effectively integrate data collected by non-scientists into scientific databases. Ultimately, we plan to work collaboratively to transform the practice of science to include "citizens" or non-scientists in the process. Doing science is not limited to scientists, and breaking down the barriers between scientists and citizens will help people better understand the power of using science in their own decision making. In preparation for fully developing the NEON citizen science program, we are partnering with Project BudBurst (PBB), a citizen science project focused on monitoring plant phenology. The educational goals of PBB are to: (1) increase awareness of climate change, (2) educate citizen scientists about the impacts of climate change on plants and the environment, and (3) increase science literacy by engaging participants in the scientific process. Phenology was chosen as the focus of this citizen science campaign because it is a visible and comprehensible way of demonstrating the effects of climate change. In addition, plants are readily accessible in nearly every neighborhood and park, and wild area across the continent, so people can make observations whether they live near an inner city park or in the rural countryside. Recently, NEON developed data visualization tools for Project BudBurst to engage citizen science participants in "doing science" beyond data collection. By prototyping NEON citizen science through Project BudBurst, NEON is developing a better understanding of how to build a citizen science program that addresses areas of awareness, mastery, and leadership of scientific information like that which NEON will produce over the next 30 years.
Teaching Scientists to Fish, as Inspired by Jack Dymond
NASA Astrophysics Data System (ADS)
Franks, S. E.
2004-12-01
It is almost inconceivable that as Jack Dymond's graduate student for eight years, I never mastered the skill of fly-fishing, a pursuit so near and dear to his heart. In fact, Jack did inspire me, not to tie flies and cast, but eventually to teach fellow scientists to fish. The work I'll present - connecting scientists and educators to achieve societal benefit - is profoundly influenced by Jack's dedication to applying scientific understanding and critical thinking to societal issues. With colleagues in the Centers for Ocean Sciences Education Excellence (COSEE), http://www.cosee.net/, I enable scientists to efficiently make meaningful contributions to educational outreach. A key goal of the multi-Center, national COSEE Network is helping scientists build the skills and acquire the resources needed to share their science with diverse audiences. At Scripps, we are piloting an innovative approach to helping scientists meet funding agencies' broader impact requirements. Key elements of the approach include: 1) services to identify educational outreach options that best fit scientists' research and preferences; 2) assistance establishing partnerships with educational outreach providers who have the skills and resources to develop and implement effective programs and exhibits; and 3) nuts and bolts (line and fly) assistance writing proposal text, drafting budgets, and coordinating with institutional business offices to ensure that the proposed educational outreach effort is compelling and sufficiently funded. Where does the fishing lesson come in? We facilitators of scientist-educator partnerships empower scientists to launch enduring collaborations. Once comfortable working with top-notch educational organizations, scientists can tap these resources, project after project, often with little or no additional involvement on our part. Our initial investment in brokering the relationships is richly rewarded. By helping scientists get started, it's as if we are teaching them to fish, rather than merely giving them fish.
NASA Technical Reports Server (NTRS)
Strauss, Jeff; Shope, Richard E., III; Terebey, Susan
2005-01-01
Science literacy is a major goal of science educational reform (NRC, 1996; AAAS, 1998; NCLB Act, 2001). Some believe that teaching science only requires pedagogical content knowledge (PCK). Others believe doing science requires knowledge of the methodologies of scientific inquiry (NRC, 1996). With these two mindsets, the challenge for science educators is to create models that bring the two together. The common ground between those who teach science and those who do science is science communication, an interactive process that galvanizes dialogue among scientists, teachers, and learners in a rich ambience of mutual respect and a common, inclusive language of discourse . The dialogue between science and non-science is reflected in the polarization that separates those who do science and those who teach science, especially as it plays out everyday in the science classroom. You may be thinking, why is this important? It is vital because, although not all science learners become scientists, all K-12 students are expected to acquire science literacy, especially with the implementation of the No Child Left Behind Act of 2001 (NCLB). Students are expected to acquire the ability to follow the discourse of science as well as connect the world of science to the context of their everyday life if they plan on moving to the next grade level, and in some states, to graduate from high school. This paper posits that science communication is highly effective in providing the missing link for K-12 students cognition in science and their attainment of science literacy. This paper will focus on the "Science For Our Schools" (SFOS) model implemented at California State Univetsity, Los Angeles (CSULA) as a project of the National Science Foundation s GK-12 program, (NSF 2001) which has been a huge success in bridging the gap between those who "know" science and those who "teach" science. The SFOS model makes clear the distinctions that identify science, science communication, science education, and science literacy in the midst of science learning by bringing together graduate student scientists and science teachers to engage students in the two world s dialogue in the midst of the school science classroom. The graduate student scientists and the science teachers worked as a team throughout the school year and became effective science Communicators as they narrowed the gulf between the two worlds. 1
National Conference on Student & Scientist Partnerships
NASA Astrophysics Data System (ADS)
Barstow, D.
2001-05-01
Science education is turning an exciting corner with the development of a new class of projects called Student and Scientist Partnerships for authentic research. Examples include GLOBE, Hands-On Universe and EarthKAM. These projects engage students as learners and as participants in authentic research.Through such projects scientists acquire new research partners. At the same time, students experience real science, learning up-to-date science content and developing essential investigation skills. To better understand the nature and potential of these partnerships, an invitational conference was held in Washington, D.C.,from October 23-25, 1996. The conference, funded by the National Science Foundation and coordinated by TERC and the Concord Consortium, brought together 60 leaders in science and education who have research backgrounds, practical experience, or a high interest in Student, Scientists & Partnerships. The participants confirmed that this shift from the "student as recipient" to the "student as partner" model can be of real and substantive benefit for both the scientists and the students. The primary and most obvious benefits for the students are the excitement of doing authentic science, a new context for hands-on experiential learning, and the linkage of school learning with the "real world." For the scientists, the primary benefits are the help of student partners who enable the scientists to do research that might not otherwise be possible and the personal rewards of supporting education. Beyond these primary benefits, however, is a secondary and perhaps deeper level of benefits, resulting from the cross-fertilization between these two rich cultures. In each partnership, it helps to recognize and articulate what I call "the three authentics". Authentic Science-The science must be real science. It must contribute new knowledge. The research must be central to the scientists' work, and the student participation must contribute in a meaningful way to this research. Authentic Education-The learning experience for the students must build on "best practice" in education. Students should not simply be "data robots" for the scientists. Students should also do their own related investigations, so that they participate in effective inquiry-based learning, developing both content knowledge and skills of scientific investigation. The fact that they are contributing to the scientists' research is an exciting and compelling context for their learning, but it cannot be the only learning. Authentic Partnership-The partnership among the scientists, students and teachers must be a real partnership. Each partner must have a sincere and personal desire to participate in the partnership an enlightened self-interest. Each must also have a respect for the other's domain and a willingness to learn more about it. Neither partner can blindly relinquish its own core values. Each should, however, be prepared for new ideas and a few paradigm shifts, both in his or her perception of the other's domain and even in one's own field.
Opportunities for Scientists to Engage the Public & Inspire Students in Science
NASA Astrophysics Data System (ADS)
Vaughan, R. G.; Worssam, J.; Vaughan, A. F.
2014-12-01
Increasingly, research scientists are learning that communicating science to broad, non-specialist audiences, particularly students, is just as important as communicating science to their peers via peer-reviewed scientific publications. This presentation highlights opportunities that scientists in Flagstaff, AZ have to foster public support of science & inspire students to study STEM disciplines. The goal here is to share ideas, personal experiences, & the rewards, for both students & research professionals, of engaging in science education & public outreach. Flagstaff, AZ, "America's First STEM Community," has a uniquely rich community of organizations engaged in science & engineering research & innovation, including the Flagstaff Arboretum, Coconino Community College, Gore Industries, Lowell Observatory, Museum of Northern Arizona, National Weather Service, National Park Service, National Forest Service, Northern Arizona University, Northern Arizona Center for Entrepreneurship & Technology, US Geological Survey, US Naval Observatory, & Willow Bend Environmental Education Center. These organizations connect with the Northern Arizona community during the yearly Flagstaff Festival of Science - the third oldest science festival in the world - a 10 day long, free, science festival featuring daily public lectures, open houses, interactive science & technology exhibits, field trips, & in-school speaker programs. Many research scientists from these organizations participate in these activities, e.g., public lectures, open houses, & in-school speaker programs, & also volunteer as mentors for science & engineering themed clubs in local schools. An example of a novel, innovative program, developed by a local K-12 science teacher, is the "Scientists-in-the-Classroom" mentor program, which pairs all 7th & 8th grade students with a working research scientist for the entire school year. Led by the student & guided by the mentor, they develop a variety of science / technology projects, which the students then present at year's end. From the perspective of an active research scientist, such outreach activities take little time & effort (~ 0.05 FTE), but pay large dividends in the long run, in inciting public support for science & inspiring the next generation of scientists & engineers.
NASA Astrophysics Data System (ADS)
Eschenbach, E. A.; Conklin, M. H.
2007-12-01
The need to train students in hydrologic science and environmental engineering is well established. Likewise, the public requires a raised awareness of the seriousness of water quality and availability problems. The WATERS Network (WATer and Environmental Research Systems Network ) has the potential to significantly change the way students, researchers, citizens, policy makers and industry members learn about environmental problems and solutions regarding water quality, quantity and distribution. This potential can be met if the efforts of water scientists, computer scientists, and educators are integrated appropriately. Successful pilot projects have found that cyberinfrastructure for education and outreach needs to be developed in parallel with research related cyberinfrastructure. We propose further integration of research, education and outreach activities. Through the use of technology that connects students, faculty, researchers, policy makers and others, WATERS Network can provide learning opportunities and teaching efficiencies that can revolutionize environmental science and engineering education. However, there are a plethora of existing environmental science and engineering educational programs. In this environment, WATERS can make a greater impact through careful selection of activities that build upon its unique strengths, that have high potential for engaging the members, and that meet identified needs: (i) modernizing curricula and pedagogy (ii) integrating science and education, (iii) sustainable professional development, and (iv) training the next generation of interdisciplinary water and social scientists and environmental engineers. National and observatory-based education facilities would establish the physical infrastructure necessary to coordinate education and outreach activities. Each observatory would partner with local educators and citizens to develop activities congruent with the scientific mission of the observatory. An unprecedented opportunity exists for educational research of both formal and informal environmental science and engineering education in order to understand how the Network can be efficiently used to create effective technology-based learning environments for all participants.
STEAM: Using the Arts to Train Well-Rounded and Creative Scientists
Segarra, Verónica A.; Natalizio, Barbara; Falkenberg, Cibele V.; Pulford, Stephanie; Holmes, Raquell M.
2018-01-01
While the demand for a strong STEM workforce continues to grow, there are challenges that threaten our ability to recruit, train, and retain such a workforce in a way that is effective and sustainable and fosters innovation. One way in which we are meeting this challenge is through the use of the arts in the training of scientists. In this Perspectives article, we review the use of the arts in science education and its benefits in both K–12 and postsecondary education. We also review the use of STEAM (science, technology, engineering, arts, and mathematics) programs in science outreach and the development of professional scientists. PMID:29904562
Emerging Leader for Education and Outreach
NASA Astrophysics Data System (ADS)
Bartholow, S.
2013-12-01
Polar Educators International (PEI) is a global professional network for those who educate in, for, and about the polar regions. Our goal is to connect educators, scientists, and community members to share expertise around the world and to rekindle student and public engagement with global environmental change. The growing membership in over 30 countries is now recognized as a leading organization capable of fulfilling E&O goals of international science organizations and training educators to facilitate outstanding polar science and climate change education in classrooms. This session will address the importance of dedicated, high-caliber, interpersonal professional networks that are linked directly to the expert science community to better serve science goals and education in classrooms. Discover that the educators and scientists in the network are resources themselves to help you become a leader in polar and climate education; arguably our most important content at the international level.
Building an early career network through outreach projects: The "mon océan & moi" example
NASA Astrophysics Data System (ADS)
Barbieux, M.; Scheurle, C.; Ardyna, M.; Harmel, T.; Ferraris, M.; Jessin, T.; Lacour, L.; Mayot, N.; Organelli, E.; Pasqueron De Fommervault, O.; Penkerc'h, C.; Poteau, A.; Uitz, J.; Ramondec, S.; Sauzède, R.; Velluci, V.; Claustre, H.
2016-02-01
The ocean plays an important role in the global processes of our planet, from climate change to sea level rise, uptake of carbon dioxide to fisheries stocks. In addition, its scientific importance, extraordinary beauty and public fascination provide perfect ingredients for both education and public outreach. Four years ago, after the launch of the "mon océan & moi" outreach project, an early career network (Ph.D. students and postdocs) has been formed to "promote collaborations/exchanges between the scientific and educational worlds in order to co-elaborate a teaching method for raising the awareness of school children on marine environments". Scientists are pursuing new research yielding improved knowledge and new documentation resources. However, they lack the communication skills to make the subject accessible to the general public. On the other hand, teachers must be informed of recent discoveries and of new resources for educational purposes. To fill this gap, the early career scientists developed, in collaboration with a school authority and an experienced science communicators team, both a trail education program tested directly in middle and high schools and innovative supporting material (i.e., animations, educative video clips and experiments, interactive maps and quizzes). Here we outline a set of guidelines as to how to improve science outreach across a variety of disciplines (e.g., science, technology, engineering) and how this may impact the experience of early career scientists. These tips will be useful for other early career scientists and science outreach projects, large or small, regional, national or international. Such novel outreach initiatives will help educate current and next generations about the importance of ocean environments and the relevance of ocean sciences for the society, and may serve as an example of teamwork for other young scientists.
Preparing Earth Data Scientists for 'The Sexiest Job of the 21st Century'
NASA Technical Reports Server (NTRS)
Kempler, Steven
2014-01-01
What Exactly do Earth Data Scientists do, and What do They Need to Know, to do It? There is not one simple answer, but there are many complex answers. Data Science, and data analytics, are new and nebulas, and takes on different characteristics depending on: The subject matter being analyzed, the maturity of the research, and whether the employed subject specific analytics is descriptive, diagnostic, discoveritive, predictive, or prescriptive, in nature. In addition, in a, thus far, business driven paradigm shift, university curriculums teaching data analytics pertaining to Earth science have, as a whole, lagged behind, andor have varied in approach.This presentation attempts to breakdown and identify the many activities that Earth Data Scientists, as a profession, encounter, as well as provide case studies of specific Earth Data Scientist and data analytics efforts. I will also address the educational preparation, that best equips future Earth Data Scientists, needed to further Earth science heterogeneous data research and applications analysis. The goal of this presentation is to describe the actual need for Earth Data Scientists and the practical skills to perform Earth science data analytics, thus hoping to initiate discussion addressing a baseline set of needed expertise for educating future Earth Data Scientists.
ERIC Educational Resources Information Center
Forbes, Anne; Skamp, Keith
2013-01-01
"MyScience" is a primary science education initiative in which being in a community of practice is integral to the learning process. One component of this initiative involves professional scientists interacting with primary school communities which are navigating their way towards sustainable "communities of practice" around the "domain" of…
Scientists Needed! The Year of the Solar System: Opportunities for Scientist Involvement
NASA Astrophysics Data System (ADS)
Shipp, S. S.; Buxner, S.; Cobabe-Ammann, E. A.; Scalice, D.; Bleacher, L.
2011-12-01
Spanning a Martian Year - 23 months from October 2010 through August 2012 - the Year of the Solar System (YSS) celebrates the amazing discoveries of numerous new and ongoing NASA missions and research efforts as they explore our near and distant neighbors and probe the outer edges of our solar system. The science revealed by these endeavors is dramatically revising our understanding of the formation and evolution of our solar system. YSS offers opportunities for planetary scientists to become involved in education and public outreach (E/PO) in meaningful ways. By getting involved in YSS E/PO activities, scientists can help to raise awareness of, build excitement in, and make connections with educators, students and the public about current planetary science research and exploration. Each month during YSS a different compelling aspect of the solar system - its formation, volcanism, ice, life - is explored. The monthly topics, tied to the big questions of planetary science, include online resources that can be used by scientists to engage their audiences: hands-on learning activities, demonstrations, connections to solar system and mission events, ideas for partnering with other organizations, and other programming ideas. Resources for past, present, and future YSS monthly topics can be found at: http://solarsystem.nasa.gov/yss. Scientists are encouraged to get involved in YSS through an avenue that best fits their available time and interests. Possible paths include: contacting the YSS organizational team to provide content for or to review the monthly topics; integrating current planetary research discoveries into your introductory college science classes; starting a science club; prompting an interview with the local media, creating a podcast about your science, sharing YSS with educators or program coordinators at your local schools, museums, libraries, astronomical clubs and societies, retirement homes, or rotary club; volunteering to present your science in one of these venues for a YSS event; co-hosting a YSS event for an audience with educators or other local partners; or hosting a YSS event at your own institution. YSS offers rich and diverse ways for scientists to actively engage with the public about planetary science; we invite you to get involved!
ERIC Educational Resources Information Center
McLaughlin, Cheryl A.; Broo, Jennifer; MacFadden, Bruce J.; Moran, Sean
2016-01-01
One major emphasis of reform initiatives in science education is the importance of extended inquiry experiences for students through authentic collaborations with scientists. As such, unique partnerships have started to emerge between science and education in an ongoing effort to capture the interest and imaginations of students as they make sense…
Learning science and science education in a new era.
Aysan, Erhan
2015-06-01
Today, it takes only a few months for the amount of knowledge to double. The volume of information available has grown so much that it cannot be fully encompassed by the human mind. For this reason, science, learning, and education have to change in the third millennium. The question is thus: what is it that needs to be done? The answer may be found through three basic stages. The first stage is persuading scientists of the necessity to change science education. The second stage is more difficult, in that scientists must be told that they should not place an exaggerated importance on their own academic field and that they should see their field as being on an equal basis with other fields. In the last stage, scientists need to condense the bulk of information on their hands to a manageable size. "Change" is the magic word of our time. Change brings about new rules, and this process happens very quickly in a global world. If we scientists do not rapidly change our scientific learning and education, we will find our students and ourselves caught up in an irreversibly destructive and fatal change that sets its own rules, just like the Arab spring.
Integrating Scientists into Teacher Professional Development—Strategies for Success
NASA Astrophysics Data System (ADS)
Lynds, S. E.; Buhr, S. M.; Smith, L. K.
2010-12-01
Professional development workshops for science teachers can be greatly enhanced by scientist participation. Such workshops may promote a collegial community and mutual understanding between researchers and educators. The CIRES (Cooperative Institute for Research in Environmental Sciences) Education and Outreach (EO) group at the University of Colorado, Boulder, has over a decade of experience in successfully developing and hosting such events. Scientist participation in these workshops varies widely—from giving formal presentations to working one-on-one with educators in designing a research project. Researchers from CIRES, NOAA (National Oceanic and Atmospheric Administration), NSIDC (National Snow and Ice Data Center), and other Colorado agencies and institutions have participated in the workshops. In addition, graduate students in scientific research programs at the University of Colorado are frequently involved. Such workshops can be effective broader impacts components of scientific programs. One example of a long-running successful program was the Earthworks project (1998-2007), a one-week workshop for secondary science teachers from around the country. With the help of practicing geoscientists, participants working in teams designed and conducted a field-based interdisciplinary study. Attendees were so enthusiastic that the ongoing Listserv community (including both scientist and educators) is still active and engaged three years after the last workshop. In a more recent example, since 2009 CIRES EO has been hosting an annual week-long summer workshop as the COSEE (Centers for Ocean Science Education Excellence) West—Colorado Collaborative. The COSEE workshops have had a different theme each year. In 2010, the workshop explored the link between Arctic sea ice, the Greenland ice sheet, sea level, and global climate processes. Extensive evaluation efforts have been included in the design of each workshop and the evaluation results are used to improve subsequent workshops. To measure achievement of program goals, feedback surveys, interviews, and workshop observation are employed. Evaluation data have shown consistently throughout the years that both educators and scientists value the time spent with each other at these workshops. Scientists enjoy sharing their topic areas with motivated and energetic educators. Conversely, science teachers appreciate the opportunity to work directly with scientists and to hear about cutting-edge research being done. This paper will review the most successful strategies for including scientists in professional development workshops, from both the teachers’ and the scientists’ perspectives.
A Dynamic Alternative to the Scientific Method
ERIC Educational Resources Information Center
Musante, Susan
2009-01-01
Scotchmoor and a team of natural scientists, social scientists, philosophers, and educators developed a Web site called Understanding Science ("www.understandingscience.org") to explain to teachers, students, and the general public "how science "really" works." The site, launched in January 2009 and funded by the National Science Foundation,…
The transformative experiences of a scientist-professor with teacher candidates
NASA Astrophysics Data System (ADS)
Lashley, Terry Lee Hester
This case study documented the pedagogical and philosophical change experiences of a senior research scientist-professor at a large Research I University as he implemented an open inquiry immersion course with secondary science teacher candidates. The 4-semester hour graduate-level credit course (Botany 531) is titled "Knowing and Teaching Science: Just Do-It!" The students were 5th-year education students who possessed an undergraduate degree in the biological sciences. The premise for the course is that to teach science effectively, one must be able to DO science. Students were provided with extensive opportunities to design and carry out experiments and communicate the results both orally and in a written format. The focus of this dissertation was on changes in the pedagogical philosophy and practice of the scientist-professor as he taught this course over a 4-year period, 1997--2000. The data used in this study include the scientist-professor's reflective journals (1997--2000), the students' journals (1997--2000), and interviews with the scientist-professor (2001--2002). HyperRESEARCH 2.03 software was used to code and analyze the reflective journals and transcribed interviews. Data were reviewed and then placed into original codes. The codes were then grouped into themes for analysis. Identified themes included (1) Reflective Practice, (2) Social Construction of Knowledge, (3) Legitimate Peripheral Participation, and (4) the Zone of Proximal Development. There is clear evidence that the scientist-professor experienced transformative changes in his philosophy and practice over the 4-year period. This is shown by (1) differences in learning outcomes and expectations for Do-It! course students and traditional course students, (2) documentation of the scientist-professor's movement through the Concerns Based Adoption Model (CBAM) Stages of Concern, (3) increased collaboration and support from the college of education, (4) development and delivery of two other courses patterned after the Do-It! course, (5) interest and participation in education research, (6) presentation and participation in national and regional science education conferences, and (7) efforts to influence colleagues regarding teaching and learning. Furthermore, questioning strategies are an instructional strategy and dialogue is a component of all his university courses. Moreover, his professional research interest includes science pedagogy and he coauthors research articles with science educators.
Engaging Audiences in Planetary Science Through Visualizations
NASA Astrophysics Data System (ADS)
Shupla, C. B.; Mason, T.; Peticolas, L. M.; Hauck, K.
2017-12-01
One way to share compelling stories is through visuals. The Lunar and Planetary Institute (LPI), in collaboration with Laboratory for Atmospheric and Space Physics (LASP) and Space Science Laboratory at the University of California, Berkeley, has been working with planetary scientists to reach and engage audiences in their research through the use of visualizations. We will share how images and animations have been used in multiple mediums, including the planetarium, Science on a Sphere, the hyperwall, and within apps. Our objectives are to provide a tool that planetary scientists can use to tell their stories, as well as to increase audience awareness of and interest in planetary science. While scientists are involved in the selection of topics and the development of the visuals, LPI and partners seek to increase the planetary science community's awareness of these resources and their ability to incorporate them into their own public engagement efforts. This presentation will share our own resources and efforts, as well as the input received from scientists on how education and public engagement teams can best assist them in developing and using these resources, and disseminating them to both scientists and to informal science education venues.
Shunning the Bird's Eye View: General Science in the Schools of Ontario and Quebec
NASA Astrophysics Data System (ADS)
Hoffman, Michelle
2013-04-01
This paper considers the adoption of general science courses in two Canadian provinces, Ontario and Quebec, during the 1930s. In Ontario, a few science teachers had followed the early general science movements in the United States and Britain with interest. During the 1930s, several developments made the cross-disciplinary, applied thrust of general science particularly appealing to Ontario educationists. These developments included a new demand for vocational education, renewed reservations about pedagogical rationales based on transfer of training, and a growing professional divide between high school science teachers and university scientists. Around the same time, scientists in the Quebec's French-language universities were engaged in a concerted campaign to expand the place of science in the province's francophone secondary schools. The province's prestigious classical colleges, which were the scientists' principal target for reform, privileged an inductive view of science that had little in common with the applied, cross-disciplinary emphasis of the general science courses gaining support in English-speaking school systems. In 1934, however, a popular American general science textbook was adopted in a workers' cooperative devoted to adult education. Comparing the fate of general science within these two education systems draws attention to the fact that general science made inroads in francophone Quebec but had little influence in public and private schools. In light of the growing support general science enjoyed elsewhere, we are led to explore why general science met with little overt interest by Quebec scientists pushing for school science reform during the 1930s.
Helping Scientists Become Effective Partners in Education and Outreach
NASA Astrophysics Data System (ADS)
Laursen, Sandra L.; Smith, Lesley K.
2009-01-01
How does a scientist find herself standing before a group of lively third-graders? She may be personally motivated-seeking to improve public understanding of scientific issues and the nature of science, or to see her own children receive a good science education-or perhaps she simply enjoys this kind of work [Andrews et al., 2005; Kim and Fortner, 2008]. In addition to internal motivating factors, federal funding agencies have begun to encourage scientists to participate in education and outreach (E/O) related to their research, through NASA program requirements for such activities (see ``Implementing the Office of Space Science Education/Public Outreach Strategy,'' at http://spacescience.nasa.gov/admin/pubs/edu/imp_plan.htm) and the U.S. National Science Foundation's increased emphasis on ``broader impacts'' in merit review of research proposals (see http://www.nsf.gov/pubs/2003/nsf032/bicexamples.pdf). Universities, laboratories, and large collaboratives have responded by developing E/O programs that include interaction between students, teachers, and the public in schools; after-school and summer programs; and work through science centers, planetaria, aquaria, and museums.
Scientism and Scientific Thinking. A Note on Science Education
NASA Astrophysics Data System (ADS)
Gasparatou, Renia
2017-11-01
The move from respecting science to scientism, i.e., the idealization of science and scientific method, is simple: We go from acknowledging the sciences as fruitful human activities to oversimplifying the ways they work, and accepting a fuzzy belief that Science and Scientific Method, will give us a direct pathway to the true making of the world, all included. The idealization of science is partly the reason why we feel we need to impose the so-called scientific terminologies and methodologies to all aspects of our lives, education too. Under this rationale, educational policies today prioritize science, not only in curriculum design, but also as a method for educational practice. One might expect that, under the scientistic rationale, science education would thrive. Contrariwise, I will argue that scientism disallows science education to give an accurate image of the sciences. More importantly, I suggest that scientism prevents one of science education's most crucial goals: help students think. Many of my arguments will borrow the findings and insights of science education research. In the last part of this paper, I will turn to some of the most influential science education research proposals and comment on their limits. If I am right, and science education today does not satisfy our most important reasons for teaching science, perhaps we should change not just our teaching strategies, but also our scientistic rationale. But that may be a difficult task.
Scientists and K-12: Experience from The Science House
NASA Astrophysics Data System (ADS)
Haase, David G.
2003-03-01
In working with K-12 science and mathematics education, scientists may take on many different roles - from presenter to full-time partner. These roles are illustrated in the activities of The Science House, a K-12 education program of North Carolina State University, (www.science-house.org) which partners with teachers and students across the state to promote inquiry-based learning in mathematics and science. While it is important to involve scientists in K-12, most universities do not have effective means to make the connections. In our efforts to do so, which began with a few teacher workshops and now encompasses six offices across NC, we have sought to join the interests of the university (research, teaching, student recruiting) to the needs of K-12. Our programs now include teacher training workshops, student science camps and curriculum projects in several states. We are reminded that K-12 science education is interdisciplinary; local and political; and a process, not a problem to be solved and forgotten. Partially supported by NSF (CHE-9876674 and DBI-0115462), the Howard Hughes Medical Institute and the Burroughs Wellcome Fund.
Online Workspace to Connect Scientists with NASA's Science E/PO Efforts and Practitioners
NASA Astrophysics Data System (ADS)
Shipp, Stephanie; Bartolone , Lindsay; Peticolas, Laura; Woroner, Morgan; Dalton, Heather; Schwerin, Theresa; Smith, Denise
2014-11-01
There is a growing awareness of the need for a scientifically literate public in light of challenges facing society today, and also a growing concern about the preparedness of our future workforce to meet those challenges. Federal priorities for science, technology, engineering, and math (STEM) education call for improvement of teacher training, increased youth and public engagement, greater involvement of underrepresented populations, and investment in undergraduate and graduate education. How can planetary scientists contribute to these priorities? How can they “make their work and findings comprehensible, appealing, and available to the public” as called for in the Planetary Decadal Survey?NASA’s Science Mission Directorate (SMD) Education and Public Outreach (E/PO) workspace provides the SMD E/PO community of practice - scientists and educators funded to conduct SMD E/PO or those using NASA’s science discoveries in E/PO endeavors - with an online environment in which to communicate, collaborate, and coordinate activities, thus helping to increase effectiveness of E/PO efforts. The workspace offers interested scientists avenues to partner with SMD E/PO practitioners and learn about E/PO projects and impacts, as well as to advertise their own efforts to reach a broader audience. Through the workspace, scientists can become aware of opportunities for involvement and explore resources to improve professional practice, including literature reviews of best practices for program impact, mechanisms for engaging diverse audiences, and large- and small-scale program evaluation. Scientists will find “how to” manuals for getting started and increasing impact with public presentations, classroom visits, and other audiences, as well as primers with activity ideas and resources that can augment E/PO interactions with different audiences. The poster will introduce the workspace to interested scientists and highlight pathways to resources of interest that can help scientists more effectively contribute to national STEM education priorities. Visitors are encouraged to explore the growing collection of resources at http://smdepo.org.
NEON Citizen Science: Planning and Prototyping (Invited)
NASA Astrophysics Data System (ADS)
Gram, W.
2010-12-01
The National Ecological Observatory Network (NEON) will be a national resource for ecological research and education. NEON citizen science projects are being designed to increase awareness and educate citizen scientists about the impacts of climate change, land-use change, and invasive species on continental-scale ecological processes as well as expand NEON data collection capacity by enabling laypersons to collect geographically distributed data. The citizen science area of the NEON web portal will enable citizen scientists to collect, contribute, interpret, and visualize scientific data, as well as access training modules, collection protocols and targeted learning experiences related to citizen science project topics. For NEON, citizen science projects are a means for interested people to interact with and contribute to NEON science. Investigations at vast spatial and temporal scales often require rapid acquisition of large amounts of data from a geographically distributed population of “human sensors.” As a continental-scale ecological observatory, NEON is uniquely positioned to develop strategies to effectively integrate data collected by non-scientists into scientific databases. Ultimately, we plan to work collaboratively to transform the practice of science to include “citizens” or non-scientists in the process. Doing science is not limited to scientists, and breaking down the barriers between scientists and citizens will help people better understand the power of using science in their own decision making. In preparation for fully developing the NEON citizen science program, we are partnering with Project BudBurst (PBB), a citizen science project focused on monitoring plant phenology. The educational goals of PBB are to: (1) increase awareness of climate change, (2) educate citizen scientists about the impacts of climate change on plants and the environment, and (3) increase science literacy by engaging participants in the scientific process. Phenology was chosen as the focus of this citizen science campaign because it is a visible and comprehensible way of demonstrating the effects of climate change. In addition, plants are readily accessible in nearly every neighborhood and park, and wild areas across the continent, so people can make observations whether they live near an inner city park or in the rural countryside. Recently, NEON built 3 web tools that enable users to visualize PBB data. The tools include a mapping function that displays selected PBB distributional data on a map, an animated map that shows “green up” through time and space, and a graphing tool that compares number of species flowering or leafing out with day length. This prototyping will help NEON better understand how to engage citizen science participants in “doing science” beyond data collection.
Analysis of the Image of Scientists Portrayed in the Lebanese National Science Textbooks
ERIC Educational Resources Information Center
Yacoubian, Hagop A.; Al-Khatib, Layan; Mardirossian, Taline
2017-01-01
This article presents an analysis of how scientists are portrayed in the Lebanese national science textbooks. The purpose of this study was twofold. First, to develop a comprehensive analytical framework that can serve as a tool to analyze the image of scientists portrayed in educational resources. Second, to analyze the image of scientists…
NASA Astrophysics Data System (ADS)
Houseal, Ana K.
Engaging elementary students in science through inquiry-based methodologies is at the center of science education reform efforts (AAAS, 1989, NRC 1996, 2000). Through scientific problem solving, students can learn that science is more than just learning facts and concepts (NRC, 2000) The process of scientific inquiry, as a way of approaching scientific problem solving, can be taught to students through experiential, authentic (or real-world) science experiences. Student-teacher-scientist partnerships (STSPs) are one vehicle used to connect students to these science experiences with practicing research scientists. However, the literature on STSPs demonstrates they are fraught with challenges and very little is known of their effects on teachers' and students' content knowledge growth or changes in their attitudes about science and scientists. This study addressed these two areas by researching a particular STSP. The STSP, called Students, Teachers, and Rangers and Research Scientists (STaRRS), designed to be incorporated into the existing long-standing education program Expedition: Yellowstone! (E:Y!) was the focus of this study. For teachers, a pre-test, intervention, post-test research design addressing content knowledge gains, attitude changes, and pedagogical changes was used. A quasi-experimental pre- post-test design using treatment and comparison groups of students addressed content knowledge gains and attitude changes. Findings provided evidence of significant positive shifts in teachers' attitudes regarding science and scientists, and trends of shifting pedagogical choices made by teachers. Students showed significant content knowledge gains and an increased positive attitude regarding their perceptions of scientists.
Sardonic Science? The Resistance to More Humanistic Forms of Science Education
ERIC Educational Resources Information Center
Bryce, T. G. K.
2010-01-01
Resistance to more humanistic forms of science education is an endemic and persistent feature of university scientists as well as school science teachers. This article argues that science education researchers should pay more attention to its origins and to the subtleties of its stubborn influence. The paper explores some of the imperatives which…
NASA Astrophysics Data System (ADS)
Staudigel, H.; Helly, M.; Massel Symons, C.; Koppers, A.; Helly, J.; Miller, S.
2005-12-01
The Enduring Resources in Earth Science Education (ERESE) project promotes inquiry based teaching of plate tectonics through professional development and distribution of digital library objects in the National Science Digital Library network. The overall ERESE goal is to bridge the gap between the scientists and educators, and our experience has shown that much can be gained by establishing a close collaboration between all parties involved in earth science education, from high school student to teacher -educator, and scientist. These collaborations yield substantial gains in terms of effective educational approaches, contents selection, and to produce an authentic class room research experience. ERESE professional development workshops promote a model of inquiry-based teaching that keeps the educator as far in the background as possible, while empowering the student to carry out a maximally independent inquiry. Key components in this process are: (1) use of a well selected provocative phenomenon to promote student's curiosity and to start the inquiry process, (2) care in the student guidance towards selection and formulation of a researchable question, (3) the involvement of teachers and scientists, in a close collaboration (4) teaching resource development with a strong feed-back from professional development workshops and classroom practice, (5) integration of science inquiry resources on all expert levels providing an environment that allows continuous access to science information from the most basic to the full scale science level. We expanded ERESE resource development into a volcanology field class on Hawaii to produce a website and digital library contents including field reports, exercises and images and field data. We further expanded our resource development through the participation of three high school students in a three-week seagoing expedition to the Samoan Archipelago. The high school seniors maintained a live expedition website and they participated in all science activities. Their work impacted ERESE by the development of digital resources, and introducing peer - mentoring into the inquiry process.
NASA Astrophysics Data System (ADS)
Bianchini, Julie A.; Hilton-Brown, Bryan A.; Breton, Therese D.
2002-10-01
We investigated the role of dissent in a community of university scientists, engineers, mathematicians, and social scientists engaged in a 2-year professional development project around issues of equity and diversity. Members of this teacher learning community explored issues related to gender and ethnicity in science education, and attempted to develop course materials and instructional strategies inclusive of students from underrepresented groups. We focused our attention on those professional development sessions (6 of the 19) devoted to a contentious yet integral topic in science education: the gendered and multicultural nature of science. We examined conversations initiated by a member's concerns to learn how dissent led (or failed to lead) to new insights into feminist science studies scholarship or to greater understanding of ways to address equity issues in undergraduate science education. We also explored how teacher learners' resulting views of feminist science studies scholarship informed (or failed to inform) changes in their own educational practices. From our qualitative analyses, we highlight the challenges in balancing respect for members' individual voices with collective progress toward project goals, and in structuring conversations initiated by dissent to provide adequate space for deliberation and movement toward deeper understanding of equity and excellence.
ERIC Educational Resources Information Center
Masson, Anne-Lotte; Klop, Tanja; Osseweijer, Patricia
2016-01-01
Many education initiatives in science and technology education aim to create enthusiasm among young people to pursue a career in Science, Technology, Engineering, and Mathematics (STEM). Research suggests that personal interaction between secondary school students and scientists could be a success factor, but there is a need for more in-depth…
Education and Outreach Opportunities in New Astronomical Facilities
NASA Astrophysics Data System (ADS)
Mould, J. R.; Pompea, S.
2002-12-01
Astronomy presents extraordinary opportunities for engaging young people in science from an early age. The National Optical Astronomy Observatory (NOAO), supported by the National Science Foundation, leverages the attraction of astronomy with a suite of formal and informal education programs that engage our scientists and education and public outreach professionals in effective, strategic programs that capitalize on NOAO's role as a leader in science and in the design of new astronomical facilities. The core of the science education group at NOAO in Tucson consists of a group of Ph.D.-level scientists with experience in educational program management, curriculum and instructional materials development, teacher/scientist partnerships, and teacher professional development. This core group of scientist/educators hybrids has a strong background in earth and space science education as well as experience in working with and teaching about the technology that has enabled new astronomical discoveries. NOAO has a vigorous public affairs/media program and a history of effectively working locally, regionally, and nationally with the media, schools, science centers, and, planetaria. In particular, NOAO has created successful programs exploring how research data and tools can be used most effectively in the classroom. For example, the Teacher Leaders in Research Based Science Education explores how teachers can most effectively integrate astronomical research on novae, active galactic nuclei, and the Sun into classroom-based investigations. With immersive summer workshops at Kitt Peak National Observatory and the National Solar Observatory at Sacramento Peak, teachers learn research and instrumentation skills and how to encourage and maintain research activities in their classrooms. Some of the new facilities proposed in the recent decadal plan, Astronomy and Astrophysics in the New Millennium (National Academy Press), can provide extended opportunities for incorporating research into the classroom. An example is the Large Synoptic Survey Telescope, which will put within public reach on a weekly basis a digital survey of the changing sky. The Giant Segmented Mirror Telescope is a key ingredient in the search for extrasolar planets and the National Virtual Observatory will allow unprecedented data access using powerful data mining and visualization tools. NOAO scientists and educators are designing educational programs around these new initiatives in order to capitalize on their national and international educational value. Our most significant challenge is to find ways to consolidate and institutionalize successful prototype and experimental astronomy education programs into permanent national resources for the earth and space science educational community. If we are successful, there is an enormous potential for future research discoveries to be made from the classroom and for NOAO educational programs to serve as models for other science research institutions.
Developing a Global Perspective in/for Science Teacher Education: The Case of Pollination
ERIC Educational Resources Information Center
Reis, Giuliano
2014-01-01
Science educators at all levels continuously struggle to keep pace with the rapidly developing understanding of the causes and potential solutions to current environmental issues while also trying to enthuse a new generation of passionate and knowledgeable scientists. However, how can future science teachers make science education more attractive…
SOFIA Education and Public Outreach (EPO): Scientist/Educator Partnerships at 41,000 Feet
NASA Astrophysics Data System (ADS)
Backman, D.; Devore, E.; Bennett, M.
2003-12-01
NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) represents a unique opportunity for education and public outreach (EPO). SOFIA is the first research observatory -- airborne or ground-based -- in which close participation by educators and journalists is being designed into both the physical facility and the administrative structure of the observatory. With the overall goal of contributing to the public's awareness and understanding of science in general and astronomy in particular, the SOFIA EPO program will include formal K-12 and undergraduate educational activities, informal education, public outreach, and media relations. One of the most exciting and unique aspects of the SOFIA EPO program is the observatory's ability to carry up to 10 educators on science flights, enabling those educators to partner with scientists and participate in real research. Some 200 formal and informal educators per year are expected to participate in the SOFIA Airborne Astronomy Ambassadors program once full-scale operation is achieved. Educators who have participated in the Airborne Astronomy Ambassadors program will be encouraged to continue their scientific partnerships and will be supported in their efforts to carry new-found knowledge and enthusiasm to their students, other educators in their communities and the general public. The Airborne Astronomy Ambassadors will be supported as a national network via continued communications and material support from the SOFIA EPO program office, and will constitute a wide-spread outreach cadre for NASA and space sciences based on their experiences with airborne astronomy. Scientists, engineers, and other members of the SOFIA team will be encouraged to partner with local teachers and visit their classrooms as a part of the SOFIA Education Partners Program. Training for scientist-educators will be offered via the Astronomical Society of the Pacific's Project ASTRO network of astronomy education sites around the USA. This program will enable students to interact with scientists and other professionals on a one-to-one basis. Participating educators may fly onboard SOFIA with their scientist partners. Scientists who participate in this program will be able to work with educators and students in their local communities to forge long-lasting science education partnerships. The SOFIA EPO staff is interested in forming collaborations with interested organizations, other NASA missions, and individual astronomers. SOFIA is being developed and will be operated for NASA by USRA. The EPO program is being developed and will be operated jointly by the SETI Institute and the Astronomical Society of the Pacific.
Graduate Biomedical Science Education Needs a New Philosophy.
Bosch, Gundula; Casadevall, Arturo
2017-12-19
There is a growing realization that graduate education in the biomedical sciences is successful at teaching students how to conduct research but falls short in preparing them for a diverse job market, communicating with the public, and remaining versatile scientists throughout their careers. Major problems with graduate level education today include overspecialization in a narrow area of science without a proper grounding in essential critical thinking skills. Shortcomings in education may also contribute to some of the problems of the biomedical sciences, such as poor reproducibility, shoddy literature, and the rise in retracted publications. The challenge is to modify graduate programs such that they continue to generate individuals capable of conducting deep research while at the same time producing more broadly trained scientists without lengthening the time to a degree. Here we describe our first experiences at Johns Hopkins and propose a manifesto for reforming graduate science education. Copyright © 2017 Bosch and Casadevall.
Graduate Biomedical Science Education Needs a New Philosophy
Bosch, Gundula
2017-01-01
ABSTRACT There is a growing realization that graduate education in the biomedical sciences is successful at teaching students how to conduct research but falls short in preparing them for a diverse job market, communicating with the public, and remaining versatile scientists throughout their careers. Major problems with graduate level education today include overspecialization in a narrow area of science without a proper grounding in essential critical thinking skills. Shortcomings in education may also contribute to some of the problems of the biomedical sciences, such as poor reproducibility, shoddy literature, and the rise in retracted publications. The challenge is to modify graduate programs such that they continue to generate individuals capable of conducting deep research while at the same time producing more broadly trained scientists without lengthening the time to a degree. Here we describe our first experiences at Johns Hopkins and propose a manifesto for reforming graduate science education. PMID:29259084
Paths and Perspectives on Being a Data Scientist: Anatomy and Physiology
NASA Astrophysics Data System (ADS)
Fox, P. A.
2015-12-01
While many educators are trying to look forward and develop or adapt degree programs, curricula and even courses for prospective data scientists, not many are able to reflect on and draw from the long look back into their career path and choices related to data science. Given the considerable hype and co-opting of the term Data Science by business and government, its roots are in numerous scientific research fields. This contribution offers the author's path in data science, assessed and framed in terms of the anatomy and physiology of a data scientist; quite literally the "body" parts and functions and the function of the "body", or the data scientist as-a-whole. Pivoting to the prospectives for both data science research and education, course, curricula and degree programs are mapped to data science functions and how they work together. The conclusion is that data science must become embedded in all degree and continuing programs, lest it be misconstrued as a separate discipline. Ideas and experience on how this embedding may be accomplished are also offered for discussion.
ERIC Educational Resources Information Center
Sindel, Kasey D.
2010-01-01
This study was prompted by the growing amount of research that is in support of science reform and from this researcher's personal experience and concern that science instructions is no longer a top priority in elementary schools nor are young scientists given the opportunities to act as scientists in a real world setting. This study uses…
Graduate Student Support and Manpower Resources in Graduate Science Education, Fall 1970.
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC.
Current data on graduate student support and manpower resources in graduate science education are important to science administrators, educators, and others concerned with the education of highly qualified scientists and engineers and other related manpower issues. They are also of interest to prospective graduate students, vocational counselors,…
“Hidden” threats to science education
NASA Astrophysics Data System (ADS)
Huntoon, J. E.; Buchanan, R.; Buhr, S. M.; Kirst, S.; Newton, S.; Van Norden, W.
2012-04-01
Many readers of Eos are involved with education. Most would agree that what happens at precollege levels will ultimately affect the geoscience profession; after all, future scientists are today's precollege students. While a growing number of scientists are working to improve the quality of precollege programs, only a few are addressing what we term the "hidden" threats to science education. Hidden threats have nothing to do with scientific content; rather, they result from social, political, and bureaucratic forces operating within and outside of schools and universities.
77 FR 12884 - Agency Information Collection Activities: Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-02
... colleges, universities, K-12 school systems, businesses, informal science organizations and other research... welfare by supporting research and education in all fields of science and engineering.'' NSF has had a... scientists, engineers, and science and engineering educators. NSF funds research and education in most fields...
NASA Astrophysics Data System (ADS)
Grier, Jennifer A.; Buxner, Sanlyn; Meinke, Bonnie; Gross, Nick; Woroner, Morgan
2014-11-01
The NASA Science Mission Directorate (SMD) Education Forums help scientists with their engagement in education and public outreach (E/PO) activities. The Forums provide professional development, resources, as well as opportunities to interact with the larger E/PO community. We have conducted both interviews and surveys of space scientists regarding their needs and attitudes about E/PO. The most recent of these was a series of semi-structured interviews with two-dozen DPS members, which allowed the Forums to identify those areas where new or additional resources and support are needed for scientists regarding their E/PO involvement. This poster will present key resources that scientists can use to learn more about the nature of E/PO, how to become involved, how to leverage their efforts, how to find effective and vetted demonstrations and activities, and where to go to make the most impact. The first two of an upcoming series of one-page guides includes “The Quick Introduction to Education and Public Outreach” as well as “Making the Most of Your E/PO Time - Increasing your Efficiency and Impact.” http://smdepo.org/post/7202. The Planetary Science Education and Public Outreach Resource Sampler offers a list of activities specifically selected for quick access and ease of use. These resources are organized by major science questions, and then by topics such as “Impacts in the Solar System,” “Windy Worlds,” and “Scale in the Solar System.” http://smdepo.org/data/uploads/PS_EPO_Resources_2.pdf Wavelength is a repository of resources for learning at all levels, from outreach programs and after school to formal K-college. All activities held within Wavelength have passed the NASA SMD peer-review for products, ensuring that each has sound content both in science and education. http://nasawavelength.org. The poster will also present the SMD Speaker’s Bureau, Community Workspace, and resources developed by partners, such as the AAS Ambassador Program’s MOOSE, Menu of Outreach Opportunities for Science Education http://aas.org/outreach/moose-menu-outreach-opportunities-science-education.
