Assuring the quality, safety, and efficacy of DNA vaccines.
Robertson, J S; Griffiths, E
2001-02-01
Scientists in academia whose research is aimed at the development of a novel vaccine or approach to vaccination may not always be fully aware of the regulatory process by which a candidate vaccine becomes a licensed product. It is useful for such scientists to be aware of these processes as the development of a novel vaccine could be problematic owing to the starting material often being developed in a research laboratory under ill-defined conditions. This paper examines the regulatory process with respect to the development of a DNA vaccine. DNA vaccines present unusual safety considerations that must be addressed during preclinical safety studies, including adverse immunopathology, genotoxicity through integration into a vaccinees chromosomes, and the potential for the formation of anti-DNA antibodies.
Assuring the quality, safety, and efficacy of DNA vaccines.
Robertson, James S; Griffiths, Elwyn
2006-01-01
Scientists in academia whose research is aimed at the development of a novel vaccine or approach to vaccination may not always be fully aware of the regulatory process by which a candidate vaccine becomes a licensed product. It is useful for such scientists to be aware of these processes, as the development of a novel vaccine could be problematic as a result of the starting material often being developed in a research laboratory under ill-defined conditions. This chapter examines the regulatory process with respect to the development of a DNA vaccine. DNA vaccines present unusual safety considerations which must be addressed during nonclinical safety studies, including adverse immunopathology, genotoxicity through integration into a vaccinee's chromosomes and the potential for the formation of anti-DNA antibodies.
Self-regulation of recombinant DNA technology in Japan in the 1970s.
Nagai, Hiroyuki; Nukaga, Yoshio; Saeki, Koji; Akabayashi, Akira
2009-07-01
Recombinant DNA technology was developed in the United States in the early 1970s. Leading scientists held an international Asilomar Conference in 1975 to examine the self regulation of recombinant DNA technology, followed by the U.S. National Institutes of Health drafting the Recombinant DNA Research Guidelines in 1976. The result of this conference significantly affected many nations, including Japan. However, there have been few historical studies on the self-regulation of recombinant technologies conducted by scientists and government officials in Japan. The purpose of this paper is to analyze how the Science Council of Japan, the Ministry of Education, Science adn Culture, and the Science and Technology Agency developed self-regulation policies for recombinant DNA technology in Japan in the 1970s. Groups of molecular biologist and geneticists played a key role in establishing guidelines in cooperation with government officials. Our findings suggest that self-regulation policies on recombinant DNA technology have influenced safety management for the life sciences and establishment of institutions for review in Japan.
Genome Sequencing Technologies and Nursing: What Are the Roles of Nurses and Nurse Scientists?
Taylor, Jacquelyn Y; Wright, Michelle L; Hickey, Kathleen T; Housman, David E
Advances in DNA sequencing technology have resulted in an abundance of personalized data with challenging clinical utility and meaning for clinicians. This wealth of data has potential to dramatically impact the quality of healthcare. Nurses are at the focal point in educating patients regarding relevant healthcare needs; therefore, an understanding of sequencing technology and utilizing these data are critical. The objective of this study was to explicate the role of nurses and nurse scientists as integral members of healthcare teams in improving understanding of DNA sequencing data and translational genomics for patients. A history of the nurse role in newborn screening is used as an exemplar. This study serves as an exemplar on how genome sequencing has been utilized in nursing science and incorporates linkages of other omics approaches used by nurses that are included in this special issue. This special issue showcased nurse scientists conducting multi-omic research from various methods, including targeted candidate genes, pharmacogenomics, proteomics, epigenomics, and the microbiome. From this vantage point, we provide an overview of the roles of nurse scientists in genome sequencing research and provide recommendations for the best utilization of nurses and nurse scientists related to genome sequencing.
DNA repair: a changing geography? (1964-2008).
Maisonobe, Marion; Giglia-Mari, Giuseppina; Eckert, Denis
2013-07-01
This article aims to explain the current state of DNA Repair studies' global geography by focusing on the genesis of the community. Bibliometric data is used to localize scientific activities related to DNA Repair at the city level. The keyword "DNA Repair" was introduced first by American scientists. It started to spread after 1964 that is to say, after P. Howard-Flanders (Yale University), P. Hanawalt (Stanford University) and R. Setlow (Oak Ridge Laboratories) found evidence for Excision Repair mechanisms. It was the first stage in the emergence of an autonomous scientific community. In this article, we will try to assess to what extent the geo-history of this scientific field is determinant in understanding its current geography. In order to do so, we will localize the places where the first "DNA Repair" publications were signed fifty years ago and the following spatial diffusion process, which led to the current geography of the field. Then, we will focus on the evolution of the research activity of "early entrants" in relation to the activity of "latecomers". This article is an opportunity to share with DNA Repair scientists some research results of a dynamic field in Science studies: spatial scientometrics. Copyright © 2013 Elsevier B.V. All rights reserved.
Whose DNA is this? How relevant a question? (a note for forensic scientists).
Taroni, Franco; Biedermann, Alex; Vuille, Joëlle; Morling, Niels
2013-07-01
This communication seeks to draw the attention of researchers and practitioners dealing with forensic DNA profiling analyses to the following question: is a scientist's report, offering support to a hypothesis according to which a particular individual is the source of DNA detected during the analysis of a stain, relevant from the point of view of a Court of Justice? This question relates to skeptical views previously voiced by commentators mainly in the judicial area, but is avoided by a large majority of forensic scientists. Notwithstanding, the pivotal role of this question has recently been evoked during the international conference "The hidden side of DNA profiles. Artifacts, errors and uncertain evidence" held in Rome (April 27th to 28th, 2012). Indeed, despite the fact that this conference brought together some of the world's leading forensic DNA specialists, it appeared clearly that a huge gap still exists between questions lawyers are actually interested in, and the answers that scientists deliver to Courts in written reports or during oral testimony. Participants in the justice system, namely lawyers and jurors on the one hand and forensic geneticists on the other, unfortunately talk considerably different languages. It thus is fundamental to address this issue of communication about results of forensic DNA analyses, and open a dialogue with practicing non-scientists at large who need to make meaningful use of scientific results to approach and help solve judicial cases. This paper intends to emphasize the actuality of this topic and suggest beneficial ways ahead towards a more reasoned use of forensic DNA in criminal proceedings. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Visual Representations of DNA Replication: Middle Grades Students' Perceptions and Interpretations
ERIC Educational Resources Information Center
Patrick, Michelle D.; Carter, Glenda; Wiebe, Eric N.
2005-01-01
Visual representations play a critical role in the communication of science concepts for scientists and students alike. However, recent research suggests that novice students experience difficulty extracting relevant information from representations. This study examined students' interpretations of visual representations of DNA replication. Each…
Using Cellular Proteins to Reveal Mechanisms of HIV Infection | Center for Cancer Research
A vital step in HIV infection is the insertion of viral DNA into the genome of the host cell. In order for the insertion to occur, viral nucleic acid must be transported through the membrane that separates the main cellular compartment (the cytoplasm) from the nucleus, where the host DNA is located. Scientists are actively studying the mechanism used to transport viral DNA
... blood test Sigmoidoscopy Colonoscopy Virtual colonoscopy DNA stool test Studies have shown that screening for colorectal cancer using ... decrease the risk of dying from cancer. Scientists study screening tests to find those with the fewest risks and ...
Risks of Colorectal Cancer Screening
... blood test Sigmoidoscopy Colonoscopy Virtual colonoscopy DNA stool test Studies have shown that screening for colorectal cancer using ... decrease the risk of dying from cancer. Scientists study screening tests to find those with the fewest risks and ...
EPA Scientists Develop Research Methods for Studying Mold Fact Sheet
In 2002, U.S. Environmental Protection Agency researchers developed a DNA-based Mold Specific Quantitative Polymerase Chain Reaction method (MSQPCR) for identifying and quantifying over 100 common molds and fungi.
Najmabadi, Hossein; Neishabury, Maryam; Sahebjam, Farhad; Kahrizi, Kimia; Shafaghati, Yousef; Nikzat, Nushin; Jalalvand, Maryam; Aminy, Farahnaz; Hashemi, Susan Bany; Moghimi, Babak; Noorian, Ali Reza; Jannati, Ali; Mohammadi, Mehrdad; Javan, Khalil
2003-02-01
As Human Genome Project exploration continues, the necessity of having a broader spectrum of genomic DNA material from different nationalities to study various aspects of hereditary disease becomes more obvious. The existence of high genetic polymorphism within and between different communities in the world makes it necessary for the gene hunters to investigate many different populations. Iran, a large country with close to 66 million people, is a land of different nationalities, tribes, and religions that offers a highly heterogeneous gene pool to the genetics researcher. The purity of many different races in this country has been highly conserved by geographical borders and by an ancient culture that has always encouraged intrafamilial marriages. All these have created a population that is remarkably heterogeneous yet high in consanguinity rate. During the last five years of investigation we have established a DNA bank, the Iranian Human Mutation Gene Bank (www.IHMGB.com), which contains all genetic diseases studied in Iran that have the Mendelian mode of inheritance. Some of the samples are assigned to common or novel mutations and others belong to patients with clinical profiles associated with particular genetic diseases but undefined mutation. This bank stores samples of DNA from the patient and his/her first-degree relatives together with a comprehensive pedigree and clinical profile for each sample. To facilitate collaboration with other scientists around the world with the same interests, we decided to present our experimental projects online. This DNA bank provides opportunities for us to collaborate with scientists outside Iran. It offers a sample resource to research scientists around the world, at no charge, for the purpose of investigating the various aspects of genetic disorders from prenatal diagnosis to gene structure and function. It is strongly stressed that no commercial benefit is involved in the establishment of this DNA bank and the DNA samples are free of charge. However, to meet our goals and to respect ethical values, DNA samples can only be used under certain conditions stated in the User Consent Form. Copyright 2003 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Yang, Hong
Until recently, recovery and analysis of genetic information encoded in ancient DNA sequences from Pleistocene fossils were impossible. Recent advances in molecular biology offered technical tools to obtain ancient DNA sequences from well-preserved Quaternary fossils and opened the possibilities to directly study genetic changes in fossil species to address various biological and paleontological questions. Ancient DNA studies involving Pleistocene fossil material and ancient DNA degradation and preservation in Quaternary deposits are reviewed. The molecular technology applied to isolate, amplify, and sequence ancient DNA is also presented. Authentication of ancient DNA sequences and technical problems associated with modern and ancient DNA contamination are discussed. As illustrated in recent studies on ancient DNA from proboscideans, it is apparent that fossil DNA sequence data can shed light on many aspects of Quaternary research such as systematics and phylogeny. conservation biology, evolutionary theory, molecular taphonomy, and forensic sciences. Improvement of molecular techniques and a better understanding of DNA degradation during fossilization are likely to build on current strengths and to overcome existing problems, making fossil DNA data a unique source of information for Quaternary scientists.
Reversible conformational switching of i-motif DNA studied by fluorescence spectroscopy.
Choi, Jungkweon; Majima, Tetsuro
2013-01-01
Non-B DNAs, which can form unique structures other than double helix of B-DNA, have attracted considerable attention from scientists in various fields including biology, chemistry and physics etc. Among them, i-motif DNA, which is formed from cytosine (C)-rich sequences found in telomeric DNA and the promoter region of oncogenes, has been extensively investigated as a signpost and controller for the oncogene expression at the transcription level and as a promising material in nanotechnology. Fluorescence techniques such as fluorescence resonance energy transfer (FRET) and the fluorescence quenching are important for studying DNA and in particular for the visualization of reversible conformational switching of i-motif DNA that is triggered by the protonation. Here, we review the latest studies on the conformational dynamics of i-motif DNA as well as the application of FRET and fluorescence quenching techniques to the visualization of reversible conformational switching of i-motif DNA in nano-biotechnology. © 2013 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2013 The American Society of Photobiology.
Value of DNA tests: a decision perspective.
Taroni, Franco; Bozza, Silvia; Bernard, Magali; Champod, Christophe
2007-01-01
Before a Court of Law testifying in DNA-evidence cases, scientists are often challenged with the idea that the more markers (loci) the better, i.e., why does the scientist not use 16 or more markers? This paper introduces a new perspective, decision analysis, to deal with the problem of the number of markers to type in a criminal context. The decision-making process, which plays a key role in the routine work of a forensic scientist, consists of the rational choice, given personal objectives, between two or more possible outcomes when the consequences of the choice are uncertain. Simulated results support the hypothesis that analytical added value does not increase with the number of markers.
DNA typing in forensic medicine and in criminal investigations: a current survey.
Benecke, M
1997-05-01
Since 1985 DNA typing of biological material has become one of the most powerful tools for personal identification in forensic medicine and in criminal investigations [1-6]. Classical DNA "fingerprinting" is increasingly being replaced by polymerase chain reaction (PCR) based technology which detects very short polymorphic stretches of DNA [7-15]. DNA loci which forensic scientists study do not code for proteins, and they are spread over the whole genome [16, 17]. These loci are neutral, and few provide any information about individuals except for their identity. Minute amounts of biological material are sufficient for DNA typing. Many European countries are beginning to establish databases to store DNA profiles of crime scenes and known offenders. A brief overview is given of past and present DNA typing and the establishment of forensic DNA databases in Europe.
DNA typing in forensic medicine and in criminal investigations: a current survey
NASA Astrophysics Data System (ADS)
Benecke, Mark
Since 1985 DNA typing of biological material has become one of the most powerful tools for personal identification in forensic medicine and in criminal investigations [1-6]. Classical DNA "fingerprinting" is increasingly being replaced by polymerase chain reaction (PCR) based technology which detects very short polymorphic stretches of DNA [7-15]. DNA loci which forensic scientists study do not code for proteins, and they are spread over the whole genome [16, 17]. These loci are neutral, and few provide any information about individuals except for their identity. Minute amounts of biological material are sufficient for DNA typing. Many European countries are beginning to establish databases to store DNA profiles of crime scenes and known offenders. A brief overview is given of past and present DNA typing and the establishment of forensic DNA databases in Europe.
The readability of expert reports for non-scientist report-users: reports of DNA analysis.
Howes, Loene M; Julian, Roberta; Kelty, Sally F; Kemp, Nenagh; Kirkbride, K Paul
2014-04-01
DNA evidence can be extremely compelling. With ongoing scientific advances and applications of DNA evidence in the criminal justice system, it is increasingly important that police, lawyers, and judges recognise both the limitations of DNA evidence and the strength of the evidence in particular cases. Because most forensic sciences are formally communicated via expert reports, we analysed the readability of 68 such reports of DNA evidence from 6 of 8 Australian jurisdictions. We conducted content analyses using three categories: content and sequence, language, and format. Categories contained qualitative and quantitative items drawn from theory and past research. Report styles differed by jurisdiction and by main audience - police and the courts. Reports for police were brief and few links were made between sections in these reports. Reports for courts were less brief and used either legal or scientific styles. Common sections in reports for courts included: the scientist's specialised knowledge; laboratory accreditation information; item list; results; and notes on interpretation. Sections were often not in a logical sequence, due to the use of appendices. According to Flesch Reading Ease scores, reports for police had language that was fairly difficult, and reports for courts, difficult. Difficulty was compounded by the use of specialist terms. Reports for police and the appendices of reports for court often used very small font and single line spacing. Many reports for court contained tables that spanned several pages. Suggestions based on theory and past research are provided to assist scientists to enhance the readability of reports for non-scientists. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Pennisi, Elizabeth
1991-01-01
An imaging technique that uses fluorescent dyes and allows scientists to track DNA as it moves through gels or in solution is described. The importance, opportunities, and implications of this technique are discussed. (KR)
Molecular cardiology: the beat goes on
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bialy, H.
1987-06-01
Recombination DNA techniques have given cardiac physiologists their first access to the genes, proteins, and chemical signals that regulate the human heart. Scientists have been investigating the molecular biology of the angiotensinogen converting enzyme, renin, and of atrial natriuretic factor (ANF), an important cardiac-peptide hormone with a wide range of physiologic activities. Renin initiates a regulatory cascade that eventually produces angiotensin II, a potent hypertensive agent. By studying renin's genetic organization, and protein chemistry, scientists hope to be able to design a rational therapeutic to specifically inhibit this aspartyl protease. To determine if renin is endogenously produced or if itmore » makes its way to these cells through the circulation. A combination of fluorescent-labeled antibodies and radio-labeled nucleic acid probes derived from renin cDNA were used.« less
The discovery of the structure of DNA
NASA Astrophysics Data System (ADS)
Squires, G. L.
2003-04-01
On 25 April 1953, Nature published a letter by Francis Crick and James Watson, at the Cavendish Laboratory, Cambridge, proposing a structure for DNA. This letter marked the beginning of a revolution in biology. Besides Crick and Watson, two other scientists, Rosalind Franklin and Maurice Wilkins, played key roles in the discovery. After sketching the early careers of the four scientists, the present article gives an account of the physics and chemistry involved in the discovery, and the events leading up to it.
The potential of large studies for building genetic risk prediction models
NCI scientists have developed a new paradigm to assess hereditary risk prediction in common diseases, such as prostate cancer. This genetic risk prediction concept is based on polygenic analysis—the study of a group of common DNA sequences, known as singl
Conformation-dependent DNA attraction
NASA Astrophysics Data System (ADS)
Li, Weifeng; Nordenskiöld, Lars; Zhou, Ruhong; Mu, Yuguang
2014-05-01
Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by molecular dynamics simulations. Using umbrella sampling, we find that for both B- and Z-form DNA, surrounding Mg2+ ions always exert themselves to screen the Coulomb repulsion between DNA phosphates, resulting in very weak attractive force. On the contrary, a tight and stable bound state is discovered for Z-DNA in the presence of Mg2+ or Na+, benefiting from their hydrophobic nature. Based on the contact surface and a dewetting process analysis, a two-stage binding process of Z-DNA is outlined: two Z-DNA first attract each other through charge screening and Mg2+ bridges to phosphate groups in the same way as that of B-DNA, after which hydrophobic contacts of the deoxyribose groups are formed via a dewetting effect, resulting in stable attraction between two Z-DNA molecules. The highlighted hydrophobic nature of Z-DNA interaction from the current study may help to understand the biological functions of Z-DNA in gene transcription.Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by molecular dynamics simulations. Using umbrella sampling, we find that for both B- and Z-form DNA, surrounding Mg2+ ions always exert themselves to screen the Coulomb repulsion between DNA phosphates, resulting in very weak attractive force. On the contrary, a tight and stable bound state is discovered for Z-DNA in the presence of Mg2+ or Na+, benefiting from their hydrophobic nature. Based on the contact surface and a dewetting process analysis, a two-stage binding process of Z-DNA is outlined: two Z-DNA first attract each other through charge screening and Mg2+ bridges to phosphate groups in the same way as that of B-DNA, after which hydrophobic contacts of the deoxyribose groups are formed via a dewetting effect, resulting in stable attraction between two Z-DNA molecules. The highlighted hydrophobic nature of Z-DNA interaction from the current study may help to understand the biological functions of Z-DNA in gene transcription. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03235c
Advances in DNA metabarcoding for food and wildlife forensic species identification.
Staats, Martijn; Arulandhu, Alfred J; Gravendeel, Barbara; Holst-Jensen, Arne; Scholtens, Ingrid; Peelen, Tamara; Prins, Theo W; Kok, Esther
2016-07-01
Species identification using DNA barcodes has been widely adopted by forensic scientists as an effective molecular tool for tracking adulterations in food and for analysing samples from alleged wildlife crime incidents. DNA barcoding is an approach that involves sequencing of short DNA sequences from standardized regions and comparison to a reference database as a molecular diagnostic tool in species identification. In recent years, remarkable progress has been made towards developing DNA metabarcoding strategies, which involves next-generation sequencing of DNA barcodes for the simultaneous detection of multiple species in complex samples. Metabarcoding strategies can be used in processed materials containing highly degraded DNA e.g. for the identification of endangered and hazardous species in traditional medicine. This review aims to provide insight into advances of plant and animal DNA barcoding and highlights current practices and recent developments for DNA metabarcoding of food and wildlife forensic samples from a practical point of view. Special emphasis is placed on new developments for identifying species listed in the Convention on International Trade of Endangered Species (CITES) appendices for which reliable methods for species identification may signal and/or prevent illegal trade. Current technological developments and challenges of DNA metabarcoding for forensic scientists will be assessed in the light of stakeholders' needs.
DNA Assembly Line for Nano-Construction
Oleg Gang
2017-12-09
Building on the idea of using DNA to link up nanoparticles scientists at Brookhaven National Lab have designed a molecular assembly line for high-precision nano-construction. Nanofabrication is essential for exploiting the unique properties of nanoparticl
Gene sensitizes cancer cells to chemotherapy drugs
NCI scientists have found that a gene, Schlafen-11 (SLFN11), sensitizes cells to substances known to cause irreparable damage to DNA. As part of their study, the researchers used a repository of 60 cell types to identify predictors of cancer cell respons
Development of the National Institutes of Health Guidelines for Recombinant DNA Research.
Talbot, B
1983-01-01
Recombinant DNA is a technique of major importance in basic biomedical research and, increasingly, in industrial applications. Although the risks of this research remain hypothetical, scientists working in the field have spearheaded discussions of safety. The original National Institutes of Health (NIH) Guidelines for Recombinant DNA Research were issued in June 1976. They assigned each type of recombinant DNA experiment a specific level of "physical containment" and of "biological containment." Responsibility for overseeing the application of the guidelines belongs to the NIH Recombinant DNA Advisory Committee (RAC)--composed of scientists and laymen, including non-voting representatives from many Federal agencies--and local institutional biosafety committees at each university where recombinant DNA research is conducted. The NIH guidelines were subsequently adopted by other Federal agencies, but congressional proposals aimed at extending the guidelines to private industry did not result in national legislation. Some States and localities regulate recombinant DNA research, however, and many private companies have voluntarily submitted information on their recombinant DNA work for RAC and NIH approval. The NIH guidelines underwent a major revision in December 1978 and have been revised approximately every 3 months since then. NIH supports experiments to assess recombinant DNA risks and publishes and updates a plan for a risk assessment program. PMID:6611823
The Perils of Knitting New Life
ERIC Educational Resources Information Center
Lappe, Marc
1977-01-01
Reviews history of "recombinant DNA" research, including early experiments and origins of bioethical debates between concerned scientists. Discusses National Institutes of Health (NIH) guidelines and accompanying Environmental Impact statement regarding recombinant DNA research and possibilities of human error covered by neither…
Heinen, Christopher D
2016-02-01
We have currently entered a genomic era of cancer research which may soon lead to a genomic era of cancer treatment. Patient DNA sequencing information may lead to a personalized approach to managing an individual's cancer as well as future cancer risk. The success of this approach, however, begins not necessarily in the clinician's office, but rather at the laboratory bench of the basic scientist. The basic scientist plays a critical role since the DNA sequencing information is of limited use unless one knows the function of the gene that is altered and the manner by which a sequence alteration affects that function. The role of basic science research in aiding the clinical management of a disease is perhaps best exemplified by considering the case of Lynch syndrome, a hereditary disease that predisposes patients to colorectal and other cancers. This review will examine how the diagnosis, treatment and even prevention of Lynch syndrome-associated cancers has benefitted from extensive basic science research on the DNA mismatch repair genes whose alteration underlies this condition. Copyright © 2015 Elsevier B.V. All rights reserved.
A Standardized DNA Variant Scoring System for Pathogenicity Assessments in Mendelian Disorders
Karbassi, Izabela; Maston, Glenn A.; Love, Angela; DiVincenzo, Christina; Braastad, Corey D.; Elzinga, Christopher D.; Bright, Alison R.; Previte, Domenic; Zhang, Ke; Rowland, Charles M.; McCarthy, Michele; Lapierre, Jennifer L.; Dubois, Felicita; Medeiros, Katelyn A.; Batish, Sat Dev; Jones, Jeffrey; Liaquat, Khalida; Hoffman, Carol A.; Jaremko, Malgorzata; Wang, Zhenyuan; Sun, Weimin; Buller‐Burckle, Arlene; Strom, Charles M.; Keiles, Steven B.
2015-01-01
ABSTRACT We developed a rules‐based scoring system to classify DNA variants into five categories including pathogenic, likely pathogenic, variant of uncertain significance (VUS), likely benign, and benign. Over 16,500 pathogenicity assessments on 11,894 variants from 338 genes were analyzed for pathogenicity based on prediction tools, population frequency, co‐occurrence, segregation, and functional studies collected from internal and external sources. Scores were calculated by trained scientists using a quantitative framework that assigned differential weighting to these five types of data. We performed descriptive and comparative statistics on the dataset and tested interobserver concordance among the trained scientists. Private variants defined as variants found within single families (n = 5,182), were either VUS (80.5%; n = 4,169) or likely pathogenic (19.5%; n = 1,013). The remaining variants (n = 6,712) were VUS (38.4%; n = 2,577) or likely benign/benign (34.7%; n = 2,327) or likely pathogenic/pathogenic (26.9%, n = 1,808). Exact agreement between the trained scientists on the final variant score was 98.5% [95% confidence interval (CI) (98.0, 98.9)] with an interobserver consistency of 97% [95% CI (91.5, 99.4)]. Variant scores were stable and showed increasing odds of being in agreement with new data when re‐evaluated periodically. This carefully curated, standardized variant pathogenicity scoring system provides reliable pathogenicity scores for DNA variants encountered in a clinical laboratory setting. PMID:26467025
A Standardized DNA Variant Scoring System for Pathogenicity Assessments in Mendelian Disorders.
Karbassi, Izabela; Maston, Glenn A; Love, Angela; DiVincenzo, Christina; Braastad, Corey D; Elzinga, Christopher D; Bright, Alison R; Previte, Domenic; Zhang, Ke; Rowland, Charles M; McCarthy, Michele; Lapierre, Jennifer L; Dubois, Felicita; Medeiros, Katelyn A; Batish, Sat Dev; Jones, Jeffrey; Liaquat, Khalida; Hoffman, Carol A; Jaremko, Malgorzata; Wang, Zhenyuan; Sun, Weimin; Buller-Burckle, Arlene; Strom, Charles M; Keiles, Steven B; Higgins, Joseph J
2016-01-01
We developed a rules-based scoring system to classify DNA variants into five categories including pathogenic, likely pathogenic, variant of uncertain significance (VUS), likely benign, and benign. Over 16,500 pathogenicity assessments on 11,894 variants from 338 genes were analyzed for pathogenicity based on prediction tools, population frequency, co-occurrence, segregation, and functional studies collected from internal and external sources. Scores were calculated by trained scientists using a quantitative framework that assigned differential weighting to these five types of data. We performed descriptive and comparative statistics on the dataset and tested interobserver concordance among the trained scientists. Private variants defined as variants found within single families (n = 5,182), were either VUS (80.5%; n = 4,169) or likely pathogenic (19.5%; n = 1,013). The remaining variants (n = 6,712) were VUS (38.4%; n = 2,577) or likely benign/benign (34.7%; n = 2,327) or likely pathogenic/pathogenic (26.9%, n = 1,808). Exact agreement between the trained scientists on the final variant score was 98.5% [95% confidence interval (CI) (98.0, 98.9)] with an interobserver consistency of 97% [95% CI (91.5, 99.4)]. Variant scores were stable and showed increasing odds of being in agreement with new data when re-evaluated periodically. This carefully curated, standardized variant pathogenicity scoring system provides reliable pathogenicity scores for DNA variants encountered in a clinical laboratory setting. © 2015 The Authors. **Human Mutation published by Wiley Periodicals, Inc.
Although recent technological advances in DNA sequencing and computational biology now allow scientists to compare entire microbial genomes, the use of these approaches to discern key genomic differences between natural microbial communities remains prohibitively expensive for mo...
Technological advances in DNA sequencing and computational biology allow scientists to compare entire microbial genomes. However, the use of these approaches to discern key genomic differences between natural microbial communities remains prohibitively expensive for most laborato...
IDENTIFICATION OF BACTERIAL DNA MARKERS FOR THE DETECTION OF HUMAN AND CATTLE FECAL POLLUTION
Technological advances in DNA sequencing and computational biology allow scientists to compare entire microbial genomes. However, the use of these approaches to discern key genomic differences between natural microbial communities remains prohibitively expensive for most laborato...
DNA Mapping Made Simple: An Intellectual Activity about the Genetic Modification of Organisms
ERIC Educational Resources Information Center
Marques, Miguel; Arrabaca, Joao; Chagas, Isabel
2004-01-01
Since the discovery of the DNA double helix (in 1953 by Watson and Crick), technologies have been developed that allow scientists to manipulate the genome of bacteria to produce human hormones, as well as the genome of crop plants to achieve high yield and enhanced flavor. The universality of the genetic code has allowed DNA isolated from a…
Conformation-dependent DNA attraction.
Li, Weifeng; Nordenskiöld, Lars; Zhou, Ruhong; Mu, Yuguang
2014-06-21
Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by molecular dynamics simulations. Using umbrella sampling, we find that for both B- and Z-form DNA, surrounding Mg(2+) ions always exert themselves to screen the Coulomb repulsion between DNA phosphates, resulting in very weak attractive force. On the contrary, a tight and stable bound state is discovered for Z-DNA in the presence of Mg(2+) or Na(+), benefiting from their hydrophobic nature. Based on the contact surface and a dewetting process analysis, a two-stage binding process of Z-DNA is outlined: two Z-DNA first attract each other through charge screening and Mg(2+) bridges to phosphate groups in the same way as that of B-DNA, after which hydrophobic contacts of the deoxyribose groups are formed via a dewetting effect, resulting in stable attraction between two Z-DNA molecules. The highlighted hydrophobic nature of Z-DNA interaction from the current study may help to understand the biological functions of Z-DNA in gene transcription.
Chronicles of Fibroporia radiculosa (= Antrodia radiculosa) TFFH 294
Carol A. Clausen; Katie M. Jenkins
2011-01-01
The brown-rot fungus, Fibroporia radiculosa, has been included in numerous research studies because many isolates of this fungus demonstrate an unusually high tolerance to copper. This fungus has undergone several recognized changes in taxonomic nomenclature, and through DNA technology, scientists have correctly identified isolates that had been misidentified...
Although recent technological advances in DNA sequencing and computational biology now allow scientists to compare entire microbial genomes, comparisons of closely related bacterial species and individual isolates by whole-genome sequencing approaches remains prohibitively expens...
More of an art than a science: Using microbial DNA sequences to compose music
Larsen, Peter E.
2016-03-01
Bacteria are everywhere. Microbial ecology is emerging as a critical field for understanding the relationships between these ubiquitous bacterial communities, the environment, and human health. Next generation DNA sequencing technology provides us a powerful tool to indirectly observe the communities by sequencing and analyzing all of the bacterial DNA present in an environment. The results of the DNA sequencing experiments can generate gigabytes to terabytes of information however, making it difficult for the citizen scientist to grasp and the educator to convey this data. Here, we present a method for interpreting massive amounts of microbial ecology data as musical performances,more » easily generated on any computer and using only commonly available or freely available software and the ‘Microbial Bebop’ algorithm. Furthermore, using this approach citizen scientists and biology educators can sonify complex data in a fun and interactive format, making it easier to communicate both the importance and the excitement of exploring the planet earth’s largest ecosystem.« less
More of an art than a science: Using microbial DNA sequences to compose music
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, Peter E.
Bacteria are everywhere. Microbial ecology is emerging as a critical field for understanding the relationships between these ubiquitous bacterial communities, the environment, and human health. Next generation DNA sequencing technology provides us a powerful tool to indirectly observe the communities by sequencing and analyzing all of the bacterial DNA present in an environment. The results of the DNA sequencing experiments can generate gigabytes to terabytes of information however, making it difficult for the citizen scientist to grasp and the educator to convey this data. Here, we present a method for interpreting massive amounts of microbial ecology data as musical performances,more » easily generated on any computer and using only commonly available or freely available software and the ‘Microbial Bebop’ algorithm. Furthermore, using this approach citizen scientists and biology educators can sonify complex data in a fun and interactive format, making it easier to communicate both the importance and the excitement of exploring the planet earth’s largest ecosystem.« less
Verma, Kapil; Sharma, Sapna; Sharma, Arun; Dalal, Jyoti; Bhardwaj, Tapeshwar
2018-06-01
Genetic variations among humans occur both within and among populations and range from single nucleotide changes to multiple-nucleotide variants. These multiple-nucleotide variants are useful for studying the relationships among individuals or various population groups. The study of human genetic variations can help scientists understand how different population groups are biologically related to one another. Sequence analysis of hypervariable regions of human mitochondrial DNA (mtDNA) has been successfully used for the genetic characterization of different population groups for forensic purposes. It is well established that different ethnic or population groups differ significantly in their mtDNA distributions. In the last decade, very little research has been conducted on mtDNA variations in the Indian population, although such data would be useful for elucidating the history of human population expansion across the world. Moreover, forensic studies on mtDNA variations in the Indian subcontinent are also scarce, particularly in the northern part of India. In this report, variations in the hypervariable regions of mtDNA were analyzed in the Yadav population of Haryana. Different molecular diversity indices were computed. Further, the obtained haplotypes were classified into different haplogroups and the phylogenetic relationship between different haplogroups was inferred.
Genome Sequencing Technologies and Nursing: What Are the Roles of Nurses and Nurse Scientists?
Taylor, Jacquelyn Y.; Wright, Michelle L.; Hickey, Kathleen T.; Housman, David
2016-01-01
Background Advances in DNA sequencing technology have resulted in an abundance of personalized data with challenging clinical utility and meaning for clinicians. This wealth of data has potential to dramatically impact the quality of healthcare. Nurses are at the focal point in educating patients regarding relevant healthcare needs; therefore, an understanding of sequencing technology and utilizing these data are critical. Aim The objective of this paper is to explicate the role of nurses and nurse scientists as integral members of healthcare teams in improving understanding of DNA sequencing data and translational genomics for patients. Approach A history of the nurse role in newborn screening is used as an exemplar. Discussion This paper serves as an exemplar on how genome sequencing has been utilized in nursing science and incorporates linkages of other omics approaches used by nurses that are included in this special issue. This special issue showcased nurse scientists conducting multi-omic research from various methods, including targeted candidate genes, pharmacogenomics, proteomics, epigenomics and the microbiome. From this vantage point, we provide an overview of the roles of nurse scientists in genome sequencing research and provide recommendations for the best utilization of nurses and nurse scientists related to genome sequencing. PMID:28252579
The Winding Road to Discovering the Link between Genetic Material and DNA
ERIC Educational Resources Information Center
Cherif, Abour H.; Roze, Maris; Movahedzadeh, Farahnaz
2015-01-01
This is an account of the three-centuries long journey to the discovery of the link between DNA and the transformation principle of heredity beginning with the discovery of the cell in 1665 and leading up to the 1953 discovery of the genetic code and the structure of DNA. This account also illustrates the way science works and how scientists do…
DNA breaks early in replication in B cell cancers
Research by scientists at the NCI has identified a new class of DNA sites in cells that break early in the replication process. They found that these break sites correlate with damage often seen in B cell cancers, such as diffuse large B cell lymphoma.
Transgenes and transgressions: scientific dissent as heterogeneous practice.
Delborne, Jason A
2008-08-01
Although scholars in science and technology studies have explored many dynamics and consequences of scientific controversy, no coherent theory of scientific dissent has emerged. This paper proposes the elements of such a framework, based on understanding scientific dissent as a set of heterogeneous practices. I use the controversy over the presence of transgenic DNA in Mexican maize in the early 2000s to point to a processual model of scientific dissent. 'Contrarian science' includes knowledge claims that challenge the dominant scientific trajectory, but need not necessarily lead to dissent. 'Impedance' represents efforts to undermine the credibility of contrarian science (or contrarian scientists) and may originate within or outside of the scientific community. In the face of impedance, contrarian scientists may become dissenters. The actions of the scientist at the center of the case study, Professor Ignacio Chapela of the University of California, Berkeley, demonstrate particular practices of scientific dissent, ranging from 'agonistic engagement' to 'dissident science'. These practices speak not only to functional strategies of winning scientific debate, but also to attempts to reconfigure relations among scientists, publics, institutions, and politics that order knowledge production.
Imaging The Genetic Code of a Virus
NASA Astrophysics Data System (ADS)
Graham, Jenna; Link, Justin
2013-03-01
Atomic Force Microscopy (AFM) has allowed scientists to explore physical characteristics of nano-scale materials. However, the challenges that come with such an investigation are rarely expressed. In this research project a method was developed to image the well-studied DNA of the virus lambda phage. Through testing and integrating several sample preparations described in literature, a quality image of lambda phage DNA can be obtained. In our experiment, we developed a technique using the Veeco Autoprobe CP AFM and mica substrate with an appropriate absorption buffer of HEPES and NiCl2. This presentation will focus on the development of a procedure to image lambda phage DNA at Xavier University. The John A. Hauck Foundation and Xavier University
Moving environmental DNA methods from concept to practice for monitoring aquatic macroorganisms
Goldberg, Caren S.; Strickler, Katherine M.; Pilliod, David S.
2015-01-01
The discovery that macroorganisms can be detected from their environmental DNA (eDNA) in aquatic systems has immense potential for the conservation of biological diversity. This special issue contains 11 papers that review and advance the field of eDNA detection of vertebrates and other macroorganisms, including studies of eDNA production, transport, and degradation; sample collection and processing to maximize detection rates; and applications of eDNA for conservation using citizen scientists. This body of work is an important contribution to the ongoing efforts to take eDNA detection of macroorganisms from technical breakthrough to established, reliable method that can be used in survey, monitoring, and research applications worldwide. While the rapid advances in this field are remarkable, important challenges remain, including consensus on best practices for collection and analysis, understanding of eDNA diffusion and transport, and avoidance of inhibition in sample collection and processing. Nonetheless, as demonstrated in this special issue, eDNA techniques for research and monitoring are beginning to realize their potential for contributing to the conservation of biodiversity globally.
News Release: May 25, 2016 — Building on data from The Cancer Genome Atlas (TCGA) project, a multi-institutional team of scientists has completed the first large-scale “proteogenomic” study of breast cancer, linking DNA mutations to protein signaling and helping pinpoint the genes that drive cancer.
USDA-ARS?s Scientific Manuscript database
The model grass Brachypodium distachyon (Brachypodium) is an excellent system for studying the basic biology underlying traits relevant to the use of grasses as food, forage and energy crops. To add to the growing collection of Brachypodium resources available to plant scientists, we further optim...
Hatfield, Linda A; Pearce, Margaret M
2014-11-01
To examine factors that influence a parent's decision to donate their healthy infant's DNA for minimal-risk genetic research. Grounded theory, using semi-structured interviews conducted with 35 postpartum mother or mother-father dyads in an urban teaching hospital. Data were collected from July 2011 to January 2012. Audiorecorded semistructured interviews were conducted in private rooms with mothers or mother-father dyads 24 to 48 hr after the birth of their healthy, full-term infant. Data-driven content analysis using selected principles of grounded theory was performed. Parents' willingness to donate their healthy infant's DNA for minimal-risk pediatric genetic research emerged as a process involving three interacting components: the parents, the scientist, and the comfort of the child embedded within the context of benefit to the child. The purpose of the study and parents' perception of their commitment of time and resources determined their willingness to participate. The scientist's ability to communicate trust in the research process influenced parents' decisions. Physical discomfort of the child shaped parents' decision to donate DNA. Parental perception of a direct benefit to their child affected their willingness to discuss genetic research and its outcomes. Significant gaps and misunderstandings in parental knowledge of pediatric genetic research may affect parental willingness to donate their healthy child's DNA. Nurses knowledgeable about the decision-making process parents utilize to donate their healthy infant's DNA for minimal-risk genetic research and the factors influencing that decision are well positioned to educate parents about the role of genetics in health and illness and reassure potential research participants of the value and safeguards in pediatric genetic research. © 2014 Sigma Theta Tau International.
Incidental Findings in Genetics Research Using Archived DNA
Clayton, Ellen Wright
2008-01-01
You were a patient at Hospital A several years ago when you were suffering from disease X, which has long since resolved. You have just arrived home from a long day's work when the phone rings. When you answer, a soothing voice says, “I am a scientist at Research Institution B two time zones away. I was examining your DNA and found a variant associated with Disease Y that may be really important for your health. Do you want to know about it?” If the scientist were particularly thoughtful, she might ask, “Can you come here for genetic counseling?” You wonder, What is DNA? How did she get mine? What is a variant? What is Disease Y? What is genetic counseling? Who is going to pay for me to go to Research Institution B? Most important, you think, What choice do I have? PMID:18547196
Shedding Light on the Role of UV Exposure in Melanoma | Center for Cancer Research
When a cell is exposed to UV radiation, the chemical makeup of its DNA is changed in a specific manner, resulting in a recognizable modification that can be measured by scientists. These changes are normally detected and fixed by cellular mechanisms for DNA repair. However, if the damage is extensive or if a cell has defective DNA repair machinery, permanent mutations can be
STRBase: a short tandem repeat DNA database for the human identity testing community
Ruitberg, Christian M.; Reeder, Dennis J.; Butler, John M.
2001-01-01
The National Institute of Standards and Technology (NIST) has compiled and maintained a Short Tandem Repeat DNA Internet Database (http://www.cstl.nist.gov/biotech/strbase/) since 1997 commonly referred to as STRBase. This database is an information resource for the forensic DNA typing community with details on commonly used short tandem repeat (STR) DNA markers. STRBase consolidates and organizes the abundant literature on this subject to facilitate on-going efforts in DNA typing. Observed alleles and annotated sequence for each STR locus are described along with a review of STR analysis technologies. Additionally, commercially available STR multiplex kits are described, published polymerase chain reaction (PCR) primer sequences are reported, and validation studies conducted by a number of forensic laboratories are listed. To supplement the technical information, addresses for scientists and hyperlinks to organizations working in this area are available, along with the comprehensive reference list of over 1300 publications on STRs used for DNA typing purposes. PMID:11125125
Synthetic Biology: Knowledge Accessed by Everyone (Open Sources)
ERIC Educational Resources Information Center
Sánchez Reyes, Patricia Margarita
2016-01-01
Using the principles of biology, along with engineering and with the help of computer, scientists manage to copy. DNA sequences from nature and use them to create new organisms. DNA is created through engineering and computer science managing to create life inside a laboratory. We cannot dismiss the role that synthetic biology could lead in…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gang, Oleg
2012-01-18
In the field of nanoscience, if you can control how nanoparticles self-assemble in particular structures — joining each other, for example, as molecules can form, atom-by-atom — you can design new materials that have unique properties that industry needs. Nature already uses the DNA genetic code to instruct the building of specific proteins and whole organisms in both plants and people. Taking a cue from nature, scientists at BNL devised a way of using strands of synthetic DNA attached to the surface of nanoparticles to instruct them to self-assemble into specific nanoscale structures, clusters, and three-dimensional organizations. Novel materials designedmore » and fabricated this way promise use in photovoltaics, energy storage, catalysis, cell-targeted systems for more effective medical treatments, and biomolecular sensing for environmental monitoring and medical applications. To find out more about the rapid evolution of this nanoassembly method and its applications, join Physicist Oleg Gang of the Center for Functional Nanomaterials (CFN) as he gives the 474th Brookhaven Lecture, titled “Self-Assembly by Instruction: Designing Nanoscale Systems Using DNA-Based Approaches." Gang, who has led this work at the CFN, will explain the rapid evolution of this nanoassembly method, and discuss its present and future applications in highly specific biosensors, optically active nano-materials, and new ways to fabricate complex architectures in a rational manner via self-assembly. Gang and his colleagues used the CFN and the National Synchrotron Light Source (NSLS) facilities to perform their groundbreaking research. At the CFN, the scientists used electron microscopes and optical methods to visualize the clusters that they fabricated. At the NSLS, they applied x-rays to study a particles-assembly process in solution, DNA’s natural environment. Gang earned a Ph.D. in soft matter physics from Bar-Ilan University in 2000, and he was a Rothschild Fellow at Harvard University from 1999 to 2002. After joining BNL as a Goldhaber Fellow in 2002, he became an assistant scientist at the CFN in 2004. He became the CFN’s leader for Soft and Biological Nanomaterials Theme Group in 2006, and earned the title of scientist in 2009. Gang has received numerous honors and recognitions, including the 2010 Gordon Battelle Prize for Scientific Discovery.« less
Forecasting Science and Technology for the Department of Defense
2009-12-01
Watson and Francis Crick announced that they had elucidated the structure of DNA and had therefore “discovered the secret of life.” While this was a...an organic chemist, figured out a process by which very small quantities of DNA could be amplified with high fidelity. This process, known as...polymerase chain reaction (PCR), for the first time, allowed scientists to produce DNA in large quantities. Roughly during this period, Leroy Hood and
Using Cellular Proteins to Reveal Mechanisms of HIV Infection | Center for Cancer Research
A vital step in HIV infection is the insertion of viral DNA into the genome of the host cell. In order for the insertion to occur, viral nucleic acid must be transported through the membrane that separates the main cellular compartment (the cytoplasm) from the nucleus, where the host DNA is located. Scientists are actively studying the mechanism used to transport viral DNA into the nucleus in the hopes of targeting this step with future anti-HIV treatments. Up to this point, researchers have identified some of the viral components that play a role in nuclear transport, but they have not determined how viral interactions with other molecules in the cell contribute to the process.
Impact of EMS Outreach: Successful Developments in Latin America
Olivero, Ofelia A.; Larramendy, Marcelo; Soloneski, Sonia; Menck, Carlos F.M.; Matta, Jaime; Folle, Gustavo A.; Zamorano-Ponce, Enrique; Spivak, Graciela
2014-01-01
This collection of articles was inspired by the long-standing relationship between the Environmental Mutagen Society and Latin American scientists, and by the program for the 39th Environmental Mutagen Society meeting in Puerto Rico in 2008, which included a symposium featuring “South of the border” scientists. This collection, compiled by Graciela Spivak and Ofelia Olivero, both originally from Argentina, highlights scientists who work in or were trained in Latin American countries and in Puerto Rico in a variety of scientific specialties related to DNA repair and cancer susceptibility, genomic organization and stability, genetic diversity, and environmental contaminants. PMID:20213840
ERIC Educational Resources Information Center
Selli, Cigdem; Yildirim, Gokce; Kaymak, Aysegul; Karacicek, Bilge; Ogut, Deniz; Gungor, Turkan; Erem, Erdem; Ege, Mehmet; Bümen, Nilay; Tosun, Metiner
2014-01-01
This study includes the results of a 2-day education project titled "Molecular Biology Laboratory Summer School, MoBiLYO." The project was held at a University Research Center by scientists from Department of Pharmacology and graduate students. The project was composed of introductory lectures, model construction, DNA isolation,…
NASA Astrophysics Data System (ADS)
Park, Yeunsoo
2015-09-01
It is well known that low energy electrons (LEE, especially below 10 eV) can generate DNA damage via indirect action named dissociative electron attachment (DEA). We can now explain some parts of the exact mechanism on DNA damage by LEE collision with direct ionization effect when cancer patients get the radiotherapy. It is kind of remarkable information in the field of radiation therapy. However, it is practically very difficult to directly apply this finding to human disease cure due to difficulty of LEE therapy actualization and request of further clinical studies. Recently, there is a novel challenge in plasma application, that is, how we can apply plasma technology to diagnosis and treatment of many serious diseases like cancer. Cold atmospheric pressure plasma (CAPP) is a very good source to apply to plasma medicine and bio-applications because of low temperature, low cost, and easy handling. Some scientists have already reported good results related to clinical plasma application. The purposes of this study are to further find out exact mechanisms of DNA damage by LEE at the molecular level, to verify new DNA damage like structural alteration on DNA subunits and to compare DNA damage by LEE and plasma source. We will keep expanding our study to DNA damage by plasma source to develop plasma-based new medical and biological applications. We will show some recent results, DNA damage by LEE and non-thermal plasma.
Introduction to Pharmaceutical Biotechnology, Volume 1; Basic techniques and concepts
NASA Astrophysics Data System (ADS)
Bhatia, Saurabh; Goli, Divakar
2018-05-01
Animal biotechnology is a broad field including polarities of fundamental and applied research, as well as DNA science, covering key topics of DNA studies and its recent applications. In Introduction to Pharmaceutical Biotechnology, DNA isolation procedures followed by molecular markers and screening methods of the genomic library are explained. Interesting areas like isolation, sequencing and synthesis of genes, with the broader coverage on synthesis of genes, are also described. The book begins with an introduction to biotechnology and its main branches, explaining both the basic science and the applications of biotechnology-derived pharmaceuticals, with special emphasis on their clinical use. It then moves on to historical development and scope of biotechnology with an overall review of early applications that scientists employed long before the field was defined.
Electronic Properties of Synthetic Shrimp Pathogens-derived DNA Schottky Diodes.
Rizan, Nastaran; Yew, Chan Yen; Niknam, Maryam Rajabpour; Krishnasamy, Jegenathan; Bhassu, Subha; Hong, Goh Zee; Devadas, Sridevi; Din, Mohamed Shariff Mohd; Tajuddin, Hairul Anuar; Othman, Rofina Yasmin; Phang, Siew Moi; Iwamoto, Mitsumasa; Periasamy, Vengadesh
2018-01-17
The exciting discovery of the semiconducting-like properties of deoxyribonucleic acid (DNA) and its potential applications in molecular genetics and diagnostics in recent times has resulted in a paradigm shift in biophysics research. Recent studies in our laboratory provide a platform towards detecting charge transfer mechanism and understanding the electronic properties of DNA based on the sequence-specific electronic response, which can be applied as an alternative to identify or detect DNA. In this study, we demonstrate a novel method for identification of DNA from different shrimp viruses and bacteria using electronic properties of DNA obtained from both negative and positive bias regions in current-voltage (I-V) profiles. Characteristic electronic properties were calculated and used for quantification and further understanding in the identification process. Aquaculture in shrimp industry is a fast-growing food sector throughout the world. However, shrimp culture in many Asian countries faced a huge economic loss due to disease outbreaks. Scientists have been using specific established methods for detecting shrimp infection, but those methods do have their significant drawbacks due to many inherent factors. As such, we believe that this simple, rapid, sensitive and cost-effective tool can be used for detection and identification of DNA from different shrimp viruses and bacteria.