NASA's Initiative to Develop Education through Astronomy (IDEA)
NASA Astrophysics Data System (ADS)
Bennett, Jeffrey O.; Morrow, Cherilynn A.
1994-04-01
We describe a progressive program in science education called the Initiative to Develop Education through Astronomy (IDEA). IDEA represents a commitrnent by the Astrophysics Division of NASA Headquarters to pre-collegiate and public learning. The program enlists the full participation of research astronomers in taking advantage of the natural appeal of astronomy and the unique features of space astrophysics missions to generate valuable learning experiences and scientifically accurate and educationally effective products for students, teachers and citizens. One of the premier projects is called Flight Opportunities for Science Teacher EnRichment (FOSTER) — a program to fly teachers aboard the Kuiper Airborne Observatory during actual research missions. IDEA is managed by a visiting scientist with extensive educational background (each of the authors have served in this role), and the program is unique within NASA science divisions for having a full time scientist devoted to education. IDEA recognizes that the rapidly shifting social and political landscape has caused a fundamental change in how science is expected to contribute to society. It is in the enlightened self-interest of all research scientists to respond to the challenge of connecting forefront research to basic educational needs. IDEA is exploring the avenues needed to facilitate these connections, including supplementing research grants for educational purposes.
NASA's initiative to develop education through astronomy (IDEA)
NASA Technical Reports Server (NTRS)
Bennett, Jeffrey O.; Morrow, Cherilynn A.
1994-01-01
We describe a progressive program in science education called the Initiative to Develop Education through Astronomy (IDEA). IDEA represents a commitment by the Astrophysics Division of NASA Headquarters to pre-collegiate and public learning. The program enlists the full participation of research astronomers in taking advantage of the natural appeal of astronomy and the unique features of space astrophysics missions to generate valuable learning experiences and scientifically accurate and educationally effective products for students, teachers and citizens. One of the premier projects is called Flight Opportunities for Science Teacher EnRichment (FOSTER) - a program to fly teachers aboard the Kuiper Airborne Observatory during actual research missions. IDEA is managed by a visiting scientist with extensive educational background (each of the authors have served in this role), and the program is unique within NASA science divisions for having a full time scientist devoted to education. IDEA recognizes that the rapidly shifting social and political landscape has caused a fundamental change in how science is expected to contribute to society. It is in the enlightened self-interest of all research scientists to respond to the challenge of connecting forefront research to basic educational needs. IDEA is exploring the avenues needed to facilitate these connections, including supplementing research grants for educational purposes.
Redefining Scientist-Educator Partnerships: Science in Service at Stanford
NASA Astrophysics Data System (ADS)
Beck, K.
2005-05-01
The Stanford Solar Observatories Group and Haas Center for Public Service have created an innovative model for scientist-educator partnerships in which science students are trained and mentored by public service education professionals to create outreach events for local communities. The program, Science in Service, is part of the EPO plan for the Solar Group's participation in NASA's Solar Dynamics Observatory mission. Based on the principles of service learning, the Science in Service Program mentors college science students in best practices for communicating science and engages these students in public service projects that center on teaching solar science. The program goals are to - Enhance and expand the learning experiences that pre-college students, from underserved and underrepresented groups in particular, have in science and technology. - Promote leadership in community service in the area of science and engineering among the next generation of scientists and engineers, today's undergraduate students. - Encourage science and engineering faculty to think creatively about their outreach requirements and to create a community of faculty committed to quality outreach programs. This talk will describe the unique advantages and challenges of a research-public service partnership, explain the structure of Stanford's Science in Service Program, and present the experiences of the undergraduates and the outreach communities that have been involved in the program.
Kelly, Thomas H; Mattacola, Carl G
2010-11-01
The National Institutes of Health's Clinical and Translational Science Award initiative is designed to establish and promote academic centers of clinical and translational science (CTS) that are empowered to train and advance multi- and interdisciplinary investigators and research teams to apply new scientific knowledge and techniques to enhance patient care. Among the key components of a full-service center for CTS is an educational platform to support research training in CTS. Educational objectives and resources available to support the career development of the clinical and translational scientists, including clinical research education, mentored research training, and career development support, are described. The purpose of the article is to provide an overview of the CTS educational model so that rehabilitation specialists can become more aware of potential resources that are available and become more involved in the delivery and initiation of the CTS model in their own workplace. Rehabilitation clinicians and scientists are well positioned to play important leadership roles in advancing the academic mission of CTS. Rigorous academic training in rehabilitation science serves as an effective foundation for supporting the translation of basic scientific discovery into improved health care. Rehabilitation professionals are immersed in patient care, familiar with interdisciplinary health care delivery, and skilled at working with multiple health care professionals. The NIH Clinical and Translational Science Award initiative is an excellent opportunity to advance the academic development of rehabilitation scientists.
Preparing Earth Data Scientists for 'the sexiest job of the 21st century'
NASA Astrophysics Data System (ADS)
Kempler, S. J.
2014-12-01
What Exactly do Earth Data Scientists do, and What do They Need to Know, to do It? There is not one simple answer, but there are many complex answers. Data Science, and data analytics, are new and nebulas, and takes on different characteristics depending on: The subject matter being analyzed, the maturity of the research, and whether the employed subject specific analytics is descriptive, diagnostic, discoveritive, predictive, or prescriptive, in nature. In addition, in a, thus far, business driven paradigm shift, university curriculums teaching data analytics pertaining to Earth science have, as a whole, lagged behind, and/or have varied in approach. This presentation attempts to breakdown and identify the many activities that Earth Data Scientists, as a profession, encounter, as well as provide case studies of specific Earth Data Scientist and data analytics efforts. I will also address the educational preparation, that best equips future Earth Data Scientists, needed to further Earth science heterogeneous data research and applications analysis. The goal of this presentation is to describe the actual need for Earth Data Scientists and the practical skills to perform Earth science data analytics, thus hoping to initiate discussion addressing a baseline set of needed expertise for educating future Earth Data Scientists.
ASPIRE: Teachers and researchers working together to enhance student learning
NASA Astrophysics Data System (ADS)
Yager, P. L.; Garay, D. L.; Warburton, J.
2016-02-01
Given the impact of human activities on the ocean, involving teachers, students, and their families in scientific inquiry has never been more important. Science, Technology, Engineering, and Math (STEM) disciplines have become key focus areas in the education community of the United States. Newly adopted across the nation, Next Generation Science Standards require that educators embrace innovative approaches to teaching. Transforming classrooms to actively engage students through a combination of knowledge and practice develops conceptual understanding and application skills. The partnerships between researchers and educators during the Amundsen Sea Polynya International Research Expedition (ASPIRE) offer an example of how academic research can enhance K-12 student learning. In this presentation, we illustrate how ASPIRE teacher-scientist partnerships helped engage students with actual and virtual authentic scientific investigations. Scientists benefit from teacher/researcher collaborations as well, as funding for scientific research also depends on effective communication between scientists and the public. While contributing to broader impacts needed to justify federal funding, scientists also benefit by having their research explained in ways that the broader public can understand: collaborations with teachers produce classroom lessons and published work that generate interest in the scientists' research specifically and in marine science in general. Researchers can also learn from their education partners about more effective teaching strategies that can be transferred to the college level. Researchers who work with teachers in turn gain perspectives on the constraints that teachers and students face in the pre-college classroom. Crosscutting concepts of research in polar marine science can serve as intellectual tools to connect important ideas about ocean and climate science for the public good.
Engaging Scientists in NASA Education and Public Outreach: K - 12 Formal Education
NASA Astrophysics Data System (ADS)
Bartolone, Lindsay; Smith, D. A.; Eisenhamer, B.; Lawton, B. L.; Universe Professional Development Collaborative, Multiwavelength; NASA Data Collaborative, Use of; SEPOF K-12 Formal Education Working Group; E/PO Community, SMD
2014-01-01
The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community through a coordinated effort to enhance the coherence and efficiency of SMD-funded E/PO programs. The Forums foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present opportunities for the astronomy community to participate in collaborations supporting the NASA SMD efforts in the K - 12 Formal Education community. Members of the K - 12 Formal Education community include classroom educators, homeschool educators, students, and curriculum developers. The Forums’ efforts for the K - 12 Formal Education community include a literature review, appraisal of educators’ needs, coordination of audience-based NASA resources and opportunities, professional development, and support with the Next Generation Science Standards. Learn how to join in our collaborative efforts to support the K - 12 Formal Education community based upon mutual needs and interests.
NASA Astrophysics Data System (ADS)
Glenn, S.; McDonnell, J.; Halversen, C.; Zimmerman, T.
2006-12-01
Ocean observatories have already demonstrated their ability to maintain long-term time series, capture episodic events, provide context for improved shipboard sampling, and improve accessibility to a broader range of participants. Communicating Ocean Sciences, an already existing college course (http://www.cacosee.net/collegecourse) from COSEE California has demonstrated its ability to teach future scientists essential communication skills. The NSF-funded Communicating Ocean Sciences to Informal Audiences (COSIA) project will leverage these experiences and others to demonstrate a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. The COSIA effort will be one of the pathfinders for ensuring that the new scientific results from the increasing U.S. investments in ocean observatories is effectively communicated to the nation, and will serve as a model for other fields. Our presentation will describe a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. COSIA established partnerships between informal science education institutions and universities nationwide to facilitate quality outreach by scientists and the delivery of rigorous, cutting edge science by informal educators while teaching future scientists (college students) essential communication skills. The COSIA model includes scientist-educator partnerships that develop and deliver a college course derived from COS that teaches communication skills through the understanding of learning theory specifically related to informal learning environments and the practice of these skills at aquariums and science centers. The goals of COSIA are to: provide a model for establishing substantive, long-term partnerships between scientists and informal science education institutions to meet their respective outreach needs; provide future scientists with experiences delivering outreach to informal institutions and promoting the broader impact of research; and provide diverse role models and inquiry-based ocean sciences activities for children and families visiting ISEI. COSIA partners include: Hampton University Virginia Aquarium; Oregon State University Hatfield Marine Science Visitor's Center; Rutgers University Liberty Science Center; University of California, Berkeley Lawrence Hall of Science; and University of Southern California Aquarium of the Pacific. COS has been or will soon be taught at Rutgers University, UC Berkeley, Stanford, Woods Hole Oceanographic Institute, University of Oregon (GK-12 program), Scripps Institution of Oceanography, and others. Data from surveys of students demonstrates improvement in their understanding of how people learn and how to effectively communicate. For example, there was a decrease in agreement with statements describing traditional didactic teaching strategies suggesting that students who took the course developed a more sophisticated, inquiry-based philosophy of learning. Providing college students with a background in current learning theory, and applying that theory through practical science communication experiences, will empower future generations of scientists to meet the communication challenges they will encounter in their careers.
Involving Practicing Scientists in K-12 Science Teacher Professional Development
NASA Astrophysics Data System (ADS)
Bertram, K. B.
2011-12-01
The Science Teacher Education Program (STEP) offered a unique framework for creating professional development courses focused on Arctic research from 2006-2009. Under the STEP framework, science, technology, engineering, and math (STEM) training was delivered by teams of practicing Arctic researchers in partnership with master teachers with 20+ years experience teaching STEM content in K-12 classrooms. Courses based on the framework were offered to educators across Alaska. STEP offered in-person summer-intensive institutes and follow-on audio-conferenced field-test courses during the academic year, supplemented by online scientist mentorship for teachers. During STEP courses, teams of scientists offered in-depth STEM content instruction at the graduate level for teachers of all grade levels. STEP graduate-level training culminated in the translation of information and data learned from Arctic scientists into standard-aligned lessons designed for immediate use in K-12 classrooms. This presentation will focus on research that explored the question: To what degree was scientist involvement beneficial to teacher training and to what degree was STEP scientist involvement beneficial to scientist instructors? Data sources reveal consistently high levels of ongoing (4 year) scientist and teacher participation; high STEM content learning outcomes for teachers; high STEM content learning outcomes for students; high ratings of STEP courses by scientists and teachers; and a discussion of the reasons scientists indicate they benefited from STEP involvement. Analyses of open-ended comments by teachers and scientists support and clarify these findings. A grounded theory approach was used to analyze teacher and scientist qualitative feedback. Comments were coded and patterns analyzed in three databases. The vast majority of teacher open-ended comments indicate that STEP involvement improved K-12 STEM classroom instruction, and the vast majority of scientist open-ended comments focus on the benefits scientists received from networking with K-12 teachers. The classroom lessons resulting from STEP have been so popular among teachers, the Alaska Department of Education and Early Development recently contracted with the PI to create a website that will make the STEP database open to teachers across Alaska. When the Alaska Department of Education and Early Development launched the new website in August 2011, the name of the STEP program was changed to the Alaska K-12 Science Curricular Initiative (AKSCI). The STEP courses serving as the foundation to the new AKSCI site are located under the "History" tab of the new website.
Bringing Society to a Changing Polar Ocean: Polar Interdisciplinary Coordinated Education (ICE)
NASA Astrophysics Data System (ADS)
Schofield, O.
2015-12-01
Environmental changes in the Arctic and Antarctic appear to be accelerating and scientists are trying to understand both the patterns and the impacts of change. These changes will have profound impact on humanity and create a need for public education about these critical habitats. We have focused on a two-pronged strategy to increase public awareness as well as enable educators to discuss comfortably the implications of climate change. Our first focus is on entraining public support through the development of science documentaries about the science and people who conduct it. Antarctic Edge is a feature length award-winning documentary about climate change that has been released in May 2015 and has garnered interest in movie theatres and on social media stores (NetFlix, ITunes). This broad outreach is coupled with our group's interest assisting educators formally. The majority of current polar education is focused on direct educator engagement through personal research experiences that have impact on the participating educators' classrooms. Polar Interdisciplinary Coordinated Education (ICE) proposes to improve educator and student engagement in polar sciences through exposure to scientists and polar data. Through professional development and the creation of data tools, Polar ICE will reduce the logistical costs of bringing polar science to students in grades 6-16. We will provide opportunities to: 1) build capacity of polar scientists in communicating and engaging with diverse audiences; 2) create scalable, in-person and virtual opportunities for educators and students to engage with polar scientists and their research through data visualizations, data activities, educator workshops, webinars, and student research symposia; and 3) evaluate the outcomes of Polar ICE and contribute to our understanding of science education practices. We will use a blended learning approach to promote partnerships and cross-disciplinary sharing. This combined multi-pronged approach is critically important to entraining society in understanding the ramifications of changing polar systems.
NASA Astrophysics Data System (ADS)
Bartolone, Lindsay; Nelson, Andi; Smith, Denise A.; NASA SMD Astrophysics E/PO Community
2015-01-01
The NASA Astrophysics Science Education and Public Outreach Forum (SEPOF) coordinates the work of NASA Science Mission Directorate (SMD) Astrophysics EPO projects. These teams work together to capitalize on the cutting-edge discoveries of NASA Astrophysics missions to support educators in Science, Technology, Engineering, and Math (STEM) and to enable youth to engage in doing STEM inside and outside of school. The Astrophysics Forum assists scientists and educators with becoming involved in SMD E/PO, which is uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise, and makes SMD E/PO resources and expertise accessible to the science and education communities. Informal educators participated in a recent nationally-distributed survey from the NASA SMD SEPOF Informal Education Working Group. The results show the preferences of staff from museums, parks, public libraries, community/afterschool centers, and others with regard to professional development and material resources. The results of the survey will be presented during this session.In addition, we present opportunities for the astronomy community to participate in collaborations supporting the NASA SMD efforts in K-12 Formal Education, Informal Science Education, and Outreach. These efforts focus on enhancing instruction, as well as youth and public engagement, in STEM via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences. The Forums' efforts for the Formal, Informal Science Education and Outreach communities include a literature review, appraisal of informal educators' needs, coordination of audience-based NASA resources and opportunities, professional development, plus support with the Next Generation Science Standards. Learn how to join in our collaborative efforts to support the K-12 Formal Education community and to reach the informal science education and outreach communities based upon mutual needs and interests.
Science, Worldviews, and Education
ERIC Educational Resources Information Center
Gauch, Hugh G., Jr.
2009-01-01
Whether science can reach conclusions with substantial worldview import, such as whether supernatural beings exist or the universe is purposeful, is a significant but unsettled aspect of science. For instance, various scientists, philosophers, and educators have explored the implications of science for a theistic worldview, with opinions spanning…
Women Share in Science and Technology Education and Their Job Performance in Nigeria
NASA Astrophysics Data System (ADS)
Osezuah, Simon; Nwadiani, C. O.
2012-10-01
This investigation focused on womenís share in Science and Technology education and their job performance in Nigeria. The investigation was conducted with two questions that were raised as a guide. A sample of 4886 was drawn through the questionnaire method. Analysis of the data was conducted through the use of frequency count. Findings obtained indicated that there was disparity between male and female gender in access to Science and Technology education in Nigeria, and also that there were no differences between women and men scientists and technologists in job performance. The conclusion was therefore reached that women do not have equal share with men in Science and Technology education even though the male and female scientists and technologists perform jobs equally in Nigeria. Recommendation was therefore made accordingly.
NASA and Earth Science Week: a Model for Engaging Scientists and Engineers in Education and Outreach
NASA Astrophysics Data System (ADS)
Schwerin, T. G.; deCharon, A.; Brown de Colstoun, E. C.; Chambers, L. H.; Woroner, M.; Taylor, J.; Callery, S.; Jackson, R.; Riebeek, H.; Butcher, G. J.
2014-12-01
Earth Science Week (ESW) - the 2nd full week in October - is a national and international event to help the public, particularly educators and students, gain a better understanding and appreciation for the Earth sciences. The American Geosciences Institute (AGI) organizes ESW, along with partners including NASA, using annual themes (e.g., the theme for 2014 is Earth's Connected Systems). ESW provides a unique opportunity for NASA scientists and engineers across multiple missions and projects to share NASA STEM, their personal stories and enthusiasm to engage and inspire the next generation of Earth explorers. Over the past five years, NASA's ESW campaign has been planned and implemented by a cross-mission/cross-project group, led by the NASA Earth Science Education and Pubic Outreach Forum, and utilizing a wide range of media and approaches (including both English- and Spanish-language events and content) to deliver NASA STEM to teachers and students. These included webcasts, social media (blogs, twitter chats, Google+ hangouts, Reddit Ask Me Anything), videos, printed and online resources, and local events and visits to classrooms. Dozens of NASA scientists, engineers, and communication and education specialists contribute and participate each year. This presentation will provide more information about this activity and offer suggestions and advice for others engaging scientists and engineers in education and outreach programs and events.
NASA Astrophysics Data System (ADS)
Carlone, Heidi Berenson
2000-10-01
For over three decades, the gender gap in science and science education has received attention from teachers, policy makers, and scholars of various disciplines. During this time, feminist scholars have posited many reasons why the gender gap in science and science education exists. Early feminist discourse focused on girls' "deficits," while more recent work has begun to consider the problems with science and school science in the quest for a more gender inclusive science. Specifically, feminist scholars advocate a transformation of both how students learn science and the science curriculum that students are expected to learn. This study was designed to examine more deeply this call for a changed science curriculum and its implications for girls' participation, interest, and scientist identities. If we reinvisioned ways to "do" science, "learn" science, and "be a scientist" in school science, would girls come to see science as something interesting and worth pursuing further? This question framed my ethnographic investigation. I examined the culturally produced meanings of "science" and "scientist" in two high school physics classrooms (one traditional and one non-traditional class framed around real-world themes), how these meanings reproduced and contested larger sociohistorical (and prototypical) meanings of science and scientist, and how girls participated within and against these meanings. The results complicate the assumption that a classroom that enacts a non-traditional curriculum is "better" for girls. This study explained how each classroom challenged sociohistorical legacies of school science in various "spaces of possibility" and how prototypical meanings pushed the potential of these spaces to the margins. Girls in the traditional physics class generally embraced prototypical meanings because they could easily access "good student" identities. Girls in the non-traditional class, though attracted to alternative practices, struggled with the conflicting promoted student identities that did not allow them easy access to "good student" identities. In neither class were girls' perceptions of what it meant to do science and be a scientist challenged. And, in neither class did girls connect to a legitimate scientist identity. These findings leave unanswered the question of whether changes in pedagogy and curriculum alone will produce more gender fair school science.
NASA Astrophysics Data System (ADS)
Mendez, B. J.; Smith, D.; Shipp, S. S.; Schwerin, T. G.; Stockman, S. A.; Cooper, L. P.; Peticolas, L. M.
2009-12-01
NASA is working with four newly-formed Science Education and Public Outreach Forums (SEPOFs) to increase the overall coherence of the Science Mission Directorate (SMD) Education and Public Outreach (E/PO) program. SEPOFs support the astrophysics, heliophysics, planetary and Earth science divisions of NASA SMD in three core areas: * E/PO Community Engagement and Development * E/PO Product and Project Activity Analysis * Science Education and Public Outreach Forum Coordination Committee Service. SEPOFs are collaborating with NASA and external science and education and outreach communities in E/PO on multiple levels ranging from the mission and non-mission E/PO project activity managers, project activity partners, and scientists and researchers, to front line agents such as naturalists/interpreters, teachers, and higher education faculty, to high level agents such as leadership at state education offices, local schools, higher education institutions, and professional societies. The overall goal for the SEPOFs is increased awareness, knowledge, and understanding of scientists, researchers, engineers, technologists, educators, product developers, and dissemination agents of best practices, existing NASA resources, and community expertise applicable to E/PO. By coordinating and supporting the NASA E/PO Community, the NASA/SEPOF partnerships will lead to more effective, sustainable, and efficient utilization of NASA science discoveries and learning experiences.
NASA Astrophysics Data System (ADS)
Timm, K.; Baeseman, J. L.; Membership, Association Of Polar Early Career Scientists
2010-12-01
One of the greatest legacies of the International Polar Year (IPY) is the creation of APECS, the Association of Polar Early Career Scientists. As a grassroots effort, APECS was proposed, formed, and developed by and for early career polar researchers. While the young investigators who founded APECS had talent, ambition, and the desire to make things happen, partnerships with key organizations and experienced leaders in polar science were essential to provide the funding, leadership, and mentorship that has taken the organization well beyond the IPY and to over 2000 members. In four years, APECS has strived to foster the skills of and develop a group of early career interdisciplinary polar scientists through networking and mentoring among themselves and with senior scientists. Through diverse activities including, panel discussions, career development workshops, online seminars, a comprehensive job listing, formal mentoring, meeting travel support, and the APECS Virtual Poster Session, APECS goal is to support the early career researcher being trained to do the science, to become a well-rounded scientist prepared for 21st century careers in science. As part of that training, APECS members are encouraged to participate in activities and training related to science communication, education, and outreach; working with the media; participating in the science / public policy interface; and working with arctic communities and indigenous peoples. During the IPY, APECS members were guest speakers and presenters on International Polar Day activities; they contributed to resources for education and outreach such as the book: Polar Science and Global Climate: An International Resource for Education and Outreach; and they made connections with educators, community groups, the media through in-person presentations, blogs from the field, videos, and much more. Workshops, panels, and online discussions focusing on these activities helped develop the capacity to conduct such activities—which are often not part of a traditional science graduate program of study. APECS is proof that a community driven effort can become a robust professional organization in just a few short years. Working with senior scientists and other mentors, such as non-science faculty members, educators, members of the media, administrative professionals, and policy makers, to build capacity of the membership and the organization is a major lesson from the establishment of APECS. Additional lessons include, nurturing your volunteers and new ideas. By building connections between senior scientists, and established polar science organizations to new scientists and professionals and fresh ideas APECS is creating a continuum by which polar science can effectively transition from observation, to synthesis, and towards response. In a period where the polar regions are experiencing rapid environmental change, having the tools and skills to work effectively cross-discipline and within, as well as outside the scientific community, will be essential to address the changes through science-based policy and a well-informed public. APECS can serve as a model for other early career initiatives in many disciplines and countries.
ERIC Educational Resources Information Center
Houseal, Ana K.; Abd-El-Khalick, Fouad; Destefano, Lizanne
2014-01-01
Engaging K-12 students in science-based inquiry is at the center of current science education reform efforts. Inquiry can best be taught through experiential, authentic science experiences, such as those provided by Student-Teacher-Scientist Partnerships (STSPs). However, very little is known about the impact of STSPs on teachers' and…
ERIC Educational Resources Information Center
Cummins, Catherine L.; Wandersee, James H.
A poster-newsletter, "Science Talk," was developed and its effectiveness at a major research university analyzed. The goal of the newsletter was to make information regarding upcoming research seminars sponsored by the science departments available campuswide and to raise the scientists' awareness level regarding the university's science…
Exploring Natural and Social Scientists' Views of Nature of Science
ERIC Educational Resources Information Center
Bayir, Eylem; Cakici, Yilmaz; Ertas, Ozge
2014-01-01
Science education researchers recently turned their attention to exploring views about nature of science (NOS). A large body of research indicates that both students and teachers have many naïve views about the NOS. Unfortunately, less attention has been directed at the issue of exploring the views of the scientists. Also, the little research in…
Taylor, Sara; Bennett, Katie M; Deignan, Joshua L; Hendrix, Ericka C; Orton, Susan M; Verma, Shalini; Schutzbank, Ted E
2014-05-01
Molecular diagnostics is a rapidly growing specialty in the clinical laboratory assessment of pathology. Educational programs in medical laboratory science and specialized programs in molecular diagnostics must address the training of clinical scientists in molecular diagnostics, but the educational curriculum for this field is not well defined. Moreover, our understanding of underlying genetic contributions to specific diseases and the technologies used in molecular diagnostics laboratories change rapidly, challenging providers of training programs in molecular diagnostics to keep their curriculum current and relevant. In this article, we provide curriculum recommendations to molecular diagnostics training providers at both the baccalaureate and master's level of education. We base our recommendations on several factors. First, we considered National Accrediting Agency for Clinical Laboratory Sciences guidelines for accreditation of molecular diagnostics programs, because educational programs in clinical laboratory science should obtain its accreditation. Second, the guidelines of several of the best known certifying agencies for clinical laboratory scientists were incorporated into our recommendations. Finally, we relied on feedback from current employers of molecular diagnostics scientists, regarding the skills and knowledge that they believe are essential for clinical scientists who will be performing molecular testing in their laboratories. We have compiled these data into recommendations for a molecular diagnostics curriculum at both the baccalaureate and master's level of education. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Socio-Political-Cultural Foundations of Environmental Education.
ERIC Educational Resources Information Center
McKeown-Ice, Rosalyn; Dendinger, Roger
2000-01-01
Identifies social science concepts that are prerequisite for understanding or analyzing environmental issues through a review of social science textbooks and educational materials, and interviews with social scientists. (Author/ASK)
ERIC Educational Resources Information Center
Vaidya, Sheila
2010-01-01
The focus of this paper is on the current developments in science education occurring in the posthumously built Homi Bhabha Centre for Science Education in Mumbai and to offer context for various indigenous developments that are shaping science education in India today. In this paper, I describe the story of Homi Bhabha and his rich legacy of…
Epistemological undercurrents in scientists' reporting of research to teachers
NASA Astrophysics Data System (ADS)
Glasson, George E.; Bentley, Michael L.
2000-07-01
Our investigation focused upon how scientists, from both a practical and epistemological perspective, communicated the nature and relevance of their research to classroom teachers. Six scientists were observed during presentations of cutting-edge research at a conference for science teachers. Following the conference, these scientists were interviewed to discern how each perceived the nature of science, technology, and society in relation to his particular research. Data were analyzed to determine the congruence and/or dissimilarity in how scientists described their research to teachers and how they viewed their research epistemologically. We found that a wide array of scientific methodologies and research protocols were presented and that all the scientists expressed links between their research and science-technology-society (STS) issues. When describing their research during interviews, the scientists from traditional content disciplines reflected a strong commitment to empiricism and experimental design, whereas engineers from applied sciences were more focused on problem-solving. Implicit in the data was a commitment to objectivity and the tacit assumption that science may be free of values and ethical assumptions. More dialogue is recommended between the scientific community, science educators, and historians/philosophers of science about the nature of science, STS, and curriculum issues.
Feelings and ethics education: the film dear scientists.
Semendeferi, Ioanna
2014-12-01
There is an increasing body of evidence that not only cognition but also emotions shape moral judgment. The conventional teaching of responsible conduct of research, however, does not target emotions; its emphasis is on rational analysis. Here I present a new approach, 'the feelings method,' for incorporating emotions into science ethics education. This method is embodied in Dear Scientists, an innovative film that combines humanities with arts and works at the subconscious level, delivering an intense mix of music and images, contrasted by calm narration. Dear Scientists has struck a chord across the science, humanities, and arts communities-a promising sign.
"Constructivism" and Cooperation between Scientists and Educators: A Reply to Crowther.
ERIC Educational Resources Information Center
Illman, Thomas H.
1998-01-01
Discusses problems that have arisen between science educators concerning the topic of constructivism. Suggests that knowledge transmission should be viewed as one legitimate and recommendable type of science education in the 21st century. (MVL)
Informal Science: Family Education, Experiences, and Initial Interest in Science
ERIC Educational Resources Information Center
Dabney, Katherine P.; Tai, Robert H.; Scott, Michael R.
2016-01-01
Recent research and public policy have indicated the need for increasing the physical science workforce through development of interest and engagement with informal and formal science, technology, engineering, and mathematics experiences. This study examines the association of family education and physical scientists' informal experiences in…
Forensic Science Education and Educational Requirements for Forensic Scientists.
ERIC Educational Resources Information Center
Gaensslen, Robert E.
2002-01-01
Focuses on criminalistics, which can be understood to mean the activities and specialty areas characteristic of most municipal, county, or state forensic science laboratories in the United States. (DDR)
Using the Draw-a-Scientist Test for Inquiry and Evaluation
ERIC Educational Resources Information Center
Miele, Eleanor
2014-01-01
The Draw-a-Scientist Test (DAST) is a tool to assess stereotypical imagery of scientists. This paper describes the use of the DAST as both a model for inquiry and as a method of assessing the affective domain. The DAST was administered in a science education methods course for undergraduate students of elementary education, a methods course for…
Training Informal Educators Provides Leverage for Space Science Education and Public Outreach
NASA Technical Reports Server (NTRS)
Allen, J. S.; Tobola, K. W.; Betrue, R.
2004-01-01
How do we reach the public with the exciting story of Solar System Exploration? How do we encourage girls to think about careers in science, math, engineering and technology? Why should NASA scientists make an effort to reach the public and informal education settings to tell the Solar System Exploration story? These are questions that the Solar System Exploration Forum, a part of the NASA Office of Space Science Education (SSE) and Public Outreach network, has tackled over the past few years. The SSE Forum is a group of education teams and scientists who work to share the excitement of solar system exploration with colleagues, formal educators, and informal educators like museums and youth groups. One major area of the SSE Forum outreach supports the training of Girl Scouts of the USA (GS) leaders and trainers in a suite of activities that reflect NASA missions and science research. Youth groups like Girl Scouts structure their activities as informal education.
NASA Astrophysics Data System (ADS)
Boyd, K.; Balgopal, M.; Birner, T.
2015-12-01
Educational outreach programs led by scientists or scientific organizations can introduce participants to science content, increase their interest in science, and help them understand the nature of science (NOS). Much of atmospheric science (AS) educational outreach to date has concentrated on teacher professional development programs, but there is still a need to study how students react to classroom programs led by scientists. The purpose of this research project is to examine student engagement with AS and NOS content when presented by a university atmospheric scientist or an Earth system science teacher. The guiding research question was: how do students interact with science experts in their classrooms compared to their teachers when learning about Earth science and NOS? The outreach program was developed by an AS faculty member and was implemented in a local 10th grade Earth Science class. The presenter used historical stories of discoveries to introduce concepts about the middle atmosphere and climate circulations, reinforcing the NOS in his interactive presentations. On a separate day the teacher implemented a lesson on plate tectonics grounded in NOS. A case study analysis is being conducted using videotaped presentations on Earth science and NOS by the teacher and the scientist, pre- and post- questionnaires, and teacher and scientist interviews in order to determine patterns in student-presenter discourse, the levels of presenters' inquiry-based questioning, and the depth of student responses around Earth science content and NOS. Preliminary results from video analysis indicate that the scientist used higher inquiry-based questioning strategies compared to the teacher; however the teacher was able to go into more depth on a topic with the lesson. Scientists must consider whether the trade-offs warrant focusing their outreach efforts on content professional development for teachers or content outreach for K-12 students.
NASA Astrophysics Data System (ADS)
Devore, E.; Gillespie, C.; Hull, G.; Koch, D.
1993-05-01
Flight Opportunities for Science Teacher EnRichment (FOSTER) is a new educational program from the Imitative to Develop Education through Astronomy in the Astrophysics Division at NASA Headquarters. Now in its first year of the pilot program, the FOSTER project brings eleven Bay Area teaaaachers to NASA Ames to participate in a year-long program of workshops, educational programs at their schools and the opportunity to fly aboard the Kuiper Airborne Observatory (KAO) on research missions. As science and math educators, FOSTER teachers get a close-up look at science in action and have the opportunity to interact with the entire team of scientists, aviators and engineers that support the research abord the KAO. In June, a second group of FOSTER teachers will participate in a week-long workshop at ASes to prepare for flights during the 1993-94 school year. In addition, the FOSTER project trains teachers to use e-mail for ongoing communication with scientists and the KAO team, develops educational materials and supports opportunities for scientists to become directly involved in local schools. FOSTER is supported by a NASA grant (NAGW 3291).
AGU scientists meet with legislators during Geosciences Congressional Visits Day
NASA Astrophysics Data System (ADS)
Uhlenbrock, Kristan
2011-10-01
This year marks the fourth annual Geosciences Congressional Visits Day (Geo-CVD), in which scientists from across the nation join together in Washington, D. C., to meet with their legislators to discuss the importance of funding for Earth and space sciences. AGU partnered with seven other Earth and space science organizations to bring more than 50 scientists, representing 23 states, for 2 days of training and congressional visits on 20-21 September 2011. As budget negotiations envelop Congress, which must find ways to agree on fiscal year (FY) 2012 budgets and reduce the deficit by $1.5 trillion over the next 10 years, Geo-CVD scientists seized the occasion to emphasize the importance of federally funded scientific research as well as science, technology, engineering, and math (STEM) education. Cuts to basic research and STEM education could adversely affect innovation, stifle future economic growth and competitiveness, and jeopardize national security.
Science Cafes: Engaging graduate students one drink at a time!
NASA Astrophysics Data System (ADS)
Schiebel, H.; Chen, R. F.
2016-02-01
Science Cafes are events that take place in casual settings (pubs, coffeehouses) that are typically open to a broad audience and feature engaging conversations with scientists about particular topics. Science Cafes are a grassroots movement and exist on an international scale with a common goal of engaging broad audiences in informal scientific discussions. Graduate Students for Ocean Education (GrOE), funded by COSEE OCEAN (Center for Ocean Science Education Excellence—Ocean Communities in Science Education And social Networks), has taken this model and honed in on a specific audience: graduate students. Through monthly Science Cafes with varying themes (ocean acidification to remote sensing), GrOE has engaged over two hundred graduate students throughout New England. While attendance at the Science Cafes is consistent, the presence and engagement of graduate students on the GrOE Facebook page is now growing, a trend attributed to having face-to-face contact with scientists and other graduate students.
Science and Me: A Student-Driven Science Outreach Program for Lay Adult Audiences
ERIC Educational Resources Information Center
Alexander, Hannah; Waldron, Anna M.; Abell, Sandra K.
2011-01-01
The increasing need for communicating science to the public suggests that future scientists and science educators should be educated in science outreach and trained to communicate with lay audiences. We present a recently developed novel graduate course, which trains students in outreach efforts aimed to increase the public's understanding of…
An Examination of the Science Literacy of Scientists and Science Educators.
ERIC Educational Resources Information Center
Showers, Dennis
This study develops a model for identifying and quantifying science literacy for the purpose of guiding science education policy and ultimately, resource allocation. The model is tested by attempting to distinguish groups who possess science literacy so as to identify their background and experiences that result in literate behavior. A survey of…
Outreach as a Unifying Concept in Science Education and Science Communication
NASA Astrophysics Data System (ADS)
Boyd, K.; Balgopal, M.; Birner, T.
2016-12-01
Recently there have been many calls for enhanced communication between scientists and the public in order to increase scientific literacy and improve attitudes toward science. However, these educational outreach (E/O) efforts often encounter structural barriers and the processes that support attainment of the goals of E/O are not well documented. This project provides a look at the current state of the literature on E/O done by scientists. It shows that E/O endeavors are diverse and not well-studied. Research efforts have concentrated on evaluation of specific programs, rather than the underlying principles and processes that influence how scientists interact and communicate with the public. The outcomes that have been examined focus on participants and there is little discussion of influences on facilitators. The research findings are also varied and exist in different disciplines with little overlap, making it difficult to synthesize our understanding of E/O. In this study, we contend that increasing dialogue between the fields of science education and science communication as well as building and utilizing theoretical foundations will help to scaffold the research on E/O. Studies of scientists' discourse and impacts on scientists of participating in E/O are areas that need further investigation. Preliminary results of one such study focusing on a geoscientist will also be presented. The results of this literature review project will help to expand our understanding of the research around E/O and how to extend E/O research to improve the impact of geoscience E/O.
Getting the Word Out: Teaching Middle-School Children about Cardiovascular Disease
Toepperwein, Mary Anne; Pruski, Linda A.; Blalock, Cheryl L.; Lemelle, Olivia R.; Lichtenstein, Michael J.
2008-01-01
Cardiovascular disease (CVD) has roots in childhood; since CVD begins early, a clear strong case for early education focused on CVD primary prevention exists. Scientists are not traditionally involved in disseminating health knowledge into public education. Similarly, public school teachers typically do not have access to biomedical research that may increase their students’ health science literacy. One way to bridge the ‘cultural’ gap between researchers and school teachers is to form science education partnerships. In order for such partnerships to be successful, teams of scientists and teachers must ‘translate’ biomedical research into plain language appropriate for students. In this article, we briefly review the need for improving health literacy, especially through school-based programs, and describe work with one model scientist/teacher partnership, the Teacher Enrichment Initiatives. Examples of cardiovascular research ‘translated’ into plain language lessons for middle school students are provided and practical considerations for researchers pursuing a science education partnership are delineated. PMID:19122871
Is There a Crisis in School Science Education in the UK?
ERIC Educational Resources Information Center
Smith, Emma
2010-01-01
This paper reviews the extent to which contemporary concerns over the recruitment, training and retention of scientists have persisted among science education policy-makers. Drawing upon key government reports that have been commissioned in order to review the position of science education and training over the last 90 years, we consider the…
Global Climate Change: What Has Science Education Got to Do with It?
ERIC Educational Resources Information Center
Sharma, Ajay
2012-01-01
Despite a near universal consensus among scientists regarding the perils of climate change for human civilizations, climate change has not emerged as a key issue among science educators. This position paper advocates for the centrality of climate change in science education. Using Polanyi's critique of market in capitalist societies, it positions…
Science Education and the Emergence of the Specialized Scientist in Nineteenth Century Greece
ERIC Educational Resources Information Center
Tampakis, Konstantinos
2013-01-01
In this paper, I describe the strong and reciprocal relations between the emergence of the specialized expert in the natural sciences and the establishment of science education, in early Modern Greece. Accordingly, I show how science and public education interacted within the Greek state from its inception in the early 1830, to the first decade of…
Science to Policy: Many Roads to Travel (Invited)
NASA Astrophysics Data System (ADS)
Eriksson, S. C.; McCaughey, J.
2013-12-01
Transferring scientific discoveries to policies and their implementation is not a narrow, one-way road. The complexities of policy-making are not normally within the purview of either scientists or science educators and communicators. Politics, bureaucracy, economics, culture, religion, and local knowledge are a few areas that help determine how policies are made. These factors are compounded by differences in cultures among scientists, educators/communicators, and governments. To complicate this further, bodies of knowledge which could be brought to bear upon improved policies and implementation lie within different disciplines, e.g. natural sciences, disaster risk reduction, development, psychology, social science, communications, education and more. In a scientific research institution, we have found many potential paths to help transfer knowledge back and forth between scientists and decision-makers. Some of these paths are short with an end in sight. Others are longer, and the destination can't be seen. Some of these paths include a) education and discussion with various government agencies, b) educating students who will return to various agencies and educational institutions in their home countries, c) sharing scientific knowledge with research colleagues, d) consulting, e) working with NGOs, and media, f) working with colleagues in other fields, e.g. development, risk, regional consortia. Recognizing and transferring knowledge among different disciplines, learning the needs of various players, finding the most productive paths, and thinking about varying time frames are important in prioritizing the transference of science into action.
Scientists’ Prioritization of Communication Objectives for Public Engagement
2016-01-01
Amid calls from scientific leaders for their colleagues to become more effective public communicators, this study examines the objectives that scientists’ report drive their public engagement behaviors. We explore how scientists evaluate five specific communication objectives, which include informing the public about science, exciting the public about science, strengthening the public’s trust in science, tailoring messages about science, and defending science from misinformation. We use insights from extant research, the theory of planned behavior, and procedural justice theory to identify likely predictors of scientists' views about these communication objectives. Results show that scientists most prioritize communication designed to defend science from misinformation and educate the public about science, and least prioritize communication that seeks to build trust and establish resonance with the public. Regression analyses reveal factors associated with scientists who prioritize each of the five specific communication objectives. Our findings highlight the need for communication trainers to help scientists select specific communication objectives for particular contexts and audiences. PMID:26913869
Lunar Reconnaissance Orbiter Lunar Workshops for Educators
NASA Astrophysics Data System (ADS)
Jones, A. P.; Hsu, B. C.; Hessen, K.; Bleacher, L.
2012-12-01
The Lunar Workshops for Educators (LWEs) are a series of weeklong professional development workshops, accompanied by quarterly follow-up sessions, designed to educate and inspire grade 6-12 science teachers, sponsored by the Lunar Reconnaissance Orbiter (LRO). Participants learn about lunar science and exploration, gain tools to help address common student misconceptions about the Moon, find out about the latest research results from LRO scientists, work with data from LRO and other lunar missions, and learn how to bring these data to their students using hands-on activities aligned with grade 6-12 National Science Education Standards and Benchmarks and through authentic research experiences. LWEs are held around the country, primarily in locations underserved with respect to NASA workshops. Where possible, workshops also include tours of science facilities or field trips intended to help participants better understand mission operations or geologic processes relevant to the Moon. Scientist and engineer involvement is a central tenant of the LWEs. LRO scientists and engineers, as well as scientists working on other lunar missions, present their research or activities to the workshop participants and answer questions about lunar science and exploration. This interaction with the scientists and engineers is consistently ranked by the LWE participants as one of the most interesting and inspiring components of the workshops. Evaluation results from the 2010 and 2011 workshops, as well as preliminary analysis of survey responses from 2012 participants, demonstrated an improved understanding of lunar science concepts among LWE participants in post-workshop assessments (as compared to identical pre-assessments) and a greater understanding of how to access and effectively share LRO data with students. Teachers reported increased confidence in helping students conduct research using lunar data, and learned about programs that would allow their students to make authentic contributions to lunar science. Participant feedback on workshop surveys was enthusiastically positive. 2012 was the third and final year for the LWEs in the current funding cycle. They will continue in a modified version at NASA Goddard Space Flight Center in Greenbelt, MD, where the LRO Project Office and Education and Public Outreach Team are based. We will present evaluation results from our external evaluator, and share lessons learned from this workshop series. The LWEs can serve as a model for others interested in incorporating scientist and engineer involvement, data from planetary missions, and data-based activities into a thematic professional development experience for science educators. For more information about the LWEs, please visit http://lunar.gsfc.nasa.gov/lwe/index.html.
The motivational stories of how women become scientists: A hermeneutic phenomenological inquiry
NASA Astrophysics Data System (ADS)
Watson, Sandra White
2002-01-01
The under-representation of women in science careers is well documented (Astin, Green, Korn, & Riggs, 1991; Felder, Felder, Mauny, Hamrin, & Dietz, 1995; Green, 1989; National Science Foundation, 1996, 1998; Seymour & Hewitt, 1997; Strenta, Elliot, Adair, Scott, & Matier, 1994; Tobias, 1990, 1992). While important information has been published concerning various factors that influenced women to pursue science careers (American Association of University Women, 1992; Debacker & Nelson, 2000; Samuels, 1999), very few research projects have allowed women scientists to share their personal experiences of what motivated them to become scientists in their own voices. The purpose of this inquiry was to investigate the elicited stories of seven women research scientists so that their retrospective motivational experiences with science as girls and young women inside and outside the formal school setting might be better understood. This inquiry examined specific motivational factors and experiences that encouraged or discouraged these women to pursue careers in science. These factors included the motivational influences of gender perceptions, science experiences, and social interactions. From the collective experiences offered, emergent themes were identified and interpreted. These motivational themes were compared with motivational findings in the literature review. Educational implications of the identified themes for these and other women considering careers in science, women's parents, science educators and society, are discussed.
Moral Values and Science Teaching: A Malaysian School Curriculum Initiative
NASA Astrophysics Data System (ADS)
Tan, Sok Khim
Implicit in teaching science has been the teaching of a set of values. However, its presence has remained unacknowledged because of assumptions made that its products are value-free and that work of science involves positive values. Malaysian schools have introduced a set of noble values to be taught as a subject called moral education while at the same time expecting all subjects, including the sciences to actively inculcate these noble values in their lessons. A search for values related to science included studies from science education curriculums, studies by scientists and philosophers of science, feminist and Indian critics of science. These values could be categorized into four categories representing epistemological values, supporting values, societal and moral values and power-oriented values. While some categories compliment each other, others are in contention. This paper argues for the inclusion of societal and moral values in the science classrooms. A compassionate scientist should be a reality. The task for Malaysian science educators is to find a way to raise awareness of these values.
Internet Links for Science Education: Student-Scientist Partnerships (edited by Karen Cohen)
NASA Astrophysics Data System (ADS)
Barden, Linda M.
1998-10-01
Plenum: New York, 1997. xx + 260 pp. Figs., tables, photos. 15 x 22.8 cm. ISBN 0-306-45558-7. $27.50. Science education is undergoing an upheaval more fundamental than the one that occurred in the aftermath of Sputnik. Research during the past 40 years has led to a radical change in the way we view children's learning of science. The National Science Education Standards (NSES) suggest a new model for teaching science based upon these research findings. Societal changes, particularly changes in business, have put pressure on schools to alter the emphasis of curricula from rote memory and individual competition to problem solving using a variety of technological skills and teamwork/team competition. This timely book addresses all these issues by describing projects that K-12 teachers can use to achieve the goals set forth by both NSES and business. It also provides scientists with examples of how they and their coworkers might better interact with K-12 science education to encourage a more scientifically literate society. Finally, it includes suggestions for future research in science education.
Preparing a New Generation of Citizens and Scientists to Face Earth's Future
ERIC Educational Resources Information Center
Bralower, Timothy J.; Feiss, P. Geoffrey; Manduca, Cathryn A.
2008-01-01
As the research interests and the focus of traditional earth scientists are transformed, so too must education in earth system science at colleges and universities across the country change. The required change involves not only the methods used to teach this new science, but also the essential place of the earth sciences in the panoply of…
Who Am I versus Who Can I Become? Exploring Women's Science Identities in STEM Ph.D. Programs
ERIC Educational Resources Information Center
Szelényi, Katalin; Bresonis, Kate; Mars, Matthew M.
2016-01-01
This article explores the science identities of 21 women STEM Ph.D. students at three research universities in the United States. Following a narrative approach, the findings depict five salient science identities, including those of a) academic, b) entrepreneurial, c) industrial, and d) policy scientist and e) scientist as community educator. Our…
Exhibits and More: How Scientists Can Partner with Aquariums and Science Centers
NASA Astrophysics Data System (ADS)
Spitzer, B.
2004-12-01
Informal science institutions include science museums, aquariums, zoos, nature centers and other institutions that offer the public opportunities for free-choice, voluntary, and self-directed learning. Less than 20% of our lives is spent in formal schooling, and even among schoolchildren only 20% of their waking hours are spent in the classroom. Informal science institutions can have a significant impact on what the public knows, believes, and cares about. These institutions reach very large audiences, and are considered trusted information sources by the general public. Informal science institutions offer a wide range of learning opportunities including exhibits, films, professional development for teachers, educational programs for children and adults, field trips, publications, websites, and more. Many informal learning centers are experienced in working with scientists as content experts, welcome their participation, make efficient use of their time, and are skilled at translating science for the general public. Several case studies will illustrate successful models for scientists engaging in development of exhibits, films, programs, and educational materials.
Another Kind of Scientist Activism
ERIC Educational Resources Information Center
Marino, Lori
2009-01-01
In a well-cited 1996 editorial in "Science," "The Activist Scientist," Jaleh Daie calls for scientists to take an assertive role in educating politicians and the public about the importance of government support for research. She writes that most scientists are reluctant to become involved in political lobbying for a variety of reasons--time…
The Legacy of NASA Astrophysics E/PO: Scientist Engagement and Higher Education
NASA Astrophysics Data System (ADS)
Manning, Jim; Smith, Denise A.; Meinke, Bonnie; Lawton, Brandon; Schulz, Gregory; Bartolone, Lindsay; Bianchi, Luciana; NASA SMD Astrophysics E/PO Community
2016-01-01
For the past six years, NASA's Science Mission Directorate has coordinated the work of its mission- and program-embedded education and public outreach (E/PO) efforts through four forums representing its four science divisions. The Astrophysics forum, as the others, has built on the long-standing mission E/PO 1% allocation and embedded scientist/educator partnerships to encourage and coordinate collaborative efforts to make the most efficient and effective use of NASA resources, personnel, data and discoveries in leveraged ways, in support of the nation's science education. Two of the priorities established early in the forum's period of activity were to enhance scientist engagement in E/PO and to coordinate the community in providing useful higher education resources based on determined needs. This presentation will highlight some of the achievements for these two priorities over the past six years, how the products and efforts are being preserved, and how they can continue to be accessed as NASA SMD transitions to a new Education and Communication landscape. The work constitutes an ongoing legacy--a firm foundation on which the new structure of NASA SMD Education efforts will go forward.
Using Geophysical Data in the Texas High School Course, Geology, Meteorology, and Oceanography
NASA Astrophysics Data System (ADS)
Ellins, K.; Olson, H.; Pulliam, J.; Schott, M. J.
2002-12-01
Science educators working directly with scientists to develop inquiry-based instructional materials in Earth science yield some of the best results. The TEXTEAMS (Texas Teachers Empowered for Achievement in Mathematics and Science) Leadership Training for the Texas high school science course, Geology, Meteorology and Oceanography (GMO) is one example of a successful program that provides high-quality training to master teachers using geophysical data collected by scientists at The University of Texas Institute for Geophysics (UTIG). TEXTEAMS is a certification program of professional development and leadership training sponsored by the National Science Foundation that is part of the Texas Statewide Systemic Initiative. UTIG scientists teamed with science educators at the Charles A. Dana Center for Mathematics and Science Education at UT and the Texas Education Agency to develop inquiry-based instructional materials for eight GMO modules. Our learning activities help students and teachers understand how Earth scientists interpret the natural world and test their hypotheses, and provide opportunities for the use of technology in classroom science learning; they are aligned with national and state teaching standards. Examples of TEXTEAMS GMO learning activities that use geophysical data. 1. Neotectonics: radiocarbon dates and elevation above current sea level of raised coral reefs in the New Georgia Islands are used to calculate rates of tectonic uplift and as a basis for the development of a conceptual model to explain the pattern of uplift that emerges from the data. 2. Large Igneous Provinces:geophysical logging data collected on ODP Leg 183 (Kerguelen Plateau) are analyzed to identify the transition from sediment to basement rock. 3. The Search for Black Gold: petroleum exploration requires the integration of geology, geophysics, petrophysics and geochemistry. Knowledge gained in previous GMO modules is combined with fundamental knowledge about economics to construct a petroleum prospect for a small oil and gas company. TEXTEAMS GMO Leadership Training uses mentoring of teachers by fellow teachers to implement effective teaching strategies and rigorous science curricula. More than 75 GMO teachers participated in the institutes and they in turn have trained about 2,250 other teachers. The number of students reached is about 67,500. The success of the GMO institutes have led to new partnerships between scientists and educators, and allowed UTIG to secure additional funds to promote K-12 Earth science education in Texas. They can serve as a template for other programs that are relevant to local communities and which utilize geophysical data and science.
Enhancing Science Education through Art
ERIC Educational Resources Information Center
Merten, Susan
2011-01-01
Augmenting science with the arts is a natural combination when one considers that both scientists and artists rely on similar attitudes and values. For example, creativity is often associated with artists, but scientists also use creativity when seeking a solution to a problem or creating a new product. Curiosity is another common trait shared…
So you want to share your science…. Connecting to the world of informal science learning.
Alpert, Carol Lynn
2018-04-25
Scientists can reap personal rewards through collaborations with science and natural history museums, zoos, botanical gardens, aquaria, parks, and nature preserves, and, while doing so, help to advance science literacy and broaden participation in the natural sciences. Beyond volunteer opportunities, which allow scientists to contribute their knowledge and passion within the context of existing programs and activities, there are also opportunities for scientists to bring their knowledge and resources to the design and implementation of new learning experiences for visitors to these informal science learning organizations (ISLOs). Well-designed education outreach plans that leverage the expertise and broad audiences of ISLOs can also enhance the prospects of research grant proposals made to agencies such as National Science Foundation, which encourage researchers to pay careful attention to the broader impacts of their research as well as its intellectual merit. Few scientists, however, have had the opportunity to become familiar with the pedagogy and design of informal or 'free-choice' science learning, and fewer still know how to go about the process of collaborating with ISLO's in developing and implementing effective programs, exhibits, and other learning experiences. This article, written by an experienced science museum professional, provides guidance for individual scientists and research groups interested in pursuing effective education outreach collaborations with science museums and other ISLOs. When prospective partners begin discussions early in the proposal development process, they increase the likelihood of successful outcomes in funding, implementation, and impact. A strategic planning worksheet is provided, along with a carefully-selected set of further resources to guide the design and planning of informal science learning experiences.
CosmoQuest: Measuring Audience Needs to Obtain Better Science
NASA Astrophysics Data System (ADS)
Buxner, Sanlyn; Bakerman, Maya; Gay, Pamela; Reiheld, Alison; CosmoQuest Team
2018-01-01
The CosmoQuest Virtual Research Facility provides a place for scientists to recruit people to aid in their science projects via citizen science. Just as students need training to be effective researchers, so do citizen scientists, but their needs are different. In this presentation, we present the results of surveys of members of the CosmoQuest community, including both citizen scientists and educators using citizen science in their classrooms. For all members of the community, we investigated the types of projects that respondents enjoyed doing, the level of difficulty they were willing to engage in, and the amount of time they spent doing citizen science projects. We also investigated what other science-related activities respondents were engaged in, other opportunities they were interested in, and what support and resources they needed to be successful in completing projects. For educators, we investigated the types of projects they wanted to engage in with their students, the ideal length of time for citizen science projects to be used in their classrooms, and the resources they needed to be able to engage students in citizen science projects effectively.
Integration of Basic and Clinical Sciences: Faculty Perspectives at a U.S. Dental School.
van der Hoeven, Dharini; van der Hoeven, Ransome; Zhu, Liang; Busaidy, Kamal; Quock, Ryan L
2018-04-01
Although dental education has traditionally been organized into basic sciences education (first and second years) and clinical education (third and fourth years), there has been growing interest in ways to better integrate the two to more effectively educate students and prepare them for practice. Since 2012, The University of Texas School of Dentistry at Houston (UTSD) has made it a priority to improve integration of basic and clinical sciences, with a focus to this point on integrating the basic sciences. The aim of this study was to determine the perspectives of basic and clinical science faculty members regarding basic and clinical sciences integration and the degree of integration currently occurring. In October 2016, all 227 faculty members (15 basic scientists and 212 clinicians) were invited to participate in an online survey. Of the 212 clinicians, 84 completed the clinician educator survey (response rate 40%). All 15 basic scientists completed the basic science educator survey (response rate 100%). The majority of basic and clinical respondents affirmed the value of integration (93.3%, 97.6%, respectively) and reported regular integration in their teaching (80%, 86.9%). There were no significant differences between basic scientists and clinicians on perceived importance (p=0.457) and comfort with integration (p=0.240), but the basic scientists were more likely to integrate (p=0.039) and collaborate (p=0.021) than the clinicians. There were no significant differences between generalist and specialist clinicians on importance (p=0.474) and degree (p=0.972) of integration in teaching and intent to collaborate (p=0.864), but the specialists reported feeling more comfortable presenting basic science information (p=0.033). Protected faculty time for collaborative efforts and a repository of integrated basic science and clinical examples for use in teaching and faculty development were recommended to improve integration. Although questions might be raised about the respondents' definition of "integration," this study provides a baseline assessment of perceptions at a dental school that is placing a priority on integration.
Toward an essential ethic for teaching science in the new millennium
NASA Astrophysics Data System (ADS)
Hays, Irene De La Bretonne
The purpose of this study was to identify and explore values and views that might underlie an essential ethic for teaching science in the new millennium. With such an ethic, teachers may be better able to prepare young people to form and fully participate in communities that restore and sustain Earth. Reviewed in the literature for this study were changing philosophies and theories from early indigenous cultures to the present on the nature of nature, the value of nature, and the human relationship with nature. These philosophies and theories were found to influence values that today underlie the work scientists do and the ways young people are educated in science. In the study, two groups of participants--Nature Writers and scientists--revealed the essence and meaning of their relationship with nature. A two-stage, modified Delphi method was used for collecting data. Stage One comprised the first "round" of the Delphi and involved content analysis of writings by a select group of U.S. Nature Writers from the early 1800s to the present. In Stage Two, comprising three rounds of the modified Delphi, perspectives of Nature Writers were imbedded in questionnaires and presented for response to a select group of scientists connected with research and education at National Laboratories across the country. Finally, results from each participant group were brought together in a recursive process, one with the other, to determine findings. Strong Earth-care values, including receptivity, responsibility, interdependence, respect, cooperation, love, and care, were found to be held in common by the Nature Writers and scientists in this study and could form the foundation for an essential ethic for teaching science. The strongest dissonance between Nature Writers and scientists was evident in emotional and spiritual domains--despite that many scientists revealed emotional and spiritual elements in stories told of their experiences with nature. Contrary to what might have been expected from scientists based on theories of science and practices of science education represented in the literature, few scientists revealed negative, utilitarian, or dominionistic affiliations with nature. In contrast, no Nature Writers revealed such affiliations.
Feelings and Ethics Education: The Film Dear Scientists
Semendeferi, Ioanna
2014-01-01
There is an increasing body of evidence that not only cognition but also emotions shape moral judgment. The conventional teaching of responsible conduct of research, however, does not target emotions; its emphasis is on rational analysis. Here I present a new approach, ‘the feelings method,’ for incorporating emotions into science ethics education. This method is embodied in Dear Scientists, an innovative film that combines humanities with arts and works at the subconscious level, delivering an intense mix of music and images, contrasted by calm narration. Dear Scientists has struck a chord across the science, humanities, and arts communities—a promising sign. PMID:25574256
Beyond the Search for Truth: Dewey's Humble and Humanistic Vision of Science Education
ERIC Educational Resources Information Center
Waddington, David I.; Feinstein, Noah Weeth
2016-01-01
In this essay, David Waddington and Noah Weeth Feinstein explore how Dewey's conception of science can help us rethink the way science is done in schools. The authors begin by contrasting a view of science that is implicitly accepted by many scientists and science educators--science as a search for truth--with Dewey's instrumentalist,…
NASA Astrophysics Data System (ADS)
Zirakparvar, N. A.; Sessa, J.; Ustunisik, G. K.; Nadeau, P. A.; Flores, K. E.; Ebel, D. S.
2013-12-01
It is estimated that by the year 2020 relative to 2009, there will be 28% more Earth Science jobs paying ≥ $75,000/year1 in the U.S.A. These jobs will require advanced degrees, but compared to all arts and science advanced degrees, the number of physical science M.S. and Ph.D. awarded per year decreased from 2.5% in 1980 to 1.5% in 20092. This decline is reflected on a smaller scale and at a younger age: in the New York City school system only 36% of all 8th graders have basic proficiency in science 3. These figures indicate that the lack achievement in science starts at a young age and then extends into higher education. Research has shown that students in grades 7 - 12 4,5 and in university level courses 6 both respond positively to high quality science teaching. However, much attention is focused on improving science teaching in grades 7- 12, whereas at many universities lower level science courses are taught by junior research and contingent faculty who typically lack formal training, and sometimes interest, in effective teaching. The danger here is that students might enter university intending to pursue geoscience degrees, but then encounter ineffective instructors, causing them to lose interest in geoscience and thus pursue other disciplines. The crux of the matter becomes how to improve the quality of university-level geoscience teaching, without losing sight of the major benchmark of success for research faculty - scholarly publications reporting innovative research results. In most cases, it would not be feasible to sidetrack the research goals of early career scientists by placing them into a formal teacher preparation program. But what happens when postdoctoral research scientists take an active role in clinical teacher preparation as part of their research appointments? The American Museum of Natural History's Masters of Arts in Teaching (AMNH-MAT) urban residency pilot program utilizes a unique approach to grade 7 - 12 Earth Science teacher preparation in that postdoctoral research scientists are directly involved in the clinical preparation of the teacher candidates7. In this program, professional educators and senior scientists guide and work closely with the postdoctoral scientists in developing lessons and field experiences for the teacher candidates. This exposes the postdoctoral scientists to pedagogical techniques. Furthermore, postdoctoral scientists make regular visits to partner schools and share their research interests with high school science students8. Regular assessments about the quality of the postdoctoral scientist's teaching, in the form of course evaluations and informal discussions with the teacher candidates and professional educators, further augments the postdoctoral scientists teaching skills. These experiences can ultimately improve university level science teaching, should the postdoctoral scientists find positions within a university setting. Here, five postdoctoral researchers present self-studies of changing instructional practice born of their involvement in clinical teacher preparation in the AMNH-MAT program.
Dedicated Space Science Education Centres Provide the Model for Effective Outreach
NASA Astrophysics Data System (ADS)
Brumfitt, A.
Planetaria and science centres are traditionally successful players in engaging all levels and ages of society. They have long played a supportive role to and within education. Their value in teacher circles has always been recognised as an effective resource. Given the decline in career choices in traditional Science Technology Engineering and Mathematics (STEM) and astronomy and planetary sciences, they are now more important than ever. Since their inception the role and function of Planetaria has been required to evolve to meet the changing demands of society. They are now faced with the challenge of meeting new requirements and the need for new and different resources, techniques, support and funding models to meet and effectively deliver to new target groups. To face these challenges these pivotal centres require new methodology in their development of programs to be effective in their support to education. New directions specifically tailored for teacher professional development and for student studies. The changing requirements have resulted in a new kind of science centre one dedicated and specially designed using space science and dedicated to formal education across stem activities. The space scientist forms an integral and key role in this type of centre by providing the science, the passion of discovery and the relevance of the science to the community. These programs need to be carefully aligned to flexible course requirements and objectives to ensure relevancy to the education and outreach sector. They need access to and the support and input from the scientist and research institutions. They need real and appropriate material and resources. Scientists need effective channels through which to inform and share their work. Here is the potential for enormously effective symbiosis. This paper describes how new multi million dollar state-of-the-art space science centres are working with cutting edge science, research institutes, universities, government education departments, all education stakeholders and deliverers in formal, informal and non-specialist education support. The dedicated space education centres provide realistic prototypes for the restructuring of existing planetaria and science centres to meet needs of education in 21st Century.
A Functional Conceptualization of Understanding Science in the News
ERIC Educational Resources Information Center
Anderson, Megan M.
2012-01-01
The idea that the public should have the capacity for understanding science in the news has been embraced by scientists, educators, and policymakers alike. An oft-cited goal of contemporary science education, in fact, is to enhance students' understanding of science in the news. But what exactly does it "mean" to understand science…
Earth Science Education for the 21st Century: A Planning Guide.
ERIC Educational Resources Information Center
American Geological Inst., Alexandria, VA.
In response to the growing national concern about precollege science education, this guide was developed to assist school administrators, curriculum planners, teachers, and scientists in incorporating earth science in K-12 science curricula. The guide is divided into four main sections that provide a framework for planning and implementing earth…
Nature of Science Contextualized: Studying Nature of Science with Scientists
ERIC Educational Resources Information Center
Tala, Suvi; Vesterinen, Veli-Matti
2015-01-01
Understanding nature of science (NOS) is widely considered an important educational objective and views of NOS are closely linked to science teaching and learning. Thus there is a lively discussion about what understanding NOS means and how it is reached. As a result of analyses in educational, philosophical, sociological and historical research,…
Describing the Apprenticeship of Chemists through the Language of Faculty Scientists
ERIC Educational Resources Information Center
Skjold, Brandy Ann
2012-01-01
Attempts to bring authentic science into the K-16 classroom have led to the use of sociocultural theories of learning, particularly apprenticeship, to frame science education research. Science educators have brought apprenticeship to science classrooms and have brought students to research laboratories in order to gauge its benefits. The…
ERIC Educational Resources Information Center
Hsu, Pei-Ling; van Eijck, Michiel; Roth, Wolff-Michael
2010-01-01
Working at scientists' elbows is one suggestion that educators make to improve science education, because such "authentic experiences" provide students with various types of science knowledge. However, there is an ongoing debate in the literature about the assumption that authentic science activities can enhance students' understandings…
Empowering Teachers to Teach Science in the Early Years in Mauritius
ERIC Educational Resources Information Center
Kamudu Applasawmy, B.; Naugah, J.; Maulloo, A. K.
2017-01-01
Children act as emergent scientists through active involvement with their environment and adults. Science forms an important component of early childhood education curriculum in Mauritius. Since 2015, The Rajiv Gandhi Science Centre (RGSC), has initiated a new project: empowering educators to teach science in pre-primary schools. One-day workshop…
Science Teacher Candidates' Perceptions about Roles and Nature of Scientific Models
ERIC Educational Resources Information Center
Yenilmez Turkoglu, Ayse; Oztekin, Ceren
2016-01-01
Background: Scientific models have important roles in science and science education. For scientists, they provide a means for generating new knowledge or function as an accessible summary of scientific studies. In science education, on the other hand, they are accessible representations of abstract concepts, and are also organizational frameworks…
NASA Astrophysics Data System (ADS)
Hicks, T.
2004-12-01
The School of Ocean and Earth Sciences and Technology (SOEST) at the University of Hawaii at Manoa is home to twelve diverse research institutes, programs and academic departments that focus on a wide range of earth and planetary sciences. SOEST's main outreach goals at the K-12 level are to increase the awareness of Hawaii's schoolchildren regarding earth, ocean, and space science, and to inspire them to consider a career in science. Education and public outreach efforts in SOEST include a variety of programs that engage students and the public in formal as well as informal educational settings, such as our biennial Open House, expedition web sites, Hawaii Ocean Science Bowl, museum exhibits, and programs with local schools. Some of the projects that allow for scientist involvement in E/PO include visiting local classrooms, volunteering in our outreach programs, submitting lessons and media files to our educational database of outreach materials relating to earth and space science research in Hawaii, developing E/PO materials to supplement research grants, and working with local museum staff as science experts.
To iron or to do science: A storied life of a Latina from scientist to science teacher
NASA Astrophysics Data System (ADS)
Hoy, Sarida P.
Reform initiatives such as Science for All Americans (AAA, 1989) and National Science Education Standards (NRC, 1996) argue for making science accessible to all children regardless of age, sex, cultural and/or ethic background, and disabilities. One of the most popular and prevailing phrases highlighting science education reform in the last decade has been science for all. In terms of making science accessible to all, science educators argue that one role of science teachers ought to be to embrace students' experiences outside of the science classroom by becoming aware and inclusive of the cultural resources that student's households contain. Moll, Gonzalez and Amanti (1992) termed these cultural resources as funds of knowledge which refer to culturally developed bodies of knowledge and skills essential for household well being. This study examined the career transition of a former Latina scientist from a research scientist to a high school science teacher. Her lived experiences that influenced her career transition were examined using interpretive biography through a feminist theory lens. The following question guided the study: How have the lived experiences of the participant as engaged through cultural, historical, and social interactions influenced a transition in career from a research scientist to a classroom teacher? A former Latina scientist and her family participated in this study to facilitate the documentation, narration, and interpretation of her career transition. The researcher immersed herself in the field for five months and data collection included in-depth interviews with the participant and her family. In addition, the researcher kept a reflexive journal. Data were analyzed using socio-cultural thematic approach to identify snapshots and to develop emergent themes. Data analysis revealed that the participant's cultural socialization conflicted with the Eurocentric/Androcentric culture of science found in both the university and research laboratories. Consequently the participant's strong need to have a family was a powerful contributor to her selection of teaching as a second career. The participant's lived experiences emphasized a need to explore the impact and interaction of ethnicity and gender in the myopic science culture that has left women and people of other cultures at the doorsteps of the scientific enterprise.
STEM Policy and Science Education: Scientistic Curriculum and Sociopolitical Silences
ERIC Educational Resources Information Center
Gough, Annette
2015-01-01
This essay responds to the contribution of Volny Fages and Virginia Albe, in this volume, to the field of research in science education, and places it in the context of the plethora of government and industry policy documents calling for more Science, Technology, Engineering and Mathematics (STEM) education in schools and universities and the…
Research &Discover: A Pipeline of the Next Generation of Earth System Scientists
NASA Astrophysics Data System (ADS)
Hurtt, G. C.; Einaudi, F.; Moore, B.; Salomonson, V.; Campbell, J.
2006-12-01
In 2002, the University of New Hampshire (UNH) and NASA Goddard Space Flight Center (GSFC) started the educational initiative Research &Discover with the goals to: (i) recruit outstanding young scientists into research careers in Earth science and Earth remote sensing (broadly defined), and (ii) support Earth science graduate students enrolled at UNH through a program of collaborative partnerships with GSFC scientists and UNH faculty. To meet these goals, the program consists of a linked set of educational opportunities that begins with a paid summer research internship at UNH for students following their Junior year of college, and is followed by a second paid summer internship at GSFC for students following their Senior year of college. These summer internships are then followed by two-year fellowship opportunities at UNH for graduate studies jointly supervised by UNH faculty and GSFC scientists. After 5 years of implementation, the program has awarded summer research internships to 22 students, and graduate research fellowships to 6 students. These students have produced more than 78 scientific research presentations, 5 undergraduate theses, 2 Masters theses, and 4 peer-reviewed publications. More than 80% of alums are actively pursuing careers in Earth sciences now. In the process, the program has engaged 19 faculty from UNH and 15 scientists from GSFC as advisors/mentors. New collaborations between these scientists have resulted in new joint research proposals, and the development, delivery, and assessment of a new course in Earth System Science at UNH. Research &Discover represents an educational model of collaboration between a national lab and university to create a pipeline of the next generation of Earth system scientists.
Scientist-Teacher Partnerships as Professional Development: An Action Research Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willcuts, Meredith H.
The overall purpose of this action research study was to explore the experiences of ten middle school science teachers involved in a three-year partnership program between scientists and teachers at a Department of Energy national laboratory, including the impact of the program on their professional development, and to improve the partnership program by developing a set of recommendations based on the study’s findings. This action research study relied on qualitative data including field notes recorded at the summer academies and data from two focus groups with teachers and scientists. Additionally, the participating teachers submitted written reflections in science notebooks, participatedmore » in open-ended telephone interviews that were transcribed verbatim, and wrote journal summaries to the Department of Energy at the end of the summer academy. The analysis of the data, collaboratively examined by the teachers, the scientists, and the science education specialist acting as co-researchers on the project, revealed five elements critical to the success of the professional development of science teachers. First, scientist-teacher partnerships are a unique contribution to the professional development of teachers of science that is not replicated in other forms of teacher training. Second, the role of the science education specialist as a bridge between the scientists and teachers is a unique and vital one, impacting all aspects of the professional development. Third, there is a paradox for classroom teachers as they view the professional development experience from two different lenses – that of learner and that of teacher. Fourth, learning for science teachers must be designed to be constructivist in nature. Fifth, the principles of the nature of science must be explicitly showcased to be seen and understood by the classroom teacher.« less
ERIC Educational Resources Information Center
Turkmen, Hakan
2008-01-01
Students' views of science and scientists have been widely studied. The purpose of this study is to analyze image of scientist from drawn picture of scientists using The Draw-a-Scientist Test (DAST) by 5th grade students and to analyze where this image comes from students minds in changing Turkish educational perspective. Two hundred eighty seven…
How MESSENGER Meshes Simulations and Games with Citizen Science
NASA Astrophysics Data System (ADS)
Hirshon, B.; Chapman, C. R.; Edmonds, J.; Goldstein, J.; Hallau, K. G.; Solomon, S. C.; Vanhala, H.; Weir, H. M.; Messenger Education; Public Outreach (Epo) Team
2010-12-01
How MESSENGER Meshes Simulations and Games with Citizen Science In the film The Last Starfighter, an alien civilization grooms their future champion—a kid on Earth—using a video game. As he gains proficiency in the game, he masters the skills he needs to pilot a starship and save their civilization. The NASA MESSENGER Education and Public Outreach (EPO) Team is using the same tactic to train citizen scientists to help the Science Team explore the planet Mercury. We are building a new series of games that appear to be designed primarily for fun, but that guide players through a knowledge and skill set that they will need for future science missions in support of MESSENGER mission scientists. As players score points, they gain expertise. Once they achieve a sufficiently high score, they will be invited to become participants in Mercury Zoo, a new program being designed by Zooniverse. Zooniverse created Galaxy Zoo and Moon Zoo, programs that allow interested citizens to participate in the exploration and interpretation of galaxy and lunar data. Scientists use the citizen interpretations to further refine their exploration of the same data, thereby narrowing their focus and saving precious time. Mercury Zoo will be designed with input from the MESSENGER Science Team. This project will not only support the MESSENGER mission, but it will also add to the growing cadre of informed members of the public available to help with other citizen science projects—building on the concept that engaged, informed citizens can help scientists make new discoveries. The MESSENGER EPO Team comprises individuals from the American Association for the Advancement of Science (AAAS); Carnegie Academy for Science Education (CASE); Center for Educational Resources (CERES) at Montana State University (MSU) - Bozeman; National Center for Earth and Space Science Education (NCESSE); Johns Hopkins University Applied Physics Laboratory (JHU/APL); National Air and Space Museum (NASM); Science Systems and Applications, Inc. (SSAI); and Southwest Research Institute (SwRI).
Yawson, Nat Ato; Amankwaa, Aaron Opoku; Tali, Bernice; Shang, Velma Owusua; Batu, Emmanuella Nsenbah; Asiemoah, Kwame; Fuseini, Ahmed Denkeri; Tene, Louis Nana; Angaandi, Leticia; Blewusi, Isaac; Borbi, Makafui; Aduku, Linda Nana Esi; Badu, Pheonah; Abbey, Henrietta; Karikari, Thomas K
2016-01-01
The scientific capacity in many African countries is low. Ghana, for example, is estimated to have approximately twenty-three researchers per a million inhabitants. In order to improve interest in science among future professionals, appropriate techniques should be developed and employed to identify barriers and correlates of science education among pre-university students. Young students' attitudes towards science may affect their future career choices. However, these attitudes may change with new experiences. It is, therefore, important to evaluate potential changes in students' attitudes towards science after their exposure to experiences such as science outreach activities. Through this, more effective means of inspiring and mentoring young students to choose science subjects can be developed. This approach would be particularly beneficial in countries such as Ghana, where: (i) documented impacts of outreach activities are lacking; and (ii) effective means to develop scientist-school educational partnerships are needed. We have established an outreach scheme, aimed at helping to improve interaction between scientists and pre-university students (and their teachers). Outreach activities are designed and implemented by undergraduate students and graduate teaching assistants, with support from faculty members and technical staff. Through this, we aim to build a team of trainee scientists and graduates who will become ambassadors of science in their future professional endeavors. Here, we describe an approach for assessing changes in junior high school students' attitudes towards science following classroom neuroscience outreach activities. We show that while students tended to agree more with questions concerning their perceptions about science learning after the delivery of outreach activities, significant improvements were obtained for only two questions, namely "I enjoy science lessons" and "I want to be a scientist in the future." Furthermore, there was a generally strong trend towards a change in attitude for questions that sought information about students' perceptions about scientists (both positive and negative perceptions). In addition, outreach providers reported that their involvement in this public engagement scheme helped them acquire several transferable skills that will be beneficial in their studies and career development. These include vital skills in project and time management, teamwork and public speaking. Altogether, our findings provide novel indications that the development of scientist-school outreach partnerships in Ghana has valuable implications for science education and capacity development.
NASA Astrophysics Data System (ADS)
Metzger, E. P.; Ambos, E. L.; Ng, E. W.; Skiles, J.; Simila, G.; Garfield, N.
2002-05-01
Project ALERT (Augmented Learning Environment and Renewable Teaching) was founded in 1998, with funding from NASA and the California State University (CSU), to improve earth system science education for pre-service teachers. Project ALERT has formed linkages between ten campuses of the CSU, which prepares about 60 percent of California's teachers, and two NASA centers, Ames Research Center and the Jet Propulsion Laboratory. ALERT has also fostered alliances between earth science and science education faculty. The combined expertise of Project ALERT's diverse partners has led to a wide array of activities and products, including: 1) incorporation in university classrooms of NASA-developed imagery, data, and educational resources; 2) creation and/or enhancement of several courses that bring earth systems science to pre-service teachers; 3) fellowships for CSU faculty to participate in collaborative research and education projects at the NASA Centers; 4) development of teaching modules on such varied topics as volcanoes, landslides, and paleoclimate; and 5) a central web site that highlights resources for teaching introductory Earth system science. An outgrowth of Project ALERT is the increased interest on the part of CSU earth scientists in education issues. This has catalyzed their participation in other projects, including NASA's Project NOVA, Earth System Science Education Alliance, and Sun-Earth Connection Education Forum, the Digital Library for Earth System Science Education, and the California Science Project. Project ALERT has also expanded to provide professional development opportunities for in-service teachers, as exemplified by its support of the Bay Area Earth Science Institute (BAESI) at San Jose State University. Each year, BAESI offers 10-15 full-day workshops that supply teachers and teachers-to-be with a blend of science concepts and classroom activities, free instructional materials, and the opportunity to earn inexpensive university credit. These workshops have been enriched by the incorporation of earth and space science information and curricular materials from NASA. In addition, visits to Ames Research Center have given BAESI participants an opportunity to explore the Educator Resource Center, learn about NASA's programs for teachers and students, and experience presentations by NASA scientists engaged in cutting edge research about the earth system. Project ALERT demonstrates the power of a state-based partnership that unites scientists and educators with diverse perspectives and strengths in a synergistic effort to improve science education.
NASA Technical Reports Server (NTRS)
Hughes, J.
1998-01-01
The Planetary Data System (PDS) is an active science data archive managed by scientists for NASA's planetary science community. With the advent of the World Wide Web the majority of the archive has been placed on-line as a science digital libraty for access by scientists, the educational community, and the general public.
NASA Astrophysics Data System (ADS)
Niebur, S. M.; Singer, K.; Gardner-Vandy, K.
2012-08-01
Fifty-one interviews with women in planetary science are now available as an e-mentoring and teaching resource on WomeninPlanetaryScience.com. Each scientist was nominated and interviewed by a fellow member of the planetary science community, and each gladly shared her advice for advancement in the field. Women in Planetary Science was founded in 2008 to connect communities of current and prospective scientists, to promote proposal and award opportunities, and to stimulate discussion in the planetary science community at large. Regular articles, or posts, by nearly a dozen collaborators highlight a range of current issues for women in this field. These articles are promoted by collaborators on Twitter, Facebook, and Google+ and shared again by the collaborators' contacts, reaching a significantly wider audience. The group's latest project, on Pinterest, is a crowd-sourced photo gallery of more than 350 inspiring women in planetary science; each photo links to the scientist's CV. The interviews, the essays, and the photo gallery are available online as resources for prospective scientists, planetary scientists, parents, and educators.
Science as Myth in Physical Education.
ERIC Educational Resources Information Center
Kirk, David
Scientization is a process that refers to the mythologies that are generated around the practices of working scientists. This paper discusses how science works on popular consciousness and how particular occupational groups use science to legitimatize their discipline, specifically in physical education. Two examples are presented to illustrate…
Harvard, Wisconsin Programs Aim to Improve Science Education.
ERIC Educational Resources Information Center
Krieger, James
1983-01-01
Describes two programs to improve science education. Harvard University will provide a teacher training program for mid- to late-career mathematicians/scientists in industry and will provide inservice programs for current science/mathematics teachers. University of Wisconsin's program involves a national institute to foster research in chemical…
NASA Astrophysics Data System (ADS)
Peticolas, L. M.; Bartolone, L. M.; Cobabe-Ammann, E. A.; Paglierani, R.; Mendez, B. J.; Nichols, M.; Davis, H.; Ali, N. A.
2012-12-01
NASA has funded four Science Education and Public Outreach Forums (SEPOFs) that work closely with NASA's Science Mission Directorate (SMD) and with each other to support and coordinate NASA's science education and public outreach activities. The Heliophysics E/PO Forum is one of these forums. The currently funded program has been operating for 3 years. The work of the Heliophysics E/PO Forum has resulted in several deliverables. 1) We have continued and further developed a 'community of practice' for Heliophysics E/PO professionals, which includes an on-line workspace for the heliophysics community (and other NASA SEPOF communities), monthly features of Heliophysics educational programs and products and the people who run the programs and develop the products, monthly tag-ups for Heliophysics E/PO professionals funded by NASA, an annual 'internal' workshop for this community, professional development opportunities, a structure for reporting information to NASA, and a weekly newsletter; 2) We have created tools for scientists interested in doing education and public outreach; 3) We have created workshops for faculty teaching Heliophysics topics; 4) We have analyzed heliophysics educational products in order to classify them both for 'gap analysis' as well as for use in a digital catalogue of science educational resources; and 5) We have worked on several cross-forum initiatives including professional development opportunities, working groups, a digital library of science educational resources, reporting support for NASA SMD, and the on-line workspace infrastructure and design. We present evaluation data on the impact of these deliverables in meeting our goals and objectives specifically for the Heliophysics E/PO Forum. We also discuss our perspectives on the benefits of working closely with the other NASA science E/PO Forums. We share how the Heliophysics E/PO Forum can benefit scientists in their E/PO efforts as well.
SCUBAnauts International: Exploration and Discovery in the Ocean Sciences
NASA Astrophysics Data System (ADS)
Moses, C. S.; Palandro, D.; Coble, P.; Hu, C.
2007-12-01
The SCUBAnauts International program originated in 2001, as a 501(c)(3) non-profit organization designed to increase the attraction to science and technology careers in today's youth. SCUBAnauts International (SNI) consists of a diverse group of 12 to 18 year-old young men and women mentored by academic, federal, and state research scientists in an informal education environment. The program's mission is to promote interest in science and technology topics and careers by involving secondary education students as young explorers in the marine sciences and research activities, such as special environmental and undersea conservation projects that educate, promote active citizenship, and develop effective leadership skills. With help from mentors, SNI students collect and interpret research-quality data to meet the needs of ocean scientists, maintaining direct interaction between the scientists and the young men and women in the program. The science component of the program includes collection of benthic habitat, water quality, optics, and coral reef health data. During the school year, the SCUBAnauts are tasked with sharing their experiences to raise the environmental awareness of a larger audience by providing education outreach in formal and informal venues. Here we highlight results from recent SNI activities including data collection and program methodologies, and discuss future plans for the program.
NASA Astrophysics Data System (ADS)
Sparrow, E. B.
2003-12-01
The GLOBE program has provided opportunities for environmental science research and education collaborations among scientists, teachers and K-12 students, and for cross-cultural enrichment nationally and abroad. In Alaska, GLOBE has also provided funding leverage in some cases, and a base for several other science education programs that share a common goal of increasing student interest, understanding, process skills and achievement in science, through involvement in ongoing research investigations. These programs that use GLOBE methodologies (standardized scientific measurements and learning activities developed by scientists and educators) are: Global Change Education Using Western Science and Native Knowledge also known as "Observing Locally, Connecting Globally" (OLCG); Alaska Earth System Science Education Alliance: Improving Understanding of Climate Variability and Its Relevance to Rural Alaska; Schoolyard Long Term Ecological Research; Alaska Rural Research Partnership; Alaska Partnership for Teacher Enhancement; Alaska Lake Ice and Snow Observatory Network; Alaska Boreal Forest Council Education Outreach; Calypso Farm and Ecology Center; Environmental Education Outreach; and also GLOBE Arctic POPs (persistent organic pollutants) a program that involves countries in the circumpolar North. The University of Alaska GLOBE Partnership has collaborated with the BLM Campbell Creek Science Center Globe Partnership in facilitating GLOBE Training Workshops and providing teacher support. GLOBE's extensive website including data entry, archive, analysis and visualization capabilities; GLOBE Teacher Guide, videos and other materials provided; excellent GLOBE science research and education staff, training support office, GLOBE help desk, alignment of GLOBE curriculum with national science education standards and GLOBE certification of teachers trained on even just one GLOBE investigation, have made it easier to implement GLOBE in the classroom. Using GLOBE, whole classes of students have engaged in and contributed data to science investigations. In Alaska, classes and individual students have conducted their own inquiry studies and have successfully presented their investigations and competed at science fairs and statewide high school science symposium and international conferences. Two students presented their research investigations at the GLOBE Learning Expedition in Croatia and four students presented their study at the GLOBE Arctic POPs Conference in Sweden. These students increased not only their understanding and knowledge of science but also in appreciation of people in other countries and their cultures. Friendships have also bloomed. The learning community in Alaska has expanded to include family and community members including Native elders (using OLCG), teachers, scientists and students from other countries. The following challenges remain: 1) getting funds to be able to provide GLOBE equipment and continuous support to GLOBE teachers and students throughout the year, 2) reaching teachers and students in remote areas, 3) rapid teacher turn-over rate in rural areas, 4) using inquiry-based pedagogies during GLOBE professional development workshops including the opportunity for teacher participants to conduct their own inquiries during the workshop, 5) time, school curriculum and national education requirement constraints, 6) involving school administrators, and more local scientists and community members, and 7) providing culturally relevant and responsive science education programs and life-long learning communities.
Citizen Science: Opportunities for Girls' Development of Science Identity
NASA Astrophysics Data System (ADS)
Brien, Sinead Carroll
Many students in the United States, particularly girls, have lost interest in science by the time they reach high school and do not pursue higher degrees or careers in science. Several science education researchers have found that the ways in which youth see themselves and position themselves in relation to science can influence whether they pursue science studies and careers. I suggest that participation in a citizen science program, which I define as a program in which girls interact with professional scientists and collect data that contributes to scientific research, could contribute to changing girls' perceptions of science and scientists, and promote their science identity work. I refer to science identity as self-recognition and recognition by others that one thinks scientifically and does scientific work. I examined a case study to document and analyze the relationship between girls' participation in a summer citizen science project and their development of science identity. I observed six girls between the ages of 16 and 18 during the Milkweed and Monarch Project, taking field notes on focal girls' interactions with other youth, adults, and the scientist, conducted highly-structured interviews both pre-and post- girls' program participation, and interviewed the project scientist and educator. I qualitatively analyzed field notes and interview responses for themes in girls' discussion of what it meant to think scientifically, roles they took on, and how they recognized themselves as thinking scientifically. I found that girls who saw themselves as thinking scientifically during the program seemed to demonstrate shifts in their science identity. The aspects of the citizen science program that seemed to most influence shifts in these girls' science identities were 1) the framing of the project work as "real science, 2) that it involved ecological field work, and 3) that it created a culture that valued data and scientific work. However, some of the girls only saw themselves as completing a repetitive task of data collection, and these evidenced no change in science identity. This indicates that science identity work might require more explicit attention by educators and scientists to girls' perceptions of science and scientific thinking, and discussion of how this is related to the project work and the roles they are playing within the citizen science project.
Scientists as Communicators: Inclusion of a Science/Education Liaison on Research Expeditions
NASA Astrophysics Data System (ADS)
Sautter, L. R.
2004-12-01
Communication of research and scientific results to an audience outside of one's field poses a challenge to many scientists. Many research scientists have a natural ability to address the challenge, while others may chose to seek assistance. Research cruise PIs maywish to consider including a Science/Education Liaison (SEL) on future grants. The SEL is a marine scientist whose job before, during and after the cruise is to work with the shipboard scientists to document the science conducted. The SEL's role is three-fold: (1) to communicate shipboard science activities near-real-time to the public via the web; (2) to develop a variety of web-based resources based on the scientific operations; and (3) to assist educators with the integration of these resources into classroom curricula. The first role involves at-sea writing and relaying from ship-to-shore (via email) a series of Daily Logs. NOAA Ocean Exploration (OE) has mastered the use of web-posted Daily Logs for their major expeditions (see their OceanExplorer website), introducing millions of users to deep sea exploration. Project Oceanica uses the OE daily log model to document research expeditions. In addition to writing daily logs and participating on OE expeditions, Oceanica's SEL also documents the cruise's scientific operations and preliminary findings using video and photos, so that web-based resources (photo galleries, video galleries, and PhotoDocumentaries) can be developed during and following the cruise, and posted on the expedition's home page within the Oceanica web site (see URL). We have created templates for constructing these science resources which allow the shipboard scientists to assist with web resource development. Bringing users to the site is achieved through email communications to a growing list of educators, scientists, and students, and through collaboration with the COSEE network. With a large research expedition-based inventory of web resources now available, Oceanica is training teachers and college faculty on the use and incorporation of these resources into middle school, high school and introductory college classrooms. Support for a SEL on shipboard expeditions serves to catalyze the dissemination of the scientific operations to a broad audience of users.
Statements by Scientists in the California Textbook Dispute
ERIC Educational Resources Information Center
American Biology Teacher, 1972
1972-01-01
Contains statements by five biologists and science educators to the California State Department of Education committee considering the adoption standards for science textbooks with regard to the clause requiring inclusion of creationist viewpoints of species origins. (AL)
Flying the Infrared Skies: An Authentic SOFIA Educator Experience
NASA Astrophysics Data System (ADS)
Manning, J. G.
2015-11-01
The NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA) flagship education effort is its Airborne Astronomy Ambassadors (AAA) program. The program flies teams of teachers on SOFIA research flights as part of an educator professional development effort enabling these teachers to experience first-hand the workings of the airborne observatory, to interact with scientists and technologists, to observe research in progress and how scientists use technology—all in support of national STEM goals. The presenter will share his own experience as an EPO escort on a recent SOFIA flight including two educator teams, providing a first-hand account of how an “authentic” science experience can exploit unique NASA assets to improve science teaching, inspire students, inform local communities, and contribute to the elevation of public science literacy.
Where the Wild Microbes Are: Education and Outreach on Sub-Seafloor Microbes
NASA Astrophysics Data System (ADS)
Cooper, S. K.; Kurtz, K.; Orcutt, B.; Strong, L.; Collins, J.; Feagan, A.
2014-12-01
Sub-seafloor microbiology has the power to spark the imaginations of children, students and the general public with its mysterious nature, cutting-edge research, and connections to the search for extraterrestrial life. These factors have been utilized to create a number of educational and outreach products to bring subsurface microbes to non-scientist audiences in creative and innovative ways. The Adopt a Microbe curriculum for middle school students provides hands-on activities and investigations for students to learn about microbes and the on-going research about them, and provides opportunities to connect with active expeditions. A new series of videos engages non-scientists with stories about research expeditions and the scientists themselves. A poster and associated activities explore the nature of science using a microbiologist and her research as examples. A new e-book for young children will engage them with age-appropriate text and illustrations. These projects are multidisciplinary, involve science and engineering practices, are available to all audiences and provide examples of high level and meaningful partnerships between scientists and educators and the kinds of products that can result. Subseafloor microbiology projects such as these, aimed at K-12 students and the general public, have the potential to entice the interest of the next generation of microbe scientists and increase general awareness of this important science.
Student Activities in Meteorology: SAM. Version 2.