Middleton, Anna
2017-04-01
Genomic and medical data sharing is pivotal if the promise of genomic medicine is to be fully realised. Social scientists working in the genomics arena ask the public 'how is the technology working for you?' Empirical studies on attitudes, values and beliefs are incredibly valuable; they offer a voice from those who are, or will be, directly affected. This is paramount if personalised medicine is to be truly personal. An International attitude study, Your DNA, Your Say, uses film to provide background information and an online survey to gather public views on donating one's own personal DNA and medical data for use by others. In this paper the rationale to the project is introduced together with an overview of the survey and film design. The project has been translated into multiple languages and the results will be used in policy for the Global Alliance for Genomics and Health.
Middleton, Anna
2017-01-01
Genomic and medical data sharing is pivotal if the promise of genomic medicine is to be fully realised. Social scientists working in the genomics arena ask the public ‘how is the technology working for you?’ Empirical studies on attitudes, values and beliefs are incredibly valuable; they offer a voice from those who are, or will be, directly affected. This is paramount if personalised medicine is to be truly personal. An International attitude study, Your DNA, Your Say, uses film to provide background information and an online survey to gather public views on donating one's own personal DNA and medical data for use by others. In this paper the rationale to the project is introduced together with an overview of the survey and film design. The project has been translated into multiple languages and the results will be used in policy for the Global Alliance for Genomics and Health. PMID:28517993
enDNA-Prot: identification of DNA-binding proteins by applying ensemble learning.
Xu, Ruifeng; Zhou, Jiyun; Liu, Bin; Yao, Lin; He, Yulan; Zou, Quan; Wang, Xiaolong
2014-01-01
DNA-binding proteins are crucial for various cellular processes, such as recognition of specific nucleotide, regulation of transcription, and regulation of gene expression. Developing an effective model for identifying DNA-binding proteins is an urgent research problem. Up to now, many methods have been proposed, but most of them focus on only one classifier and cannot make full use of the large number of negative samples to improve predicting performance. This study proposed a predictor called enDNA-Prot for DNA-binding protein identification by employing the ensemble learning technique. Experiential results showed that enDNA-Prot was comparable with DNA-Prot and outperformed DNAbinder and iDNA-Prot with performance improvement in the range of 3.97-9.52% in ACC and 0.08-0.19 in MCC. Furthermore, when the benchmark dataset was expanded with negative samples, the performance of enDNA-Prot outperformed the three existing methods by 2.83-16.63% in terms of ACC and 0.02-0.16 in terms of MCC. It indicated that enDNA-Prot is an effective method for DNA-binding protein identification and expanding training dataset with negative samples can improve its performance. For the convenience of the vast majority of experimental scientists, we developed a user-friendly web-server for enDNA-Prot which is freely accessible to the public.
Biedermann, Alex; Champod, Christophe; Jackson, Graham; Gill, Peter; Taylor, Duncan; Butler, John; Morling, Niels; Hicks, Tacha; Vuille, Joelle; Taroni, Franco
2016-01-01
When forensic scientists evaluate and report on the probative strength of single DNA traces, they commonly rely on only one number, expressing the rarity of the DNA profile in the population of interest. This is so because the focus is on propositions regarding the source of the recovered trace material, such as “the person of interest is the source of the crime stain.” In particular, when the alternative proposition is “an unknown person is the source of the crime stain,” one is directed to think about the rarity of the profile. However, in the era of DNA profiling technology capable of producing results from small quantities of trace material (i.e., non-visible staining) that is subject to easy and ubiquitous modes of transfer, the issue of source is becoming less central, to the point that it is often not contested. There is now a shift from the question “whose DNA is this?” to the question “how did it get there?” As a consequence, recipients of expert information are now very much in need of assistance with the evaluation of the meaning and probative strength of DNA profiling results when the competing propositions of interest refer to different activities. This need is widely demonstrated in day-to-day forensic practice and is also voiced in specialized literature. Yet many forensic scientists remain reluctant to assess their results given propositions that relate to different activities. Some scientists consider evaluations beyond the issue of source as being overly speculative, because of the lack of relevant data and knowledge regarding phenomena and mechanisms of transfer, persistence and background of DNA. Similarly, encouragements to deal with these activity issues, expressed in a recently released European guideline on evaluative reporting (Willis et al., 2015), which highlights the need for rethinking current practice, are sometimes viewed skeptically or are not considered feasible. In this discussion paper, we select and discuss recurrent skeptical views brought to our attention, as well as some of the alternative solutions that have been suggested. We will argue that the way forward is to address now, rather than later, the challenges associated with the evaluation of DNA results (from small quantities of trace material) in light of different activities to prevent them being misrepresented in court. PMID:28018424
Biedermann, Alex; Champod, Christophe; Jackson, Graham; Gill, Peter; Taylor, Duncan; Butler, John; Morling, Niels; Hicks, Tacha; Vuille, Joelle; Taroni, Franco
2016-01-01
When forensic scientists evaluate and report on the probative strength of single DNA traces, they commonly rely on only one number, expressing the rarity of the DNA profile in the population of interest. This is so because the focus is on propositions regarding the source of the recovered trace material, such as "the person of interest is the source of the crime stain." In particular, when the alternative proposition is "an unknown person is the source of the crime stain," one is directed to think about the rarity of the profile. However, in the era of DNA profiling technology capable of producing results from small quantities of trace material (i.e., non-visible staining) that is subject to easy and ubiquitous modes of transfer, the issue of source is becoming less central, to the point that it is often not contested. There is now a shift from the question "whose DNA is this?" to the question "how did it get there?" As a consequence, recipients of expert information are now very much in need of assistance with the evaluation of the meaning and probative strength of DNA profiling results when the competing propositions of interest refer to different activities. This need is widely demonstrated in day-to-day forensic practice and is also voiced in specialized literature. Yet many forensic scientists remain reluctant to assess their results given propositions that relate to different activities. Some scientists consider evaluations beyond the issue of source as being overly speculative, because of the lack of relevant data and knowledge regarding phenomena and mechanisms of transfer, persistence and background of DNA. Similarly, encouragements to deal with these activity issues, expressed in a recently released European guideline on evaluative reporting (Willis et al., 2015), which highlights the need for rethinking current practice, are sometimes viewed skeptically or are not considered feasible. In this discussion paper, we select and discuss recurrent skeptical views brought to our attention, as well as some of the alternative solutions that have been suggested. We will argue that the way forward is to address now, rather than later, the challenges associated with the evaluation of DNA results (from small quantities of trace material) in light of different activities to prevent them being misrepresented in court.
Data scientist: the sexiest job of the 21st century.
Davenport, Thomas H; Patil, D J
2012-10-01
Back in the 1990s, computer engineer and Wall Street "quant" were the hot occupations in business. Today data scientists are the hires firms are competing to make. As companies wrestle with unprecedented volumes and types of information, demand for these experts has raced well ahead of supply. Indeed, Greylock Partners, the VC firm that backed Facebook and LinkedIn, is so worried about the shortage of data scientists that it has a recruiting team dedicated to channeling them to the businesses in its portfolio. Data scientists are the key to realizing the opportunities presented by big data. They bring structure to it, find compelling patterns in it, and advise executives on the implications for products, processes, and decisions. They find the story buried in the data and communicate it. And they don't just deliver reports: They get at the questions at the heart of problems and devise creative approaches to them. One data scientist who was studying a fraud problem, for example, realized it was analogous to a type of DNA sequencing problem. Bringing those disparate worlds together, he crafted a solution that dramatically reduced fraud losses. In this article, Harvard Business School's Davenport and Greylock's Patil take a deep dive on what organizations need to know about data scientists: where to look for them, how to attract and develop them, and how to spot a great one.
The dynamic interplay between DNA topoisomerases and DNA topology.
Seol, Yeonee; Neuman, Keir C
2016-11-01
Topological properties of DNA influence its structure and biochemical interactions. Within the cell, DNA topology is constantly in flux. Transcription and other essential processes, including DNA replication and repair, not only alter the topology of the genome but also introduce additional complications associated with DNA knotting and catenation. These topological perturbations are counteracted by the action of topoisomerases, a specialized class of highly conserved and essential enzymes that actively regulate the topological state of the genome. This dynamic interplay among DNA topology, DNA processing enzymes, and DNA topoisomerases is a pervasive factor that influences DNA metabolism in vivo. Building on the extensive structural and biochemical characterization over the past four decades that has established the fundamental mechanistic basis of topoisomerase activity, scientists have begun to explore the unique roles played by DNA topology in modulating and influencing the activity of topoisomerases. In this review we survey established and emerging DNA topology-dependent protein-DNA interactions with a focus on in vitro measurements of the dynamic interplay between DNA topology and topoisomerase activity.
The past and presence of gene targeting: from chemicals and DNA via proteins to RNA.
Geel, T M; Ruiters, M H J; Cool, R H; Halby, L; Voshart, D C; Andrade Ruiz, L; Niezen-Koning, K E; Arimondo, P B; Rots, M G
2018-06-05
The ability to target DNA specifically at any given position within the genome allows many intriguing possibilities and has inspired scientists for decades. Early gene-targeting efforts exploited chemicals or DNA oligonucleotides to interfere with the DNA at a given location in order to inactivate a gene or to correct mutations. We here describe an example towards correcting a genetic mutation underlying Pompe's disease using a nucleotide-fused nuclease (TFO-MunI). In addition to the promise of gene correction, scientists soon realized that genes could be inactivated or even re-activated without inducing potentially harmful DNA damage by targeting transcriptional modulators to a particular gene. However, it proved difficult to fuse protein effector domains to the first generation of programmable DNA-binding agents. The engineering of gene-targeting proteins (zinc finger proteins (ZFPs), transcription activator-like effectors (TALEs)) circumvented this problem. The disadvantage of protein-based gene targeting is that a fusion protein needs to be engineered for every locus. The recent introduction of CRISPR/Cas offers a flexible approach to target a (fusion) protein to the locus of interest using cheap designer RNA molecules. Many research groups now exploit this platform and the first human clinical trials have been initiated: CRISPR/Cas has kicked off a new era of gene targeting and is revolutionizing biomedical sciences.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'. © 2018 The Author(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd DeSantis
Scientists at Berkeley Lab and the University of California, Merced are using an innovative DNA array developed at Berkeley Lab to catalog the microbes that live among coral in the tropical waters off the coast of Puerto Rico.
DNA transfer-a never ending story. A study on scenarios involving a second person as carrier.
Helmus, Janine; Bajanowski, Thomas; Poetsch, Micaela
2016-01-01
The transfer of DNA directly from one item to another has been shown in many studies with elaborate discussions on the nature of the DNA donor as well as material and surface of the items or surrounding features. Every DNA transfer scenario one can imagine seems to be possible. This evokes more and more intricate scenarios proposed by lawyers or attorneys searching for an explanation of the DNA of a certain person on a distinct item with impact on a crime. At court, the forensic genetic scientist has to comment on the probability of these scenarios thus calling for extensive studies on such settings. Here, the possibility of an involvement of a second person as a carrier of the donor's DNA in a variety of different scenarios including three pairs of people and two kinds of items (textiles and plastic bags) was investigated. All transfer settings were executed with and without gloves on the carrier's hands. DNA left on the items was isolated and analyzed using the Powerplex® ESX17 kit. In 21 out of 180 samples, all alleles of the donor DNA could be obtained on the second item (12%), on eight samples, the donor's DNA was dominant compared to all other alleles (38% of samples with complete donor profile). Additionally, 51 samples displayed at least more than half of the donor's alleles (28%). The complete DNA profile of the carrier was found in 47 out of 180 samples (42 partial profiles). In summary, it could be shown that a transfer of donor DNA from epithelial cells through a carrier to a second item is possible, even if the carrier does not wear gloves.
Benschop, Corina C G; Connolly, Edward; Ansell, Ricky; Kokshoorn, Bas
2017-01-01
The interpretation of complex DNA profiles may differ between laboratories and reporting officers, which can lead to discrepancies in the final reports. In this study, we assessed the intra and inter laboratory variation in DNA mixture interpretation for three European ISO17025-accredited laboratories. To this aim, 26 reporting officers analyzed five sets of DNA profiles. Three main aspects were considered: 1) whether the mixed DNA profiles met the criteria for comparison to a reference profile, 2) the actual result of the comparison between references and DNA profiling data and 3) whether the weight of the DNA evidence could be assessed. Similarity in answers depended mostly on the complexity of the tasks. This study showed less variation within laboratories than between laboratories which could be the result of differences between internal laboratory guidelines and methods and tools available. Results show the profile types for which the three laboratories report differently, which informs indirectly on the complexity threshold the laboratories employ. Largest differences between laboratories were caused by the methods available to assess the weight of the DNA evidence. This exercise aids in training forensic scientists, refining laboratory guidelines and explaining differences between laboratories in court. Undertaking more collaborative exercises in future may stimulate dialog and consensus regarding interpretation. For training purposes, DNA profiles of the mixed stains and questioned references are made available. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.
Review of Current Conservation Genetic Analyses of Northeast Pacific Sharks.
Larson, Shawn E; Daly-Engel, Toby S; Phillips, Nicole M
Conservation genetics is an applied science that utilizes molecular tools to help solve problems in species conservation and management. It is an interdisciplinary specialty in which scientists apply the study of genetics in conjunction with traditional ecological fieldwork and other techniques to explore molecular variation, population boundaries, and evolutionary relationships with the goal of enabling resource managers to better protect biodiversity and identify unique populations. Several shark species in the northeast Pacific (NEP) have been studied using conservation genetics techniques, which are discussed here. The primary methods employed to study population genetics of sharks have historically been nuclear microsatellites and mitochondrial (mt) DNA. These markers have been used to assess genetic diversity, mating systems, parentage, relatedness, and genetically distinct populations to inform management decisions. Novel approaches in conservation genetics, including next-generation DNA and RNA sequencing, environmental DNA (eDNA), and epigenetics are just beginning to be applied to elasmobranch evolution, physiology, and ecology. Here, we review the methods and results of past studies, explore future directions for shark conservation genetics, and discuss the implications of molecular research and techniques for the long-term management of shark populations in the NEP. © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
2012-01-01
In situ Oxidation Study of Pt (110) and Its Interaction with CO Chinese Scientists Published a Paper on Prevention of Drug Craving and Relapse by Memory Retrieval-extinction Procedure in Science Series Papers Published in Energy Policy: Modeling Energy Use of China's Road Transport and Policy Evaluation Breakthrough in the Ambient Catalytic Destruction of Formaldehyde Novel Findings for High Altitude Adaptation from the Yak Genome Binary Colloidal Structures Assembled through Ising Interactions Reemergence of superconductivity at 48K in Compressed Iron Selenide Based Superconductors Nucleosomes Suppress Spontaneous Mutations Base-Specifically in Eukaryotes Single-Chain Fragmented Antibodies Guided SiRNA Delivery in Breast Cancer Does Yeast Suicide? China Scientists Developed Important Methodologies for Spatiotemporal Detecting and Manipulating of Cellular Activities Scorpions Inspire Chinese Scientists in Making Bionic Non-eroding Surfaces for Machinery Research on Phylogenetic Placement of Borthwickia and Description of a New Family of Angiosperms, Borthwickiaceae Plasmoid Ejection and Secondary Current Sheet Generation from Magnetic Reconnection in Laser-plasma Interaction Cotton Bollworm Adapts to Bt Cotton via Diverse Mutations A Histone Acetyltransferase Regulates Active DNA Demethylation in Arabidopsis
Díaz-Ferguson, Edgardo E; Moyer, Gregory R
2014-12-01
Genetic material (short DNA fragments) left behind by species in nonliving components of the environment (e.g. soil, sediment, or water) is defined as environmental DNA (eDNA). This DNA has been previously described as particulate DNA and has been used to detect and describe microbial communities in marine sediments since the mid-1980's and phytoplankton communities in the water column since the early-1990's. More recently, eDNA has been used to monitor invasive or endangered vertebrate and invertebrate species. While there is a steady increase in the applicability of eDNA as a monitoring tool, a variety of eDNA applications are emerging in fields such as forensics, population and community ecology, and taxonomy. This review provides scientist with an understanding of the methods underlying eDNA detection as well as applications, key methodological considerations, and emerging areas of interest for its use in ecology and conservation of freshwater and marine environments.
Ciesielski, Grzegorz L; Hytönen, Vesa P; Kaguni, Laurie S
2016-01-01
A lack of effective treatment for mitochondrial diseases prompts scientists to investigate the molecular processes that underlie their development. The major cause of mitochondrial diseases is dysfunction of the sole mitochondrial DNA polymerase, DNA polymerase γ (Pol γ). The development of treatment strategies will require a detailed characterization of the molecular properties of Pol γ. A novel technique, biolayer interferometry, allows one to monitor molecular interactions in real time, thus providing an insight into the kinetics of the process. Here, we present an application of the biolayer interferometry technique to characterize the fundamental reactions that Pol γ undergoes during the initiation phase of mitochondrial DNA replication: holoenzyme formation and binding to the primer-template.
Ciesielski, Grzegorz L.; Hytönen, Vesa P.; Kaguni, Laurie S.
2015-01-01
A lack of effective treatment for mitochondrial diseases prompts scientists to investigate the molecular processes that underlie their development. The major cause of mitochondrial diseases is dysfunction of the sole mitochondrial DNA polymerase, DNA polymerase γ (Pol γ). The development of treatment strategies will require a detailed characterization of the molecular properties of Pol γ. A novel technique, biolayer interferometry, allows one to monitor molecular interactions in real time, thus providing an insight into the kinetics of the process. Here, we present an application of the biolayer interferometry technique to characterize the fundamental reactions that Pol γ undergoes during the initiation phase of mitochondrial DNA replication: holoenzyme formation and binding to the primer-template. PMID:26530686
Health Detectives: Uncovering the Mysteries of Disease (LBNL Science at the Theater)
Bissell, Mina; Canaria, Christie; Celnicker, Susan; Karpen, Gary
2018-06-20
In this April 23, 2012 Science at the Theater event, Berkeley Lab scientists discuss how they uncover the mysteries of disease in unlikely places. Speakers and topics include: World-renowned cancer researcher Mina Bissell's pioneering research on the role of the cellular microenvironment in breast cancer has changed the conversation about the disease. How does DNA instability cause disease? To find out, Christie Canaria images neural networks to study disorders such as Huntington's disease. Fruit flies can tell us a lot about ourselves. Susan Celniker explores the fruit fly genome to learn how our genome works. DNA is not destiny. Gary Karpen explores how environmental factors shape genome function and disease through epigenetics.
Graphene oxide-DNA based sensors.
Gao, Li; Lian, Chaoqun; Zhou, Yang; Yan, Lirong; Li, Qin; Zhang, Chunxia; Chen, Liang; Chen, Keping
2014-10-15
Since graphene oxide (GO) is readily available and exhibits exceptional optical, electrical, mechanical and chemical properties, it has attracted increasing interests for use in GO-DNA based sensors. This paper reviews the advances in GO-DNA based sensors using DNA as recognition elements. In solution, GO is as an excellent acceptor of fluorescence resonance energy transfer (FRET) to quench the fluorescence in dye labeled DNA sequences. This review discusses the emerging GO-DNA based sensors related to FRET for use in the detection of DNA, proteins, metal ions, cysteine (Cys), and others. The application of the electrochemical GO-DNA based sensors is also summarized because GO possesses exceptional electrochemical properties. The detection mechanisms and the advantages of GO are also revealed and discussed. GO-DNA based sensors perform well at low cost, and high sensitivity, and provide low detection limits. Additionally, GO-DNA based sensors should appear in the near future as scientists explore their usefulness and properties. Finally, future perspectives and possible challenges in this area are outlined. Copyright © 2014 Elsevier B.V. All rights reserved.
PhyloChip Tackles Coral Disease
Todd DeSantis
2017-12-09
Scientists at Berkeley Lab and the University of California, Merced are using an innovative DNA array developed at Berkeley Lab to catalog the microbes that live among coral in the tropical waters off the coast of Puerto Rico.
Development and validation of same-day monitoring methods for recreational water
When water is polluted, swimmers can become ill from exposure to waterborne pathogens. EPA scientists have developed a new DNA extraction method for determining the amount of pathogens present in water.
Helping to distinguish primary from secondary transfer events for trace DNA.
Taylor, Duncan; Biedermann, Alex; Samie, Lydie; Pun, Ka-Man; Hicks, Tacha; Champod, Christophe
2017-05-01
DNA is routinely recovered in criminal investigations. The sensitivity of laboratory equipment and DNA profiling kits means that it is possible to generate DNA profiles from very small amounts of cellular material. As a consequence, it has been shown that DNA we detect may not have arisen from a direct contact with an item, but rather through one or more intermediaries. Naturally the questions arising in court, particularly when considering trace DNA, are of how DNA may have come to be on an item. While scientists cannot directly answer this question, forensic biological results can help in discriminating between alleged activities. Much experimental research has been published showing the transfer and persistence of DNA under varying conditions, but as of yet the results of these studies have not been combined to deal with broad questions about transfer mechanisms. In this work we use published data and Bayesian networks to develop a statistical logical framework by which questions of transfer mechanism can be approached probabilistically. We also identify a number of areas where further work could be carried out in order to improve our knowledge base when helping to address questions about transfer mechanisms. Finally, we apply the constructed Bayesian network to ground truth known data to determine if, with current knowledge, there is any power in DNA quantities to distinguish primary and secondary transfer events. Copyright © 2017 Elsevier B.V. All rights reserved.
Research on Image Encryption Based on DNA Sequence and Chaos Theory
NASA Astrophysics Data System (ADS)
Tian Zhang, Tian; Yan, Shan Jun; Gu, Cheng Yan; Ren, Ran; Liao, Kai Xin
2018-04-01
Nowadays encryption is a common technique to protect image data from unauthorized access. In recent years, many scientists have proposed various encryption algorithms based on DNA sequence to provide a new idea for the design of image encryption algorithm. Therefore, a new method of image encryption based on DNA computing technology is proposed in this paper, whose original image is encrypted by DNA coding and 1-D logistic chaotic mapping. First, the algorithm uses two modules as the encryption key. The first module uses the real DNA sequence, and the second module is made by one-dimensional logistic chaos mapping. Secondly, the algorithm uses DNA complementary rules to encode original image, and uses the key and DNA computing technology to compute each pixel value of the original image, so as to realize the encryption of the whole image. Simulation results show that the algorithm has good encryption effect and security.
NASA Space Radiation Program Integrative Risk Model Toolkit
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris
2015-01-01
NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.
Production of non viral DNA vectors.
Schleef, Martin; Blaesen, Markus; Schmeer, Marco; Baier, Ruth; Marie, Corinne; Dickson, George; Scherman, Daniel
2010-12-01
After some decades of research, development and first clinical approaches to use DNA vectors in gene therapy, cell therapy and DNA vaccination, the requirements for the pharmaceutical manufacturing of gene vectors has improved significantly step by step. Even the expression level and specificity of non viral DNA vectors were significantly modified and followed the success of viral vectors. The strict separation of "viral" and "non viral" gene transfer are historic borders between scientist and we will show that both fields together are able to allow the next step towards successful prevention and therapy. Here we summarize the features of producing and modifying these non-viral gene vectors to ensure the required quality to modify cells and to treat human and animals.
von Wurmb-Schwark, Nicole; Mályusz, Victoria; Fremdt, Heike; Koch, Christine; Simeoni, Eva; Schwark, Thorsten
2006-05-01
The forensic scientist often has to cope with problematic samples from the crime scene due to their minute size and thus the low amount of extractable DNA. The retrieval of DNA from swabs taken from the surface of the skin, for example, in cases of strangulation, can be especially difficult. We systematically investigated swabs taken from the skin (to obtain a genetic profile from the victim and also from a possible offender) and from sperm cell containing swabs using two extraction kits: the Invisorb forensic and the Invisorb spin swab kit (both Invitek, Germany). DNA quality and quantity were tested on ethidium bromide containing agarose gels and in a highly sensitive duplex-PCR, which amplifies fragments specific for mitochondrial and nuclear DNA. Absolute quantification was done using real time PCR. Samples, which were positive in the duplex-PCR, were also employed to genetic fingerprinting using the Powerplex ES and the AmpFlSTRIdentifiler(TM) kits. Our study shows that the easy-to-use Invisorb spin swab kit is very suitable for DNA isolation from swabs taken from the skin and also from sperm cells. Retrieval of cells from the skin with swabs moistened in extraction buffer, not in distilled water, led to a significant higher DNA yield.
Shedding Light on the Role of UV Exposure in Melanoma | Center for Cancer Research
When a cell is exposed to UV radiation, the chemical makeup of its DNA is changed in a specific manner, resulting in a recognizable modification that can be measured by scientists. These changes are normally detected and fixed by cellular mechanisms for DNA repair. However, if the damage is extensive or if a cell has defective DNA repair machinery, permanent mutations can be produced with harmful consequences for the cell. If the mutation occurs within the gene for a protein that regulates cellular growth, the development of cancer is possible.
NASA Astrophysics Data System (ADS)
Chen, Wen; Orna, Mary Virginia; O. S., U.
1996-06-01
Modern archaeology is fully supported by advances in science and technology. With the development of chemical and biochemical analyses, the task of the archaeological chemist has become more complex than ever over the past decade. In the symposium on archaeological chemistry held at the American Chemical Society National Meeting in Anaheim, California, from April 2-6, 1995, three noted scientists who have made seminal contributions in their respective fields presented an accompanying pedagogical symposium to provide introductory information on how modern chemistry and biochemistry have revolutionized modern archaeological studies at a molecular level. These three scientists and their presentations were: Stanley Ambrose, "Advances in Stable Isotope Analysis in Dietary Reconstruction"; Svante Pääbo, "Ancient DNA as a Means to Study the History of Humans and Extinct Creatures"; and Robert Hedges, "Radiocarbon Dating of Archaeological Bone by Accelerator Mass Spectrometry.
Persistence of marine fish environmental DNA and the influence of sunlight
Andruszkiewicz, Elizabeth A.; Sassoubre, Lauren M.
2017-01-01
Harnessing information encoded in environmental DNA (eDNA) in marine waters has the potential to revolutionize marine biomonitoring. Whether using organism-specific quantitative PCR assays or metabarcoding in conjunction with amplicon sequencing, scientists have illustrated that realistic organism censuses can be inferred from eDNA. The next step is establishing ways to link information obtained from eDNA analyses to actual organism abundance. This is only possible by understanding the processes that control eDNA concentrations. The present study uses mesocosm experiments to study the persistence of eDNA in marine waters and explore the role of sunlight in modulating eDNA persistence. We seeded solute-permeable dialysis bags with water containing indigenous eDNA and suspended them in a large tank containing seawater. Bags were subjected to two treatments: half the bags were suspended near the water surface where they received high doses of sunlight, and half at depth where they received lower doses of sunlight. Bags were destructively sampled over the course of 87 hours. eDNA was extracted from water samples and used as template for a Scomber japonicus qPCR assay and a marine fish-specific 12S rRNA PCR assay. The latter was subsequently sequenced using a metabarcoding approach. S. japonicus eDNA, as measured by qPCR, exhibited first order decay with a rate constant ~0.01 hr -1 with no difference in decay rate constants between the two experimental treatments. eDNA metabarcoding identified 190 organizational taxonomic units (OTUs) assigned to varying taxonomic ranks. There was no difference in marine fish communities as measured by eDNA metabarcoding between the two experimental treatments, but there was an effect of time. Given the differences in UVA and UVB fluence received by the two experimental treatments, we conclude that sunlight is not the main driver of fish eDNA decay in the experiments. However, there are clearly temporal effects that need to be considered when interpreting information obtained using eDNA approaches. PMID:28915253
Persistence of marine fish environmental DNA and the influence of sunlight.
Andruszkiewicz, Elizabeth A; Sassoubre, Lauren M; Boehm, Alexandria B
2017-01-01
Harnessing information encoded in environmental DNA (eDNA) in marine waters has the potential to revolutionize marine biomonitoring. Whether using organism-specific quantitative PCR assays or metabarcoding in conjunction with amplicon sequencing, scientists have illustrated that realistic organism censuses can be inferred from eDNA. The next step is establishing ways to link information obtained from eDNA analyses to actual organism abundance. This is only possible by understanding the processes that control eDNA concentrations. The present study uses mesocosm experiments to study the persistence of eDNA in marine waters and explore the role of sunlight in modulating eDNA persistence. We seeded solute-permeable dialysis bags with water containing indigenous eDNA and suspended them in a large tank containing seawater. Bags were subjected to two treatments: half the bags were suspended near the water surface where they received high doses of sunlight, and half at depth where they received lower doses of sunlight. Bags were destructively sampled over the course of 87 hours. eDNA was extracted from water samples and used as template for a Scomber japonicus qPCR assay and a marine fish-specific 12S rRNA PCR assay. The latter was subsequently sequenced using a metabarcoding approach. S. japonicus eDNA, as measured by qPCR, exhibited first order decay with a rate constant ~0.01 hr -1 with no difference in decay rate constants between the two experimental treatments. eDNA metabarcoding identified 190 organizational taxonomic units (OTUs) assigned to varying taxonomic ranks. There was no difference in marine fish communities as measured by eDNA metabarcoding between the two experimental treatments, but there was an effect of time. Given the differences in UVA and UVB fluence received by the two experimental treatments, we conclude that sunlight is not the main driver of fish eDNA decay in the experiments. However, there are clearly temporal effects that need to be considered when interpreting information obtained using eDNA approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinstein, B; Heller, A
2003-07-08
History is most interesting when seen through the eyes of those who lived it. In this 40th anniversary retrospective of bioscience research at Lawrence Livermore National Laboratory, we've asked 19 scientists to share their personal recollections about a major accomplishment in the program's history. We have not tried to create a comprehensive or seamless story. Rather, we've attempted to capture the perspectives of key individuals, each of whom worked on a research program that met significant milestones. We have focused particularly on programs and accomplishments that have shaped the current Biology and Biotechnology Research Program (BBRP). In addition, we havemore » included a timeline of biosciences at LLNL, a history of the directorate that appeared in the Laboratory's magazine, ''Science & Technology Review'', in 2002, and a list of bioscience-related articles that have appeared over the years in ''Science & Technology Review and its predecessor, Energy & Technology Review''. The landscape of biological science today is stunningly different from 40 years ago. When LLNL bioscience began in 1963, we knew about the structure of DNA and that it was the carrier of genetic information. However, it would be another year before scientists would understand how DNA codes for the production of proteins and more than a decade before the earliest DNA sequence would be known. It is sometimes difficult to remember that it was only 15 years ago that the polymerase chain reaction, a synthetic method to amplify pieces of DNA was developed, and that only within the last half-dozen years has sequence data for entire organisms begun to be available. In this publication, we have tried to capture some of the landmark and seminal research history: radiation effects studies, which were a major reason for founding the biological research program, and flow sorting and chromosome painting, which dramatically changed our ability to study DNA damage and enabled the creation of chromosome-specific clone libraries, a key step toward sequencing the human genome. Several histories relate to the Human Genome Project itself and surrounding technologies, and several to long-standing research themes such as DNA repair, food mutagens, and reproductive biology. Others describe more recent developments such as computational biology, health-care technologies, and biodefense research.« less
NASA Astrophysics Data System (ADS)
Lueker, T.
2012-12-01
We are a group of ocean scientists, artists, and educators working to publicize the urgent environmental problems facing our ocean environs, including overfishing, climate change and ocean acidification, and environmental degradation due to plastic and other forms of pollution. Our team leader, Kira Carrillo Corser, is an artist and educator known nationally for affecting policy and social change. Our collaboration results from the DNA of Creativity Project - the brainchild of Patricia Frischer, co-ordinator for the San Diego Visual Arts Network (http://dnaofc.weebly.com). The DNA of Creativity funded teams composed of artists and scientists with the goal of fusing the creative energies of both into projects that will enhance the public's perception of creativity, and make the complexities of art and science collaborations accessible to a new and larger audience. Sea Changes - ACT was funded initially by the DNA of Creativity Project. Our project goals are : 1) To entice people to participate in the joys of discovery of art AND science and 2) To motivate the public to work for real, committed and innovative change to protect our oceans. Part of our strategy for achieving our goals is to create a traveling art installation to illustrate the beauty of the oceans and to instill in our viewers the joys of discovery and creativity that we as scientists and artists pursue. And following this, to make the destructive changes occurring in the ocean and the future consequences more visible and understandable. We will develop lesson plans to integrate our ideas into the educational system and we are documenting our collaborative and creative process to inform future art-science collaborations. Finally, after emotionally connecting with our viewers to provide a means to ACT to make real and positive CHANGES for the future. Our project aims to build commitment and action for environmental conservation and stewardship as we combine scientific research with ways to take action, Our viewers, given a list of potential actions, internet connected computers and interactive websites can contact politicians and community leaders, as we document actions taken. In this presentation I will introduce the members of our team and provide examples of the type of synergistic ideas the combination of artist and scientist can provide. I will describe our goals and how we have, or plan to achieve them. And I will detail the process whereby we as artists and scientists working together we can improve on delivering important messages to members of the public and build a community of understanding.
Essay Contest Reveals Misconceptions of High School Students in Genetics Content
Mills Shaw, Kenna R.; Van Horne, Katie; Zhang, Hubert; Boughman, Joann
2008-01-01
National educational organizations have called upon scientists to become involved in K–12 education reform. From sporadic interaction with students to more sustained partnerships with teachers, the engagement of scientists takes many forms. In this case, scientists from the American Society of Human Genetics (ASHG), the Genetics Society of America (GSA), and the National Society of Genetic Counselors (NSGC) have partnered to organize an essay contest for high school students as part of the activities surrounding National DNA Day. We describe a systematic analysis of 500 of 2443 total essays submitted in response to this contest over 2 years. Our analysis reveals the nature of student misconceptions in genetics, the possible sources of these misconceptions, and potential ways to galvanize genetics education. PMID:18245328
Identification of Rays through DNA Barcoding: An Application for Ecologists
Cerutti-Pereyra, Florencia; Meekan, Mark G.; Wei, Nu-Wei V.; O'Shea, Owen; Bradshaw, Corey J. A.; Austin, Chris M.
2012-01-01
DNA barcoding potentially offers scientists who are not expert taxonomists a powerful tool to support the accuracy of field studies involving taxa that are diverse and difficult to identify. The taxonomy of rays has received reasonable attention in Australia, although the fauna in remote locations such as Ningaloo Reef, Western Australia is poorly studied and the identification of some species in the field is problematic. Here, we report an application of DNA-barcoding to the identification of 16 species (from 10 genera) of tropical rays as part of an ecological study. Analysis of the dataset combined across all samples grouped sequences into clearly defined operational taxonomic units, with two conspicuous exceptions: the Neotrygon kuhlii species complex and the Aetobatus species complex. In the field, the group that presented the most difficulties for identification was the spotted whiptail rays, referred to as the ‘uarnak’ complex. Two sets of problems limited the successful application of DNA barcoding: (1) the presence of cryptic species, species complexes with unresolved taxonomic status and intra-specific geographical variation, and (2) insufficient numbers of entries in online databases that have been verified taxonomically, and the presence of lodged sequences in databases with inconsistent names. Nevertheless, we demonstrate the potential of the DNA barcoding approach to confirm field identifications and to highlight species complexes where taxonomic uncertainty might confound ecological data. PMID:22701556
Health Detectives: Uncovering the Mysteries of Disease (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bissell, Mina; Canaria, Christie; Celnicker, Susan
In this April 23, 2012 Science at the Theater event, Berkeley Lab scientists discuss how they uncover the mysteries of disease in unlikely places. Speakers and topics include: World-renowned cancer researcher Mina Bissell's pioneering research on the role of the cellular microenvironment in breast cancer has changed the conversation about the disease. How does DNA instability cause disease? To find out, Christie Canaria images neural networks to study disorders such as Huntington's disease. Fruit flies can tell us a lot about ourselves. Susan Celniker explores the fruit fly genome to learn how our genome works. DNA is not destiny. Garymore » Karpen explores how environmental factors shape genome function and disease through epigenetics.« less
The reliability of forensic osteology--a case in point. Case study.
Kemkes-Grottenthaler, A
2001-03-01
The medico-legal investigation of skeletons is a trans-disciplinary effort by forensic scientists as well as physical anthropologists. The advent of DNA extraction and amplification from bones and teeth has led to the assumption that morphological assessment of skeletal remains might soon become obsolete. But despite the introduction and success of molecular biology, the analysis of skeletal biology will remain an integral part of the identification process. This is due to the fact, that the skeletal record allows relatively fast and accurate inferences about the identity of the victim. Moreover, a standard biological profile may be established to effectively narrow the police investigator's search parameters. The following study demonstrates how skeletal biology may collaborate in the forensic investigation and support DNA fingerprinting evidence. In this case, the information gained from standard morphological methods about the unknown person's sex, age and heritage immediately led the police to suspect, that the remains were that of a young man from Vietnam, who had been missing for 2.5 years. The investigation then quickly shifted to prove the victim's identity via DNA extraction and mtDNA sequence analysis and biostatistical calculations involving questions of kinship [4].
RDNAnalyzer: A tool for DNA secondary structure prediction and sequence analysis.
Afzal, Muhammad; Shahid, Ahmad Ali; Shehzadi, Abida; Nadeem, Shahid; Husnain, Tayyab
2012-01-01
RDNAnalyzer is an innovative computer based tool designed for DNA secondary structure prediction and sequence analysis. It can randomly generate the DNA sequence or user can upload the sequences of their own interest in RAW format. It uses and extends the Nussinov dynamic programming algorithm and has various application for the sequence analysis. It predicts the DNA secondary structure and base pairings. It also provides the tools for routinely performed sequence analysis by the biological scientists such as DNA replication, reverse compliment generation, transcription, translation, sequence specific information as total number of nucleotide bases, ATGC base contents along with their respective percentages and sequence cleaner. RDNAnalyzer is a unique tool developed in Microsoft Visual Studio 2008 using Microsoft Visual C# and Windows Presentation Foundation and provides user friendly environment for sequence analysis. It is freely available. http://www.cemb.edu.pk/sw.html RDNAnalyzer - Random DNA Analyser, GUI - Graphical user interface, XAML - Extensible Application Markup Language.
Hot Technology, Cool Science (LBNL Science at the Theater)
Fowler, John
2018-06-08
Great innovations start with bold ideas. Learn how Berkeley Lab scientists are devising practical solutions to everything from global warming to how you get to work. On May 11, 2009, five Berkeley Lab scientists participated in a roundtable dicussion moderated by KTVU's John Fowler on their leading-edge research. This "Science at the Theater" event, held at the Berkeley Repertory Theatre, featured technologies such as cool roofs, battery-driven transportation, a pocket-sized DNA probe, green supercomputing, and a noncontact method for restoring damaged and fragile mechanical recordings.
AN ECOLOGICAL PERSPECTIVE OF GENOMICS: ASSESSING ECOLOGICAL RISK THROUGH PARTNERSHIPS
The application of new molecular biological tools to environmental toxicology was discussed at an international workshop attended by
approximately 60 government, academic, and industrial scientists. The sequencing of the human genome, development of microarrays and
DNA chip...
Genetic Constructor: An Online DNA Design Platform.
Bates, Maxwell; Lachoff, Joe; Meech, Duncan; Zulkower, Valentin; Moisy, Anaïs; Luo, Yisha; Tekotte, Hille; Franziska Scheitz, Cornelia Johanna; Khilari, Rupal; Mazzoldi, Florencio; Chandran, Deepak; Groban, Eli
2017-12-15
Genetic Constructor is a cloud Computer Aided Design (CAD) application developed to support synthetic biologists from design intent through DNA fabrication and experiment iteration. The platform allows users to design, manage, and navigate complex DNA constructs and libraries, using a new visual language that focuses on functional parts abstracted from sequence. Features like combinatorial libraries and automated primer design allow the user to separate design from construction by focusing on functional intent, and design constraints aid iterative refinement of designs. A plugin architecture enables contributions from scientists and coders to leverage existing powerful software and connect to DNA foundries. The software is easily accessible and platform agnostic, free for academics, and available in an open-source community edition. Genetic Constructor seeks to democratize DNA design, manufacture, and access to tools and services from the synthetic biology community.
Remote control of nanoscale devices
NASA Astrophysics Data System (ADS)
Högberg, Björn
2018-01-01
Processes that occur at the nanometer scale have a tremendous impact on our daily lives. Sophisticated evolved nanomachines operate in each of our cells; we also, as a society, increasingly rely on synthetic nanodevices for communication and computation. Scientists are still only beginning to master this scale, but, recently, DNA nanotechnology (1)—in particular, DNA origami (2)—has emerged as a powerful tool to build structures precise enough to help us do so. On page 296 of this issue, Kopperger et al. (3) show that they are now also able to control the motion of a DNA origami device from the outside by applying electric fields.
Mukunthan, B; Nagaveni, N
2014-01-01
In genetic engineering, conventional techniques and algorithms employed by forensic scientists to assist in identification of individuals on the basis of their respective DNA profiles involves more complex computational steps and mathematical formulae, also the identification of location of mutation in a genomic sequence in laboratories is still an exigent task. This novel approach provides ability to solve the problems that do not have an algorithmic solution and the available solutions are also too complex to be found. The perfect blend made of bioinformatics and neural networks technique results in efficient DNA pattern analysis algorithm with utmost prediction accuracy.
Computational Approaches to Nucleic Acid Origami.
Jabbari, Hosna; Aminpour, Maral; Montemagno, Carlo
2015-10-12
Recent advances in experimental DNA origami have dramatically expanded the horizon of DNA nanotechnology. Complex 3D suprastructures have been designed and developed using DNA origami with applications in biomaterial science, nanomedicine, nanorobotics, and molecular computation. Ribonucleic acid (RNA) origami has recently been realized as a new approach. Similar to DNA, RNA molecules can be designed to form complex 3D structures through complementary base pairings. RNA origami structures are, however, more compact and more thermodynamically stable due to RNA's non-canonical base pairing and tertiary interactions. With all these advantages, the development of RNA origami lags behind DNA origami by a large gap. Furthermore, although computational methods have proven to be effective in designing DNA and RNA origami structures and in their evaluation, advances in computational nucleic acid origami is even more limited. In this paper, we review major milestones in experimental and computational DNA and RNA origami and present current challenges in these fields. We believe collaboration between experimental nanotechnologists and computer scientists are critical for advancing these new research paradigms.
The collation of forensic DNA case data into a multi-dimensional intelligence database.
Walsh, S J; Moss, D S; Kliem, C; Vintiner, G M
2002-01-01
The primary aim of any DNA Database is to link individuals to unsolved offenses and unsolved offenses to each other via DNA profiling. This aim has been successfully realised during the operation of the New Zealand (NZ) DNA Databank over the past five years. The DNA Intelligence Project (DIP), a collaborative project involving NZ forensic and law enforcement agencies, interrogated the forensic case data held on the NZ DNA databank and collated it into a functional intelligence database. This database has been used to identify significant trends which direct Police and forensic personnel towards the most appropriate use of DNA technology. Intelligence is being provided in areas such as the level of usage of DNA techniques in criminal investigation, the relative success of crime scene samples and the geographical distribution of crimes. The DIP has broadened the dimensions of the information offered through the NZ DNA Databank and has furthered the understanding and investigative capability of both Police and forensic scientists. The outcomes of this research fit soundly with the current policies of 'intelligence led policing', which are being adopted by Police jurisdictions locally and overseas.
Horvathova, Eva; Navarova, Jana; Galova, Eliska; Sevcovicova, Andrea; Chodakova, Lenka; Snahnicanova, Zuzana; Melusova, Martina; Kozics, Katarina; Slamenova, Darina
2014-07-16
Selected components of plant essential oils and intact Rosmarinus officinalis oil (RO) were investigated for their antioxidant, iron-chelating, and DNA-protective effects. Antioxidant activities were assessed using four different techniques. DNA-protective effects on human hepatoma HepG2 cells and plasmid DNA were evaluated with the help of the comet assay and the DNA topology test, respectively. It was observed that whereas eugenol, carvacrol, and thymol showed high antioxidative effectiveness in all assays used, RO manifested only antiradical effect and borneol and eucalyptol did not express antioxidant activity at all. DNA-protective ability against hydrogen peroxide (H2O2)-induced DNA lesions was manifested by two antioxidants (carvacrol and thymol) and two compounds that do not show antioxidant effects (RO and borneol). Borneol was able to preserve not only DNA of HepG2 cells but also plasmid DNA against Fe(2+)-induced damage. This paper evaluates the results in the light of experiences of other scientists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSantis, Todd
Scientists at Berkeley Lab and the University of California, Merced are using an innovative DNA array developed at Berkeley Lab to catalog the microbes that live among coral in the tropical waters off the coast of Puerto Rico. More info: http://newscenter.lbl.gov/feature-stories/2009/02/02/coral-reefs/
Applications of genome editing in insects
USDA-ARS?s Scientific Manuscript database
Insect genome editing was first reported 1991 in Drosophila melanogaster but the technology used was not portable to other species. Not until the recent development of facile, engineered DNA endonuclease systems has gene editing become widely available to insect scientists. Most applications in inse...
DNA banking and DNA databanking by academic and commercial laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
McEwen, J.E.; Reilly, P.R.
The advent of DNA-based testing is giving rise to DNA banking (the long-term storage of cells, transformed cell lines, or extracted DNA for subsequent retrieval and analysis) and DNA data banking (the indefinite storage of information derived from DNA analysis). Large scale acquisition and storage of DNA and DNA data has important implications for the privacy rights of individuals. A survey of 148 academically based and commercial DNA diagnostic laboratories was conducted to determine: (1) the extent of their DNA banking activities; (2) their policies and experiences regarding access to DNA samples and data; (3) the quality assurance measures theymore » employ; and (4) whether they have written policies and/or depositor`s agreements addressing specific issues. These issues include: (1) who may have access to DNA samples and data; (2) whether scientists may have access to anonymous samples or data for research use; (3) whether they have plans to contact depositors or retest samples if improved tests for a disorder become available; (4) disposition of samples at the end of the contract period if the laboratory ceases operations, if storage fees are unpaid, or after a death or divorce; (5) the consequence of unauthorized release, loss, or accidental destruction of samples; and (6) whether depositors may share in profits from the commercialization of tests or treatments developed in part from studies of stored DNA. The results suggest that many laboratories are banking DNA, that many have already amassed a large number of samples, and that a significant number plan to further develop DNA banking as a laboratory service over the next two years. Few laboratories have developed written policies governing DNA banking, and fewer still have drafted documents that define the rights and obligations of the parties. There may be a need for increased regulation of DNA banking and DNA data banking and for better defined policies with respect to protecting individual privacy.« less
Schmidt, C W
2001-01-01
Scientists expect that mapping the human genome will lead to a host of innovations in biology and research. For example, it may become possible to use DNA microarrays to accurately diagnose cancer and infectious disease subtypes and to predict clinical outcomes. Scientists might also use the genome to look at the interactions of the environment, genetic makeup, and toxic exposures, including the ability of certain beneficial genes to detoxify the body and resist disease. But despite the great potential of the field of genomics, scientists caution that public expectations need to be tempered by reality. People are as much a product of their environment as they are of their genes, say experts, and to suggest that genetics is the sole determinant that defines humans as individuals stretches the science beyond the current data. PMID:11171541
GENETICALLY MODIFIED FOODS: TECHNOLOGICAL BREAKTHROUGH OR ECOLOGICAL NIGHMARE?
Fifty years ago, Wastson and Crick described the structure of DNA, setting the stage for the past decade's biotechnology revolution. Scientists have now broken the code of the entire human genome, and delineated the function of multiple genes; similar strides are being taken with...
AN ECOLOGICAL PERSPECTIVE OF GENOMICS: ASSESSING ECOLOGICAL RISK THROUGH PARTNERSHIPS
A workshop attended by approximately 60 scientists from around the world met to discuss the application of new molecular biology tools to issues in environmental toxicology and chemistry. With the sequencing of the human genome, development of microarrays and DNA chips, and devel...
Results From a Microbial Source-Tracking Study at Villa Angela Beach, Cleveland, Ohio, 2007
Bushon, Rebecca N.; Stelzer, Erin A.; Stoeckel, Donald M.
2009-01-01
During the 2007 recreational season at Villa Angela Beach in Cleveland, Ohio, scientists with the U.S. Geological Survey (USGS) and the Northeast Ohio Regional Sewer District (NEORSD) found high Escherichia coli (E. coli) concentrations that were not easily explained by results obtained to date in ongoing investigations of recreational water quality at the beach. To help understand the sources behind these elevated E. coli concentrations, the USGS and NEORSD sampled beach-area water for Bacteroides DNA markers. Bacteroides are a group of enteric bacteria that are being used in microbial source tracking, in hope that host-associated DNA markers could be used to indicate potential sources of E. coli in the Villa Angela environment. The USGS Ohio Water Microbiology Laboratory analyzed a total of 13 source samples (sewage and waterfowl feces) and 33 beach-area water and sand samples for three Bacteroides DNA markers. This report lists the results of those analyses, along with environmental conditions at Villa Angela on the dates that samples were collected.
A novel nanometric DNA thin film as a sensor for alpha radiation
Kulkarni, Atul; Kim, Byeonghoon; Dugasani, Sreekantha Reddy; Joshirao, Pranav; Kim, Jang Ah; Vyas, Chirag; Manchanda, Vijay; Kim, Taesung; Park, Sung Ha
2013-01-01
The unexpected nuclear accidents have provided a challenge for scientists and engineers to develop sensitive detectors, especially for alpha radiation. Due to the high linear energy transfer value, sensors designed to detect such radiation require placement in close proximity to the radiation source. Here we report the morphological changes and optical responses of artificially designed DNA thin films in response to exposure to alpha radiation as observed by an atomic force microscope, a Raman and a reflectance spectroscopes. In addition, we discuss the feasibility of a DNA thin film as a radiation sensing material. The effect of alpha radiation exposure on the DNA thin film was evaluated as a function of distance from an 241Am source and exposure time. Significant reflected intensity changes of the exposed DNA thin film suggest that a thin film made of biomolecules can be one of promising candidates for the development of online radiation sensors. PMID:23792924
Novel DNA materials and their applications.