ERIC Educational Resources Information Center
Meier, Beverly L.; Passarelli, Elisa
The task of providing hands-on as well as minds-on activities for students in science is one of concern to many scientists and educators. In an effort to inspire student interest in science and technology, scientists from the Forecast Systems Laboratory, a laboratory within the National Oceanic and Atmospheric Administration's (NOAA) Environmental…
ERIC Educational Resources Information Center
Inverness Research, 2016
2016-01-01
In facilities throughout the United States and abroad, communities of scientists share infrastructure, instrumentation, and equipment to conduct scientific research. In these large facilities--laboratories, accelerators, telescope arrays, and research vessels--scientists are researching key questions that have the potential to make a significant…
College student perceptions of science teachers and the effect on science teaching as a career path
NASA Astrophysics Data System (ADS)
Cost, Michael George
2000-10-01
Past research documented that student perceptions of scientists constituted a stereotypical image that had a negative effect on the students' attitudes towards science and resulted in low numbers of students studying to become scientists and engineers in college. The present study paralleled the research on student perceptions of scientists to investigate to what extent student perceptions of science teachers affect their willingness to consider science teaching as a career. This was accomplished by surveying 91 college students and 25 science teachers at the beginning, middle, and end of the collegiate career path of becoming a science teacher. Each survey contained quantitative data utilizing seven-point semantic differential scales and written open response questions. In-depth interviews with two members of each level were conducted to supplement the survey data. The study found that college students begin college with a positive perception of teaching as a career and highly rank teachers, especially science teachers, as having a positive influence on their career path. The qualities of job enjoyment, job stability, and helping others that are characteristic of teaching were also found to be of high importance. Perceptions of the personal, social, professional, and career qualities of a science teacher were found to differ from a scientist. While both science teachers and scientists were found to be responsible, persistent, and productive, science teachers were perceived as being a distinct career possessing qualities that make them more personable, sociable, and wise than scientists. Some gender differences were detected but there was no evidence of gender bias affecting students choosing a career path to science teaching. Science teachers were perceived to be very supportive of females pursuing scientific career paths. The study also found evidence that some introductory level college students steer away from science teaching because of low salary, the lack of promotion, and the efforts of influential people including science teachers. The study calls for departments of science education to take a more active role in the recruitment of new science teachers and the improvement of undergraduate science education.
Web site lets solar scientists inform and inspire students
NASA Astrophysics Data System (ADS)
Hauck, Karin
2012-07-01
Where on the Web can a middle school girl ask a female solar scientist about solar storms, the course and behavior of charged solar particles, and the origin of the Sun's dynamo—and also find out what the scientist was like as a child, whether the scientist has tattoos or enjoys snowboarding, what she likes and dislikes about her career, and how she balances her energy for work and family life? These kinds of exchanges happen at Solar Week (http://www.solarweek.org; see Figure 1). Established in 2000, Solar Week is an online resource for middle and lower high school students about the science of the Sun, sponsored by the Center for Science Education at the Space Sciences Laboratory (CSE@SSL) at the University of California, Berkeley (UC Berkeley). The Web site's goals are to educate students about the Sun and solar physics and to encourage future careers in science—especially for girls. One way is by giving solar scientists the chance to be relatable role models, to answer students' questions, and to share their experiences in an online forum.
Sitting with the scientists: a collaborative approach to STEM content development
NASA Astrophysics Data System (ADS)
Mattson, Barbara
2018-01-01
For over two decades, the Goddard Astrophysics Education Team has been an integrated part of NASA Goddard’s Astrophysics Science Division. As part of NASA’s largest astrophysics organization, our team is in a unique position to collaborate with the division’s scientists, engineers, and technical personnel - our subject matter experts (SMEs) - in a variety of capacities. We often seek input from our SMEs to help implement our education programs - to ensure our programs’ scientific accuracy, to help us employ cutting-edge topics, and to promote authentic science processes. At the same time, we act as education experts for our SMEs to help them implement their ideas. We see this as a true partnership, with many opportunities for SME participation. Our current STEM Activation programs, Afterschool Universe and NASA Family Science Night, were created with strong involvement from division scientists, and our latest sessions on galaxies were developed in collaboration with an active researcher. In addition to our own programming, we have been tasked with providing NASA astrophysics content and expertise to the Goddard Office of Education, the Heliophysics Education Consortium (and their cross-division efforts), and the NASA Science Mission Directorate STEM Activation Community. This talk will provide an overview of our team’s current efforts and the ways in which we partner with our division’s SMEs.
NASA Astrophysics Data System (ADS)
O'Connell, E. A.
2016-12-01
Telling stories is a cliché for best practice in science videos. It's upheld as a method to capture audience attention in many fields. Findings from neurobiology research show character-driven stories cause the release of the neurochemical oxytocin in the brain. Oxytocin motivates cooperation with others and enhances a sense of empathy, in particular the ability to experience others' emotions. Developing character tension- as in our video design showcasing scientists along with their work- holds the viewers' attention, promotes recall of story, and has the potential to clearly broadcast the feelings and behaviors of the scientists. The brain chemical change should help answer the questions: Why should a viewer care about this science? How does it improve the world, or our lives? Is just a story-driven video the solution to science outreach? Answer: Not in our multi-media world. Frontier Scientists (FS) discovered in its three year National Science Foundation project titled 'Science in Alaska: using Multimedia to Support Science Education': the storied video is only part of the effort. Although FS created from scratch and drove a multimedia national campaign throughout the project, major reach was not achieved. Despite FS' dedicated web site, YouTube channel, weekly blog, monthly press release, Facebook and G+ pages, Twitter activity, contact with scientists' institutions, and TV broadcast, monthly activity on the web site seemed to plateau at about 3000 visitors to the FS website per month. Several factors hampered the effort: Inadequate funding for social media limited the ability of FS to get the word to untapped markets: those whose interest might be sparked by ad campaigns but who do not actively explore unfamiliar agencies' science education content. However, when institutions took advantage of promoting their scientists through the FS videos we saw an uptick in video views and the participating scientists were often contacted for additional stories or were invited to participate in more visible videos (for example, a National Geographic show). Our suggestion for future science video use is to coordinate media with an institution, an already established news network, an entity with constant traffic flow like a museum, or to move into the academic world to supplement science curriculum with real world field science.
Using partnerships with scientists to enhance teacher capacity to address the NGSS
NASA Astrophysics Data System (ADS)
Pavelsky, T.; Haine, D. B.; Drostin, M.
2013-12-01
Increasingly, scientists are seeking outreach experts to assist with the education and outreach components of their research grants. These experts have the skills and expertise to assist with translating scientific research into lessons and activities that are aligned to the Next Generation Science Standards (NGSS) as well as state standards, are STEM-focused and that address the realities of the K-12 science classroom. Since 2007, the Institute for the Environment (IE) at the University of North Carolina at Chapel Hill has been conducting teacher professional development and high school student science enrichment programs to promote climate literacy. Partnering with scientists to deepen content knowledge and promote engagement with technology and real data has been a successful strategy for cultivating increased climate literacy among teachers and students. In this session, we will share strategies for effectively engaging scientists in K-12 educational activities by providing specific examples of the various ways in which scientists can be integrated into programming and their research translated into relevant classroom activities. Engaging scientists and translating their research into classroom activities is an approach that becomes even more relevant with the advent of the NGSS. The NGSS's Disciplinary Core Ideas (DCIs) that encompass climate literacy can be addressed by partnering with scientists to provide teachers with current content knowledge and technological tools needed to promote integration of relevant science and engineering practices and cross-cutting themes. Here we highlight a successful partnership in which IE science educators collaborated with with a faculty member to develop a lesson for North Carolina teachers introducing them to new research on satellite remote sensing of the water cycle, while also promoting student engagement with local data. The resulting lesson was featured during a two-day, IE-led teacher workshop for 21 North Carolina high school teachers in July 2013 titled, 'Observing regional and global water resources: Using remote sensing and field data to better understand the hydrologic cycle.'
ERIC Educational Resources Information Center
Willis, Jerry W.
2008-01-01
"Qualitative Research Methods in Education and Educational Technology" was written for students and scholars interested in exploring the many qualitative methods developed over the last 50 years in the social sciences. The book does not stop, however, at the boundaries of the social sciences. Social scientists now consume and use research methods…
Advancing Science Literacy Through the Climate Change National Forum
NASA Astrophysics Data System (ADS)
Nielsen-Gammon, J. W.; Quirke, M.; Lefer, B. L.; Hester, T.
2014-12-01
The Climate Change National Forum (http://climatechangenationalforum.org) was established almost a year ago to provide a publicly visible platform for discussion of scientific issues related to climate change and, at a later date, policy options motivated by climate change science. The site is also designed to promote public literacy in the culture and conduct of science by incorporating dozens of active scientists in a broad range of climate science and related fields and encouraging dialogue among those scientists. The forum provides a rare window into scientific debate, allowing non-scientists to see how scientists evaluate the work of others, construct meaning out of various bits of evidence, formulate ideas, challenge their colleagues, and (on occasion) develop a consensus. As such, the site is intended to have educational value well beyond its climate science focus.
Science, Education, and Antebellum Reform: The Case of Alexander Dallas Bache.
ERIC Educational Resources Information Center
Slotten, Hugh R.
1991-01-01
Suggest that science and formal education became the primary civilizing forces in the decades preceding the Civil War. Focuses on the work of scientist and educational reformer Alexander Dallas Bache. Concludes that Bache's efforts to promote unified public schools, scientific and technical education, and moral training inspired later Progressive…
ERIC Educational Resources Information Center
Dickman, Anneliese; Schwabe, Amy; Schmidt, Jeff; Henken, Rob
2009-01-01
Last December, the Science, Technology, Engineering, and Mathematics (STEM) Education Coalition--a national organization of more than 600 groups representing knowledge workers, educators, scientists, engineers, and technicians--wrote to President-elect Obama urging him to "not lose sight of the critical role that STEM education plays in…
NASA Astrophysics Data System (ADS)
Pascoa, Maria Beatriz Amorim
Because the production of scientific and technological innovations has been at the center of debates for economic growth, scientists are recognized as important actors in the current global market. In this study, I will examine the undergraduate education of future scientists by focusing on students working in research projects of faculty members. This research activity has been promoted by American and Brazilian public agencies as an attempt to attract more college students to scientific careers as well as to improve their future performance in science. Evaluations of these programs have focused on important quantitative indicators focusing mainly on the amount of students that later choose to pursue scientific careers. However, these studies fail to address important educational aspects of undergraduates' experience. In this research, I explore the educational processes taking place as students are introduced to the making of science in order to understand how and what they are learning. Three bodies of literature illuminates the formulation and the analysis of the research questions: (1) theories of globalization situate the education of scientists within the dynamics of a broader social, economic, cultural, and historical framework; (2) the critical pedagogy of Paulo Freire is the basis for the understanding of the pedagogical processes shaping undergraduate students' experiences within the research site; (3) Critical and Cultural Studies of Science and Technology illuminate the analysis of the complex interactions and practices constructed within the laboratory. In order to understand the educational processes shaping the experiences of undergraduate students engaged in research activities, I conducted a qualitative investigation based on participant-observation and in-depth interviews in an American and a Brazilian laboratories. The two sites constituted insightful case studies that illuminated the understanding of inquires about the training of students in science. In addition, the study of two countries enriched the research inquiry, adding to the findings reflections on the ways differences in national contexts affects scientific training and scientific practices. Mainly, this qualitative research of students in laboratories offers some concrete recommendations and illuminating reflections for science educators, science policy makers, and for those working in the understanding of science epistemologies.
Science Sublime: The Philosophy of the Sublime, Dewey's Aesthetics, and Science Education
ERIC Educational Resources Information Center
Cavanaugh, Shane
2014-01-01
Feelings of awe, wonder, and appreciation have been largely ignored in the working lives of scientists and, in turn, science education has not accurately portrayed science to students. In an effort to bring the affective qualities of science into the classroom, this work draws on the writings of the sublime by Burke, Kant, Emerson, and Wordsworth…
Challenges of Recruiting Candidates with Strong Academic Credentials
ERIC Educational Resources Information Center
Denton, Jon; Davis, Trina
2007-01-01
A major challenge to improving science education lies in the shortage of qualified science teachers. A potential solution to this challenge consists of directing the energy and talent of graduate students and postdoctoral scientists to reinvigorate science education in schools. This requires creating new, more accessible pathways for science…
NASA Astrophysics Data System (ADS)
Hayden, T.
2011-12-01
Direct, effective communication with the public is an increasingly important part of the earth scientist's professional toolkit. Earth sciences issues, including climate change, ocean acidification, energy extraction and use and geological hazard assessment, are increasingly relevant to public debates, yet recent, dramatic changes in the media business have led to decreased coverage of science. Earth scientists must increasingly shoulder the burden of informing the broad public themselves, and in collaboration with professional communicators. Fortunately, the tools and venues needed to do so have never been more accessible. This presentation will describe a new model of science communication education, based on bringing together collaborating teams of students with diverse backgrounds in the sciences, engineering and journalism. The project-based approach uses group workshopping and multiple rounds of peer- and instructor-guided revision to leverage diverse expertise and facilitate both primary knowledge gain and comprehensive, effective and meaningful training and experience in audience-focused outreach, media interaction, and journalism. Courses build from fundamental communications theory to the end goal of publication in professional outlets. Course goals are regularly enhanced and reinforced with internships and individual study projects. Using examples from a series of courses and projects developed at Stanford University over the past three years, I will describe the theory and strategies underlying this new approach to science communication education, what it has to offer for scientists and journalists alike, and key points to consider for effective implementation. I will also show how combining the knowledge, expertise and experience of STEM and journalism students can inform a new model of science journalism, based on exploring and communicating the process of science, not just the results, that can avoid many of the common pitfalls of science journalism. I will present a preliminary assessment of outcomes from three courses at Stanford - environmental communications, environmental journalism and multimedia storytelling for earth scientists - including publications, retrospective post assessment of student abilities and attitudes, and ongoing application of course goals in professional and/or educational settings.
(The Ethics of) Teaching Science and Ethics: A Collaborative Proposal.
Kabasenche, William P
2014-12-01
I offer a normative argument for a collaborative approach to teaching ethical issues in the sciences. Teaching science ethics requires expertise in at least two knowledge domains-the relevant science(s) and philosophical ethics. Accomplishing the aims of ethics education, while ensuring that science ethics discussions remain grounded in the best empirical science, can generally best be done through collaboration between a scientist and an ethicist. Ethics as a discipline is in danger of being misrepresented or distorted if presented by someone who lacks appropriate disciplinary training and experience. While there are exceptions, I take philosophy to be the most appropriate disciplinary domain in which to gain training in ethics teaching. Science students, who must be prepared to engage with many science ethics issues, are poorly served if their education includes a misrepresentation of ethics or specific issues. Students are less well prepared to engage specific issues in science ethics if they lack an appreciation of the resources the discipline of ethics provides. My collaborative proposal looks at a variety of ways scientists and ethicists might collaborate in the classroom to foster good science ethics education.
The Social Responsibilities of Scientists and Science.
ERIC Educational Resources Information Center
Pauling, Linus
2000-01-01
Points out the important role of scientists in society as educators. Explains problems caused by not understanding the theory of evolution and discusses possible solutions. First published in 1966. (YDS)
Mentorship: The Education-Research Continuum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Correll, D
2008-05-29
Mentoring of science students stems naturally from the intertwined link between science education and science research. In fact, the mentoring relationship between a student and a scientist may be thought of analogically as a type of double helix forming the 'DNA' that defines the blueprint for the next generation of scientists. Although this analogy would not meet the rigorous tests commonly used for exploring the natural laws of the universe, the image depicted does capture how creating and sustaining the future science workforce benefits greatly from the continuum between education and research. The path science students pursue from their educationmore » careers to their research careers often involves training under an experienced and trusted advisor, i.e., a mentor. For many undergraduate science students, a summer research internship at a DOE National Laboratory is one of the many steps they will take in their Education-Research Continuum. Scientists who choose to be mentors share a commitment for both science education and science research. This commitment is especially evident within the research staff found throughout the Department of Energy's National Laboratories. Research-based internship opportunities within science, technology, engineering and mathematics (STEM) exist at most, if not all, of the Laboratories. Such opportunities for students are helping to create the next generation of highly trained professionals devoted to the task of keeping America at the forefront of scientific innovation. 'The Journal of Undergraduate Research' (JUR) provides undergraduate interns the opportunity to publish their scientific innovation and to share their passion for education and research with fellow students and scientists. The theme of this issue of the JUR (Vol. 8, 2008) is 'Science for All'. Almost 20 years have passed since the American Association for the Advancement of Science published its 1989 report, 'Science for All Americans-Project 2061'. The first recommendation for learning science stated: 'The Nature of Science includes the scientific world view, scientific methods of inquiry, and the nature of the scientific enterprise'. All three elements of the 'Nature of Science' are pivotal aspects of a research internship under the mentorship of an experienced and trusted advisor. In addition to internships for undergraduates, an important ingredient in realizing 'Science for All' is collaboration involving educators and scientists as they engage science students and the public at large to promote science literacy and to develop the next generation of STEM professionals. The DOE National Laboratories, individually and collectively, form an ideal nexus for nurturing these complementary collaborations. My 'Science for All' experiences at Lawrence Livermore National Laboratory (LLNL) over the last 30 years have spanned pre-college, college, and postdoctoral activities, including mentoring of undergraduate students. Early in my mentoring career, I became aware that undergraduates in particular needed help in answering the question 'what path (or paths) will lead to a challenging and rewarding STEM career'? For many, a successful path included a research internship that would result in expanded skills and training in addition to those received from their academic education. These internship skills were helpful whether the student's next Education-Research Continuum decision was graduate school or STEM employment. My experience at LLNL mirrors that of my colleagues at other DOE National Laboratories--internships with a dedicated mentor provide undergraduates with a unique set of skills that can underpin their future options and serve to improve the number, quality, and successful outcomes of students who enter STEM careers. 'Science for All' can also be found in the goals of 'The America COMPETES Act', which call for renewed efforts to increase investments in scientific research and development, strengthen education, and encourage entrepreneurship. Mentoring is an important ingredient in reaching these goals because the success of future endeavors will require a diverse workforce of scientists, technicians, engineers, mathematicians, and STEM educators. A small, but not insignificant, metric of how well the nation is doing to create the next STEM generation can be measured by the abstracts and articles published in the 'Journal of Undergraduate Research'. At the 'heart' of the JUR is the professional commitment of the DOE National Laboratory workforce to mentor the next STEM generation and to realize 'Science for All'.« less
Schinske, Jeffrey N; Perkins, Heather; Snyder, Amanda; Wyer, Mary
2016-01-01
Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments ("Scientist Spotlights") that featured counterstereotypical examples of scientists in an introductory biology class at a diverse community college. Scientist Spotlights additionally served as tools for content coverage, as scientists were selected to match topics covered each week. We analyzed beginning- and end-of-course essays completed by students during each of five courses with Scientist Spotlights and two courses with equivalent homework assignments that lacked connections to the stories of diverse scientists. Students completing Scientist Spotlights shifted toward counterstereotypical descriptions of scientists and conveyed an enhanced ability to personally relate to scientists following the intervention. Longitudinal data suggested these shifts were maintained 6 months after the completion of the course. Analyses further uncovered correlations between these shifts, interest in science, and course grades. As Scientist Spotlights require very little class time and complement existing curricula, they represent a promising tool for enhancing science identity, shifting stereotypes, and connecting content to issues of equity and diversity in a broad range of STEM classrooms. © 2016 J. N. Schinske et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Responsive, Flexible and Scalable Broader Impacts (Invited)
NASA Astrophysics Data System (ADS)
Decharon, A.; Companion, C.; Steinman, M.
2010-12-01
In many educator professional development workshops, scientists present content in a slideshow-type format and field questions afterwards. Drawbacks of this approach include: inability to begin the lecture with content that is responsive to audience needs; lack of flexible access to specific material within the linear presentation; and “Q&A” sessions are not easily scalable to broader audiences. Often this type of traditional interaction provides little direct benefit to the scientists. The Centers for Ocean Sciences Education Excellence - Ocean Systems (COSEE-OS) applies the technique of concept mapping with demonstrated effectiveness in helping scientists and educators “get on the same page” (deCharon et al., 2009). A key aspect is scientist professional development geared towards improving face-to-face and online communication with non-scientists. COSEE-OS promotes scientist-educator collaboration, tests the application of scientist-educator maps in new contexts through webinars, and is piloting the expansion of maps as long-lived resources for the broader community. Collaboration - COSEE-OS has developed and tested a workshop model bringing scientists and educators together in a peer-oriented process, often clarifying common misconceptions. Scientist-educator teams develop online concept maps that are hyperlinked to “assets” (i.e., images, videos, news) and are responsive to the needs of non-scientist audiences. In workshop evaluations, 91% of educators said that the process of concept mapping helped them think through science topics and 89% said that concept mapping helped build a bridge of communication with scientists (n=53). Application - After developing a concept map, with COSEE-OS staff assistance, scientists are invited to give webinar presentations that include live “Q&A” sessions. The webinars extend the reach of scientist-created concept maps to new contexts, both geographically and topically (e.g., oil spill), with a relatively small investment of time. Initiated in summer 2010, the webinars are interactive and highly flexible: people can participate from their homes anywhere and can interact according to their comfort levels (i.e., submitting questions in “chat boxes” rather than orally). Expansion - To expand scientists’ research beyond educators attending a workshop or webinar, COSEE-OS uses a blog as an additional mode of communication. Topically focused by concept maps, blogs serve as a forum for scalable content. The varied types of formatting allow scientists to create long-lived resources that remain attributed to them while supporting sustained educator engagement. Blogs are another point of contact and allow educators further asynchronous access to scientists. Based on COSEE-OS evaluations, interacting on a blog was found to be educators’ preferred method of following up with scientists. Sustained engagement of scientists or educators requires a specific return on investment. Workshops and web tools can be used together to maximize scientist impact with a relatively small investment of time. As one educator stated, “It really helps my students’ interest when we discuss concepts and I tell them my knowledge comes directly from a scientist!” [A. deCharon et al. (2009), Online tools help get scientists and educators on the same page, Eos Transactions, American Geophysical Union, 90(34), 289-290.
Annual program analysis of the NASA Space Life Sciences Research and Education Support Program
NASA Technical Reports Server (NTRS)
1994-01-01
The basic objectives of this contract are to stimulate, encourage, and assist research and education in NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad are recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system. To fulfill the contract objectives, a cadre of staff and visiting scientists, consultants, experts, and subcontractors has been assembled into a unique organization dedicated to the space life sciences. This organization, USRA's Division of Space Life Sciences, provides an academic atmosphere, provides an organizational focal point for science and educational activities, and serves as a forum for the participation of eminent scientists in the biomedical programs of NASA. The purpose of this report is to demonstrate adherence to the requirement of Contract NAS9-18440 for a written review and analysis of the productivity and success of the program. In addition, this report makes recommendations for future activities and conditions to further enhance the objectives of the program and provides a self-assessment of the cost performance of the contract.
Teaching Research Ethics Better: Focus on Excellent Science, Not Bad Scientists
Hunter, Lawrence
2013-01-01
Abstract A recent report of the United States’ Presidential Commission for the Study of Bioethical Issues highlights how important it is for the research community to enjoy the “earned confidence” of the public and how creating a “culture of responsibility” can contribute to that confidence. It identifies a major role for “creative, flexible, and innovative” ethics education in creating such a culture. Other recent governmental reports from various nations similarly call for a renewed emphasis on ethics education in the sciences. We discuss why some common approaches to ethics education in the graduate sciences fail to meet the goals envisioned in the reports and we describe an approach, animated by primary attention on excellent science as opposed to bad scientists, that we have employed in our ethics teaching that we think is better suited for inspiring and sustaining responsible, trustworthy science. PMID:23751025
Teaching research ethics better: focus on excellent science, not bad scientists.
Yarborough, Mark; Hunter, Lawrence
2013-06-01
A recent report of the United States' Presidential Commission for the Study of Bioethical Issues highlights how important it is for the research community to enjoy the "earned confidence" of the public and how creating a "culture of responsibility" can contribute to that confidence. It identifies a major role for "creative, flexible, and innovative" ethics education in creating such a culture. Other recent governmental reports from various nations similarly call for a renewed emphasis on ethics education in the sciences. We discuss why some common approaches to ethics education in the graduate sciences fail to meet the goals envisioned in the reports and we describe an approach, animated by primary attention on excellent science as opposed to bad scientists, that we have employed in our ethics teaching that we think is better suited for inspiring and sustaining responsible, trustworthy science. © 2013 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
United Nations Educational, Scientific, and Cultural Organization, Paris (France). Div. of Marine Sciences.
A group of marine science education educators from several countries were requested to provide guidelines for the education and training of marine scientists and formulate recommended curricula in the following disciplines: marine biology (including fisheries biology), physical oceanography, and marine geology. Included in the report are: (1)…
Meeting the Technology Portion of the Science and Technology Goal of Quality Education.
ERIC Educational Resources Information Center
Pennsylvania State Dept. of Education, Harrisburg. Bureau of Curriculum Services.
One of the goals of quality education in Pennsylvania is to help every student acquire knowledge, understanding, and appreciation of science and technology. This publication, which focuses on the technology component of this goal, is an initial effort by a team of scientists and science educators to define technology as it should be presented in…
NASA Astrophysics Data System (ADS)
Duggan-Haas, Don Andrew
2000-10-01
Great problems exist in science teaching from kindergarten through the college level (NRC, 1996; NSF, 1996). The problem may be attributed to the failure of teachers to integrate their own understanding of science content with appropriate pedagogy (Shulman, 1986, 1987). All teachers were trained by college faculty and therefore some of the blame for these problems rests on those faculty. This dissertation presents three models for describing secondary science teacher preparation. Two Programs, Two Cultures adapts C. P. Snow's classic work (1959) to describe the work of a science teacher candidate as that of an individual who navigates between two discrete programs: one in college science and the second in teacher education. The second model, Scientists Are from Mars, Educators Are from Venus adapts the popular work of John Gray to describe the system of science teacher education as hobbled by the dysfunctional relationships among the major players and describes the teacher as progeny from this relationship. The third model, The Ecosystem of Science Teacher Preparation reveals some of the deeper complexities of science teacher education and posits that the traditional college science approach treats students as a monoculture when great diversity in fact exists. The three models are described in the context of a large Midwestern university's teacher education program as that program is construed for future biology teachers. Four undergraduate courses typically taken by future biology teachers were observed and described: an introductory biology course; an introductory teacher education course; an upper division course in biochemistry and a senior level science teaching methods course. Seven second semester seniors who were biological Science majors were interviewed. All seven students had taken all of the courses observed. An organization of scientists and educators working together to improve science teaching from kindergarten through graduate school is also described in a case study. The three models described in the dissertation build upon one another and the third model, that of the ecosystem is recognized as both the most accurate portrayal and most complex and therefore most difficult to apply. The system of science teacher preparation is in many ways a system under stress and that stress will result in system evolution. Through better understanding Complex Adaptive Systems and applying that understanding to the system of science teacher education, individuals may be able to influence the nature of system evolution.
NASA SMD Science Education and Public Outreach Forums: A Five-Year Retrospective
NASA Astrophysics Data System (ADS)
Smith, Denise A.; Peticolas, Laura; Schwerin, Theresa; Shipp, Stephanie
2014-06-01
NASA’s Science Mission Directorate (SMD) created four competitively awarded Science Education and Public Outreach Forums (Astrophysics, Heliophysics, Planetary Science, Earth Science) in 2009. The objective is to enhance the overall coherence of SMD education and public outreach (E/PO), leading to more effective, efficient, and sustainable use of SMD science discoveries and learning experiences. We summarize progress and next steps towards achieving this goal with examples drawn from Astrophysics and cross-Forum efforts. Over the past five years, the Forums have enabled leaders of individual SMD mission and grant-funded E/PO programs to work together to place individual science discoveries and learning resources into context for audiences, conveying the big picture of scientific discovery based on audience needs. Forum-organized collaborations and partnerships extend the impact of individual programs to new audiences and provide resources and opportunities for educators to engage their audiences in NASA science. Similarly, Forum resources support scientists and faculty in utilizing SMD E/PO resources. Through Forum activities, mission E/PO teams and grantees have worked together to define common goals and provide unified professional development for educators (NASA’s Multiwavelength Universe); build partnerships with libraries to engage underserved/underrepresented audiences (NASA Science4Girls and Their Families); strengthen use of best practices; provide thematic, audience-based entry points to SMD learning experiences; support scientists in participating in E/PO; and, convey the impact of the SMD E/PO program. The Forums have created a single online digital library (NASA Wavelength, http://nasawavelength.org) that hosts all peer-reviewed SMD-funded education materials and worked with the SMD E/PO community to compile E/PO program metrics (http://nasamissionepometrics.org/). External evaluation shows the Forums are meeting their objectives. Specific examples of Forum-organized resources for use by scientists, faculty, and informal educators are discussed in related presentations (Meinke et al.; Manning et al.).
NASA Astrophysics Data System (ADS)
Tankersley, R. A.; Windsor, J. G.; Briceno, K. V.
2016-02-01
Recognizing the need for scientists to engage and communicate more effectively with the public, the Florida Center for Ocean Sciences Education Excellence (COSEE Florida) created an opportunity to connect the two through film. The Ocean 180 Video Challenge taps into the competitive spirit of scientists and encourages them to submit short, 3-minute video abstracts summarizing the important findings of recent peer-reviewed papers and highlighting the relevance, meaning, and implications of the research to persons outside their discipline. Although the videos are initially screened and evaluated by a team of science and communication experts, the winners (from a field of ten finalists) are selected by middle school students in classrooms all over the world. Since its inception in 2013, Ocean 180 has grown in popularity, with more than 38,000 middle school students from 1,637 classrooms in 21 countries participating as judges. Results of a Draw-a-Scientist Test administered during the 2015 competition indicate Ocean 180 is an successful intervention that has a positive impact on students' views of science, including their perception and attitudes toward scientists and science careers. Thus, our presentation will discuss how video competitions can serve as effective outreach strategies for encouraging scientists to share new discoveries and their enthusiasm for science with K-12 students. We will also highlight the outcomes and lessons-learned from the 2014 and 2015 competitions, including (1) strategies for recruiting teachers and students to participate as judges, (2) approaches used by educators to align the content of videos with state and national science standards, and (3) ways contest videos can be integrated into science training and professional development programs, including workshops focusing on effective video storytelling techniques.
Charlton, Bruce G
2009-03-01
why are so many leading modern scientists so dull and lacking in scientific ambition? because the science selection process ruthlessly weeds-out interesting and imaginative people. At each level in education, training and career progression there is a tendency to exclude smart and creative people by preferring Conscientious and Agreeable people. The progressive lengthening of scientific training and the reduced independence of career scientists have tended to deter vocational 'revolutionary' scientists in favour of industrious and socially adept individuals better suited to incremental 'normal' science. High general intelligence (IQ) is required for revolutionary science. But educational attainment depends on a combination of intelligence and the personality trait of Conscientiousness; and these attributes do not correlate closely. Therefore elite scientific institutions seeking potential revolutionary scientists need to use IQ tests as well as examination results to pick-out high IQ 'under-achievers'. As well as high IQ, revolutionary science requires high creativity. Creativity is probably associated with moderately high levels of Eysenck's personality trait of 'Psychoticism'. Psychoticism combines qualities such as selfishness, independence from group norms, impulsivity and sensation-seeking; with a style of cognition that involves fluent, associative and rapid production of many ideas. But modern science selects for high Conscientiousness and high Agreeableness; therefore it enforces low Psychoticism and low creativity. Yet my counter-proposal to select elite revolutionary scientists on the basis of high IQ and moderately high Psychoticism may sound like a recipe for disaster, since resembles a formula for choosing gifted charlatans and confidence tricksters. A further vital ingredient is therefore necessary: devotion to the transcendental value of Truth. Elite revolutionary science should therefore be a place that welcomes brilliant, impulsive, inspired, antisocial oddballs - so long as they are also dedicated truth-seekers.
Inquiry Coaching: Scientists & Science Educators Energizing the Next Generation
NASA Astrophysics Data System (ADS)
Shope, R. E.; Alcantara Valverde, L.
2007-05-01
A recent National Academy of Sciences report recommends that science educators focus strategically on teaching the practice of science. To accomplish this, we have devised and implemented the Science Performance Laboratory, a collaborative research, education, and workforce model that brings scientists and science educators together to conduct scientific inquiry. In this session, we demonstrate how to form active inquiry teams around Arctica Science Research content areas related to the International Polar Year. We use the term "Arctica Science Research" to refer to the entire scope of exploration and discovery relating to: polar science and its global connections; Arctic and Antarctic research and climate sciences; ice and cryospheric studies on Earth; polar regions of the Moon, Mars, and Mercury; icy worlds throughout the Solar System, such as Europa, Enceladus, Titan, Pluto and the Comets; cryovolcanism; ice in interstellar space, and beyond. We apply the notion of teaching the practice science by enacting three effective strategies: 1) The Inquiry Wheel Game, in which we develop an expanded understanding of what has been traditionally taught as "the scientific method"; 2) Acting Out the Science Story, in which we develop a physicalized expression of our conceptual understanding; and 3) Selecting Success Criteria for Inquiry Coaching, in which we reframe how we evaluate science learning as we teach the practice of science.
NQRY Coaching: Scientists and Science Educators Energizing the Next Generation
NASA Astrophysics Data System (ADS)
Shope, R. E.
2007-12-01
A recent National Academy of Science report recommends that science educators focus strategically on teaching the practice of science. To accomplish this, we have devised and implemented the Science Performance Collaboratory, a collaborative research, education, and workforce model that brings scientists and science educators together to conduct scientific inquiry. In this session, we demonstrate how to form active inquiry teams around Arctica Science Research content areas related to the International Polar Year. We use the term Arctica Science Research to refer to the entire scope of exploration and discovery relating to: polar science and its global connections; Arctic and Antarctic research and climate sciences; ice and cryospheric studies on Earth; polar regions of the Moon, Mars, and Mercury; icy worlds throughout the Solar System, such as Europa, Enceladus, Titan, Pluto and the Comets; cryovolvanism; ice in interstellar space, and beyond. We apply the notion of teaching the practice science by enacting three effective strategies: 1) The Inquiry Wheel Game, in which we develop an expanded understanding of what has been traditionally taught as "the scientific method"; 2) Acting Out the Science Story, in which we develop a physicalized expression of our conceptual understanding; and 3) Selecting Success Criteria for Inquiry Coaching, in which we reframe how we evaluate science learning as we teach the practice of science.
An analysis of gender mainstreaming and education in atmospheric sciences in Ukraine
NASA Astrophysics Data System (ADS)
Godunova, V.
2009-04-01
As a participant in the international science community, Ukraine is constantly updating its understanding of worldwide trends in science and education. There is a growing demand to establish new starting points for young generations in order that they could better understand and improve our changing world. This means a renovation of school curricula. School disciplines must provide people with much more in depth information on global climate changes, their causes and effects. Scientists' involvement in the educational process could become an important factor in enhancement of educational attainments in environmental sciences. A professional scientist who is able to bring difficult research topics to the middle school students' level can be a valuable source of information. A radical political and economic transformation in the early 1990s created in Ukraine new opportunities for women and increased their interest in graduate and post-graduate studies in the sciences. The stable growth of female students has been observed. For instance, girls make up more than 70 % of university meteorology students, a percentage that is held for the last decade. In high schools and universities women make up 50 % of teachers and lectors in meteorology. Moreover, the number of female PhD scientists has been rising rather than that of male scientists. Nevertheless, the fraction of women in leading posts is considerable lower than it should be. This phenomenon is the outcome of a process that is influenced by many forces. In this paper a few suggestions and some findings from a statistics review will be presented.
Educating Students on the Need to Protect Authentic Science in Public Policy
NASA Astrophysics Data System (ADS)
Grifo, F.; McCarthy, M.; Langlais, C.
2008-12-01
Scientists have an important responsibility to be sure their students are aware of the ways in which their research results can be politicized and misused. Political interference in science has penetrated deeply into the culture and practices of federal agencies. The persistent and energetic engagement of scientists is critical to ensuring the government meets its obligation to serve the public interest. To foster thoughtful discussions about the proper role of science in federal policy making, the Union of Concerned Scientists (UCS) has created a Scientific Integrity Curriculum Guide to help graduate, undergraduate and advanced high school instructors teach this complex subject. The guide is a fully developed lesson plan that teachers in both scientific and non-scientific disciplines can tailor to suit their needs. It provides lecture slides, worksheets, homework assignments, essay suggestions, and links to other resources. Educating the next generation of scientists is essential because significant and long-lasting reforms require the support of a well- informed scientific community.
ERIC Educational Resources Information Center
Akerson, Valarie L.; Buzzelli, Cary A.; Eastwood, Jennifer L.
2012-01-01
This study explored preservice teachers' views of their own cultural values, the cultural values they believed scientists hold, and the relationships of these views to their conceptions of nature of science (NOS). Parallel assignments in a foundations of early childhood education and a science methods course required preservice teachers to explore…
NASA Astrophysics Data System (ADS)
McGillivary, P. A.; Fall, K. R.; Miller, M.; Higdon, R.; Andrews, M.; O'Donnell, K.
2008-12-01
As part of the 2007-2009 International Polar Year (IPY), an educational outreach developed by the Exploratorium science museum of San Francisco builds on prior high latitude programs to: 1) create public awareness of IPY research; 2) increase public understanding of the scientific process; and, 3) stimulate a new relationship between scientists and outreach. Funded by the National Science Foundation, a key "Ice Stories" innovation is to facilitate "scientist correspondents" reporting directly to the public. To achieve this, scientists were furnished multimedia equipment and training to produce material for middle school students to adults. Scientists submitted blogs of text, images, and video from the field which were edited, standardized for format, and uploaded by Exploratorium staff, who coordinated website content and management. Online links to educational partner institutions and programs from prior Exploratorium high latitude programs will extend "Ice Stories" site visits beyond the @250,000 unique in-house users/year to more than 28 million webpage users/year overall. We review relevant technical issues, the variety of scientist participation, and what worked best and recommendations for similar efforts in the future as a legacy for the IPY.
Personalized medical education: Reappraising clinician-scientist training.
DeLuca, Gabriele C; Ovseiko, Pavel V; Buchan, Alastair M
2016-01-13
Revitalizing the Oslerian ideal of the clinician-scientist-teacher may help in the training of the next generation of translational researchers. Copyright © 2016, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Dashoush, Nermeen
This dissertation reports on an ethnographic study to examine and detail emerging practices in a community of practice comprised of an elementary teacher and a scientist (microbiologist). The study was conducted in order to design a model for professional development. It also aimed to contribute to the limited research involving elementary educators and their work with scientists. Furthermore, extra attention was given to understanding how both the elementary teacher and the scientist benefitted from their participation in the community of practice created from working together in teaching and learning science as a form of professional development. This was in accordance with a community of practice framework, which details that a healthy community is one without a perception of hierarchy among members (Wenger, 1998). The elementary teacher and scientist as participants collaborated in the creation of a science unit for an afterschool program. A wide variety of data was collected, including: interviews, transcribed meetings, and online journals from both participants. The data was coded for reoccurring themes surrounding practices and shifts in perception about science teaching and learning that emerged from this community of practice as professional development. The findings have implications for practices that could be used as a foundational structure in future collaborations involving elementary teachers and scientists for elementary science professional development.
76 FR 43673 - Renewal of Department of Defense Federal Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-21
... environmental sciences, education, research management, international and security affairs, health physics, health sciences, or social sciences, with due regard given to the equitable representation of scientists...
Preparing Planetary Scientists to Engage Audiences
NASA Astrophysics Data System (ADS)
Shupla, C. B.; Shaner, A. J.; Hackler, A. S.
2017-12-01
While some planetary scientists have extensive experience sharing their science with audiences, many can benefit from guidance on giving presentations or conducting activities for students. The Lunar and Planetary Institute (LPI) provides resources and trainings to support planetary scientists in their communication efforts. Trainings have included sessions for students and early career scientists at conferences (providing opportunities for them to practice their delivery and receive feedback for their poster and oral presentations), as well as separate communication workshops on how to engage various audiences. LPI has similarly begun coaching planetary scientists to help them prepare their public presentations. LPI is also helping to connect different audiences and their requests for speakers to planetary scientists. Scientists have been key contributors in developing and conducting activities in LPI education and public events. LPI is currently working with scientists to identify and redesign short planetary science activities for scientists to use with different audiences. The activities will be tied to fundamental planetary science concepts, with basic materials and simple modifications to engage different ages and audience size and background. Input from the planetary science community on these efforts is welcome. Current results and resources, as well as future opportunities will be shared.
Kover, Paula X; Hogge, Emily S
2017-10-01
The official school regulator in England (OFSTED) recently reported that the delivery of science lessons has been significantly diminished in many primary schools. There is concern that the lack of good quality science in school can reduce the recruitment of young scientists, and the level of science literacy among the general public. We believe university scientists and undergraduate students can have a significant impact in the delivery of science in primary schools. However, a relatively small proportion of scientists engage with young children to improve curricular primary school science education. Here, we argue that long term engagement with primary schools can produce significant impact for the scientist's research, schools, and society. As an example, we describe our experience developing teaching materials for the topic of "Evolution and inheritance"; highlighting possible pitfalls and perceived benefits, in hope of encouraging and facilitating other scientists to engage with primary schools. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA’s Universe of Learning: Connecting Scientists, Educators, and Learners
NASA Astrophysics Data System (ADS)
Smith, Denise A.; Lestition, Kathleen; Squires, Gordon K.; Greene, W. M.; Biferno, Anya A.; Cominsky, Lynn R.; Goodman, Irene; Walker, Allyson; Universe of Learning Team
2017-01-01
NASA’s Universe of Learning (UoL) is one of 27 competitively awarded education programs selected by NASA’s Science Mission Directorate (SMD) in its newly restructured education effort. Through these 27 programs, SMD aims to infuse NASA science experts and content more effectively and efficiently into learning environments serving audiences of all ages. UoL is a unique partnership between the Space Telescope Science Institute, Chandra X-ray Center, IPAC at Caltech, Jet Propulsion Laboratory Exoplanet Exploration Program, and Sonoma State University that will connect the scientists, engineers, science, technology and adventure of NASA Astrophysics with audience needs, proven infrastructure, and a network of partners to advance SMD education objectives. External evaluation is provided through a partnership with Goodman Research Group and Cornerstone Evaluation Associates. The multi-institutional team is working to develop and deliver a unified, consolidated and externally evaluated suite of education products, programs, and professional development offerings that spans the full spectrum of NASA Astrophysics, including the Cosmic Origins, Physics of the Cosmos, and Exoplanet Exploration themes. Products and programs focus on out-of-school-time learning environments and include enabling educational use of Astrophysics mission data and offering participatory experiences; creating multimedia and immersive experiences; designing exhibits and community programs; and producing resources for special needs and underserved/underrepresented audiences. The UoL team also works with a network of partners to provide professional learning experiences for informal educators, pre-service educators, and undergraduate instructors. This presentation will provide an overview of the UoL team’s approach to partnering scientists and educators to engage learners in Astrophysics discoveries and data; progress to date; and pathways for science community involvement.
Scientists' and Teachers' Perspectives about Collaboration
ERIC Educational Resources Information Center
Munson, Bruce H.; Martz, Marti Ann; Shimek, Sarah
2013-01-01
The emphasis on science, technology, engineering, and mathematics (STEM) education is resulting in more opportunities for scientists and teachers to collaborate. The relationships can result in failed collaborations or success. We recently completed a 6-year regional project that used several approaches to develop scientist-teacher relationships.…
NASA Astrophysics Data System (ADS)
Smith, S. C.; Wegner, K.; Branch, B. D.; Miller, B.; Schulze, D. G.
2013-12-01
Many national and statewide programs throughout the K-12 science education environment teach students about science in a hands-on format, including programs such as Global Learning and Observations to Benefit the Environment (GLOBE), Project Learning Tree (PLT), Project Wild, Project Wet, and Hoosier River Watch. Partnering with one or more of these well-known programs can provide many benefits to both the scientists involved in disseminating research and the K-12 educators. Scientists potentially benefit by broader dissemination of their research by providing content enrichment for educators. Educators benefit by gaining understanding in content, becoming more confident in teaching the concept, and increasing their enthusiasm in teaching the concepts addressed. This presentation will discuss an innovative framework for professional development that was implemented at Purdue University, Indiana in July 2013. The professional development incorporated GLOBE protocols with iPad app modules and interactive content sessions from faculty and professionals. By collaborating with the GLOBE program and scientists from various content areas, the Department of Earth, Atmospheric, and Planetary Sciences at Purdue University successfully facilitated a content rich learning experience for educators. Such activity is promoted and supported by Purdue University Libraries where activities such as Purdue's GIS Day are efforts of making authentic learning sustainable in the State of Indiana and for national consideration. Using iPads to visualize soil transitions on a field trip. Testing Water quality in the field.
NASA Astrophysics Data System (ADS)
Becker, Tracy M.; Runyon, Cassandra; Cynthia, Hall; Britt, Daniel; Tracy Becker
2017-10-01
Through NASA’s Solar System Exploration Research Virtual Institute (SSERVI), the Center for Lunar and Asteroid Surface Science (CLASS) and the SSERVI Evolution and Environment of Exploration Destinations (SEEED) nodes have developed an interdisciplinary formal and informal hands-on curriculum to bring the excitement of space exploration directly to the students.With a focus on exploring asteroids, this 5-year effort has infused art with traditional STEM practices (creating STEAM) and provides teachers with learning materials to incorporate art, social studies, English language arts, and other courses into the lesson plans. The formal curricula being developed follows Next Generation Standards and incorporates effective and engaging pedagogical strategies, such as problem-based learning (PBL), design thinking, and document based questions, using authentic data and articles, some of which are produced by the SSERVI scientists. From the materials developed for the formal education component, we have built up a collection of informal activities of varying lengths (minutes to weeks-long programs) to be used by museums, girl and boy scouts, science camps, etc.The curricula are being developed by formal and informal educators, artists, storytellers, and scientists. The continual feedback between the educators, artists, and scientists enables the program to evolve and mature such that the material will be accessible to the students without losing scientific merit. Online components will allow students to interact with SSERVI scientists and will ultimately infuse ongoing, exciting research into the student’s lessons.Our Education & Public Engagement (EPE) program makes a strong effort to make educational material accessible to all learners, including those with visual or hearing impairments. Specific activities have been included or independently developed to give all students an opportunity to experience the excitement of the universe.
Career Guidance and Counseling in Educating Female Scientists Of a Developing Nation
NASA Astrophysics Data System (ADS)
Olorode, D. O.; Olorode, G. T.
2009-05-01
The study area is Nigeria as a developing nation. A nation that must be developed must devote a high percentage of her resources to support the education of her women. To educate a woman is to educate a nation. This paper seeks to understand the problems of women scientists from the high school level. Three high schools were chosen, two of them are females only while one is a mixed school. Observations reveal that the problems encountered in Nigeria, by females in science education has a lot of link with lack of Career Guidance Counselors at the high school level. Where they have, female students are not advised properly in the sciences, hence majority of the girls end up with the arts and humanities. It is concluded therefore that every high school in a developing nation must have Departments of Guidance and Counseling for Science and Arts Faculties.
ERIC Educational Resources Information Center
Martimianakis, Maria Athina; Hodges, Brian D.; Wasylenki, Donald
2009-01-01
Objective: Medical schools and departments of psychiatry around the world face challenges in integrating science with clinical teaching. This project was designed to identify attitudes toward the integration of science in clinical teaching and address barriers to collaboration between scientists and clinical teachers. Methods: The authors explored…
ERIC Educational Resources Information Center
Hanson, Marlys C.
Opportunities for scientists in the near future will be very good in the fields of energy research and development, both for degreed scientists and for technicians. Geologists, geophysicists, mining engineers, rock mechanics, hydrologists, applied physicists, applied chemists, and nuclear engineers are among the types of personnel needed. These…
ERIC Educational Resources Information Center
Cremin, Teresa; Glauert, Esme; Craft, Anna; Compton, Ashley; Stylianidou, Fani
2015-01-01
In the light of the European Union's interest in creativity and innovation, this paper, drawing on data from the EU project Creative Little Scientists (2011-2014), explores the teaching and learning of science and creativity in Early Years education. The project's conceptual framework, developed from detailed analysis of relevant literatures,…
ERIC Educational Resources Information Center
Wanner, Richard A.; And Others
A model incorporating both academic and nonacademic factors as determinants of productivity was tested with samples of physical and biological scientists, social scientists, and humanists taken from the 1972-73 American Council on Education survey of faculty at U.S. institutions of higher learning. Considerable variation was found in the process…
Promoting Pre-college Science Education
NASA Astrophysics Data System (ADS)
Taylor, P. L.; Lee, R. L.
2000-10-01
The Fusion Education Program, with continued support from DOE, has strengthened its interactions with educators in promoting pre-college science education for students. Projects aggressively pursued this year include an on-site, college credited, laboratory-based 10-day educator workshop on plasma and fusion science; completion of `Starpower', a fusion power plant simulation on interactive CD; expansion of scientist visits to classrooms; broadened participation in an internet-based science olympiad; and enhancements to the tours of the DIII-D Facility. In the workshop, twelve teachers used bench top devices to explore basic plasma physics. Also included were radiation experiments, computer aided drafting, techniques to integrate fusion science and technology in the classroom, and visits to a University Physics lab and the San Diego Supercomputer Center. Our ``Scientist in a Classroom'' program reached more than 2200 students at 20 schools. Our `Starpower' CD allows a range of interactive learning from the effects of electric and magnetic fields on charged particles to operation of a Tokamak-based power plant. Continuing tours of the DIII-D facility were attended by more than 800 students this past year.
NASA Astrophysics Data System (ADS)
Hunter-thomson, K. I.; Kohut, J. T.; Florio, K.; McDonnell, J. D.; Ferraro, C.; Clark, H.; Gardner, K.; Oliver, M. J.
2016-02-01
How do you get middle and high school students excited about scientific inquiry? Have them join a collaborative research team in Antarctica! A comprehensive education program brought ocean science, marine ecology, and climate change impact research to more than 950 students in 2014-15 to increase their exposure to and excitement of current research. The program was integrated into a collaborative research project, involving five universities, that worked to characterize the connection between ocean circulation, plankton distribution, penguin foraging behavior, and climate change around Palmer Station, Antarctica. The scientists and education team co-led a weeklong workshop to expose 22 teachers to the research science, build relationships among the teachers and scientists, and refine the program to most effectively communicate the research to their students. In the fall, teachers taught NGSS-aligned, hands-on, data-focused classroom lessons to provide their students the necessary content to understand the project hypotheses using multiple science practices. Through a professional science blog and live video calls from Antarctica, students followed and discussed the science teams work while they were in the field. To apply the science practices the students had learned about, they designed, conducted, and analyzed their own ocean-related, inquiry-based research investigation as the culminating component of the program (results were presented at a Student Research Symposium attended by the science team). Of their own choosing, roughly half of the students used raw data from the CONVERGE research (including krill, CODAR, penguin, and glider data) for their investigations. This presentation will focus on the evaluation results of the education program to identify the aspects that successfully engaged teachers and students with scientific inquiry, science practices, and authentic data as well as the replicability of this integrated scientist-teacher partnership and education program.
Enhancing the Impact of NASA Astrophysics Education and Public Outreach: Community Collaborations
NASA Astrophysics Data System (ADS)
Smith, Denise A.; Lawton, B. L.; Bartolone, L.; Schultz, G. R.; Blair, W. P.; Astrophysics E/PO Community, NASA; NASA Astrophysics Forum Team
2013-01-01
The NASA Astrophysics Science Education and Public Outreach Forum is one of four scientist-educator teams that support NASA's Science Mission Directorate and its nationwide education and public outreach community in increasing the coherence, efficiency, and effectiveness of their education and public outreach efforts. NASA Astrophysics education and outreach teams collaborate with each other through the Astrophysics Forum to place individual programs in context, connect with broader education and public outreach activities, learn and share successful strategies and techniques, and develop new partnerships. This poster highlights examples of collaborative efforts designed to engage youth and adults across the full spectrum of learning environments, from public outreach venues, to centers of informal learning, to K-12 and higher education classrooms. These include coordinated efforts to support major outreach events such as the USA Science and Engineering Festival; pilot "Astro4Girls" activities in public libraries to engage girls and their families in science during Women’s History Month; and a pilot "NASA's Multiwavelength Universe" online professional development course for middle and high school educators. Resources to assist scientists and Astro101 instructors in incorporating NASA Astrophysics discoveries into their education and public outreach efforts are also discussed.
Credentialing Data Scientists: A Domain Repository Perspective
NASA Astrophysics Data System (ADS)
Lehnert, K. A.; Furukawa, H.
2015-12-01
A career in data science can have many paths: data curation, data analysis, metadata modeling - all of these in different commercial or scientific applications. Can a certification as 'data scientist' provide the guarantee that an applicant or candidate for a data science position has just the right skills? How valuable is a 'generic' certification as data scientist for an employer looking to fill a data science position? Credentials that are more specific and discipline-oriented may be more valuable to both the employer and the job candidate. One employment sector for data scientists are the data repositories that provide discipline-specific data services for science communities. Data science positions within domain repositories include a wide range of responsibilities in support of the full data life cycle - from data preservation and curation to development of data models, ontologies, and user interfaces, to development of data analysis and visualization tools to community education and outreach, and require a substantial degree of discipline-specific knowledge of scientific data acquisition and analysis workflows, data quality measures, and data cultures. Can there be certification programs for domain-specific data scientists that help build the urgently needed workforce for the repositories? The American Geophysical Union has recently started an initiative to develop a program for data science continuing education and data science professional certification for the Earth and space sciences. An Editorial Board has been charged to identify and develop curricula and content for these programs and to provide input and feedback in the implementation of the program. This presentation will report on the progress of this initiative and evaluate its utility for the needs of domain repositories in the Earth and space sciences.
ERIC Educational Resources Information Center
Maurice, Patricia Ann; Peterson, Brian
2015-01-01
Catholic colleges and universities traditionally are grounded in liberal arts education, yet many Catholic institutions also educate future scientists and engineers. We propose that a distinctively Catholic science and engineering education should include an emphasis on Catholic concepts of the common good and social justice, liberal arts…
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Committee on Education and Labor.
This is a report on the hearing for solutions to the problems in science, mathematics, and engineering education at the postsecondary level. Topics of prepared statements and the testifiers are: (1) educating scientists and engineers (Daryl E. Chubin); (2) science and engineering education needs viewed from the perspectives of the national…
A Successful Collaborative: Scientists and Middle School Teachers!
NASA Astrophysics Data System (ADS)
Walker, S. H.; Brown, S. A.; Culipher-Ross, S.; Spranger, M.; Dindo, J.; Tinnin, R.; Kastler, J.; Brook, R. D.; Bishop, T.; Tuddenham, P.
2004-12-01
This NSF/ONR-NOPP/NOAA-Sea Grant funded Center for Ocean Sciences Education Excellence:Central Gulf Of Mexico (COSEE:CGOM) presentation will review "best practices" and lessons learned in a successful ocean sciences and science education based graduate course, offered in a face-to-face and online format. Implementation strategies which will be discussed include: participant recruitment, the "face to face" and online graduate course infrastructure, as well as teachers-to-sea, website development, and cognitive and affective formation and summative evaluations. This COSEE:CGOM effort is helping research scientists meet the "broader impact" requirement being mandated by many funding agencies. Various URLs will also be provided to attendees.
Effective Integration of the World-Wide Web in Earth Science Education.
ERIC Educational Resources Information Center
Herbert, Bruce; Bednarz, Sarah; Boyd, Tom; Blake, Sally; Harder, Vicki; Sutter, Marilyn
The earth sciences is an evolving set of disciplines encompassing more than 30 specialties; however, earth scientists continue to be trained within the traditional disciplinary structure. Earth science education should focus not only on student acquisition and retention of factual knowledge, but also on the development of higher-order skills…
Moving from Content Knowledge to Engagement
ERIC Educational Resources Information Center
McDonald, James; Dominguez, Lynn
2005-01-01
While the goal of science education used to be to produce more scientists, that goal has changed with the introduction of the National Science Education Standards (NSES) (NRC 1996). Society has recognized that it is essential for everyone, regardless of vocation, to understand the fundamentals of science and technology. The phrase that has come to…
ERIC Educational Resources Information Center
Bilgin, Ayse Aysin Bombaci; Date-Huxtable, Elizabeth; Coady, Carmel; Geiger, Vincent; Cavanagh, Michael; Mulligan, Joanne; Petocz, Peter
2017-01-01
Opening Real Science (ORS) is a three-year government initiative developed as part of the Mathematics and Science Teachers program. It is a collaboration across universities involving teacher educators, scientists, mathematicians, statisticians and educational designers aimed at improving primary and secondary pre-service teachers' competence and…
Russian Science and Education: Problems and Prospects
ERIC Educational Resources Information Center
Lebedev, S. A.
2014-01-01
Higher education in Russia is not able to provide the science personnel and research that the country needs for its future economic well-being. Urgent changes are needed to improve the situation, not least among them being significant increases in the salaries of scientists, bringing Russian science into line with world standards of scientific…
ERIC Educational Resources Information Center
Herwitz, Stanley R.; Guerra, Marion
1996-01-01
Describes a course teaching planetary science to elementary school students in collaboration with a university. Chronicles how a partnership between an elementary school teacher and a university-based research scientist effectively shaped the teacher's understanding of values and attitudes inherent in science education. Presents a model for…
Climate change science education across schools, campuses, and centers: strategies and successes
NASA Astrophysics Data System (ADS)
Merrill, J.; Harcourt, P.; Rogers, M.; Buttram, J.; Petrone, C.; Veron, D. E.; Sezen-Barrie, A.; Stylinski, C.; Ozbay, G.
2016-02-01
With established partnerships in higher education, K-12, and informal science education communities across Delaware and Maryland, the NSF-funded MADE CLEAR project (Maryland Delaware Climate Change Education, Assessment, and Research) has instituted a suite of professional development strategies to bring climate change science into science education methods courses, K-12 classrooms, university lecture halls, and public park facilities. MADE CLEAR partners have provided consistent climate literacy topics (mechanisms, human contributions, local and global impacts, mitigation and adaptation) while meeting the unique needs of each professional community. In-person topical lectures, hands-on work with classroom materials, seed funding for development of new education kits, and on-line live and recorded sessions are some of the tools employed by the team to meet those needs and build enduring capacity for climate change science education. The scope of expertise of the MADE CLEAR team, with climate scientists, educators, learning scientists, and managers has provided not only PD tailored for each education audience, but has also created, fostered, and strengthened relationships across those audiences for long-term sustainability of the newly-built capacity. Specific examples include new climate change programs planned for implementation across Delaware State Parks that will be consistent with middle school curriculum; integration of climate change topics into science methods classes for pre-service teachers at four universities; and active K-12 and informal science education teams working to cooperatively develop lessons that apply informal science education techniques and formal education pedagogy. Evaluations by participants highlight the utility of personal connections, access to experts, mentoring and models for developing implementation plans.
Growing Scientists: A Partnership between a University and a School District
ERIC Educational Resources Information Center
Woods, Teresa Marie
2012-01-01
Precollege science education in the United States has virtually always been influenced by university scientists to one degree or another. Partnership models for university scientist--school district collaborations are being advocated to replace outreach models. Although the challenges for such partnerships are well documented, the means of…
Arctic Climate Connections Curriculum: A Model for Bringing Authentic Data into the Classroom
ERIC Educational Resources Information Center
Gold, Anne U.; Kirk, Karin; Morrison, Deb; Lynds, Susan; Sullivan, Susan Buhr; Grachev, Andrey; Persson, Ola
2015-01-01
Science education can build a bridge between research carried out by scientists and relevant learning opportunities for students. The Broader Impact requirements for scientists by funding agencies facilitate this connection. We propose and test a model curriculum development process in which scientists, curriculum developers, and classroom…
ERIC Educational Resources Information Center
Kruse, Jerrid W.; Wilcox, Jesse L.
2013-01-01
Just as science education is too often limited to the acquisition of facts, technology education is too often limited to proficient use of technology. Neither of these goals fully realize a robust definition of science and technology literacy. To achieve greater science and technology literacy, students must understand the natures of both science…
Nuclear Science Outreach in the World Year of Physics
NASA Astrophysics Data System (ADS)
McMahan, Margaret
2006-04-01
The ability of scientists to articulate the importance and value of their research has become increasingly important in the present climate of declining budgets, and this is most critical in the field of nuclear science ,where researchers must fight an uphill battle against negative public perception. Yet nuclear science encompasses important technical and societal issues that should be of primary interest to informed citizens, and the need for scientists trained in nuclear techniques are important for many applications in nuclear medicine, national security and future energy sources. The NSAC Education Subcommittee Report [1] identified the need for a nationally coordinated effort in nuclear science outreach, naming as its first recommendation that `the highest priority for new investment in education be the creation by the DOE and NSF of a Center for Nuclear Science Outreach'. This talk will review the present status of public outreach in nuclear science and highlight some specific efforts that have taken place during the World Year of Physics. [1] Education in Nuclear Science: A Status Report and Recommendations for the Beginning of the 21^st Century, A Report of the DOE/NSF Nuclear Science Advisory Committee Subcommittee on Education, November 2004, http://www.sc.doe.gov/henp/np/nsac/docs/NSACCReducationreportfinal.pdf.
NASA Astrophysics Data System (ADS)
Salmi, Hannu; Thuneberg, Helena; Vainikainen, Mari-Pauliina
2016-11-01
Outreach activities, like mobile science exhibitions, give opportunities to hands-on experiences in an attractive learning environment. We analysed attitudes, motivation and learning during a science exhibition visit, their relations to gender and future educational plans in Finland, Estonia, Latvia and Belgium (N = 1210 sixth-graders). Pupils' performance in a knowledge test improved after the visit. Autonomous motivation and attitudes towards science predicted situation motivation awakened in the science exhibition. Interestingly, the scientist attitude and the societal attitude were clearly separate dimensions. The third dimension was manifested in the engineering attitude typical for boys, who were keener on working with appliances, designing computer games and animations. Scientist and societal attitudes correlated positively and engineering attitude correlated negatively with the future educational plans of choosing the academic track in secondary education. The societal perspective on science was connected to above average achievement. In the follow-up test, these attitudes showed to be quite stable.
CosmoQuest Collaborative: Galvanizing a Dynamic Professional Learning Network
NASA Astrophysics Data System (ADS)
Cobb, Whitney; Bracey, Georgia; Buxner, Sanlyn; Gay, Pamela L.; Noel-Storr, Jacob; CosmoQuest Team
2016-10-01
The CosmoQuest Collaboration offers in-depth experiences to diverse audiences around the nation and the world through pioneering citizen science in a virtual research facility. An endeavor between universities, research institutes, and NASA centers, CosmoQuest brings together scientists, educators, researchers, programmers—and citizens of all ages—to explore and make sense of our solar system and beyond. Leveraging human networks to expand NASA science, scaffolded by an educational framework that inspires lifelong learners, CosmoQuest engages citizens in analyzing and interpreting real NASA data, inspiring questions and defining problems.The QuestionLinda Darling-Hammond calls for professional development to be: "focused on the learning and teaching of specific curriculum content [i.e. NGSS disciplinary core ideas]; organized around real problems of practice [i.e. NGSS science and engineering practices] … [and] connected to teachers' collaborative work in professional learning community...." (2012) In light of that, what is the unique role CosmoQuest's virtual research facility can offer NASA STEM education?A Few AnswersThe CosmoQuest Collaboration actively engages scientists in education, and educators (and learners) in science. CosmoQuest uses social channels to empower and expand NASA's learning community through a variety of media, including science and education-focused hangouts, virtual star parties, and social media. In addition to creating its own supportive, standards-aligned materials, CosmoQuest offers a hub for excellent resources and materials throughout NASA and the larger astronomy community.In support of CosmoQuest citizen science opportunities, CQ initiatives (Learning Space, S-ROSES, IDEASS, Educator Zone) will be leveraged and shared through the CQPLN. CosmoQuest can be present and alive in the awareness its growing learning community.Finally, to make the CosmoQuest PLN truly relevant, it aims to encourage partnerships between scientists and educators, and offer "just-in-time" opportunities to support constituents exploring emerging NASA STEM education, from diverse educators to the curious learner of any age.
Real-time Science and Educational Collaboration Online from the Indian Ocean
NASA Astrophysics Data System (ADS)
Wilson, R. H.; Sager, W. W.
2007-12-01
During Summer of 2007, scientists and students (via the web) jointly participated in research during the Ninety East Ridge Expedition (cruise KNOX06RR) . Staff organizers from Joint Oceanographic Institutions" JOI Learning and the Integrated Ocean Drilling Program planned and implemented an interactive website to allow students to directly participate with scientists during the site survey aboard the R/V Roger Revelle. Dr. Will Sager and middle school teacher Rory Wilson collaborated daily during the scientific expedition with science team, ship crew and students. From the outset, students were involved and helped to guide the program; this included coming up with the website name and initial design work. Communication with students included the website, individual and group emails and video conferences with student groups. Seven secondary schools from the USA, Europe, India and Thailand participated actively in the project from June to August. Students viewed daily updates on the website, sent in answers for weekly science challenge questions, and interacted with scientists and crew. Student participants learned about navigation, geophysics and petrology, as well as ship operations and technology. Students and educators tracked the expedition's progress in a multi-media environment. Website statistics were recorded; participation began well and increased during the expedition as more people became engaged with the website. All of the crew and scientists wrote self-profiles to help students learn about the range of ocean careers; several of the scientists and graduate students on board wrote or co- authored website articles for students. During this presentation, we will explore and review the major features of the outreach program using the Sea90e website to demonstrate how this real-time interaction engages students in science learning. We will discuss the benefits of collaboration for science and education in our "classroom at sea."
Klahr, David
2013-08-20
Although the "science of science communication" usually refers to the flow of scientific knowledge from scientists to the public, scientists direct most of their communications not to the public, but instead to other scientists in their field. This paper presents a case study on this understudied type of communication: within a discipline, among its practitioners. I argue that many of the contentious disagreements that exist today in the field in which I conduct my research--early science education--derive from a lack of operational definitions, such that when competing claims are made for the efficacy of one type of science instruction vs. another, the arguments are hopelessly disjointed. The aim of the paper is not to resolve the current claims and counterclaims about the most effective pedagogies in science education, but rather to note that the assessment of one approach vs. the other is all too often defended on the basis of strongly held beliefs, rather than on the results of replicable experiments, designed around operational definitions of the teaching methods being investigated. A detailed example of operational definitions from my own research on elementary school science instruction is provided. In addition, the paper addresses the issue of how casual use of labels-both within the discipline and when communicating with the public-may inadvertently "undo" the benefits of operational definitions.
Developing Science Games for use at Public Events to Better Inform Students and Citizen Scientists
NASA Astrophysics Data System (ADS)
Lewis, P. M.; Chambers, L. H.; Bethea, K. L.; Crecelius, S.; Ruhlman, K.; Harte, T.
2013-12-01
At NASA's Langley Research Center, the Science Directorate participates in a wide range of public outreach events, from individual small-scale classroom visits, to the large-scale NASA events like Exploration Day at Busch Gardens Williamsburg. Despite the diversity of venues, one thing is certain: the public is hungry for science and ravenous for the materials and activities that NASA produces. However, designing and producing materials and activities to capture the attention of everyone from children to grandparents can be a challenging task. The NASA Langley Science Directorate Outreach and Communications Team has taken on the task to ensure that event participants have a worthwhile science experience through a series of educational tabletop games. This diverse group of educators, scientists, writers and graphic artists has been able to produce many games and activities perfect for public exposure and understanding. These games not only capture the imagination of the citizen scientists that visit the display, but they also allow them to learn the science behind many of the things that happen around them on a daily basis, many of which they take for granted. Teaching the public through games and short activities has proven to be a winning combination of efforts. In the development of any game or activity a great deal of consideration is given to "boiling down" the science concept or educational "take away." This step is where the diverse development group has proven to be invaluable. A final product developed by this team includes a review for science validity by a scientist, words written by a science writer, educational alignment by a science educator and design by a graphic designer. This process ensures that the game will attract the right group of people and have them leave understanding new science content. Games and activities generated in this fashion have been successful in the traditional classroom and informal education venues that this team routinely visits and interacts with. Taking science to the public also gives the outreach professionals a unique window into the understandings of the people who come to play the games and activities. The time interacting with a target audience allows the developers to learn what the audience is concerned about, what they know and what misconceptions they might have in the science world. With games targeted at informing the public on science topics, it is important to be able to accurately address relevant science topics and any misconceptions of the public. When it comes to science, NASA is a place where many people come to have their questions answered. The Science Directorate at NASA's Langley Research Center aims to inform the public through educational interactive games that capture the attention of even the most scrutinizing skeptic. This paper will show a start to finish approach implemented in developing games that are used at education and public outreach events along with the strategies, successes, challenges and lessons that have been learned.
Professional identity in clinician-scientists: brokers between care and science.
Kluijtmans, Manon; de Haan, Else; Akkerman, Sanne; van Tartwijk, Jan
2017-06-01
Despite increasing numbers of publications, science often fails to significantly improve patient care. Clinician-scientists, professionals who combine care and research activities, play an important role in helping to solve this problem. However, despite the ascribed advantages of connecting scientific knowledge and inquiry with health care, clinician-scientists are scarce, especially amongst non-physicians. The education of clinician-scientists can be complex because they must form professional identities at the intersection of care and research. The successful education of clinician-scientists requires insight into how these professionals view their professional identity and how they combine distinct practices. This study sought to investigate how recently trained nurse- and physiotherapist-scientists perceive their professional identities and experience the crossing of boundaries between care and research. Semi-structured interviews were conducted with 14 nurse- and physiotherapist-scientists at 1 year after they had completed MSc research training. Interviews were thematically analysed using insights from the theoretical frameworks of dialogical self theory and boundary crossing. After research training, the initial professional identity, of clinician, remained important for novice clinician-scientists, whereas the scientist identity was experienced as additional and complementary. A meta-identity as broker, referred to as a 'bridge builder', seemed to mediate competing demands or tensions between the two positions. Obtaining and maintaining a dual work position were experienced as logistically demanding; nevertheless, it was considered beneficial for crossing the boundaries between care and research because it led to reflection on the health profession, knowledge integration, inquiry and innovation in care, improved data collection, and research with a focus on clinical applicability. Novice clinician-scientists experience dual professional identities as care providers and scientists. The meta-position of being a broker who connects care and research is seen as core to the unique clinician-scientist identity. To develop this role, identity formation and boundary-crossing competencies merit explicit attention within clinician-scientist programmes. © 2017 The Authors Medical Education published by Association for the Study of Medical Education and John Wiley & Sons Ltd.
Scaffolded Inquiry-Based Instruction with Technology: A Signature Pedagogy for STEM Education
ERIC Educational Resources Information Center
Crippen, Kent J.; Archambault, Leanna
2012-01-01
Inquiry-based instruction has become a hallmark of science education and increasingly of integrated content areas, including science, technology, engineering, and mathematics (STEM) education. Because inquiry-based instruction very clearly contains surface, deep, and implicit structures as well as engages students to think and act like scientists,…
ERIC Educational Resources Information Center
Pelaez, Nancy; Anderson, Trevor R.; Gardner, Stephanie M.; Yin, Yue; Abraham, Joel K.; Barlett, Edward L.; Gormally, Cara; Hurney, Carol A.; Long, Tammy M.; Newman, Dina L.; Sirum, Karen; Stevens, Michael T.
2018-01-01
Since 2009, the U.S. National Science Foundation Directorate for Biological Sciences has funded Research Coordination Networks (RCN) aimed at collaborative efforts to improve participation, learning, and assessment in undergraduate biology education (UBE). RCN-UBE projects focus on coordination and communication among scientists and educators who…
Biology Faculty at Large Research Institutions: The Nature of Their Pedagogical Content Knowledge
ERIC Educational Resources Information Center
Hill, Kathleen M.
2013-01-01
To address the need of scientists and engineers in the United States workforce and ensure that students in higher education become scientifically literate, research and policy has called for improvements in undergraduate education in the sciences. One particular pathway for improving undergraduate education in the science fields is to reform…
The Social Sciences and Geographic Education: A Reader.
ERIC Educational Resources Information Center
Ball, John M., Ed.; And Others
This book brings together articles by educators, geographers, social scientists, and those whose competence and interests cross two or more of these fields. Geography as a discipline has played an important part in social studies/social science education. These chapters are representative of current thinking on many facets of the interaction among…
NASA Astrophysics Data System (ADS)
Schielack, J. F.; Herbert, B. E.
2004-12-01
The ITS Center for Teaching and Learning (http://its.tamu.edu) is a five-year NSF-funded collaborative effort to engage scientists, educational researchers, and educators in the use of information technology to enhance science teaching and learning at Grades 7 - 16. The ITS program combines graduate courses in science and science education leadership for both science and education graduate students with professional development experiences for classroom teachers. The design of the ITS professional development experience is based upon the assumption that science and mathematics teaching and learning will be improved when they become more connected to the authentic science research done in field settings or laboratories. The effective use of information technology to support inquiry in science classrooms has been shown to help achieve this objective. In particular, the professional development for teachers centers around support for implementing educational research in their own classrooms on the impacts of using information technology to promote authentic science experiences for their students. As a design study that is "working toward a greater understanding of the "learning ecology," the research related to the creation and refinement of the ITS Center's collaborative environment for integrating professional development for faculty, graduate students, and classroom teachers is contributing information about an important setting not often included in the descriptions of professional development, a setting that incorporates distributed expertise and resulting distributed growth in the various categories of participants: scientists, science graduate students, education researchers, science education graduate students, and master teachers. Design-based research is an emerging paradigm for the study of learning in context through the systematic design and study of instructional strategies and tools. In this presentation, we will discuss the results of the formative evaluation process that has moved the ITS Center's collaborative environment for professional development through the iterative process from Phase I (the planned program designed in-house) to Phase II (the experimental program being tested in-house). Phase II highlighted learning experiences over two summers focused on the exploration of environmentally-related science, technology, engineering or mathematics (STEM) topics through the use of modeling, visualization and complex data sets to explore authentic scientific questions that can be integrated within the 7-16 curriculum.
Teenagers as scientist - Learning by doing or doing without learning?
NASA Astrophysics Data System (ADS)
Kapelari, Suzanne; Carli, Elisabeth; Tappeiner, Ulrike
2010-05-01
Title: Teenagers as scientist - Learning by doing or doing without learning? Authors: Dr. Suzanne Kapelari* and Elsabeth Carli*, Ulrike Tappeiner** *Science Educaton Center,**Institute of Ecology,University Innsbruck, Austria The PISA (2006-2007) Assessment Framework asks for"…. the development of a general understanding of important concepts and explanatory framework of science, of the methods by which science derives evidence to support claims for its knowledge and of the strength and limitations of science in the real world….". To meet these requirements pupils are eventually asked to engage in "working like scientists learning activities" at school or while visiting informal learning institutions. But what does it mean in a real life situation? An ambitious project call named "Sparkling Science" was launched by the Austrian Federal Ministry of Science and Research in 2008, asking scientists to run their research in tight co-operation with local teachers and pupils. Although this would be enough of a challenge anyway, the ultimate goals of these projects are to achieve publishable scientific results in the particular field. The project design appears to be promising. Pupils and teachers are invited to gain first hand experience as part of a research team investigating current research questions. Pupils experience science research first hand, explore laboratories and research sites, gather data, discuss findings, draw conclusions and finally publish them. They set off on an exciting two years journey through a real scientific project. Teachers have the unique opportunity to get insight into a research project and work closely together with scientists. In addition teachers and pupils have the opportunity to gain first hand knowledge about a particular topic and are invited to discuss science matters on the uppermost level. Sparkling Science promoting agents have high expectations. Their website (www.sparklingscience.at) says: "Forming research teams that involve scientists and children simulates the research process and has a high impact on skill building for both partners". In the contrary hardly anything do we actually know about how effective these learning environments really are. For the last decades a large body of science education research has predominantly taken place in laboratories and formal educational settings. Significant "blind spots" in the current literature appear when it comes to focusing on "the nature of learning in outdoor education" as well as "learning in research-education partnerships". The Institute of Ecology at the University of Innsbruck, Austria was awarded the project: Top-Klima-Science: Hydrologic Balance and Global Change: Future Prospect for Mountain Areas in the Face of Changes in Land Use and Climate. The University of Innsbruck and the European Academy Bolzano are coordinating their efforts with their partner school HLFS Kematen in Tyrol. Two classes with nearly 60 students age 15 -18 years are involved in all areas of the project. The research project as such is accompanied by an ongoing evaluation of the process, which is carried out by science education researchers from the Science Education Centre at the University to Innsbruck, Austria. Iterative testing of teaching and learning strategies to improve them as they are developed is going along with a front, middle and end evaluation to find out what expectations, fears and motivations pupils, teachers and researchers have before joining in and how these develop in course of the two years working relationship. Evaluators also watch closely on how pupil develop their conceptual understanding of the topic they are investigating and whether their attitude towards science and science research changes in course of working as "real scientists. This talk will present preliminary results from work in progress and will discuss pros and cons of "doing real research" as a long term strategy for science in tomorrow's classrooms.
Surveying Space Scientists' Attitudes, Involvement, and Needs in Education and Public Outreach
NASA Astrophysics Data System (ADS)
Grier, J.; Buxner, S.; Schneider, N. M.
2014-12-01
Empowering scientists in education and public outreach (E/PO) activities is an important component of the work of the NASA Science Mission Directorate (SMD) E/PO Forums. This work includes understanding the attitudes of scientists towards E/PO, why they do or do not engage in E/PO activities, and what resources and professional development they need to be the most efficient in their E/PO efforts. The Planetary Science E/PO Forum has conducted both surveys and interviews of space scientists regarding E/PO to ascertain how they (the Forum) and the professional societies to which those scientists belong, can help to meet their needs in E/PO. Specifically, a recent series of semi-structured interviews with members of the American Astronomical Society Division of Planetary Sciences (AAS-DPS) has helped pinpoint specific areas that can be addressed. This presentation will discuss our survey methods, responses to questions, and compare those to previous research. We will describe new products and other resources developed in response to expressed needs, as well as offer information to continue the conversation about how professional societies can better meet the needs of their members in E/PO.
ERIC Educational Resources Information Center
Bentley, Jerome T.; Adamson, Rebecca
The literature on women in science and engineering is extensive and addresses such issues as early education, decision to study and pursue careers in science, and how women fair in their jobs. This review used the literature on the careers of women scientists and engineers employed in academia to examine how women in these disciplines fare…
My Career as a Teacher and a Political Scientist: If I Knew Then What I Know Now
ERIC Educational Resources Information Center
Richards, Erin
2018-01-01
This article addresses my professional development as a teacher and political scientist throughout the span of a 15-year career in political science. Also included are reflections on graduate education and the compatibility and necessary dual focus on both political science and teaching in the academy today as it relates to my present-day…
What Do Learning Scientists Do? A Survey of the ISLS Membership
ERIC Educational Resources Information Center
Yoon, Susan A.; Hmelo-Silver, Cindy E.
2017-01-01
This study responds to a question that people working in the field of learning sciences get asked regularly: What do learning scientists do? Earlier attempts to answer this question came from a need to define a new field of educational research. Now that the International Society of the Learning Sciences (ISLS) has grown into a robust and…
ERIC Educational Resources Information Center
Sigman, Marilyn; Dublin, Robin; Anderson, Andrea; Deans, Nora; Warburton, Janet; Matsumoto, George I.; Dugan, Darcy; Harcharek, Jana
2014-01-01
During 2010-2012, three professional development workshops brought together K-12 educators and scientists conducting research in the geographic and ecological context of Alaska's three large marine ecosystems (Bering Sea/Aleutians, Gulf of Alaska, and Arctic Ocean). Educators successfully applied new scientific knowledge gained from their…
Should We All be Scientists? Re-thinking Laboratory Research as a Calling.
Bezuidenhout, Louise; Warne, Nathaniel A
2017-07-19
In recent years there have been major shifts in how the role of science-and scientists-are understood. The critical examination of scientific expertise within the field of Science and Technology Studies (STS) are increasingly eroding notions of the "otherness" of scientists. It would seem to suggest that anyone can be a scientist-when provided with the appropriate training and access to data. In contrast, however, ethnographic evidence from the scientific community tells a different story. Scientists are quick to recognize that not everyone can-or should-be a scientist. Appealing to notions such as "good hands" or "gut feelings", scientists narrate a distinction between good and bad scientists that cannot be reduced to education, access, or opportunity. The key to good science requires scientists to express an intuitive feeling for their discipline, but also that individuals derive considerable personal satisfaction from their work. Discussing this personal joy in-and "fittingness" of-scientific occupations using the fields of STS, ethics and science policy is highly problematic. In this paper we turn to theology discourse to analyze the notion of "callings" as a means of understanding this issue. Callings highlight the identification and examination of individual talents to determine fit occupations for specific persons. Framing science as a calling represents a novel view of research that places the talents and dispositions of individuals and their relationship to the community at the center of flourishing practices.
Science in Places of Grandeur: Communication and Engagement in National Parks.
Watkins, Tim; Miller-Rushing, Abraham J; Nelson, Sarah J
2018-05-14
The United States has set aside over 400 national parks and other protected areas to be managed by the National Park Service (NPS). Collectively, these sites attract over 300 million visits per year which makes the NPS one of the largest informal education institutions in the country. Because the NPS supports and facilitates scientific studies in parks, the national park system provides abundant opportunity for biologists and other scientists to engage global audiences in learning, exploring, and even conducting science. Those opportunities are best pursued through collaborations among scientists and the professional communication staff (interpreters, educators, media specialists, etc.) of parks and their partner organizations. This article describes unique opportunities and rationale for such collaborations, presents several examples that highlight the range of activities and lessons drawn from them, and invites scientists to conduct studies in parks and bring their science into the public eye.
Applying Scientific Skills to the Business World
NASA Astrophysics Data System (ADS)
Murry, Stefan
According to executive search firm Spencer Stuart, one third of Fortune 500 CEOs have undergraduate degrees in engineering or one of the physical sciences, versus 11 percent of such CEOs with degrees in business administration. Yet outside the boardroom, scientists leading businesses are often regarded as a curiosity, as if the skills that are believed by many to be essential to success in business somehow differ fundamentally from those developed by an education in engineering or science. This talk will focus on the skills necessary to succeed in business generally, and more specifically as an entrepreneur. We will explore the overlap between these skills and those that are developed by an education in engineering and science. We will also examine some of the common misperceptions held by scientists about the business world as well as the way scientists are often (mis)-perceived by the business community.
NASA Astrophysics Data System (ADS)
Grier, Jennifer A.; Buxner, Sanlyn; Schneider, Nick; Meinke, Bonnie; Shipp, Stephanie
2015-11-01
The NASA Education and Public Outreach (E/PO) Forums developed and provided resources for scientists through a five-year cooperative agreement. Through this work, the Fourms have supported scientists who are involved in E/PO and who wish to become involved. Forums have conducted interviews, facilitated education oral and poster sessions, provided ‘Help Desks’ for more information, curated activities, as well as produced guides, pamphlets, and tips sheets. Our interviews with over 30 planetary scientists allowed us to identify needs and target gaps in resources, ensuring we could provide scientists with effective support and products. Interviews were conducted in collaboration with the AAS Division of Planetary Sciences, with the goal of better understanding scientists’ requirements, barriers, attitudes, and perception of education and outreach work. We collected information about how scientists were engaged in E/PO activities (or not), what support they did or did not have, what resources they used in their efforts, and what resources they would like to have to support and improve their E/PO engagement. The Forums have convened and/or supported E/PO oral and poster sessions at a variety of annual meetings. These sessions allowed scientists to network, share lessons learned, and become aware of new resources and products. These meetings included the DPS, AAS, LPSC, AGU, ASP, IAU, and more. ‘Help Desks’ were offered to allow scientists the chance to have extended one-on-one conversations with E/PO providers in order to share their programs, and learn how to become involved. These have been particularly popular with early career scientists looking to extend their E/PO efforts. A host of education activities developed by the space science community have been archived at the NASA site “Wavelength” (nasawavelength.org). Special lists have been curated to allow scientists to easily target those activities that fit their particular needs, from engineering to higher education to outreach at public events. Guides, information sheets, and “How To’s” have been developed to answer specific questions and needs that scientists have specifically expressed. These resources are openly available at the NASA SMD community site (smdepo.org).
Educators Who Work in Science: The Narratives of Women Negotiating Careers in Academic Science
NASA Astrophysics Data System (ADS)
Tullos, Kimberly C.
2011-12-01
The purpose of this life story narrative study was to explore how women scientists develop views of self that enable them to negotiate careers within academic science. I framed the study using feminist standpoint theory as my theoretical foundation, and used possible selves theory as my conceptual framework. Eight women scientists working in academe described their journey regarding their views of self and career-related experiences. The study produced two key findings. First, seven themes emerged from my data analysis; these themes suggest that these women shared significant experiences in their quest to become scientists. Second, my feminist analysis of the participants' narratives indicates that distinct, but submerged gender-related tensions shaped their views of themselves as scientists and their science career decisions. These tensions include career choice and advancement constrained by family obligations, work environments that do not recognize or undervalue their skills and contributions to the profession, and perceived pressure to de-feminize their behavior to blend in to their work environment. Not unlike other women negotiating careers in academic science, they generally accepted their status as women to be an inherent part of their career pursuits and viewed workplace challenges as an opportunity to prove their competency. Seven of the eight women did not attribute their challenges to gender differences. However, the combined narratives revealed underlying conflicts between their views of self as women and as scientists resulting from their experiences in, and perceptions of, academic science environments. The study's principal theoretical contribution, from the feminist standpoint perspective, highlights the pervasive and unseen influence of gender dynamics. In this study, the participants developed views of themselves, not as scientists, but as "educators who work in science." This critical distinction enabled these participants, perhaps unknowingly, to accommodate conflicting gender /role demands and establish meaningful, but arguably 'less than' status within the academic scientific community. Future studies could examine the accommodation/legitimization process to increase our understanding of how women may negotiate gender perceptions and roles within a science career. Additionally, research and educational practice that actively disrupt constraining gender beliefs may be an integral piece of helping women expand their vision regarding what it is possible for them to achieve in their academic science careers.
Media and the making of scientists
NASA Astrophysics Data System (ADS)
O'Keeffe, Moira
This dissertation explores how scientists and science students respond to fictional, visual media about science. I consider how scientists think about images of science in relation to their own career paths from childhood onwards. I am especially interested in the possibility that entertainment media can inspire young people to learn about science. Such inspiration is badly needed, as schools are failing to provide it. Science education in the United States is in a state of crisis. Studies repeatedly find low levels of science literacy in the U.S. This bleak situation exists during a boom in the popularity of science-oriented television shows and science fiction movies. How might entertainment media play a role in helping young people engage with science? To grapple with these questions, I interviewed a total of fifty scientists and students interested in science careers, representing a variety of scientific fields and demographic backgrounds, and with varying levels of interest in science fiction. Most respondents described becoming attracted to the sciences at a young age, and many were able to identify specific sources for this interest. The fact that interest in the sciences begins early in life, demonstrates a potentially important role for fictional media in the process of inspiration, perhaps especially for children without access to real-life scientists. One key aspect to the appeal of fiction about science is how scientists are portrayed as characters. Scientists from groups traditionally under-represented in the sciences often sought out fictional characters with whom they could identify, and viewers from all backgrounds preferred well-rounded characters to the extreme stereotypes of mad or dorky scientists. Genre is another aspect of appeal. Some respondents identified a specific role for science fiction: conveying a sense of wonder. Visual media introduce viewers to the beauty of science. Special effects, in particular, allow viewers to explore the unknown. Advocates of informal science learning initiatives suggest that media can be used as a tool for teaching science content. The potential of entertainment media to provide a sense of wonder is a powerful aspect of its potential to inspire the next generation of scientists.
Learning with Teachers; A Scientist's Perspective
NASA Astrophysics Data System (ADS)
Czajkowski, K. P.
2004-12-01
Over the past six years, as an Assistant Professor and now as an Associate Professor, I have engaged in educational outreach activities with K-12 teachers and their students. In this presentation I will talk about the successes and failures that I have had as a scientist engaged in K-12 educational outreach, including teaching the Earth System Science Education Alliance (ESSEA) distance learning course, teaching inquiry-based science to pre-service teachers through the NASA Opportunities for Visionary Academics (NOVA) program, GLOBE, school visits, and research projects with teachers and students. I will reflect on the potential impact this has had on my career, negative and positive. I will present ways that I have been able to engage in educational outreach while remaining a productive scientist, publishing research papers, etc. Obtaining grant funding to support a team of educational experts to assist me perform outreach has been critical to my groups success. However, reporting for small educational grants from state agencies can often be overwhelming. The bottom line is that I find working with teachers and students rewarding and believe that it is a critical part of me being a scientist. Through the process of working with teachers I have learned pedagogy that has helped me be a better teacher in the university classroom.
ERIC Educational Resources Information Center
Kruse, Jerrid; Borzo, Sarah
2010-01-01
In addition to meeting National Science Education Standards (NSES) related to the history and nature of science (NOS), reading or hearing about real scientists helps students connect with science emotionally. The authors have even noticed increased student interest in science concepts during history of science discussions. Toward these efforts,…
National Ice Center Visiting Scientist Program
NASA Technical Reports Server (NTRS)
Austin, Meg
2002-01-01
The long-term goal of the University Corporation for Atmospheric Research (UCAR) Visiting Scientist Program at the National Ice Center (NIC) is to recruit the highest quality visiting scientists in the ice research community for the broad purpose of strengthening the relationship between the operational and research communities in the atmospheric and oceanic sciences. The University Corporation for Atmospheric Research supports the scientific community by creating, conducting, and coordinating projects that strengthen education and research in the atmospheric, oceanic and earth sciences. UCAR accomplishes this mission by building partnerships that are national or global in scope. The goal of UCAR is to enable researchers and educators to take on issues and activities that require the combined and collaborative capabilities of a broadly engaged scientific community.
NASA Astrophysics Data System (ADS)
Simms, E.; Goehring, E.; Larsen, J.; Kusek, K.
2007-12-01
Sponsored by the National Science Foundation, Ridge 2000 (R2K) is a mid-ocean ridge and hydrothermal vent research program with a history of successful education and public outreach (EPO) programs and products. This presentation will share general science and education partnership strategies and best practices employed by the R2K program, with a particular emphasis on the innovative R2K project From Local to EXtreme Environments (FLEXE). As a new project of the international NSF and NASA sponsored GLOBE earth science education program, FLEXE involves middle and high school students in structured, guided analyses and comparisons of real environmental data. The science and education partnership model employed by FLEXE relies on experienced education coordinators within the R2K and international InterRidge and ChEss science research programs, who directly solicit and facilitate the involvement of an interdisciplinary community of scientists in the project based on their needs and interests. Concurrently, the model also relies on the GLOBE program to facilitate awareness and access to a large, established network of international educators who are interested in the process of science and interacting with the scientific community. The predominantly web-based interfaces that serve to effectively link together the FLEXE science and education communities have been developed by the Center for Science and the Schools at Penn State University, and are based on researched educational pedagogy, tools and techniques. The FLEXE partnership model will be discussed in the context of both broad and specific considerations of audience needs, scientist and educator recruitment, and the costs and benefits for those involved in the project.
Science Education & Advocacy: Tools to Support Better Education Policies
NASA Astrophysics Data System (ADS)
O'Donnell, Christine; Cunningham, B.; Hehn, J. G.
2014-01-01
Education is strongly affected by federal and local policies, such as testing requirements and program funding, and many scientists and science teachers are increasingly interested in becoming more engaged with the policy process. To address this need, I worked with the American Association of Physics Teachers (AAPT) --- a professional membership society of scientists and science teachers that is dedicated to enhancing the understanding and appreciation of physics through teaching --- to create advocacy tools for its members to use, including one-page leave-behinds, guides for meeting with policymakers, and strategies for framing issues. In addition, I developed a general tutorial to aid AAPT members in developing effective advocacy strategies to support better education policies. This work was done through the Society for Physics Students (SPS) Internship program, which provides a range of opportunities for undergraduates, including research, education and public outreach, and public policy. In this presentation, I summarize these new advocacy tools and their application to astronomy education issues.
NASA space life sciences research and education support program
NASA Technical Reports Server (NTRS)
Jones, Terri K.
1995-01-01
USRA's Division of Space Life Sciences (DSLS) was established in 1983 as the Division of Space Biomedicine to facilitate participation of the university community in biomedical research programs at the NASA Johnson Space Center (JSC). The DSLS is currently housed in the Center for Advanced Space Studies (CASS), sharing quarters with the Division of Educational Programs and the Lunar and Planetary Institute. The DSLS provides visiting scientists for the Johnson Space Center; organizes conferences, workshops, meetings, and seminars; and, through subcontracts with outside institutions, supports NASA-related research at more than 25 such entities. The DSLS has considerable experience providing visiting scientists, experts, and consultants to work in concert with NASA Life Sciences researchers to define research missions and goals and to perform a wide variety of research administration and program management tasks. The basic objectives of this contract have been to stimulate, encourage, and assist research and education in the NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad have been recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system.
Why Not Try a Scientific Approach to Science Education?
ERIC Educational Resources Information Center
Wieman, Carl
2007-01-01
The purpose of science education is no longer simply to train that tiny fraction of the population who will become the next generation of scientists. A more scientifically literate populace is needed to address the global challenges that humanity now faces and that only science can explain and possibly mitigate, for example, global warming and…
Challenges and Opportunities for Education about Dual Use Issues in the Life Sciences
ERIC Educational Resources Information Center
National Academies Press, 2011
2011-01-01
The Challenges and Opportunities for Education About Dual Use Issues in the Life Sciences workshop was held to engage the life sciences community on the particular security issues related to research with dual use potential. More than 60 participants from almost 30 countries took part and included practicing life scientists, bioethics and…
Project BudBurst - Meeting the Needs of Climate Change Educators and Scientists
NASA Astrophysics Data System (ADS)
Henderson, S.