Yang, Dayong; Campolongo, Michael J; Nhi Tran, Thua Nguyen; Ruiz, Roanna C H; Kahn, Jason S; Luo, Dan
2010-01-01
The last two decades have witnessed the exponential development of DNA as a generic material instead of just a genetic material. The biological function, nanoscale geometry, biocompatibility, biodegradability, and molecular recognition capacity of DNA make it a promising candidate for the construction of novel functional nanomaterials. As a result, DNA has been recognized as one of the most appealing and versatile nanomaterial building blocks. Scientists have used DNA in this way to construct various amazing nanostructures, such as ordered lattices, origami, supramolecular assemblies, and even three-dimensional objects. In addition, DNA has been utilized as a guide and template to direct the assembly of other nanomaterials including nanowires, free-standing membranes, and crystals. Furthermore, DNA can also be used as structural components to construct bulk materials such as DNA hydrogels, demonstrating its ability to behave as a unique polymer. Overall, these novel DNA materials have found applications in various areas in the biomedical field in general, and nanomedicine in particular. In this review, we summarize the development of DNA assemblies, describe the innovative progress of multifunctional and bulk DNA materials, and highlight some real-world nanomedical applications of these DNA materials. We also show our insights throughout this article for the future direction of DNA materials. © 2010 John Wiley & Sons, Inc.
Image encryption using a synchronous permutation-diffusion technique
NASA Astrophysics Data System (ADS)
Enayatifar, Rasul; Abdullah, Abdul Hanan; Isnin, Ismail Fauzi; Altameem, Ayman; Lee, Malrey
2017-03-01
In the past decade, the interest on digital images security has been increased among scientists. A synchronous permutation and diffusion technique is designed in order to protect gray-level image content while sending it through internet. To implement the proposed method, two-dimensional plain-image is converted to one dimension. Afterward, in order to reduce the sending process time, permutation and diffusion steps for any pixel are performed in the same time. The permutation step uses chaotic map and deoxyribonucleic acid (DNA) to permute a pixel, while diffusion employs DNA sequence and DNA operator to encrypt the pixel. Experimental results and extensive security analyses have been conducted to demonstrate the feasibility and validity of this proposed image encryption method.
RDNAnalyzer: A tool for DNA secondary structure prediction and sequence analysis
Afzal, Muhammad; Shahid, Ahmad Ali; Shehzadi, Abida; Nadeem, Shahid; Husnain, Tayyab
2012-01-01
RDNAnalyzer is an innovative computer based tool designed for DNA secondary structure prediction and sequence analysis. It can randomly generate the DNA sequence or user can upload the sequences of their own interest in RAW format. It uses and extends the Nussinov dynamic programming algorithm and has various application for the sequence analysis. It predicts the DNA secondary structure and base pairings. It also provides the tools for routinely performed sequence analysis by the biological scientists such as DNA replication, reverse compliment generation, transcription, translation, sequence specific information as total number of nucleotide bases, ATGC base contents along with their respective percentages and sequence cleaner. RDNAnalyzer is a unique tool developed in Microsoft Visual Studio 2008 using Microsoft Visual C# and Windows Presentation Foundation and provides user friendly environment for sequence analysis. It is freely available. Availability http://www.cemb.edu.pk/sw.html Abbreviations RDNAnalyzer - Random DNA Analyser, GUI - Graphical user interface, XAML - Extensible Application Markup Language. PMID:23055611
DNA methylation in complex disease: applications in nursing research, practice, and policy.
Wright, Michelle L; Ralph, Jody L; Ohm, Joyce E; Anderson, Cindy M
2013-01-01
DNA methylation is an epigenomic modification that is essential to normal human development and biological processes. DNA methylation patterns are heritable and dynamic throughout the life span. Environmental exposures can alter DNA methylation patterns, contributing to the development of complex disease. Identification and modulation of environmental factors influencing disease susceptibility through alterations in DNA methylation are amenable to nursing intervention and form the basis for individualized patient care. Here we describe the evidence supporting the translation of DNA methylation analyses as a tool for screening, diagnosis, and treatment of complex disease in nursing research and practice. The ethical, legal, social, and economic considerations of advances in genomics are considered as a model for epigenomic policy. We conclude that contemporary and informed nurse scientists and clinicians are uniquely poised to apply innovations in epigenomic research to clinical populations and develop appropriate policies that guide equitable and ethical use of new strategies to improve patient care. Copyright © 2013 Elsevier Inc. All rights reserved.
Scientists learn about the health of rivers, streams, lakes, and other aquatic ecosystems by looking at the species that live there. Populations of insects, snails, and worms found in different aquatic ecosystems can indicate overall health in those areas.
ERIC Educational Resources Information Center
National Institute of General Medical Sciences (NIGMS), 2009
2009-01-01
Computer advances now let researchers quickly search through DNA sequences to find gene variations that could lead to disease, simulate how flu might spread through one's school, and design three-dimensional animations of molecules that rival any video game. By teaming computers and biology, scientists can answer new and old questions that could…
2018-04-11
iss055e016051 (April 11, 2018) --- NASA astronaut and Flight Engineer Ricky Arnold works with the student-designed Genes in Space-5 experiment inside the Harmony module. The genetic research is helping scientists understand the relationship between DNA alterations and weakened immune systems possibly caused by living in space.
[The ENCODE project and functional genomics studies].
Ding, Nan; Qu, Hongzhu; Fang, Xiangdong
2014-03-01
Upon the completion of the Human Genome Project, scientists have been trying to interpret the underlying genomic code for human biology. Since 2003, National Human Genome Research Institute (NHGRI) has invested nearly $0.3 billion and gathered over 440 scientists from more than 32 institutions in the United States, China, United Kingdom, Japan, Spain and Singapore to initiate the Encyclopedia of DNA Elements (ENCODE) project, aiming to identify and analyze all regulatory elements in the human genome. Taking advantage of the development of next-generation sequencing technologies and continuous improvement of experimental methods, ENCODE had made remarkable achievements: identified methylation and histone modification of DNA sequences and their regulatory effects on gene expression through altering chromatin structures, categorized binding sites of various transcription factors and constructed their regulatory networks, further revised and updated database for pseudogenes and non-coding RNA, and identified SNPs in regulatory sequences associated with diseases. These findings help to comprehensively understand information embedded in gene and genome sequences, the function of regulatory elements as well as the molecular mechanism underlying the transcriptional regulation by noncoding regions, and provide extensive data resource for life sciences, particularly for translational medicine. We re-viewed the contributions of high-throughput sequencing platform development and bioinformatical technology improve-ment to the ENCODE project, the association between epigenetics studies and the ENCODE project, and the major achievement of the ENCODE project. We also provided our prospective on the role of the ENCODE project in promoting the development of basic and clinical medicine.
Hollywood Science: Good for Hollywood, Bad for Science?
NASA Astrophysics Data System (ADS)
Perkowitz, Sidney
2009-03-01
Like it or not, most science depicted in feature films is in the form of science fiction. This isn't likely to change any time soon, if only because science fiction films are huge moneymakers for Hollywood. But beyond that, these films are a powerful cultural force. They reach millions as they depict scientific ideas from DNA and cloning to space science, whether correctly or incorrectly; reflect contemporary issues of science and society like climate change, nuclear power and biowarfare; inspire young people to become scientists; and provide defining images -- or stereotypes -- of scientists for the majority of people who've never met a real one. Certainly, most scientists feel that screen depictions of science and scientists are badly distorted. Many are, but not always. In this talk, based on my book Hollywood Science [1], I'll show examples of good and bad screen treatments of science, scientists, and their impact on society. I'll also discuss efforts to improve how science is treated in film and ways to use even bad movie science to convey real science. [4pt] [1] Sidney Perkowitz, Hollywood Science: Movies, Science, and the End of the World (Columbia University Press, New York, 2007). ISBN: 978-0231142809
Biolistic Transformation of Wheat.
Tassy, Caroline; Barret, Pierre
2017-01-01
The wheat genome encodes some 100,000 genes. To understand how the expression of these genes is regulated it will be necessary to carry out many genetic transformation experiments. Robust protocols that allow scientists to transform a wide range of wheat genotypes are therefore required. In this chapter, we describe a protocol for biolistic transformation of wheat that uses immature embryos and small quantities of DNA cassettes. An original method for DNA cassette purification is also described. This protocol can be used to transform a wide range of wheat genotypes and other related species.
Increasing global participation in genetics research through DNA barcoding.
Adamowicz, Sarah J; Steinke, Dirk
2015-12-01
DNA barcoding--the sequencing of short, standardized DNA regions for specimen identification and species discovery--has promised to facilitate rapid access to biodiversity knowledge by diverse users. Here, we advance our opinion that increased global participation in genetics research is beneficial, both to scientists and for science, and explore the premise that DNA barcoding can help to democratize participation in genetics research. We examine publication patterns (2003-2014) in the DNA barcoding literature and compare trends with those in the broader, related domain of genomics. While genomics is the older and much larger field, the number of nations contributing to the published literature is similar between disciplines. Meanwhile, DNA barcoding exhibits a higher pace of growth in the number of publications as well as greater evenness among nations in their proportional contribution to total authorships. This exploration revealed DNA barcoding to be a highly international discipline, with growing participation by researchers in especially biodiverse nations. We briefly consider several of the challenges that may hinder further participation in genetics research, including access to training and molecular facilities as well as policy relating to the movement of genetic resources.
DNA vaccines against viral diseases of farmed fish.
Evensen, Øystein; Leong, Jo-Ann C
2013-12-01
Immunization by an antigen-encoding DNA was approved for commercial sale in Canada against a Novirhabdovirus infection in fish. DNA vaccines have been particularly successful against the Novirhabdoviruses while there are reports on the efficacy against viral pathogens like infectious pancreatic necrosis virus, infectious salmon anemia virus, and lymphocystis disease virus and these are inferior to what has been attained for the novirhabdoviruses. Most recently, DNA vaccination of Penaeus monodon against white spot syndrome virus was reported. Research efforts are now focused on the development of more effective vectors for DNA vaccines, improvement of vaccine efficacy against various viral diseases of fish for which there is currently no vaccines available and provision of co-expression of viral antigen and immunomodulatory compounds. Scientists are also in the process of developing new delivery methods. While a DNA vaccine has been approved for commercial use in farmed salmon in Canada, it is foreseen that it is still a long way to go before a DNA vaccine is approved for use in farmed fish in Europe. Copyright © 2013 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Thomas, Lewis
1978-01-01
The author explains that misunderstanding the role of science and scientists is mainly due to a communication gap precipitated by the enormity of the field of science. Among the many examples given are cloning and DNA from biomedical research. Argues strongly against establishing an agency to control the field of scientific research. (GA)
PhyloChip Tackles Coral Disease
DeSantis, Todd
2017-12-13
Scientists at Berkeley Lab and the University of California, Merced are using an innovative DNA array developed at Berkeley Lab to catalog the microbes that live among coral in the tropical waters off the coast of Puerto Rico. More info: http://newscenter.lbl.gov/feature-stories/2009/02/02/coral-reefs/
New Technique Identifies First Events in Translocations | Center for Cancer Research
A novel technique that enables scientists to measure and document tumor-inducing changes in genomic DNA is providing new insight into the earliest events involved in the formation of leukemias, lymphomas and sarcomas, and could potentially lead to the discovery of ways to stop those events.
Chromatin immunoprecipitation of mouse embryos.
Voss, Anne K; Dixon, Mathew P; McLennan, Tamara; Kueh, Andrew J; Thomas, Tim
2012-01-01
During prenatal development, a large number of different cell types are formed, the vast majority of which contain identical genetic material. The basis of the great variety in cell phenotype and function is the differential expression of the approximately 25,000 genes in the mammalian genome. Transcriptional activity is regulated at many levels by proteins, including members of the basal transcriptional apparatus, DNA-binding transcription factors, and chromatin-binding proteins. Importantly, chromatin structure dictates the availability of a specific genomic locus for transcriptional activation as well as the efficiency, with which transcription can occur. Chromatin immunoprecipitation (ChIP) is a method to assess if chromatin modifications or proteins are present at a specific locus. ChIP involves the cross linking of DNA and associated proteins and immunoprecipitation using specific antibodies to DNA-associated proteins followed by examination of the co-precipitated DNA sequences or proteins. In the last few years, ChIP has become an essential technique for scientists studying transcriptional regulation and chromatin structure. Using ChIP on mouse embryos, we can document the presence or absence of specific proteins and chromatin modifications at genomic loci in vivo during mammalian development. Here, we describe a ChIP technique adapted for mouse embryos.
Privacy-preserving microbiome analysis using secure computation.
Wagner, Justin; Paulson, Joseph N; Wang, Xiao; Bhattacharjee, Bobby; Corrada Bravo, Héctor
2016-06-15
Developing targeted therapeutics and identifying biomarkers relies on large amounts of research participant data. Beyond human DNA, scientists now investigate the DNA of micro-organisms inhabiting the human body. Recent work shows that an individual's collection of microbial DNA consistently identifies that person and could be used to link a real-world identity to a sensitive attribute in a research dataset. Unfortunately, the current suite of DNA-specific privacy-preserving analysis tools does not meet the requirements for microbiome sequencing studies. To address privacy concerns around microbiome sequencing, we implement metagenomic analyses using secure computation. Our implementation allows comparative analysis over combined data without revealing the feature counts for any individual sample. We focus on three analyses and perform an evaluation on datasets currently used by the microbiome research community. We use our implementation to simulate sharing data between four policy-domains. Additionally, we describe an application of our implementation for patients to combine data that allows drug developers to query against and compensate patients for the analysis. The software is freely available for download at: http://cbcb.umd.edu/∼hcorrada/projects/secureseq.html Supplementary data are available at Bioinformatics online. hcorrada@umiacs.umd.edu. © The Author 2016. Published by Oxford University Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, E.
1996-09-27
The genome program has issued guidelines to ensure that sequencing is done on DNA from diverse sources who have given informed consent and are anonymous. Most current sources don`t meet those criteria. It may be the first question every nonexpert asks on learning about the Human Genome Project: Whose genome are we studying, anyway? It sounds naive, says one government scientist-so naive, in fact, that {open_quotes}we chuckle as we explain that we aren`t sequencing anyone`s genome in particular; we`re sequencing a representative genome{close_quotes} made up of a mosaic of DNA from a variety of anonymous sources. And Bruce Birren, amore » clone-maker now at the Massachusetts Institute of Technology`s (MIT`s) Whitehead Center for Genome Research says: {open_quotes}We spent many years pooh-poohing the question{close_quotes} of whose genome would be stored in the database. But now that labs have begun working on large stretches of human DNA-aiming to identify all 3 billion base pairs in the genetic code-the question no longer seems to laughable. To the distress of program managers in Bethesda, Maryland, the initial sources of DNA are not as diverse or as anonymous as they had assumed.« less
An Advanced Approach to Simultaneous Monitoring of Multiple Bacteria in Space
NASA Technical Reports Server (NTRS)
Eggers, M.
1998-01-01
The utility of a novel microarray-based microbial analyzer was demonstrated by the rapid detection, imaging, and identification of a mixture of microorganisms found in a waste water sample from the Lunar-Mars Life Support Test Project through the synergistic combination of: (1) judicious RNA probe selection via algorithms developed by University of Houston scientists; (2) tuned surface chemistries developed by Baylor College of Medicine scientists to facilitate hybridization of rRNA targets to DNA probes under very low salt conditions, thereby minimizing secondary structure; and (3) integration of the microarray printing and detection/imaging instrumentation by Genometrix to complete the quantitative analysis of microorganism mixtures.
Klymus, Katy E; Marshall, Nathaniel T; Stepien, Carol A
2017-01-01
Describing and monitoring biodiversity comprise integral parts of ecosystem management. Recent research coupling metabarcoding and environmental DNA (eDNA) demonstrate that these methods can serve as important tools for surveying biodiversity, while significantly decreasing the time, expense and resources spent on traditional survey methods. The literature emphasizes the importance of genetic marker development, as the markers dictate the applicability, sensitivity and resolution ability of an eDNA assay. The present study developed two metabarcoding eDNA assays using the mtDNA 16S RNA gene with Illumina MiSeq platform to detect invertebrate fauna in the Laurentian Great Lakes and surrounding waterways, with a focus for use on invasive bivalve and gastropod species monitoring. We employed careful primer design and in vitro testing with mock communities to assess ability of the markers to amplify and sequence targeted species DNA, while retaining rank abundance information. In our mock communities, read abundances reflected the initial input abundance, with regressions having significant slopes (p<0.05) and high coefficients of determination (R2) for all comparisons. Tests on field environmental samples revealed similar ability of our markers to measure relative abundance. Due to the limited reference sequence data available for these invertebrate species, care must be taken when analyzing results and identifying sequence reads to species level. These markers extend eDNA metabarcoding research for molluscs and appear relevant to other invertebrate taxa, such as rotifers and bryozoans. Furthermore, the sphaeriid mussel assay is group-specific, exclusively amplifying bivalves in the Sphaeridae family and providing species-level identification. Our assays provide useful tools for managers and conservation scientists, facilitating early detection of invasive species as well as improving resolution of mollusc diversity.
Klymus, Katy E.; Marshall, Nathaniel T.
2017-01-01
Describing and monitoring biodiversity comprise integral parts of ecosystem management. Recent research coupling metabarcoding and environmental DNA (eDNA) demonstrate that these methods can serve as important tools for surveying biodiversity, while significantly decreasing the time, expense and resources spent on traditional survey methods. The literature emphasizes the importance of genetic marker development, as the markers dictate the applicability, sensitivity and resolution ability of an eDNA assay. The present study developed two metabarcoding eDNA assays using the mtDNA 16S RNA gene with Illumina MiSeq platform to detect invertebrate fauna in the Laurentian Great Lakes and surrounding waterways, with a focus for use on invasive bivalve and gastropod species monitoring. We employed careful primer design and in vitro testing with mock communities to assess ability of the markers to amplify and sequence targeted species DNA, while retaining rank abundance information. In our mock communities, read abundances reflected the initial input abundance, with regressions having significant slopes (p<0.05) and high coefficients of determination (R2) for all comparisons. Tests on field environmental samples revealed similar ability of our markers to measure relative abundance. Due to the limited reference sequence data available for these invertebrate species, care must be taken when analyzing results and identifying sequence reads to species level. These markers extend eDNA metabarcoding research for molluscs and appear relevant to other invertebrate taxa, such as rotifers and bryozoans. Furthermore, the sphaeriid mussel assay is group-specific, exclusively amplifying bivalves in the Sphaeridae family and providing species-level identification. Our assays provide useful tools for managers and conservation scientists, facilitating early detection of invasive species as well as improving resolution of mollusc diversity. PMID:28542313
Visual Representations of DNA Replication: Middle Grades Students' Perceptions and Interpretations
NASA Astrophysics Data System (ADS)
Patrick, Michelle D.; Carter, Glenda; Wiebe, Eric N.
2005-09-01
Visual representations play a critical role in the communication of science concepts for scientists and students alike. However, recent research suggests that novice students experience difficulty extracting relevant information from representations. This study examined students' interpretations of visual representations of DNA replication. Each of the four steps of DNA replication included in the instructional presentation was represented as a text slide, a simple 2D graphic, and a rich 3D graphic. Participants were middle grade girls ( n = 21) attending a summer math and science program. Students' eye movements were measured as they viewed the representations. Participants were interviewed following instruction to assess their perceived salient features. Eye tracking fixation counts indicated that the same features (look zones) in the corresponding 2D and 3D graphics had different salience. The interviews revealed that students used different characteristics such as color, shape, and complexity to make sense of the graphics. The results of this study have implications for the design of instructional representations. Since many students have difficulty distinguishing between relevant and irrelevant information, cueing and directing student attention through the instructional representation could allow cognitive resources to be directed to the most relevant material.
Land plants and DNA barcodes: short-term and long-term goals.
Chase, Mark W; Salamin, Nicolas; Wilkinson, Mike; Dunwell, James M; Kesanakurthi, Rao Prasad; Haider, Nadia; Haidar, Nadia; Savolainen, Vincent
2005-10-29
Land plants have had the reputation of being problematic for DNA barcoding for two general reasons: (i) the standard DNA regions used in algae, animals and fungi have exceedingly low levels of variability and (ii) the typically used land plant plastid phylogenetic markers (e.g. rbcL, trnL-F, etc.) appear to have too little variation. However, no one has assessed how well current phylogenetic resources might work in the context of identification (versus phylogeny reconstruction). In this paper, we make such an assessment, particularly with two of the markers commonly sequenced in land plant phylogenetic studies, plastid rbcL and internal transcribed spacers of the large subunits of nuclear ribosomal DNA (ITS), and find that both of these DNA regions perform well even though the data currently available in GenBank/EBI were not produced to be used as barcodes and BLAST searches are not an ideal tool for this purpose. These results bode well for the use of even more variable regions of plastid DNA (such as, for example, psbA-trnH) as barcodes, once they have been widely sequenced. In the short term, efforts to bring land plant barcoding up to the standards being used now in other organisms should make swift progress. There are two categories of DNA barcode users, scientists in fields other than taxonomy and taxonomists. For the former, the use of mitochondrial and plastid DNA, the two most easily assessed genomes, is at least in the short term a useful tool that permits them to get on with their studies, which depend on knowing roughly which species or species groups they are dealing with, but these same DNA regions have important drawbacks for use in taxonomic studies (i.e. studies designed to elucidate species limits). For these purposes, DNA markers from uniparentally (usually maternally) inherited genomes can only provide half of the story required to improve taxonomic standards being used in DNA barcoding. In the long term, we will need to develop more sophisticated barcoding tools, which would be multiple, low-copy nuclear markers with sufficient genetic variability and PCR-reliability; these would permit the detection of hybrids and permit researchers to identify the 'genetic gaps' that are useful in assessing species limits.
Land plants and DNA barcodes: short-term and long-term goals
Chase, Mark W; Salamin, Nicolas; Wilkinson, Mike; Dunwell, James M; Kesanakurthi, Rao Prasad; Haidar, Nadia; Savolainen, Vincent
2005-01-01
Land plants have had the reputation of being problematic for DNA barcoding for two general reasons: (i) the standard DNA regions used in algae, animals and fungi have exceedingly low levels of variability and (ii) the typically used land plant plastid phylogenetic markers (e.g. rbcL, trnL-F, etc.) appear to have too little variation. However, no one has assessed how well current phylogenetic resources might work in the context of identification (versus phylogeny reconstruction). In this paper, we make such an assessment, particularly with two of the markers commonly sequenced in land plant phylogenetic studies, plastid rbcL and internal transcribed spacers of the large subunits of nuclear ribosomal DNA (ITS), and find that both of these DNA regions perform well even though the data currently available in GenBank/EBI were not produced to be used as barcodes and BLAST searches are not an ideal tool for this purpose. These results bode well for the use of even more variable regions of plastid DNA (such as, for example, psbA-trnH) as barcodes, once they have been widely sequenced. In the short term, efforts to bring land plant barcoding up to the standards being used now in other organisms should make swift progress. There are two categories of DNA barcode users, scientists in fields other than taxonomy and taxonomists. For the former, the use of mitochondrial and plastid DNA, the two most easily assessed genomes, is at least in the short term a useful tool that permits them to get on with their studies, which depend on knowing roughly which species or species groups they are dealing with, but these same DNA regions have important drawbacks for use in taxonomic studies (i.e. studies designed to elucidate species limits). For these purposes, DNA markers from uniparentally (usually maternally) inherited genomes can only provide half of the story required to improve taxonomic standards being used in DNA barcoding. In the long term, we will need to develop more sophisticated barcoding tools, which would be multiple, low-copy nuclear markers with sufficient genetic variability and PCR-reliability; these would permit the detection of hybrids and permit researchers to identify the ‘genetic gaps’ that are useful in assessing species limits. PMID:16214746
ERIC Educational Resources Information Center
Monastersky, Richard
2006-01-01
Neanderthals, those long-lost cousins of modern humans, will not remain lost for long, at least from the prying eyes of geneticists. Two teams of scientists announced that for the first time they had analyzed DNA from the nuclei of cells preserved in 37,000-year-old Neanderthal fossils. That, they say, lays the groundwork for determining the…
ERIC Educational Resources Information Center
Clendening, Beverly
2004-01-01
Two molecular genetic projects were undertaken in Drosophila Molecular Genetics in partnership with teachers from High Schools. The students gained experience with DNA extraction through the project and 75% of produce data was usable for research, but the time put in to obtain success was excessive.
Biochemistry and Molecular Biology Techniques for Person Characterization
ERIC Educational Resources Information Center
Herrero, Salvador; Ivorra, Jose Luis; Garcia-Sogo, Magdalena; Martinez-Cortina, Carmen
2008-01-01
Using the traditional serological tests and the most novel techniques for DNA fingerprinting, forensic scientists scan different traits that vary from person to person and use the data to include or exclude suspects based on matching with the evidence obtained in a criminal case. Although the forensic application of these methods is well known,…
A call for more science in forensic science.
Bell, Suzanne; Sah, Sunita; Albright, Thomas D; Gates, S James; Denton, M Bonner; Casadevall, Arturo
2018-05-01
Forensic science is critical to the administration of justice. The discipline of forensic science is remarkably complex and includes methodologies ranging from DNA analysis to chemical composition to pattern recognition. Many forensic practices developed under the auspices of law enforcement and were vetted primarily by the legal system rather than being subjected to scientific scrutiny and empirical testing. Beginning in the 1990s, exonerations based on DNA-related methods revealed problems with some forensic disciplines, leading to calls for major reforms. This process generated a National Academy of Science report in 2009 that was highly critical of many forensic practices and eventually led to the establishment of the National Commission for Forensic Science (NCFS) in 2013. The NCFS was a deliberative body that catalyzed communication between nonforensic scientists, forensic scientists, and other stakeholders in the legal community. In 2017, despite continuing problems with forensic science, the Department of Justice terminated the NCFS. Just when forensic science needs the most support, it is getting the least. We urge the larger scientific community to come to the aid of our forensic colleagues by advocating for urgently needed research, testing, and financial support.
Mms1 is an assistant for regulating G-quadruplex DNA structures.
Schwindt, Eike; Paeschke, Katrin
2018-06-01
The preservation of genome stability is fundamental for every cell. Genomic integrity is constantly challenged. Among those challenges are also non-canonical nucleic acid structures. In recent years, scientists became aware of the impact of G-quadruplex (G4) structures on genome stability. It has been shown that folded G4-DNA structures cause changes in the cell, such as transcriptional up/down-regulation, replication stalling, or enhanced genome instability. Multiple helicases have been identified to regulate G4 structures and by this preserve genome stability. Interestingly, although these helicases are mostly ubiquitous expressed, they show specificity for G4 regulation in certain cellular processes (e.g., DNA replication). To this date, it is not clear how this process and target specificity of helicases are achieved. Recently, Mms1, an ubiquitin ligase complex protein, was identified as a novel G4-DNA-binding protein that supports genome stability by aiding Pif1 helicase binding to these regions. In this perspective review, we discuss the question if G4-DNA interacting proteins are fundamental for helicase function and specificity at G4-DNA structures.
A perspective on DNA microarray technology in food and nutritional science.
Kato, Hisanori; Saito, Kenji; Kimura, Takeshi
2005-09-01
The functions of nutrients and other foods have been revealed at the level of gene regulation. The advent of DNA microarray technology has enabled us to analyze the body's response to these factors in a much more holistic manner than before. This review is intended to overview the present status of this DNA microarray technology, hoping to provide food and nutrition scientists, especially those who are planning to introduce this technology, with hints and suggestions. The number of papers examining transcriptomics analysis in food and nutrition science has expanded over the last few years. The effects of some dietary conditions and administration of specific nutrients or food factors are studied in various animal models and cultured cells. The target food components range from macronutrients and micronutrients to other functional food factors. Such studies have already yielded fruitful results, which include discovery of novel functions of a food, uncovering hitherto unknown mechanisms of action, and analyses of food safety. The potency of DNA microarray technology in food and nutrition science is broadly recognized. This technique will surely continue to provide researchers and the public with valuable information on the beneficial and adverse effects of food factors. It should also be acknowledged, however, that there remain problems such as standardization of the data and sharing of the results among researchers in this field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapidus, Alla L.
From the date its role in heredity was discovered, DNA has been generating interest among scientists from different fields of knowledge: physicists have studied the three dimensional structure of the DNA molecule, biologists tried to decode the secrets of life hidden within these long molecules, and technologists invent and improve methods of DNA analysis. The analysis of the nucleotide sequence of DNA occupies a special place among the methods developed. Thanks to the variety of sequencing technologies available, the process of decoding the sequence of genomic DNA (or whole genome sequencing) has become robust and inexpensive. Meanwhile the assembly ofmore » whole genome sequences remains a challenging task. In addition to the need to assemble millions of DNA fragments of different length (from 35 bp (Solexa) to 800 bp (Sanger)), great interest in analysis of microbial communities (metagenomes) of different complexities raises new problems and pushes some new requirements for sequence assembly tools to the forefront. The genome assembly process can be divided into two steps: draft assembly and assembly improvement (finishing). Despite the fact that automatically performed assembly (or draft assembly) is capable of covering up to 98% of the genome, in most cases, it still contains incorrectly assembled reads. The error rate of the consensus sequence produced at this stage is about 1/2000 bp. A finished genome represents the genome assembly of much higher accuracy (with no gaps or incorrectly assembled areas) and quality ({approx}1 error/10,000 bp), validated through a number of computer and laboratory experiments.« less
Vander Lugt correlation of DNA sequence data
NASA Astrophysics Data System (ADS)
Christens-Barry, William A.; Hawk, James F.; Martin, James C.
1990-12-01
DNA, the molecule containing the genetic code of an organism, is a linear chain of subunits. It is the sequence of subunits, of which there are four kinds, that constitutes the unique blueprint of an individual. This sequence is the focus of a large number of analyses performed by an army of geneticists, biologists, and computer scientists. Most of these analyses entail searches for specific subsequences within the larger set of sequence data. Thus, most analyses are essentially pattern recognition or correlation tasks. Yet, there are special features to such analysis that influence the strategy and methods of an optical pattern recognition approach. While the serial processing employed in digital electronic computers remains the main engine of sequence analyses, there is no fundamental reason that more efficient parallel methods cannot be used. We describe an approach using optical pattern recognition (OPR) techniques based on matched spatial filtering. This allows parallel comparison of large blocks of sequence data. In this study we have simulated a Vander Lugt1 architecture implementing our approach. Searches for specific target sequence strings within a block of DNA sequence from the Co/El plasmid2 are performed.
'The story of Abraham, Isaac and Jacob" or "am I my brother's keeper?".
Oz, Carla; Zamir, Ashira; Gafny, Ron; Motro, Uzi
2003-01-01
Presented is a case report of a violent sexual assault where the DNA profile obtained from an item of evidence was compared to a suspect's profile. The profiles did not match, but the sharing of such a large number of alleles raised the suspicion that perhaps the real perpetrator was a blood relative of the suspect. The investigators requested a sample from the suspect's brother, and a match was defined. In an era of technological breakthroughs in the field of forensic DNA analysis, the importance of the scientist's attention to the evidence presented in each case is stressed.
NASA Technical Reports Server (NTRS)
2005-01-01
This artist's concept illustrates a solar system that is a much younger version of our own. Dusty disks, like the one shown here circling the star, are thought to be the breeding grounds of planets, including rocky ones like Earth. Astronomers using NASA's Spitzer Space Telescope spotted some of the raw ingredients for DNA and protein in one such disk belonging to a star called IRS 46. The ingredients, gaseous precursors to DNA and protein called acetylene and hydrogen cyanide, were detected in the star's inner disk, the region where scientists believe Earth-like planets would be most likely to form.Leake, Devin
2015-01-01
As scientists make strides toward the goal of developing a form of biological engineering that's as predictive and reliable as chemical engineering is for chemistry, one technology component has become absolutely critical: gene synthesis. Gene synthesis is the process of building stretches of deoxyribonucleic acid (DNA) to order--some stretches based on DNA that exists already in nature, some based on novel designs intended to accomplish new functions. This process is the foundation of synthetic biology, which is rapidly becoming the engineering counterpart to biology.
Manabe, Sho; Morimoto, Chie; Hamano, Yuya; Fujimoto, Shuntaro
2017-01-01
In criminal investigations, forensic scientists need to evaluate DNA mixtures. The estimation of the number of contributors and evaluation of the contribution of a person of interest (POI) from these samples are challenging. In this study, we developed a new open-source software “Kongoh” for interpreting DNA mixture based on a quantitative continuous model. The model uses quantitative information of peak heights in the DNA profile and considers the effect of artifacts and allelic drop-out. By using this software, the likelihoods of 1–4 persons’ contributions are calculated, and the most optimal number of contributors is automatically determined; this differs from other open-source software. Therefore, we can eliminate the need to manually determine the number of contributors before the analysis. Kongoh also considers allele- or locus-specific effects of biological parameters based on the experimental data. We then validated Kongoh by calculating the likelihood ratio (LR) of a POI’s contribution in true contributors and non-contributors by using 2–4 person mixtures analyzed through a 15 short tandem repeat typing system. Most LR values obtained from Kongoh during true-contributor testing strongly supported the POI’s contribution even for small amounts or degraded DNA samples. Kongoh correctly rejected a false hypothesis in the non-contributor testing, generated reproducible LR values, and demonstrated higher accuracy of the estimated number of contributors than another software based on the quantitative continuous model. Therefore, Kongoh is useful in accurately interpreting DNA evidence like mixtures and small amounts or degraded DNA samples. PMID:29149210
Manabe, Sho; Morimoto, Chie; Hamano, Yuya; Fujimoto, Shuntaro; Tamaki, Keiji
2017-01-01
In criminal investigations, forensic scientists need to evaluate DNA mixtures. The estimation of the number of contributors and evaluation of the contribution of a person of interest (POI) from these samples are challenging. In this study, we developed a new open-source software "Kongoh" for interpreting DNA mixture based on a quantitative continuous model. The model uses quantitative information of peak heights in the DNA profile and considers the effect of artifacts and allelic drop-out. By using this software, the likelihoods of 1-4 persons' contributions are calculated, and the most optimal number of contributors is automatically determined; this differs from other open-source software. Therefore, we can eliminate the need to manually determine the number of contributors before the analysis. Kongoh also considers allele- or locus-specific effects of biological parameters based on the experimental data. We then validated Kongoh by calculating the likelihood ratio (LR) of a POI's contribution in true contributors and non-contributors by using 2-4 person mixtures analyzed through a 15 short tandem repeat typing system. Most LR values obtained from Kongoh during true-contributor testing strongly supported the POI's contribution even for small amounts or degraded DNA samples. Kongoh correctly rejected a false hypothesis in the non-contributor testing, generated reproducible LR values, and demonstrated higher accuracy of the estimated number of contributors than another software based on the quantitative continuous model. Therefore, Kongoh is useful in accurately interpreting DNA evidence like mixtures and small amounts or degraded DNA samples.
A long-term evaluation of biopsy darts and DNA to estimate cougar density
Beausoleil, Richard A.; Clark, Joseph D.; Maletzke, Benjamin T.
2016-01-01
Accurately estimating cougar (Puma concolor) density is usually based on long-term research consisting of intensive capture and Global Positioning System collaring efforts and may cost hundreds of thousands of dollars annually. Because wildlife agency budgets rarely accommodate this approach, most infer cougar density from published literature, rely on short-term studies, or use hunter harvest data as a surrogate in their jurisdictions; all of which may limit accuracy and increase risk of management actions. In an effort to develop a more cost-effective long-term strategy, we evaluated a research approach using citizen scientists with trained hounds to tree cougars and collect tissue samples with biopsy darts. We then used the DNA to individually identify cougars and employed spatially explicit capture–recapture models to estimate cougar densities. Overall, 240 tissue samples were collected in northeastern Washington, USA, producing 166 genotypes (including recaptures and excluding dependent kittens) of 133 different cougars (8-25/yr) from 2003 to 2011. Mark–recapture analyses revealed a mean density of 2.2 cougars/100 km2 (95% CI=1.1-4.3) and stable to decreasing population trends (β=-0.048, 95% CI=-0.106–0.011) over the 9 years of study, with an average annual harvest rate of 14% (range=7-21%). The average annual cost per year for field sampling and genotyping was US$11,265 ($422.24/sample or $610.73/successfully genotyped sample). Our results demonstrated that long-term biopsy sampling using citizen scientists can increase capture success and provide reliable cougar-density information at a reasonable cost.
Selli, Cigdem; Yıldırım, Gokce; Kaymak, Aysegul; Karacicek, Bilge; Ogut, Deniz; Gungor, Turkan; Erem, Erdem; Ege, Mehmet; Bümen, Nilay; Tosun, Metiner
2014-01-01
This study includes the results of a 2-day education project titled "Molecular Biology Laboratory Summer School, MoBiLYO." The project was held at a University Research Center by scientists from Department of Pharmacology and graduate students. The project was composed of introductory lectures, model construction, DNA isolation, polymerase chain reaction (PCR), and gel electrophoresis. The participants were 13-year-old eighth-graders attending primary schools affiliated with Ministry of National Education in urban and rural areas of Izmir, Turkey. The purpose of this study was to introduce basic molecular biology concepts through individually performed experiments such as PCR and gel electrophoresis integrated with creative drama. The students were assessed at the beginning and the end of each project day via mini-tests, experimental and presentation skills evaluation forms. Data showed that students' knowledge about DNA structure and basic molecular biology techniques significantly increased. On the basis of experimental and presentational skills, there was no significant difference between kids from urban and rural schools or between public and boarding public schools, whereas the average score of girls was significantly higher than that of boys. In conclusion, individually performed experiments integrated with creative drama significantly increased students' perception of complex experimental procedures on basic molecular biology concepts. Data suggests that integration of these concepts into the science and technology curriculum of Turkish primary education may support the recruitment of future scientists who can handle rapidly developing genomic techniques that will affect our everyday life. © 2014 by The International Union of Biochemistry and Molecular Biology.
Hou, Sen; Sun, Lili; Wieczorek, Stefan A; Kalwarczyk, Tomasz; Kaminski, Tomasz S; Holyst, Robert
2014-01-15
Fluorescent double-stranded DNA (dsDNA) molecules labeled at both ends are commonly produced by annealing of complementary single-stranded DNA (ssDNA) molecules, labeled with fluorescent dyes at the same (3' or 5') end. Because the labeling efficiency of ssDNA is smaller than 100%, the resulting dsDNA have two, one or are without a dye. Existing methods are insufficient to measure the percentage of the doubly-labeled dsDNA component in the fluorescent DNA sample and it is even difficult to distinguish the doubly-labeled DNA component from the singly-labeled component. Accurate measurement of the percentage of such doubly labeled dsDNA component is a critical prerequisite for quantitative biochemical measurements, which has puzzled scientists for decades. We established a fluorescence correlation spectroscopy (FCS) system to measure the percentage of doubly labeled dsDNA (PDL) in the total fluorescent dsDNA pool. The method is based on comparative analysis of the given sample and a reference dsDNA sample prepared by adding certain amount of unlabeled ssDNA into the original ssDNA solution. From FCS autocorrelation functions, we obtain the number of fluorescent dsDNA molecules in the focal volume of the confocal microscope and PDL. We also calculate the labeling efficiency of ssDNA. The method requires minimal amount of material. The samples have the concentration of DNA in the nano-molar/L range and the volume of tens of microliters. We verify our method by using restriction enzyme Hind III to cleave the fluorescent dsDNA. The kinetics of the reaction depends strongly on PDL, a critical parameter for quantitative biochemical measurements. Copyright © 2013 Elsevier B.V. All rights reserved.
Summary and critique of the new NIH guidelines for recombinant DNA research.
Szybalski, W
1979-03-01
New NIH Guidelines for research involving recombinant DNA (R-DNA) molecules were issued on December 15, 1978. These are composed of four main parts, the first defining R-DNA and specifying prohibitions and exemptions, the second describing physical and biological containment, the third assigning the containment levels for many R-DNA experiments, and the fourth detailing the roles and responsibilities of the investigator, research institutions and NIH. Although the new Guidelines reduce restrictions, principally on those R-DNA experiments that use Escherichia coli K-12 host-vector systems, and exempt from the Guidelines several classes of experiments on prokaryotes that naturally exchange their DNA, most of their provisions are unjustified by the present assessment of the absence of any practical risks; many totally innocuous experiments are unnecessarily restricted and even virtually prohibited mainly because no host-vector systems were officially certified. The term Guidelines is a misnomer since they are mandatory regulations, even without any statutory basis. They impose large but unnecessary bureaucratic burdens on scientists, research institutions, research committees and NIH, and represent unwarranted censorship of basic research, which is antithetical to the creativity of human thought, thus posing serious dangers to the traditional freedom of inquiry.
HMGB1 as a drug target in staphylococcal pneumonia.
Fink, Mitchell P
2014-03-31
High mobility group box (HMGB)1 is a small DNA-binding protein. In the nucleus, HMGB1 plays a role in gene expression and DNA replication. When it is released or secreted into the extracellular milieu, HMGB1 functions as a pro-inflammatory cytokine-like mediator. Recently reported data support the view that treatment with a neutralizing anti-HMGB1 antibody ameliorated pulmonary damage in a murine model of pneumonia caused by a pathogenic strain of Staphylococcus aureus. These findings suggest that HMGB1 may be an important drug target as scientists, clinical investigators and pharmaceutical companies seek to develop better agents for the treatment of staphylococcal pneumonia. Unfortunately, however, encouraging results from murine models of human disease often fail to translate into positive findings in clinical trials. Thus, before moving from pre-clinical into clinical studies, it may be prudent to validate and extend the recent experimental findings by carrying out additional studies, using a large animal model of pneumonia.
Lei, Man-Kit; Beach, Steven R H; Simons, Ronald L; Philibert, Robert A
2015-12-01
Social scientists have long recognized the important role that neighborhood crime can play in stress-related disease, but very little is known about potential biosocial mechanisms that may link the experience of living in high-crime neighborhoods with depression. The current study introduces an integrated model that combines neighborhood, genetic, and epigenetic factors. Hypotheses were tested with a sample of 99 African American women from the Family and Community Health Study (FACHS). Allele variants of the serotonin transporter gene (5-HTT) interact with neighborhood crime to predict depressive symptoms in a manner consonant with the differential susceptibility perspective. Furthermore, this association is mediated by DNA methylation of the promoter region of the serotonin transporter gene. The findings provide support for an integrated model in which changes in DNA methylation, resulting from neighborhood crime, can result in an increase or decrease in gene activity which, in turn, influences depressive symptoms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lei, Man-Kit; Beach, Steven R. H.; Simons, Ronald L.; Philibert, Robert A.
2015-01-01
Introduction Social scientists have long recognized the important role that neighborhood crime can play in stress-related disease, but very little is known about potential biosocial mechanisms that may link the experience of living in high-crime neighborhoods with depression. Objective The current study introduces an integrated model that combines neighborhood, genetic, and epigenetic factors. Methods Hypotheses were tested with a sample of 99 African American women from the Family and Community Health Study (FACHS). Results Allele variants of the serotonin transporter gene (5-HTT) interact with neighborhood crime to predict depressive symptoms in a manner consonant with the differential susceptibility perspective. Furthermore, this association is mediated by DNA methylation of the promoter region of the serotonin transporter gene. Conclusion The findings provide support for an integrated model in which changes in DNA methylation, resulting from neighborhood crime, can result in an increase or decrease in gene activity which, in turn, influences depressive symptoms. PMID:26513121
Sonoran Desert: Fragile Land of Extremes
Produced and Directed by Wessells, Stephen
2003-01-01
'Sonoran Desert: Fragile Land of Extremes' shows how biologists with the U.S. Geological Survey work with other scientists in an effort to better understand native plants and animals such as desert tortoises, saguaro cacti, and Gila monsters. Much of the program was shot in and around Saguaro National Park near Tucson, Arizona. Genetic detective work, using DNA, focuses on understanding the lives of tortoises. Studies of saguaros over many decades clarify how these amazing plants reproduce and thrive in the desert. Threats from fire, diseases in tortoises, and a growing human population motivate the scientists. Their work to identify how these organisms live and survive is a crucial step for the sound management of biological resources on public lands. This 28-minute program, USGS Open-File Report 03-305, was shot entirely in high definition video and produced by the USGS Western Ecological Research Center and Southwest Biological Science Center; produced and directed by Stephen Wessells, Western Region Office of Communications.
Feline Non-repetitive Mitochondrial DNA Control Region Database for Forensic Evidence
Grahn, R. A.; Kurushima, J. D.; Billings, N. C.; Grahn, J.C.; Halverson, J. L.; Hammer, E.; Ho, C.K.; Kun, T. J.; Levy, J.K.; Lipinski, M. J.; Mwenda, J.M.; Ozpinar, H.; Schuster, R.K; Shoorijeh, S.J.; Tarditi, C. R.; Waly, N.E.; Wictum, E. J.; Lyons, L. A.
2010-01-01
The domestic cat is the one of the most popular pets throughout the world. A by-product of owning, interacting with, or being in a household with a cat is the transfer of shed fur to clothing or personal objects. As trace evidence, transferred cat fur is a relatively untapped resource for forensic scientists. Both phenotypic and genotypic characteristics can be obtained from cat fur, but databases for neither aspect exist. Because cats incessantly groom, cat fur may have nucleated cells, not only in the hair bulb, but also as epithelial cells on the hair shaft deposited during the grooming process, thereby generally providing material for DNA profiling. To effectively exploit cat hair as a resource, representative databases must be established. This study evaluates 402 bp of the mtDNA control region (CR) from 1,394 cats, including cats from 25 distinct worldwide populations and 26 breeds. Eighty-three percent of the cats are represented by 12 major mitotypes. An additional 8.0% are clearly derived from the major mitotypes. Unique sequences were found in 7.5% of the cats. The overall genetic diversity for this data set was 0.8813 ± 0.0046 with a random match probability of 11.8%. This region of the cat mtDNA has discriminatory power suitable for forensic application worldwide. PMID:20457082
Pathogenicity in POLG syndromes: DNA polymerase gamma pathogenicity prediction server and database.
Nurminen, Anssi; Farnum, Gregory A; Kaguni, Laurie S
2017-06-01
DNA polymerase gamma (POLG) is the replicative polymerase responsible for maintaining mitochondrial DNA (mtDNA). Disorders related to its functionality are a major cause of mitochondrial disease. The clinical spectrum of POLG syndromes includes Alpers-Huttenlocher syndrome (AHS), childhood myocerebrohepatopathy spectrum (MCHS), myoclonic epilepsy myopathy sensory ataxia (MEMSA), the ataxia neuropathy spectrum (ANS) and progressive external ophthalmoplegia (PEO). We have collected all publicly available POLG-related patient data and analyzed it using our pathogenic clustering model to provide a new research and clinical tool in the form of an online server. The server evaluates the pathogenicity of both previously reported and novel mutations. There are currently 176 unique point mutations reported and found in mitochondrial patients in the gene encoding the catalytic subunit of POLG, POLG . The mutations are distributed nearly uniformly along the length of the primary amino acid sequence of the gene. Our analysis shows that most of the mutations are recessive, and that the reported dominant mutations cluster within the polymerase active site in the tertiary structure of the POLG enzyme. The POLG Pathogenicity Prediction Server (http://polg.bmb.msu.edu) is targeted at clinicians and scientists studying POLG disorders, and aims to provide the most current available information regarding the pathogenicity of POLG mutations.
GermOnline 4.0 is a genomics gateway for germline development, meiosis and the mitotic cell cycle.
Lardenois, Aurélie; Gattiker, Alexandre; Collin, Olivier; Chalmel, Frédéric; Primig, Michael
2010-01-01
GermOnline 4.0 is a cross-species database portal focusing on high-throughput expression data relevant for germline development, the meiotic cell cycle and mitosis in healthy versus malignant cells. It is thus a source of information for life scientists as well as clinicians who are interested in gene expression and regulatory networks. The GermOnline gateway provides unlimited access to information produced with high-density oligonucleotide microarrays (3'-UTR GeneChips), genome-wide protein-DNA binding assays and protein-protein interaction studies in the context of Ensembl genome annotation. Samples used to produce high-throughput expression data and to carry out genome-wide in vivo DNA binding assays are annotated via the MIAME-compliant Multiomics Information Management and Annotation System (MIMAS 3.0). Furthermore, the Saccharomyces Genomics Viewer (SGV) was developed and integrated into the gateway. SGV is a visualization tool that outputs genome annotation and DNA-strand specific expression data produced with high-density oligonucleotide tiling microarrays (Sc_tlg GeneChips) which cover the complete budding yeast genome on both DNA strands. It facilitates the interpretation of expression levels and transcript structures determined for various cell types cultured under different growth and differentiation conditions. Database URL: www.germonline.org/
GermOnline 4.0 is a genomics gateway for germline development, meiosis and the mitotic cell cycle
Lardenois, Aurélie; Gattiker, Alexandre; Collin, Olivier; Chalmel, Frédéric; Primig, Michael
2010-01-01
GermOnline 4.0 is a cross-species database portal focusing on high-throughput expression data relevant for germline development, the meiotic cell cycle and mitosis in healthy versus malignant cells. It is thus a source of information for life scientists as well as clinicians who are interested in gene expression and regulatory networks. The GermOnline gateway provides unlimited access to information produced with high-density oligonucleotide microarrays (3′-UTR GeneChips), genome-wide protein–DNA binding assays and protein–protein interaction studies in the context of Ensembl genome annotation. Samples used to produce high-throughput expression data and to carry out genome-wide in vivo DNA binding assays are annotated via the MIAME-compliant Multiomics Information Management and Annotation System (MIMAS 3.0). Furthermore, the Saccharomyces Genomics Viewer (SGV) was developed and integrated into the gateway. SGV is a visualization tool that outputs genome annotation and DNA-strand specific expression data produced with high-density oligonucleotide tiling microarrays (Sc_tlg GeneChips) which cover the complete budding yeast genome on both DNA strands. It facilitates the interpretation of expression levels and transcript structures determined for various cell types cultured under different growth and differentiation conditions. Database URL: www.germonline.org/ PMID:21149299
Tangible Models and Haptic Representations Aid Learning of Molecular Biology Concepts
ERIC Educational Resources Information Center
Johannes, Kristen; Powers, Jacklyn; Couper, Lisa; Silberglitt, Matt; Davenport, Jodi
2016-01-01
Can novel 3D models help students develop a deeper understanding of core concepts in molecular biology? We adapted 3D molecular models, developed by scientists, for use in high school science classrooms. The models accurately represent the structural and functional properties of complex DNA and Virus molecules, and provide visual and haptic…
ERIC Educational Resources Information Center
Wolyniak, Michael J.; Alvarez, Consuelo J.; Chandrasekaran, Vidya; Grana, Theresa M.; Holgado, Andrea; Jones, Christopher J.; Morris, Robert W.; Pereira, Anil L.; Stamm, Joyce; Washington, Talitha M.; Yang, Yixin
2010-01-01
Synthetic biology is the application of engineering and mathematical principles to develop novel biological devices and circuits. What separates synthetic biology from traditional molecular biology is the development of standardized interchangeable DNA "parts," just as advances in engineering in the nineteenth century brought about standardized…
Biotechnology, Genetic Engineering and Society. Monograph Series: III.
ERIC Educational Resources Information Center
Kieffer, George H.
New techniques have expanded the field of biotechnology and awarded scientists an unprecedented degree of control over the genetic constitutions of living things. The knowledge of DNA science is the basis for this burgeoning industry which may be a major force in human existence. Just as it is possible to move genetic material from one organism to…
DNA Damage and Repair in Schizophrenia and Autism: Implications for Cancer Comorbidity and Beyond
Markkanen, Enni; Meyer, Urs; Dianov, Grigory L.
2016-01-01
Schizophrenia and autism spectrum disorder (ASD) are multi-factorial and multi-symptomatic psychiatric disorders, each affecting 0.5%–1% of the population worldwide. Both are characterized by impairments in cognitive functions, emotions and behaviour, and they undermine basic human processes of perception and judgment. Despite decades of extensive research, the aetiologies of schizophrenia and ASD are still poorly understood and remain a significant challenge to clinicians and scientists alike. Adding to this unsatisfactory situation, patients with schizophrenia or ASD often develop a variety of peripheral and systemic disturbances, one prominent example of which is cancer, which shows a direct (but sometimes inverse) comorbidity in people affected with schizophrenia and ASD. Cancer is a disease characterized by uncontrolled proliferation of cells, the molecular origin of which derives from mutations of a cell’s DNA sequence. To counteract such mutations and repair damaged DNA, cells are equipped with intricate DNA repair pathways. Oxidative stress, oxidative DNA damage, and deficient repair of oxidative DNA lesions repair have been proposed to contribute to the development of schizophrenia and ASD. In this article, we summarize the current evidence of cancer comorbidity in these brain disorders and discuss the putative roles of oxidative stress, DNA damage and DNA repair in the aetiopathology of schizophrenia and ASD. PMID:27258260
Sutherland, Tara D; Huson, Mickey G; Rapson, Trevor D
2018-01-01
Sequence-definable polymers are seen as a prerequisite for design of future materials, with many polymer scientists regarding such polymers as the holy grail of polymer science. Recombinant proteins are sequence-defined polymers. Proteins are dictated by DNA templates and therefore the sequence of amino acids in a protein is defined, and molecular biology provides tools that allow redesign of the DNA as required. Despite this advantage, proteins are underrepresented in materials science. In this publication we investigate the advantages and limitations of using proteins as templates for rational design of new materials. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Understanding genetics in neuroimaging.
Vasquez, Marina Lipkin; Renault, Ilana Zalcberg
2015-02-01
Gene expression is a process of DNA sequence reading into protein synthesis. In cases of problems in DNA repair/apoptosis mechanisms, cells accumulate genomic abnormalities and pass them through generations of cells. The accumulation of mutations causes diseases and even tumors. In addition to cancer, many other neurologic conditions have been associated with genetic mutations. Some trials are testing patients with epigenetic treatments. Epigenetic therapy must be used with caution because epigenetic processes and changes happen constantly in normal cells, giving rise to drug off-target effects. Scientists are making progress in specifically targeting abnormal cells with minimal damage to normal ones. Copyright © 2015. Published by Elsevier Inc.
Chemical and Biological Sensing Using Hybridization Chain Reaction.
Augspurger, Erik E; Rana, Muhit; Yigit, Mehmet V
2018-05-25
Since the advent of its theoretical discovery more than 30 years ago, DNA nanotechnology has been used in a plethora of diverse applications in both the fundamental and applied sciences. The recent prominence of DNA-based technologies in the scientific community is largely due to the programmable features stored in its nucleobase composition and sequence, which allow it to assemble into highly advanced structures. DNA nanoassemblies are also highly controllable due to the precision of natural and artificial base-pairing, which can be manipulated by pH, temperature, metal ions, and solvent types. This programmability and molecular-level control have allowed scientists to create and utilize DNA nanostructures in one, two, and three dimensions (1D, 2D, and 3D). Initially, these 2D and 3D DNA lattices and shapes attracted a broad scientific audience because they are fundamentally captivating and structurally elegant; however, transforming these conceptual architectural blueprints into functional materials is essential for further advancements in the DNA nanotechnology field. Herein, the chemical and biological sensing applications of a 1D DNA self-assembly process known as hybridization chain reaction (HCR) are reviewed. HCR is a one-dimensional (1D) double stranded (ds) DNA assembly process initiated only in the presence of a specific short ssDNA (initiator) and two kinetically trapped DNA hairpin structures. HCR is considered an enzyme-free isothermal amplification process, which shows substantial promise and offers a wide range of applications for in situ chemical and biological sensing. Due to its modular nature, HCR can be programmed to activate only in the presence of highly specific biological and/or chemical stimuli. HCR can also be combined with different types of molecular reporters and detection approaches for various analytical readouts. While the long dsDNA HCR product may not be as structurally attractive as the 2D and 3D DNA networks, HCR is highly instrumental for applied biological, chemical, and environmental sciences, and has therefore been studied to foster a variety of objectives. In this review, we have focused on nucleic acid, protein, metabolite, and heavy metal ion detection using this 1D DNA nanotechnology via fluorescence, electrochemical, and nanoparticle-based methodologies.
Activation of the immune system by bacterial CpG-DNA
Häcker, Georg; Redecke, Vanessa; Häcker, Hans
2002-01-01
The past decade has seen a remarkable process of refocusing in immunology. Cells of the innate immune system, especially macrophages and dendritic cells, have been at the centre of this process. These cells had been regarded by some scientists as non-specific, sometimes perhaps even confined to the menial job of serving T cells by scavenging antigen and presenting it to the sophisticated adaptive immune system. Only over the last few years has it become unequivocally clear that cells of the innate immunity hold, by variation of context and mode of antigen presentation, the power of shaping an adaptive immune response. The innate immune response, in turn, is to a significant degree the result of stimulation by so-called pathogen-associated molecular patterns (PAMPs). One compound with high stimulatory potential for the innate immune system is bacterial DNA. Here we will review recent evidence that bacterial DNA should be ranked with other PAMPs such as lipopolysaccharide (LPS) and lipoteichoic acid. We will further review our present knowledge of DNA recognition and DNA-dependent signal transduction in cells of the immune system. PMID:11918685
Benschop, Corina C G; van de Merwe, Linda; de Jong, Jeroen; Vanvooren, Vanessa; Kempenaers, Morgane; Kees van der Beek, C P; Barni, Filippo; Reyes, Eusebio López; Moulin, Léa; Pene, Laurent; Haned, Hinda; Sijen, Titia
2017-07-01
Searching a national DNA database with complex and incomplete profiles usually yields very large numbers of possible matches that can present many candidate suspects to be further investigated by the forensic scientist and/or police. Current practice in most forensic laboratories consists of ordering these 'hits' based on the number of matching alleles with the searched profile. Thus, candidate profiles that share the same number of matching alleles are not differentiated and due to the lack of other ranking criteria for the candidate list it may be difficult to discern a true match from the false positives or notice that all candidates are in fact false positives. SmartRank was developed to put forward only relevant candidates and rank them accordingly. The SmartRank software computes a likelihood ratio (LR) for the searched profile and each profile in the DNA database and ranks database entries above a defined LR threshold according to the calculated LR. In this study, we examined for mixed DNA profiles of variable complexity whether the true donors are retrieved, what the number of false positives above an LR threshold is and the ranking position of the true donors. Using 343 mixed DNA profiles over 750 SmartRank searches were performed. In addition, the performance of SmartRank and CODIS were compared regarding DNA database searches and SmartRank was found complementary to CODIS. We also describe the applicable domain of SmartRank and provide guidelines. The SmartRank software is open-source and freely available. Using the best practice guidelines, SmartRank enables obtaining investigative leads in criminal cases lacking a suspect. Copyright © 2017 Elsevier B.V. All rights reserved.
Ray Wu as Fifth Business: Deconstructing collective memory in the history of DNA sequencing.
Onaga, Lisa A
2014-06-01
The concept of 'Fifth Business' is used to analyze a minority standpoint and bring serious attention to the role of scientists who play a galvanizing role in a science but for multiple reasons appear less prominently in more common recounts of any particular development. Biochemist Ray Wu (1928-2008) published a DNA sequencing experiment in March 1970 using DNA polymerase catalysis and specific nucleotide labeling, both of which are foundational to general sequencing methods today. The scant mention of Wu's work from textbooks, research articles, and other accounts of DNA sequencing calls into question how scientific collective memory forms. This alternative history seeks to understand why a key figure in nucleic acid sequence analysis has remained less visibly connected or peripheral to solidifying narratives about the history of DNA sequencing. The study resists predictable dismissals of Wu's work in order to seriously examine the formation of his nucleic acid sequence analysis research program and how he shared his knowledge of sequencing during a period of rapid advancement in the field. An analysis of Wu's work on sequencing the cohesive ends of lambda bacteriophage in the 1960s and 1970s exemplifies how a variety of individuals and groups attempted to develop protocol for sequencing the order of nucleotide base pairs comprising DNA. This historical examination of the sociality of scientific research suggests a way to understand how Wu and others contributed to the very collective memory of DNA sequencing that Wu eventually tried to repair. The study of Wu, who was a Chinese immigrant to the United States, provides a foundation for further critical scholarship on the heterogeneous histories of Asian American bioscientists, the sociality of their scientific works, and how the resulting knowledge produced is preserved, if not evenly, in a scientific field's collective memory. Copyright © 2014 Elsevier Ltd. All rights reserved.
Conservation archaeogenomics: ancient DNA and biodiversity in the Anthropocene.
Hofman, Courtney A; Rick, Torben C; Fleischer, Robert C; Maldonado, Jesús E
2015-09-01
There is growing consensus that we have entered the Anthropocene, a geologic epoch characterized by human domination of the ecosystems of the Earth. With the future uncertain, we are faced with understanding how global biodiversity will respond to anthropogenic perturbations. The archaeological record provides perspective on human-environment relations through time and across space. Ancient DNA (aDNA) analyses of plant and animal remains from archaeological sites are particularly useful for understanding past human-environment interactions, which can help guide conservation decisions during the environmental changes of the Anthropocene. Here, we define the emerging field of conservation archaeogenomics, which integrates archaeological and genomic data to generate baselines or benchmarks for scientists, managers, and policy-makers by evaluating climatic and human impacts on past, present, and future biodiversity. Copyright © 2015 Elsevier Ltd. All rights reserved.
DNA-binding specificity prediction with FoldX.
Nadra, Alejandro D; Serrano, Luis; Alibés, Andreu
2011-01-01
With the advent of Synthetic Biology, a field between basic science and applied engineering, new computational tools are needed to help scientists reach their goal, their design, optimizing resources. In this chapter, we present a simple and powerful method to either know the DNA specificity of a wild-type protein or design new specificities by using the protein design algorithm FoldX. The only basic requirement is having a good resolution structure of the complex. Protein-DNA interaction design may aid the development of new parts designed to be orthogonal, decoupled, and precise in its target. Further, it could help to fine-tune the systems in terms of specificity, discrimination, and binding constants. In the age of newly developed devices and invented systems, computer-aided engineering promises to be an invaluable tool. Copyright © 2011 Elsevier Inc. All rights reserved.
DNA-informed breeding of rosaceous crops: promises, progress and prospects
Peace, Cameron P
2017-01-01
Crops of the Rosaceae family provide valuable contributions to rural economies and human health and enjoyment. Sustained solutions to production challenges and market demands can be met with genetically improved new cultivars. Traditional rosaceous crop breeding is expensive and time-consuming and would benefit from improvements in efficiency and accuracy. Use of DNA information is becoming conventional in rosaceous crop breeding, contributing to many decisions and operations, but only after past decades of solved challenges and generation of sufficient resources. Successes in deployment of DNA-based knowledge and tools have arisen when the ‘chasm’ between genomics discoveries and practical application is bridged systematically. Key steps are establishing breeder desire for use of DNA information, adapting tools to local breeding utility, identifying efficient application schemes, accessing effective services in DNA-based diagnostics and gaining experience in integrating DNA information into breeding operations and decisions. DNA-informed germplasm characterization for revealing identity and relatedness has benefitted many programs and provides a compelling entry point to reaping benefits of genomics research. DNA-informed germplasm evaluation for predicting trait performance has enabled effective reallocation of breeding resources when applied in pioneering programs. DNA-based diagnostics is now expanding from specific loci to genome-wide considerations. Realizing the full potential of this expansion will require improved accuracy of predictions, multi-trait DNA profiling capabilities, streamlined breeding information management systems, strategies that overcome plant-based features that limit breeding progress and widespread training of current and future breeding personnel and allied scientists. PMID:28326185
Interfacing DNA nanodevices with biology: challenges, solutions and perspectives
NASA Astrophysics Data System (ADS)
Vinther, Mathias; Kjems, Jørgen
2016-08-01
The cellular machinery performs millions of complex reactions with extreme precision at nanoscale. From studying these reactions, scientists have become inspired to build artificial nanosized molecular devices with programmed functions. One of the fundamental tools in designing and creating these nanodevices is molecular self-assembly. In nature, deoxyribonucleic acid (DNA) is inarguably one of the most remarkable self-assembling molecules. Governed by the Watson-Crick base-pairing rules, DNA assembles with a structural reliability and predictability based on sequence composition unlike any other complex biological polymer. This consistency has enabled rational design of hundreds of two- and three-dimensional shapes with a molecular precision and homogeneity not preceded by any other known technology at the nanometer scale. During the last two decades, DNA nanotechnology has undergone a rapid evolution pioneered by the work of Nadrian Seeman (Kallenbach et al 1983 Nature 205 829-31). Especially the introduction of the versatile DNA Origami technique by Rothemund (2006 Nature 440 297-302) led to an efflorescence of new DNA-based self-assembled nanostructures (Andersen et al 2009 Nature 459 73-6, Douglas et al 2009 Nature 459 414-8, Dietz et al 2009 Science 325 725-30, Han et al 2011 Science 332 342-6, Iinuma et al 2014 Science 344 65-9), and variations of this technique have contributed to an increasing repertoire of DNA nanostructures (Wei et al 2012 Nature 485 623-6, Ke et al 2012 Science 338 1177-83, Benson et al 2015 Nature 523 441-4, Zhang et al 2015 Nat. Nanotechnol. 10 779-84, Scheible et al 2015 Small 11 5200-5). These advances have naturally triggered the question: What can these DNA nanostructures be used for? One of the leading proposals of use for DNA nanotechnology has been in biology and biomedicine acting as a molecular ‘nanorobot’ or smart drug interacting with the cellular machinery. In this review, we will explore and examine the perspective of DNA nanotechnology for such use. We summarize which requirements DNA nanostructures must fulfil to function in cellular environments and inside living organisms. In addition, we highlight recent advances in interfacing DNA nanostructures with biology.
The forensic value of X-linked markers in mixed-male DNA analysis.
He, HaiJun; Zha, Lagabaiyila; Cai, JinHong; Huang, Jian
2018-05-04
Autosomal genetic markers and Y chromosome markers have been widely applied in analysis of mixed stains at crime scenes by forensic scientists. However, true genotype combinations are often difficult to distinguish using autosomal markers when similar amounts of DNA are contributed by multiple donors. In addition, specific individuals cannot be determined by Y chromosomal markers because male relatives share the same Y chromosome. X-linked markers, possessing characteristics somewhere intermediate between autosomes and the Y chromosome, are less universally applied in criminal casework. In this paper, X markers are proposed to apply to male mixtures because their true genes can be more easily and accurately recognized than the decision of the genotypes of AS markers. In this study, an actual two-man mixed stain from a forensic case file and simulated male-mixed DNA were examined simultaneously with the X markers and autosomal markers. Finally, the actual mixture was separated successfully by the X markers, although it was unresolved by AS-STRs, and the separation ratio of the simulated mixture was much higher using Chr X tools than with AS methods. We believe X-linked markers provide significant advantages in individual discrimination of male mixtures that should be further applied to forensic work.
DNA methylation data analysis and its application to cancer research
Ma, Xiaotu; Wang, Yi-Wei; Zhang, Michael Q; Gazdar, Adi F
2013-01-01
With the rapid development of genome-wide high-throughput technologies, including expression arrays, SNP arrays and next-generation sequencing platforms, enormous amounts of molecular data have been generated and deposited in the public domain. The application of computational approaches is required to yield biological insights from this enormous, ever-growing resource. A particularly interesting subset of these resources is related to epigenetic regulation, with DNA methylation being the most abundant data type. In this paper, we will focus on the analysis of DNA methylation data and its application to cancer studies. We first briefly review the molecular techniques that generate such data, much of which has been obtained with the use of the most recent version of Infinium HumanMethylation450 BeadChip® technology (Illumina, CA, USA). We describe the coverage of the methylome by this technique. Several examples of data mining are provided. However, it should be understood that reliance on a single aspect of epigenetics has its limitations. In the not too distant future, these defects may be rectified, providing scientists with previously unavailable opportunities to explore in detail the role of epigenetics in cancer and other disease states. PMID:23750645
Methodological approach to crime scene investigation: the dangers of technology
NASA Astrophysics Data System (ADS)
Barnett, Peter D.
1997-02-01
The visitor to any modern forensic science laboratory is confronted with equipment and processes that did not exist even 10 years ago: thermocyclers to allow genetic typing of nanogram amounts of DNA isolated from a few spermatozoa; scanning electron microscopes that can nearly automatically detect submicrometer sized particles of molten lead, barium and antimony produced by the discharge of a firearm and deposited on the hands of the shooter; and computers that can compare an image of a latent fingerprint with millions of fingerprints stored in the computer memory. Analysis of populations of physical evidence has permitted statistically minded forensic scientists to use Bayesian inference to draw conclusions based on a priori assumptions which are often poorly understood, irrelevant, or misleading. National commissions who are studying quality control in DNA analysis propose that people with barely relevant graduate degrees and little forensic science experience be placed in charge of forensic DNA laboratories. It is undeniable that high- tech has reversed some miscarriages of justice by establishing the innocence of a number of people who were imprisoned for years for crimes that they did not commit. However, this papers deals with the dangers of technology in criminal investigations.
iDNA-Prot: Identification of DNA Binding Proteins Using Random Forest with Grey Model
Lin, Wei-Zhong; Fang, Jian-An; Xiao, Xuan; Chou, Kuo-Chen
2011-01-01
DNA-binding proteins play crucial roles in various cellular processes. Developing high throughput tools for rapidly and effectively identifying DNA-binding proteins is one of the major challenges in the field of genome annotation. Although many efforts have been made in this regard, further effort is needed to enhance the prediction power. By incorporating the features into the general form of pseudo amino acid composition that were extracted from protein sequences via the “grey model” and by adopting the random forest operation engine, we proposed a new predictor, called iDNA-Prot, for identifying uncharacterized proteins as DNA-binding proteins or non-DNA binding proteins based on their amino acid sequences information alone. The overall success rate by iDNA-Prot was 83.96% that was obtained via jackknife tests on a newly constructed stringent benchmark dataset in which none of the proteins included has pairwise sequence identity to any other in a same subset. In addition to achieving high success rate, the computational time for iDNA-Prot is remarkably shorter in comparison with the relevant existing predictors. Hence it is anticipated that iDNA-Prot may become a useful high throughput tool for large-scale analysis of DNA-binding proteins. As a user-friendly web-server, iDNA-Prot is freely accessible to the public at the web-site on http://icpr.jci.edu.cn/bioinfo/iDNA-Prot or http://www.jci-bioinfo.cn/iDNA-Prot. Moreover, for the convenience of the vast majority of experimental scientists, a step-by-step guide is provided on how to use the web-server to get the desired results. PMID:21935457
Hicks, T; Biedermann, A; de Koeijer, J A; Taroni, F; Champod, C; Evett, I W
2015-12-01
The value of forensic results crucially depends on the propositions and the information under which they are evaluated. For example, if a full single DNA profile for a contemporary marker system matching the profile of Mr A is assessed, given the propositions that the DNA came from Mr A and given it came from an unknown person, the strength of evidence can be overwhelming (e.g., in the order of a billion). In contrast, if we assess the same result given that the DNA came from Mr A and given it came from his twin brother (i.e., a person with the same DNA profile), the strength of evidence will be 1, and therefore neutral, unhelpful and irrelevant(1) to the case at hand. While this understanding is probably uncontroversial and obvious to most, if not all practitioners dealing with DNA evidence, the practical precept of not specifying an alternative source with the same characteristics as the one considered under the first proposition may be much less clear in other circumstances. During discussions with colleagues and trainees, cases have come to our attention where forensic scientists have difficulty with the formulation of propositions. It is particularly common to observe that results (e.g., observations) are included in the propositions, whereas-as argued throughout this note-they should not be. A typical example could be a case where a shoe-mark with a logo and the general pattern characteristics of a Nike Air Jordan shoe is found at the scene of a crime. A Nike Air Jordan shoe is then seized at Mr A's house and control prints of this shoe compared to the mark. The results (e.g., a trace with this general pattern and acquired characteristics corresponding to the sole of Mr A's shoe) are then evaluated given the propositions 'The mark was left by Mr A's Nike Air Jordan shoe-sole' and 'The mark was left by an unknown Nike Air Jordan shoe'. As a consequence, the footwear examiner will not evaluate part of the observations (i.e., the mark presents the general pattern of a Nike Air Jordan) whereas they can be highly informative. Such examples can be found in all forensic disciplines. In this article, we present a few such examples and discuss aspects that will help forensic scientists with the formulation of propositions. In particular, we emphasise on the usefulness of notation to distinguish results that forensic scientists should evaluate from case information that the Court will evaluate. Copyright © 2015 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.
The oldest old and the 90+ Study
Kawas, Claudia H.
2012-01-01
Memories are the gifts from friends and family that stay with us forever, unless a person develops Alzheimer's disease. Leon J. Thal left many, many memories, along with his desire to create a world where people did not lose them to the ravages of dementing illnesses. Working from the bench to the clinic, he was an incomparable leader, scientist, and educator to whom many, including myself, owe much. The present description of a clinical, genetic, and pathologic study of the oldest old contains much of Leon's influence. With data from >950 subjects, a brain repository, and our collection of DNA, the investigators of the 90+ Study are receptive to collaborations. Through our collective efforts, we will continue the scientific work that Leon so strongly supported. PMID:18632002
The oldest old and the 90+ Study.
Kawas, Claudia H
2008-01-01
Memories are the gifts from friends and family that stay with us forever, unless a person develops Alzheimer's disease. Leon J. Thal left many, many memories, along with his desire to create a world where people did not lose them to the ravages of dementing illnesses. Working from the bench to the clinic, he was an incomparable leader, scientist, and educator to whom many, including myself, owe much. The present description of a clinical, genetic, and pathologic study of the oldest old contains much of Leon's influence. With data from >950 subjects, a brain repository, and our collection of DNA, the investigators of the 90+ Study are receptive to collaborations. Through our collective efforts, we will continue the scientific work that Leon so strongly supported.
History of the science of mutagenesis from a personal perspective.
Malling, Heinrich V
2004-01-01
A career in the study of mutagenesis spanning 50 years is a gift few scientists have been bestowed. My tenure in the field started in 1953, the year the structure of DNA became known (Watson and Crick [1953]: Nature 171:737). Before that time, it was suspected that DNA was the genetic material based on the research of Oswald T. Avery (Avery et al. [1944]: J Exp Med 79:137), but many scientists still believed that proteins or polysaccharides could be the genetic material. The present article describes a lifetime of personal experience in the field of chemical mutagenesis. The methods used to treat viruses with chemical mutagens were well developed in the 1950s. Here I review the early use of nitrous acid and hydroxylamine as mutagens in eukaryotes, the development of methods for the metabolic activation of mutagens by microsomal preparations, and the selection of a mutant tester set for the qualitative characterization of the mutagenic activity of chemicals. These studies provided critical background information that was used by Bruce Ames in the development of his Salmonella/microsome assay, widely known as the Ames test (Ames et al. [1973]: Proc Nat Acad Sci USA 70:2281-2285). This article also describes how a set of diagnostic chemical mutagens was selected and used to identify the molecular nature of gene mutations. Today, DNA sequencing has replaced the use of diagnostic mutagens, but studies of this kind formed the foundation of modern mutation research. They also helped set the stage for the organization of the Environmental Mutagen Society and the Environmental Mutagen Information Center, which are described. The article ends with the development of mammalian single-cell mutation assays, the first system for studying in vivo mutagenesis using recoverable vectors in transgenic animals, other mutation assays in intact mammals, and my thoughts on the critically important area of germ cell mutagenesis. This narrative is not a complete autobiographical account, in that I have selected only those experiences that I feel are important for the history of the field and the edification of today's students. I hope I have shown that science not only is a valuable pursuit but can also be fun, stimulating, and satisfying. A good sense of humor and the knowledge that many discoveries come by serendipity are essential.
Causes of genome instability: the effect of low dose chemical exposures in modern society
Langie, Sabine A.S.; Koppen, Gudrun; Desaulniers, Daniel; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Azqueta, Amaya; Bisson, William H.; Brown, Dustin; Brunborg, Gunnar; Charles, Amelia K.; Chen, Tao; Colacci, Annamaria; Darroudi, Firouz; Forte, Stefano; Gonzalez, Laetitia; Hamid, Roslida A.; Knudsen, Lisbeth E.; Leyns, Luc; Lopez de Cerain Salsamendi, Adela; Memeo, Lorenzo; Mondello, Chiara; Mothersill, Carmel; Olsen, Ann-Karin; Pavanello, Sofia; Raju, Jayadev; Rojas, Emilio; Roy, Rabindra; Ryan, Elizabeth; Ostrosky-Wegman, Patricia; Salem, Hosni K.; Scovassi, Ivana; Singh, Neetu; Vaccari, Monica; Van Schooten, Frederik J.; Valverde, Mahara; Woodrick, Jordan; Zhang, Luoping; van Larebeke, Nik; Kirsch-Volders, Micheline; Collins, Andrew R.
2015-01-01
Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome’s integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis. PMID:26106144
Research advances on animal genetics in China in 2015.
Zhang, Bo; Chen, Xiao-fang; Huang, Xun; Yang, Xiao
2016-06-20
Chinese scientists have made significant achievements in the field of animal genetics in 2015. Incomplete statistics show that among all the publications of 2015 involving nematode (Caenorhabditis elegans), fly (Drosophila melanogaster), zebrafish (Danio rerio), African clawed frog (Xenopus) or mice (Mus musculus), about 1/5 publications are from China. Many innovative studies were published in high-impact international academic journals by Chinese scientists, including the identification of a putative magnetic receptor MagR, the genetic basis for the regulation of wing polyphenism in the insect brown planthopper (Nilaparvata lugens), DNA N 6 -methyladenine (6mA) modification in the Drosophila genome, a novel molecular mechanism regarding the dendritic spine pruning and maturation in the mammals, the mechanism for the CREB coactivator CRTC2 in the regulation of hepatic lipid metabolism, the control of systemic inflammation by neurotransmitter dopamine, the role of Gasdermin protein family in triggering pyroptosis, a parvalbumin-positive excitatory visual pathway to trigger fear responses in mice, etc. Chinese scientists have also made important contributions in genome editing via TALEN or CRISPR/Cas system. According to incomplete statistics, more than 1/5 of the publications related to genome editing in 2015 are from China, where a variety of animals with different approaches were targeted, ranging from the worm to primates. Particularly, CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes was successfully achieved for the first time. China has been one of the leading countries in genome sequencing in recent years, and Chinese scientists reported the sequence and annotation of the genomes of several important animal species in 2015, including goose (Anser cygnoides), Schlegel's Japanese Gecko (Gekko japonicus), grass carp (Ctenopharyngodon idellus), large yellow croaker (Larimichthys crocea) and pig (Sus scrofa). They further analyzed the genome-wide genetic basis of the species-specific physiological and pathological characteristics as well as their adaptation to environmental conditions. In this review, we make a first attempt to summarize the research advances on animal genetics in China in 2015, with an emphasis on the achievements led by Chinese scientists and carried out in Chinese institutions. We will briefly discuss the significance of their research and contributions of Chinese scientists in animal genetics.
Considering relatives when assessing the evidential strength of mixed DNA profiles.
Taylor, Duncan; Bright, Jo-Anne; Buckleton, John
2014-11-01
Sophisticated methods of DNA profile interpretation have enabled scientists to calculate weights for genotype sets proposed to explain some observed data. Using standard formulae these weights can be incorporated into an LR calculation that considers two competing propositions. We demonstrate here how consideration of relatedness to the person of interest can be incorporated into a LR calculation and how the same calculation can be used for familial searches of complex mixtures. We provide a general formula that can be used in semi or fully automated methods of calculation and demonstrate their use by working through an example. Crown Copyright © 2014. Published by Elsevier Ireland Ltd. All rights reserved.
Marker-assisted selection: an approach for precision plant breeding in the twenty-first century.
Collard, Bertrand C Y; Mackill, David J
2008-02-12
DNA markers have enormous potential to improve the efficiency and precision of conventional plant breeding via marker-assisted selection (MAS). The large number of quantitative trait loci (QTLs) mapping studies for diverse crops species have provided an abundance of DNA marker-trait associations. In this review, we present an overview of the advantages of MAS and its most widely used applications in plant breeding, providing examples from cereal crops. We also consider reasons why MAS has had only a small impact on plant breeding so far and suggest ways in which the potential of MAS can be realized. Finally, we discuss reasons why the greater adoption of MAS in the future is inevitable, although the extent of its use will depend on available resources, especially for orphan crops, and may be delayed in less-developed countries. Achieving a substantial impact on crop improvement by MAS represents the great challenge for agricultural scientists in the next few decades.
Human genetics for non-scientists: Practical workshops for policy makers and opinion leaders
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-31
These workshops form part of a series of workshops that the Banbury and the DNA Learning Centers of Cold Spring Harbor Laboratory have held for a number of years, introducing genetics, and the ways in which scientific research is done, to non-scientists. The purpose of the workshops as stated in the grant application was: {open_quotes}Our objective is to foster a better understanding of the societal impact of human genome research by providing basic information on genetics to non-scientists whose professions or special interests interface with genetic technology.... Participants will be chosen for their interest in human genetics and for theirmore » roles as opinion leaders in their own communities. Primary care physicians are of particular interest to us for this series of workshops.{close_quotes} Two workshops were held under this grant. The first was held in 21-24 April, 1994 and attended by 20 participants, and the second was held 16-19 November, 1995, and attended by 16 participants. In each case, there was a combination of concept lectures on the foundations of human molecular genetics; lectures by invited specialists; and laboratory experiments to introduce non-scientists to the techniques used in molecular genetics.« less
Calafell, Francesc; Larmuseau, Maarten H D
2017-05-01
The Y chromosome is currently by far the most popular marker in genetic genealogy that combines genetic data and family history. This popularity is based on its haploid character and its close association with the patrilineage and paternal inherited surname. Other markers have not been found (yet) to overrule this status due to the low sensitivity and precision of autosomal DNA for genetic genealogical applications, given the vagaries of recombination, and the lower capacities of mitochondrial DNA combined with an in general much lower interest in maternal lineages. The current knowledge about the Y chromosome and the availability of markers with divergent mutation rates make it possible to answer questions on relatedness levels which differ in time depth; from the individual and familial level to the surnames, clan and population level. The use of the Y chromosome in genetic genealogy has led to applications in several well-established research disciplines; namely in, e.g., family history, demography, anthropology, forensic sciences, population genetics and sex chromosome evolution. The information obtained from analysing this chromosome is not only interesting for academic scientists but also for the huge and lively community of amateur genealogists and citizen-scientists, fascinated in analysing their own genealogy or surname. This popularity, however, has also some drawbacks, mainly for privacy reasons related to the DNA donor, his close family and far-related namesakes. In this review paper we argue why Y-chromosomal analysis and its genetic genealogical applications will still perform an important role in future interdisciplinary research.
Application of the gene editing tool, CRISPR-Cas9, for treating neurodegenerative diseases.
Kolli, Nivya; Lu, Ming; Maiti, Panchanan; Rossignol, Julien; Dunbar, Gary L
2018-01-01
Increased accumulation of transcribed protein from the damaged DNA and reduced DNA repair capability contributes to numerous neurological diseases for which effective treatments are lacking. Gene editing techniques provide new hope for replacing defective genes and DNA associated with neurological diseases. With advancements in using such editing tools as zinc finger nucleases (ZFNs), meganucleases, and transcription activator-like effector nucleases (TALENs), etc., scientists are able to design DNA-binding proteins, which can make precise double-strand breaks (DSBs) at the target DNA. Recent developments with the CRISPR-Cas9 gene-editing technology has proven to be more precise and efficient when compared to most other gene-editing techniques. Two methods, non-homologous end joining (NHEJ) and homology-direct repair (HDR), are used in CRISPR-Cas9 system to efficiently excise the defective genes and incorporate exogenous DNA at the target site. In this review article, we provide an overview of the CRISPR-Cas9 methodology, including its molecular mechanism, with a focus on how in this gene-editing tool can be used to counteract certain genetic defects associated with neurological diseases. Detailed understanding of this new tool could help researchers design specific gene editing strategies to repair genetic disorders in selective neurological diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Using environmental DNA to assess population-wide spatiotemporal reserve use.
Stewart, Kathryn; Ma, Hongjuan; Zheng, Jinsong; Zhao, Jianfu
2017-10-01
Scientists increasingly rely on protected areas to assist in biodiversity conservation, yet the efficacy of these areas is rarely systematically assessed, often because of underfunding. Still, adaptive management strategies to maximize conservation success often rely on understanding the temporal and spatial dynamism of populations therein. Examination of environmental DNA (eDNA) is a time and cost-effective way to monitor species' distribution, and quantitative polymerase chain reaction (qPCR) provides information on organismal abundance. To date, however, such techniques remain underused for population assessments in protected areas. We determined eDNA concentration of the critically endangered Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) to describe its occurrence, range, and use of the Tian e-Zhou National Nature Reserve in Hubei, China, across seasons and hydrological depths. Despite the observation that total eDNA concentrations were highest in surface waters in summer, finless porpoise eDNA concentrations were significantly higher in deeper waters than in surface waters in summer. During the breeding season (spring), eDNA signals were site specific and restricted to the core area of the reserve. However, postbreeding eDNA concentrations were widespread across the reserve, encompassing sites previously thought to be unfrequented by the species. Our results suggest spatiotemporal idiosyncrasies in site, depth, and seasonal use of the reserve and a propensity for postbreeding population dispersal. With eDNA and qPCR we were able to assess an entire population's use of a protected area. Illuminating nuances in habitat use via eDNA could be valuable to set pragmatic conservation goals for this, and other, species. © 2017 Society for Conservation Biology.
Forensic genetic analysis of bone remain samples.
Siriboonpiputtana, T; Rinthachai, T; Shotivaranon, J; Peonim, V; Rerkamnuaychoke, B
2018-03-01
DNA typing from degraded human remains is still challenging forensic DNA scientists not only in the prospective of DNA purification but also in the interpretation of established DNA profiles and data manipulation, especially in mass fatalities. In this report, we presented DNA typing protocol to investigate many skeletal remains in different degrees of decomposing. In addition, we established the grading system aiming for prior determination of the association between levels of decomposing and overall STR amplification efficacy. A total of 80 bone samples were subjected to DNA isolation using the modified DNA IQ™ System (Promega, USA) for bone extraction following with STR analysis using the AmpFLSTR Identifiler ® (Thermo Fisher Scientific, USA). In low destruction group, complete STR profiles were observed as 84.4% whereas partial profiles and non-amplified were found as 9.4% and 6.2%, respectively. Moreover, in medium destruction group, both complete and partial STR profiles were observed as 31.2% while 37.5% of this group was unable to amplify. Nevertheless, we could not purify DNA and were unable to generate STR profile in any sample from the high destroyed bone samples. Compact bones such as femur and humerus have high successful amplification rate superior than loose/spongy bones. Furthermore, costal cartilage could be a designate specimen for DNA isolation in a case of the body that was discovered approximately to 3 days after death which enabled to isolate high quality and quantity of DNA, reduce time and cost, and do not require special tools such as freezer mill. Copyright © 2018 Elsevier B.V. All rights reserved.
A novel cell culture model as a tool for forensic biology experiments and validations.
Feine, Ilan; Shpitzen, Moshe; Roth, Jonathan; Gafny, Ron
2016-09-01
To improve and advance DNA forensic casework investigation outcomes, extensive field and laboratory experiments are carried out in a broad range of relevant branches, such as touch and trace DNA, secondary DNA transfer and contamination confinement. Moreover, the development of new forensic tools, for example new sampling appliances, by commercial companies requires ongoing validation and assessment by forensic scientists. A frequent challenge in these kinds of experiments and validations is the lack of a stable, reproducible and flexible biological reference material. As a possible solution, we present here a cell culture model based on skin-derived human dermal fibroblasts. Cultured cells were harvested, quantified and dried on glass slides. These slides were used in adhesive tape-lifting experiments and tests of DNA crossover confinement by UV irradiation. The use of this model enabled a simple and concise comparison between four adhesive tapes, as well as a straightforward demonstration of the effect of UV irradiation intensities on DNA quantity and degradation. In conclusion, we believe this model has great potential to serve as an efficient research tool in forensic biology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Molecular cardiology and genetics in the 21st century--a primer.
Roberts, Robert; Gollob, Michael
2006-10-01
The terminology and technology of molecular genetics and recombinant DNA have become an essential part of academic cardiology and will soon be applied at the bedside. The treatise includes a brief summary of the essentials of the DNA molecule, the more common techniques, and their application to genetics and molecular cardiology. It is written to be understood by physicians, scientists, and paramedical personnel who would not necessarily have a background in molecular biology. Inherent in the DNA molecule are three properties fundamental to all of the diagnostic and therapeutic applications, namely, the ability of DNA to separate into single strands, recombine (annealment or hybridization), and the presence of the negative charge enables DNA fragments to be separated easily by electrophoresis. Genetic linkage analysis of a family with an inherited disease enables one to identify the gene without knowing its protein product. Over 50 diseases in cardiology due to single-gene disorders have been identified and multiple mutations have been detected. The new therapeutic frontier will be stem cells and nuclear transfer. Identification of genes responsible for coronary artery disease made possible by genome-wide single nucleotide polymorphism (SNP) mapping techniques paves the way for personalized medicine.
Liu, Tao; Song, Hong-Li; Zheng, Wei-Ping; Shen, Zhong-Yang
2015-01-01
Anti-HBV therapy is essential for patients awaiting liver transplantation. This study aimed to explore the effects of dendritic cells (DCs) derived from the peripheral blood of hepatitis B patients on the replication of HBV in vivo and to evaluate the biosafety of DCs in clinical therapy. Peripheral blood mononuclear cells (PBMCs) were isolated from HBV-infected patients and maturation-promoting factors and both HBsAg and HBcAg were used to induce DC maturation. Mature DCs and lymphocytes were co-cultured with human hepatocyte cell HL-7702 or HBV-producing human hepatocellular carcinoma cell HepG2.2.15. We found that mature lymphocytes exposed to DCs in vitro did not influence morphology or activities of HL-7702 and HepG2.2.15 cells. Liver function indexes and endotoxin levels in the cell supernatants did not change in these co-cultures. Additionally, supernatant and intracellular HBV DNA levels were reduced when HepG2.2.15 cells were co-cultured with mature lymphocytes that had been cultured with DCs, and HBV covalently closed circular DNA (cccDNA) levels in HepG2.2.15 cells also decreased. Importantly, DC-mediated immunotherapy had no mutagenic effect on HBV genomic DNA by gene sequencing of the P, S, X, and C regions of HBV genomic DNA. We conclude that PBMC-derived DCs from HBV-infected patients act on autologous lymphocytes to suppress HBV replication and these DC clusters showed favorable biosafety. © 2015 by the Association of Clinical Scientists, Inc.
The making of an entrepreneurial science: biotechnology in Britain, 1975-1995.
de Chadarevian, Soraya
2011-12-01
Monoclonal antibodies played a key role in the development of the biotechnology industry of the 1980s and 1990s. Investments in the sector and commercial returns have rivaled those of recombinant DNA technologies. Although the monoclonal antibody technology was first developed in Britain, the first patents were taken out by American scientists. During the first Thatcher government in Britain, blame for the missed opportunity fell on the scientists involved as well as on the National Research and Development Corporation, which had been put in place after World War II to avoid a repeat of the penicillin story, when patent rights were not sought. Instead of apportioning the blame, this essay suggests that despite past experiences and despite the new channels that were in place, Britain was not in a "patent culture" in the 1970s. It traces the long and painful process that made a commercial attitude among publicly funded British research scientists and in a civil service institution like the Medical Research Council both possible and desirable. In this process the meaning of the term "public science" also changed dramatically.
Molecular dynamics simulations and applications in computational toxicology and nanotoxicology.
Selvaraj, Chandrabose; Sakkiah, Sugunadevi; Tong, Weida; Hong, Huixiao
2018-02-01
Nanotoxicology studies toxicity of nanomaterials and has been widely applied in biomedical researches to explore toxicity of various biological systems. Investigating biological systems through in vivo and in vitro methods is expensive and time taking. Therefore, computational toxicology, a multi-discipline field that utilizes computational power and algorithms to examine toxicology of biological systems, has gained attractions to scientists. Molecular dynamics (MD) simulations of biomolecules such as proteins and DNA are popular for understanding of interactions between biological systems and chemicals in computational toxicology. In this paper, we review MD simulation methods, protocol for running MD simulations and their applications in studies of toxicity and nanotechnology. We also briefly summarize some popular software tools for execution of MD simulations. Published by Elsevier Ltd.
In the September 30, 2016, issue of the journal Science, scientists led by former CCR postdoctoral fellow Paola Scaffidi report that an essential DNA-packing protein called linker histone H1.0 is present in varying levels in the cells of tumors, and plays an important role in determining which cells have the capacity to sustain the tumor’s growth. Learn more...
Simulation Fidelity Issues for Nuclear Survivability Validation Protocols.
1992-11-01
Explosive MILSTAR Military, Strategic and Tactical Relay satellite NTB National Test Bed PORTS Portable Radiation/Redout Testbed for Sensors RV Reentry...Vehicle SDI Strategic Defense Initiative SE System Element SEP System Element Platform SGEMP System Generated Electromagnetic Pulse S/N Signal-to...ELECTRONIC SCIENCES DIV ATTN: ACTL ATTN: CHIEF SCIENTIST ATTN: DDIR ATTN: DEP DIR RESEARCH ATTN: DFOP ATTN: DIR AEROSPACE & STRATEGIC TECH Dist-1 DNA-TR-92
Turcotte, Carolyn A; Andrews, Nicolas P; Sloat, Solomon A; Checchi, Paula M
2016-11-01
The mechanisms cells use to maintain genetic fidelity via DNA repair and the accuracy of these processes have garnered interest from scientists engaged in basic research to clinicians seeking improved treatment for cancer patients. Despite the continued advances, many details of DNA repair are still incompletely understood. In addition, the inherent complexity of DNA repair processes, even at the most fundamental level, makes it a challenging topic. This primer is meant to assist both educators and students in using a recent paper, "Promotion of homologous recombination by SWS-1 in complex with RAD-51 paralogs in Caenorhabditis elegans," to understand mechanisms of DNA repair. The goals of this primer are to highlight and clarify several key techniques utilized, with special emphasis on the clustered, regularly interspaced, short palindromic repeats technique and the ways in which it has revolutionized genetics research, as well as to provide questions for deeper in-class discussion. Copyright © 2016 by the Genetics Society of America.
Influence of reactive species on the modification of biomolecules generated from the soft plasma
NASA Astrophysics Data System (ADS)
Attri, Pankaj; Kumar, Naresh; Park, Ji Hoon; Yadav, Dharmendra Kumar; Choi, Sooho; Uhm, Han S.; Kim, In Tae; Choi, Eun Ha; Lee, Weontae
2015-02-01
Plasma medicine is an upcoming research area that has attracted the scientists to explore more deeply the utility of plasma. So, apart from the treating biomaterials and tissues with plasma, we have studied the effect of soft plasma with different feeding gases such as Air, N2 and Ar on modification of biomolecules. Hence, in this work we have used the soft plasma on biomolecules such as proteins ((Hemoglobin (Hb) and Myoglobin (Mb)), calf thymus DNA and amino acids. The structural changes or structural modification of proteins and DNA have been studied using circular dichroism (CD), fluorescence spectroscopy, protein oxidation test, gel electrophoresis, UV-vis spectroscopy, dynamic light scattering (DLS) and 1D NMR, while Liquid Chromatograph/Capillary Electrophoresis-Mass Spectrometer (LC/CE-MS) based on qualitative and quantitative bio-analysis have been used to study the modification of amino acids. Further, the thermal analysis of the protein has been studied with differential scanning calorimetry (DSC) and CD. Additionally, we have performed docking studies of H2O2 with Hb and Mb, which reveals that H2O2 molecules preferably attack the amino acids near heme group. We have also shown that N2 gas plasma has strong deformation action on biomolecules and compared to other gases plasma.
Information needs of academic medical scientists at Chulalongkorn University.
Premsmit, P
1990-01-01
The information needs of scientists in English-speaking countries have been studied and reported in the library literature. However, few studies exist on the information-seeking patterns of scientists in developing countries, and no study has examined the information needs of medical scientists in developing Asian countries. This study investigated the information needs of academic medical scientists at Chulalongkorn University in Bangkok, Thailand. The results indicate that medical scientists have three types of information needs: identifying up-to-date information, obtaining relevant studies and data, and developing research topics. Thai scientists' information-seeking behavior was different from that of scientists in developed countries. The study shows a high use of libraries as information providers; Thai medical scientists rely heavily on information from abroad. PMID:2224302
Kirillova, E N; Romanov, S A; Loffredo, C A; Zakharova, M L; Revina, V S; Sokolova, S N; Goerlitz, D S; Zubkova, O V; Lukianova, T V; Uriadnitzkaia, T I; Pavlova, O S; Slukinova, U V; Kolosova, A V; Muksinova, K N
2014-01-01
Radiobiological Human Tissue repository was established in order to obtain and store biological material from Mayak PA workers occupationally exposed to ionizing (α- and/or γ-) radiation in a wide dose range, from the residents exposed to long term radiation due to radiation accidents and transfer of the samples to scientists for the purpose of studying the effects of radiation for people and their offspring. The accumulated biomaterial is the informational and research potential that form the basis for the work of the scientists in different spheres of biology and medicine. The repository comprises 5 sections: tumor and non-tumor tissues obtained in the course of autopsies, biopsies, surgeries, samples of blood and its components, of DNA, induced sputum, saliva, and other from people exposed or unexposed (control) to radiation. The biomaterial is stored in formalin, in paraffin blocks, slides, as well as in the freezers under low temperatures. All the information on the samples and the registrants (medical, dosimetry, demographic, and occupational data) was obtained and entered into the electronic database. A constantly updated website of the repository was developed in order to provide a possibility to get acquainted with the material and proceed with application for biosamples for scientists from Russia and abroad. Some data obtained in the course of scientific research works on the basis of the biomaterial from the Repository are briefly introduced in the review.
FDA Regulation of Clinical Applications of CRISPR-CAS Gene-Editing Technology.
Grant, Evita V
Scientists have repurposed an adaptive immune system of single cell organisms to create a new type of gene-editing tool: CRISPR (clustered regularly interspaced short palindromic repeats)-Cas technology. Scientists in China have reported its use in the genome modification of non-viable human embryos. This has ignited a spirited debate about the moral, ethical, scientific, and social implications of human germline genome engineering. There have also been calls for regulations; however, FDA has yet to formally announce its oversight of clinical applications of CRISPR-Cas systems. This paper reviews FDA regulation of previously controversial biotechnology breakthroughs, recombinant DNA and human cloning. It then shows that FDA is well positioned to regulate CRISPR-Cas clinical applications, due to its legislative mandates, its existing regulatory frameworks for gene therapies and assisted reproductive technologies, and other considerations.
Hogendoorn, Katja; Stevens, Mark; Leijs, Remko
2015-01-01
Abstract This paper launches an open access DNA barcoding project “AUSBS” under the Barcoding of Life Datasystems (BOLD). The aims of the project are to help scientists who lack the necessary morphological knowledge to identify known species using molecular markers, to aid native bee specialists with the recognition of species groups that morphologically are difficult to define, and, eventually, to assist with the recognition of new species among known species. Using integrative taxonomy, i.e. morphological comparison to type specimens in Australian museum collections combined with phylogenetic analysis of a fragment of the mitochondrial DNA cytochrome c oxidase subunit I (mtCOI) gene sequences led to the recognition of four new species of Euhesma Michener (Hymenoptera: Colletidae: Euryglossini) collected during intensive surveys in remote Australian conservation areas, which are described. The new species are Euhesma micans, Euhesma lyngouriae, and Euhesma aulaca in a species group associated with Eremophila flowers, and Euhesma albamala in the walkeriana species group. PMID:26448713
Daems, Devin; Pfeifer, Wolfgang; Rutten, Iene; Sacca, Barbara; Spasic, Dragana; Lammertyn, Jeroen
2018-06-27
Many challenges in biosensing originate from the fact that the all-important nano-architecture of the biosensor's surface, including precise density and orientation of bioreceptors, is not entirely comprehended. Here we introduced a 3D DNA origami as bioreceptor carrier to functionalize the fiber optic surface plasmon resonance (FO-SPR) sensor with nanoscale precision. Starting from a 24-helix bundle, two distinct DNA origami structures were designed to position thrombin-specific aptamers with different density and distance (27 and 113 nm) from the FO-SPR surface. The origami-based biosensors proved to be not only capable of reproducible, label-free thrombin detection, but revealed also valuable innovative features: (1) a significantly better performance in the absence of backfilling, known as essential in biosensing field, suggesting improved bioreceptor orientation and accessibility and (2) a wider linear range compared to previously reported thrombin biosensors. We envisage that our method will be beneficial both for scientists and clinicians looking for new surface (bio)chemistry and improved diagnostics.
Molecular structures guide the engineering of chromatin
Tekel, Stefan J.