2015-12-01
It is challenging for many to get a sense of what climate change means as long periods of time are involved - like decades - which can be difficult to grasp. However, there are a number of citizen science based projects, including NEON's Project BudBurst, that provide the opportunity for both learning about climate change and advancing scientific knowledge. In this presentation, we will share lessons learned from Project BudBurst. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events and to increase climate literacy. Project BudBurst is important from an educational perspective, but also because it enables scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants at a continental-scale; and 3) increase science literacy by engaging participants in the scientific process. It was important to better understand if and how Project BudBurst is meeting its goals. Specifically, does participation by non-experts advance scientific knowledge? Does participation advance educational goals and outcomes? Is participation an effective approach to advance/enhance science education in both formal and informal settings? Critical examination of Project BudBurst supports advancement of scientific knowledge and realization of educational objectives. Citizen science collected observations and measurements are being used by scientists as evidenced by the increase of such data in scientific publication. In addition, we found that there is a significant increase in educators utilizing citizen science as part of their instruction. Part of this increase is due to the resources and professional development materials available to educators. Working with partners also demonstrated that the needs of both science and education are being met. Project BudBurst, partners with the PhenoCam Network, National Geographic Society, US Fish and Wildlife Service, National Park Service botanic gardens, science centers and other organizations with both a scientific and educational mission.
Engaging Scientists in NASA Education and Public Outreach: Higher Education
NASA Astrophysics Data System (ADS)
Meinke, Bonnie K.; Smith, D. A.; Schultz, G. R.; Lawton, B. L.; Bianchi, L.; Blair, W. P.; Buxner, S.; SEPOF Higher Education Working Group; E/PO Community, SMD
2014-01-01
The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community through a coordinated effort to enhance the coherence and efficiency of SMD-funded E/PO programs. The Forums foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present opportunities for the astronomy community to participate in collaborations supporting the NASA SMD efforts in the Higher Education community. Members of the Higher Education community include instructors, faculty, and students at community colleges and four-year colleges/universities. The Forums’ efforts for the Higher Education community include a literature review, appraisal of instructors’ needs, coordination of audience-based NASA resources and opportunities, and classroom support materials. Learn how to join in our collaborative efforts to support the Higher Education community based upon mutual needs and interests.
ARES Education and Public Outreach
NASA Technical Reports Server (NTRS)
Allen, Jaclyn; Galindo, Charles; Graff, Paige; Willis, Kim
2014-01-01
The ARES Directorate education team is charged with translating the work of ARES scientists into content that can be used in formal and informal K-12 education settings and assisting with public outreach. This is accomplished through local efforts and national partnerships. Local efforts include partnerships with universities, school districts, museums, and the Lunar and Planetary Institute (LPI) to share the content and excitement of space science research. Sharing astromaterials and exploration science with the public is an essential part of the Directorate's work. As a small enclave of physical scientists at a NASA Center that otherwise emphasizes human space operations and engineering, the ARES staff is frequently called upon by the JSC Public Affairs and Education offices to provide presentations and interviews. Scientists and staff actively volunteer with the JSC Speaker's Bureau, Digital Learning Network, and National Engineers Week programs as well as at Space Center Houston activities and events. The education team also participates in many JSC educator and student workshops, including the Pre-Service Teacher Institute and the Texas Aerospace Scholars program, with workshop presentations, speakers, and printed materials.
NASA Astrophysics Data System (ADS)
Graff, P. V.; Stefanov, W. L.; Willis, K.; Runco, S.
2012-12-01
Scientists, science experts, graduate and even undergraduate student researchers have a unique ability to inspire the next generation of explorers. These science, technology, engineering, and mathematics (STEM) experts can serve as role models for students and can help inspire them to consider future STEM-related careers. They have an exceptional ability to instill a sense of curiosity and fascination in the minds of students as they bring science to life in the classroom. Students and teachers are hungry for opportunities to interact with scientists. They feel honored when these experts take time out of their busy day to share their science, their expertise, and their stories. The key for teachers is to be cognizant of opportunities to connect their students with scientists. For scientists, the key is to know how to get involved, to have options for participation that involve different levels of commitment, and to work with educational specialists who can help facilitate their involvement. The Expedition Earth and Beyond (EEAB) Program, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students by getting them actively involved with NASA exploration, discovery, and the process of science. One of the main goals of the program is to facilitate student research in the classroom. The program uses astronaut photographs, provided through the ARES Crew Earth Observations (CEO) payload on the International Space Station (ISS) as the hook to help students gain an interest in a research topic. Student investigations can focus on Earth or involve comparative planetology. Student teams are encouraged to use additional imagery and data from Earth or planetary orbital spacecraft, or ground-based data collection tools, to augment the astronaut photography dataset. A second goal of the program is to provide opportunities for meaningful connections between scientists and classrooms. To do this, EEAB offers multiple opportunities for scientist involvement. One opportunity involves having scientists work as mentors for student teams conducting research. These student teams, ranging from grades 4 through 12, are able to obtain guidance, suggestions, and input from STEM experts as they conduct a research investigation. Another opportunity for scientist involvement is participation in Classroom Connection Distance Learning (DL) events. These DL events entail interactive and engaging presentations that enable STEM experts to share their expertise with students and teachers (grades 3 through 12) from all across the nation. A third opportunity for scientist involvement involves participation in virtual student team science presentations. Student teams have the opportunity to share their research and results by presenting it to science experts through the use of WebEx, an easy-to-use online conferencing tool. The impact STEM experts have on students in today's classrooms is powerful. They serve as role models to these students, and they open students' eyes to a potential career path they may not have known existed otherwise. The more scientists and STEM experts we can connect with students, the greater the impact we can make as we strive to inspire and prepare our nation's next generation of explorers.
NASA Technical Reports Server (NTRS)
Graff, Paige; Stefanov, William; Willis, Kim; Runco, Susan
2012-01-01
Scientists, science experts, graduate and even undergraduate student researchers have a unique ability to inspire the next generation of explorers. These science, technology, engineering, and mathematics (STEM) experts can serve as role models for students and can help inspire them to consider future STEM-related careers. They have an exceptional ability to instill a sense of curiosity and fascination in the minds of students as they bring science to life in the classroom. Students and teachers are hungry for opportunities to interact with scientists. They feel honored when these experts take time out of their busy day to share their science, their expertise, and their stories. The key for teachers is to be cognizant of opportunities to connect their students with scientists. For scientists, the key is to know how to get involved, to have options for participation that involve different levels of commitment, and to work with educational specialists who can help facilitate their involvement. The Expedition Earth and Beyond (EEAB) Program, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students by getting them actively involved with NASA exploration, discovery, and the process of science. One of the main goals of the program is to facilitate student research in the classroom. The program uses astronaut photographs, provided through the ARES Crew Earth Observations (CEO) payload on the International Space Station (ISS) as the hook to help students gain an interest in a research topic. Student investigations can focus on Earth or involve comparative planetology. Student teams are encouraged to use additional imagery and data from Earth or planetary orbital spacecraft, or ground-based data collection tools, to augment the astronaut photography dataset. A second goal of the program is to provide opportunities for meaningful connections between scientists and classrooms. To do this, EEAB offers multiple opportunities for scientist involvement. One opportunity involves having scientists work as mentors for student teams conducting research. These student teams, ranging from grades 4 through 12, are able to obtain guidance, suggestions, and input from STEM experts as they conduct a research investigation. Another opportunity for scientist involvement is participation in Classroom Connection Distance Learning (DL) events. These DL events entail interactive and engaging presentations that enable STEM experts to share their expertise with students and teachers (grades 3 through 12) from all across the nation. A third opportunity for scientist involvement involves participation in virtual student team science presentations. Student teams have the opportunity to share their research and results by presenting it to science experts through the use of WebEx, an easy-to-use online conferencing tool. The impact STEM experts have on students in today s classrooms is powerful. They serve as role models to these students, and they open students eyes to a potential career path they may not have known existed otherwise. The more scientists and STEM experts we can connect with students, the greater the impact we can make as we strive to inspire and prepare our nation s next generation of explorers.
Engaging with science: High school students in summer lab internships
NASA Astrophysics Data System (ADS)
Bequette, Marjorie Bullitt
Years of research and rhetoric have suggested that students should be given the opportunity to work with practicing scientists as a way to develop more sophisticated ideas about the nature of science, yet little research about these experiences exists. This project uses a case study approach to examine the experience of eight high school students working part-time during one summer as research assistants in biomedical laboratories. The students completed small research studies under the supervision of scientist-mentors. This dissertation explores questions related to how these students learned to work in a lab, in what ways they grew to understand this scientific context, and how their own relationships with science changed. The goal of looking at these young adults' summer experiences in science labs is to make suggestions for three settings: programs like this one, where high school students work closely with scientists in lab settings; other programs where scientists and students work together; and science education more generally. Analysis of pre- and post-interviews with students, and extensive observations of their laboratory work, suggests that students develop new ideas about the culture of science and the day-to-day workings of the labs. These ideas hold potential power for the students, and other participants in both similar and different educational settings, as they prepare for lives as scientifically engaged adults.
ERIC Educational Resources Information Center
Erickson, Judith B.; And Others
1980-01-01
Discusses patterns resulting from the monitor of science education proposals which may reflect problems or differing perceptions of NSF. Discusses these areas: proposal submissions from two-year institutions and social and behavioral scientists, trends in project content at the academic-industrial interface and in computer technology, and…
The scientist's education and a civic conscience.
Donald, Kelling J; Kovac, Jeffrey
2013-09-01
A civic science curriculum is advocated. We discuss practical mechanisms for (and highlight the possible benefits of) addressing the relationship between scientific knowledge and civic responsibility coextensively with rigorous scientific content. As a strategy, we suggest an in-course treatment of well known (and relevant) historical and contemporary controversies among scientists over science policy or the use of sciences. The scientific content of the course is used to understand the controversy and to inform the debate while allowing students to see the role of scientists in shaping public perceptions of science and the value of scientific inquiry, discoveries and technology in society. The examples of the activism of Linus Pauling, Alfred Nobel and Joseph Rotblat as scientists and engaged citizens are cited. We discuss the role of science professors in informing the social conscience of students and consider ways in which a treatment of the function of science in society may find, coherently, a meaningful space in a science curriculum at the college level. Strategies for helping students to recognize early the crucial contributions that science can make in informing public policy and global governance are discussed.
Amazing Muses of Science: An Interdisciplinary Project Creates Awareness of Female Scientists
ERIC Educational Resources Information Center
Carson, Beverly
2016-01-01
This article describes an interdisciplinary project that created awareness of female scientists in a public Montessori classroom. Every spring, the author's sixth-grade students write an educational play in which the entire class participates. Following an underwhelming response to asking students who are their favorite female scientists, the…
Industry is Largest Employer of Scientists
ERIC Educational Resources Information Center
Chemical and Engineering News, 1977
1977-01-01
Cites statistics of a National Science Foundation report on scientists and engineers in 1974. Reports that chemists are better educated, older, have a better chance of being employed, and do more work for industry, than other scientific personnel. (MLH)
"A Scientist Has Many Things to Do:" EPO Strategies that Focus on the Processes of Science
NASA Astrophysics Data System (ADS)
Laursen, S. L.; Brickley, A. L.
2011-09-01
Scientists' effort in education and public outreach (EPO) is best invested in sharing their expertise on the nature and processes of science - the "understandings of science" that are emphasized in the National Science Education Standards, but that are difficult to teach and poorly supported by existing curricular materials. These understandings address the intellectual process of science - posing questions, gathering and interpreting evidence - and the social process of science as a human endeavor for building knowledge. We share several ways of incorporating concepts about the nature and processes of science into EP/O activities and making them focal points in their own right. Hands-on activities used at science festivals and in classrooms and professional development workshops illustrate key scientific thinking skills such as observing, classifying, making predictions, and drawing inferences. A more comprehensive approach is exemplified by Upward and Outward: Scientific Inquiry on the Tibetan Plateau, a 20-minute educational documentary film for school science classrooms and teacher professional development. The film portrays the intellectual and human processes of science through an inside view of a research project; classroom assessments offer evidence of its impact on students' ideas about these processes.
NASA Astrophysics Data System (ADS)
Offerdahl, E. G.; Prather, E. E.; Slater, T. F.
2003-12-01
As teachers strive to improve the way science is taught in the classroom, many are turning to the interdisciplinary science of astrobiology as a way integrate inquiry effectively in the science classroom. However, it is generally recognized that teachers do not often have easy access to understandable and usable cutting-edge science to enrich their science lessons. Through the generous support of the NASA Astrobiology Institute (NAI), middle and high school teachers have the opportunity to learn current and provocative scientific results within the context of astrobiology as well as receive training in pedagogically sound methods of incorporating astrobiology appropriately in the classroom. In Astrobiology for Teachers, a 15-week on-line distance learning course co-sponsored by NAI, the National Science Teachers Association (NSTA) Professional Development Institute, National Teachers Enhancement Network (NTEN), Montana State University, and the Department of Astronomy at University of Arizona, teachers engage in a virtual classroom facilitated by an integrated teaching team of educators and scientists using a standards-based, inquiry curriculum. The collaborative nature of the course encourages, demonstrates, and enhances a professional exchange among scientists and educators which, in turn, fosters implementation of innovative science teaching in today's classroom.
Global Change Research Related to the Earth's Energy and Hydrologic Cycle
NASA Technical Reports Server (NTRS)
1998-01-01
The Institute for Global Change Research and Education (IGCRE) is a joint initiative of the Universities Space Research Association (USRA) and the University of Alabama in Huntsville (UAH) for coordinating and facilitating research and education relevant to global environmental change. Created in 1992 with primary support from the National Aeronautics and Space Administration (NASA), IGCRE fosters participation by university, private sector and government scientists who seek to develop long-term collaborative research in global change science, focusing on the role of water and energy in the Earth's atmosphere and physical climate system. IGCRE is also chartered to address educational needs of Earth system and global change science, including the preparation of future scientists and training of primary and secondary education teachers.
Ice Stories: Engaging Polar Scientists as Field Correspondents for IPY
NASA Astrophysics Data System (ADS)
Miller, M. K.
2006-12-01
The International Polar Year (IPY 2007-09) gives the public, teachers, and students an extraordinary opportunity to experience the process of scientific discovery in action. The Exploratorium, working in partnership with international scientists at both poles, will create educational resources for museum and online visitors that celebrate life, legacy and science in the world's polar regions. In this session, Senior Science Producer Mary Miller will discuss the Exploratorium's proposed IPY project, Ice Stories. This unique educational project will provide a public face for IPY by using the power of contemporary media to bring current research to mass audiences with unprecedented intimacy and immediacy. Ice Stories includes: a media-rich, dynamic and continuously updated public Web site; a media-assets database for journalists, media producers, educators, and museum partners; a training program in media production and story-telling for polar scientists Ice Stories provides the public with access to IPY research through the development of a network of Exploratorium-trained polar field correspondents. It makes use of the design, education and production capacity of an informal science center to create a bridge between scientific discovery and interested members of the public. Ice Stories employs sophisticated media production and communication technology as well as strong partnerships with allied research groups and with scientists and international organizations at the poles. The Exploratorium has pioneered in translating current science research into exhibits and presentations accessible to museum and Web audiences. It also has long experience creating award-winning Web sites, professional-development workshops, community outreach, and institutional alliances.
NASA Astrophysics Data System (ADS)
Manning, C.; Buhr, S. M.
2012-12-01
The Next Generation Science Standards attempt to move the American K12 education system into the 21st century by focusing on science and engineering practice, crosscutting concepts, and the core ideas of the different disciplines. Putting these standards into practice will challenge a deeply entrenched system and science educators will need significant financial support from state and local governments, professional development from colleges and universities, and the creation of collegial academic networks that will help solve the many problems that will arise. While all of this sounds overwhelming, there are proven strategies and mechanisms already in place. Educators who tackle challenging topics like global climate change are turning to scientists and other like-minded teachers. Many of these teachers have never taken a class in atmospheric science but are expected to know the basics of climate and understand the emerging science as well. Teachers need scientists to continue to reach out and provide rigorous and in-depth professional development opportunities that enable them to answer difficult student questions and deal with community misconceptions about climate science. Examples of such programs include Earthworks, ICEE (Inspiring Climate Education Excellence) and ESSEA (Earth System Science Education Alliance). Projects like CLEAN (Climate Literacy and Energy Awareness Network) provide excellent resources that teachers can integrate into their lessons. All of these benefit from the umbrella of documents like Climate Literacy: The Essential Principles of Climate Science. Support from the aforementioned networks has encouraged the development of effective approaches for teaching climate science. From the perspective of a Geoscience master teacher and instructional coach, this presentation will demonstrate how scientists, researchers, and science education professionals have created models for professional development that create long-term networks supporting teachers who are willing to change how science is being taught right now. There will be specific examples of clearly written, evidence-based tools that address the general public's lack of critical climate knowledge and help to identify and change students' misconceptions. Specific content areas that continue to be overlooked as "common knowledge" but that need to be addressed in both pre- and in-service teacher instruction, textbooks, and online resources will be identified.
Science Books for Professional Pleasure Reading
ERIC Educational Resources Information Center
Smith, Grinell
2008-01-01
In this article, the author presents a list of science books that will foster students' interest in science. Some books were suggested by scientists, science educators, and former students. Some came from an analogous list for science journalists compiled by Boyce Rensberger, director of the Knight Science Journalism Fellowship at MIT. Some are…
Summit of the Research Coordination Networks for Undergraduate Biology Education
ERIC Educational Resources Information Center
Eaton, Carrie Diaz; Allen, Deborah; Anderson, Laurel J.; Bowser, Gillian; Pauley, Mark A.; Williams, Kathy S.; Uno, Gordon E.
2016-01-01
The first summit of projects funded by the National Science Foundation's Research Coordination Networks for Undergraduate Biology Education (RCN-UBE) program was held January 14-16, 2016, in Washington, DC. Sixty-five scientists and science educators from 38 of the 41 Incubator and Full RCN-UBE awards discussed the value and contributions of RCNs…
ERIC Educational Resources Information Center
Aschbacher, Pamela; Li, Erika; Hammon, Art
2008-01-01
"Reading, Writing, and Rings!" was created by a team of elementary teachers, literacy experts, and scientists in order to integrate science and literacy. These free units bring students inside NASA's Cassini-Huygens mission to Saturn. The authors--a science teacher and education outreach specialist and two evaluators of educational programs--have…
Science and policy: valuing framing, language and listening.
Forbes, Stephen
2011-01-01
This paper considers the context for science contributing to policy development and explores some critical issues that should inform science advocacy and influence with policy makers. The paper argues that the key challenges are at least as much in educating conservation scientists and science communicators about society and policy making as they are in educating society and policy makers about science. The importance of developing processes to ensure that scientists and science communicators invest in the development of relationships based on respect and understanding of their audience in both communities and amongst policy makers provides a critical first step. The objectives of the Global Strategy for Plant Conservation acknowledge the importance of developing the capacities and public engagement necessary to implement the Strategy, including knowledge transfer and community capacity building. However, the development of targets to equip institutions and plant conservation professionals to explicitly address the barriers to influencing policy development through knowledge transfer and integration require further consideration.
NASA Astrophysics Data System (ADS)
Gardiner, L. S.; Hatheway, B.; Rogers, J. D.; Casey, J. G.; Lackey, G.; Birdsell, D.; Brown, K.; Polmear, M.; Capps, S.; Rosenblum, J.; Sitterley, K.; Hafich, K. A.; Hannigan, M.; Knight, D.
2015-12-01
The AirWaterGas Teacher Professional Development Program, run by the UCAR Center for Science Education, brought together scientists and secondary science teachers in a yearlong program culminating in the development of curriculum related to the impacts of unconventional oil and gas development. Graduate students and research scientists taught about their research area and its relationship to oil and gas throughout three online courses during the 2015-16 school year, during which teachers and scientists engaged in active online discussions. Topics covered included climate change, oil and gas infrastructure, air quality, water quality, public health, and practices and policies relating to oil and gas development. Building upon their initial online interactions and a face-to-face meeting in March, teachers were paired with appropriate AirWaterGas team members as science advisors during a month-long residency in Boulder, Colorado. During the residency, graduate student scientists provided resources and feedback as teachers developed curriculum projects in collaboration with each other and UCAR science educators. Additionally, teachers and AirWaterGas researchers shared experiences on an oil and gas well site tour, and a short course on drilling methods with a drilling rig simulator. Here, we share lessons learned from both sides of the aisle, including initial results from program assessment conducted with the participating teachers.
Who trusts scientists for information about climate change? Nuclear power? Vaccines?
NASA Astrophysics Data System (ADS)
Hamilton, L.
2015-12-01
US public acceptance/rejection of science on the topic of climate change has become highly polarized, with a demographic profile well established through survey research. Trust in scientists for information about climate change tends to increase with education, decrease with age, and is higher among self-identified liberals and moderates than among conservatives. Demographic profiles of people who do or do not trust scientists regarding other disputed topics are less well established. Some observers have argued that certain domains such as vaccines, nuclear power or genetically modified organisms (GMOs) could present a mirror image of climate change, with liberals instead of conservatives disproportionately rejecting science on that topic. Evidence for this mirror-image hypothesis has been mainly anecdotal, however. Here we test it systematically using statewide survey data on more than 1200 interviews, comparing five similarly worded questions that ask respondents whether they trust, don't trust, or are unsure about scientists as a source of information about ... climate change, vaccines, evolution, nuclear power safety, or GMOs. Climate change proves to be the most polarized of these topics, but all five exhibit roughly similar age, education and ideological effects -- contrary to the mirror-image hypothesis. The common patterns across five science domains, chosen for their hypothetical contrasts, map out an unexpectedly cohesive picture of who trusts scientists for information, and who does not. Implications of these survey results for public outreach and science communication are explored.
AGU scientists urge Congress to invest in research and science education
NASA Astrophysics Data System (ADS)
Rothacker, Catherine
2012-10-01
With the "fiscal cliff" of sequestration drawing closer and threatening to hit basic science research funding with an 8.2% cut, according to an estimate by the Office of Management and Budget, congressional compromise on a budget plan is more urgent than ever. To discuss the value of scientific research and education with their senators and representatives, 55 Earth and space scientists from 17 states came to Washington, D. C., on 11-12 September to participate in the fifth annual Geosciences Congressional Visits Day sponsored by AGU and six other geoscience organizations. Although their specialties varied from space weather to soil science, the scientists engaged members of Congress and their staff in a total of 116 meetings to discuss a common goal: securing continued, steady investment in the basic scientific research that allows scientists to monitor natural hazards, manage water and energy resources, and develop technologies that spur economic growth and job creation. To make the most of these visits on 12 September, participants attended a training session the previous day, during which they learned about the details of the policy- making process and current legislative developments and practiced conducting a congressional meeting. Congressional Science Fellows, including past AGU fellow Rebecca French, described their experiences as scientists working on Capitol Hill, and White House policy analyst Bess Evans discussed the president's stance on sequestration and funding scientific research.
NASA Astrophysics Data System (ADS)
Patchen, Terri; Smithenry, Dennis W.
2015-02-01
Researchers have theorized that integrating authentic science activities into classrooms will help students learn how working scientists collaboratively construct knowledge, but few empirical studies have examined students' experiences with these types of activities. Utilizing data from a comparative, mixed-methods study, we considered how integrating a complex, collaborative participant structure into a secondary school chemistry curriculum shapes students' perceptions of what constitutes "science." We found that the implementation of this participant structure expanded student perceptions of chemistry learning beyond the typical focus on science content knowledge to include the acquisition of collaboration skills. This support for the collaborative construction of knowledge, in addition to the appropriation of scientific content, establishes the conditions for what science educators and scientists say they want: students who can work together to solve science problems. Radical shifts towards such collaborative participant structures are necessary if we are to modify student perceptions of science and science classrooms in ways that are aligned with recent calls for science education reform.
NASA Astrophysics Data System (ADS)
Courville, Z.; Haynes, R.; DeFrancis, G.; Koh, S.; Ringelberg, D.
2012-12-01
Outreach informed by scientific research plays an important role in fostering interest in science by making science and scientists accessible, fun, and interesting. Developing an interest in science in young, elementary-aged students through outreach is a rewarding endeavor for researchers, in that audiences are usually receptive, requirements for broader impacts are met, and bonds are formed between researchers and members of their local and surrounding communities. Promoting such interest among young students is imperative not only for an individual researcher's own self interest, but also for the strength of American science and innovation moving forward, and is the responsibility of the current generation of scientists. Developing genuine and successful inquiry-based, hands-on activities for elementary-aged students is outside the expertise of many researchers. Partnering with an informal education learning center (i.e. science museum or after-school program) provides researchers with the expertise they might be lacking in such endeavors. Here, we present a series of polar-, engineering- and microbiology-themed hands-on activities that have been developed by researchers at a government lab in partnership with a local science museum. Through a series of workshops, the science education staff at the museum provided researchers with background and instruction on inquiry and hands-on activities, and then collaborated with the researchers to develop activities which were later demonstrated at the museum to museum-goers. Education staff provided feedback about the presentation of the activities for further refinement. The program provided an opportunity for researchers to develop fun, on-target and age-appropriate science activities for elementary-aged students, an audience for outreach, and enabled general public audiences the chance to interact with researchers and scientists in an informal setting.
Antoni Quintana-Mari (1907-1998): A Pioneer of the Use of History of Science in Science Education
ERIC Educational Resources Information Center
Roca-Rosell, Antoni; Grapi-Vilumara, Pere
2010-01-01
In the early 1930s, the young Antoni Quintana-Mari undertook some research on Antoni de Marti i Franques, one of the most prominent Catalan scientists of the Enlightenment. This scientist worked in Tarragona, where Quintana-Mari lived. Quintana-Mari learnt about Marti i Franques from Josep Estalella, his teacher of physics and chemistry at the…
NASA Astrophysics Data System (ADS)
Kusek, K. M.; Freitag, K.; Devey, C.
2005-12-01
The Science Writer-at-Sea program is one small step in a marathon need for improved coverage of science and environmental issues. It targets two significant links in the Earth science communication pipeline: marine scientists and journalists; and attempts to reconnect people with the Earth by boosting their understanding of Earth science and its relevance to society. How it works: Journalism graduate students are invited to participate in oceanographic expeditions affiliated with InterRidge, an international organization dedicated to promoting ocean ridge research. InterRidge's outreach coordinator and science writer prepares each student for the expedition experience using materials she developed based on years of at-sea reporting. The students work side-by-side with the science writer and the scientists to research and write innovative journalistic stories for a general audience that are featured on a uniquely designed multimedia website that includes videos and images. The science, journalism and public communities benefit from this cost-effective program: science research is effectively showcased, scientists benefit from interactions with journalists, science outreach objectives are accomplished; student journalists enjoy a unique hands-on, `boot camp' experience; and the website enhances public understanding of `real' Earth science reported `on scene at sea.' InterRidge completed its first pilot test of the program in August 2005 aboard a Norwegian research cruise. A student writer entering the science journalism program at Columbia University participated. The results exceeded expectations. The team discovered the world's northernmost vent fields on the cruise, which expanded the original scope of the website to include a section specifically designed for the international press. The student was inspired by the cruise, amazed at how much she learned, and said she entered graduate school with much more confidence than she had prior to the program. The site, translated into German, and is being showcased in a museum in Germany. Given the great response from a diverse suite of reviewers, the team is now pursuing long term funding; additional partners in the science, education and journalism communities; and partnerships with marine science and education magazines.
ERIC Educational Resources Information Center
Cargill, Margaret; O'Connor, Patrick; Li, Yongyan
2012-01-01
As is the worldwide trend, scientists in China face strong and increasing pressure to publish their research in international peer-reviewed journals written in English. There is an acute need for graduate students to develop the required language skills alongside their scientific expertise, in spite of the distinct division currently existing…
ERIC Educational Resources Information Center
Smith, Emma
2017-01-01
A "crisis account" of shortages of well-qualified scientists, engineers, mathematicians and technologists has shaped education policy in the UK and the USA for decades. The apparent poor quality of school science education along with insufficient numbers of well-qualified teachers have been linked to skills shortages by government and…
Education and Professional Outreach as an Integrated Component of Science and Graduate Education
NASA Astrophysics Data System (ADS)
Staudigel, H.; Koppers, A. A.
2007-12-01
Education and Professional Outreach (EPO) is increasingly becoming a substantive and much needed activity for scientists. Significant efforts are expended to satisfy funding agency requirements, but such requirements may also develop into a mutually beneficial collaboration between scientists and K-16 educators with a minimal impact on science productivity. We focus here on two particularly high impact EPO opportunities, hosting of high school interns and the inclusion of an educational component to a graduate student's&pthesis work. We emphasize the importance of hands-on collaboration with teachers and teacher-educators, and the substantive benefits of highly leveraged customized internet-distribution. We will present two examples for how we integrated this K-12 EPO into our university-based science and education efforts, what types of products emerged from these activities, and how such products may be widely produced by any scientist and disseminated to the educational community. High school seniors offer a unique resource to university EPO because some of them can substantively contribute to the science, and they can be very effective peer-mentors for high and middle schools. Extended internships may be built easily into the schedule of many senior high school student programs, and we were able to involve such interns into a three-week seagoing expedition. The seniors were responsible for our EPO by maintaining a cruise website and video conferencing with their high school. They added substantially to the science outcome, through programming and participating in a range of shipboard science chores. Graduate theses may be augmented with an educational component that places the main theme of the thesis into an educational setting. We designed and supervised such a Master's graduate thesis with an educational component on the geochronology of hot spot volcanoes, including a high school lesson plan, enactment in the classroom and preparation of a wide range of web resources for K-12 education. While we feel that the process of EPO itself has been rewarding, it is particularly important enhance its impact by focusing on the production of high quality educational resources (illustrations, data or text) that can be (re-) used in other of educational applications. The Enduring Resources for Earth Science Education (ERESE) initiative offers such a method of archival in a digital library (NSDL) and dissemination of these materials through the use of resource matrices and rich metadata that allows discovery through web browsers.
NASA Astrophysics Data System (ADS)
Peach, C. L.; Franks, S. E.
2004-12-01
Tackling the broader impact section of a research proposal need not be a dilemma that "rears its ugly head" with each proposal deadline. By investing in partnerships with informal science education (ISE) organizations, researchers can establish a foundation for efficient, high quality, research-based educational outreach (EO) that can help them fulfill their broader impact obligations for years to come. Just as an interdisciplinary research project requires collaboration among scientists from a variety of disciplines, a research project with exemplary EO requires partnerships with those who specialize in science education. By engaging in such partnerships scientists gain access to professionals who have expertise in translating research topics into concept-centered programs, exhibits and online resources, and to the diverse student, teacher and public audience reached through ISE. By leveraging the intellectual and material resources of researchers and educators, these potentially long-lived relationships provide an efficient and effective means for achieving broader impact. Ultimately, the efficacy of this investment strategy depends on relieving the researcher of the time consuming burden of seeking out appropriate partners, initiating partnerships and conferring with science educators on potential projects. Recognizing this barrier to scientists' participation, the California Center for Ocean Sciences Education Excellence (CACOSEE) has adopted a unique approach - one in which CACOSEE serves primarily as a catalyst and facilitator of researchers EO activities rather than as an EO provider. We have apprised ourselves of the programs, interests and needs of a carefully selected group of ISE organizations and used this information as the basis for creating a spectrum of EO opportunities for researchers. These options are flexible, scalable and easily customized to fit the research interests, time constraints and budgetary limitations of any researcher. Through e-mail and personal inquiry we actively recruit PIs who are contemplating or preparing proposals. We rapidly review the research proposed, assess the PIs' goals and preferences with respect to broader impact, and present them with a small number of well fitting options. PIs then indicate their preferences, and we make the necessary connections with individuals and organizations, write/edit the relevant proposal text, budgets, justifications, work plans, support letters, coordinate with the responsible business offices, and make sure that both the PIs and the education partners are happy with the final plan. Business is flourishing as are the scientist-educator partnerships catalyzed through COSEE. As the COSEE network matures, these catalytic activities are rapidly becoming a national network effort. An unanticipated outcome of our work is that our initial "brokering" sometimes ignites scientist-educator interactions that expand and propagate without additional effort on our part and in some cases even without our knowledge. So, while catalyzing long-lived partnerships has always been our goal, we are excited and motivated by this phenomenon that we hope will one day be a hallmark of a transformed academic culture in which scientists' investments in educational outreach have ever higher returns.
Michael Polanyi on the Education and Knowledge of Scientists
NASA Astrophysics Data System (ADS)
Jacobs, Struan
Rich in insights, groundbreaking in its interpretations, Personal Knowledge deserves to be better known. Modestly contributing to this end, the present paper explains why teachers addressing the nature of science should spend time on Polanyi. Outlining his intellectual career (from medicine to the cutting edge of chemical research, to the analysis of science and society), his ideas on education of scientists, on research and knowledge are then examined. Much of what he found in science - personal knowledge, intellectual passion, faith, trust, tacit understanding, method rules embodied in practice but seldom amenable to formulation - contradicted the orthodox understanding of it. He presaged Kuhn, Feyerabend, and the constructivists, yet insisted that science produces true knowledge about reality. Tension between tradition and innovation characterizes Polanyi's thought, as it does Polanyian scientific research.
Earthworks: Educating Teachers in Earth System Sciences
NASA Technical Reports Server (NTRS)
Spetzler, H.; Weaver, A.; Buhr, S.
2000-01-01
Earthworks is a national community of teachers and scientists. Initiated in 1998 with funding from NASA, our summer workshops in the Rocky Mountains each year provide unique opportunities for teachers to design and conduct field research projects, working closely with scientists. Teachers then develop plans for classroom implementation during the school year, sharing their ideas and experiences with other community members through e-mail and a listserv. Scientists, from graduate students to expert senior researchers, share their knowledge of field methods in environmental science, and learn how to better communicate and teach about their research.
NASA Technical Reports Server (NTRS)
Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.; McCollum, T.; Baker, M.; Lindgren, C.; Mailhot, M.
2011-01-01
Classroom teachers are challenged with engaging and preparing today s students for the future. Activities are driven by state required skills, education standards, and high-stakes testing. Providing educators with standards-aligned, inquiry-based activities that will help them engage their students in student-led research in the classroom will help them teach required standards, essential skills, and help inspire their students to become motivated learners. The Astromaterials Research and Exploration Science (ARES) Education Program, classroom educators, and ARES scientists at the NASA Johnson Space Center created the Expedition Earth and Beyond education program to help teachers promote student-led research in their classrooms (grades 5-14) by using NASA data, providing access to scientists, and using integrated educational strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keever, J.R.
1994-12-31
Fundamental change in K-12 science education in the United States, essential for full citizenship in an increasingly technological world, will take a decade or more to accomplish, and only the sustained, cooperative efforts of people in their own communities -- scientists, teachers, and concerned citizens -- will likely ensure success. These were among the themes at Sigma Xi`s national K-12 science education forum.
Free Workshop for Teachers at the 2013 AGU Fall Meeting
NASA Astrophysics Data System (ADS)
Tamalavage, Anne
2013-10-01
In keeping with its commitment to fostering the next generation of Earth and space scientists, AGU is partnering with the National Earth Science Teachers Association to hold the annual Geophysical Information for Teachers (GIFT) workshop at the 2013 AGU Fall Meeting. GIFT allows K-12 science educators (both classroom and informal) to hear from scientists about their latest Earth and space science research, explore new classroom resources for engaging students, and visit exhibits and technical sessions during the Fall Meeting.
Geoscientist/Educator Partnerships at the University of Colorado: Strategies and Examples
NASA Astrophysics Data System (ADS)
Buhr, S. M.; Hare, J.; Healy, G.
2005-05-01
According to a study about the factors that engage and hinder scientists' involvement in education and outreach (Andrews et.al., 2005), the presence of a dedicated outreach coordinator who can provide a point of contact and lessen the burden on scientists is one of the keys to success. For the past nine years, research scientists at the Cooperative Institute for Research in Environmental Sciences (CIRES) have worked in partnership with just such a coordinating team, the CIRES Education and Outreach group. As funding agency emphasis on education and social impacts has increased, so have the opportunities to develop educational projects intrinsically linked to current geoscience research. One such effort is Ocean Interactions, a project which began as a ship-shore student communication opportunity at the initiation of the researcher. The roles of each contributor to the partnership will be described, along with the framework through which CIRES supports scientist/educator partnerships of this sort. Andrews, Elisabeth, Alexandra Weaver, Daniel Hanley, Jeff Hovermill, Ginger Melton. 2005. "Scientists and Public Outreach: Participation, Motivations and Impediments." Journal of Geoscience Education in press May 2005.
Picture the Atmosphere: Adding the Arts to Weather, Climate, and Air Quality Learning Experiences
NASA Astrophysics Data System (ADS)
Gardiner, L. S.; Hatheway, B.; Ristvey, J. D., Jr.; Kirn, M.
2017-12-01
This presentation will highlight projects that connect visual arts and atmospheric science education - profiling varied strategies designed to help learners of all ages grow their understanding of weather, climate, and air quality with connections to the arts including (1) ways of combining art and geoscience in K-12 education, (2) methods of using art to communicate about science in museum exhibits and the web, and (3) opportunities for fostering a dialog between artists, geoscientists, and the public. For K-12 education, we have developed classroom resources that incorporate the arts in science learning in ways that help students grow their observational skills. Making observations of the environment is a skill that many artists and scientist share, although the observations are for different purposes. Emphasizing the observational skills that both artists and scientists use provides additional pathways for students to understand geoscience. For informal education, we have developed museum exhibits and content for websites and social media that utilize visual art and illustration to facilitate science communication. This allows explanation of atmospheric phenomena and processes that are too small to see, such as greenhouse gases trapping heat or ozone formation, or too large to see such as global atmospheric circulation. These illustrations also help connect with audiences that are not often drawn to geoscience. To foster a dialog between artists, geoscientists, and the public, we host temporary exhibits and public events at the National Center for Atmospheric Research Mesa Lab in Boulder, Colorado, that feature numerous exhibits highlighting connections between art and atmospheric science. This provides innovative opportunities for science education and communication and a forum for conversations between artists and scientists that provides people with different ways of exploring and describing the Earth to find common ground.
Developing School-Scientist Partnerships: Lessons for Scientists from Forests-of-Life
NASA Astrophysics Data System (ADS)
Falloon, Garry; Trewern, Ann
2013-02-01
The concept of partnerships between schools and practicing scientists came to prominence in the United States in the mid 1980s. The call by government for greater private sector involvement in education to raise standards in science achievement saw a variety of programmes developed, ranging from short-term sponsorships through to longer-term, project-based interactions. Recently, school-scientist partnerships (SSPs) have been rekindled as a means of assisting schools to motivate and inspire students in science, improve levels of teachers' science knowledge, and increase awareness of the type and variety of career opportunities available in the sciences (Rennie and Howitt, 2009). This article summarises research that used an interpretive case study method to examine the performance of a two-year SSP pilot between a government-owned science research institute, and 200 students from two Intermediate (years 7 and 8) schools in New Zealand. It explored the experiences of scientists involved in the partnerships, and revealed difficulties in bridging the void that existed between the outcomes-driven, commercially-focused world of research scientists, and the more process-oriented, tightly structured, and conservative world of teachers and schools. Findings highlight the pragmatic realities of establishing partnerships, from the perspective of scientists. These include acute awareness of the nature of school systems, conventions and environments; the science, technological and pedagogical knowledge of teachers; teacher workload issues and pressures, curriculum priorities and access to science resources. The article identifies areas where time and effort should be invested to ensure successful partnership outcomes.
Real Science, Real Learning: Bridging the Gap Between Scientists, Educators and Students
NASA Astrophysics Data System (ADS)
Lewis, Y.
2006-05-01
Today as never before, America needs its citizens to be literate in science and technology. Not only must we only inspire a new generation of scientists and engineers and technologists, we must foster a society capable of meeting complex, 21st-century challenges. Unfortunately, the need for creative, flexible thinkers is growing at a time when our young students are lagging in science interest and performance. Over the past 17 years, the JASON Project has worked to link real science and scientists to the classroom. This link provide viable pipeline to creating the next generation scientists and researchers. Ultimately, JASON's mission is to improve the way science is taught by enabling students to learn directly from leading scientists. Through partnerships with agencies such as NOAA and NASA, JASON creates multimedia classroom products based on current scientific research. Broadcasts of science expeditions, hosted by leading researchers, are coupled with classroom materials that include interactive computer-based simulations, video- on-demand, inquiry-based experiments and activities, and print materials for students and teachers. A "gated" Web site hosts online resources and provides a secure platform to network with scientists and other classrooms in a nationwide community of learners. Each curriculum is organized around a specific theme for a comprehensive learning experience. It may be taught as a complete package, or individual components can be selected to teach specific, standards-based concepts. Such thematic units include: Disappearing Wetlands, Mysteries of Earth and Mars, and Monster Storms. All JASON curriculum units are grounded in "inquiry-based learning." The highly interactive curriculum will enable students to access current, real-world scientific research and employ the scientific method through reflection, investigation, identification of problems, sharing of data, and forming and testing hypotheses. JASON specializes in effectively applying technology in science education by designing animated interactive visualizations that promote student understanding of complex scientific concepts and systems (Rieber, 1990, 1996). JASON's experience in utilizing the power of simulation technology has been widely recognized for its effectiveness in exciting and engaging students in science learning by independent evaluations of JASON's multimedia science curriculum (Ba et al., 2001; Goldenberg et al., 2003). The data collected indicates that JASON's science products have had a positive impact on students' science learning, have positively influenced their perceptions of scientists and of becoming scientists, and have helped diverse students grasp a deeper understanding of complex scientific content, concepts and technologies.
Fermilab Science Education Office - Educators/Teachers
Search Professional Development and Research Opportunities Prepare for NGSS/Work with Scientists Professional Development Teacher Workshops and Scholarships Teacher Resource Center Research Opportunities TRAC
Bringing Space Scientists, Teachers, and Students Together With The CINDI E/PO Program
NASA Astrophysics Data System (ADS)
Urquhart, M.; Hairston, M.
2007-12-01
We will report on the activities, challenges, and successes of the ongoing collaboration between the William B. Hanson Center for Space Sciences (CSS) and the Department of Science/Mathematics Education (SME) at the University of Texas at Dallas. At the core of our partnership is the Education and Public Outreach program for the Coupled Ion / Neutral Dynamics Investigation (CINDI) instrument. CINDI is a NASA-funded program on the Air Force's Communication / Navigation Outage Forecast Satellite (C/NOFS) which will be launched in summer 2008. The CSS faculty and research scientists and the SME faculty and students have created a dynamic program that brings scientists and K-12 teachers together. Our activities include middle and high school curriculum development, teachers workshops, graduate course work for teachers, creation of the popular "Cindi in Space" educational comic book, and bringing K-12 teachers and students to work and/or visit with the CINDI scientists. We will present the outcomes of this collaborative effort as well as our recent experience of having a physics teacher from a local high school as our Teacher in Residence at CSS in summer 2007.
Students' Experience in a General Chemistry Cooperative Problem Based Laboratory
ERIC Educational Resources Information Center
Sandi-Urena, Santiago; Cooper, Melanie M.; Gatlin, Todd A.; Bhattacharyya, Gautam
2011-01-01
Most educators and scientists would agree that science laboratory instruction has the potential of developing science practices fundamental to achieving scientific literacy. However, there is scant evidence to support that this potential is realized, particularly in tertiary level education. This paper reports qualitative results from a sequential…
Higher Geography Education in Bulgaria: Problems and Perspectives
ERIC Educational Resources Information Center
Vodenska, Maria
2004-01-01
Geography is a traditional subject in Bulgarian education, both secondary and higher. Some of the most eminent Bulgarian scientists were geographers and theirs are many publications dealing not only with geography, but also with history, economics, ethnology, ethnography, political science, urban science and other disciplines. Major changes have…
GPS: Geoscience Partnership Study
ERIC Educational Resources Information Center
Schuster, Dwight
2010-01-01
To promote and expand geoscience literacy in the United States, meaningful partnerships between research scientists and educators must be developed and sustained. For two years, science and education faculty from an urban research university and secondary science teachers from a large urban school district have prepared 11th and 12th grade…
Fermilab Friends for Science Education | Support Us
economy are driven by scientific and technological innovations. We want a strong future and must support our future scientists and their teachers now. We need a scientifically literate and aware society create new, innovative science education programs and make the best use of unique Fermilab resources
JR Live: Lessons Learned from Ship-to-Shore Interactions with the JOIDES Resolution
NASA Astrophysics Data System (ADS)
Cooper, S. K.
2016-02-01
Live ship-to-shore events have been conducted regularly from the International Ocean Discovery Program (IODP) research vessel JOIDES Resolution since 2009. These 45-minute events have reached thousands of students, educators and members of the general public with the JR's cutting edge science and technology and the excitement of discovery, science process and careers. Conducted by trained on-board Education/Outreach Officers on board the JR's two-month expeditions, the programs vary over time and have evolved with available technology. Each event incorporates collaboration between the Education Officer, scientists who are a part of the expedition science party, and requests from shore-side audiences. These collaborations have been successful in igniting interest among students and educators, providing scientists with outreach experiences and in meeting education standards and goals. Over the past six years, many lessons have been learned about procedures, technology, content, follow-up and impact. This session will share some of these lessons, identify opportunities for collaboration and engagement, and explore growth opportunities and directions.
NASA Astrophysics Data System (ADS)
Crane, N. L.
2004-12-01
Experiential learning, engaging students in the process of science, can not only teach students important skills and knowledge, it can also help them become connected with the process on a personal level. This study investigates the role that Inquiry-Driven Field-Based (IDFB) experiences (primarily field classes) in ocean science have on undergraduate science students' development as ocean scientists. Both cognitive (knowledge-based) and affective (motivation and attitude) measures most important to students were used as indicators of development. Major themes will be presented to illustrate how IDFB science experiences can enhance the academic and personal development of students of science. Through their active engagement in the process of science, students gain important skills and knowledge as well as increased confidence, motivation, and ability to plan for their future (in particular their career and educational pathways). This growth is an important part of their development as scientists; the IDFB experience provides them a way to build a relationship with the world of science, and to better understand what science is, what scientists do, and their own future role as scientists. IDFB experiences have a particularly important role in affective measures of development: students develop an important personal connection to science. By doing science, students learn to be scientists and to understand science and science concepts in context. Many underrepresented students do not have the opportunity to take IDFB classes, and addressing this access issue could be an important step towards engaging more underrepresented students in the field. The nature of IDFB experiences and their impact on students makes them a potentially important mechanism for retaining students in the geo-science `pipeline'.
Impact of Practice-Based Instruction on Graduate Programs in the Pharmaceutical Sciences.
ERIC Educational Resources Information Center
Schumacher, Gerald E.