2017-01-01
Abstract Chromatin is a system of proteins, RNA, and DNA that interact with each other to organize and regulate genetic information within eukaryotic nuclei. Chromatin proteins carry out essential functions: packing DNA during cell division, partitioning DNA into sub-regions within the nucleus, and controlling levels of gene expression. There is a growing interest in manipulating chromatin dynamics for applications in medicine and agriculture. Progress in this area requires the identification of design rules for the chromatin system. Here, we focus on the relationship between the physical structure and function of chromatin proteins. We discuss key research that has elucidated the intrinsic properties of chromatin proteins and how this information informs design rules for synthetic systems. Recent work demonstrates that chromatin-derived peptide motifs are portable and in some cases can be customized to alter their function. Finally, we present a workflow for fusion protein design and discuss best practices for engineering chromatin to assist scientists in advancing the field of synthetic epigenetics. PMID:28609787
More insights into the pharmacological effects of artemisinin.
Zyad, Abdelmajid; Tilaoui, Mounir; Jaafari, Abdeslam; Oukerrou, Moulay Ali; Mouse, Hassan Ait
2018-02-01
Artemisinin is one of the most widely prescribed drugs against malaria and has recently received increased attention because of its other potential biological effects. The aim of this review is to summarize recent discoveries of the pharmaceutical effects of artemisinin in basic science along with its mechanistic action, as well as the intriguing results of recent clinical studies, with a focus on its antitumor activity. Scientific evidence indicates that artemisinin exerts its biological activity by generating reactive oxygen species that damage the DNA, mitochondrial depolarization, and cell death. In the present article review, scientific evidence suggests that artemisinin is a potential therapeutic agent for various diseases. Thus, this review is expected to encourage interested scientists to conduct further preclinical and clinical studies to evaluate these biological activities. Copyright © 2017 John Wiley & Sons, Ltd.
History and future of genetically engineered food animal regulation: an open request.
Wells, Kevin D
2016-06-01
Modern biotechnology resulted from of a series of incremental improvements in the understanding of DNA and the enzymes that nature evolved to manipulate it. As the potential impact of genetic engineering became apparent, scientists began the process of trying to identify the potential unintended consequences. Restrictions to recombinant DNA experimentation were at first self-imposed. Collaborative efforts between scientists and lawyers formalized an initial set of guidelines. These guidelines have been used to promulgate regulations around world. However, the initial guidelines were only intended as a starting point and were motivated by a specific set of concerns. As new data became available, the guidelines and regulations should have been adapted to the new knowledge. Instead, other social drivers drove the development of regulations. For most species and most applications, the framework that was established has slowly allowed some products to reach the market. However, genetically engineered livestock that are intended for food have been left in a regulatory state of limbo. To date, no genetically engineered food animal is available in the marketplace. A short history and a U.S.-based genetic engineer's perspective are presented. In addition, a request to regulatory agencies is presented for consideration as regulation continues to evolve. Regulators appear to have shown preference for the slow, random progression of evolution over the efficiency of intentional design.
Medico-legal investigations of the Airbus, A320 crash upon Mount Ste-Odile, France.
Ludes, B; Tracqui, A; Pfitzinger, H; Kintz, P; Levy, F; Disteldorf, M; Hutt, J M; Kaess, B; Haag, R; Memheld, B
1994-09-01
The authors present the medico-legal investigations and identification after the aircrash of the Airbus A320 upon the Mount Sainte-Odile (France). The identification team comprising investigators from the gendarmerie, forensic pathologists, odontologists, and scientists of the Institute from Legal Medecine rapidly retrieved and identified 85 of the 87 victims, with 17 being identified through DNA typing, three through fingerprints and the remaining through dental records and specific physical or X-ray findings. Full autopsies were performed on all fatalities to determine patterns of injury and cause of death. Results lead us to point out the importance of a multidisciplinary team of forensic practitioners especially trained for managing medico-legal investigation in mass disaster and the ability of DNA technology to solve complex identification problems.
Rapid DNA Sequencing by Direct Nanoscale Reading of Nucleotide Bases on Individual DNA Chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, James Weifu; Meller, Amit
2007-01-01
Since the independent invention of DNA sequencing by Sanger and by Gilbert 30 years ago, it has grown from a small scale technique capable of reading several kilobase-pair of sequence per day into today's multibillion dollar industry. This growth has spurred the development of new sequencing technologies that do not involve either electrophoresis or Sanger sequencing chemistries. Sequencing by Synthesis (SBS) involves multiple parallel micro-sequencing addition events occurring on a surface, where data from each round is detected by imaging. New High Throughput Technologies for DNA Sequencing and Genomics is the second volume in the Perspectives in Bioanalysis series, whichmore » looks at the electroanalytical chemistry of nucleic acids and proteins, development of electrochemical sensors and their application in biomedicine and in the new fields of genomics and proteomics. The authors have expertly formatted the information for a wide variety of readers, including new developments that will inspire students and young scientists to create new tools for science and medicine in the 21st century. Reviews of complementary developments in Sanger and SBS sequencing chemistries, capillary electrophoresis and microdevice integration, MS sequencing and applications set the framework for the book.« less
Liu, Rui; Weng, Yi
2009-05-01
Since the discovery of Scrapie Syndrome in sheep and goats in 1730, there emerged a series of diseases such as Creutzfeldt-Jakob disease, kuru disease and mad cow disease etc. In the research of kuru disease, the American scientist D. Carlteton Gajdusek found a new virus without the characteristic of DNA and RNA, which was awarded the Nobel Prize in physiology in 1976. Since then another American scientist, Stanley B. Prusiner, found a new virus-prion, taking protein as the genetic medium, which was awarded the Nobel prize in physiology and medicine in 1997. The discovery of prion is a great landmark in the research of life science, which laid a theoretical foundation for people to conquer a series of diseases such as Scrapie syndrome in sheep and goats, Creutzfeldt-Jakob disease, kuru disease and mad cow disease etc.
Dev, Sukhendu B
2009-01-01
The advances in biological sciences have been phenomenal since the structure of DNA was decoded, especially if one considers the input from physical sciences, not only in terms of analytical tools, but also understanding and solving some of the key problems in biology. In this article, I trace briefly the history of this transition, from physical sciences to biology, and argue that progress in modern biology can be accelerated if there is far more meaningful crosstalk between the biologists and the physical scientists, simply because biology has become far more complex and interdisciplinary, and the need for such crosstalk cannot be overemphasized. Without a concerted effort in this area progress will be hindered, and the two camps will continue to work on their own, using their own specialized language, thus making communication highly ineffective. I support my argument giving a vast array of examples and also quoting leading authorities.
Gustafsson, Jan-Ake
2005-06-01
Our interest in nuclear receptors (NRs) originated from early studies on hepatic steroid metabolism. We discovered a new hypothalamo-pituitary-liver axis, imprinted neonatally by androgens and operating through sexually differentiated GH secretory patterns. Male and female patterns have opposite effects on sexually differentiated hepatic genes, explaining sexually dimorphic liver patterns. To further understand steroid action, we purified the glucocorticoid receptor (GR) leading to our discovery of the NR three-domain structure, with separable DNA binding domain and ligand binding domains and a third domain now known to have transcriptional regulatory properties. Knowledge of this domain structure has been immensely important for deciphering NR actions. Using this first purified NR, we collaborated with Keith Yamamoto and first demonstrated specific NR binding to DNA. This also was the first demonstration of a mammalian transcription factor, a breakthrough that led to discovery of NR response elements. In further collaboration with Yamamoto, we cloned the first NR cDNA sequences, leading to cloning of the superfamily of NR genes. With Yamamoto and Kaptein, we determined the first three-dimensional NR structure, that of DNA binding domain. Later work on orphan receptors resulted in the first discovery of: 1) endogenous ligands for an orphan receptor (fatty acids as activators of peroxisomal proliferator-activated receptor alpha); 2) liver X receptor beta (OR-1) and its role in central nervous system cholesterol homeostasis; and 3) estrogen receptor beta, leading to a paradigm shift in understanding of estrogen signaling, of importance in endocrinology, immunology, and oncology and to development of estrogen receptor beta agonists for treatment of autoimmune diseases, prostate disease, depression, and ovulatory dysfunction.
Causes of genome instability: the effect of low dose chemical exposures in modern society.
Langie, Sabine A S; Koppen, Gudrun; Desaulniers, Daniel; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Azqueta, Amaya; Bisson, William H; Brown, Dustin G; Brunborg, Gunnar; Charles, Amelia K; Chen, Tao; Colacci, Annamaria; Darroudi, Firouz; Forte, Stefano; Gonzalez, Laetitia; Hamid, Roslida A; Knudsen, Lisbeth E; Leyns, Luc; Lopez de Cerain Salsamendi, Adela; Memeo, Lorenzo; Mondello, Chiara; Mothersill, Carmel; Olsen, Ann-Karin; Pavanello, Sofia; Raju, Jayadev; Rojas, Emilio; Roy, Rabindra; Ryan, Elizabeth P; Ostrosky-Wegman, Patricia; Salem, Hosni K; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Van Schooten, Frederik J; Valverde, Mahara; Woodrick, Jordan; Zhang, Luoping; van Larebeke, Nik; Kirsch-Volders, Micheline; Collins, Andrew R
2015-06-01
Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Human Chromosome Y and Haplogroups; introducing YDHS Database.
Tiirikka, Timo; Moilanen, Jukka S
2015-12-01
As the high throughput sequencing efforts generate more biological information, scientists from different disciplines are interpreting the polymorphisms that make us unique. In addition, there is an increasing trend in general public to research their own genealogy, find distant relatives and to know more about their biological background. Commercial vendors are providing analyses of mitochondrial and Y-chromosomal markers for such purposes. Clearly, an easy-to-use free interface to the existing data on the identified variants would be in the interest of general public and professionals less familiar with the field. Here we introduce a novel metadatabase YDHS that aims to provide such an interface for Y-chromosomal DNA (Y-DNA) haplogroups and sequence variants. The database uses ISOGG Y-DNA tree as the source of mutations and haplogroups and by using genomic positions of the mutations the database links them to genes and other biological entities. YDHS contains analysis tools for deeper Y-SNP analysis. YDHS addresses the shortage of Y-DNA related databases. We have tested our database using a set of different cases from literature ranging from infertility to autism. The database is at http://www.semanticgen.net/ydhs Y-chromosomal DNA (Y-DNA) haplogroups and sequence variants have not been in the scientific limelight, excluding certain specialized fields like forensics, mainly because there is not much freely available information or it is scattered in different sources. However, as we have demonstrated Y-SNPs do play a role in various cases on the haplogroup level and it is possible to create a free Y-DNA dedicated bioinformatics resource.
Koblentz, Gregory D
In March 2017, the American biotech company Tonix announced that a Canadian scientist had synthesized horsepox virus as part of a project to develop a safer vaccine against smallpox. The first de novo synthesis of an orthopoxvirus, a closely related group of viruses that includes horsepox and the variola virus that causes smallpox, crosses an important Rubicon in the field of biosecurity. The synthesis of horsepox virus takes the world one step closer to the reemergence of smallpox as a threat to global health security. That threat has been held at bay for the past 40 years by the extreme difficulty of obtaining variola virus and the availability of effective medical countermeasures. The techniques demonstrated by the synthesis of horsepox have the potential to erase both of these barriers. The primary risk posed by this research is that it will open the door to the routine and widespread synthesis of other orthopoxviruses, such as vaccinia, for use in research, public health, and medicine. The normalization and globalization of orthopoxvirus synthesis for these beneficial applications will create a cadre of laboratories and scientists that will also have the capability and expertise to create infectious variola virus from synthetic DNA. Unless the safeguards against the synthesis of variola virus are strengthened, the capability to reintroduce smallpox into the human population will be globally distributed and either loosely or completely unregulated, providing the foundation for a disgruntled or radicalized scientist, sophisticated terrorist group, unscrupulous company, or rogue state to recreate one of humanity's most feared microbial enemies. The reemergence of smallpox-because of a laboratory accident or an intentional release-would be a global health disaster. International organizations, national governments, the DNA synthesis industry, and the synthetic biology community all have a role to play in devising new approaches to preventing the reemergence of smallpox.
Looking for Clues to the Mystery of Life on Earth
NASA Astrophysics Data System (ADS)
Balter, Michael
1996-08-01
From the vast central hall in Chambord Castle, the largest of the great chateaux on France's River Loire, an ornate double-helical staircase rises to a roof terrace. It was an appropriate setting for a banquet of the International Society for the Study of the Origin of Life (ISSOL), which held its triennial meeting last month in nearby Orleans. Without double-helical DNA and RNA molecules, life would not exist. At the meeting, nearly 300 scientists, including three Nobel laureates, grappled with the riddle of how these molecules first appeared and how they evolved into self-reproducing cells-questions that have gained new urgency with the hint that life in some form also may have evolved on Mars (see pages 864 and 924).
A deep learning method for lincRNA detection using auto-encoder algorithm.
Yu, Ning; Yu, Zeng; Pan, Yi
2017-12-06
RNA sequencing technique (RNA-seq) enables scientists to develop novel data-driven methods for discovering more unidentified lincRNAs. Meantime, knowledge-based technologies are experiencing a potential revolution ignited by the new deep learning methods. By scanning the newly found data set from RNA-seq, scientists have found that: (1) the expression of lincRNAs appears to be regulated, that is, the relevance exists along the DNA sequences; (2) lincRNAs contain some conversed patterns/motifs tethered together by non-conserved regions. The two evidences give the reasoning for adopting knowledge-based deep learning methods in lincRNA detection. Similar to coding region transcription, non-coding regions are split at transcriptional sites. However, regulatory RNAs rather than message RNAs are generated. That is, the transcribed RNAs participate the biological process as regulatory units instead of generating proteins. Identifying these transcriptional regions from non-coding regions is the first step towards lincRNA recognition. The auto-encoder method achieves 100% and 92.4% prediction accuracy on transcription sites over the putative data sets. The experimental results also show the excellent performance of predictive deep neural network on the lincRNA data sets compared with support vector machine and traditional neural network. In addition, it is validated through the newly discovered lincRNA data set and one unreported transcription site is found by feeding the whole annotated sequences through the deep learning machine, which indicates that deep learning method has the extensive ability for lincRNA prediction. The transcriptional sequences of lincRNAs are collected from the annotated human DNA genome data. Subsequently, a two-layer deep neural network is developed for the lincRNA detection, which adopts the auto-encoder algorithm and utilizes different encoding schemes to obtain the best performance over intergenic DNA sequence data. Driven by those newly annotated lincRNA data, deep learning methods based on auto-encoder algorithm can exert their capability in knowledge learning in order to capture the useful features and the information correlation along DNA genome sequences for lincRNA detection. As our knowledge, this is the first application to adopt the deep learning techniques for identifying lincRNA transcription sequences.
The "Starch Wars" and the Early History of DNA Profiling.
Aronson, J D
2006-01-01
Just as the movie Star Wars had a prequel, so did the "DNA Wars"-the series of legal, scientific, and personal battles that took place over the admissibility of forensic DNA evidence from 1989 to 1994. Between the late 1970s and the mid-1980s, another forensic identification technique became mired in controversy: electrophoresis-based blood protein analysis. Although the debates over blood analysis were every bit as rancorous and frustrating to almost everybody involved - so much so that they became known as the "Starch Wars" - their importance has not been adequately appreciated in the recent history of forensic science. After reviewing the early history of blood typing, I will describe the development of the Multi-System approach to blood protein analysis that took place in California from 1977 to 1978. I will then elucidate the history of the Starch Wars, and demonstrate the ways that they shaped subsequent disputes over DNA evidence, especially in California. I will show that: (a) many of the forensic scientists, law enforcement officials, and lawyers who became prominent players in the DNA Wars were deeply involved in the court cases involving protein electrophoresis; and (b) many of the issues that became controversial in the disputes over DNA evidence first emerged in the Starch Wars. In the conclusion, I will suggest various ways to improve the quality of forensic science based on my analysis of the Starch Wars. Copyright © 2006 Central Police University.
ERIC Educational Resources Information Center
Coll, Richard K.; Lay, Mark C.; Taylor, Neil
2008-01-01
Scientific literacy is explored in this paper which describes two studies that seek to understand a particular feature of the nature of science; namely scientists' habits of mind. The research investigated scientists' views of scientific evidence and how scientists judge evidence claims. The first study is concerned with scientists' views of what…
Decoding Gene Patents in Australia
Denley, Adam; Cherry, James
2015-01-01
Patents directed to naturally occurring genetic material, such as DNA, RNA, chromosomes, and genes, in an isolated or purified form have been granted in Australia for many years. This review provides scientists with a summary of the gene patent debate from an Australian perspective and specifically reviews how the various levels of the legal system as they apply to patents—the Australian Patent Office, Australian courts, and Australian government—have dealt with the issue of whether genetic material is proper subject matter for a patent. PMID:25280901
Life is three-dimensional, and it begins with molecules.
Bourne, Philip E
2017-03-01
The iconic image of the DNA double helix embodies the central role that three-dimensional structures play in understanding biological processes, which, in turn, impact health and well-being. Here, that role is explored through the eyes of one scientist, who has been lucky enough to have over 150 talented people pass through his laboratory. Each contributed to that understanding. What follows is a small fraction of their story, with an emphasis on basic research outcomes of importance to society at large.
ERIC Educational Resources Information Center
Turkmen, Hakan
2008-01-01
Students' views of science and scientists have been widely studied. The purpose of this study is to analyze image of scientist from drawn picture of scientists using The Draw-a-Scientist Test (DAST) by 5th grade students and to analyze where this image comes from students minds in changing Turkish educational perspective. Two hundred eighty seven…
Who Believes in the Storybook Image of the Scientist?
Veldkamp, Coosje L S; Hartgerink, Chris H J; van Assen, Marcel A L M; Wicherts, Jelte M
2017-01-01
Do lay people and scientists themselves recognize that scientists are human and therefore prone to human fallibilities such as error, bias, and even dishonesty? In a series of three experimental studies and one correlational study (total N = 3,278) we found that the "storybook image of the scientist" is pervasive: American lay people and scientists from over 60 countries attributed considerably more objectivity, rationality, open-mindedness, intelligence, integrity, and communality to scientists than to other highly-educated people. Moreover, scientists perceived even larger differences than lay people did. Some groups of scientists also differentiated between different categories of scientists: established scientists attributed higher levels of the scientific traits to established scientists than to early-career scientists and Ph.D. students, and higher levels to Ph.D. students than to early-career scientists. Female scientists attributed considerably higher levels of the scientific traits to female scientists than to male scientists. A strong belief in the storybook image and the (human) tendency to attribute higher levels of desirable traits to people in one's own group than to people in other groups may decrease scientists' willingness to adopt recently proposed practices to reduce error, bias and dishonesty in science.
The pharmacogenetics of chemical carcinogenesis.
Idle, J R; Armstrong, M; Boddy, A V; Boustead, C; Cholerton, S; Cooper, J; Daly, A K; Ellis, J; Gregory, W; Hadidi, H
1992-12-01
The human body is endowed with a large number of xenobiotic chemical metabolizing enzymes, a significant proportion of which are polymorphic and thus render one individual at greater or lesser risk than another of chemically-induced disease. All examples of genetic polymorphism of chemical metabolizing enzymes have been reviewed in relation to their potential to activate and detoxicate procarcinogens and promutagens. Many examples are cited whereby phenotype can act as a carcinogenic risk factor. With the availability of a large amount of DNA sequence data for chemical metabolizing enzymes there has emerged a number of polymerase chain reaction (PCR) strategies aimed at discerning one metabolic phenotype or another. This is seen as a very positive and democratic scientific development, widening the franchise for studies of disease risk. Nevertheless, it is argued that, at these early stages with many laboratory-based scientists scarcely familiar with epidemiological study design, a cautious approach should obtain when interpreting single studies.
Hemoglobin Wayne Trait with Incidental Polycythemia.
Ambelil, Manju; Nguyen, Nghia; Dasgupta, Amitava; Risin, Semyon; Wahed, Amer
2017-01-01
Hemoglobinopathies, caused by mutations in the globin genes, are one of the most common inherited disorders. Many of the hemoglobin variants can be identified by hemoglobin analysis using conventional electrophoresis and high performance liquid chromatography; however hemoglobin DNA analysis may be necessary in other cases for confirmation. Here, we report a case of a rare alpha chain hemoglobin variant, hemoglobin Wayne, in a 47-year-old man who presented with secondary polycythemia. Capillary zone electrophoresis and high performance liquid chromatography revealed a significant amount of a hemoglobin variant, which was further confirmed by hemoglobin DNA sequencing as hemoglobin Wayne. Since the patient was not homozygous for hemoglobin Wayne, which is associated with secondary polycythemia, the laboratory diagnosis in this case was critical in ruling out hemoglobinopathy as the etiology of his polycythemia. © 2017 by the Association of Clinical Scientists, Inc.
Chae, Heejoon; Lee, Sangseon; Seo, Seokjun; Jung, Daekyoung; Chang, Hyeonsook; Nephew, Kenneth P; Kim, Sun
2016-12-01
Measuring gene expression, DNA sequence variation, and DNA methylation status is routinely done using high throughput sequencing technologies. To analyze such multi-omics data and explore relationships, reliable bioinformatics systems are much needed. Existing systems are either for exploring curated data or for processing omics data in the form of a library such as R. Thus scientists have much difficulty in investigating relationships among gene expression, DNA sequence variation, and DNA methylation using multi-omics data. In this study, we report a system called BioVLAB-mCpG-SNP-EXPRESS for the integrated analysis of DNA methylation, sequence variation (SNPs), and gene expression for distinguishing cellular phenotypes at the pairwise and multiple phenotype levels. The system can be deployed on either the Amazon cloud or a publicly available high-performance computing node, and the data analysis and exploration of the analysis result can be conveniently done using a web-based interface. In order to alleviate analysis complexity, all the process are fully automated, and graphical workflow system is integrated to represent real-time analysis progression. The BioVLAB-mCpG-SNP-EXPRESS system works in three stages. First, it processes and analyzes multi-omics data as input in the form of the raw data, i.e., FastQ files. Second, various integrated analyses such as methylation vs. gene expression and mutation vs. methylation are performed. Finally, the analysis result can be explored in a number of ways through a web interface for the multi-level, multi-perspective exploration. Multi-level interpretation can be done by either gene, gene set, pathway or network level and multi-perspective exploration can be explored from either gene expression, DNA methylation, sequence variation, or their relationship perspective. The utility of the system is demonstrated by performing analysis of phenotypically distinct 30 breast cancer cell line data set. BioVLAB-mCpG-SNP-EXPRESS is available at http://biohealth.snu.ac.kr/software/biovlab_mcpg_snp_express/. Copyright © 2016 Elsevier Inc. All rights reserved.
Personal Characteristics That Distinguish Creative Scientists from Less Creative Scientists
ERIC Educational Resources Information Center
Tang, Chaoying; Kaufman, James C.
2017-01-01
What are the personal characteristics that distinguish the creative scientist from the less creative scientist? This study used the concept of implicit theory in a four-part study of scientists and graduate students in science. In the first part, we collected 1382 adjective words that describe the personal characteristics of the creative scientist…
In search of the Boston Strangler: genetic evidence from the exhumation of Mary Sullivan.
Foran, David R; Starrs, James E
2004-01-01
The Boston Strangler was one of the United States' most notorious serial killers, raping and strangling with decorative ligatures thirteen woman in Boston during the early 1960s. Albert DeSalvo, never a suspect in the slayings, confessed in prison (where he was later murdered) to being the Boston Strangler, and the investigation largely ended. Mary Sullivan was the last victim of the Boston Strangler, found sexually assaulted and strangled in her Boston apartment in 1964. Recently, a team of forensic scientists undertook the exhumation and subsequent scientific analysis of Mary Sullivan's remains, in hope of finding consistencies or inconsistencies between DeSalvo's confessed description of the murder and any evidence left behind. Included in these analyses was extensive DNA testing of all UV fluorescent material associated with the body. The large majority of results were negative, however, fluorescent material located on the underwear and entwined in her pubic hair generated two human mitochondrial DNA sequences. Neither of these matched the victim nor members of the forensic team who worked on the evidence. Most importantly, neither DNA sequence could have originated from Albert DeSalvo.
Molecular structures guide the engineering of chromatin.
Tekel, Stefan J; Haynes, Karmella A
2017-07-27
Chromatin is a system of proteins, RNA, and DNA that interact with each other to organize and regulate genetic information within eukaryotic nuclei. Chromatin proteins carry out essential functions: packing DNA during cell division, partitioning DNA into sub-regions within the nucleus, and controlling levels of gene expression. There is a growing interest in manipulating chromatin dynamics for applications in medicine and agriculture. Progress in this area requires the identification of design rules for the chromatin system. Here, we focus on the relationship between the physical structure and function of chromatin proteins. We discuss key research that has elucidated the intrinsic properties of chromatin proteins and how this information informs design rules for synthetic systems. Recent work demonstrates that chromatin-derived peptide motifs are portable and in some cases can be customized to alter their function. Finally, we present a workflow for fusion protein design and discuss best practices for engineering chromatin to assist scientists in advancing the field of synthetic epigenetics. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Who Believes in the Storybook Image of the Scientist?
Veldkamp, Coosje L. S.; Hartgerink, Chris H. J.; van Assen, Marcel A. L. M.; Wicherts, Jelte M.
2017-01-01
ABSTRACT Do lay people and scientists themselves recognize that scientists are human and therefore prone to human fallibilities such as error, bias, and even dishonesty? In a series of three experimental studies and one correlational study (total N = 3,278) we found that the “storybook image of the scientist” is pervasive: American lay people and scientists from over 60 countries attributed considerably more objectivity, rationality, open-mindedness, intelligence, integrity, and communality to scientists than to other highly-educated people. Moreover, scientists perceived even larger differences than lay people did. Some groups of scientists also differentiated between different categories of scientists: established scientists attributed higher levels of the scientific traits to established scientists than to early-career scientists and Ph.D. students, and higher levels to Ph.D. students than to early-career scientists. Female scientists attributed considerably higher levels of the scientific traits to female scientists than to male scientists. A strong belief in the storybook image and the (human) tendency to attribute higher levels of desirable traits to people in one’s own group than to people in other groups may decrease scientists’ willingness to adopt recently proposed practices to reduce error, bias and dishonesty in science. PMID:28001440
Pierrel, Jérôme
2012-01-01
The importance of viruses as model organisms is well-established in molecular biology and Max Delbrück's phage group set standards in the DNA phage field. In this paper, I argue that RNA phages, discovered in the 1960s, were also instrumental in the making of molecular biology. As part of experimental systems, RNA phages stood for messenger RNA (mRNA), genes and genome. RNA was thought to mediate information transfers between DNA and proteins. Furthermore, RNA was more manageable at the bench than DNA due to the availability of specific RNases, enzymes used as chemical tools to analyse RNA. Finally, RNA phages provided scientists with a pure source of mRNA to investigate the genetic code, genes and even a genome sequence. This paper focuses on Walter Fiers' laboratory at Ghent University (Belgium) and their work on the RNA phage MS2. When setting up his Laboratory of Molecular Biology, Fiers planned a comprehensive study of the virus with a strong emphasis on the issue of structure. In his lab, RNA sequencing, now a little-known technique, evolved gradually from a means to solve the genetic code, to a tool for completing the first genome sequence. Thus, I follow the research pathway of Fiers and his 'RNA phage lab' with their evolving experimental system from 1960 to the late 1970s. This study illuminates two decisive shifts in post-war biology: the emergence of molecular biology as a discipline in the 1960s in Europe and of genomics in the 1990s.
NASA Astrophysics Data System (ADS)
Xu, Jiajie; Jiang, Bo; Chai, Sanming; He, Yuan; Zhu, Jianyi; Shen, Zonggen; Shen, Songdong
2016-09-01
Filamentous Bangia, which are distributed extensively throughout the world, have simple and similar morphological characteristics. Scientists can classify these organisms using molecular markers in combination with morphology. We successfully sequenced the complete nuclear ribosomal DNA, approximately 13 kb in length, from a marine Bangia population. We further analyzed the small subunit ribosomal DNA gene (nrSSU) and the internal transcribed spacer (ITS) sequence regions along with nine other marine, and two freshwater Bangia samples from China. Pairwise distances of the nrSSU and 5.8S ribosomal DNA gene sequences show the marine samples grouping together with low divergences (00.003; 0-0.006, respectively) from each other, but high divergences (0.123-0.126; 0.198, respectively) from freshwater samples. An exception is the marine sample collected from Weihai, which shows high divergence from both other marine samples (0.063-0.065; 0.129, respectively) and the freshwater samples (0.097; 0.120, respectively). A maximum likelihood phylogenetic tree based on a combined SSU-ITS dataset with maximum likelihood method shows the samples divided into three clades, with the two marine sample clades containing Bangia spp. from North America, Europe, Asia, and Australia; and one freshwater clade, containing Bangia atropurpurea from North America and China.
Gill, P.; Gusmão, L.; Haned, H.; Mayr, W.R.; Morling, N.; Parson, W.; Prieto, L.; Prinz, M.; Schneider, H.; Schneider, P.M.; Weir, B.S.
2015-01-01
DNA profiling of biological material from scenes of crimes is often complicated because the amount of DNA is limited and the quality of the DNA may be compromised. Furthermore, the sensitivity of STR typing kits has been continuously improved to detect low level DNA traces. This may lead to (1) partial DNA profiles and (2) detection of additional alleles. There are two key phenomena to consider: allelic or locus ‘drop-out’, i.e. ‘missing’ alleles at one or more genetic loci, while ‘drop-in’ may explain alleles in the DNA profile that are additional to the assumed main contributor(s). The drop-in phenomenon is restricted to 1 or 2 alleles per profile. If multiple alleles are observed at more than two loci then these are considered as alleles from an extra contributor and analysis can proceed as a mixture of two or more contributors. Here, we give recommendations on how to estimate probabilities considering drop-out, Pr(D), and drop-in, Pr(C). For reasons of clarity, we have deliberately restricted the current recommendations considering drop-out and/or drop-in at only one locus. Furthermore, we offer recommendations on how to use Pr(D) and Pr(C) with the likelihood ratio principles that are generally recommended by the International Society of Forensic Genetics (ISFG) as measure of the weight of the evidence in forensic genetics. Examples of calculations are included. An Excel spreadsheet is provided so that scientists and laboratories may explore the models and input their own data. PMID:22864188
2013-01-01
Background The revolution in DNA sequencing technology continues unabated, and is affecting all aspects of the biological and medical sciences. The training and recruitment of the next generation of researchers who are able to use and exploit the new technology is severely lacking and potentially negatively influencing research and development efforts to advance genome biology. Here we present a cross-disciplinary course that provides undergraduate students with practical experience in running a next generation sequencing instrument through to the analysis and annotation of the generated DNA sequences. Results Many labs across world are installing next generation sequencing technology and we show that the undergraduate students produce quality sequence data and were excited to participate in cutting edge research. The students conducted the work flow from DNA extraction, library preparation, running the sequencing instrument, to the extraction and analysis of the data. They sequenced microbes, metagenomes, and a marine mammal, the Californian sea lion, Zalophus californianus. The students met sequencing quality controls, had no detectable contamination in the targeted DNA sequences, provided publication quality data, and became part of an international collaboration to investigate carcinomas in carnivores. Conclusions Students learned important skills for their future education and career opportunities, and a perceived increase in students’ ability to conduct independent scientific research was measured. DNA sequencing is rapidly expanding in the life sciences. Teaching undergraduates to use the latest technology to sequence genomic DNA ensures they are ready to meet the challenges of the genomic era and allows them to participate in annotating the tree of life. PMID:24007365
The Use of Stable Isotope Tracers to Quantify the Transit Time Distribution of Water
NASA Astrophysics Data System (ADS)
Gray, T. M.; Troch, P. A. A.
2016-12-01
Water pollution is an important societal problem because it can have harmful effects on human and ecological health. In order to improve water quality, scientists must develop land management methods that can avoid or mitigate environmental pollution. State of the art tools to develop such methods are flow and transport models that trace water and other solutes through the landscape. These models deliver important information that can lead to remediation efforts, and improve the quality of water for humans, plants, and animals. However, these models may be difficult to apply since many details about the catchment may not be available. Instead, a lumped approach is often used to find the water transit time using stable isotope tracers such as 18O and 2H that are naturally applied by precipitation to a catchment. The transit time distribution of water is an important indicator for the amount of solutes soil water and groundwater can contain, and thus a predictor of water quality. We conducted a 2-week long experiment using a tilted weighing lysimeter at Biosphere 2 to observe the breakthrough curves of deuterium and specific artificial DNA particles. We show that hydrological parameters can be computed in order to provide an estimate for the transit time distribution of deuterium. The convolution integral is then used to determine the distribution of the water transit time in the system. Unfortunately, stable isotopes such as deuterium make it difficult to pinpoint a specific flowpath since they naturally occur in the environment. Recent studies have shown that DNA tracers are able to trace water through the landscape. We found that DNA has a similar breakthrough curve happening at similar timescales as the deuterium. Therefore, DNA tracers may be able to identify sources of nonpoint source pollution in the future.
Kuang, Xingyan; Dhroso, Andi; Han, Jing Ginger; Shyu, Chi-Ren; Korkin, Dmitry
2016-01-01
Macromolecular interactions are formed between proteins, DNA and RNA molecules. Being a principle building block in macromolecular assemblies and pathways, the interactions underlie most of cellular functions. Malfunctioning of macromolecular interactions is also linked to a number of diseases. Structural knowledge of the macromolecular interaction allows one to understand the interaction’s mechanism, determine its functional implications and characterize the effects of genetic variations, such as single nucleotide polymorphisms, on the interaction. Unfortunately, until now the interactions mediated by different types of macromolecules, e.g. protein–protein interactions or protein–DNA interactions, are collected into individual and unrelated structural databases. This presents a significant obstacle in the analysis of macromolecular interactions. For instance, the homogeneous structural interaction databases prevent scientists from studying structural interactions of different types but occurring in the same macromolecular complex. Here, we introduce DOMMINO 2.0, a structural Database Of Macro-Molecular INteractiOns. Compared to DOMMINO 1.0, a comprehensive database on protein-protein interactions, DOMMINO 2.0 includes the interactions between all three basic types of macromolecules extracted from PDB files. DOMMINO 2.0 is automatically updated on a weekly basis. It currently includes ∼1 040 000 interactions between two polypeptide subunits (e.g. domains, peptides, termini and interdomain linkers), ∼43 000 RNA-mediated interactions, and ∼12 000 DNA-mediated interactions. All protein structures in the database are annotated using SCOP and SUPERFAMILY family annotation. As a result, protein-mediated interactions involving protein domains, interdomain linkers, C- and N- termini, and peptides are identified. Our database provides an intuitive web interface, allowing one to investigate interactions at three different resolution levels: whole subunit network, binary interaction and interaction interface. Database URL: http://dommino.org PMID:26827237
The Effects of Nucleosome Positioning and Chromatin Architecture on Transgene Expression
NASA Astrophysics Data System (ADS)
Kempton, Colton E.
Eukaryotes use proteins to carefully package and compact their genomes to fit into the nuclei of their individual cells. Nucleosomes are the primary level of compaction. Nucleosomes are formed when DNA wraps around an octamer of histone proteins and a nucleosome's position can limit access to genetic regulatory elements. Therefore, nucleosomes represent a basic level of gene regulation. DNA and its associated proteins, called chromatin, is usually classified as euchromatin or heterochromatin. Euchromatin is transcriptionally active with loosely packed nucleosomes while heterochromatin is condensed with tightly packed nucleosomes and is transcriptionally silent. In order to become active, heterochromatin must first be remodeled. We have studied the effects of nucleosome positioning on transgene expression in vivo using Caenorhabditis elegans as a model. We show that both location and polarity of the DNA sequence can influence transgene expression. We also discuss some considerations for working with CRISPR/Cas9. A major reason for doing in vitro nucleosome reconstitutions is to determine the effects of DNA sequence on nucleosome formation and position. It has previously been implied that nucleosome reconstitutions are stochastic and not very reproducible. We show that nucleosome reconstitutions are highly reproducible under our reaction conditions. Our results also indicate that a minimum depth of 35X sequencing coverage be maintained for maximal gains in Pearson's correlation coefficients. Communicating science with others is an important skill for any researcher. The rising generation of scientists need mentors who can teach them how to be independent thinkers who can carry out scientific experiments and communicate their finding to others. With this goal in mind, we have devised a scaffolding pedagogical method to help transform undergraduates into confident independent thinkers and researchers.
Remembering Jan Svoboda: A Personal Reflection.
Weiss, Robin A
2018-04-18
The Czech scientist Jan Svoboda was a pioneer of Rous sarcoma virus (RSV). In the 1960s, before the discovery of reverse transcriptase, he demonstrated the long-term persistence of the viral genome in non-productive mammalian cells, and he supported the DNA provirus hypothesis of Howard Temin. He showed how the virus can be rescued in the infectious form and elucidated the replication-competent nature of the Prague strain of RSV later used for the identification of the src oncogene. His studies straddled molecular oncology and virology, and he remained an active contributor to the field until his death last year. Throughout the 50 years that I was privileged to know Svoboda as my mentor and friend, I admired his depth of scientific inquiry and his steadfast integrity in the face of political oppression.
Remembering Jan Svoboda: A Personal Reflection
Weiss, Robin A.
2018-01-01
The Czech scientist Jan Svoboda was a pioneer of Rous sarcoma virus (RSV). In the 1960s, before the discovery of reverse transcriptase, he demonstrated the long-term persistence of the viral genome in non-productive mammalian cells, and he supported the DNA provirus hypothesis of Howard Temin. He showed how the virus can be rescued in the infectious form and elucidated the replication-competent nature of the Prague strain of RSV later used for the identification of the src oncogene. His studies straddled molecular oncology and virology, and he remained an active contributor to the field until his death last year. Throughout the 50 years that I was privileged to know Svoboda as my mentor and friend, I admired his depth of scientific inquiry and his steadfast integrity in the face of political oppression. PMID:29670049
Investigating How the Biographies of Today's Scientists Affect 8th Graders' Scientist Image
ERIC Educational Resources Information Center
Karaçam, Sedat
2016-01-01
This study aimed to investigate how a poster study focusing on the biographies of today's scientists affected 8th graders' scientist images. The study utilized a mixed model which combined qualitative and quantitative research techniques. 142 8th graders from a secondary school in Ankara Province Keçiören District participated in the study.…
2013 R&D 100 Award: DNATrax could revolutionize air quality detection and tracking
Farquar, George
2018-01-16
A team of LLNL scientists and engineers has developed a safe and versatile material, known as DNA Tagged Reagents for Aerosol Experiments (DNATrax), that can be used to reliably and rapidly diagnose airflow patterns and problems in both indoor and outdoor venues. Until DNATrax particles were developed, no rapid or safe way existed to validate air transport models with realistic particles in the range of 1-10 microns. Successful DNATrax testing was conducted at the Pentagon in November 2012 in conjunction with the Pentagon Force Protection Agency. This study enhanced the team's understanding of indoor ventilation environments created by heating, ventilation and air conditioning (HVAC) systems. DNATrax are particles comprised of sugar and synthetic DNA that serve as a bar code for the particle. The potential for creating unique bar-coded particles is virtually unlimited, thus allowing for simultaneous and repeated releases, which dramatically reduces the costs associated with conducting tests for contaminants. Among the applications for the new material are indoor air quality detection, for homes, offices, ships and airplanes; urban particulate tracking, for subway stations, train stations, and convention centers; environmental release tracking; and oil and gas uses, including fracking, to better track fluid flow.
2013 R&D 100 Award: DNATrax could revolutionize air quality detection and tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farquar, George
A team of LLNL scientists and engineers has developed a safe and versatile material, known as DNA Tagged Reagents for Aerosol Experiments (DNATrax), that can be used to reliably and rapidly diagnose airflow patterns and problems in both indoor and outdoor venues. Until DNATrax particles were developed, no rapid or safe way existed to validate air transport models with realistic particles in the range of 1-10 microns. Successful DNATrax testing was conducted at the Pentagon in November 2012 in conjunction with the Pentagon Force Protection Agency. This study enhanced the team's understanding of indoor ventilation environments created by heating, ventilationmore » and air conditioning (HVAC) systems. DNATrax are particles comprised of sugar and synthetic DNA that serve as a bar code for the particle. The potential for creating unique bar-coded particles is virtually unlimited, thus allowing for simultaneous and repeated releases, which dramatically reduces the costs associated with conducting tests for contaminants. Among the applications for the new material are indoor air quality detection, for homes, offices, ships and airplanes; urban particulate tracking, for subway stations, train stations, and convention centers; environmental release tracking; and oil and gas uses, including fracking, to better track fluid flow.« less
Trace DNA analysis: do you know what your neighbour is doing? A multi-jurisdictional survey.
Raymond, Jennifer J; van Oorschot, Roland A H; Walsh, Simon J; Roux, Claude
2008-01-01
Since 1997 the analysis of DNA recovered from handled objects, or 'trace' DNA, has become routine and is frequently demanded from crime scene examinations. However, this analysis often produces unpredictable results. The factors affecting the recovery of full profiles are numerous, and include varying methods of collection and analysis. Communication between forensic laboratories in Australia and New Zealand has been limited in the past, due in some part to sheer distance. Because of its relatively small population and low number of forensic jurisdictions this region is in an excellent position to provide a collective approach. However, the protocols, training methods and research of each jurisdiction had not been widely exchanged. A survey was developed to benchmark the current practices involved in trace DNA analysis, aiming to provide information for training programs and research directions, and to identify factors contributing to the success or failure of the analysis. The survey was divided in to three target groups: crime scene officers, DNA laboratory scientists, and managers of these staff. In late 2004 surveys were sent to forensic organisations in every Australian jurisdiction and New Zealand. A total of 169 completed surveys were received with a return rate of 54%. Information was collated regarding sampling, extraction, amplification and analysis methods, contamination prevention, samples collected, success rates, personnel training and education, and concurrent fingerprinting. The data from the survey responses provided an insight into aspects of trace DNA analysis, from crime scene to interpretation and management. Several concerning factors arose from the survey. Results collation is a significant issue being identified as poor and differing widely, preventing inter-jurisdictional comparison and intra-jurisdictional assessment of both the processes and outputs. A second point of note is the widespread lack of refresher training and proficiency testing, with no set standard for initial training courses. A common theme to these and other issues was the need for a collective approach to training and methodology in trace DNA analysis. Trace DNA is a small fraction of the evidence available in current investigations, and parallels to these results and problems will no doubt be found in other forensic disciplines internationally. The significant point to be realised from this study is the need for effective communication lines between forensic organisations to ensure that best practice is followed, ideally with a cohesive pan-jurisdictional approach.
Riddle, Brett R.
2016-01-01
Deciphering the geographic context of diversification and distributional dynamics in continental biotas has long been an interest of biogeographers, ecologists, and evolutionary biologists. Thirty years ago, the approach now known as comparative phylogeography was introduced in a landmark study of a continental biota. Here, I use a set of 455 studies to explore the current scope of continental comparative phylogeography, including geographic, conceptual, temporal, ecological, and genomic attributes. Geographically, studies are more frequent in the northern hemisphere, but the south is catching up. Most studies focus on a Quaternary timeframe, but the Neogene is well represented. As such, explanations for geographic structure and history include geological and climatic events in Earth history, and responses include vicariance, dispersal, and range contraction-expansion into and out of refugia. Focal taxa are biased toward terrestrial or semiterrestrial vertebrates, although plants and invertebrates are well represented in some regions. The use of various kinds of nuclear DNA markers is increasing, as are multiple locus studies, but use of organelle DNA is not decreasing. Species distribution models are not yet widely incorporated into studies. In the future, continental comparative phylogeographers will continue to contribute to erosion of the simple vicariance vs. dispersal paradigm, including exposure of the widespread nature of temporal pseudocongruence and its implications for models of diversification; provide new templates for addressing a variety of ecological and evolutionary traits; and develop closer working relationships with earth scientists and biologists in a variety of disciplines. PMID:27432953
Riddle, Brett R
2016-07-19
Deciphering the geographic context of diversification and distributional dynamics in continental biotas has long been an interest of biogeographers, ecologists, and evolutionary biologists. Thirty years ago, the approach now known as comparative phylogeography was introduced in a landmark study of a continental biota. Here, I use a set of 455 studies to explore the current scope of continental comparative phylogeography, including geographic, conceptual, temporal, ecological, and genomic attributes. Geographically, studies are more frequent in the northern hemisphere, but the south is catching up. Most studies focus on a Quaternary timeframe, but the Neogene is well represented. As such, explanations for geographic structure and history include geological and climatic events in Earth history, and responses include vicariance, dispersal, and range contraction-expansion into and out of refugia. Focal taxa are biased toward terrestrial or semiterrestrial vertebrates, although plants and invertebrates are well represented in some regions. The use of various kinds of nuclear DNA markers is increasing, as are multiple locus studies, but use of organelle DNA is not decreasing. Species distribution models are not yet widely incorporated into studies. In the future, continental comparative phylogeographers will continue to contribute to erosion of the simple vicariance vs. dispersal paradigm, including exposure of the widespread nature of temporal pseudocongruence and its implications for models of diversification; provide new templates for addressing a variety of ecological and evolutionary traits; and develop closer working relationships with earth scientists and biologists in a variety of disciplines.
The challenges of sequencing by synthesis.
Fuller, Carl W; Middendorf, Lyle R; Benner, Steven A; Church, George M; Harris, Timothy; Huang, Xiaohua; Jovanovich, Stevan B; Nelson, John R; Schloss, Jeffery A; Schwartz, David C; Vezenov, Dmitri V
2009-11-01
DNA sequencing-by-synthesis (SBS) technology, using a polymerase or ligase enzyme as its core biochemistry, has already been incorporated in several second-generation DNA sequencing systems with significant performance. Notwithstanding the substantial success of these SBS platforms, challenges continue to limit the ability to reduce the cost of sequencing a human genome to $100,000 or less. Achieving dramatically reduced cost with enhanced throughput and quality will require the seamless integration of scientific and technological effort across disciplines within biochemistry, chemistry, physics and engineering. The challenges include sample preparation, surface chemistry, fluorescent labels, optimizing the enzyme-substrate system, optics, instrumentation, understanding tradeoffs of throughput versus accuracy, and read-length/phasing limitations. By framing these challenges in a manner accessible to a broad community of scientists and engineers, we hope to solicit input from the broader research community on means of accelerating the advancement of genome sequencing technology.
Using mobile sequencers in an academic classroom
Zaaijer, Sophie; Erlich, Yaniv
2016-01-01
The advent of mobile DNA sequencers has made it possible to generate DNA sequencing data outside of laboratories and genome centers. Here, we report our experience of using the MinION, a mobile sequencer, in a 13-week academic course for undergraduate and graduate students. The course consisted of theoretical sessions that presented fundamental topics in genomics and several applied hackathon sessions. In these hackathons, the students used MinION sequencers to generate and analyze their own data and gain hands-on experience in the topics discussed in the theoretical classes. The manuscript describes the structure of our class, the educational material, and the lessons we learned in the process. We hope that the knowledge and material presented here will provide the community with useful tools to help educate future generations of genome scientists. DOI: http://dx.doi.org/10.7554/eLife.14258.001 PMID:27054412
Josko, Deborah
2014-01-01
The advent of DNA sequencing technologies and the various applications that can be performed will have a dramatic effect on medicine and healthcare in the near future. There are several DNA sequencing platforms available on the market for research and clinical use. Based on the medical laboratory scientist or researcher's needs and taking into consideration laboratory space and budget, one can chose which platform will be beneficial to their institution and their patient population. Although some of the instrument costs seem high, diagnosing a patient quickly and accurately will save hospitals money with fewer hospital stays and targeted treatment based on an individual's genetic make-up. By determining the type of disease an individual has, based on the mutations present or having the ability to prescribe the appropriate antimicrobials based on the knowledge of the organism's resistance patterns, the clinician will be better able to treat and diagnose a patient which ultimately will improve patient outcomes and prognosis.
Forensic DNA phenotyping: Developing a model privacy impact assessment.
Scudder, Nathan; McNevin, Dennis; Kelty, Sally F; Walsh, Simon J; Robertson, James
2018-05-01
Forensic scientists around the world are adopting new technology platforms capable of efficiently analysing a larger proportion of the human genome. Undertaking this analysis could provide significant operational benefits, particularly in giving investigators more information about the donor of genetic material, a particularly useful investigative lead. Such information could include predicting externally visible characteristics such as eye and hair colour, as well as biogeographical ancestry. This article looks at the adoption of this new technology from a privacy perspective, using this to inform and critique the application of a Privacy Impact Assessment to this emerging technology. Noting the benefits and limitations, the article develops a number of themes that would influence a model Privacy Impact Assessment as a contextual framework for forensic laboratories and law enforcement agencies considering implementing forensic DNA phenotyping for operational use. Copyright © 2018 Elsevier B.V. All rights reserved.
Genomic stability of lyophilized sheep somatic cells before and after nuclear transfer.
Iuso, Domenico; Czernik, Marta; Di Egidio, Fiorella; Sampino, Silvestre; Zacchini, Federica; Bochenek, Michal; Smorag, Zdzislaw; Modlinski, Jacek A; Ptak, Grazyna; Loi, Pasqualino
2013-01-01
The unprecedented decline of biodiversity worldwide is urging scientists to collect and store biological material from seriously threatened animals, including large mammals. Lyophilization is being explored as a low-cost system for storage in bio-banks of cells that might be used to expand or restore endangered or extinct species through the procedure of Somatic Cell Nuclear Transfer (SCNT). Here we report that the genome is intact in about 60% of lyophylized sheep lymphocytes, whereas DNA damage occurs randomly in the remaining 40%. Remarkably, lyophilized nuclei injected into enucleated oocytes are repaired by a robust DNA repairing activity of the oocytes, and show normal developmental competence. Cloned embryos derived from lyophylized cells exhibited chromosome and cellular composition comparable to those of embryos derived from fresh donor cells. These findings support the feasibility of lyophylization as a storage procedure of mammalian cells to be used for SCNT.
Genomic Stability of Lyophilized Sheep Somatic Cells before and after Nuclear Transfer
Iuso, Domenico; Czernik, Marta; Di Egidio, Fiorella; Sampino, Silvestre; Zacchini, Federica; Bochenek, Michal; Smorag, Zdzislaw; Modlinski, Jacek A.; Ptak, Grazyna; Loi, Pasqualino
2013-01-01
The unprecedented decline of biodiversity worldwide is urging scientists to collect and store biological material from seriously threatened animals, including large mammals. Lyophilization is being explored as a low-cost system for storage in bio-banks of cells that might be used to expand or restore endangered or extinct species through the procedure of Somatic Cell Nuclear Transfer (SCNT). Here we report that the genome is intact in about 60% of lyophylized sheep lymphocytes, whereas DNA damage occurs randomly in the remaining 40%. Remarkably, lyophilized nuclei injected into enucleated oocytes are repaired by a robust DNA repairing activity of the oocytes, and show normal developmental competence. Cloned embryos derived from lyophylized cells exhibited chromosome and cellular composition comparable to those of embryos derived from fresh donor cells. These findings support the feasibility of lyophylization as a storage procedure of mammalian cells to be used for SCNT. PMID:23308098
Overview of Cell Synchronization.