1979-01-01
A practice- and science-based program of graduate education and scholarship for pharmaceutical science is proposed. Recommendations include the elimination of weak graduate programs, increased industrial support, and development of the clinical scientist. (SF)
Wang, Jack T. H.; Power, Cheryl J.; Kahler, Charlene M.; Lyras, Dena; Young, Paul R.; Iredell, Jonathan; Robins-Browne, Roy
2018-01-01
Science communication is a skill set to be developed through ongoing interactions with different stakeholders across a variety of platforms. Opportunities to engage the general public are typically reserved for senior scientists, but the use of social media in science communication allows all scientists to instantaneously disseminate their findings and interact with online users. The Communication Ambassador program is a social media initiative launched by the Australian Society for Microbiology to expand the online presence and science communication portfolios of early-career scientists. Through their participation in the program, a rotating roster of Australian microbiologists have broadened the online reach of the Society’s social media channels as well as their own professional networks by attending and live-tweeting microbiology events throughout the year. We present the Communication Ambassador program as a case study of coordinated social media activity in science communication to the general public, and describe the potential for its applications in science education and training. PMID:29904520
Wang, Jack T H; Power, Cheryl J; Kahler, Charlene M; Lyras, Dena; Young, Paul R; Iredell, Jonathan; Robins-Browne, Roy
2018-01-01
Science communication is a skill set to be developed through ongoing interactions with different stakeholders across a variety of platforms. Opportunities to engage the general public are typically reserved for senior scientists, but the use of social media in science communication allows all scientists to instantaneously disseminate their findings and interact with online users. The Communication Ambassador program is a social media initiative launched by the Australian Society for Microbiology to expand the online presence and science communication portfolios of early-career scientists. Through their participation in the program, a rotating roster of Australian microbiologists have broadened the online reach of the Society's social media channels as well as their own professional networks by attending and live-tweeting microbiology events throughout the year. We present the Communication Ambassador program as a case study of coordinated social media activity in science communication to the general public, and describe the potential for its applications in science education and training.
NASA Astrophysics Data System (ADS)
Hsu, Pei-Ling; Roth, Wolff-Michael
2010-05-01
Science educators often suggest that students should learn science in ways and settings that bear family resemblance with “the real thing.” Internship in science laboratories constitutes one such way in which students may learn science and learn about science. However, very little is known about how participants experience a science internship in an “authentic” science setting (i.e., a science laboratory). Our study was designed to understand the nature of participants’ experiences of “authentic science.” Participants included 11 high school students, one high school teacher, five laboratory technicians, and two scientists. High school students practiced science alongside technicians (young scientists) in real ongoing projects of a biology laboratory. Data sources include 19 semi-structured and video-recorded interviews held after the 2-month science internship. Drawing on phenomenographic method, we identified five categories of experiential descriptions: (a) authenticity of university science, (b) channeling and connecting different communities, (c) advanced knowledge required in and lengthy procedures mobilized by university science, (d) self-exploration and reflection, and (e) comprehensive science learning. Each category’s meaning for participants and implications for science education are illustrated and discussed. This study demonstrates positive evidence of the science internship on helping students learn different dimensions of science and reflect their relationship with science. Suggestions on facilitating the partnership between secondary and postsecondary education are provided.
Brains--Computers--Machines: Neural Engineering in Science Classrooms
ERIC Educational Resources Information Center
Chudler, Eric H.; Bergsman, Kristen Clapper
2016-01-01
Neural engineering is an emerging field of high relevance to students, teachers, and the general public. This feature presents online resources that educators and scientists can use to introduce students to neural engineering and to integrate core ideas from the life sciences, physical sciences, social sciences, computer science, and engineering…
Teaching Teachers: Assessing Students as Scientists
ERIC Educational Resources Information Center
Russ, Rosemary S.; Conlin, Luke
2017-01-01
Most elementary science teachers would like to give their students opportunities to do science. The "Next Generation Science Standards" and "A Framework for K-12 Science Education" (NGSS Lead States 2013; NRC 2012) make this goal explicit by requiring that students learn how to engage in the practices of science. Consequently,…
ERIC Educational Resources Information Center
Howitt, Christine; Lewis, Simon W.; Waugh, Sara
2009-01-01
Scientists in Schools (SiS) is an initiative of the Australian Government Department of Education, Employment and Workplace Relations that aims to establish and maintain sustained and ongoing partnerships between scientists and school communities as a means of developing more scientifically literate citizens. This paper describes and analyses an…
Developing School-Scientist Partnerships: Lessons for Scientists from Forests-of-Life
ERIC Educational Resources Information Center
Falloon, Garry; Trewern, Ann
2013-01-01
The concept of partnerships between schools and practicing scientists came to prominence in the United States in the mid 1980s. The call by government for greater private sector involvement in education to raise standards in science achievement saw a variety of programmes developed, ranging from short-term sponsorships through to longer-term,…
ERIC Educational Resources Information Center
Hermann, Ronald S.
2017-01-01
Evolution, due to its importance in science, holds a prominent place in national science standards and many state standards. Scientists nearly universally agree that the theory of evolution best explains the unity and diversity of life. Accordingly, numerous science, science education, and religious organizations support the teaching of evolution…
Using Interactive Science Notebooks for Inquiry-Based Science
ERIC Educational Resources Information Center
Chesbro, Robert
2006-01-01
The interactive science notebook (ISN) is a perfect opportunity for science educators to encapsulate and promote the most cutting-edge constructivist teaching strategies while simultaneously addressing standards, differentiation of instruction, literacy development, and maintenance of an organized notebook as laboratory and field scientists do.…
ERIC Educational Resources Information Center
Pike, Lisa
2017-01-01
In this article, the author describes how a partnership was established to bring science and education majors together with elementary school children in an after-school STEM program. This partnership allowed preservice teachers and science majors to have fun with science and to learn science informally, in a nonclassroom, low-stress…
Science, Pseudo-Science, and Natural Theology.
ERIC Educational Resources Information Center
Ferre, Frederick
1983-01-01
Religions are unfalsifiable in the short run but open to long-term influence by science. Conversely, scientists sometimes extend their findings to mythic proportions. The struggle between evolutionary science and pseudo-scientific creationism rests on tensions resulting at this interface. Good education and social fairness require greater…
A Collaborative Data Scientist Framework for both Primary and Secondary Education
NASA Astrophysics Data System (ADS)
Branch, B. D.
2011-12-01
The earth science data educational pipeline may be dependent on K-20 outcomes. Thus, a challenge for earth science and space informatics education or generational knowledge transfer consideration may be a non-existing or cost prohibitive pedagogical earth science reality. Such may require a technological infrastructure, a validated assessment system, and collaboration among stakeholders of primary and secondary education. Moreover, the K-20 paradigms may engage separate science and technology preparation standards when fundamental informatics requires an integrated pedagogical approach. In simple terms, a collaborative earth science training program for a subset of disciplines may a pragmatics means for formal data scientist training that is sustainable as technology evolves and data-sharing policy becomes a norm of data literacy. As the Group Earth Observation Systems of Systems (GEOSS) has a 10-work plan, educational stakeholders may find funding avenues if government can see earth science data training as a valuable job skill and societal need. This proposed framework suggested that ontological literacy, database management and storage management and data sharing capability are fundamental informatics concepts of this proposed framework where societal engagement is incited. Here all STEM disciplines could incite an integrated approach to mature such as learning metrics in their matriculation and assessment systems. The NSF's Earth Cube and Europe's WISE may represent best cased for such framework implementation.
The University Scientist's Role in Promoting Collaborative K-12 Professional Development
NASA Astrophysics Data System (ADS)
Schuster, D.; Brown, L. L.; Carlsen, W. S.
2004-12-01
Comprehensive K-12 science teacher professional development is dependent upon the successful interaction between the university and K-12 communities (National Research Council, 2001), which can be realized through partnerships between university scientists and K-12 science teachers. This paper will identify some best practices of university scientists in the professional development of science teachers, first by citing the professional development and science education literature (Loucks-Horsley, Hewson, Love, & Stiles, 1998; National Research Council, 1996a, 1996b), and then by highlighting how these best practices were actualized in summer workshops for science educators offered at Penn State. Each summer the Pennsylvania Space Grant Consortium supports seven one-week courses for secondary science teachers taught by university scientists from disciplines representative of NASA's research interests. Approximately 100 teachers enroll in these two-credit, graduate-level workshops from a variety of locations and contexts throughout the United States. These summer courses share a number of important features (duration, general format, teacher recruitment and admission, location, number of participants, etc.), making them a unique dataset for comparative research on science teacher professional development. By recognizing the role of university scientists relating to both practice and standards of professional development, we identify areas in which teachers could be empowered to lead and, alternatively, where scientists and administrators should improve and continue to direct-- both supporting a culture of collaboration that builds K-12 science teacher capacity (Fullan, 2001, 2003; Hawley & Valli, 1999). In our observations and analysis of the evaluations, three best practices, as defined by the literature, appeared to distinguish the exceptional workshops: First, teachers give high marks and make affirmative comments about workshops with clearly presented curricular goals. Second, teachers respond well to workshops and the university scientists who taught them when they are treated as professionals. Third, teachers welcome the opportunity to be integrally involved in the planning, implementation, and evaluation of the workshops. By identifying best practices and delineating the roles of university scientists in K-12 professional development, teachers, university faculty, and policy makers are better equipped to improve the quality of professional development programs at all levels; school, district, university, and state, ultimately actualizing the symbiotic relationship that needs to exists between professional development and school improvement efforts (Fullan, 2001, 2003; Hawley & Valli, 1999).
Professionals and Emerging Scientists Sharing Science
NASA Technical Reports Server (NTRS)
Graff, P. V.; Allen, J. S.; Tobola, K.
2010-01-01
The Year of the Solar System (YSS) celebration begins in the fall of 2010. As YSS provides a means in which NASA can inspire members of the public about exciting missions to other worlds in our solar system, it is important to remember these missions are about the science being conducted and new discoveries being made. As part of the Year of the Solar System, Astromaterials Research and Exploration Science (ARES) Education, at the NASA Johnson Space Center, will infuse the great YSS celebration within the Expedition Earth and Beyond Program. Expedition Earth and Beyond (EEAB) is an authentic research program for students in grades 5-14 and is a component of ARES Education. Students involved in EEAB have the opportunity to conduct and share their research about Earth and/or planetary comparisons. ARES Education will help celebrate this exciting Year of the Solar System by inviting scientists to share their science. Throughout YSS, each month will highlight a topic related to exploring our solar system. Additionally, special mission events will be highlighted to increase awareness of the exciting missions and exploration milestones. To bring this excitement to classrooms across the nation, the Expedition Earth and Beyond Program and ARES Education will host classroom connection events in which scientists will have an opportunity to share discoveries being made through scientific research that relate to the YSS topic of the month. These interactive presentations will immerse students in some of the realities of exploration and potentially inspire them to conduct their own investigations. Additionally, scientists will share their own story of how they were inspired to pursue a STEM-related career that got them involved in exploration. These career highlights will allow students to understand and relate to the different avenues that scientists have taken to get where they are today. To bring the sharing of science full circle, student groups who conduct research by participating in Expedition Earth and Beyond, will also have the opportunity to virtually share their research. These virtual team presentations will allow these emerging scientists to celebrate their own exploration, and in doing so, contribute to the excitement of the Year of the Solar System. As the public joins NASA in the celebration of YSS, students across the nation will not only be excited by the science and discoveries being made, but will prime themselves with experience to perhaps someday become the new leaders in science, discovery, and NASA.
NASA Astrophysics Data System (ADS)
Tankersley, R. A.; Watson, M.; Windsor, J. G.; Buckley, M.; Diederick, L.
2014-12-01
Scientists conduct exciting, ground-breaking research that addresses many of world's greatest challenges. Yet, far too often, the importance, meaning, and relevance of their discoveries are never shared with persons outside their discipline. Recognizing the need for scientists to communicate more effectively with the public, the Florida Center for Ocean Sciences Education Excellence (COSEE Florida) saw an opportunity to connect the two through film. In the fall 2013, COSEE Florida launched the Ocean 180 Video Challenge to tap into the competitive spirit of scientists and inspire them to share their latest discoveries with the public. The competition encouraged scientists to submit short, 3-minute video abstracts summarizing the important findings of recent peer-reviewed papers and highlighting the relevance, meaning, and implications of the research to persons outside their discipline. Videos were initially screened and evaluated by a team of science and communication experts and the winners (from a field of ten finalists) were selected by more than 30,000 middle school students from 285 schools in 13 countries. Our presentation will review the outcomes and lessons learned from the 2014 competition and describe how contest videos are being used for professional development/training and educational purposes. We will also describe how video competitions can benefit both scientists and the target audience and be effective outreach strategies for encouraging scientists to share new discoveries and their enthusiasm for science with K-12 students and the public.
ERIC Educational Resources Information Center
Moreno, Nancy P.; Chang, Kimberly A.; Tharp, Barbara Z.; Denk, James P.; Roberts, J. Kyle; Cutler, Paula H.; Rahmati, Sonia
2001-01-01
Introduces the Science Education Leadership Fellows (SELF) program which is an innovative cooperation program between teachers and scientists. Engages teachers in subject areas such as microbiology, molecular biology, immunology, and other professional development activities. Presents an activity in which students observe bacteria cultures and…
NASA Technical Reports Server (NTRS)
Allen, J. S.; Tobola, K. W.; Lindstrom, M. L.
2003-01-01
Activities by NASA scientists and teachers focus on integrating Planetary Science activities with existing Earth science, math, and language arts curriculum. The wealth of activities that highlight missions and research pertaining to the exploring the solar system allows educators to choose activities that fit a particular concept or theme within their curriculum. Most of the activities use simple, inexpensive techniques that help students understand the how and why of what scientists are learning about comets, asteroids, meteorites, moons and planets. With these NASA developed activities students experience recent mission information about our solar system such as Mars geology and the search for life using Mars meteorites and robotic data. The Johnson Space Center ARES Education team has compiled a variety of NASA solar system activities to produce an annotated thematic outline useful to classroom educators and informal educators as they teach space science. An important aspect of the outline annotation is that it highlights appropriate science content information and key science and math concepts so educators can easily identify activities that will enhance curriculum development. The outline contains URLs for the activities and NASA educator guides as well as links to NASA mission science and technology. In the informal setting educators can use solar system exploration activities to reinforce learning in association with thematic displays, planetarium programs, youth group gatherings, or community events. Within formal education at the primary level some of the activities are appropriately designed to excite interest and arouse curiosity. Middle school educators will find activities that enhance thematic science and encourage students to think about the scientific process of investigation. Some of the activities offered are appropriate for the upper levels of high school and early college in that they require students to use and analyze data.
NASA Astrophysics Data System (ADS)
Noel-Storr, J.; Buxner, S.; Grier, J.; Gay, P.
2016-12-01
CosmoQuest is a virtual research facility, which, like its physical counterparts, provides tools for scientists to acquire reduced data products (thanks to our cadre of citizen scientists working to analyze images and produce results online), and also to participate in education and outreach activities either directly through CosmoQuest activities (such as CosmoAcademy and the Educators' Zone) or with the support of CosmoQuest. Here, we present our strategies to inspire, engage and support Subject Matter Experts (SMEs - Scientists, Engineers, Technologists and Mathematicians) in activities outside of their institutions, and beyond college classroom teaching. We provide support for SMEs who are interested in increasing the impacts of their science knowledge and expertise by interacting with people online, or in other venues outside of their normal work environment. This includes a broad spectrum of opportunities for those interested in hosting webinars; running short courses for the public; using Facebook, Twitter or other social media to communicate science; or other diverse activities such as supporting an open house, science fair, or star party. As noted by Katheryn Woods-Townsend and colleagues, "...face-to-face interactions with scientists allowed students to view scientists as approachable and normal people, and to begin to understand the range of scientific areas and careers that exist. Scientists viewed the scientist-student interactions as a vehicle for science communication" (2015). As CosmoQuest fosters these relationships, it We present a framework for SMEs which combine opportunities for continuing professional development (virtually and in person at conferences) with ongoing online support, creating a dynamic professional learning network. The goal of this is to deepen SME capacity-knowledge, attitudes and behaviors-both encouraging and empowering them to connect to broader audiences in new ways.
Identification of Emerging Science Competencies in Agriculture. Vocational Education Research.
ERIC Educational Resources Information Center
Louisiana State Univ., Baton Rouge. School of Vocational Education.
A research project identified new and emerging science concepts that should be taught in high school vocational agriculture. Agricultural scientists on an advisory panel identified the emerging science concepts. The majority were in the areas of plant science and animal science. Animal science was completely reorganized with greater emphasis on…
ERIC Educational Resources Information Center
Salter, Irene; Atkins, Leslie
2013-01-01
While some researchers have argued for science classrooms that embrace open-inquiry by engaging students in doing science as scientists do (cf. National Research Council [NRC] 1996; Driver et al. in "Sci Educ" 84:287-312, 2000; Windschitl et al. in "Sci Educ" 87(1):112-143, 2008), others have argued that open-inquiry is impractical, ineffective,…
NASA Astrophysics Data System (ADS)
Hatheway, B.
2013-12-01
After three years of running a climate science professional development program for secondary teachers, project staff from UCAR and UNC-Greeley have learned the benefits of ample time for interaction between teachers and scientists, informal educators, and their peers. This program gave us the opportunity to develop and refine strategies that leverage teacher-scientist partnerships to improve teachers' ability to teach climate change. First, we prepared both teachers and scientists to work together. Each cohort of teachers took an online course that emphasized climate change content and pedagogy and built a learning community. Scientists were recruited based on their enthusiasm for working with teachers and coached to present materials in an accessible way. Second, the teachers and scientists collaborated during a four-week summer workshop at UCAR. During the workshop, teachers met with a wide range of climate and atmospheric scientists to learn about research, selected a specific scientist's research they would like to adapt for their classrooms, and developed and refined activities based on that research. The program includes strong mentoring from a team of science educators, structured peer feedback, and ample opportunity to interact with the scientists by asking questions, accessing data, or checking resources. This new model of professional development fosters teacher-scientist partnerships. By the end of the four-week workshop, the teachers have built customized activities based on the cutting-edge research being conducted by participating scientists, developed plans to implement and assess those activities, and further strengthened the learning-community that they will rely on for support during the following academic year. This session will provide information about how this model, which differs from the more common model of engaging teachers in research under the direction of scientists, was successful and accomplished positive outcomes for both the teachers and scientists who participated. Lessons learned that will improve this model will also be discussed.
Szu, Evan; Osborne, Jonathan; Patterson, Alexis D
2017-07-01
Popular media influences ideas about science constructed by the public. To sway media productions, public policy organizations have increasingly promoted use of science consultants. This study contributes to understanding the connection from science consultants to popular media to public outcomes. A science-based television series was examined for intended messages of the creator and consulting scientist, and received messages among middle school and non-science university students. The results suggest the consulting scientist missed an opportunity to influence the portrayal of the cultural contexts of science and that middle school students may be reading these aspects uncritically-a deficiency educators could potentially address. In contrast, all groups discussed the science content and practices of the show, indicating that scientific facts were salient to both media makers and audiences. This suggests popular media may influence the public knowledge of science, supporting concerns of scientists about the accuracy of fictional television and film.
NASA Astrophysics Data System (ADS)
Lewis, N.; Thome, K. J.; Bounoua, L.; Owen, T.
2014-12-01
Leaping advances in the capability to accurately measure global atmospheric and surficial conditions from space have created an abundance of educationally relevant images, discoveries, and products. In attempt to fully utilize these abundant resources, TERRA has allocated a portion of its mission toward education and public outreach. From highly interactive websites allowing users to view the latest satellite images and discoveries, to partnerships with museums encouraging enhanced primary and secondary scholastic experiences, TERRA has successfully applied a multifaceted range of tools to aid in the furthering of education for students, educators, scientists, and the general public. This presentation aims to increase publicity regarding these many methods of outreach, and to highlight particular outreach success stories. With the increasing emphasis on STEM education in current school systems, the invaluable resources and opportunities that TERRA provides for young scientists have become a necessity and will continue to help inspire the next generation of Earth Scientists.
Vision Forward for NASA's Astrophysics Education Program
NASA Astrophysics Data System (ADS)
Hasan, Hashima; Sheth, Kartik J.
2016-01-01
NASA has recently re-structured its Science Education program with the competitive selection of twenty-seven programs. Of these, ~60% are relevant to Astrophysics, and three have primarily Astrophysics content. A brief overview of the rationale for re-structuring will be presented. We have taken a strategic approach, building on our science-discipline based legacy and looking at new approaches given Stakeholder priorities. We plan to achieve our education goals with the selection of organizations that utilize NASA data, products, or processes to meet NASA's education objectives; and by enabling our scientists and engineers with education professionals, tools, and processes to better meet user needs. Highlights of the selected programs will be presented, and how they enable the vision going forward of achieving the goal of enabling NASA scientists and engineers to engage more effectively with learners of all ages.
What do primary students know about science, scientists and how they do their work?
NASA Astrophysics Data System (ADS)
Bartels, Selina L.
The teaching of scientific literacy is the primary goal of elementary science education. Scientific literacy is composed of the overall understanding of what science is and how scientific knowledge is developed. The purpose of this study was to see if elementary students' understandings of science, scientists and how scientists do their work changes from grade one to grade five of elementary school. Furthermore, the study attempts to determine whether there is a difference in scientific literacy between students taught using a textbook curriculum versus a kit-based curriculum. The study draws on a sample of 338 students from 18 different classrooms situated in six different schools in both urban and suburban areas of a large Midwestern city. Students' understandings of science, scientists and how they do their work was measured through a valid and reliable oral protocol entitled Young Children's Views of Science (YCVS) (Lederman, J., Bartels, Lederman, & Ganankkan, 2014). The YCVS assesses students' understandings of the aspects of scientific inquiry (SI) and the nature of science (NOS) that young elementary students are able to understand. These aspects are; science, scientists, multiple methods, observation/inference, begins with a question, empirical, subjectivity, tentativeness and creativity. The YCVS was administered orally for grade one students, and a paper-and-pencil version was given to grades three and five. Results indicated that there are very few gains in NOS and SI understandings between grades one and five in the schools included in this study. None of the schools in this study made significant gains for all of the nine aspects measured in this study. Examining curriculum's affect on NOS and SI understandings, understanding of only one aspect was significantly impacted by curriculum differences. Subjectivity understanding was impacted by kit-based instruction. Overall, students' understandings of science, scientists and how they do their work did not significantly change from grade one to grade five regardless of what type of curriculum they followed. This study shows that students' scientific literacy is not being developed throughout elementary school. Therefore, the teaching of scientific literacy in an explicit and reflective manner should be the focus of preservice elementary school education.
Strategies for Engaging NASA Earth Scientists in K-12 Education and Public Outreach
NASA Technical Reports Server (NTRS)
Meeson, Blanche W.; Gabrys, Robert E.
2001-01-01
Engagement of the Earth Science research community in formal education at the kindergarten through high school level and in various aspects of informal education and in professional development of practitioners in related fields has been and continues to be a challenge. A range of approaches is being used and new ones are constantly being tried. Fundamental to our strategies is an understanding of the priorities, skills, academic experiences, motivation, rewards and work experiences of most scientists. It is within this context that efforts to engage a scientist in education efforts are attempted. A key strategy is to limit our requests to activities where the scientist's contribution of time and expertise can have the most impact. Don't waste the scientist's time! Time is one of their most prized resources, it is extremely valuable to you, and to them, we treat their time like a treasured resource. The clearer a scientist's role, their unique contribution and the finite nature of their effort, the more likely they are to participate. It is critical that commitments made to scientists are kept. If they want and can do more, great! Don't expect or assume more will be forthcoming. Another approach that we use is to create periodic venues that, among other things, serve to identify individuals who have an interest or inclination to con , tribute to education efforts. Once identified we strive to determine their interests so that we can make the best match between their interests and the needs of the education program or efforts. In this way, we try to make the best use of their time while engaging them in efforts which will be personally rewarding, and will further the overall education objectives. In addition, we try to make it easier for scientists to participate by providing focused training, such as development of their interviewing skills, and exposure to key concepts, knowledge and skills which are well known among educators but are not common knowledge among scientists. Another strategy with which we are still struggling is how to create and provide career meaningful rewards for individuals who demonstrate excellence in education equivalent to excellence in science. We do not yet have a yardstick to measure excellence in education nor is there a consensus among scientific peers that these two can be equivalent. None-the-less, methods to identify excellence in education, such as the peer review process, are being tried with some success. Use of solicitation and selection of educational efforts via a peer review process that is the same as for scientific research to identify unique, interesting and creative ideas has been somewhat effective. Furthermore, the application of the same peer review process to the output of an educational effort is used to validate and ensure the quality of this output. An example will be used to illustrate the application of some of these strategies to the development of a high school Earth and Space System Science curriculum created in partnership with a local county school system (Anne Arundel County, MD).
Six Reasons To Infuse Science with Technology.
ERIC Educational Resources Information Center
Devitt, Terry
1997-01-01
Discusses six ways in which technology is transforming science education in classrooms across America. Discusses jet fuel for science reform, access to inaccessible worlds, thinking like scientists, turning data into pictures, exploration through simulation, and bringing teachers up to speed. (JRH)
NASA Astrophysics Data System (ADS)
Skinner, Ellen; Saxton, Emily; Currie, Cailin; Shusterman, Gwen
2017-11-01
As part of long-standing efforts to promote undergraduates' success in science, researchers have investigated the instructional strategies and motivational factors that promote student learning and persistence in science coursework and majors. This study aimed to create a set of brief measures that educators and researchers can use as tools to examine the undergraduate motivational experience in science classes. To identify key motivational processes, we drew on self-determination theory (SDT), which holds that students have fundamental needs - to feel competent, related, and autonomous - that fuel their intrinsic motivation. When educational experiences meet these needs, students engage more energetically and learn more, cumulatively contributing to a positive identity as a scientist. Based on information provided by 1013 students from 8 classes in biology, chemistry, and physics, we constructed conceptually focused and psychometrically sound survey measures of three sets of motivational factors: (1) students' appraisals of their own competence, autonomy, and relatedness; (2) the quality of students' behavioural and emotional engagement in academic work; and (3) students' emerging identities as scientists, including their science identity, purpose in science, and science career plans. Using an iterative confirmatory process, we tested short item sets for unidimensionality and internal consistency, and then cross-validated them. Tests of measurement invariance showed that scales were generally comparable across disciplines. Most importantly, scales and final course grades showed correlations consistent with predictions from SDT. These measures may provide a window on the student motivational experience for educators, researchers, and interventionists who aim to improve the quality of undergraduate science teaching and learning.
Geophysical information for teachers: Wave tanks, homemade clouds, glacial goo, and more!
NASA Astrophysics Data System (ADS)
Adamec, Bethany Holm
2012-02-01
AGU is deeply committed to fostering the next generation of Earth and space scientists. Union activities contribute to this effort in many ways, one of which is partnering with the National Earth Science Teacher's Association (NESTA) to hold the Annual Geophysical Information for Teachers (GIFT) workshop at AGU's annual Fall Meeting. GIFT allows K-12 science teachers to hear about the latest geoscience research from the scientists making the discoveries, explore new classroom resources for their students, and visit exhibits and technical sessions of the AGU meeting for free. In 2011 AGU worked with NESTA to develop an improved rigorous and open application process for scientists and education professionals who wished to work as a team and present their Earth and space science work to teachers, as well as lead the educators in a hands-on, classroom- ready activity. Twenty-four applications were received for five slots, so the selected presentations (on tsunamis, clouds, field campaigns, glaciers, and volcanoes), chosen through a peer- review process, truly represented the best ways of getting cutting-edge science into the classroom.
Flickering Clusters: Women, Science, and Collaborative Transformations.
ERIC Educational Resources Information Center
Ney, Cheryl, Ed; Ross, Jacqueline, Ed.; Stempel, Laura, Ed.
The essays in this collection discuss the development and implementation of the collaborative Women and Science Project, which aimed to improve undergraduate science education by increasing faculty expertise in gender and science scholarship and pedagogy, and by providing role models of professional women scientists, improving the classroom…
Citizen Science Across the Disciplines
NASA Astrophysics Data System (ADS)
Fienberg, R. T.; Gay, P. L.; Lewis, G.; Gold, M.
2011-09-01
Astronomers, geologists, ornithologists, and many others across the scientific spectrum have discovered a powerful new tool for conducting research: an army of willing and enthusiastic citizen scientists. Tens of thousands of nonscientists routinely help researchers collect data, analyze it, and even interpret it, enabling scientific investigations that might otherwise be impossible. Many citizen-science projects are developed and conducted at least in part for the purposes of education and outreach, so it is appropriate to ask not only whether they are having a significant scientific impact, but also whether they are having a significant educational one. In this discussion we address issues such as the factors that determine whether a citizen-science project is successful, whether scientists and citizens benefit equally or unequally, and whether citizen science attracts a wide cross section of the public or only people who are already science literate, thereby limiting its effectiveness for EPO.
A Technique to Eliminate External Transport Barriers and Stabilize Fiscal Instabilities
NASA Astrophysics Data System (ADS)
Heeter, Robert F.
1997-11-01
The case is made for a coordinated national effort to diffuse plasma science knowledge to the public. Like earlier "fiscal instabilities" in plasma research, the 1995-7 magnetic fusion budget disruption can be attributed to a lack of public awareness about the value of science research, as reflected in the attitude of Congress. Magnetic fusion researchers now create "internal transport barriers" to reduce plasma heat loss, but observations also reveal a problematic "external transport barrier" in all of plasma science - the inadequate diffusion of knowledge beyond the scientists. Public funding creates scientific knowledge for the public good, and now the public cares - and deserves to know - what it pays for. Eliminating the external transport barrier should suppress the fiscal instability: theory predicts that funding should stabilize - or even increase - if the value of plasma science is understood by the bulk of Congress' members before they're elected, rather than just a small population of patrons energetically lobbied in office. If the public understands the value of plasma research, Congress will too. But plasmas are poorly represented in both contemporary classrooms and public perception. To reach the "Lawson Criterion" for ignition of public understanding, we should reach out to the public and to educators nationwide. Education and outreach activities are, and ought to be, part of the professional life of a plasma scientist. Our current activities consist largely of teaching our own classes, writing papers, lobbying Congress, giving lab tours, making Web pages, and promoting education locally; these have been useful, but insufficient. Now we must do better. To stabilize fiscal instabilities for good, we should restructure not only our research programs, but our sense of what it means to be a scientist. We should coordinate our education and outreach activities on a national scale, maximizing impact while minimizing cost in time, labor, and money. To this end our existing education and outreach activities are evaluated, and new activities are suggested. A coordinated education and outreach effort is sketched, involving the DPP, the DOE, labs and universities, and everyone from our senior management to our enthusiastic students. A modification of the professional physics pipeline is proposed to encourage recruitment, retention, and development of scientists who are not only sources of new knowledge, but who also conduct, convect, and radiate their knowledge to others. The implantation of plasma topics and examples into the educational system is advocated, not to make learning harder, but so plasmas are actually treated as the fourth state of matter. If younger scientists adopt this "Coordinated Civic Science" professional spirit, and older scientists and program leaders support it, we should succeed.
Attitudes of Early Adolescents toward Science, Women in Science, and Science Careers.
ERIC Educational Resources Information Center
Erb, Thomas Owen
The study described is part of a larger project, Career Oriented Modules to Explore Topics in Science (COMETS), designed to integrate career education into the science curriculum. This study aimed to determine the attitudes of male and female students aged 10-16 toward scientists, science, women in science, careers in technical fields, and careers…
ERIC Educational Resources Information Center
Anderson, Dayle; Moeed, Azra
2017-01-01
Current curriculum demands require primary teachers to teach about the Nature of Science; yet, few primary teachers have had opportunity to learn about science as a discipline. Prior schooling and vicarious experiences of science may shape their beliefs about science and, as a result, their science teaching. This qualitative study describes the…
Opportunities for Space Science Education Using Current and Future Solar System Missions
NASA Astrophysics Data System (ADS)
Matiella Novak, M.; Beisser, K.; Butler, L.; Turney, D.
2010-12-01
The Education and Public Outreach (E/PO) office in The Johns Hopkins University Applied Physics Laboratory (APL) Space Department strives to excite and inspire the next generation of explorers by creating interactive education experiences. Since 1959, APL engineers and scientists have designed, built, and launched 61 spacecraft and over 150 instruments involved in space science. With the vast array of current and future Solar System exploration missions available, endless opportunities exist for education programs to incorporate the real-world science of these missions. APL currently has numerous education and outreach programs tailored for K-12 formal and informal education, higher education, and general outreach communities. Current programs focus on Solar System exploration missions such as the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), Miniature Radio Frequency (Mini-RF) Moon explorer, the Radiation Belt Storm Probes (RBSP), New Horizons mission to Pluto, and the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) Satellite, to name a few. Education and outreach programs focusing on K-12 formal education include visits to classrooms, summer programs for middle school students, and teacher workshops. APL hosts a Girl Power event and a STEM (Science, Technology, Engineering, and Mathematics) Day each year. Education and outreach specialists hold teacher workshops throughout the year to train educators in using NASA spacecraft science in their lesson plans. High school students from around the U.S. are able to engage in NASA spacecraft science directly by participating in the Mars Exploration Student Data Teams (MESDT) and the Student Principal Investigator Programs. An effort is also made to generate excitement for future missions by focusing on what mysteries will be solved. Higher education programs are used to recruit and train the next generation of scientists and engineers. The NASA/APL Summer Internship Program offers a unique glimpse into the Space Department’s “end-to-end” approach to mission design and execution. College students - both undergraduate and graduate - are recruited from around the U.S. to work with APL scientists and engineers who act as mentors to the students. Many students are put on summer projects that allow them to work with existing spacecraft systems, while others participate in projects that investigate the operational and science objectives of future planned spacecraft systems. In many cases these interns have returned to APL as full-time staff after graduation.
NASA Astrophysics Data System (ADS)
Gutierrez, B.; Fordham, M.; Lopes-Pocknett, R.; Wyman, K.; Stringer, C.; Green, G.; Tobey, Q.; Rassman, J.; Mills, E., Jr.
2014-12-01
Over the past three years, we have developed and implemented a collaborative summer science program for Mashpee Wampanoag youth that engages tribal elders, parents, educators, and local scientists to connect tribal youth with the ecology and geology of their traditional homelands. This collaboration, called Native Youth in Science: Preserving our Homeland (POH), involves the Mashpee Wampanoag Education and Natural Resource Departments, an experienced team of tribal elders and scientists from the U.S. Geological Survey's Woods Hole Coastal and Marine Science Center Waquoit Bay National Estuarine Research Reserve, U.S. Forest Service, and NOAA National Marine Fisheries. The team has developed and implemented a curriculum that stresses the ancestral relationships of Wampanoag people to their land. Through hands-on activities at locations of cultural significance, our efforts focus on presenting topics in environmental science from both western science and Wampanoag perspectives to 5th-8th grade students from the Wampanoag Tribe. Overarching themes focus on local land use history and its impact on traditional food sources such as shellfish and herring. Lessons typically address hydrology, water quality, fish and shellfish biology, botany, and local geology. To present these topics, scientists are paired with Wampanoag Tribe culture keepers to develop lessons that present science topics side-by-side with cultural knowledge. The primary goals of POH are to (a) connect and reinforce science concepts learned in conventional school settings for tribal youth; (b) demonstrate the use of science as a tool for understanding and preserving the ecosystems and homelands of the Mashpee Wampanoag Tribe; and (c) how indigenous traditional ecological knowledge (TEK) and western science complement each other. In the long-term, this program begins to prepare tribal students for more advanced programs supporting their pursuit of higher education.
Science in the Public Eye: Leveraging Partnerships-An Introduction.
Merson, Martha; Allen, Louise C; Hristov, Nickolay I
2018-06-22
With stories of struggle and dramatic breakthroughs, science has incredible potential to interest the public. However, as the rhetoric of outrage surrounds controversies over science policy there is an urgent need for credible, trusted voices that frame science issues in a way that resonates with a diverse public. A network of informal educators, park rangers, museum docents and designers, and zoo and aquarium interpreters are prepared to do so during millions of visits a year; just where science stories are most meaningfully told-in the places where members of the public are open to learning. Scientific researchers can benefit from partnerships with these intermediaries who are accorded status for their trustworthiness and good will, who have expertise in translating the science using language, metaphors, encounters, and experiences that are appropriate for non-experts. In this volume, we describe and probe examples wherein scientists work productively with informal educators and designers, artists, staff of federal agencies, citizen scientists, and volunteers who bring science into the public eye.
"What's A Geoscientist Do?": A Student Recruitment And Education Tool
NASA Astrophysics Data System (ADS)
Hughes, C. G.
2015-12-01
Student perception of science, particularly the earth sciences, is not based on actual science jobs. Students have difficulty envisioning themselves as scientists, or in understanding the role of science in their lives as a result. Not all students can envision themselves as scientists when first enrolling in college. While student recruitment into geoscience programs starts before college enrollment at many universities, general education science requirements can act as a gateway into these majors as well. By providing students in general education science classes with more accurate insights into the scientific process and what it means to be a scientist, these classes can help students envision themselves as scientists. A short module, to be embedded within lectures, has been developed to improve recruitment from Clarion University's Introductory Earth Science classes entitled "What's A Geoscientist Do?". As this module aims to help students visualize themselves as geoscientists through examples, diversity of the examples is critical to recruiting students from underrepresented groups. Images and subjects within these modules are carefully selected to emphasize the fact that the geosciences are not, and should not be, the exclusive province of the stereotypical older, white, male scientist. Noteworthy individuals (e.g. John Wesley Powell, Roger Arliner Young) may be highlighted, or the discussion may focus on a particular career path (e.g. hydrologist) relevant to that day's material. While some students are initially attracted to the geosciences due to a love of the outdoors, many students have never spent a night outdoors, and do not find this aspect of the geosciences particularly appealing. "What's A Geoscientist Do?" has been designed to expose these students to the breadth of the field, including a number of geoscience jobs focused on laboratory (e.g. geochemistry) or computer (e.g. GIS, remote sensing, scientific illustration) work instead of focusing exclusively on fieldwork. As Clarion University students tend to be very job-oriented, information on careers includes average starting salaries with the hope of improving student's opinions of the position as possible future employment - helping students (and their families) realize they can support themselves in a geoscience career.
ERIC Educational Resources Information Center
Gershon, Walter S.; Oded, Ben-Horin
2014-01-01
Drawing from their respective work at the intersection of music and science, the coauthors argue that engaging in processes of making music can help students more deeply engage in the kinds of creativity associated with inquiry based science education (IBSE) and scientists better convey their ideas to others. Of equal importance, the processes of…
Developing citizen science projects: Cut twigs for 'chilling' pupils
NASA Astrophysics Data System (ADS)
Menzel, Annette; Matiu, Michael; Laube, Julia
2017-04-01
Citizen science projects mainly involve two aims, science and education. Depending on the setting, either the data delivery part for answering questions raised by scientists or the educating part e.g. on scientific practices, crosscutting concepts, application of core science contents or awareness for environmental problems prevails. In this respect, spring phenology is a grateful topic because it addresses both aspects nearly symmetrically. In science, it remains unresolved which factors besides spring warming also trigger spring bud development, namely chilling / photoperiod / humidity / nutrient availability. The appearance of fresh leaves in spring has been fascinating for humans; it is linked to cultural heritage, festivals and has always attracted nature lovers, from young children to senior citizens. In our study, we set up a twig experiment to study the chilling effect on bud burst of Corylus avellana L. which was conducted by trained citizen scientists at their home. We asked the scientific question if the effects of chilling can be analysed by the twig method, and how sampling and experimental setting should be designed. Furthermore we tested if the twig method is feasible for citizen scientist projects, and report minimum requirements, successes and drawbacks.
NASA Technical Reports Server (NTRS)
Lester, Dan
1997-01-01
The Science in the Stratosphere program, first established in 1992, was conceived to introduce K-6 teachers to airborne infrared astronomy through the Kuiper Airborne Observatory (KAO), and to use this venue as a basis for seeing scientists at work in a mission-intensive program. The teachers selected for this program would bring their new perspectives back to their schools and students. Unlike the related FOSTER program, the emphasis of this program was on more intensive exposure of the KAO mission to a small number of teachers. The teachers in the Science in the Stratosphere program essentially lived with the project scientists and staff for almost a week. One related goal was to imbed the KAO project with perspectives of working teachers, thereby sensitizing the project staff and scientists to educational outreach efforts in general, which is an important goal of the NASA airborne astronomy program. A second related goal was to explore the ways in which K-5 educators could participate in airborne astronomy missions. Also unlike FOSTER, the Science in the Stratosphere program was intentionally relatively unstructured, in that the teacher participants were wholly embraced by the science team, and were encouraged to 'sniff out' the flavor of the whole facility by talking with people.
NASA Astrophysics Data System (ADS)
Peticolas, L.; Maryboy, N.; Begay, D.; Stein, J.; Valdez, S.; Paglierani, R.
2012-08-01
A cultural disconnect exists between Western scientists and educators and Native communities in terms of scientific worldviews and Indigenous ways of knowing. This cultural disconnect manifests itself in the lack of participation of Native Americans in Western science and a lack of appreciation by Western scientists of Native science. Our NSF-Funded project "Cosmic Serpent: Bridging Native and Western Learning in Museum Settings" set out to provide a way for informal science education practitioners and tribal museum practitioners to learn about these two worldviews in such a way as to inform their educational practice around these concepts. We began with a pilot workshop in year one of this four-year project. We then provided two week-long professional development workshops in three regions within the Western U.S., and culminated with a final conference for all participants. In total, the workshops served 162 participants, including 115 practitioners from 19 tribal museums and 41 science, natural history, and cultural museums; 23 tribal community members; and 24 "bridge people" with knowledge of both Indigenous and Western science. For this article, we focus on the professional and personal transformations around culture, knowledge, science, and worldviews that occurred as a part of this project. We evaluated the collaborative aspects of this grant between the Indigenous Education Institute; the Center for Science Education at the University of California, Berkeley; the Institute for Learning Innovation; Native Pathways; Association for Science and Technology Centers; and the National Museum of the American Indian. Using evaluation results, as well as our personal reflections, we share our learnings from a place of transformation. We provide lessons we learned with this project, which we hope others will find relevant to their own science education work.
NASA Astrophysics Data System (ADS)
O'Connell, E. A.
2017-12-01
The Frontier Scientists National Science Foundation project titled Science in Alaska: Using Multimedia to Support Science Education produced research products in several formats: videos short and long, blogs, social media, a computer game, and a pop-up book. These formats reached distinctly different audiences. Internet users, public TV viewers, gamers, schools, and parents & young children were drawn to Frontier Scientists' research in direct and indirect ways. The analytics (our big data) derived from this media broadcast has given us insight into what works, what doesn't, next steps. We have evidence for what is needed to present science as an interesting, vital, and a necessary component for the general public's daily information diet and as an important tool for scientists to publicize research and to thrive in their careers. Collaborations with scientists at several Universities, USGS, Native organizations, tourism organizations, and Alaska Museums promoted accuracy of videos and increased viewing. For example, Erin Marbarger, at Anchorage Museum, edited, and provided Spark!Lab to test parents & child's interest in the pop-up book titled: The Adventures of Apun the Arctic Fox. Without a marketing budget Frontier Scientist's minimum publicity, during the three year project, still drew an audience. Frontier Scientists was awarded Best Website 2016 by the Alaska Press Club, and won a number of awards for short videos and TV programs.
"The Physics of Life," an Undergraduate General Education Biophysics Course
ERIC Educational Resources Information Center
Parthasarathy, Raghuveer
2015-01-01
Improving the scientific literacy of non-scientists is an important aim, both because of the ever-increasing impact of science on our lives and because understanding science enriches our experience of the natural world. One route to improving scientific literacy is via general education undergraduate courses--i.e. courses for students not majoring…
ERIC Educational Resources Information Center
Nixon, Rachel A.
1997-01-01
Presents six case studies of EARTHWATCH expeditions which provide teachers with opportunities to work with scientists, participate in scientific discovery, and employ new technology. Educators join EARTHWATCH teams to explore tropical and dry forests, monitor ecosystems and species, unearth remains, and consequently develop innovative classroom…
"Operation Magpie": Inspiring Teachers' Professional Learning through Environmental Science
ERIC Educational Resources Information Center
Zeegers, Yvonne; Paige, Kathryn; Lloyd, David; Roetman, Philip
2012-01-01
Operation Magpie was a citizen science project that involved the community in collecting data about magpies. This article describes one aspect of the project from an education perspective. The study began with a collaboration of teacher educators, environmental scientists and a local radio station. After an initial workshop with 75 teachers, three…
Space Life Sciences Research and Education Program
NASA Technical Reports Server (NTRS)
Coats, Alfred C.
2001-01-01
Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.
Education and outreach bring NASA heliophysics to the public
NASA Astrophysics Data System (ADS)
Barbier, Beth
2011-11-01
Educating and inspiring students, teachers, and the public by communicating advances in heliophysics science is the objective of the education and public outreach (E/PO) specialists at the Heliophysics Science Division (HSD) at NASA Goddard Space Flight Center (GSFC) in Greenbelt, Md. The specialists carry out NASA's E/PO goal to enhance the nation's formal education system and contribute to the broad public understanding of science, math, and technology. HSD E/PO projects exploit community best practices to meet or surpass NASA's requirements, which include attention to quality; leverage through internal and external partnerships; and a focus on customer needs, project sustainability, and audience diversity. One key to the group's success is the involvement of enthusiastic HSD research scientists who directly interface with E/PO specialists and various audiences, verify scientific content, and/or provide data access or other resources. Scientists also mentor interns from high school to graduate school through NASA and GSFC programs, and several have shared their science with the public via appearances on national media, including the National Geographic and History channels as well as local news.
NASA Astrophysics Data System (ADS)
Manning, James; Meinke, Bonnie K.; Schultz, Gregory R.; Smith, Denise A.; Lawton, Brandon L.; Gurton, Suzanne; NASA Astrophysics E/PO Community
2015-01-01
The NASA Astrophysics Science Education and Public Outreach Forum (SEPOF) coordinates the work of NASA Science Mission Directorate (SMD) Astrophysics EPO projects and their teams to bring cutting-edge discoveries of NASA missions to the introductory astronomy college classroom. The Astrophysics Forum assists scientist and educator involvement in SMD E/PO (uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise) and makes SMD E/PO resources and expertise accessible to the science and education communities. We present three new opportunities for college instructors to bring the latest NASA discoveries in Astrophysics into their classrooms.To address the expressed needs of the higher education community, the Astrophysics Forum collaborated with the Astrophysics E/PO community, researchers, and Astronomy 101 instructors to place individual science discoveries and learning resources into context for higher education audiences. Among these resources are two Resource Guides on the topics of cosmology and exoplanets, each including a variety of accessible sources.The Astrophysics Forum also coordinates the development of the Astro 101 slide set series--5 to 7-slide presentations on new discoveries from NASA Astrophysics missions relevant to topics in introductory astronomy courses. These sets enable Astronomy 101 instructors to include new discoveries not yet in their textbooks into the broader context of the course: http://www.astrosociety.org/education/astronomy-resource-guides/.The Astrophysics Forum also coordinated the development of 12 monthly Universe Discovery Guides, each featuring a theme and a representative object well-placed for viewing, with an accompanying interpretive story, strategies for conveying the topics, and supporting NASA-approved education activities and background information from a spectrum of NASA missions and programs: http://nightsky.jpl.nasa.gov/news-display.cfm?News_ID=611.These resources help enhance the Science, Technology, Engineering, and Mathematics (STEM) experiences of undergraduates.
Effective Models for Scientists Engaging in Meaningful Education and Outreach
NASA Astrophysics Data System (ADS)
Noel-Storr, Jacob; Gurule, Isaiah; InsightSTEM Teacher-Scientist-Communicator-Learner Team
2017-01-01
We present a central paradigm, extending the model of "Teacher-Scientist" partnerships towards a new philosophy of "Scientist-Instructor-Learner-Communicator" Partnerships. In this paradigm modes of, and expertise in, communication, and the learners themselves, are held is as high status as the experts and teachers in the learning setting.We present three distinctive models that rest on this paradigm in different educational settings. First a model in which scientists and teachers work together with a communications-related specialist to design and develop new science exploration tools for the classroom, and gather feedback from learners. Secondly, we present a model which involves an ongoing joint professional development program helping scientists and teachers to be co-communicators of knowledge exploration to their specific audience of learners. And thirdly a model in which scientists remotely support classroom research based on online data, while the teachers and their students learn to become effective communicators of their genuine scientific results.This work was funded in part by the American Association for the Advancement of Science, and by NASA awards NNX16AC68A and NNX16AJ21G. All opinions are those of the authors.
Effective Models for Scientists Engaging in Meaningful Education and Outreach
NASA Astrophysics Data System (ADS)
Noel-Storr, Jacob; InsightSTEM SILC Partnership Team
2016-10-01
We present a central paradigm, extending the model of "Teacher-Scientist" partnerships towards a new philosophy of "Scientist-Instructor-Learner-Communicator" Partnerships. In this paradigm modes of, and expertise in, communication, and the learners themselves, are held is as high status as the experts and teachers in the learning setting.We present three distinctive models that rest on this paradigm in different educational settings. First a model in which scientists and teachers work together with a communications-related specialist to design and develop new science exploration tools for the classroom, and gather feedback from learners. Secondly, we present a model which involves an ongoing joint professional development program helping scientists and teachers to be co-communicators of knowledge exploration to their specific audience of learners. And thirdly a model in which scientists remotely support classroom research based on online data, while the teachers and their students learn to become effective communicators of their genuine scientific results.This work was funded in part by the American Association for the Advancement of Science, and by NASA awards NNX16AC68A and NNX16AJ21G. All opinions are those of the authors.
Women physicists in Russia in a period of new reforms in fundamental science and higher education
NASA Astrophysics Data System (ADS)
Didenko, N.; Domashevskaya, E.; Ermolaeva, E.; Kunitsyna, E.; Vitman, R.
2015-12-01
New holistic reforms in the system of higher education and the State Academy of Sciences have been carried out in Russia recently. New types of universities were founded, and funding of science is shifting to a grants model. The Russian Ministry of Higher Education and Science is also working to attract well-known foreign scientists, especially expatriate Russians, through megagrants of 3-5 million to establish modern laboratories. Women are participating to an adequate degree in all parts of the ongoing reforms.
Spontaneous Play and Imagination in Everyday Science Classroom Practice
ERIC Educational Resources Information Center
Andrée, Maria; Lager-Nyqvist, Lotta
2013-01-01
In science education, students sometimes create and engage in spontaneous science-oriented play where ideas about science and scientists are put to use. However, in previous research, little attention has been given to the role of informal spontaneous play in school science classrooms. We argue that, in order to enhance our understanding of…
Teaching and Assessing the Nature of Science
ERIC Educational Resources Information Center
Clough, Michael P.
2011-01-01
Understanding the nature of science (NOS)--what science is and how it works, the assumptions that underlie scientific knowledge, how scientists function as a social group, and how society impacts and reacts to science--is prominent in science education reform documents (Rutherford and Ahlgren 1990; AAAS 1993; McComas and Olson 1998; NRC 1996; AAAS…
Integrating the Nature of Science
ERIC Educational Resources Information Center
Weiland, Ingrid; Blieden, Katherine; Akerson, Valarie
2014-01-01
The nature of science (NOS) describes what science is and how knowledge in science is developed (NSTA 2013). To develop elementary students' understandings of how scientists explore the world, the authors--an education professor and a third-grade teacher--endeavored to integrate NOS into a third-grade life science unit. Throughout the lesson,…
The Education of Population Scientists.
ERIC Educational Resources Information Center
Malcolm, Janet M.; Cargille, Charles M.
Population science, a combination of natural science, social science, and management science, deals with the phenomena associated with the human population size. Subjects include the rates of change of the sizes of the various subsets of the human population, the causes and results of those changes, the societal pressures for control of population…
ERIC Educational Resources Information Center
Scogin, Stephen C.; Stuessy, Carol L.
2015-01-01
Next Generation Science Standards (NGSS) call for integrating knowledge and practice in learning experiences in K-12 science education. "PlantingScience" (PS), an ideal curriculum for use as an NGSS model, is a computer-mediated collaborative learning environment intertwining scientific inquiry, classroom instruction, and online…
Putting New Life in an Old Lesson
ERIC Educational Resources Information Center
Veal, William; Sneed, Kevin
2014-01-01
The Next Generation Science Standards ("NGSS") were developed by teachers, scientists, and leaders in science and science education from around the country and are endorsed by the National Science Teachers Association (NSTA), a partner in the development of the "NGSS." This article presents an example of how to modify a lab to…
Gender, Science, and Technology: A Selected Annotated Bibliography.
ERIC Educational Resources Information Center
Eldredge, Mary; And Others
1990-01-01
Presents 196 annotated listings of works on science, technology, and gender, under 9 headings: Biography and History; Women Scientists; Science Education; Feminists Look at Science and Technology; Effects of Technology on Women; Medicine and Reproductive Technologies in Women's Lives; Women and Evolution; Women and Agriculture; and Gender,…
45 CFR 680.11 - Staff involvement with NSF proposals and awards.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SCIENCE FOUNDATION NATIONAL SCIENCE FOUNDATION RULES OF PRACTICE Rules of Practice for the National Science Foundation § 680.11 Staff involvement with NSF proposals and awards. (a)(1) Many scientists... field of science, engineering, or education, notwithstanding that the focus of the work may change in...
45 CFR 680.11 - Staff involvement with NSF proposals and awards.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SCIENCE FOUNDATION NATIONAL SCIENCE FOUNDATION RULES OF PRACTICE Rules of Practice for the National Science Foundation § 680.11 Staff involvement with NSF proposals and awards. (a)(1) Many scientists... field of science, engineering, or education, notwithstanding that the focus of the work may change in...
45 CFR 680.11 - Staff involvement with NSF proposals and awards.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SCIENCE FOUNDATION NATIONAL SCIENCE FOUNDATION RULES OF PRACTICE Rules of Practice for the National Science Foundation § 680.11 Staff involvement with NSF proposals and awards. (a)(1) Many scientists... field of science, engineering, or education, notwithstanding that the focus of the work may change in...
45 CFR 680.11 - Staff involvement with NSF proposals and awards.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SCIENCE FOUNDATION NATIONAL SCIENCE FOUNDATION RULES OF PRACTICE Rules of Practice for the National Science Foundation § 680.11 Staff involvement with NSF proposals and awards. (a)(1) Many scientists... field of science, engineering, or education, notwithstanding that the focus of the work may change in...
NASA Astrophysics Data System (ADS)
Worssam, J. B.
2017-12-01
Field research finally within classroom walls, data driven, hands on with students using a series of electronic projects to show evidence of scientific mentor collaboration. You do not want to miss this session in which I will be sharing the steps to develop an interactive mentor program between scientists in the field and students in the classroom. Using next generation science standards and common core language skills you will be able to blend scientific exploration with scientific writing and communication skills. Learn how to make connections in your own community with STEM businesses, agencies and organizations. Learn how to connect with scientists across the globe to make your classroom instruction interactive and live for all students. Scientists, you too will want to participate, see how you can reach out and be a part of the K-12 educational system with students learning about YOUR science, a great component for NSF grants! "Scientists in the Classroom," a model program for all, bringing real time science, data and knowledge into the classroom.
Ocean Instruments Web Site for Undergraduate, Secondary and Informal Education
NASA Astrophysics Data System (ADS)
Farrington, J. W.; Nevala, A.; Dolby, L. A.
2004-12-01
An Ocean Instruments web site has been developed that makes available information about ocean sampling and measurement instruments and platforms. The site features text, pictures, diagrams and background information written or edited by experts in ocean science and engineering and contains links to glossaries and multimedia technologies including video streaming, audio packages, and searchable databases. The site was developed after advisory meetings with selected professors teaching undergraduate classes who responded to the question, what could Woods Hole Oceanographic Institution supply to enhance undergraduate education in ocean sciences, life sciences, and geosciences? Prototypes were developed and tested with students, potential users, and potential contributors. The site is hosted by WHOI. The initial five instruments featured were provided by four WHOI scientists and engineers and by one Sea Education Association faculty member. The site is now open to contributions from scientists and engineers worldwide. The site will not advertise or promote the use of individual ocean instruments.
Does science education need the history of science?
Gooday, Graeme; Lynch, John M; Wilson, Kenneth G; Barsky, Constance K
2008-06-01
This essay argues that science education can gain from close engagement with the history of science both in the training of prospective vocational scientists and in educating the broader public about the nature of science. First it shows how historicizing science in the classroom can improve the pedagogical experience of science students and might even help them turn into more effective professional practitioners of science. Then it examines how historians of science can support the scientific education of the general public at a time when debates over "intelligent design" are raising major questions over the kind of science that ought to be available to children in their school curricula. It concludes by considering further work that might be undertaken to show how history of science could be of more general educational interest and utility, well beyond the closed academic domains in which historians of science typically operate.
ERIC Educational Resources Information Center
Clough, Michael P.
2011-01-01
With funding from the United States National Science Foundation, 30 historical short stories designed to teach science content and draw students' attention to the nature of science (NOS) have been created for post-secondary introductory astronomy, biology, chemistry, geology, and physics courses. The project rationale, story development and…
Forging School-Scientist Partnerships: A Case of Easier Said than Done?
NASA Astrophysics Data System (ADS)
Falloon, Garry
2013-12-01
Since the early 1980s, a number of initiatives have been undertaken worldwide which have involved scientists and teachers working together in projects designed to support the science learning of students. Many of these have attempted to establish school-scientist partnerships. In these, scientists, teachers, and students formed teams engaged in mutually beneficial science-based activities founded on principles such as equal recognition and input, and shared vision, responsibility and risk. This article uses two partnership programmes run by a New Zealand Science Research Institute, to illustrate the challenges faced by scientists and teachers as they attempted to forge meaningful and effective partnerships. It argues that achieving the theorised position of a shared partnership space at the intersection of the worlds of scientists and teachers is problematic, and that scientists must instead be prepared to penetrate deeply into the world of the classroom when undertaking any such interactions. Findings indicate epistemological differences, curriculum and school systems and issues, and teacher efficacy and science knowledge significantly affect the process of partnership formation. Furthermore, it is argued that a re-thinking of partnerships is needed to reflect present economic and education environments, which are very different to those in which they were originally conceived nearly 30 years ago. It suggests that technology has an important role to play in future partnership interactions.
NASA Astrophysics Data System (ADS)
Bowman, Catherine Dodds Dunham
Unease about declining U.S. science literacy and inquiry skills drives much innovation in science education, including the quest for authentic science experiences for students. One response is student-scientist partnerships (SSP), involving small numbers of students in scientific investigations with scientist mentors. Alternatively, science inquiry programs provide large numbers of students with opportunities to pursue their own investigations but without extensive access to experts, potentially limiting the possible cognitive and affective gains. This mixed methods study investigates whether it is possible to replicate some of SSPs' benefits on a larger scale through use of a computerized agent designed as a "virtual" scientist mentor. Middle school students (N=532) were randomly assigned to two versions of an agent (or to a control group) providing either content-only or content and interpersonal mentoring while they participated in a three-week curriculum. Results indicate that, on average, students gained in content knowledge but there was no statistically significant difference between the three conditions. In terms of motivation, students exhibited no change, on average, with no statistically significant difference between the three conditions. These data indicate that the treatment conditions neither facilitate nor inhibit student learning and motivation. Interviews with a subsample (n=70), however, suggest that students believe the agents facilitated their learning, eased the workload, provided a trusted source of information, and were enjoyable to use. Teachers reported that the agents provided alternative views of scientists and science, generated class discussion, and met the needs of high and low-achieving students. This difference between measured and perceived benefits may result from measures that were not sufficiently sensitive to capture differences. Alternatively, a more sophisticated agent might better replicate mentoring functions known to produce cognitive and affective gains. Even without established learning or motivational gains, practitioners may want to employ agents for their ability to provide reliable information, expanded perspectives on science and scientists, and a non-intimidating setting for students to ask questions. For computerized agent researchers, this study provides a first step in exploring the affordances and challenges of sustained use of agents in real school settings with the goal of improving science education.
NASA Astrophysics Data System (ADS)
Sharma, Mangala; Smith, D.; Mendez, B.; Shipp, S.; Schwerin, T.; Stockman, S.; Cooper, L.
2010-03-01
The AAS-HEAD community has a rich history of involvement in education and public outreach (E/PO). HEAD members have been using NASA science and educational resources to engage and educate youth and adults nationwide in science, technology, engineering, and mathematics topics. Four new Science Education and Public Outreach Forums ("Forums") funded by NASA Science Mission Directorate (SMD) are working in partnership with the research and education community to ensure that current and future SMD-funded E/PO activities form a seamless whole, with easy entry points for scientists, engineers, faculty, students, K-12 formal and informal science educators, general public, and E/PO professionals alike. These Forums support the astrophysics, heliophysics, planetary and Earth science divisions of NASA SMD in three core areas: 1) E/PO community engagement and development to facilitate clear paths of involvement for scientists, engineers and others interested - or potentially interested - in participating in SMD-funded E/PO activities. Collaborations with science professionals are vital for infusing current, accurate SMD mission and research findings into educational products and activities. Forum activities will yield readily accessible information on effective E/PO strategies, resources, and expertise; context for individual E/PO activities; and opportunities for collaboration. 2) A rigorous analysis of SMD-funded E/PO products and activities to help understand how the existing collection supports education standards and audience needs and to identify areas of opportunity for new materials and activities. K-12 formal, informal, and higher education products and activities are included in this analysis. 3) Finally, to address E/PO-related systemic issues and coordinate related activities across the four SMD science divisions. By supporting the NASA E/PO community and facilitating coordination of E/PO activities within and across disciplines, the SMD-Forum partnerships will lead to more effective, sustainable, and efficient utilization of NASA science discoveries and learning experiences.
USRA's NCSEFSE: a new National Center for Space, Earth, and Flight Sciences Education
NASA Astrophysics Data System (ADS)
Livengood, T. A.; Goldstein, J.; Vanhala, H.; Hamel, J.; Miller, E. A.; Pulkkinen, K.; Richards, S.
2005-08-01
A new National Center for Space, Earth, and Flight Sciences Education (NCSEFSE) has been created in the Washington, DC metropolitan area under the auspices of the Universities Space Research Association. The NCSEFSE provides education and public outreach services in the areas of NASA's research foci in programs of both national and local scope. Present NCSEFSE programs include: Journey through the Universe, which unites formal and informal education within communities and connects a nationally-distributed network of communities from Hilo, HI to Washington, DC with volunteer Visiting Researchers and thematic education modules; the Voyage Scale Model Solar System exhibition on the National Mall, a showcase for planetary science placed directly outside the National Air and Space Museum; educational module development and distribution for the MESSENGER mission to Mercury through a national cadre of MESSENGER Educator Fellows; Teachable Moments in the News, which capitalizes on current events in space, Earth, and flight sciences to teach the science that underlies students' natural interests; the Voyages Across the Universe Speakers' Bureau; and Family Science Night at the National Air and Space Museum, which reaches audiences of 2000--3000 each year, drawn from the Washington metropolitan area. Staff scientists of NCSEFSE maintain active research programs, presently in the areas of planetary atmospheric composition, structure, and dynamics, and in solar system formation. NCSEFSE scientists thus are able to act as authentic representatives of frontier scientific research, and ensure accuracy, relevance, and significance in educational products. NCSEFSE instructional designers and educators ensure pedagogic clarity and effectiveness, through a commitment to quantitative assessment.
Earth Science Literacy: Building Community Consensus
NASA Astrophysics Data System (ADS)
Wysession, M.; Ladue, N.; Budd, D.; Campbell, K.; Conklin, M.; Lewis, G.; Raynolds, R.; Ridky, R.; Ross, R.; Taber, J.; Tewksbury, B.; Tuddenham, P.
2008-12-01
During 2008, the Earth Sciences Literacy Initiative (ESLI) constructed a framework of earth science "Big Ideas" and "Supporting Concepts". Following the examples of recent literacy efforts in the ocean, atmosphere and climate research communities, ESLI has distilled the fundamental understandings of the earth science community into a document that all members of the community will be able to refer to when working with educators, policy-makers, the press and members of the general public. This document is currently in draft form for review and will be published for public distribution in 2009. ESLI began with the construction of an organizing committee of a dozen people who represent a wide array of earth science backgrounds. This group then organized and ran two workshops in 2008: a 2-week online content workshop and a 3-day intensive writing workshop. For both workshops, participants were chosen so as to cover the full breadth of earth science related to the solid earth, surficial processes, and fresh-water hydrology. The asynchronous online workshop included 350 scientists and educators participating from around the world and was a powerful way to gather ideas and information while retaining a written record of all interactions. The writing workshop included 35 scientists, educators and agency representatives to codify the extensive input of the online workshop. Since September, 2008, drafts of the ESLI literacy framework have been circulated through many different channels to make sure that the document accurately reflects the current understandings of earth scientists and to ensure that it is widely accepted and adopted by the earth science communities.
The lure of rationality: Why does the deficit model persist in science communication?
Simis, Molly J; Madden, Haley; Cacciatore, Michael A; Yeo, Sara K
2016-05-01
Science communication has been historically predicated on the knowledge deficit model. Yet, empirical research has shown that public communication of science is more complex than what the knowledge deficit model suggests. In this essay, we pose four lines of reasoning and present empirical data for why we believe the deficit model still persists in public communication of science. First, we posit that scientists' training results in the belief that public audiences can and do process information in a rational manner. Second, the persistence of this model may be a product of current institutional structures. Many graduate education programs in science, technology, engineering, and math (STEM) fields generally lack formal training in public communication. We offer empirical evidence that demonstrates that scientists who have less positive attitudes toward the social sciences are more likely to adhere to the knowledge deficit model of science communication. Third, we present empirical evidence of how scientists conceptualize "the public" and link this to attitudes toward the deficit model. We find that perceiving a knowledge deficit in the public is closely tied to scientists' perceptions of the individuals who comprise the public. Finally, we argue that the knowledge deficit model is perpetuated because it can easily influence public policy for science issues. We propose some ways to uproot the deficit model and move toward more effective science communication efforts, which include training scientists in communication methods grounded in social science research and using approaches that engage community members around scientific issues. © The Author(s) 2016.
Ice Stories: An Educational Collaboration between the Exploratorium and IPY Scientists.
NASA Astrophysics Data System (ADS)
Mary, M. K.
2007-12-01
The Exploratorium, a renowned interactive science museum in San Francisco, has launched a major NSF-funded public education project to highlight research in the Arctic and Antarctic during the International Polar Year. "Ice Stories" will partner museum media and web producers with polar scientists working in the field to bring their research to the Internet and museum audiences via live Webcasts, video clips, blogs, podcasts, and other media platforms. To prepare scientists for their role as field correspondents, the Exploratoirum will train a cohort of 20- 30 young investigators in media collection, production and narrative story telling during an intensive one-week workshop in San Francisco. The museum will curate the polar field reports, and other IPY news and education events, into a continuously updated Web portal on the Exploratorium's award-winning Website and highlight the ongoing research in museum programming, floor demonstrations, and exhibits. These unique collaborations between formal and informal science can serve as a model for other partnerships during major scientific endeavors beyond the International Polar Year.
Improving Student Writing: Methods You Can Use in Science and Engineering Classrooms
NASA Astrophysics Data System (ADS)
Hitt, S. J.; Bright, K.
2013-12-01
Many educators in the fields of science and engineering assure their students that writing is an important and necessary part of their work. According to David Lindsay, in Scientific Writing=Thinking in Words, 99% of scientists agree that writing is an integral part of their jobs. However, only 5% of those same scientists have ever had formal instruction in scientific writing, and those who are also educators may then feel unconfident in teaching this skill to their students (2). Additionally, making time for writing instruction in courses that are already full of technical content can cause it to be hastily and/or peremptorily included. These situations may be some of the contributing factors to the prevailing attitude of frustration that pervades the conversation about writing in science and engineering classrooms. This presentation provides a summary of past, present, and ongoing Writing Center research on effective writing tutoring in order to give science and engineering educators integrated approaches for working with student writers in their disciplines. From creating assignments, providing instruction, guiding revisions, facilitating peer review, and using assessments, we offer a comprehensive approach to getting your students motivated to improve their writing. Our new research study focuses on developing student writing resources and support in science and engineering institutions, with the goal of utilizing cross-disciplinary knowledge that can be used by the various constituencies responsible for improving the effectiveness of writing among student engineers and scientists. We will will draw upon recent findings in the study of the rhetoric and compositional pedagogy and apply them to the specific needs of the science and engineering classroom. The fields of communication, journalism, social sciences, rhetoric, technical writing, and philosophy of science have begun to integrate these findings into classroom practice, and we will show how these can also benefit educators in science and engineering, with the goal of producing more effective student writing.
Linking the GLOBE Program With NASA and NSF Large-Scale Experiments
NASA Astrophysics Data System (ADS)
Filmer, P. E.
2005-12-01
NASA and the NSF, the sponsoring Federal agencies for the GLOBE Program, are seeking the participation of science teams who are working at the cutting edge of Earth systems science in large integrated Earth systems science programs. Connecting the GLOBE concept and structure with NASA and NSF's leading Earth systems science programs will give GLOBE schools and students access to top scientists, and expose them to programs that have been designated as scientific priorities. Students, teachers, parents, and their communities will be able to see how scientists of many disciplines work together to learn about the Earth system. The GLOBE solicitation released by the NSF targets partnerships between GLOBE and NSF/NASA-funded integrated Earth systems science programs. This presentation will focus on the goals and requirements of the NSF solicitation. Proponents will be expected to provide ways for the GLOBE community to interact with a group of scientists from their science programs as part of a wider joint Earth systems science educational strategy (the sponsoring agencies', GLOBE's, and the proposing programs'). Teams proposing to this solicitation must demonstrate: - A focus on direct connections with major NSF Geosciences and/or Polar Programs and/or NASA Earth-Sun research programs that are related to Earth systems science; - A demonstrable benefit to GLOBE and to NSF Geosciences and/or Polar Programs or NASA Earth-Sun education goals (providing access to program researchers and data, working with GLOBE in setting up campaigns where possible, using tested GLOBE or non-GLOBE protocols to the greatest extent possible, actively participating in the wider GLOBE community including schools, among other goals); - An international component; - How the existing educational efforts of the large science program will coordinate with GLOBE; - An Earth systems science education focus, rather than a GLOBE protocol-support focus; - A rigorous evaluation and assessment component that will collaborate with the Geosciences Education assessment contractor and with the GLOBE Office's evaluation and assessment activities; and - Contact and discussions with the GLOBE Office regarding understandings of roles and responsibilities. The following link is a PDF document with full explanation of the GLOBE Program's new direction.
How NASA's Space Science Support Network Can Assist DPS Members in Their Public Engagement Efforts
NASA Astrophysics Data System (ADS)
Miner, E. D.; Lowes, L. L.
2003-12-01
In her Carl Sagan Medal lecture last year, Heidi Hammel talked of the dos and don'ts of education and public outreach efforts by DPS members. She pointed out a number of misconceptions about what does and does not constitute "good EPO" and encouraged members to consult with "the experts" if they would like to improve their EPO effectiveness and reach. She named the DPS Education and Public Outreach Officer, Larry Lebofsky, his Deputy, Lou Mayo, and the DPS Press Officer, Ellis Miner, who also co-directs NASA's Solar System Exploration EPO Forum with Leslie Lowes. NASA's Space Science Support Network has been in existence for about six years. It has been directed by DPS member Jeff Rosendhal and is now serving as a model for NASA's new Education Enterprise. Members of the Support Network are prepared to assist (and haves been assisting) space scientists throughout the US and abroad in deciding where to spend their EPO efforts most effectively. The service is provided free of cost and includes, among other services, the following: (1) helping to establish partnerships between educators and scientists, (2) helping to link scientists and professional EPO organizations, (3) helping to link scientists to national youth and community groups, (4) providing ready access to EPO electronic and hardcopy products, (5) providing advice and direction in the preparation of EPO proposals to NASA, (6) helping to maintain several national networks of EPO volunteers, (7) encouraging (at home institutions) the broadening of scientist EPO efforts, (8) maintaining self-help websites for scientists interested in EPO.
Confessions of a Communications Junkie: Cliff Notes From the Science-Practice Interface
NASA Astrophysics Data System (ADS)
Moser, S. C.
2006-12-01
Graduate education in the sciences is - among other things - about learning a foreign language. Proficiency in disciplinary jargon and a strange sort of eloquence in speaking English without being understood by anyone outside one's small 'country of expertise' are among the requirements for entry into academe. Until very recently, the ability to translate one's quirky knowledge back into common language was not part of entraining scientists. Yet, increasingly, the interested public, policy-makers and resource managers, not to speak of science funders, demand that scientists illustrate that their science has societal relevance. Moreover, the urgency of several complex societal and environmental problems puts the onus on scientists to work with experts in other disciplines. This means that the ability to communicate effectively with those outside one's own disciplinary home is rapidly becoming an essential qualification of a 'good' scientist. My own journey from a disciplinary boundary crosser, to hobby communicator, to professional translator of science into English, to alumnae of various media trainings and Aldo Leopold Leadership Fellow, to researcher of the science-practice interface and expert in communication for social change will form the basis of this talk. It weaves together personal experience with scientific insights on why scientists should, why many don't, and how they could interact more effectively with members of a 'different tribe.'
The Henry Cecil Ranson McBay Chair in Space Science
NASA Technical Reports Server (NTRS)
Bota, Kofi B.; King, James, Jr.
1999-01-01
The goals and objectives of the Henry Cecil Ransom McBay Chair in Space Sciences were to: (1) provide leadership in developing and expanding Space Science curriculum; (2) contribute to the research and education endeavors of NASA's Mission to Planet Earth program; (3) expand opportunities for education and hands-on research in Space and Earth Sciences; (4) enhance scientific and technological literacy at all educational levels and to increase awareness of opportunities in the Space Sciences; and (5) develop a pipeline, starting with high school, of African American students who will develop into a cadre of well-trained scientists with interest in Space Science Research and Development.
Journal of Undergraduate Research, Volume VIII, 2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiner, K. S.; Graham, S.; Khan, M.
Th e Journal of Undergraduate Research (JUR) provides undergraduate interns the opportunity to publish their scientific innovation and to share their passion for education and research with fellow students and scientists. Fields in which these students worked include: Biology; Chemistry; Computer Science; Engineering; Environmental Science; General Sciences; Materials Sciences; Medical and Health Sciences; Nuclear Sciences; Physics; Science Policy; and Waste Management.
NASA Astrophysics Data System (ADS)
Akerson, Valarie L.; Buzzelli, Cary A.; Eastwood, Jennifer L.
2012-02-01
This study explored preservice teachers' views of their own cultural values, the cultural values they believed scientists hold, and the relationships of these views to their conceptions of nature of science (NOS). Parallel assignments in a foundations of early childhood education and a science methods course required preservice teachers to explore their own cultural backgrounds and their perceptions of the cultural backgrounds of scientists. The Schwartz Values Inventory was used to measure preservice teachers' personal cultural values and those they perceived of scientists. The Views of Nature of Science version B questionnaire and interviews assessed teachers' conceptions of NOS. Copies of student work were collected and sought for themes indicating how preservice teachers perceived scientists' cultural values and how those perceptions changed over time. We found that from the beginning to the end of the semester, preservice teachers perceived fewer differences between their own cultural values and those they perceived scientists held, though they did not change their own cultural values. We found that preservice teachers' NOS conceptions improved, and that they were related to both their cultural values and those they perceived scientists held. Preservice teachers who indicated the fewest differences between their own cultural values and those they perceived scientists held the most informed conceptions of NOS.
NASA Astrophysics Data System (ADS)
Dodick, Jeff; Argamon, Shlomo; Chase, Paul
2009-08-01
A key focus of current science education reforms involves developing inquiry-based learning materials. However, without an understanding of how working scientists actually do science, such learning materials cannot be properly developed. Until now, research on scientific reasoning has focused on cognitive studies of individual scientific fields. However, the question remains as to whether scientists in different fields fundamentally rely on different methodologies. Although many philosophers and historians of science do indeed assert that there is no single monolithic scientific method, this has never been tested empirically. We therefore approach this problem by analyzing patterns of language used by scientists in their published work. Our results demonstrate systematic variation in language use between types of science that are thought to differ in their characteristic methodologies. The features of language use that were found correspond closely to a proposed distinction between Experimental Sciences (e.g., chemistry) and Historical Sciences (e.g., paleontology); thus, different underlying rhetorical and conceptual mechanisms likely operate for scientific reasoning and communication in different contexts.
Citizen Science Data and Scaling
NASA Astrophysics Data System (ADS)
Henderson, S.; Wasser, L. A.
2013-12-01
There is rapid growth in the collection of environmental data by non experts. So called ';citizen scientists' are collecting data on plant phenology, precipitation patterns, bird migration and winter feeding, mating calls of frogs in the spring, and numerous other topics and phenomena related to environmental science. This data is generally submitted to online programs (e.g Project BudBurst, COCORaHS, Project Feederwatch, Frogwatch USA, etc.)and is freely available to scientists, educators, land managers, and decisions makers. While the data is often used to address specific science questions, it also provides the opportunity to explore its utility in the context of ecosystem scaling. Citizen science data is being collected and submitted at an unprecedented rate and is of a spatial and temporal scale previously not possible. The amount of citizen science data vastly exceeds what scientists or land managers can collect on their own. As such, it provides opportunities to address scaling in the environmental sciences. This presentation will explore data from several citizen science programs in the context of scaling.
ERIC Educational Resources Information Center
McCubbins, Sara; Thomas, Bethany; Vetere, Michael
2014-01-01
This article describes a family-friendly science day event that encourages scientific discovery through hands-on activities, while also providing an opportunity to learn about scientific careers from actual research scientists and science educators, thereby raising awareness of the importance of STEM in our society. The one-day event bought…
Programming Digital Stories and How-to Animations
ERIC Educational Resources Information Center
Hansen, Alexandria Killian; Iveland, Ashley; Harlow, Danielle Boyd; Dwyer, Hilary; Franklin, Diana
2015-01-01
As science teachers continue preparing for implementation of the "Next Generation Science Standards," one recommendation is to use computer programming as a promising context to efficiently integrate science and engineering. In this article, a interdisciplinary team of educational researchers and computer scientists describe how to use…
Ellwood, Elizabeth R; Kimberly, Paul; Guralnick, Robert; Flemons, Paul; Love, Kevin; Ellis, Shari; Allen, Julie M; Best, Jason H; Carter, Richard; Chagnoux, Simon; Costello, Robert; Denslow, Michael W; Dunckel, Betty A; Ferriter, Meghan M; Gilbert, Edward E; Goforth, Christine; Groom, Quentin; Krimmel, Erica R; LaFrance, Raphael; Martinec, Joann Lacey; Miller, Andrew N; Minnaert-Grote, Jamie; Nash, Thomas; Oboyski, Peter; Paul, Deborah L; Pearson, Katelin D; Pentcheff, N Dean; Roberts, Mari A; Seltzer, Carrie E; Soltis, Pamela S; Stephens, Rhiannon; Sweeney, Patrick W; von Konrat, Matt; Wall, Adam; Wetzer, Regina; Zimmerman, Charles; Mast, Austin R
2018-02-01
The digitization of biocollections is a critical task with direct implications for the global community who use the data for research and education. Recent innovations to involve citizen scientists in digitization increase awareness of the value of biodiversity specimens; advance science, technology, engineering, and math literacy; and build sustainability for digitization. In support of these activities, we launched the first global citizen-science event focused on the digitization of biodiversity specimens: Worldwide Engagement for Digitizing Biocollections (WeDigBio). During the inaugural 2015 event, 21 sites hosted events where citizen scientists transcribed specimen labels via online platforms (DigiVol, Les Herbonautes, Notes from Nature, the Smithsonian Institution's Transcription Center, and Symbiota). Many citizen scientists also contributed off-site. In total, thousands of citizen scientists around the world completed over 50,000 transcription tasks. Here, we present the process of organizing an international citizen-science event, an analysis of the event's effectiveness, and future directions-content now foundational to the growing WeDigBio event.
ERIC Educational Resources Information Center
Lövheim, Daniel
2014-01-01
This article portrays the formation of a new problem area within Swedish educational policy in the 1960s, namely the need of scientific manpower and the demands to entice more individuals into studies in science and technology. As a consequence school science was given the mission to be interesting, fun and to change young people's attitudes…
NASA Astrophysics Data System (ADS)
2012-05-01
Education: Physics Education Networks meeting has global scale Competition: Competition seeks the next Brian Cox Experiment: New measurement of neutrino time-of-flight consistent with the speed of light Event: A day for all those who teach physics Conference: Students attend first Anglo-Japanese international science conference Celebration: Will 2015 be the 'Year of Light'? Teachers: Challenging our intuition in spectacular fashion: the fascinating world of quantum physics awaits Research: Science sharpens up sport Learning: Kittinger and Baumgartner: on a mission to the edge of space International: London International Youth Science Forum calls for leading young scientists Competition: Physics paralympian challenge needs inquisitive, analytical, artistic and eloquent pupils Forthcoming events
NASA Astrophysics Data System (ADS)
Ziegler, L. B.; van Dusen, D.; Benedict, R.; Chojnacki, P. R.; Peach, C. L.; Staudigel, H.; Constable, C.; Laske, G.
2010-12-01
The Scripps Classroom Connection, funded through the NSF GK-12 program, pairs local high school teachers with Scripps Institution of Oceanography (SIO) graduate students in the earth and ocean sciences for their mutual professional development. An integral goal of the program is the collaborative production of quality earth science educational modules that are tested in the classroom and subsequently made freely available online for use by other educators. We present a brief overview of the program structure in place to support this goal and illustrate a module that we have developed on the Solid Earth & Plate Tectonics for a 9th grade Earth Science classroom. The unit includes 1) an exercise in constructing a geomagnetic polarity timescale which exposes students to authentic scientific data; 2) activities, labs, lectures and worksheets that support the scientific content; and 3) use of online resources such as Google Earth and interactive animations that help students better understand the concepts. The educational unit is being implemented in two separate local area high schools for Fall 2010 and we will report on our experiences. The co-operative efforts of teachers and scientists lead to educational materials which expose students to the scientific process and current science research, while teaching basic concepts using an engaging inquiry-based approach. In turn, graduate students involved gain experience communicating their science to non-science audiences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, H.
Helen Quinn is a theoretical particle physicist at SLAC. Throughout her career, she has been passionately involved in science education and public understanding of science. In talking about science, whether to the public or to students, we scientists often assume that they share with us a common idea of science. In my experience that is often not the case. To oversimplify, scientists think of science both as a process for discovering properties of nature, and as the resulting body of knowledge, whereas most people seem to think of science, or perhaps scientists, as an authority that provides some information--just onemore » more story among the many that they use to help make sense of their world. Can we close that gap in understanding? Middle school teachers typically spend a day or so teaching something called the scientific method, but the process by which scientific ideas are developed and tested is messier and much more interesting than that typical capsule description. Some remarkable features of the process are seldom stressed in teaching science, nor are they addressed in explaining any one piece of science to the public. My goal in this column is to provide some ideas for closing that gap in understanding, and to encourage scientists and teachers to communicate about the process as they discuss scientific work.« less
CosmoQuest: Galvanizing a Dynamic, Inclusive Professional Learning Network
NASA Astrophysics Data System (ADS)
Cobb, W. H.; Buxner, S.; Bracey, G.; Noel-Storr, J.; Gay, P.; Graff, P. V.
2016-12-01
The CosmoQuest Virtual Research Facility offers experiences to audiences around the nation and globally through pioneering citizen science. An endeavor between universities, research institutes, and NASA centers, CosmoQuest brings together scientists, educators, researchers, programmers—and individuals of all ages—to explore and make sense of our solar system and beyond. Scaffolded by an educational framework that inspires 21stCentury learners, CosmoQuest engages people—you, me!—in analyzing and interpreting real NASA data, inspiring questions and defining problems. Linda Darling-Hammond calls for professional development to be: "focused on the learning and teaching of specific curriculum content [i.e. NGSS disciplinary core ideas]; organized around real problems of practice [i.e. NGSS science and engineering practices] …; [and] connected to teachers' collaborative work in professional learning community...." (2012). In light of that, what can CosmoQuest offer NASA STEM education as a virtual research facility? CosmoQuest engages scientists with learners, and learners with science. As a virual research facility, its focal point must be its online platform. CosmoQuest empowers and expands community through a variety of social channels, including science and education-focused hangouts, podcasts, virtual star parties, and social media. In addition to creating standards-aligned materials, CosmoQuest channels are a hub for excellent resources throughout NASA and the larger astronomical community. In support of CosmoQuest citizen science opportunities, the process and outcomes of CosmoQuest initiatives will be leveraged and shared. Thus, CosmoQuest will be present and alive in the awareness of its growing community. Finally, to make CosmoQuest truly relevant, partnerships between scientists and educators are encouraged and facilitated, and "just-in-time" opportunities to support constituents exploring emerging NASA STEM education and new NASA data will be offered, engaging audiences ranging from diverse educators to the curious learner of any age.
Improvement in Student Science Proficiency Through InSciEd Out
Sonju, James D.; Leicester, Jean E.; Hoody, Maggie; LaBounty, Thomas J.; Frimannsdottir, Katrin R.; Ekker, Stephen C.
2012-01-01
Abstract Integrated Science Education Outreach (InSciEd Out) is a collaboration formed between Mayo Clinic, Winona State University, and Rochester Public Schools (MN) with the shared vision of achieving excellence in science education. InSciEd Out employs an equitable partnership model between scientists, teachers, education researchers, and the community. Teams of teachers from all disciplines within a single school experience cutting-edge science using the zebrafish model system, as well as current pedagogical methods, during a summer internship at the Mayo Clinic. Within the internship, the teachers produce new curriculum that directly addresses opportunities for science education improvement at their own school. Zebrafish are introduced within the new curriculum to support a living model of the practice of science. Following partnership with the InSciEd Out program and 2 years of implementation in the classroom, teacher-interns from a K–8 public school reported access to local scientific technology and expertise they had not previously recognized. Teachers also reported improved integration of other disciplines into the scientific curriculum and a flow of concepts vertically from K through 8. Students more than doubled selection of an Honors science track in high school to nearly 90%. 98% of students who took the Minnesota Comprehensive Assessments in their 5th and 8th grade year (a span that includes 2 years of InSciEd Out) showed medium or high growth in science proficiency. These metrics indicate that cooperation between educators and scientists can result in positive change in student science proficiency and demonstrate that a higher expectation in science education can be achieved in US public schools. PMID:23244687
Marks, Nicola J
2014-07-01
Scientists play an important role in framing public engagement with science. Their language can facilitate or impede particular interactions taking place with particular citizens: scientists' "speech acts" can "perform" different types of "scientific citizenship". This paper examines how scientists in Australia talked about therapeutic cloning during interviews and during the 2006 parliamentary debates on stem cell research. Some avoided complex labels, thereby facilitating public examination of this field. Others drew on language that only opens a space for publics to become educated, not to participate in a more meaningful way. Importantly, public utterances made by scientists here contrast with common international utterances: they did not focus on the therapeutic but the research promises of therapeutic cloning. Social scientists need to pay attention to the performative aspects of language in order to promote genuine citizen involvement in techno-science. Speech Act Theory is a useful analytical tool for this.
From The Horse's Mouth: Engaging With Geoscientists On Science
NASA Astrophysics Data System (ADS)
Katzenberger, J.; Morrow, C. A.; Arnott, J. C.
2011-12-01
"From the Horse's Mouth" is a project of the Aspen Global Change Institute (AGCI) that utilizes selected short video clips of scientists presenting and discussing their research in an interdisciplinary setting at AGCI as the core of an online interactive set of learning modules in the geosciences for grades 9-12 and 1st and 2nd year undergraduate students. The video archive and associated material as is has limited utility, but here we illustrate how it can be leveraged for educational purposes by a systematic mining of the resource integrated with a variety of supplemental user experiences. The project furthers several broad goals to: (a) improve the quality of formal and informal geoscience education with an emphasis on 9-12 and early undergraduate, (b) encourage and facilitate the engagement of geoscientists to strengthen STEM education by leveraging AGCI's interdisciplinary science program for educational purposes, (c) explore science as a human endeavor by providing a unique view of how scientists communicate in a research setting, potentially stimulating students to consider traditional and non-traditional geoscience careers, (d) promote student understanding of scientific methodology and inquiry, and (e) further student appreciation of the role of science in society, particularly related to understanding Earth system science and global change. The resource material at the core of this project is a videotape record of presentation and discussion among leading scientists from 35 countries participating in interdisciplinary workshops at AGCI on a broad array of geoscience topics over a period of 22 years. The unique archive represents approximately 1200 hours of video footage obtained over the course of 43 scientific workshops and 62 hours of public talks. The full spectrum of material represents scientists active on all continents with a diverse set of backgrounds and academic expertise in both natural and social sciences. We report on the video database resource, our data acquisition protocols, conceptual design for the learning modules, excerpts from the video archive illustrating both geoscience content utilized in educational module development and examples of video clips that explore the process of science and its nature as a human endeavor. A prototype of the user interface featuring a navigational strategy, a discussion of both content and process goals represented in the pilot material and its use in both formal and informal settings are presented.
The Ideology of Political Science
ERIC Educational Resources Information Center
Heiden, Bruce
2013-01-01
In a recent article in "Academic Questions" political scientists Robert Maranto and Matthew C. Woessner have suggested a program to reform their discipline and enhance its social utility. They encourage researchers to engage with consequential social issues and educate the public, while admonishing political scientists to resist partisan advocacy…
Tools for Scientist Engagement in E/PO: NASA SMD Community Workspace and Online Resources
NASA Astrophysics Data System (ADS)
Dalton, H.; Shipp, S. S.; Grier, J.; Gross, N. A.; Buxner, S.; Bartolone, L.; Peticolas, L. M.; Woroner, M.; Schwerin, T. G.
2014-12-01
The Science Mission Directorate (SMD) Science Education and Public Outreach (E/PO) Forums are here to help you get involved in E/PO! The Forums have been developing several online resources to support scientists who are - or who are interested in becoming - involved in E/PO. These include NASA Wavelength, EarthSpace, and the SMD E/PO online community workspace. NASA Wavelength is the one-stop shop of all peer-reviewed NASA education resources to find materials you - or your audiences - can use. Browse by audience (pre-K through 12, higher education, and informal education) or topic, or choose to search for something specific by keyword and audience. http://nasawavelength.org. EarthSpace, an online clearinghouse of Earth and space materials for use in the higher education classroom, is driven by a powerful search engine that allows you to browse the collection of resources by science topic, audience, type of material or key terms. All materials are peer-reviewed before posting, and because all submissions receive a digital object identifier (doi), submitted materials can be listed as publications. http://www.lpi.usra.edu/earthspace. The SMD E/PO online community workspace contains many resources for scientists. These include one-page guides on how to get involved, tips on how to make the most of your time spent on E/PO, and sample activities, as well as news on funding, policy, and what's happening in the E/PO community. The workspace also provides scientists and the public pathways to find opportunities for participation in E/PO, to learn about SMD E/PO projects and their impacts, to connect with SMD E/PO practitioners, and to explore resources to improve professional E/PO practice, including literature reviews, information about the Next Generation Science Standards, and best practices in evaluation and engaging diverse audiences. http://smdepo.org.
Using Virtual Reality to Bring Ocean Science Field Experiences to the Classroom and Beyond
NASA Astrophysics Data System (ADS)
Waite, A. J.; Rosenberg, A.; Frehm, V.; Gravinese, P.; Jackson, J.; Killingsworth, S.; Williams, C.
2017-12-01
While still in its infancy, the application of virtual reality (VR) technology to classroom education provides unparalleled opportunities to transport students to otherwise inaccessible localities and increase awareness of and engagement in STEAM fields. Here we share VR programming in development by the ANGARI Foundation, a 501(c)(3) nonprofit committed to advancing ocean science research and education. ANGARI Foundation's series of thematic VR films features the research of ocean scientists from onboard the Foundation's research vessel, R/V ANGARI. The films are developed and produced through an iterative process between expedition scientists, the film production team, and ANGARI staff and Educator Council members. Upon completion of filming, the K-12 and informal educators of ANGARI's Educator Council work with ANGARI staff and affiliated scientists to develop and implement standards-aligned (e.g. Next Generation Science Standards and International Baccalaureate) lesson plans for the classroom. The goal of ANGARI Foundation's VR films is to immerse broad audiences in the marine environment, while actively engaging them in the at-sea scientific methods of expert scientists, ultimately increasing knowledge of our oceans and promoting their conservation. The foundation's VR films and developed lessons are made available for free to the public via YouTube and www.ANGARI.org. While South Florida educators may request that ANGARI Foundation visit their classrooms and bring the necessary headsets to run the experience, the Foundation is also partnering with VR hardware companies to facilitate the acquisition and adoption of VR headsets by schools in the U.S. and abroad. In this presentation we will share our most recent VR film that highlights coral reef ecosystems and the Florida Reef Tract, taking an interdisciplinary approach to investigating how it has changed over time and the issues and opportunities it currently faces. We will also discuss classroom implementation of VR and the invaluable opportunities that the ANGARI VR series provides for educator professional development and public engagement as it continues to break down barriers between scientists and the public.
ERIC Educational Resources Information Center
WEAVER, CHARLES E.
DISCUSSED ARE THE CHANGING IDENTITY OF GRADUATE EARTH SCIENCE EDUCATION, THE FACTORS WHICH PRECIPITATED THESE CHANGES, AND THE RESULTING PROBLEMS. THE CONFERENCE PARTICIPANTS INCLUDED EARTH SCIENTISTS WITH DIVERSE SCIENTIFIC BACKGROUNDS FROM A BROAD GEOGRAPHICAL AREA. SPECIFIC TOPICS COVERED INCLUDED--(1) PRESENT DEVELOPMENTS AND FUTURE OF EARTH…