Banfalvi, Gaspar
2017-01-01
The widespread interest in cell synchronization is maintained by the studies of control mechanism involved in cell cycle regulation. During the synchronization distinct subpopulations of cells are obtained representing different stages of the cell cycle. These subpopulations are then used to study regulatory mechanisms of the cycle at the level of macromolecular biosynthesis (DNA synthesis, gene expression, protein synthesis), protein phosphorylation, development of new drugs, etc. Although several synchronization methods have been described, it is of general interest that scientists get a compilation and an updated view of these synchronization techniques. This introductory chapter summarizes: (1) the basic concepts and principal criteria of cell cycle synchronizations, (2) the most frequently used synchronization methods, such as physical fractionation (flow cytometry, dielectrophoresis, cytofluorometric purification), chemical blockade, (3) synchronization of embryonic cells, (4) synchronization at low temperature, (5) comparison of cell synchrony techniques, (6) synchronization of unicellular organisms, and (7) the effect of synchronization on transfection.
Nucleic acid probes as a diagnostic method for tick-borne hemoparasites of veterinary importance.
Figueroa, J V; Buening, G M
1995-03-01
An increased number of articles on the use of nucleic acid-based hybridization techniques for diagnostic purposes have been recently published. This article reviews nucleic acid-based hybridization as an assay to detect hemoparasite infections of economic relevance in veterinary medicine. By using recombinant DNA techniques, selected clones containing inserts of Anaplasma, Babesia, Cowdria or Theileria genomic DNA sequences have been obtained, and they are now available to be utilized as specific, highly sensitive DNA or RNA probes to detect the presence of the hemoparasite DNA in an infected animal. Either in an isotopic or non-isotopic detection system, probes have allowed scientists to test for--originally in samples collected from experimentally infected animals and later in samples collected in the field--the presence of hemoparasites during the prepatent, patent, convalescent, and chronic periods of the infection in the host. Nucleic acid probes have given researchers the opportunity to carry out genomic analysis of parasite DNA to differentiate hemoparasite species and to identify genetically distinct populations among and within isolates, strains and clonal populations. Prevalence of parasite infection in the tick vector can now be accomplished more specifically with the nucleic acid probes. Lately, with the advent of the polymerase chain reaction technique, small numbers of hemoparasites can be positively identified in the vertebrate host and tick vector. These techniques can be used to assess the veterinary epidemiological situation in a particular geographical region for the planning of control measures.
Reilly, P R; Page, D C
1998-09-01
We discuss some societal and legal ramifications of the human genetics revolution. Our reflections were stimulated by discussions among scientists, citizens and legal experts at a large public symposium. We outline key issues regarding oversight of genetic research on human subjects, banking of DNA data by governments and corporations, the potential impact of behavioural genetics and effects upon racial and racist thinking. We contend that, in some cases, well-intentioned but naive efforts to protect the rights of individuals and groups may hurt everyone by blocking the progress of useful research.
Shanks, Orin C; Kelty, Catherine A; Oshiro, Robin; Haugland, Richard A; Madi, Tania; Brooks, Lauren; Field, Katharine G; Sivaganesan, Mano
2016-05-01
There is growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for water quality management. The transition from a research tool to a standardized protocol requires a high degree of confidence in data quality across laboratories. Data quality is typically determined through a series of specifications that ensure good experimental practice and the absence of bias in the results due to DNA isolation and amplification interferences. However, there is currently a lack of consensus on how best to evaluate and interpret human fecal source identification qPCR experiments. This is, in part, due to the lack of standardized protocols and information on interlaboratory variability under conditions for data acceptance. The aim of this study is to provide users and reviewers with a complete series of conditions for data acceptance derived from a multiple laboratory data set using standardized procedures. To establish these benchmarks, data from HF183/BacR287 and HumM2 human-associated qPCR methods were generated across 14 laboratories. Each laboratory followed a standardized protocol utilizing the same lot of reference DNA materials, DNA isolation kits, amplification reagents, and test samples to generate comparable data. After removal of outliers, a nested analysis of variance (ANOVA) was used to establish proficiency metrics that include lab-to-lab, replicate testing within a lab, and random error for amplification inhibition and sample processing controls. Other data acceptance measurements included extraneous DNA contamination assessments (no-template and extraction blank controls) and calibration model performance (correlation coefficient, amplification efficiency, and lower limit of quantification). To demonstrate the implementation of the proposed standardized protocols and data acceptance criteria, comparable data from two additional laboratories were reviewed. The data acceptance criteria proposed in this study should help scientists, managers, reviewers, and the public evaluate the technical quality of future findings against an established benchmark. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Connect the Book: The Tarantula Scientist
ERIC Educational Resources Information Center
Brodie, Carolyn S.
2005-01-01
This column describes the book, "The Tarantula Scientist," that features the work of arachnologist Sam Marshall, a scientist who studies spiders and their eight-legged relatives. Marshall is one of only four or five scientists who specializes in the study of tarantulas. The informative text and outstanding photographs follow Sam as he…
Thinking like a scientist: innateness as a case study.
Knobe, Joshua; Samuels, Richard
2013-01-01
The concept of innateness appears in systematic research within cognitive science, but it also appears in less systematic modes of thought that long predate the scientific study of the mind. The present studies therefore explore the relationship between the properly scientific uses of this concept and its role in ordinary folk understanding. Studies 1-4 examined the judgments of people with no specific training in cognitive science. Results showed (a) that judgments about whether a trait was innate were not affected by whether or not the trait was learned, but (b) such judgments were impacted by moral considerations. Study 5 looked at the judgments of both non-scientists and scientists, in conditions that encouraged either thinking about individual cases or thinking about certain general principles. In the case-based condition, both non-scientists and scientists showed an impact of moral considerations but little impact of learning. In the principled condition, both non-scientists and scientists showed an impact of learning but little impact of moral considerations. These results suggest that both non-scientists and scientists are drawn to a conception of innateness that differs from the one at work in contemporary scientific research but that they are also both capable of 'filtering out' their initial intuitions and using a more scientific approach. Copyright © 2012 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Yore, Larry D.; Florence, Marilyn K.; Pearson, Terry W.; Weaver, Andrew J.
2006-01-01
This autobiographical case study of two scientists involved in earlier studies documents a profile of each scientist. These profiles were used to develop semi-structured interview protocols and email surveys for each scientist. The central issues of these data collections were whether these modern, evaluativist scientists believe that the…
Still Persistent Global Problem of Scientists' Image
ERIC Educational Resources Information Center
Türkmen, Hakan
2015-01-01
Pre-service teachers' views of science and scientists have been widely studied. The purpose of this study is to identify whether there is problem of image of scientists and determine where they receive about scientist image. Three hundred thirty five (105 from Turkey, 162 from Europe, 68 from US) elementary pre-service teachers participated in…
Boeing, Philipp; Wolfenden, Bethan; Smith, Patrick; Beaufoy, William; Rose, Simon; Ratisai, Tonderai; Zaikin, Alexey
2016-01-01
Aim. The nascent field of bio-geoengineering stands to benefit from synthetic biologists’ efforts to standardise, and in so doing democratise, biomolecular research methods. Roseobacter clade bacteria comprise 15–20% of oceanic bacterio-plankton communities, making them a prime candidate for establishment of synthetic biology chassis for bio-geoengineering activities such as bioremediation of oceanic waste plastic. Developments such as the increasing affordability of DNA synthesis and laboratory automation continue to foster the establishment of a global ‘do-it-yourself’ research community alongside the more traditional arenas of academe and industry. As a collaborative group of citizen, student and professional scientists we sought to test the following hypotheses: (i) that an incubator capable of cultivating bacterial cells can be constructed entirely from non-laboratory items, (ii) that marine bacteria from the Roseobacter clade can be established as a genetically tractable synthetic biology chassis using plasmids conforming to the BioBrickTM standard and finally, (iii) that identifying and subcloning genes from a Roseobacter clade species can readily by achieved by citizen scientists using open source cloning and bioinformatic tools. Method. We cultivated three Roseobacter species, Roseobacter denitrificans, Oceanobulbus indolifexand Dinoroseobacter shibae. For each species we measured chloramphenicol sensitivity, viability over 11 weeks of glycerol-based cryopreservation and tested the effectiveness of a series of electroporation and heat shock protocols for transformation using a variety of plasmid types. We also attempted construction of an incubator-shaker device using only publicly available components. Finally, a subgroup comprising citizen scientists designed and attempted a procedure for isolating the cold resistance anf1 gene from Oceanobulbus indolifexcells and subcloning it into a BioBrickTM formatted plasmid. Results. All species were stable over 11 weeks of glycerol cryopreservation, sensitive to 17 µg/mL chloramphenicol and resistant to transformation using the conditions and plasmids tested. An incubator-shaker device, ‘UCLHack-12’ was assembled and used to cultivate sufficient quantity of Oceanobulbus indolifexcells to enable isolation of the anf1 gene and its subcloning into a plasmid to generate the BioBrickTM BBa_K729016. Conclusion.The process of ‘de-skilling’ biomolecular techniques, particularly for relatively under-investigated organisms, is still on-going. However, our successful cell growth and DNA manipulation experiments serve to indicate the types of capabilities that are now available to citizen scientists. Science democratised in this way can make a positive contribution to the debate around the use of bio-geoengineering to address oceanic pollution or climate change. PMID:27441104
Borg, Yanika; Grigonyte, Aurelija Marija; Boeing, Philipp; Wolfenden, Bethan; Smith, Patrick; Beaufoy, William; Rose, Simon; Ratisai, Tonderai; Zaikin, Alexey; Nesbeth, Darren N
2016-01-01
Aim. The nascent field of bio-geoengineering stands to benefit from synthetic biologists' efforts to standardise, and in so doing democratise, biomolecular research methods. Roseobacter clade bacteria comprise 15-20% of oceanic bacterio-plankton communities, making them a prime candidate for establishment of synthetic biology chassis for bio-geoengineering activities such as bioremediation of oceanic waste plastic. Developments such as the increasing affordability of DNA synthesis and laboratory automation continue to foster the establishment of a global 'do-it-yourself' research community alongside the more traditional arenas of academe and industry. As a collaborative group of citizen, student and professional scientists we sought to test the following hypotheses: (i) that an incubator capable of cultivating bacterial cells can be constructed entirely from non-laboratory items, (ii) that marine bacteria from the Roseobacter clade can be established as a genetically tractable synthetic biology chassis using plasmids conforming to the BioBrick(TM) standard and finally, (iii) that identifying and subcloning genes from a Roseobacter clade species can readily by achieved by citizen scientists using open source cloning and bioinformatic tools. Method. We cultivated three Roseobacter species, Roseobacter denitrificans, Oceanobulbus indolifexand Dinoroseobacter shibae. For each species we measured chloramphenicol sensitivity, viability over 11 weeks of glycerol-based cryopreservation and tested the effectiveness of a series of electroporation and heat shock protocols for transformation using a variety of plasmid types. We also attempted construction of an incubator-shaker device using only publicly available components. Finally, a subgroup comprising citizen scientists designed and attempted a procedure for isolating the cold resistance anf1 gene from Oceanobulbus indolifexcells and subcloning it into a BioBrick(TM) formatted plasmid. Results. All species were stable over 11 weeks of glycerol cryopreservation, sensitive to 17 µg/mL chloramphenicol and resistant to transformation using the conditions and plasmids tested. An incubator-shaker device, 'UCLHack-12' was assembled and used to cultivate sufficient quantity of Oceanobulbus indolifexcells to enable isolation of the anf1 gene and its subcloning into a plasmid to generate the BioBrick(TM) BBa_K729016. Conclusion.The process of 'de-skilling' biomolecular techniques, particularly for relatively under-investigated organisms, is still on-going. However, our successful cell growth and DNA manipulation experiments serve to indicate the types of capabilities that are now available to citizen scientists. Science democratised in this way can make a positive contribution to the debate around the use of bio-geoengineering to address oceanic pollution or climate change.
Genome editing with CompoZr custom zinc finger nucleases (ZFNs).
Hansen, Keith; Coussens, Matthew J; Sago, Jack; Subramanian, Shilpi; Gjoka, Monika; Briner, Dave
2012-06-14
Genome editing is a powerful technique that can be used to elucidate gene function and the genetic basis of disease. Traditional gene editing methods such as chemical-based mutagenesis or random integration of DNA sequences confer indiscriminate genetic changes in an overall inefficient manner and require incorporation of undesirable synthetic sequences or use of aberrant culture conditions, potentially confusing biological study. By contrast, transient ZFN expression in a cell can facilitate precise, heritable gene editing in a highly efficient manner without the need for administration of chemicals or integration of synthetic transgenes. Zinc finger nucleases (ZFNs) are enzymes which bind and cut distinct sequences of double-stranded DNA (dsDNA). A functional CompoZr ZFN unit consists of two individual monomeric proteins that bind a DNA "half-site" of approximately 15-18 nucleotides (see Figure 1). When two ZFN monomers "home" to their adjacent target sites the DNA-cleavage domains dimerize and create a double-strand break (DSB) in the DNA. Introduction of ZFN-mediated DSBs in the genome lays a foundation for highly efficient genome editing. Imperfect repair of DSBs in a cell via the non-homologous end-joining (NHEJ) DNA repair pathway can result in small insertions and deletions (indels). Creation of indels within the gene coding sequence of a cell can result in frameshift and subsequent functional knockout of a gene locus at high efficiency. While this protocol describes the use of ZFNs to create a gene knockout, integration of transgenes may also be conducted via homology-directed repair at the ZFN cut site. The CompoZr Custom ZFN Service represents a systematic, comprehensive, and well-characterized approach to targeted gene editing for the scientific community with ZFN technology. Sigma scientists work closely with investigators to 1) perform due diligence analysis including analysis of relevant gene structure, biology, and model system pursuant to the project goals, 2) apply this knowledge to develop a sound targeting strategy, 3) then design, build, and functionally validate ZFNs for activity in a relevant cell line. The investigator receives positive control genomic DNA and primers, and ready-to-use ZFN reagents supplied in both plasmid DNA and in-vitro transcribed mRNA format. These reagents may then be delivered for transient expression in the investigator's cell line or cell type of choice. Samples are then tested for gene editing at the locus of interest by standard molecular biology techniques including PCR amplification, enzymatic digest, and electrophoresis. After positive signal for gene editing is detected in the initial population, cells are single-cell cloned and genotyped for identification of mutant clones/alleles.
The mentoring of male and female scientists during their doctoral studies
NASA Astrophysics Data System (ADS)
Filippelli, Laura Ann
The mentoring relationships of male and female scientists during their doctoral studies were examined. Male and female biologists, chemists, engineers and physicists were compared regarding the importance of doctoral students receiving career enhancing and psychosocial mentoring from their doctoral chairperson and student colleagues. Scientists' satisfaction with their chairperson and colleagues as providers of these mentoring functions was also investigated. In addition, scientists identified individuals other than their chairperson and colleagues who were positive influencers on their professional development as scientists and those who hindered their development. A reliable instrument, "The Survey of Accomplished Scientists' Doctoral Experiences," was developed to assess career enhancing and psychosocial mentoring of doctoral chairpersons and student colleagues based on the review of literature, interviews with scientists and two pilot studies. Surveys were mailed to a total of 400 men and women scientists with earned doctorates, of which 209 were completed and returned. The findings reveal that female scientists considered the doctoral chairperson furnishing career enhancing mentoring more important than did the men, while both were in accordance with the importance of them providing psychosocial mentoring. In addition, female scientists were not as satisfied as men with their chairperson providing most of the career enhancing and psychosocial mentoring functions. For doctoral student colleagues, female scientists, when compared to men, indicated that they considered student colleagues more important in providing career enhancing and psychosocial mentoring. However, male and female scientists were equally satisfied with their colleagues as providers of these mentoring functions. Lastly, the majority of male scientists indicated that professors served as a positive influencer, while women revealed that spouses and friends positively influenced their professional development as scientists. Several recommended changes in science departments are provided.
Whole-Exome Sequencing of 10 Scientists: Evaluation of the Process and Outcomes.
Lindor, Noralane M; Schahl, Kimberly A; Johnson, Kiley J; Hunt, Katherine S; Mensink, Kara A; Wieben, Eric D; Klee, Eric; Black, John L; Highsmith, W Edward; Thibodeau, Stephen N; Ferber, Matthew J; Aypar, Umut; Ji, Yuan; Graham, Rondell P; Fiksdal, Alexander S; Sarangi, Vivek; Ormond, Kelly E; Riegert-Johnson, Douglas L; McAllister, Tammy M; Farrugia, Gianrico; McCormick, Jennifer B
2015-10-01
To understand motivations, educational needs, and concerns of individuals contemplating whole-exome sequencing (WES) and determine what amount of genetic information might be obtained by sequencing a generally healthy cohort so as to more effectively counsel future patients. From 2012 to 2014, 40 medically educated, generally healthy scientists at Mayo Clinic were invited to have WES conducted on a research basis; 26 agreed to be in a drawing from which 10 participants were selected. The study involved pre- and posttest genetic counseling and completion of 4 surveys related to the experience and outcomes. Whole-exome sequencing was conducted on DNA from blood from each person. Most variants (76,305 per person; range, 74,505-77,387) were known benign allelic variants, variants in genes of unknown function, or variants of uncertain significance in genes of known function. The results of suspected pathogenic/pathogenic variants in Mendelian disorders and pharmacogenomic variants were disclosed. The mean number of suspected pathogenic/pathogenic variants was 2.2 per person (range, 1-4). Four pharmacogenomic genes were included for reporting; variants were found in 9 of 10 participants. This study provides data that may be useful in establishing reality-based patient expectations, outlines specific points to cover during counseling, and increases confidence in the feasibility of providing adequate preparation and counseling for WES in generally healthy individuals. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
Turkish Elementary and Secondary Students' Views about Science and Scientist
ERIC Educational Resources Information Center
Akcay, Behiye
2011-01-01
The aim of this study was to determine elementary and secondary students' views concerning science and scientists. Data gathered from Draw-a-Scientist Test (DAST) and essays written by students were used to analyze their views. The study involved 359 students in grades 5 through 11. The results indicate that student's perceived scientists as to be…
Investigation of the Secondary School Students' Images of Scientists
ERIC Educational Resources Information Center
Akgün, Abuzer
2016-01-01
The overall purpose of this study is to explore secondary school students' images of scientists. In addition to this comprehensive purpose, it is also investigated that if these students' current images of scientists and those in which they see themselves as a scientist in the near future are consistent or not. The study was designed in line with…
Advanced Colloids Experiment (ACE) Science Overview
NASA Technical Reports Server (NTRS)
Meyer, William V.; Sicker, Ronald J.; Chiaramonte, Francis P.; Luna, Unique J.; Chaiken, Paul M.; Hollingsworth, Andrew; Secanna, Stefano; Weitz, David; Lu, Peter; Yodh, Arjun;
2013-01-01
The Advanced Colloids Experiment is being conducted on the International Space Station (ISS) using the Light Microscopy Module (LMM) in the Fluids Integrated Rack (FIR). Work to date will be discussed and future plans and opportunities will be highlighted. The LMM is a microscope facility designed to allow scientists to process, manipulate, and characterize colloidal samples in micro-gravity where the absence of gravitational settling and particle jamming enables scientists to study such things as:a.The role that disordered and ordered-packing of spheres play in the phase diagram and equation of state of hard sphere systems,b.crystal nucleation and growth, growth instabilities, and the glass transition, c.gelation and phase separation of colloid polymer mixtures,d.crystallization of colloidal binary alloys,e.competition between crystallization and phase separation,f.effects of anisotropy and specific interactions on packing, aggregation, frustration and crystallization,g.effects of specific reversible and irreversible interactions mediated in the first case by hybridization of complementary DNA strands attached to separate colloidal particles,h.Lock and key interactions between colloids with dimples and spheres which match the size and shape of the dimples,i.finding the phase diagrams of isotropic and interacting particles,j.new techniques for complex self-assembly including scenarios for self-replication, k.critical Casimir forces,l.biology (real and model systems) in microgravity,m.etc. By adding additional microscopy capabilities to the existing LMM, NASA will increase the tools available for scientists that fly experiments on the ISS enabling scientists to observe directly what is happening at the particle level. Presently, theories are needed to bridge the gap between what is being observed (at a macroscopic level when photographing samples) with what is happening at a particle (or microscopic) level. What is happening at a microscopic level will be directly accessible with the availability of the Light Microscopy Module (LMM) on ISS. To meet these goals, the ACE experiment is being built-up in stages, with the availability of confocal microscopy being the ultimate objective. Supported by NASAs Physical Sciences Research Program, ESAESTEC, and the authors respective governments.
ERIC Educational Resources Information Center
Akmon, Dharma R.
2014-01-01
This dissertation examines the role of conceptions of data's value in data practices. Based on a study of three small teams of scientists carrying out ecological research at a biological station, my study addresses the following main question: How do scientists conceive of the value of their data, and how do scientists enact conceptions of value…
Scientists' perspectives on consent in the context of biobanking research
Master, Zubin; Campo-Engelstein, Lisa; Caulfield, Timothy
2015-01-01
Most bioethics studies have focused on capturing the views of patients and the general public on research ethics issues related to informed consent for biobanking and only a handful of studies have examined the perceptions of scientists. Capturing the opinions of scientists is important because they are intimately involved with biobanks as collectors and users of samples and health information. In this study, we performed interviews with scientists followed by qualitative analysis to capture the diversity of perspectives on informed consent. We found that the majority of scientists in our study reported their preference for a general consent approach although they do not believe there to be a consensus on consent type. Despite their overall desire for a general consent model, many reported several concerns including donors needing some form of assurance that nothing unethical will be done with their samples and information. Finally, scientists reported mixed opinions about incorporating exclusion clauses in informed consent as a means of limiting some types of contentious research as a mechanism to assure donors that their samples and information are being handled appropriately. This study is one of the first to capture the views of scientists on informed consent in biobanking. Future studies should attempt to generalize findings on the perspectives of different scientists on informed consent for biobanking. PMID:25074466
Hagemann, Rudolf
2007-01-01
At the beginning, the two fundamental papers by Watson and Crick published in 1953 are presented. Subsequently, the main phases of protein and nucleic acids research, starting in the middle of the 19th century, are shortly reviewed. It is outlined, how the 'protein-paradigm' was gradually developed and ultimately became widely accepted. It is then described how Caspersson in 1936 newly raised the question what the chemical nature of genes was: proteins or nucleic acids ? In the main part of this report six lines of research are reviewed, the results of which led to the demise of the 'protein paradigm', the creation of the Watson-Crick model of the DNA and the elaboration of the mechanism of DNA replication: (a) mutation experiments with UV and determination of the UV action spectrum, (b) determination of the chemical identity of the transforming agent in bacteria, (c) detailed chemical analysis of the DNA of different organisms, (d) molecular investigation of the infection of bacteria by bacteriophages, (e) X-ray analysis of DNA fibers, (f) model building and theoretical treatment of all data obtained. In this article, the factors promoting and inhibiting scientific progress in this field are described (and, above all, the relations between scientists with fixated concepts). The results from these lines of research led to the recognition of the decisive role of nucleic acids as the carriers of genetic information and, in this way, formally established the 'nucleic acid paradigm'. Finally the question is discussed why Watson and Crick found the right solution for the DNA structure (and not one of their competitors).
The scientists' opposition to SDI: How political views affect technical analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tait, G.E.
1989-01-01
This study examines the scientists' opposition to President Reagan's Strategic Defense Initiative (1983-1989) with a focus on the relationship between the scientists' political and strategic opposition to ballistic missile defenses (BMD) and their technical doubts about BMD technologies. The study begins with a review of the scientists' increased influence in United State's national security decision making because of the development of atomic weapons. The study then examines the scientists' role in developing and promoting a theory of arms control based upon mutual societal vulnerability. Because of this theory, a large segment of the American scientific community came to believe thatmore » the development of ballistic missile defenses would destabilize the strategic balance and therefore took the lead in arguing against BMD deployments. These background chapters conclude with an analysis of the scientists' involvement in the political campaign to stop the proposed Sentinel and Safeguard Anti-Ballistic Missile defense. The study then turns to the contemporary scientific opposition to BMD deployments and the SDI research program. After examining the polls and petitions that identify the scientists opposed to SDI, the study analyzes the tactics that three scientists use in their political effort to prevent BMD deployments. Next, an examination of the political and strategic assumptions behind the scientists' opposition to BMD reveals that a belief in the arms control process and deterrence by punishment, especially Assured Destruction deterrence, with a fear of an action-reaction arms race inspires much of the contemporary opposition to BMD. Finally, the scientists' technical doubts about BMD technologies are analyzed through the prism of peer critique. These critiques show that the scientists opposed to BMD deployments us pessimistic and unrealistic assumptions to skew their technical analysis of BMD technologies.« less
Miller, David I; Nolla, Kyle M; Eagly, Alice H; Uttal, David H
2018-03-20
This meta-analysis, spanning 5 decades of Draw-A-Scientist studies, examined U.S. children's gender-science stereotypes linking science with men. These stereotypes should have weakened over time because women's representation in science has risen substantially in the United States, and mass media increasingly depict female scientists. Based on 78 studies (N = 20,860; grades K-12), children's drawings of scientists depicted female scientists more often in later decades, but less often among older children. Children's depictions of scientists therefore have become more gender diverse over time, but children still associate science with men as they grow older. These results may reflect that children observe more male than female scientists in their environments, even though women's representation in science has increased over time. © 2018 Society for Research in Child Development.
ERIC Educational Resources Information Center
Subramaniam, Karthigeyan; Harrell, Pamela Esprivalo; Wojnowski, David
2013-01-01
Background and purpose: This study details the use of a conceptual framework to analyze prospective teachers' images of scientists to reveal their context-specific conceptions of scientists. The conceptual framework consists of context-specific conceptions related to positive, stereotypical and negative images of scientists as detailed in the…
Superheroes and supervillains: reconstructing the mad-scientist stereotype in school science
NASA Astrophysics Data System (ADS)
Avraamidou, Lucy
2013-04-01
Background. Reform recommendations around the world call for an understanding about the nature of science and the work of scientists. However, related research findings provide evidence that students hold stereotypical views of scientists and the nature of their work. Purpose The aim of this case study was to examine the impact of an intervention on 15 elementary school students' views of scientists. Sample An urban, fifth-grade, European elementary school classroom defined the context of this study. Design and method The intervention was an 11-week-long investigation of a local problem concerning water quality. In carrying out this investigation the students collaborated with a young metrology scientist to collect and analyse authentic data that would help them to construct a claim about the quality of the water. The students' initial views of scientists were investigated through a drawing activity, classroom discussions and interviews. Results Analysis of these data indicated that all students but one girl held very stereotypical views on scientists and the nature of their work. Analysis of interviews with each student and classroom discussions after the intervention illustrated that they reconstructed their stereotypical views of scientists and the nature of their work owing to their personal engagement in the investigation and their collaboration with the scientist. Conclusions The findings of this study suggest that more in-depth study into project-based approaches, out-of-school learning and school-scientist partnerships is warranted, for the purpose of determining appropriate pedagogies that support students in developing up-to-date understanding about scientists and the nature of their work.
Epigenetics: relevance and implications for public health.
Rozek, Laura S; Dolinoy, Dana C; Sartor, Maureen A; Omenn, Gilbert S
2014-01-01
Improved understanding of the multilayer regulation of the human genome has led to a greater appreciation of environmental, nutritional, and epigenetic risk factors for human disease. Chromatin remodeling, histone tail modifications, and DNA methylation are dynamic epigenetic changes responsive to external stimuli. Careful interpretation can provide insights for actionable public health through collaboration between population and basic scientists and through integration of multiple data sources. We review key findings in environmental epigenetics both in human population studies and in animal models, and discuss the implications of these results for risk assessment and public health protection. To ultimately succeed in identifying epigenetic mechanisms leading to complex phenotypes and disease, researchers must integrate the various animal models, human clinical approaches, and human population approaches while paying attention to life-stage sensitivity, to generate effective prescriptions for human health evaluation and disease prevention.
Li, Xiaoyan; Ni, Runzhou
2016-11-01
There are over 350 million chronic carriers of hepatitis B virus (HBV) in the world, of whom about a third eventually develop severe HBV-related complications. HBV contributes to liver cirrhosis and hepatocellular carcinoma development. Remarkable progress has been made in selective inhibition of HBV replication by nucleoside analogs. However, how to generate protective antibody of HBsAb in HBV-infected patients after HBV-DNA becomes negative still remains a challenge for scientists. In this study, we show that OmpC-HBsAg 'a' epitope chimeric protein vaccine can break HBV tolerance and induce protective immunity in HBV transgenic mice based on mimicking T cell-independent antigen to bypass T cells from the adaptive immune system. The antibodies induced by the vaccine have the ability to prevent HBV virion infection of human hepatocytes.
Harvey, Benjamin Simeon; Ji, Soo-Yeon
2017-01-01
As microarray data available to scientists continues to increase in size and complexity, it has become overwhelmingly important to find multiple ways to bring forth oncological inference to the bioinformatics community through the analysis of large-scale cancer genomic (LSCG) DNA and mRNA microarray data that is useful to scientists. Though there have been many attempts to elucidate the issue of bringing forth biological interpretation by means of wavelet preprocessing and classification, there has not been a research effort that focuses on a cloud-scale distributed parallel (CSDP) separable 1-D wavelet decomposition technique for denoising through differential expression thresholding and classification of LSCG microarray data. This research presents a novel methodology that utilizes a CSDP separable 1-D method for wavelet-based transformation in order to initialize a threshold which will retain significantly expressed genes through the denoising process for robust classification of cancer patients. Additionally, the overall study was implemented and encompassed within CSDP environment. The utilization of cloud computing and wavelet-based thresholding for denoising was used for the classification of samples within the Global Cancer Map, Cancer Cell Line Encyclopedia, and The Cancer Genome Atlas. The results proved that separable 1-D parallel distributed wavelet denoising in the cloud and differential expression thresholding increased the computational performance and enabled the generation of higher quality LSCG microarray datasets, which led to more accurate classification results.
ERIC Educational Resources Information Center
Sharkawy, Azza
2009-01-01
While several studies have documented young children's (K-2) stereotypic views of scientists and scientific work, few have examined students' views of the social nature of scientific work and the strategies effective in broadening these views. The purpose of this study is to examine how stories about scientists influence 1st-grade students' views…
ERIC Educational Resources Information Center
Leblebicioglu, Gulsen; Metin, Duygu; Yardimci, Esra; Cetin, Pinar Seda
2011-01-01
A number of studies have already investigated children's stereotypical images of scientists as being male, old, bald, wearing eyeglasses, working in laboratories, and so forth. There have also been some interventions to impose more realistic images of scientists. In this study, a science camp was conducted in Turkey with a team of scientists…
Age Estimation with DNA: From Forensic DNA Fingerprinting to Forensic (Epi)Genomics: A Mini-Review.
Parson, Walther
2018-01-01
Forensic genetics developed from protein-based techniques a quarter of a century ago and became famous as "DNA fingerprinting," this being based on restriction fragment length polymorphisms (RFLPs) of high-molecular-weight DNA. The amplification of much smaller short tandem repeat (STR) sequences using the polymerase chain reaction soon replaced RFLP analysis and advanced to become the gold standard in genetic identification. Meanwhile, STR multiplexes have been developed and made commercially available which simultaneously amplify up to 30 STR loci from as little as 15 cells or fewer. The enormous information content that comes with the large variety of observed STR genotypes allows for genetic individualisation (with the exception of identical twins). Carefully selected core STR loci form the basis of intelligence-led DNA databases that provide investigative leads by linking unsolved crime scenes and criminals through their matched STR profiles. Nevertheless, the success of modern DNA fingerprinting depends on the availability of reference material from suspects. In order to provide new investigative leads in cases where such reference samples are absent, forensic scientists started to explore the prediction of phenotypic traits from the DNA of the evidentiary sample. This paradigm change now uses DNA and epigenetic markers to forecast characteristics that are useful to triage further investigative work. So far, the best investigated externally visible characteristics are eye, hair and skin colour, as well as geographic ancestry and age. Information on the chronological age of a stain donor (or any sample donor) is elemental for forensic investigations in a number of aspects and has, therefore, been explored by researchers in some detail. Among different methodological approaches tested to date, the methylation-sensitive analysis of carefully selected DNA markers (CpG sites) has brought the most promising results by providing prediction accuracies of ±3-4 years, which can be comparable to, or even surpass those from, eyewitness reports. This mini-review puts recent developments in age estimation via (epi)genetic methods in the context of the requirements and goals of forensic genetics and highlights paths to follow in the future of forensic genomics. © 2018 S. Karger AG, Basel.
Values in environmental research: Citizens' views of scientists who acknowledge values.
Elliott, Kevin C; McCright, Aaron M; Allen, Summer; Dietz, Thomas
2017-01-01
Scientists who perform environmental research on policy-relevant topics face challenges when communicating about how values may have influenced their research. This study examines how citizens view scientists who publicly acknowledge values. Specifically, we investigate whether it matters: if citizens share or oppose a scientist's values, if a scientist's conclusions seem contrary to or consistent with the scientist's values, and if a scientist is assessing the state of the science or making a policy recommendation. We conducted two 3x2 factorial design online experiments. Experiment 1 featured a hypothetical scientist assessing the state of the science on the public-health effects of exposure to Bisphenol A (BPA), and Experiment 2 featured a scientist making a policy recommendation on use of BPA. We manipulated whether or not the scientist expressed values and whether the scientist's conclusion appeared contrary to or consistent with the scientist's values, and we accounted for whether or not subjects' values aligned with the scientist's values. We analyzed our data with ordinary least squares (OLS) regression techniques. Our results provide at least preliminary evidence that acknowledging values may reduce the perceived credibility of scientists within the general public, but this effect differs depending on whether scientists and citizens share values, whether scientists draw conclusions that run contrary to their values, and whether scientists make policy recommendations.
ERIC Educational Resources Information Center
Farland-Smith, Donna
2009-01-01
This article is the culmination of an extensive inquiry-focused interactive experience involving female middle school students and five university scientists, which demonstrated that middle school girls' perception of science and scientists can be successfully improved. The study exposed students to adult professional scientists over a period of a…
NASA Astrophysics Data System (ADS)
Subramaniam, Karthigeyan; Esprívalo Harrell, Pamela; Wojnowski, David
2013-04-01
Background and purpose : This study details the use of a conceptual framework to analyze prospective teachers' images of scientists to reveal their context-specific conceptions of scientists. The conceptual framework consists of context-specific conceptions related to positive, stereotypical and negative images of scientists as detailed in the literature on the images, role and work of scientists. Sample, design and method : One hundred and ninety-six drawings of scientists, generated by prospective teachers, were analyzed using the Draw-A-Scientist-Test Checklist (DAST-C), a binary linear regression and the conceptual framework. Results : The results of the binary linear regression analysis revealed a statistically significant difference for two DAST-C elements: ethnicity differences with regard to drawing a scientist who was Caucasian and gender differences for indications of danger. Analysis using the conceptual framework helped to categorize the same drawings into positive, stereotypical, negative and composite images of a scientist. Conclusions : The conceptual framework revealed that drawings were focused on the physical appearance of the scientist, and to a lesser extent on the equipment, location and science-related practices that provided the context of a scientist's role and work. Implications for teacher educators include the need to understand that there is a need to provide tools, like the conceptual framework used in this study, to help prospective teachers to confront and engage with their multidimensional perspectives of scientists in light of the current trends on perceiving and valuing scientists. In addition, teacher educators need to use the conceptual framework, which yields qualitative perspectives about drawings, together with the DAST-C, which yields quantitative measure for drawings, to help prospective teachers to gain a holistic outlook on their drawings of scientists.
Biomarkers of human exposure to pesticides.
Anwar, W A
1997-01-01
For centuries, several hundred pesticides have been used to control insects. These pesticides differ greatly in their mode of action, uptake by the body, metabolism, elimination from the body, and toxicity to humans. Potential exposure from the environment can be estimated by environmental monitoring. Actual exposure (uptake) is measured by the biological monitoring of human tissues and body fluids. Biomarkers are used to detect the effects of pesticides before adverse clinical health effects occur. Pesticides and their metabolites are measured in biological samples, serum, fat, urine, blood, or breast milk by the usual analytical techniques. Biochemical responses to environmental chemicals provide a measure of toxic effect. A widely used biochemical biomarker, cholinesterase depression, measures exposure to organophosphorus insecticides. Techniques that measure DNA damage (e.g., detection of DNA adducts) provide a powerful tool in measuring environmental effects. Adducts to hemoglobin have been detected with several pesticides. Determination of chromosomal aberration rates in cultured lymphocytes is an established method of monitoring populations occupationally or environmentally exposed to known or suspected mutagenic-carcinogenic agents. There are several studies on the cytogenetic effects of work with pesticide formulations. The majority of these studies report increases in the frequency of chromosomal aberrations and/or sister chromatid exchanges among the exposed workers. Biomarkers will have a major impact on the study of environmental risk factors. The basic aim of scientists exploring these issues is to determine the nature and consequences of genetic change or variation, with the ultimate purpose of predicting or preventing disease. PMID:9255564
Schinske, Jeffrey; Cardenas, Monica; Kaliangara, Jahana
2015-01-01
A number of studies have identified correlations between children’s stereotypes of scientists, their science identities, and interest or persistence in science, technology, engineering, and mathematics. Yet relatively few studies have examined scientist stereotypes among college students, and the literature regarding these issues in predominantly nonwhite and 2-yr college settings is especially sparse. We piloted an easy-to-analyze qualitative survey of scientist stereotypes in a biology class at a diverse, 2-yr, Asian American and Native American Pacific Islander–Serving Institution. We examined the reliability and validity of the survey, and characterized students’ comments with reference to previous research on stereotypes. Positive scientist stereotypes were relatively common in our sample, and negative stereotypes were rare. Negative stereotypes appeared to be concentrated within certain demographic groups. We found that students identifying nonstereotypical images of scientists at the start of class had higher rates of success in the course than their counterparts. Finally, evidence suggested many students lacked knowledge of actual scientists, such that they had few real-world reference points to inform their stereotypes of scientists. This study augments the scant literature regarding scientist stereotypes in diverse college settings and provides insights for future efforts to address stereotype threat and science identity. PMID:26338318
Serendipitous discovery of Wolbachia genomes in multiple Drosophila species.
Salzberg, Steven L; Dunning Hotopp, Julie C; Delcher, Arthur L; Pop, Mihai; Smith, Douglas R; Eisen, Michael B; Nelson, William C
2005-01-01
The Trace Archive is a repository for the raw, unanalyzed data generated by large-scale genome sequencing projects. The existence of this data offers scientists the possibility of discovering additional genomic sequences beyond those originally sequenced. In particular, if the source DNA for a sequencing project came from a species that was colonized by another organism, then the project may yield substantial amounts of genomic DNA, including near-complete genomes, from the symbiotic or parasitic organism. By searching the publicly available repository of DNA sequencing trace data, we discovered three new species of the bacterial endosymbiont Wolbachia pipientis in three different species of fruit fly: Drosophila ananassae, D. simulans, and D. mojavensis. We extracted all sequences with partial matches to a previously sequenced Wolbachia strain and assembled those sequences using customized software. For one of the three new species, the data recovered were sufficient to produce an assembly that covers more than 95% of the genome; for a second species the data produce the equivalent of a 'light shotgun' sampling of the genome, covering an estimated 75-80% of the genome; and for the third species the data cover approximately 6-7% of the genome. The results of this study reveal an unexpected benefit of depositing raw data in a central genome sequence repository: new species can be discovered within this data. The differences between these three new Wolbachia genomes and the previously sequenced strain revealed numerous rearrangements and insertions within each lineage and hundreds of novel genes. The three new genomes, with annotation, have been deposited in GenBank.
Young Children's Perceptions of Scientists: A Preliminary Study
ERIC Educational Resources Information Center
Buldu, Mehmet
2006-01-01
Background: Since the 1950s, there has been a growing body of research dealing with perceptions children have of scientists. Typically, research studies in this area have utilized children's drawings in an effort to discern what those perceptions are. Studies assessing perceptions children have of scientists have shown that children have…
ERIC Educational Resources Information Center
Reinisch, Bianca; Krell, Moritz; Hergert, Susann; Gogolin, Sarah; Krüger, Dirk
2017-01-01
Students' and pre-service teachers' conceptions of scientists have been assessed in a variety of studies. One of the most commonly used instruments is the Draw-A-Scientist Test (DAST) which offers the advantage that no verbal skills are needed by the participants. In some studies, methodical challenges related to the DAST have been discussed; for…
Populus Trichocarpa Genome-Wide Association Study (GWAS) Population SNP Dataset Released
Tuskan, Gerald; Muchero, Wellington; Chen, Jin-Gui; Jacobson, Daniel; Tschaplinski, Timothy; Rokhsar, Daniel S; Schackwitz, Wendy S; Schmutz, Jeremy; DiFazio, Stephen P
2016-01-01
This dataset includes genetic variations found in 882 poplar trees, and provides useful information to scientists studying plants as well as researchers more generally in the fields of biofuels, materials science, and secondary plant compounds. For nearly 10 years, researchers with DOE’s BioEnergy Science Center (BESC), a multi-institutional organization headquartered at ORNL, have studied the genome of Populus — a fast-growing perennial tree recognized for its economic potential in biofuels production. This Genome-Wide Association Study (GWAS) dataset includes more than 28 million single nucleotide polymorphisms, or SNPs that have been derived from 17 trillion bases of sequence data generated from 882 undomesticated Populus genotypes. Each SNP represents a variation in a single DNA nucleotide, or building block, that can act as a biological marker and/or causal allele within a protein sequence, helping scientists locate genes associated with certain characteristics, conditions or diseases. The results of this analysis have been used, among other things, to 1) seek genetic control of cell-wall recalcitrance — a natural characteristic of plant cell walls that prevent the release of sugars under microbial conversion and restricts biofuels production and 2) identify the molecular mechanisms controlling deposition of lignin in plant structures. Lignin is a polyphenolic polymer that strengthens plant cell walls and acts as a barrier to microbial access to cellulose during saccharfication — the process of breaking cellulose down into simple sugars for fermentation. Although the dataset’s most immediate applications are in fundamental plant sciences, ORNL researchers plan to use the GWAS data to inform applied work in areas such as cleaner, sustainable transportation biofuels, carbon fiber for lightweight vehicles and alternatives to conventional plastics and building insulation materials.
Prospects for the Study of Evolution in the Deep Biosphere
Biddle, Jennifer F.; Sylvan, Jason B.; Brazelton, William J.; Tully, Benjamin J.; Edwards, Katrina J.; Moyer, Craig L.; Heidelberg, John F.; Nelson, William C.
2012-01-01
Since the days of Darwin, scientists have used the framework of the theory of evolution to explore the interconnectedness of life on Earth and adaptation of organisms to the ever-changing environment. The advent of molecular biology has advanced and accelerated the study of evolution by allowing direct examination of the genetic material that ultimately determines the phenotypes upon which selection acts. The study of evolution has been furthered through examination of microbial evolution, with large population numbers, short generation times, and easily extractable DNA. Such work has spawned the study of microbial biogeography, with the realization that concepts developed in population genetics may be applicable to microbial genomes (Martiny et al., 2006; Manhes and Velicer, 2011). Microbial biogeography and adaptation has been examined in many different environments. Here we argue that the deep biosphere is a unique environment for the study of evolution and list specific factors that can be considered and where the studies may be performed. This publication is the result of the NSF-funded Center for Dark Energy Biosphere Investigations (C-DEBI) theme team on Evolution (www.darkenergybiosphere.org). PMID:22319515
Prospects for the study of evolution in the deep biosphere.
Biddle, Jennifer F; Sylvan, Jason B; Brazelton, William J; Tully, Benjamin J; Edwards, Katrina J; Moyer, Craig L; Heidelberg, John F; Nelson, William C
2011-01-01
Since the days of Darwin, scientists have used the framework of the theory of evolution to explore the interconnectedness of life on Earth and adaptation of organisms to the ever-changing environment. The advent of molecular biology has advanced and accelerated the study of evolution by allowing direct examination of the genetic material that ultimately determines the phenotypes upon which selection acts. The study of evolution has been furthered through examination of microbial evolution, with large population numbers, short generation times, and easily extractable DNA. Such work has spawned the study of microbial biogeography, with the realization that concepts developed in population genetics may be applicable to microbial genomes (Martiny et al., 2006; Manhes and Velicer, 2011). Microbial biogeography and adaptation has been examined in many different environments. Here we argue that the deep biosphere is a unique environment for the study of evolution and list specific factors that can be considered and where the studies may be performed. This publication is the result of the NSF-funded Center for Dark Energy Biosphere Investigations (C-DEBI) theme team on Evolution (www.darkenergybiosphere.org).
Liu, Margaret A; Rees, Jenaid
2015-02-01
Interview by Jenaid Rees, commissioning editor. Margaret A Liu is best known for her pioneering work in the area of DNA vaccines. A world renowned scientist, Liu was named one of 'The 50 Most Important Women Scientists' by Discover magazine in 2002. Liu obtained her M.D. from Harvard Medical School, and has held positions at numerous institutions including Harvard Medical School, Massachusetts Institute of Technology, University of Pennsylvania, UCSF, and the Karolinska Institutet in Stockholm. In her career she has served as Senior Advisor in Vaccinology at the Bill & Melinda Gates Foundation and Executive Vice-Chair of the International Vaccine Institute in Seoul, Korea and worked for companies including Merck, Transgène and Chiron Corporation. Her research achievements have led to her receipt of honorary lectureships, and she has held many board positions throughout her career. Liu currently consults in the fields of vaccines and immunotherapy for companies, universities, and non-governmental and governmental scientific organizations, and is a Foreign Adjunct Professor at the Karolinska Institutet in Stockholm, and an Adjunct Professor at the University of California, San Francisco.
NASA Astrophysics Data System (ADS)
Peker, Deniz; Dolan, Erin
2012-03-01
As student-teacher-scientist partnerships become more widespread, there is a need for research to understand the roles assumed by scientists and teachers as they interact with students in general and in inquiry learning environments in particular. Although teacher roles during inquiry learning have been studied, there is a paucity of research about the roles that scientists assume in their interactions with students. Socio-cultural perspectives on learning emphasize social interaction as a means for students to make meaning of scientific ideas. Thus, this naturalistic study of classroom discourse aims to explore the ways scientists and teachers help high school students make meaning during authentic inquiry investigations. Conversational analysis is conducted of video recordings of discussions between students and teachers and students and scientists from two instances of a student-teacher-scientist partnership program. A social semiotic analytic framework is used to interpret the actions of scientists and teachers. The results indicate a range of common and distinct roles for scientists and teachers with respect to the conceptual, social, pedagogical, and epistemological aspects of meaning making. While scientists provided conceptual and epistemological support related to their scientific expertise, such as explaining scientific phenomena or aspects of the nature of science, teachers played a critical role in ensuring students' access to this knowledge. The results have implications for managing the division of labor between scientists and teachers in partnership programs.
Peker, Deniz; Dolan, Erin
2012-03-01
As student-teacher-scientist partnerships become more widespread, there is a need for research to understand the roles assumed by scientists and teachers as they interact with students in general and in inquiry learning environments in particular. Although teacher roles during inquiry learning have been studied, there is a paucity of research about the roles that scientists assume in their interactions with students. Socio-cultural perspectives on learning emphasize social interaction as a means for students to make meaning of scientific ideas. Thus, this naturalistic study of classroom discourse aims to explore the ways scientists and teachers help high school students make meaning during authentic inquiry investigations. Conversational analysis is conducted of video recordings of discussions between students and teachers and students and scientists from two instances of a student-teacher-scientist partnership program. A social semiotic analytic framework is used to interpret the actions of scientists and teachers. The results indicate a range of common and distinct roles for scientists and teachers with respect to the conceptual, social, pedagogical, and epistemological aspects of meaning making. While scientists provided conceptual and epistemological support related to their scientific expertise, such as explaining scientific phenomena or aspects of the nature of science, teachers played a critical role in ensuring students' access to this knowledge. The results have implications for managing the division of labor between scientists and teachers in partnership programs.
Dolan, Erin
2013-01-01
As student–teacher–scientist partnerships become more widespread, there is a need for research to understand the roles assumed by scientists and teachers as they interact with students in general and in inquiry learning environments in particular. Although teacher roles during inquiry learning have been studied, there is a paucity of research about the roles that scientists assume in their interactions with students. Socio-cultural perspectives on learning emphasize social interaction as a means for students to make meaning of scientific ideas. Thus, this naturalistic study of classroom discourse aims to explore the ways scientists and teachers help high school students make meaning during authentic inquiry investigations. Conversational analysis is conducted of video recordings of discussions between students and teachers and students and scientists from two instances of a student–teacher–scientist partnership program. A social semiotic analytic framework is used to interpret the actions of scientists and teachers. The results indicate a range of common and distinct roles for scientists and teachers with respect to the conceptual, social, pedagogical, and epistemological aspects of meaning making. While scientists provided conceptual and epistemological support related to their scientific expertise, such as explaining scientific phenomena or aspects of the nature of science, teachers played a critical role in ensuring students' access to this knowledge. The results have implications for managing the division of labor between scientists and teachers in partnership programs. PMID:23828722
Modeling the Dynamics of Gel Electrophorresis in the High School Classroom
NASA Astrophysics Data System (ADS)
Saucedo, Skyler R.
2013-01-01
Gel electrophoresis, used by geneticists and forensic experts alike, is an immensely popular technique that utilizes an electric field to separate molecules and proteins by size and charge. At the microscopic level, a dye or complex protein like DNA is passed through agarose, a gelatinous three-dimensional matrix of pores and nano-sized tunnels. When forced through a maze of holes, the molecule unravels, forming a long chain, slithering through the field of pores in a process colloquially coined "reputation." As a result, the smaller molecules travel farther through the gel when compared to molecules of larger molecular weight. This highly effective "molecular sieve" provides consistent data and allows scientists to compare similar sequences of DNA base pairs in a routine fashion.2 When performed at the high school level, gel electrophoresis provides students the opportunity to learn about a contemporary lab technique of great scientific relevance. Doing real science certainly excites students and motivates them to learn more.
Editing plants for virus resistance using CRISPR-Cas.
Green, J C; Hu, J S
This minireview summarizes recent advancements using the clustered regularly interspaced palindromic repeats-associated nuclease systems (CRISPR-Cas) derived from prokaryotes to breed plants resistant to DNA and RNA viruses. The CRISPR-Cas system represents a powerful tool able to edit and insert novel traits into plants precisely at chosen loci offering enormous advantages to classical breeding. Approaches to engineering plant virus resistance in both transgenic and non-transgenic plants are discussed. Iterations of the CRISPR-Cas system, FnCas9 and C2c2 capable of editing RNA in eukaryotic cells offer a particular advantage for providing resistance to RNA viruses which represent the great majority of known plant viruses. Scientists have obtained conflicting results using gene silencing technology to produce transgenic plants resistant to geminiviruses. CRISPR-Cas systems engineered in plants to target geminiviruses have consistently reduced virus accumulation providing increased resistance to virus infection. CRISPR-Cas may provide novel and reliable approaches to control geminiviruses and other ssDNA viruses such as Banana bunchy top virus (BBTV).
ERIC Educational Resources Information Center
Rampal, A.
1992-01-01
Examines trends in teachers' beliefs about scientists and the nature of science. Discusses teachers' questionnaire responses on the following qualities of scientists: minimum educational qualifications; creativity; temperament; stereotyped image; and personal beliefs about indigenous systems of medicine and astrology. (Contains 63 references.)…
Kephart, Christopher M.; Bushon, Rebecca N.
2010-01-01
An influx of concentrated animal feeding operations in northwest Ohio has prompted local agencies to examine the effects of these industrial farms on water quality in the upper Portage River watershed. The utility of microbial source-tracking (MST) tools as a means of characterizing sources of fecal contamination in the watershed was evaluated. From 2007 to 2008, scientists with the U.S. Geological Survey, Bowling Green State University, and the Wood County Health Department collected and analyzed 17 environmental samples and 13 fecal source samples for Bacteroides-based host-associated DNA markers. At many of the environmental sites tested, MST marker results corroborated the presumptive fecal contamination sources. Results from this demonstration study support the utility of using MST with host-specific molecular markers to characterize the sources of fecal contamination in the Portage River watershed.
Identifications of ancient Egyptian royal mummies from the 18th Dynasty reconsidered.
Habicht, M E; Bouwman, A S; Rühli, F J
2016-01-01
For centuries, ancient Egyptian Royal mummies have drawn the attention both of the general public and scientists. Many royal mummies from the New Kingdom have survived. The discoveries of the bodies of these ancient rulers have always sparked much attention, yet not all identifications are clear even nowadays. This study presents a meta-analysis to demonstrate the difficulties in identifying ancient Egyptian royal mummies. Various methods and pitfalls in the identification of the Pharaohs are reassessed since new scientific methods can be used, such as ancient DNA-profiling and CT-scanning. While the ancestors of Tutankhamun have been identified, some identities are still highly controversial (e.g., the mystery of the KV-55 skeleton, recently most likely identified as the genetic father of Tutankhamun). The meta-analysis confirms the suggested identity of some mummies (e.g., Amenhotep III, Thutmosis IV, and Queen Tjye). © 2016 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Davidovitch, Nitza; Eckhaus, Eyal
2018-01-01
This study deals with immigrant scientists integrated in academia in Israel. Studies on the subject indicate the contribution of immigrant scientists to research. The current study focuses on the influence of scientists' birth country on selecting destinations for academic conferences, as well as on the influence of one's native language on the…
Development of a biophotonics technician-training program: directions for the 21st Century
NASA Astrophysics Data System (ADS)
Shackelford, James F.; Gellman, Joel; Vasan, Srini; Hall, Robert A.; Goodwin, Don E.; Molinaro, Marco; Matthews, Dennis
2005-06-01
Albuquerque Technical Vocational Institute (TVI) is collaborating with the National Science Foundation (NSF) funded Center for Biophotonics Science and Technology (CBST) headquartered at the University of California, Davis in order to develop a biophotonics curriculum for community colleges nationwide. TVI began the formal collaboration to bring about critically needed training and education that will ultimately create new jobs and employment opportunities in the field of biophotonics. "Biophotonics" is the science of generating and harnessing light to detect, image and manipulate biological materials. CBST chose TVI as a partner because of the Institute's current high-level photonics and biotechnology programs. In addition, TVI is a part of the "Albuquerque Model" that involves exposure to photonics education from the middle school level through graduate education at the University of New Mexico. Three middle schools feed into the West Mesa High School Photonics Academy, whose students then move on to TVI for advanced training. CBST brings together scientists, industry, educators and the community to research and develop applications for biophotonics. Roughly 100 researchers-including physical scientists, life scientists, physicians and engineers from UC Davis, Lawrence Livermore National Laboratory, UC Berkeley, UC San Francisco, Alabama A&M University, Stanford University, University of Texas at San Antonio, Fisk University and Mills College-are collaborating in this rapidly developing area of research. Applications of biophotonics range from using light to image or selectively treat tumors, to sequencing DNA and identifying single biomolecules within cells.
Mapping the new molecular landscape: social dimensions of epigenetics
Pickersgill, Martyn; Niewöhner, Jörg; Müller, Ruth; Martin, Paul; Cunningham-Burley, Sarah
2013-01-01
Epigenetics is the study of changes in gene expression caused by mechanisms other than changes in the DNA itself. The field is rapidly growing and being widely promoted, attracting attention in diverse arenas. These include those of the social sciences, where some researchers have been encouraged by the resonance between imaginaries of development within epigenetics and social theory. Yet, sustained attention from science and technology studies (STS) scholars to epigenetics and the praxis it propels has been lacking. In this article, we reflexively consider some of the ways in which epigenetics is being constructed as an area of biomedical novelty and discuss the content and logics underlying the ambivalent promises being made by scientists working in this area. We then reflect on the scope, limits and future of engagements between epigenetics and the social sciences. Our discussion is situated within wider literatures on biomedicine and society, the politics of “interventionist STS,” and on the problems of “caseness” within empirical social science. PMID:24482610
Some Methodological Issues with "Draw a Scientist Tests" among Young Children
ERIC Educational Resources Information Center
Losh, Susan C.; Wilke, Ryan; Pop, Margareta
2008-01-01
Children's stereotypes about scientists have been postulated to affect student science identity and interest in science. Findings from prior studies using "Draw a Scientist Test" methods suggest that students see scientists as largely white, often unattractive, men; one consequence may be that girls and minority students feel a science career is…
Identity Matching to Scientists: Differences That Make a Difference?
ERIC Educational Resources Information Center
Andersen, Hanne Moeller; Krogh, Lars Brian; Lykkegaard, Eva
2014-01-01
Students' images of science and scientists are generally assumed to influence their related subject choices and aspirations for tertiary education within science and technology. Several research studies have shown that many young people hold rather stereotypical images of scientists, making it hard for them to see themselves as future scientists.…
NASA Astrophysics Data System (ADS)
Sezen-Barrie, Asli
2018-03-01
Drawn from the cultural-historical theories of knowing and doing science, this article uses the concept of professional vision to explore what scientists and experienced teachers see and articulate as important aspects of climate science practices. The study takes an abductive reasoning approach to analyze scientists' videotaped lectures to recognize what scientists pay attention to in their explanations of climate science practices. It then analyzes how ideas scientists attended align with experienced teachers' sense-making of scientific practices to teach climate change. The findings show that experienced teachers' and scientists' explanations showed alignment in the focus on scientific practices, but indicated variations in the temporal and spatial reasoning of climate data. Furthermore, the interdisciplinarity of climate science was emphasized in climate scientists' lectures, but was not apparent once scientists and teachers shared the same culture in meetings to provide feedback to preservice teachers. Given the importance of teaching through scientific practices in classrooms, this study provides suggestions to capture the epistemic diversity of scientific disciplines.
NASA Astrophysics Data System (ADS)
Sharkawy, Azza
2012-06-01
The purpose of this qualitative study was to explore the potential of using stories about diverse scientists to broaden primary students' images of scientists and scientific work. Stories featuring scientists from diverse socio-cultural backgrounds (i.e., physical ability, gender, ethnicity) were presented to 11 grade one students over a 15 -week period. My analysis of pre-and post audio-taped interview transcripts, draw-a-scientist-tests (Chambers 1983), participant observations and student work suggest that the stories about scientists and follow-up reflective activities provided resources for students that helped them: (a) acquire images of scientists from less dominant socio-cultural backgrounds; (b) enrich their views of scientific work from predominantly hands-on/activity-oriented views to ones that includes cognitive and positive affective dimensions. One of the limitations of using stories as a tool to extend students' thinking about science is highlighted in a case study of a student who expresses resistance to some of the counter-stereotypic images presented in the stories. I also present two additional case studies that illustrate how shifts in student' views of the nature of scientific work can change their interest in future participation in scientific work.
NASA Astrophysics Data System (ADS)
Bianchini, Julie A.; Whitney, David J.; Breton, Therese D.; Hilton-Brown, Bryan A.
2002-01-01
This study examined the perceptions and self-reported practices of 18 scientists participating in a yearlong seminar series designed to explore issues of gender and ethnicity in science. Scientists and seminar were part of the Promoting Women and Scientific Literacy project, a curriculum transformation and professional development initiative undertaken by science, science education, and women's studies faculty at their university. Researchers treated participating scientists as critical friends able to bring clarity to and raise questions about conceptions of inclusion in science education. Through questionnaires and semistructured interviews, we explored their (a) rationales for differential student success in undergraduate science education; (b) self-reports of ways they structure, teach, and assess courses to promote inclusion; and (c) views of androcentric and ethnocentric bias in science. Statistical analysis of questionnaires yielded few differences in scientists' views and reported practices by sex or across time. Qualitative analysis of interviews offered insight into how scientists can help address the problem of women and ethnic minorities in science education; constraints encountered in attempts to implement pedagogical and curricular innovations; and areas of consensus and debate across scientists and science studies scholars' descriptions of science. From our findings, we provided recommendations for other professional developers working with scientists to promote excellence and equity in undergraduate science education.
Novel and transgenic food crops: overview of scientific versus public perception.
Ruibal-Mendieta, N L; Lints, F A
1998-09-01
Recombinant DNA technology offers opportunities to develop new products in many different fields, including agriculture and the agro-food area. Transgenic plants with improved agronomic traits currently grow in field trials and a few varieties have already reached the European market. By and large, new technologies raise both concerns and expectations and modern biotechnology is no exception. Indeed, a voluntary moratorium on experiments involving recombinant DNA molecules was called for in 1974. At the present time, although a majority of academic and industrial scientists agree that transgenic food crops pose no risk for the environment or human health, some others believe that certain applications of modern plant biotechnology are hazardous. In particular, deliberate releases of genetically modified plants are regarded as risky. There is also a disparity between expert and lay perception of r-DNA technology applications to food crops, which makes public information a difficult task. This paper aims at exposing these conflicting points of view on the agricultural applications of modern biotechnology. We also propose some recommendations pertaining to public information in Europe. It appears that consensus conferences might be a good approach to stimulate public information and public debate in Europe, although this approach has to be adapted to the cultural context of each country.
Clinician-scientists in Canada: barriers to career entry and progress.
Lander, Bryn; Hanley, Gillian E; Atkinson-Grosjean, Janet
2010-10-04
Clinician-scientists play an important role in translating between research and clinical practice. Significant concerns about a decline in their numbers have been raised. Potential barriers for career entry and progress are explored in this study. Case-study research methods were used to identify barriers perceived by clinician-scientists and their research teams in two Canadian laboratories. These perceptions were then compared against statistical analysis of data from Canadian Institutes of Health Research (CIHR) databases on grant and award performance of clinician-scientists and non-clinical PhDs for fiscal years 2000 to 2008. Three main barriers were identified through qualitative analysis: research training, research salaries, and research grants. We then looked for evidence of these barriers in the Canada-wide statistical dataset for our study period. Clinician-scientists had a small but statistically significant higher mean number of degrees (3.3) than non-clinical scientists (3.2), potentially confirming the perception of longer training times. But evidence of the other two barriers was equivocal. For example, while overall growth in salary awards was minimal, awards to clinician-scientists increased by 45% compared to 6.3% for non-clinical PhDs. Similarly, in terms of research funding, awards to clinician-scientists increased by more than 25% compared with 5% for non-clinical PhDs. However, clinician-scientist-led grants funded under CIHR's Clinical thematic area decreased significantly from 61% to 51% (p-value<0.001) suggesting that clinician-scientists may be shifting their attention to other research domains. While clinician-scientists continue to perceive barriers to career entry and progress, quantitative results suggest improvements over the last decade. Clinician-scientists are awarded an increasing proportion of CIHR research grants and salary awards. Given the translational importance of this group, however, it may be prudent to adopt specific policy and funding incentives to ensure the ongoing viability of the career path.
Clinician-Scientists in Canada: Barriers to Career Entry and Progress
Lander, Bryn; Hanley, Gillian E.; Atkinson-Grosjean, Janet
2010-01-01
Background Clinician-scientists play an important role in translating between research and clinical practice. Significant concerns about a decline in their numbers have been raised. Potential barriers for career entry and progress are explored in this study. Methods Case-study research methods were used to identify barriers perceived by clinician-scientists and their research teams in two Canadian laboratories. These perceptions were then compared against statistical analysis of data from Canadian Institutes of Health Research (CIHR) databases on grant and award performance of clinician-scientists and non-clinical PhDs for fiscal years 2000 to 2008. Results Three main barriers were identified through qualitative analysis: research training, research salaries, and research grants. We then looked for evidence of these barriers in the Canada-wide statistical dataset for our study period. Clinician-scientists had a small but statistically significant higher mean number of degrees (3.3) than non-clinical scientists (3.2), potentially confirming the perception of longer training times. But evidence of the other two barriers was equivocal. For example, while overall growth in salary awards was minimal, awards to clinician-scientists increased by 45% compared to 6.3% for non-clinical PhDs. Similarly, in terms of research funding, awards to clinician-scientists increased by more than 25% compared with 5% for non-clinical PhDs. However, clinician-scientist-led grants funded under CIHR's Clinical thematic area decreased significantly from 61% to 51% (p-value<0.001) suggesting that clinician-scientists may be shifting their attention to other research domains. Conclusion While clinician-scientists continue to perceive barriers to career entry and progress, quantitative results suggest improvements over the last decade. Clinician-scientists are awarded an increasing proportion of CIHR research grants and salary awards. Given the translational importance of this group, however, it may be prudent to adopt specific policy and funding incentives to ensure the ongoing viability of the career path. PMID:20957175
Pacher, Michael; Puchta, Holger
2017-05-01
Production of mutants of crop plants by the use of chemical or physical genotoxins has a long tradition. These factors induce the natural DNA repair machinery to repair damage in an error-prone way. In the case of radiation, multiple double-strand breaks (DSBs) are induced randomly in the genome, leading in very rare cases to a desirable phenotype. In recent years the use of synthetic, site-directed nucleases (SDNs) - also referred to as sequence-specific nucleases - like the CRISPR/Cas system has enabled scientists to use exactly the same naturally occurring DNA repair mechanisms for the controlled induction of genomic changes at pre-defined sites in plant genomes. As these changes are not necessarily associated with the permanent integration of foreign DNA, the obtained organisms per se cannot be regarded as genetically modified as there is no way to distinguish them from natural variants. This applies to changes induced by DSBs as well as single-strand breaks, and involves repair by non-homologous end-joining and homologous recombination. The recent development of SDN-based 'DNA-free' approaches makes mutagenesis strategies in classical breeding indistinguishable from SDN-derived targeted genome modifications, even in regard to current regulatory rules. With the advent of new SDN technologies, much faster and more precise genome editing becomes available at reasonable cost, and potentially without requiring time-consuming deregulation of newly created phenotypes. This review will focus on classical mutagenesis breeding and the application of newly developed SDNs in order to emphasize similarities in the context of the regulatory situation for genetically modified crop plants. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Mitochondrial dysfunction in migraine.
Yorns, William R; Hardison, H Huntley
2013-09-01
Migraine is the most frequent type of headache in children. In the 1980s, scientists first hypothesized a connection between migraine and mitochondrial (mt) disorders. More recent studies have suggested that at least some subtypes of migraine may be related to a mt defect. Different types of evidence support a relationship between mitochondria (mt) and migraine: (1) Biochemical evidence: Abnormal mt function translates into high intracellular penetration of Ca(2+), excessive production of free radicals, and deficient oxidative phosphorylation, which ultimately causes energy failure in neurons and astrocytes, thus triggering migraine mechanisms, including spreading depression. The mt markers of these events are low activity of superoxide dismutase, activation of cytochrome-c oxidase and nitric oxide, high levels of lactate and pyruvate, and low ratios of phosphocreatine-inorganic phosphate and N-acetylaspartate-choline. (2) Morphologic evidence: mt abnormalities have been shown in migraine sufferers, the most characteristic ones being direct observation in muscle biopsy of ragged red and cytochrome-c oxidase-negative fibers, accumulation of subsarcolemmal mt, and demonstration of giant mt with paracrystalline inclusions. (3) Genetic evidence: Recent studies have identified specific mutations responsible for migraine susceptibility. However, the investigation of the mtDNA mutations found in classic mt disorders (mt encephalomyopathy with lactic acidosis and stroke-like episodes, myoclonus epilepsy with ragged red fibers, Kearns-Sayre syndrome, and Leber hereditary optic neuropathy) has not demonstrated any association. Recently, 2 common mtDNA polymorphisms (16519C→T and 3010G→A) have been associated with pediatric cyclic vomiting syndrome and migraine. Also, POLG mutations (eg, p.T851 A, p.N468D, p.Y831C, p.G517V, and p.P163S) can cause disease through impaired replication of mtDNA, including migraine. Further studies to investigate the relationship between mtDNA and migraine will require very large sample sizes to obtain statistically significant results. (4) Therapeutic evidence: Several agents that have a positive effect on mt metabolism have shown to be effective in the treatment of migraines. The agents include riboflavin (B2), coenzyme Q10, magnesium, niacin, carnitine, topiramate, and lipoic acid. Further study is warranted to learn how mt interact with other factors to cause migraines. This will facilitate the development of new and more specific treatments that will reduce the frequency or severity or both of this disease. © 2013 Published by Elsevier Inc.
GeneLab for High Schools: Data Mining for the Next Generation
NASA Technical Reports Server (NTRS)
Blaber, Elizabeth A.; Ly, Diana; Sato, Kevin Y.; Taylor, Elizabeth
2016-01-01
Modern biological sciences have become increasingly based on molecular biology and high-throughput molecular techniques, such as genomics, transcriptomics, and proteomics. NASA Scientists and the NASA Space Biology Program have aimed to examine the fundamental building blocks of life (RNA, DNA and protein) in order to understand the response of living organisms to space and aid in fundamental research discoveries on Earth. In an effort to enable NASA funded science to be available to everyone, NASA has collected the data from omics studies and curated them in a data system called GeneLab. Whilst most college-level interns, academics and other scientists have had some interaction with omics data sets and analysis tools, high school students often have not. Therefore, the Space Biology Program is implementing a new Summer Program for high-school students that aims to inspire the next generation of scientists to learn about and get involved in space research using GeneLabs Data System. The program consists of three main components core learning modules, focused on developing students knowledge on the Space Biology Program and Space Biology research, Genelab and the data system, and previous research conducted on model organisms in space; networking and team work, enabling students to interact with guest lecturers from local universities and their fellow peers, and also enabling them to visit local universities and genomics centers around the Bay area; and finally an independent learning project, whereby students will be required to form small groups, analyze a dataset on the Genelab platform, generate a hypothesis and develop a research plan to test their hypothesis. This program will not only help inspire high-school students to become involved in space-based research but will also help them develop key critical thinking and bioinformatics skills required for most college degrees and furthermore, will enable them to establish networks with their peers and connections with university Professors that may help them achieve their educational goals.
ERIC Educational Resources Information Center
Tira, Praweena
2009-01-01
The purpose of this study was to understand how Thai scientists from four disciplines viewed nature of science (NOS). The sixteen participating scientists were chosen from the areas of chemistry, physics, biology/life sciences, and geology/earth sciences and were separated into novice and expert groups. The scientists' understandings about NOS…
Scientists devote careers to making sure we have plenty of fish to eat |
scientists quickly sort them by species, tossing them one-by-one into buckets. Scientists like Curti spend something I really enjoy," said Curti. "In the office, I incorporate data like commercial and , studying fish is "fun, challenging, and important." Fisheries science, and scientists like Curti
Contemporary Scientists Discuss the Need for Openness and Open-Mindedness in Science and Society
ERIC Educational Resources Information Center
Mulhall, Pamela J.; Smith, Dorothy V.; Hart, Christina E.; Gunstone, Richard F.
2017-01-01
We report on findings from a qualitative study of Australian scientists whose work brings them into contact with the public. This research sought to understand how a school science curriculum could better represent the work of scientists today. We discuss the views expressed by our participant scientists about the importance of openness and…
Young Children's Conceptions of Science and Scientists
ERIC Educational Resources Information Center
Lee, Tiffany R.
2010-01-01
This study explores young children's images of science and scientists, their sources for scientific knowledge, and the nature of their science-related experiences. A cross-sectional design was used to study how students' ideas differ over the first three years of elementary school. A modified version of the Draw-a-Scientist Test (DAST) and a…
NASA Astrophysics Data System (ADS)
Mansour, Nasser
2015-07-01
Despite a growing consensus regarding the value of inquiry-based learning (IBL) for students' learning and engagement in the science classroom, the implementation of such practices continues to be a challenge. If science teachers are to use IBL to develop students' inquiry practices and encourage them to think and act as scientists, a better understanding of factors that influence their attitudes towards scientific research and scientists' practices is very much needed. Within this context there is a need to re-examine the science teachers' views of scientists and the cultural factors that might have an impact on teachers' views and pedagogical practices. A diverse group of Egyptian science teachers took part in a quantitative-qualitative study using a questionnaire and in-depth interviews to explore their views of scientists and scientific research, and to understand how they negotiated their views of scientists and scientific research in the classroom, and how these views informed their practices of using inquiry in the classroom. The findings highlighted how the teachers' cultural beliefs and views of scientists and scientific research had constructed idiosyncratic pedagogical views and practices. The study suggested implications for further research and argued for teacher professional development based on partnerships with scientists.
Whole exome or genome sequencing: nurses need to prepare families for the possibilities.
Prows, Cynthia A; Tran, Grace; Blosser, Beverly
2014-12-01
A discussion of whole exome sequencing and the type of possible results patients and families should be aware of before samples are obtained. To find the genetic cause of a rare disorder, whole exome sequencing analyses all known and suspected human genes from a single sample. Over 20,000 detected DNA variants in each individual exome must be considered as possibly causing disease or disregarded as not relevant to the person's disease. In the process, unexpected gene variants associated with known diseases unrelated to the primary purpose of the test may be incidentally discovered. Because family members' DNA samples are often needed, gene variants associated with known genetic diseases or predispositions for diseases can also be discovered in their samples. Discussion paper. PubMed 2009-2013, list of references in retrieved articles, Google Scholar. Nurses need a general understanding of the scope of potential genomic information that may be revealed with whole exome sequencing to provide support and guidance to individuals and families during their decision-making process, while waiting for results and after disclosure. Nurse scientists who want to use whole exome sequencing in their study design and methods must decide early in study development if they will return primary whole exome sequencing research results and if they will give research participants choices about learning incidental research results. It is critical that nurses translate their knowledge about whole exome sequencing into their patient education and patient advocacy roles and relevant programmes of research. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Chang, Chun-Yuan; Leu, Jyh-Der; Wang, Chung-Yi; Chen, Wei R.; Lee, Yi-Jang
2015-03-01
Immunotherapy has been reported to effectively treat various cancers. In addition, scientists are dedicated in finding whether the combination of radiotherapy and immunotherapy can efficiently suppress cancer progression and recurrence. Although radiotherapy has been widely used for breast cancer, better strategies to overcome the latestage breast cancer remains explored. The glycated chitosan (GC), a novel immunological stimulant, was demonstrated to trigger local immune response facilitating the enhancement of radiosensitivity. Our previous study also revealed that the cell mortality and invasive ability were decreased under GC treatment, but the underlying mechanism remains unclear. In this study, we used 4T1-3R-L, a derived murine breast cancer cell line from the spontaneous metastasized liver lesion. We combined ionizing radiation with GC to treat 4T1-3R-L and found the expression of DNA damage-related genes such as gamma-H2AX was more than radiation alone In addition, the cell cycle distribution and colony forming assay showed an increased sub-G1 population and decreased cell survival rate after IR combined GC treatment. Taken together, we sought to elucidate the underlying mechanism by the investigation of DNA damage repair process when IR combined with GC, and to explore another advantage of GC to aid other cancer treatments. Based on our most updated results, the GC treatment is able to effectively increase the radiosensitivity through an immune-responsive signaling transduction, indicating that GC could be a valuable therapeutic strategy for treating against advanced breast cancers.
Complex Genetics and the Etiology of Human Congenital Heart Disease
Gelb, Bruce D.; Chung, Wendy K.
2014-01-01
Congenital heart disease (CHD) is the most common birth defect. Despite considerable advances in care, CHD remains a major contributor to newborn mortality and is associated with substantial morbidities and premature death. Genetic abnormalities appear to be the primary cause of CHD, but identifying precise defects has proven challenging, principally because CHD is a complex genetic trait. Mainly because of recent advances in genomic technology such as next-generation DNA sequencing, scientists have begun to identify the genetic variants underlying CHD. In this article, the roles of modifier genes, de novo mutations, copy number variants, common variants, and noncoding mutations in the pathogenesis of CHD are reviewed. PMID:24985128
Cloning and expression of recombinant adhesive protein MEFP-2 of the blue mussel, Mytilus edulis
Silverman, Heather G.; Roberto, Francisco F.
2006-02-07
The present invention includes a Mytilus edulis cDNA having a nucleotide sequence that encodes for the Mytilus edulis foot protein-2 (Mefp-2), an example of a mollusk foot protein. Mefp-2 is an integral component of the blue mussels' adhesive protein complex, which allows the mussel to attach to objects underwater. The isolation, purification and sequencing of the Mefp-2 gene will allow researchers to produce Mefp-2 protein using genetic engineering techniques. The discovery of Mefp-2 gene sequences will also allow scientists to better understand how the blue mussel creates its waterproof adhesive protein complex.
Cloning and expression of recombinant adhesive protein Mefp-1 of the blue mussel, Mytilus edulis
Silverman, Heather G.; Roberto, Francisco F.
2006-01-17
The present invention comprises a Mytilus edulis cDNA sequenc having a nucleotide sequence that encodes for the Mytilus edulis foot protein-1 (Mefp-1), an example of a mollusk foot protein. Mefp-1 is an integral component of the blue mussels' adhesive protein complex, which allows the mussel to attach to objects underwater. The isolation, purification and sequencing of the Mefp-1 gene will allow researchers to produce Mefp-1 protein using genetic engineering techniques. The discovery of Mefp-1 gene sequence will also allow scientists to better understand how the blue mussel creates its waterproof adhesive protein complex.
Development of molecular biology at the University of Wisconsin, Madison.
Halvorson, Harlyn O
2007-12-01
Dramatic changes in the foundation of academic departments in our universities are uncommon. With the demonstration that DNA was the cellular source of genetic information, and that this information could be regulated, the field of molecular biology was born. Later, when scientists found that they could tinker with this information, the field matured. In an unusually rapid manner, molecular biology was integrated into the University of Wisconsin, Madison, in the late 1950s and early 1960s. This present article is a chronology of how it happened. What are the factors that made this transition possible in the University of Wisconsin? What lessons have we learned from this experience?
Biotechnology awareness study, Part 1: Where scientists get their information.
Grefsheim, S; Franklin, J; Cunningham, D
1991-01-01
A model study, funded by the National Library of Medicine (NLM) and conducted by the Southeastern/Atlantic Regional Medical Library (RML) and the University of Maryland Health Sciences Library, attempted to assess the information needs of researchers in the developing field of biotechnology and to determine the resources available to meet those needs in major academic health sciences centers. Nine medical schools in RML Region 2 were selected to participate in a biotechnology awareness study. A survey was conducted of the nine medical school libraries to assess their support of biotechnology research. To identify the information needs of scientists engaged in biotechnology-related research at the schools, a written survey was sent to the deans of the nine institutions and selected scientists they had identified. This was followed by individual, in-depth interviews with both the deans and scientists surveyed. In general, scientists obtained information from three major sources: their own experiments, personal communication with other scientists, and textual material (print or electronic). For textual information, most study participants relied on personal journal subscriptions. Tangential journals were scanned in the department's library. Only a few of these scientists came to the health sciences library on a regular basis. Further, the study found that personal computers have had a major impact on how biotechnologists get and use information. Implications of these findings for libraries and librarians are discussed. PMID:1998818
Contemporary high-profile scientists and their interactions with the community
NASA Astrophysics Data System (ADS)
Smith, Dorothy V.; Mulhall, Pamela J.; Hart, Christina E.; Gunstone, Richard F.
2016-07-01
This article presents a case study of 10 high-profile Australian research scientists. These scientists are highly committed to engaging with the public. They interact with a wide range of groups in the community, including the traditional media. They are aware that they are seen as representatives of science at a time when the authority of science and scientists is threatened in Australia by controversy around issues such as climate change and vaccination. Through their experiences of interacting with non-scientists, they have developed views about qualities, characteristics and knowledge that contribute to, or inhibit, positive interactions between scientists and non-scientists. Their experiences and insights highlight aspects of contemporary science that are not generally acknowledged in science curricula.
Cytochemistry and C-values: The Less-well-known World of Nuclear DNA Amounts
Greilhuber, J.
2008-01-01
Background In the plant sciences there are two widely applied technologies for measuring nuclear DNA content: Feulgen absorbance cytophotometry and flow cytometry (FCM). While FCM is, with good reasons, increasingly popular among plant scientists, absorbance-cytophotometric techniques lose ground. This results in a narrowing of the methodological repertoire, which is neither desirable nor beneficial. Both approaches have their advantages, but static cytophotometry seems to pose more instrumental difficulties and material-based problems than FCM, so that Feulgen-based data in the literature are often less reliable than one would expect. Scope The purpose of this article is to present a selective overview of the field of nuclear DNA content measurement, and C-values in particular, with a focus on the technical difficulties imposed by the characteristics of the biological material and with some comments on the photometrical aspects of the work. For over 20 years it has been known that plant polyphenols cause problems in Feulgen DNA cytophotometry, since they act as major staining inhibitors leading to unreliable results. However, little information is available about the chemical classes of plant metabolites capable of DNA staining interference and the mechanisms of their inhibition. Plant slimes are another source of concern. Conclusions In FCM research to uncover the effects of secondary metabolites on measurement results has begun only recently. In particular, the analysis of intraspecific genome size variation demands a stringent methodology which accounts for inhibitors. FCM tests for inhibitory effects of endogenous metabolites should become obligatory. The use of dry seeds for harvesting embryo and endosperm nuclei for FCM and Feulgen densitometry may often provide a means of circumventing staining inhibitors. The importance of internal standardization is highlighted. Our goal is a better understanding of phytochemical/cytochemical interactions in plant DNA photometry for the benefit of an ever-growing list of plant genome sizes. PMID:17951594
First Nuclear DNA Amounts in more than 300 Angiosperms
ZONNEVELD, B. J. M.; LEITCH, I. J.; BENNETT, M. D.
2005-01-01
• Background and Aims Genome size (DNA C-value) data are key biodiversity characters of fundamental significance used in a wide variety of biological fields. Since 1976, Bennett and colleagues have made scattered published and unpublished genome size data more widely accessible by assembling them into user-friendly compilations. Initially these were published as hard copy lists, but since 1997 they have also been made available electronically (see the Plant DNA C-values database www.kew.org/cval/homepage.html). Nevertheless, at the Second Plant Genome Size Meeting in 2003, Bennett noted that as many as 1000 DNA C-value estimates were still unpublished and hence unavailable. Scientists were strongly encouraged to communicate such unpublished data. The present work combines the databasing experience of the Kew-based authors with the unpublished C-values produced by Zonneveld to make a large body of valuable genome size data available to the scientific community. • Methods C-values for angiosperm species, selected primarily for their horticultural interest, were estimated by flow cytometry using the fluorochrome propidium iodide. The data were compiled into a table whose form is similar to previously published lists of DNA amounts by Bennett and colleagues. • Key Results and Conclusions The present work contains C-values for 411 taxa including first values for 308 species not listed previously by Bennett and colleagues. Based on a recent estimate of the global published output of angiosperm DNA C-value data (i.e. 200 first C-value estimates per annum) the present work equals 1·5 years of average global published output; and constitutes over 12 % of the latest 5-year global target set by the Second Plant Genome Size Workshop (see www.kew.org/cval/workshopreport.html). Hopefully, the present example will encourage others to unveil further valuable data which otherwise may lie forever unpublished and unavailable for comparative analyses. PMID:15905300
Implicit Theories of Creativity in Computer Science in the United States and China
ERIC Educational Resources Information Center
Tang, Chaoying; Baer, John; Kaufman, James C.
2015-01-01
To study implicit concepts of creativity in computer science in the United States and mainland China, we first asked 308 Chinese computer scientists for adjectives that would describe a creative computer scientist. Computer scientists and non-computer scientists from China (N = 1069) and the United States (N = 971) then rated how well those…
Greek primary school students' images of scientists and their work: has anything changed?
NASA Astrophysics Data System (ADS)
Emvalotis, Anastassios; Koutsianou, Athina
2018-01-01
Background: A growing interest in student's perceptions of scientists has been identified in the literature, relying on the argument that stereotypical perceptions of scientists may affect student attitudes towards science and their willingness to pursue a science-related career. Thus, over the past 30 years, many studies have investigated students' images of scientists through students' drawings.
ERIC Educational Resources Information Center
Shin, Soo Yeon; Parker, Loran Carleton; Adedokun, Omolola; Mennonno, Ann; Wackerly, Amy; San Miguel, Sandra
2015-01-01
This study examined to what extent a curriculum module that uses animal and human health scientists and science concepts to portray science and scientists in a relevant and authentic manner could enhance elementary students' aspiration for science careers, attitudes to science, positive perceptions of scientists, and perceived relevance of…
NASA Technical Reports Server (NTRS)
Barclay, Rebecca O.; Pinelli, Thomas E.; Elazar, David; Kennedy, John M.
1991-01-01
As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two pilot studies were conducted that investigated the technical communications practices of Israeli and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their view about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was mailed to randomly selected U.S. aerospace engineers and scientists who are working in cryogenics, adaptive walls, and magnetic suspension. A slightly modified version was sent to Israeli aerospace engineers and scientists working at Israel Aircraft Industries, LTD. Responses of the Israeli and U.S. aerospace engineers and scientists to selected questions are presented in this paper.
The bacteriorhodopsin model membrane system as a prototype molecular computing element.
Hong, F T
1986-01-01
The quest for more sophisticated integrated circuits to overcome the limitation of currently available silicon integrated circuits has led to the proposal of using biological molecules as computational elements by computer scientists and engineers. While the theoretical aspect of this possibility has been pursued by computer scientists, the research and development of experimental prototypes have not been pursued with an equal intensity. In this survey, we make an attempt to examine model membrane systems that incorporate the protein pigment bacteriorhodopsin which is found in Halobacterium halobium. This system was chosen for several reasons. The pigment/membrane system is sufficiently simple and stable for rigorous quantitative study, yet at the same time sufficiently complex in molecular structure to permit alteration of this structure in an attempt to manipulate the photosignal. Several methods of forming the pigment/membrane assembly are described and the potential application to biochip design is discussed. Experimental data using these membranes and measured by a tunable voltage clamp method are presented along with a theoretical analysis based on the Gouy-Chapman diffuse double layer theory to illustrate the usefulness of this approach. It is shown that detailed layouts of the pigment/membrane assembly as well as external loading conditions can modify the time course of the photosignal in a predictable manner. Some problems that may arise in the actual implementation and manufacturing, as well as the use of existing technology in protein chemistry, immunology, and recombinant DNA technology are discussed.
Wang, Qinghua; Arighi, Cecilia N; King, Benjamin L; Polson, Shawn W; Vincent, James; Chen, Chuming; Huang, Hongzhan; Kingham, Brewster F; Page, Shallee T; Rendino, Marc Farnum; Thomas, William Kelley; Udwary, Daniel W; Wu, Cathy H
2012-01-01
Recent advances in high-throughput DNA sequencing technologies have equipped biologists with a powerful new set of tools for advancing research goals. The resulting flood of sequence data has made it critically important to train the next generation of scientists to handle the inherent bioinformatic challenges. The North East Bioinformatics Collaborative (NEBC) is undertaking the genome sequencing and annotation of the little skate (Leucoraja erinacea) to promote advancement of bioinformatics infrastructure in our region, with an emphasis on practical education to create a critical mass of informatically savvy life scientists. In support of the Little Skate Genome Project, the NEBC members have developed several annotation workshops and jamborees to provide training in genome sequencing, annotation and analysis. Acting as a nexus for both curation activities and dissemination of project data, a project web portal, SkateBase (http://skatebase.org) has been developed. As a case study to illustrate effective coupling of community annotation with workforce development, we report the results of the Mitochondrial Genome Annotation Jamborees organized to annotate the first completely assembled element of the Little Skate Genome Project, as a culminating experience for participants from our three prior annotation workshops. We are applying the physical/virtual infrastructure and lessons learned from these activities to enhance and streamline the genome annotation workflow, as we look toward our continuing efforts for larger-scale functional and structural community annotation of the L. erinacea genome.
Wang, Qinghua; Arighi, Cecilia N.; King, Benjamin L.; Polson, Shawn W.; Vincent, James; Chen, Chuming; Huang, Hongzhan; Kingham, Brewster F.; Page, Shallee T.; Farnum Rendino, Marc; Thomas, William Kelley; Udwary, Daniel W.; Wu, Cathy H.
2012-01-01
Recent advances in high-throughput DNA sequencing technologies have equipped biologists with a powerful new set of tools for advancing research goals. The resulting flood of sequence data has made it critically important to train the next generation of scientists to handle the inherent bioinformatic challenges. The North East Bioinformatics Collaborative (NEBC) is undertaking the genome sequencing and annotation of the little skate (Leucoraja erinacea) to promote advancement of bioinformatics infrastructure in our region, with an emphasis on practical education to create a critical mass of informatically savvy life scientists. In support of the Little Skate Genome Project, the NEBC members have developed several annotation workshops and jamborees to provide training in genome sequencing, annotation and analysis. Acting as a nexus for both curation activities and dissemination of project data, a project web portal, SkateBase (http://skatebase.org) has been developed. As a case study to illustrate effective coupling of community annotation with workforce development, we report the results of the Mitochondrial Genome Annotation Jamborees organized to annotate the first completely assembled element of the Little Skate Genome Project, as a culminating experience for participants from our three prior annotation workshops. We are applying the physical/virtual infrastructure and lessons learned from these activities to enhance and streamline the genome annotation workflow, as we look toward our continuing efforts for larger-scale functional and structural community annotation of the L. erinacea genome. PMID:22434832
Scientist-Image Stereotypes: The Relationships among Their Indicators
ERIC Educational Resources Information Center
Karaçam, Sedat
2016-01-01
The aim of this study is to examine primary school students' scientist-image stereotypes by considering the relationships among indicators. A total of 877 students attending Grades 6 and 7 in Düzce, Turkey participated in this study. The Draw-A-Scientist Test (DAST) was implemented during the 2013-2014 academic year to determine students' images…
ERIC Educational Resources Information Center
Ronning, Emily Anne
2012-01-01
This study examines scientists' perceptions of the environment in which they do their work. Specifically, this study examines how academic and professional factors such as research productivity, funding levels for science, connections to industry, type of academic appointment, and funding sources influence scientists' perceptions of the…
ERIC Educational Resources Information Center
Murfin, Brian
1994-01-01
Reports on a study of the effectiveness of computer-mediated communication (CMC) in providing African American and female middle school students with scientist role models. Quantitative and qualitative data gathered by analyzing messages students and scientists posted on a shared electronic bulletin board showed that CMC could be an effective…
NASA Astrophysics Data System (ADS)
Showstack, Randy
2011-08-01
More than 45% of women scientists at top universities in the United States have indicated that their careers have kept them from having as many children as they want, according to an 8 August study, “Scientists want more children,” which appears in the journal PLoS ONE. The study, by sociologists Elaine Howard Ecklund of Rice University and Anne Lincoln of Southern Methodist University, indicates that 24.5% of male scientists surveyed indicated the same concerns. The study also found that among junior scientists, 29% of women indicated concern that a science career would prevent them from having a family; 7% of men indicated the same concern.
Impact of a Scientist-Teacher Collaborative Model on Students, Teachers, and Scientists
NASA Astrophysics Data System (ADS)
Shein, Paichi Pat; Tsai, Chun-Yen
2015-09-01
Collaborations between the K-12 teachers and higher education or professional scientists have become a widespread approach to science education reform. Educational funding and efforts have been invested to establish these cross-institutional collaborations in many countries. Since 2006, Taiwan initiated the High Scope Program, a high school science curriculum reform to promote scientific innovation and inquiry through an integration of advanced science and technology in high school science curricula through partnership between high school teachers and higher education scientists and science educators. This study, as part of this governmental effort, a scientist-teacher collaborative model (STCM) was constructed by 8 scientists and 4 teachers to drive an 18-week high school science curriculum reform on environmental education in a public high school. Partnerships between scientists and teachers offer opportunities to strengthen the elements of effective science teaching identified by Shulman and ultimately affect students' learning. Mixed methods research was used for this study. Qualitative methods of interviews were used to understand the impact on the teachers' and scientists' science teaching. A quasi-experimental design was used to understand the impact on students' scientific competency and scientific interest. The findings in this study suggest that the use of the STCM had a medium effect on students' scientific competency and a large effect on students' scientific individual and situational interests. In the interviews, the teachers indicated how the STCM allowed them to improve their content knowledge and pedagogical content knowledge (PCK), and the scientists indicated an increased knowledge of learners, knowledge of curriculum, and PCK.
Professional identity in clinician-scientists: brokers between care and science.
Kluijtmans, Manon; de Haan, Else; Akkerman, Sanne; van Tartwijk, Jan
2017-06-01
Despite increasing numbers of publications, science often fails to significantly improve patient care. Clinician-scientists, professionals who combine care and research activities, play an important role in helping to solve this problem. However, despite the ascribed advantages of connecting scientific knowledge and inquiry with health care, clinician-scientists are scarce, especially amongst non-physicians. The education of clinician-scientists can be complex because they must form professional identities at the intersection of care and research. The successful education of clinician-scientists requires insight into how these professionals view their professional identity and how they combine distinct practices. This study sought to investigate how recently trained nurse- and physiotherapist-scientists perceive their professional identities and experience the crossing of boundaries between care and research. Semi-structured interviews were conducted with 14 nurse- and physiotherapist-scientists at 1 year after they had completed MSc research training. Interviews were thematically analysed using insights from the theoretical frameworks of dialogical self theory and boundary crossing. After research training, the initial professional identity, of clinician, remained important for novice clinician-scientists, whereas the scientist identity was experienced as additional and complementary. A meta-identity as broker, referred to as a 'bridge builder', seemed to mediate competing demands or tensions between the two positions. Obtaining and maintaining a dual work position were experienced as logistically demanding; nevertheless, it was considered beneficial for crossing the boundaries between care and research because it led to reflection on the health profession, knowledge integration, inquiry and innovation in care, improved data collection, and research with a focus on clinical applicability. Novice clinician-scientists experience dual professional identities as care providers and scientists. The meta-position of being a broker who connects care and research is seen as core to the unique clinician-scientist identity. To develop this role, identity formation and boundary-crossing competencies merit explicit attention within clinician-scientist programmes. © 2017 The Authors Medical Education published by Association for the Study of Medical Education and John Wiley & Sons Ltd.
Shin, Soo Yeon; Parker, Loran Carleton; Adedokun, Omolola; Mennonno, Ann; Wackerly, Amy; SanMiguel, Sandra
2015-01-01
This study examined to what extent a curriculum module that uses animal and human health scientists and science concepts to portray science and scientists in a relevant and authentic manner could enhance elementary students’ aspiration for science careers, attitudes to science, positive perceptions of scientists, and perceived relevance of science. The curriculum was developed by a research-based university program and has been put into practice in two early elementary classrooms in an urban school in the Midwest. An attitudinal rating survey and the Draw-A-Scientist Test (DAST) were used to assess pre to post changes in student attitudes toward science, perceptions of scientists, perceived relevance of science, and aspiration for science careers. Findings indicated that the implementation of this curriculum contributed positively to student attitudes toward science, decreased students’ stereotypical images of scientists, and increased student aspirations to become a scientist. PMID:26726271
DCEG scientists discuss researching cancer causes and training future researchers
Watch scientists in the NCI Division of Cancer Epidemiology and Genetics discuss research into the causes of cancer at the population level. Topics include genome-wide association studies, HPV genomics, Li-Fraumeni syndrome, and training future scientists.
How Picture Books on the National Science Teacher's Association Recommend List Portray Scientists
ERIC Educational Resources Information Center
Farland-Smith, Donna; Finson, Kevin D.; Arquette, Cecile M.
2017-01-01
This study utilized the Draw-A-Scientist Test Checklist (DAST-C) to assess the illustrations of scientists in the most recent three years of NSTA Recommends book lists. A total of 15,778 images were contained in the 148 books from those lists, of which 1,676 were of scientists. ANOVA procedures revealed no significant differences in stereotypical…
Noh, O Kyu; Park, Se Jin; Park, Hyeon Jin; Ju, HeeYoung; Han, Seung Hyon; Jung, Hyun Joo; Park, Jun Eun
2017-09-01
We aimed to investigate the prognostic value of DNA index (DI) in children with precursor B cell acute lymphoblastic lymphoma (pre-B ALL). From January 2003 to December 2014, 72 children diagnosed with pre-B ALL were analyzed. We analyzed the prognostic value of DI and its relations with other prognostic factors. The DI cut-point of 1.16 did not discriminate significantly the groups between high and low survivals (DI≥1.16 versus <1.16; 5-year OS, 90.5% vs. 82.8%, p =0.665). We explored the survivals according to the level of DI (<1.00, 1.00, 1.01-1.30, 1.31-1.60, 1.61-1.90, and >1.90), and the survival of children with a DI between 1.00-1.90 were significantly higher than that of children with DI of <1.00 or >1.90 (5-year OS, 90.6% vs. 50.0%, p <0.001). The DI of 1.16 was not a significant cut-point discriminating the risk group in children with pre-B ALL. However, the DI divided by specific ranges of values remained an independent prognostic factor. Further studies are warranted to re-evaluate the prognostic value and cut-point of DI in children treated with recent treatment protocols. © 2017 by the Association of Clinical Scientists, Inc.
The identification of cis-regulatory elements: A review from a machine learning perspective.
Li, Yifeng; Chen, Chih-Yu; Kaye, Alice M; Wasserman, Wyeth W
2015-12-01
The majority of the human genome consists of non-coding regions that have been called junk DNA. However, recent studies have unveiled that these regions contain cis-regulatory elements, such as promoters, enhancers, silencers, insulators, etc. These regulatory elements can play crucial roles in controlling gene expressions in specific cell types, conditions, and developmental stages. Disruption to these regions could contribute to phenotype changes. Precisely identifying regulatory elements is key to deciphering the mechanisms underlying transcriptional regulation. Cis-regulatory events are complex processes that involve chromatin accessibility, transcription factor binding, DNA methylation, histone modifications, and the interactions between them. The development of next-generation sequencing techniques has allowed us to capture these genomic features in depth. Applied analysis of genome sequences for clinical genetics has increased the urgency for detecting these regions. However, the complexity of cis-regulatory events and the deluge of sequencing data require accurate and efficient computational approaches, in particular, machine learning techniques. In this review, we describe machine learning approaches for predicting transcription factor binding sites, enhancers, and promoters, primarily driven by next-generation sequencing data. Data sources are provided in order to facilitate testing of novel methods. The purpose of this review is to attract computational experts and data scientists to advance this field. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.
Chen, Ding-Ping; Tseng, Ching-Ping; Lin, Chi-Jui; Wang, Wei-Ting; Sun, Chien-Feng
2015-01-01
In the case of blood type B3 with typical mixed-field agglutination of RBCs in the presence of anti-B or anti-AB antibody, a number of genetic alternations have been reported. It is well known that the IVS3+5G→A mutation in the B gene destroys the consensus of the splice donor site leading to exon 3 skipping during mRNA splicing. The lack of exon 3 likely causes a short stem region, producing an unstable B3 protein, and is concomitant with a decrease in B3 protein expression. Whether the phenomenon also appears in the type A blood group is of question. In this study, we evaluate whether exon 3 deletion in the blood type A gene also results in mixed-field phenotype. Site-directed mutagenesis was used to generate cDNA encoding A1 gene with exon 3 deletion. The cDNA was stably expressed in K562 cells. The expression of A antigen was compared with expression in parental K562 cells that did not express A antigen and in the stable K562 cell line expressing A(1) cDNA by flow cytometry analyses. The expression of A antigen in A1 stable cells and parental K562 cells was set as 100% and 0%, respectively. The mean relative percentage of A antigen expression for the cells of A1 with exon 3 deletion was 59.9% of A1 stable cells. Consistent with the observations of B3, which is B gene with exon 3 deletion, mixed field agglutination was observed for the cells expressing A1 with exon 3 deletion. Exon 3 deletion results in mixed field phenotype in both type A and B RBCs. However, the degree of antigen expression change for exon 3 deletion in A gene was less severe when compared with the deletion occurred in B gene. © 2015 by the Association of Clinical Scientists, Inc.
ERIC Educational Resources Information Center
Bayri, N.; Koksal, M. S.; Ertekin, P.
2016-01-01
The purpose of this study is to investigate gifted middle school students' images about scientists in terms of cultural similarity. Sample of the study is 64 gifted middle school students taking courses from a formal school for gifted students. The data were collected by using Draw-a-scientist (DAST) instrument and was analysed by two researchers…
Gill, P; Bleka, Ø; Egeland, T
2014-11-01
Likelihood ratio (LR) methods to interpret multi-contributor, low template, complex DNA mixtures are becoming standard practice. The next major development will be to introduce search engines based on the new methods to interrogate very large national DNA databases, such as those held by China, the USA and the UK. Here we describe a rapid method that was used to assign a LR to each individual member of database of 5 million genotypes which can be ranked in order. Previous authors have only considered database trawls in the context of binary match or non-match criteria. However, the concept of match/non-match no longer applies within the new paradigm introduced, since the distribution of resultant LRs is continuous for practical purposes. An English appeal court decision allows scientists to routinely report complex DNA profiles using nothing more than their subjective personal 'experience of casework' and 'observations' in order to apply an expression of the rarity of an evidential sample. This ruling must be considered in context of a recent high profile English case, where an individual was extracted from a database and wrongly accused of a serious crime. In this case the DNA evidence was used to negate the overwhelming exculpatory (non-DNA) evidence. Demonstrable confirmation bias, also known as the 'CSI-effect, seriously affected the investigation. The case demonstrated that in practice, databases could be used to select and prosecute an individual, simply because he ranked high in the list of possible matches. We have identified this phenomenon as a cognitive error which we term: 'the naïve investigator effect'. We take the opportunity to test the performance of database extraction strategies either by using a simple matching allele count (MAC) method or LR. The example heard by the appeal court is used as the exemplar case. It is demonstrated that the LR search-method offers substantial benefits compared to searches based on simple matching allele count (MAC) methods. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeineh, J.A.; Zeineh, M.M.; Zeineh, R.A.
1993-06-01
The 17inch x 14inch X-ray film, gels, and blots are widely used in DNA research. However, DNA laser scanners are costly and unaffordable for the majority of surveyed biotech scientists who need it. The high-tech breakthrough analytical personal scanner (PS) presented in this report is an inexpensive 1 lb hand-held scanner priced at 2-4% of the bulky and costly 30-95 lb conventional laser scanners. This PS scanner is affordable from an operation budget and biotechnologists, who originate most science breakthroughs, can acquire it to enhance their speed, accuracy, and productivity. Compared to conventional laser scanners that are currently available onlymore » through hard-to-get capital-equipment budgets, the new PS scanner offers improved spatial resolution of 20 {mu}m, higher speed (scan up to 17inch x 14inch molecular X-ray film in 48 s), 1-32,768 gray levels (16-bits), student routines, versatility, and, most important, affordability. Its programs image the film, read DNA sequences automatically, and detect gene mutation. In parallel to the wide laboratory use of PC computers instead of mainframes, this PS scanner might become an integral part of a PC-PS powerful and cost-effective system where the PS performs the digital imaging and the PC acts on the data.« less
Phage Therapy in the Era of Synthetic Biology.
Barbu, E Magda; Cady, Kyle C; Hubby, Bolyn
2016-10-03
For more than a century, bacteriophage (or phage) research has enabled some of the most important discoveries in biological sciences and has equipped scientists with many of the molecular biology tools that have advanced our understanding of replication, maintenance, and expression of genetic material. Phages have also been recognized and exploited as natural antimicrobial agents and nanovectors for gene therapy, but their potential as therapeutics has not been fully exploited in Western medicine because of challenges such as narrow host range, bacterial resistance, and unique pharmacokinetics. However, increasing concern related to the emergence of bacteria resistant to multiple antibiotics has heightened interest in phage therapy and the development of strategies to overcome hurdles associated with bacteriophage therapeutics. Recent progress in sequencing technologies, DNA manipulation, and synthetic biology allowed scientists to refactor the entire bacterial genome of Mycoplasma mycoides, thereby creating the first synthetic cell. These new strategies for engineering genomes may have the potential to accelerate the construction of designer phage genomes with superior therapeutic potential. Here, we discuss the use of phage as therapeutics, as well as how synthetic biology can create bacteriophage with desirable attributes. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.
Health Informatics Scientists' Perception About Big Data Technology.
Minou, John; Routsis, Fotios; Gallos, Parisis; Mantas, John
2017-01-01
The aim of this paper is to present the perceptions of the Health Informatics Scientists about the Big Data Technology in Healthcare. An empirical study was conducted among 46 scientists to assess their knowledge about the Big Data Technology and their perceptions about using this technology in healthcare. Based on the study findings, 86.7% of the scientists had knowledge of Big data Technology. Furthermore, 59.1% of the scientists believed that Big Data Technology refers to structured data. Additionally, 100% of the population believed that Big Data Technology can be implemented in Healthcare. Finally, the majority does not know any cases of use of Big Data Technology in Greece while 57,8% of the them mentioned that they knew use cases of the Big Data Technology abroad.
Intra-professional dynamics in translational health research: the perspective of social scientists.
Currie, Graeme; El Enany, Nellie; Lockett, Andy
2014-08-01
In contrast to previous studies, which focus upon the professional dynamics of translational health research between clinician scientists and social scientists (inter-professional contestation), we focus upon contestation within social science (intra-professional contestation). Drawing on the empirical context of Collaborations for Leadership in Applied Health Research and Care (CLAHRCs) in England, we highlight that although social scientists accept subordination to clinician scientists, health services researchers attempt to enhance their position in translational health research vis-à-vis organisation scientists, whom they perceive as relative newcomers to the research domain. Health services researchers do so through privileging the practical impact of their research, compared to organisation scientists' orientation towards development of theory, which health services researchers argue is decoupled from any concern with healthcare improvement. The concern of health services researchers lies with maintaining existing patterns of resource allocation to support their research endeavours, working alongside clinician scientists, in translational health research. The response of organisation scientists is one that might be considered ambivalent, since, unlike health services researchers, they do not rely upon a close relationship with clinician scientists to carry out research, or more generally, garner resource. Copyright © 2014 Elsevier Ltd. All rights reserved.
Schinske, Jeffrey; Cardenas, Monica; Kaliangara, Jahana
2015-01-01
A number of studies have identified correlations between children's stereotypes of scientists, their science identities, and interest or persistence in science, technology, engineering, and mathematics. Yet relatively few studies have examined scientist stereotypes among college students, and the literature regarding these issues in predominantly nonwhite and 2-yr college settings is especially sparse. We piloted an easy-to-analyze qualitative survey of scientist stereotypes in a biology class at a diverse, 2-yr, Asian American and Native American Pacific Islander-Serving Institution. We examined the reliability and validity of the survey, and characterized students' comments with reference to previous research on stereotypes. Positive scientist stereotypes were relatively common in our sample, and negative stereotypes were rare. Negative stereotypes appeared to be concentrated within certain demographic groups. We found that students identifying nonstereotypical images of scientists at the start of class had higher rates of success in the course than their counterparts. Finally, evidence suggested many students lacked knowledge of actual scientists, such that they had few real-world reference points to inform their stereotypes of scientists. This study augments the scant literature regarding scientist stereotypes in diverse college settings and provides insights for future efforts to address stereotype threat and science identity. © 2015 J. Schinske et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Provenance-Powered Automatic Workflow Generation and Composition
NASA Astrophysics Data System (ADS)
Zhang, J.; Lee, S.; Pan, L.; Lee, T. J.
2015-12-01
In recent years, scientists have learned how to codify tools into reusable software modules that can be chained into multi-step executable workflows. Existing scientific workflow tools, created by computer scientists, require domain scientists to meticulously design their multi-step experiments before analyzing data. However, this is oftentimes contradictory to a domain scientist's daily routine of conducting research and exploration. We hope to resolve this dispute. Imagine this: An Earth scientist starts her day applying NASA Jet Propulsion Laboratory (JPL) published climate data processing algorithms over ARGO deep ocean temperature and AMSRE sea surface temperature datasets. Throughout the day, she tunes the algorithm parameters to study various aspects of the data. Suddenly, she notices some interesting results. She then turns to a computer scientist and asks, "can you reproduce my results?" By tracking and reverse engineering her activities, the computer scientist creates a workflow. The Earth scientist can now rerun the workflow to validate her findings, modify the workflow to discover further variations, or publish the workflow to share the knowledge. In this way, we aim to revolutionize computer-supported Earth science. We have developed a prototyping system to realize the aforementioned vision, in the context of service-oriented science. We have studied how Earth scientists conduct service-oriented data analytics research in their daily work, developed a provenance model to record their activities, and developed a technology to automatically generate workflow starting from user behavior and adaptability and reuse of these workflows for replicating/improving scientific studies. A data-centric repository infrastructure is established to catch richer provenance to further facilitate collaboration in the science community. We have also established a Petri nets-based verification instrument for provenance-based automatic workflow generation and recommendation.
ERIC Educational Resources Information Center
Koren, Pazit; Bar, Varda
2009-01-01
This is a comparative study of the image of the scientist held by Israeli Jewish and Arabic student teachers from various backgrounds. The image of female scientists among these groups was also investigated. Five groups of female students (N = 500) from four colleges were studied. Traditional tools (DAST) were combined with more informative…
Scientists Taking a Nature of Science Course: Beliefs and Learning Outcomes of Career Switchers
ERIC Educational Resources Information Center
Peters-Burton, Erin
2016-01-01
The purpose of the study was to examine what scientists studying to become teachers know about the nature of science (NOS) before, during and after a course focused on NOS. The 16 scientists had an average of 9.7 years of work experience. The course was structured to teach knowledge about the aspects of NOS, demonstrate effective methods of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, E.K.
2000-02-17
Advances in the biomedical sciences, especially in human genomics, will dramatically influence law, medicine, public health, and many other sectors of our society in the decades ahead. The public already senses the revolutionary nature of genomic knowledge. In the US and Europe, we have seen widespread discussions about genetic discrimination in health insurance; privacy issues raised by the proliferation of DNA data banks; the challenge of interpreting new DNA diagnostic tests; changing definitions of what it means to be healthy; and the science and ethics of cloning animals and human beings. The primary goal of the Whitehead/ASLME Policy Symposium wasmore » to provide a bridge between the research community and professionals, who were just beginning to grasp the potential impact of new genetic technologies on their fields. The ''Human Genome Project: Science, Law, and Social Change in the 21st Century'' initially was designed as a forum for 300-500 physicians, lawyers, consumers, ethicists, and scientists to explore the impact of new genetic technologies and prepare for the challenges ahead.« less
Linshiz, Gregory; Goldberg, Alex; Konry, Tania; Hillson, Nathan J
2012-01-01
Synthetic biology is a nascent field that emerged in earnest only around the turn of the millennium. It aims to engineer new biological systems and impart new biological functionality, often through genetic modifications. The design and construction of new biological systems is a complex, multistep process, requiring multidisciplinary collaborative efforts from "fusion" scientists who have formal training in computer science or engineering, as well as hands-on biological expertise. The public has high expectations for synthetic biology and eagerly anticipates the development of solutions to the major challenges facing humanity. This article discusses laboratory practices and the conduct of research in synthetic biology. It argues that the fusion science approach, which integrates biology with computer science and engineering best practices, including standardization, process optimization, computer-aided design and laboratory automation, miniaturization, and systematic management, will increase the predictability and reproducibility of experiments and lead to breakthroughs in the construction of new biological systems. The article also discusses several successful fusion projects, including the development of software tools for DNA construction design automation, recursive DNA construction, and the development of integrated microfluidics systems.
Sharma, Nidhi; Hoshika, Shuichi; Hutter, Daniel; Bradley, Kevin M; Benner, Steven A
2014-10-13
Recombinase polymerase amplification (RPA) is an isothermal method to amplify nucleic acid sequences without the temperature cycling that classical PCR uses. Instead of using heat to denature the DNA duplex, RPA uses recombination enzymes to swap single-stranded primers into the duplex DNA product; these are then extended using a strand-displacing polymerase to complete the cycle. Because RPA runs at low temperatures, it never forces the system to recreate base-pairs following Watson-Crick rules, and therefore it produces undesired products that impede the amplification of the desired product, complicating downstream analysis. Herein, we show that most of these undesired side products can be avoided if the primers contain components of a self-avoiding molecular recognition system (SAMRS). Given the precision that is necessary in the recombination systems for them to function biologically, it is surprising that they accept SAMRS. SAMRS-RPA is expected to be a powerful tool within the range of amplification techniques available to scientists. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Rubin, Edna; Cohen, Ariel
2003-07-01
This study investigated the image of scientists held by Israeli pre-service teachers, the majority of whom were female. The population consisted of students belonging to two cultures, Hebrew-speaking and Arabic-speaking. The DAST ('Draw-a-Scientist-Test') tool and other tools, some of which were developed specifically for this research, tested the image of the scientist as perceived by the participants. It was found that the image of the scientist is perceived as predominantly male, a physicist or a chemist, working in a laboratory typical of the eighteenth, nineteenth or the early-twentieth century. Students did not differentiate between scientists and inventors. Different images were held in the two cultures. Most of the Arabic-speaking students put Classical Islamic scientists near the top of their lists and thought of the scientist as an Arab male, while the Hebrew-speaking students' was as a typical Western male. Recommendations, resulting from the findings, for developing a new learning unit for the purpose of altering stereotypes are suggested.
Liu, Qicai; Gao, Feng; Weng, Shaohuang; Peng, Huaping; Lin, Liqing; Zhao, Chengfei; Lin, Xinhua
2015-01-01
PRSS1 mutations or polymorphism in the peripheral blood of patients can be used as susceptible molecular markers to pancreatic cancer. A sensor for selective electrochemical detection of PRSS1 genotypes was developed based on site-specific DNA cleavage of restriction endonuclease EcoRI. A mercapto-modified hairpin probe was immobilized on a gold electrode. The probe's neck can be cleaved by EcoRI in the absence of rs10273639 C/C of PRSS1 genotype, but it cannot be cleaved in the presence of T/T. The difference in quantity of electric charge was monitored by biosensors before and after enzymatic cleavage. Electrochemical signals are generated by differential pulse voltammetry interrogation of methylene blue (MB) that quantitatively binds to surface-confined hairpin probe via electrostatic interactions. The results suggested this method had a good specificity in distinguishing PRSS1 genotypes. There was a good linear relationship between the charge and the logarithmic function of PRSS1 rs10273639 T/T type DNA concentration (current=120.6303+8.8512log C, R=0.9942). The detection limit was estimated at 0.5 fM. The molecular switch sensor has several advantages, and it is possible to qualitatively, quantitatively, and noninvasively detect PRSS1 genotypes in the blood of patients with pancreatic cancer. © 2015 by the Association of Clinical Scientists, Inc.
Current patents and future development underlying marker-assisted breeding in major grain crops.
Utomo, Herry S; Linscombe, Steve D
2009-01-01
Genomics and molecular markers provide new tools to assemble and mobilize important traits from different genetic backgrounds, including breeding lines and cultivars from different parts of the world and their related wild ancestors, to improve the quality and yield of the existing commercial cultivars to meet the increasing challenges of global food demand. The basic techniques of marker-assisted breeding, such as isolating DNA, amplifying DNA of interest using publicly available primers, and visualizing DNA fragments using standard polyacrylamid gel, have been described in the literature and, therefore, are available to scientists and breeders without any restrictions. A more sophisticated high-throughput system that includes proprietary chemicals and reagents, parts and equipments, software, and methods or processes, has been a subject of intensive patents and trade secrets. The high-throughput systems offer a more efficient way to discover associated QTLs for traits of economic importance. Therefore, an increasing number of patents of highly valued genes and QTLs is expected. This paper will discuss and review current patents associated with genes and QTLs utilized in marker-assisted breeding in major grain crops. The availability of molecular markers for important agronomic traits combined with more efficient marker detection systems will help reach the full benefit of MAS in the breeding effort to reassemble potential genes and recapture critical genes among the breeding lines that were lost during domestication to help boost crop production worldwide.
NASA Astrophysics Data System (ADS)
Yore, Larry D.; Florence, Marilyn K.; Pearson, Terry W.; Weaver, Andrew J.
2006-02-01
This autobiographical case study of two scientists involved in earlier studies documents a profile of each scientist. These profiles were used to develop semi-structured interview protocols and email surveys for each scientist. The central issues of these data collections were whether these modern, evaluativist scientists believe that the review react revise process of publishing a peer-reviewed research report simply improves the quality of the language or actually changes the science, and how their metacognitive awareness and executive control were demonstrated in their science inquiry and science writing. The scientists served both as informants and co-authors. Both scientists believed that writing and revising research reports improved the science as well as the clarity of the text; that their use of absolutist language related to their beliefs about inquiry and not about science knowledge; that addressing comments about their writing forced them to assess, monitor, and regulate their science inquiries and research reports; and that traditional forms of knowledge about nature and natural events were valuable information sources that stress description rather than physical causality
Scientists' Views about Communication Training
ERIC Educational Resources Information Center
Besley, John C.; Dudo, Anthony; Storksdieck, Martin
2015-01-01
This study assesses how scientists think about science communication training based on the argument that such training represents an important tool in improving the quality of interactions between scientists and the public. It specifically focuses on training related to five goals, including views about training to make science messages…
The Parallelism between Scientists' and Students' Resistance to New Scientific Ideas.
ERIC Educational Resources Information Center
Campanario, Juan Miguel
2002-01-01
Compares resistance by scientists to new ideas in scientific discovery with students' resistance to conceptual change in scientific learning. Studies the resistance by students to abandoning their misconceptions concerning scientific topics and the resistance by scientists to scientific discovery. (Contains 64 references.) (Author/YDS)
Culture and Unmerited Authorship Credit: Who Wants It and Why?
Ren, Xiaopeng; Su, Hong; Lu, Kewen; Dong, Xiawei; Ouyang, Zhengzheng; Talhelm, Thomas
2016-01-01
Unmerited authorship is a practice common to many countries around the world, but are there systematic cultural differences in the practice? We tested whether scientists from collectivistic countries are more likely to add unmerited coauthors than scientists from individualistic countries. We analyzed archival data from top scientific journals (Study 1) and found that national collectivism predicted the number of authors, which might suggest more unmerited authors. Next, we found that collectivistic scientists were more likely to add unmerited coauthors than individualistic scientists, both between cultures (Studies 2–3) and within cultures (Study 4). Finally, we found that priming people with collectivistic self-construal primes made them more likely to endorse questionable authorship attitudes (Study 5). These findings show that culture collectivism is related to unmerited authorship. PMID:28082940
Culture and Unmerited Authorship Credit: Who Wants It and Why?
Ren, Xiaopeng; Su, Hong; Lu, Kewen; Dong, Xiawei; Ouyang, Zhengzheng; Talhelm, Thomas
2016-01-01
Unmerited authorship is a practice common to many countries around the world, but are there systematic cultural differences in the practice? We tested whether scientists from collectivistic countries are more likely to add unmerited coauthors than scientists from individualistic countries. We analyzed archival data from top scientific journals (Study 1) and found that national collectivism predicted the number of authors, which might suggest more unmerited authors. Next, we found that collectivistic scientists were more likely to add unmerited coauthors than individualistic scientists, both between cultures (Studies 2-3) and within cultures (Study 4). Finally, we found that priming people with collectivistic self-construal primes made them more likely to endorse questionable authorship attitudes (Study 5). These findings show that culture collectivism is related to unmerited authorship.
Identifying contributors of two-person DNA mixtures by familial database search.
Chung, Yuk-Ka; Fung, Wing K
2013-01-01
The role of familial database search as a crime-solving tool has been increasingly recognized by forensic scientists. As an enhancement to the existing familial search approach on single source cases, this article presents our current progress in exploring the potential use of familial search to mixture cases. A novel method was established to predict the outcome of the search, from which a simple strategy for determining an appropriate scale of investigation by the police force is developed. Illustrated by an example using Swedish data, our approach is shown to have the potential for assisting the police force to decide on the scale of investigation, thereby achieving desirable crime-solving rate with reasonable cost.
Science and Technology Review June 2005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aufderheide, M
2005-05-03
This is the articles in this month's issue: (1) Close Collaborations Advance Progress in Genomic Research--Commentary by Elbert Branscomb; (2) Mining Genomes--Livermore computer programs help locate the stretches of DNA in gene deserts that regulate protein-making genes; (3) Shedding Light on Quantum Physics--Laboratory laser research builds from the foundation of Einstein's description of the quantization of light. (4) The Sharper Image for Surveillance--Speckle imaging-an image-processing technique used in astronomy is bringing long-distance surveillance into sharper focus. (5) Keeping Cool Close to the Sun--The specially coated gamma-ray spectrometer aboard the MESSENGER spacecraft will help scientists determine the abundance of elements inmore » Mercury's crust.« less
Synthetic biology: regulating industry uses of new biotechnologies.
Erickson, Brent; Singh, Rina; Winters, Paul
2011-09-02
In our view, synthetic biology is an extension of the continuum of genetic science that has been used safely for more than 40 years by the biotechnology industry in the development of commercial products. Examples of synthetic biology use by biotechnology companies illustrate the potential to substantially reduce research and development time and to increase speed to market. Improvements in the speed and cost of DNA synthesis are enabling scientists to design modified bacterial chromosomes that can be used in the production of renewable chemicals, biofuels, bioproducts, renewable specialty chemicals, pharmaceutical intermediates, fine chemicals, food ingredients, and health care products. Regulatory options should support innovation and commercial development of new products while protecting the public from potential harms.
At quadrennial geophysics fest, earth scientists think globally
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, R.A.
1995-07-28
This article focuses on two areas of current research interest from the International Union of Geodesy and Geophysics meeting in July 1995. The first is the possible long and unlikely seeming change of connections. Linked are the warm surface of the tropical Pacific Ocean, the atmosphere at the midlatitudes in the Southern Hemisphere and the icy stratosphere over Antarctica where the warming of the sea surface 15 years ago may have set the stage for the Antarctic ozone hole. The second major research research reviewed concerned increases in ultraviolet light. Surface radiation in the DNA-damaging region of the spectrum ismore » increasing by as much as 12% per decade at high latitudes.« less
NASA Technical Reports Server (NTRS)
Eller, E. L.
1976-01-01
The project scientists is in a position which rates very high in terms of behavioral study recommendations. His influence over objectives is generally considered to be important. He is highly autonomous in a moderately coordinated environment. He has diverse managerial and technical functions and the performance of these functions require him to grow beyond his role as an experimenter. However, the position within the line organization for those interviewed is also very stimulating, rating almost as high by the same criteria. The role of project scientist may not be the dominant means of professional growth for the experienced scientific investigators. The influence which the project scientist exerts on the project and the stimulation of that position for him are determined largely by his position outside the defined project scientist role. The role of the project scientist is changing because the environment of those who become project scientists is changing.
Contemporary Scientists Discuss the Need for Openness and Open-Mindedness in Science and Society
NASA Astrophysics Data System (ADS)
Mulhall, Pamela J.; Smith, Dorothy V.; Hart, Christina E.; Gunstone, Richard F.
2017-10-01
We report on findings from a qualitative study of Australian scientists whose work brings them into contact with the public. This research sought to understand how a school science curriculum could better represent the work of scientists today. We discuss the views expressed by our participant scientists about the importance of openness and open-mindedness in their work, including their engagement with the public. They described openness as an important characteristic of science. Our participants also see open-mindedness on the part of both scientists and members of the public as important for productive relationships. They see the development of such relationships as an essential facet of their work. The views expressed by these scientists provide a provocative insight into the ways in which contemporary scientists see their work and relationships with their communities. Their perspectives have important implications for approaches to teaching science in schools.
Scientists' Prioritization of Communication Objectives for Public Engagement.
Dudo, Anthony; Besley, John C
2016-01-01
Amid calls from scientific leaders for their colleagues to become more effective public communicators, this study examines the objectives that scientists' report drive their public engagement behaviors. We explore how scientists evaluate five specific communication objectives, which include informing the public about science, exciting the public about science, strengthening the public's trust in science, tailoring messages about science, and defending science from misinformation. We use insights from extant research, the theory of planned behavior, and procedural justice theory to identify likely predictors of scientists' views about these communication objectives. Results show that scientists most prioritize communication designed to defend science from misinformation and educate the public about science, and least prioritize communication that seeks to build trust and establish resonance with the public. Regression analyses reveal factors associated with scientists who prioritize each of the five specific communication objectives. Our findings highlight the need for communication trainers to help scientists select specific communication objectives for particular contexts and audiences.
Doel, Ronald E; Hoffmann, Dieter; Krementsov, Nikolai
2005-01-01
Prior studies of modern scientific internationalism have been written primarily from the point of view of scientists, with little regard to the influence of the state. This study examines the state's role in international scientific relations. States sometimes encouraged scientific internationalism; in the mid-twentieth century, they often sought to restrict it. The present study examines state involvement in international scientific congresses, the primary intersection between the national and international dimensions of scientists' activities. Here we examine three comparative instances in which such restrictions affected scientific internationalism: an attempt to bring an international aerodynamics congress to Nazi Germany in the late 1930s, unsuccessful efforts by Soviet geneticists to host the Seventh International Genetics Congress in Moscow in 1937, and efforts by U.S. scientists to host international meetings in 1950s cold war America. These case studies challenge the classical ideology of scientific internationalism, wherein participation by a nation in a scientist's fame spares the scientist conflict between advancing his science and advancing the interests of his nation. In the cases we consider, scientists found it difficult to simultaneously support scientific universalism and elitist practices. Interest in these congresses reached the top levels of the state, and access to patronage beyond state control helped determine their outcomes.
Identity Matching to Scientists: Differences that Make a Difference?
NASA Astrophysics Data System (ADS)
Andersen, Hanne Moeller; Krogh, Lars Brian; Lykkegaard, Eva
2014-06-01
Students' images of science and scientists are generally assumed to influence their related subject choices and aspirations for tertiary education within science and technology. Several research studies have shown that many young people hold rather stereotypical images of scientists, making it hard for them to see themselves as future scientists. Adolescents' educational choices are important aspects of their identity work, and recent theories link individual choice to the perceived match between self and prototypical persons associated with that choice. In the present study, we have investigated images of scientists among the segment of the upper secondary school students (20 % of the cohort) from which future Danish scientists are recruited. Their images were rather realistic, only including vague and predominantly positive stereotypical ideas. With a particular Science-and-Me (SAM) interview methodology, we inquired into the match between self- and prototypical-scientists ( N = 30). We found high perceived similarity within a core of epistemological characteristics, while dissimilarities typically related to a social domain. However, combining interview data with survey data, we found no significant statistical relation between prototype match and aspirations for tertiary education within science and technology. Importantly, the SAM dialogue revealed how students negotiate perceived differences, and we identified four negotiation patterns that all tend to reduce the impact of mismatches on educational aspirations. Our study raises questions about methodological issues concerning the traditional use of self-to-prototype matching as an explanatory model of educational choice.
Cold Facts: Scientists and media in an era of shrinking budgets and growing appetites for Polar news
NASA Astrophysics Data System (ADS)
Goldman, J.; West, P.
2013-12-01
Scientists, explorers, and everyday people continue to be fascinated about the Arctic and Antarctica. Scientists have been studying every aspect of these regions for years and newspapers and other media outlets have eagerly shared their findings and adventures. Recent economic realities and technological improvements affect how scientists and journalists do their work. As the quickly changing conditions in the Arctic affect the amount of sea ice, change biology, and influence weather in the lower latitudes, the need to share scientific findings is even more important. But limited travel budgets, fewer field studies, and dwindling opportunities for travel aboard a research ship or plane make covering Arctic science a challenge for journalists. The authors - one current and one former Federal media officers -- will explore ways how scientists and journalists can help each other.
The Value of Participating Scientists on NASA Planetary Missions
NASA Astrophysics Data System (ADS)
Prockter, Louise; Aye, Klaus-Michael; Baines, Kevin; Bland, Michael T.; Blewett, David T.; Brandt, Pontus; Diniega, Serina; Feaga, Lori M.; Johnson, Jeffrey R.; Y McSween, Harry; Neal, Clive; Paty, Carol S.; Rathbun, Julie A.; Schmidt, Britney E.
2016-10-01
NASA has a long history of supporting Participating Scientists on its planetary missions. On behalf of the NASA Planetary Assessment/Analysis Groups (OPAG, MEPAG, VEXAG, SBAG, LEAG and CAPTEM), we are conducting a study about the value of Participating Scientist programs on NASA planetary missions, and how the usefulness of such programs might be maximized.Inputs were gathered via a community survey, which asked for opinions about the value generated by the Participating Scientist programs (we included Guest Investigators and Interdisciplinary Scientists as part of this designation), and for the experiences of those who've held such positions. Perceptions about Participating Scientist programs were sought from the entire community, regardless of whether someone had served as a Participating Scientist or not. This survey was distributed via the Planetary Exploration Newsletter, the Planetary News Digest, the DPS weekly mailing, and the mailing lists for each of the Assessment/Analysis Groups. At the time of abstract submission, over 185 community members have responded, giving input on more than 20 missions flown over three decades. Early results indicate that the majority of respondents feel that Participating Scientist programs represent significant added value for NASA planetary missions, increasing the science return and enhancing mission team diversity in a number of ways. A second survey was prepared for input from mission leaders such as Principal Investigators and Project Scientists.Full results of this survey will be presented, along with recommendations for how NASA may wish to enhance Participating Scientist opportunities into its future missions. The output of the study will be a white paper, which will be delivered to NASA and made available to the science community and other interested groups.
Values in environmental research: Citizens’ views of scientists who acknowledge values
McCright, Aaron M.; Allen, Summer; Dietz, Thomas
2017-01-01
Scientists who perform environmental research on policy-relevant topics face challenges when communicating about how values may have influenced their research. This study examines how citizens view scientists who publicly acknowledge values. Specifically, we investigate whether it matters: if citizens share or oppose a scientist’s values, if a scientist’s conclusions seem contrary to or consistent with the scientist’s values, and if a scientist is assessing the state of the science or making a policy recommendation. We conducted two 3x2 factorial design online experiments. Experiment 1 featured a hypothetical scientist assessing the state of the science on the public-health effects of exposure to Bisphenol A (BPA), and Experiment 2 featured a scientist making a policy recommendation on use of BPA. We manipulated whether or not the scientist expressed values and whether the scientist’s conclusion appeared contrary to or consistent with the scientist’s values, and we accounted for whether or not subjects’ values aligned with the scientist’s values. We analyzed our data with ordinary least squares (OLS) regression techniques. Our results provide at least preliminary evidence that acknowledging values may reduce the perceived credibility of scientists within the general public, but this effect differs depending on whether scientists and citizens share values, whether scientists draw conclusions that run contrary to their values, and whether scientists make policy recommendations. PMID:29069087
Mentoring, Gender, and Careers of Academic Scientists.
ERIC Educational Resources Information Center
Grant, Linda; And Others
This study explores the dynamics and effects of mentoring relationships, with particular emphasis on the experiences of women and minorities as proteges. It draws upon quantitative and qualitative data gathered from a survey of 587 academic scientists and interviews with 55 academic scientists, in 3 disciplinary areas: physics and astronomy,…
Continuing Education for Scientists and Engineers: Delivery Systems in North Carolina.
ERIC Educational Resources Information Center
Harrell, Daniel E.; Gibbs, Rebecca F.
Focusing on the continuing education (CE) of scientists/engineers in North Carolina working in small (1-500 employees), geographically dispersed companies, this study: 1) identified and described CE resources currently being used by scientists/engineers to maintain and extend their professional competence and capabilities; 2) determined the extent…
Assessing the Impact of Education and Outreach Activities on Research Scientists
ERIC Educational Resources Information Center
McCann, Brian M.; Cramer, Catherine B.; Taylor, Lisa G.
2015-01-01
The purpose of this study was to investigate the attitudes of university-level research scientists toward educational and outreach activities that aim to help the general public understand more about their scientific endeavors. Interviews, observations, and survey results from 12 university research scientists, their colleagues, students, and the…
ERIC Educational Resources Information Center
Betteley, Pat
2009-01-01
How do you inspire students to keep records like scientists? Share the primary research of real scientists and explicitly teach students how to keep records--that's how! Therefore, a group of third-grade students and their teacher studied the work of famous primatologist Jane Goodall and her modern-day counterpart Ian Gilby. After learning about…
Kelemen, Deborah; Rottman, Joshua; Seston, Rebecca
2013-11-01
Teleological explanations account for objects and events by reference to a functional consequence or purpose. Although they are popular in religion, they are unpopular in science: Physical scientists in particular explicitly reject them when explaining natural phenomena. However, prior research provides reasons to suspect that this explanatory form may represent a default explanatory preference. As a strong test of this hypothesis, we explored whether physical scientists endorse teleological explanations of natural phenomena when their information-processing resources are limited. In Study 1, physical scientists from top-ranked American universities judged explanations as true or false, either at speed or without time restriction. Like undergraduates and age-matched community participants, scientists demonstrated increased acceptance of unwarranted teleological explanations under speed despite maintaining high accuracy on control items. Scientists' overall endorsement of inaccurate teleological explanation was lower than comparison groups, however. In Study 2, we explored this further and found that the teleological tendencies of professional scientists did not differ from those of humanities scholars. Thus, although extended education appears to produce an overall reduction in inaccurate teleological explanation, specialization as a scientist does not, in itself, additionally ameliorate scientifically inaccurate purpose-based theories about the natural world. A religion-consistent default cognitive bias toward teleological explanation tenaciously persists and may have subtle but profound consequences for scientific progress. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Physician-scientists in Japan: attrition, retention, and implications for the future.
Koike, Soichi; Ide, Hiroo; Kodama, Tomoko; Matsumoto, Shinya; Yasunaga, Hideo; Imamura, Tomoaki
2012-05-01
To investigate career trends for physician-scientists in Japan. The authors analyzed 1996-2008 biennial census survey data from Japan's national physician registry to examine trends over time in the numbers and proportion of physician-scientists by sex and years since registration. They also analyzed the transition of registered physicians into and out of the physician-scientist field across two sets of two consecutive surveys (1996-1998 and 2006-2008). The number of physician-scientists between 1996 and 2008 was stable, with a low of 4,893 and a high of 5,325. The number of younger physician-scientists (those registered 0-4 years at the time of the surveys) declined sharply, however, from 828 in 1996 to 253 in 2008. The number of female physician-scientists increased from 528 in 1996 to 746 in 2008. Across the two survey periods, about 30% of physician-scientists left the career path, but this attrition was offset by about the same number of new individuals entering the field. Although the total number of physician-scientists was relatively unchanged during the period studied, it is essential that educators and policy makers develop approaches to address underlying demographic changes to ensure an adequate age- and gender-balanced supply of physician-scientists in the future.
Single-molecule experiments in biological physics: methods and applications.
Ritort, F
2006-08-16
I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.
Yoon, Song-Ro; Arnheim, Norman; Calabrese, Peter
2016-01-01
We used targeted next generation deep-sequencing (Safe Sequencing System) to measure ultra-rare de novo mutation frequencies in the human male germline by attaching a unique identifier code to each target DNA molecule. Segments from three different human genes (FGFR3, MECP2 and PTPN11) were studied. Regardless of the gene segment, the particular testis donor or the 73 different testis pieces used, the frequencies for any one of the six different mutation types were consistent. Averaging over the C>T/G>A and G>T/C>A mutation types the background mutation frequency was 2.6x10-5 per base pair, while for the four other mutation types the average background frequency was lower at 1.5x10-6 per base pair. These rates far exceed the well documented human genome average frequency per base pair (~10−8) suggesting a non-biological explanation for our data. By computational modeling and a new experimental procedure to distinguish between pre-mutagenic lesion base mismatches and a fully mutated base pair in the original DNA molecule, we argue that most of the base-dependent variation in background frequency is due to a mixture of deamination and oxidation during the first two PCR cycles. Finally, we looked at a previously studied disease mutation in the PTPN11 gene and could easily distinguish true mutations from the SSS background. We also discuss the limits and possibilities of this and other methods to measure exceptionally rare mutation frequencies, and we present calculations for other scientists seeking to design their own such experiments. PMID:27341568
TOPICAL REVIEW: Single-molecule experiments in biological physics: methods and applications
NASA Astrophysics Data System (ADS)
Ritort, F.
2006-08-01
I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.
Engaging High School Students and Scientists in a Café Scientifique Program
NASA Astrophysics Data System (ADS)
Mayhew, M. A.; Hall, M. K.; Foutz, S.
2010-12-01
We have created an informal science program that engages high school age youth in exploring science relevant to their lives with researchers working at the cutting edge of science. The program provides scientists a challenging new audience to share their research and enthusiasm for science and science careers. It gives the youth an opportunity to discover how the often-mundane science they are learning in school is used to push the frontiers in science, with exciting applications in the real world. Our program, a youth-led Café Scientifique (cafenm.org), now in its fourth year, has been successful in attracting and retaining youth as well as attracting scientist-presenters. Modeled after the international Café Scientifique program for adults, we combine a social atmosphere with discussion of controversial or current topics to challenge youth to think about how science affects their lives. We feature short presentations with a high degree of interactivity and discussion during which the scientist expert communicates a single important idea or scientific principle. A good speaker will leave the audience with a dilemma or controversy to discuss, and with further opportunities to learn. Encouraging the presenters to interact frequently with the audience allows them to gauge the audience's engagement and knowledge. Alternatively we also host Cafés that offer more hands-on learning experiences, including extracting DNA from plants, building model fuel cell cars, using Google Earth to spy, and deciphering age, gender, ethnicity, and cause of death from human skeletons. Controversial topics are often presented within a scientific, economic, and social or political framework, because science is only part of the solution. A key element of success is in preparing the presenters for the youth audience. Presenters submit their presentation to the program directors for initial review and receive feedback on length, mechanisms for involving the audience, and clarifying or removing extraneous details in their slides. They then give a practice talk to a small group of youth prior to presenting to the full audience to ensure they are reaching the target audience. Speakers, in retrospect, frequently indicate the dry run with the youth relieved much of their anxiety about reaching out to youth. One of the most important keys to the success of the program to date is that to the greatest extent possible we have allowed the youth to embrace the Café program as their program. An important aspect of this is the Youth Leadership Teams that were formed in each town. The youth leaders run all aspects of the Café meetings (with adults in the background providing support as needed), advise on what topics should be presented, and take on responsibility for promoting the program in their respective communities. Evaluation studies indicate the youth are learning new science concepts, broadening their understanding of what scientists do, and more frequently see how science touches their lives. There is also evidence that substantive learning of STEM content and changes in attitudes about science, scientists, and science careers occurs.
Constructing a scientist: expert authority and public images of Rachel Carson.
Hecht, David K
2011-01-01
This article uses the voluminous public discourse around Rachel Carson and her controversial bestseller "Silent Spring" to explore Americans' views on science and scientists. Carson provides a particularly interesting case study because of intense and public debates over whether she was a scientist at all, and therefore whether her book should be granted legitimacy as science. Her career defied easy classification, as she acted variously as writer, activist, and environmentalist in addition to scientist. Defending her work as legitimate science, which many though not all commentators did, therefore became an act of defining what both science and scientists could and should be. This article traces the variety of nonscientific images and narratives readers and writers assigned to Carson, such as 'reluctant crusader' and 'scientist-poet'. It argues that nonscientific attributes were central to legitimating her as both admirable person and admirable scientist. It explores how debates over "Silent Spring" can be usefully read as debates over the desirability of putatively nonscientific attributes in the professional work of a scientist. And it examines the nature of Carson's very democratized image for changing notions of science and scientists in 1960s United States politics and culture.
Spiderman and science: How students' perceptions of scientists are shaped by popular media.
Tan, Aik-Ling; Jocz, Jennifer Ann; Zhai, Junqing
2017-07-01
This study addresses the influence of popular media on how young children perceive science and the work of scientists. Using an adapted version of the Draw-A-Scientist Test, 15 classes of fourth graders (9-10 years old) at three different schools in Singapore were sampled ( n = 266). The students' drawings as well as their identification of three sources from which they obtained inspiration for their drawings were analyzed. Our results showed a strong relationship between students' drawings of scientists and their reported sources of inspiration. The results suggest that popular media play a large role in shaping how young children view scientists.
Origin and development of forensic medicine in Egypt.
Kharoshah, Magdy Abdel Azim; Zaki, Mamdouh Kamal; Galeb, Sherien Salah; Moulana, Ashraf Abdel Reheem; Elsebaay, Elsebaay Ahmed
2011-01-01
Egyptians are one of the first civilisations to practice the removal and examination of internal organs of humans. Their practices ranged from embalming to faith healing to surgery and autopsy. Modern radiological studies, together with various forensic techniques, allowed scientists unique glimpses of the state of health in Egypt 4000 years ago and discovered one of the earliest applications of autopsy, the main element of forensic medicine practice today. The Egyptian Forensic Medicine Authority handles a relatively large number of cases annually and depends on different assisting laboratories (forensic histopathology, microbiology, serology unit, DNA laboratory, forensic chemistry laboratory) as well as the Counterfeiting and Forgery unit. Crime scene investigations are performed mainly through the criminal laboratory related to the Ministry of Interior. Forensic Medicine is studied thoroughly in the faculty of medicine (undergraduates), as well as by forensic medical examiners at postgraduate level (diploma, master's and doctorate). This review recommends more scientific cooperation with universities in the field of forensic medicine and related sciences to solve various crimes with meticulous detail. Copyright © 2010 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Merrill, Stephen J; Ashrafi, Samira; Subramanian, Madhan; Godar, Dianne E
2015-01-01
For several decades the incidence of cutaneous malignant melanoma (CMM) steadily increased in fair-skinned, indoor-working people around the world. Scientists think poor tanning ability resulting in sunburns initiate CMM, but they do not understand why the incidence continues to increase despite the increased use of sunscreens and formulations offering more protection. This paradox, along with lower incidences of CMM in outdoor workers, although they have significantly higher annual UV doses than indoor workers have, perplexes scientists. We found a temporal exponential increase in the CMM incidence indicating second-order reaction kinetics revealing the existence of 2 major risk factors. From epidemiology studies, we know one major risk factor for getting CMM is poor tanning ability and we now propose the other major risk factor may be the Human Papilloma Virus (HPV) because clinicians find β HPVs in over half the biopsies. Moreover, we uncovered yet another paradox; the increasing CMM incidences significantly correlate with decreasing personal annual UV dose, a proxy for low vitamin D3 levels. We also discovered the incidence of CMM significantly increased with decreasing personal annual UV dose from 1960, when it was almost insignificant, to 2000. UV and other DNA-damaging agents can activate viruses, and UV-induced cytokines can hide HPV from immune surveillance, which may explain why CMM also occurs in anatomical locations where the sun does not shine. Thus, we propose the 2 major risk factors for getting CMM are intermittent UV exposures that result in low cutaneous levels of vitamin D3 and possibly viral infection.
Staff Clinicians | Center for Cancer Research
The Neuro-Oncology Branch (NOB), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH) is seeking staff clinicians to provide high-quality patient care for individuals with primary central nervous system (CNS) malignancies. The NOB is comprised of a multidisciplinary team of physicians, healthcare providers, and scientists who are dedicated to developing new therapies and improving outcomes for patients with primary brain and spinal cord tumors. The NOB is one of the first trans-institutional initiatives at the National Institutes of Health. The Branch is focused on developing an integrated clinical, translational, and basic research program that engages the strengths and resources of the National Cancer Institutes (NCI) and the National Institutes of Neurological Disorders and Stroke (NINDS) for the purpose of developing novel experimental therapeutics for individuals with primary central nervous system (CNS) malignancies. About NCI's Center for Cancer Research The Center for Cancer Research (CCR) is the intramural research component of the National Cancer Institute (NCI). CCR’s enabling infrastructure facilitates clinical studies at the NIH Clinical Center, the world’s largest dedicated clinical research complex; provides extensive opportunities for collaboration; and allows scientists and clinicians to undertake high-risk, high-impact laboratory- and clinic-based investigations. Investigators are supported by a wide array of intellectual, technological, and research resources, including surgical and pathology facilities, animal facilities, and dedicated, high-quality technology cores in areas such as imaging/microscopy, chemistry/purification, mass spectrometry, flow cytometry, genomics/DNA sequencing, transgenics and knock-out mice, arrays/molecular profiling, and human genetics/bioinformatics. For an overview of CCR, please visit http://ccr.cancer.gov/.
How scientists view the public, the media and the political process.
Besley, John C; Nisbet, Matthew
2013-08-01
We review past studies on how scientists view the public, the goals of communication, the performance and impacts of the media, and the role of the public in policy decision-making. We add to these past findings by analyzing two recent large-scale surveys of scientists in the UK and US. These analyses show that scientists believe the public is uninformed about science and therefore prone to errors in judgment and policy preferences. Scientists are critical of media coverage generally, yet they also tend to rate favorably their own experience dealing with journalists, believing that such interactions are important both for promoting science literacy and for career advancement. Scientists believe strongly that they should have a role in public debates and view policy-makers as the most important group with which to engage. Few scientists view their role as an enabler of direct public participation in decision-making through formats such as deliberative meetings, and do not believe there are personal benefits for investing in these activities. Implications for future research are discussed, in particular the need to examine how ideology and selective information sources shape scientists' views.
NASA Astrophysics Data System (ADS)
Barouchou, Alexandra; Dendrinos, Markos
2015-02-01
An interesting issue in the domain of history of science and ideas is the concept of similarity of historical personalities. Similar objects of research of philosophers and scientists indicate prospective influences, caused either from one another's reading or meetings, communication or even cooperation. Key methodological role in the surfacing of the sought similarities play the keywords extracted from their works as well as their placement in a philosophical and scientific term taxonomy. The case study examined in the framework of this paper concerns scientists and philosophers, who lived in ancient Greece or Renaissance periods and dealt, in at least one work, with the subject God. All the available data (scientists, studies, recorded relations between scientists, keywords, and thematic hierarchy) have been organized in an RDBMS environment, aiming at the emergence of similarities and influences between scientists through properly created SQL queries based on date and thematic hierarchy criteria.
From nutrition scientist to nutrition communicator: why you should take the leap.
Miller, Gregory D; Cohen, Nancy L; Fulgoni, Victor L; Heymsfield, Steven B; Wellman, Nancy S
2006-06-01
Media reports about new nutrition research are abundant, but they may confuse the public when unqualified sources are quoted, findings are reported out of context, or results appear to contradict previous studies. The nutrition scientist who conducts the research is best qualified to communicate the findings accurately and within context. Yet, some nutrition scientists hesitate to speak out in the media because of barriers such as a lack of time, media skills, and support from administrators or fear that their results will be miscommunicated or sensationalized. Scientists who do grant media interviews enjoy benefits such as positively affecting the public's eating habits, influencing health and nutrition policy, and receiving heightened attention to their work, which can lead to future research funding. Scientists who want to improve their media skills can seek support from their institution's public relations professionals and can learn from continuing education opportunities at conferences and self-study through articles and other resources.
Addressing climate challenges in developing countries
NASA Astrophysics Data System (ADS)
Tilmes, Simone; Monaghan, Andrew; Done, James
2012-04-01
Advanced Study Program/Early Career Scientist Assembly Workshop on Regional Climate Issues in Developing Countries; Boulder, Colorado, 19-22 October 2011 The Early Career Scientist Assembly (ECSA) and the Advanced Study Program of the National Center for Atmospheric Research (NCAR) invited 35 early-career scientists from nearly 20 countries to attend a 3-day workshop at the NCAR Mesa Laboratory prior to the World Climate Research Programme (WCRP) Open Science Conference in October 2011. The goal of the workshop was to examine a range of regional climate challenges in developing countries. Topics included regional climate modeling, climate impacts, water resources, and air quality. The workshop fostered new ideas and collaborations between early-career scientists from around the world. The discussions underscored the importance of establishing partnerships with scientists located in typically underrepresented countries to understand and account for the local political, economic, and cultural factors on which climate change is superimposed.
Influence of Scientific Stories on Students Ideas about Science and Scientists
ERIC Educational Resources Information Center
Erten, Sinan; Kiray, S. Ahmet; Sen-Gümüs, Betül
2013-01-01
This study was conducted to determine whether a lesson, in which context-based learning approach and scientific stories were used, changed students' (aged 11-12) stereotypical images of science and scientists. Data was collected from two separate sources: Interviews conducted with six students and Draw a Scientist Test (DAST) document that was…
Influence of Scientific Stories on Students Ideas about Science and Scientists
ERIC Educational Resources Information Center
Erten, Sinan; Kiray, S. Ahmet; Sen-Gumus, Betul
2013-01-01
This study was conducted to determine whether a lesson, in which context-based learning approach and scientific stories were used, changed stereotypical images of students (aged 11-12) about science and scientists. Data was collected from two separate sources: Interviews conducted with six students and Draw a Scientist Test (DAST) document that…
Scientist Examines Tornado Vortex
NASA Technical Reports Server (NTRS)
1999-01-01
In this Quick Time movie, a scientist examines what appears to be a tornado vortex (blue) coming out of a thunderstorm. The scientist uses 3D glasses to be able to see in 3 dimensions the different flows going out into the vortex. Earth science and weather studies are an important ongoing function of NASA and its affiliates.
Exploring Native American Students' Perceptions of Scientists
ERIC Educational Resources Information Center
Laubach, Timothy A.; Crofford, Geary Don; Marek, Edmund A.
2012-01-01
The purpose of this descriptive study was to explore Native American (NA) students' perceptions of scientists by using the Draw-A-Scientist Test and to determine if differences in these perceptions exist between grade level, gender, and level of cultural tradition. Data were collected for students in Grades 9-12 within a NA grant off-reservation…
ERIC Educational Resources Information Center
Falloon, Garry
2012-01-01
This research studied a series of videoconference teaching workshops and virtual labs, which formed a component of a school-scientist partnership involving a New Zealand science research institute and year 13 students at a Wellington high school. It explored students' perceptions of the effectiveness of the videoconferences as an interactive…
Van Neste, Christophe; Vandewoestyne, Mado; Van Criekinge, Wim; Deforce, Dieter; Van Nieuwerburgh, Filip
2014-03-01
Forensic scientists are currently investigating how to transition from capillary electrophoresis (CE) to massive parallel sequencing (MPS) for analysis of forensic DNA profiles. MPS offers several advantages over CE such as virtually unlimited multiplexy of loci, combining both short tandem repeat (STR) and single nucleotide polymorphism (SNP) loci, small amplicons without constraints of size separation, more discrimination power, deep mixture resolution and sample multiplexing. We present our bioinformatic framework My-Forensic-Loci-queries (MyFLq) for analysis of MPS forensic data. For allele calling, the framework uses a MySQL reference allele database with automatically determined regions of interest (ROIs) by a generic maximal flanking algorithm which makes it possible to use any STR or SNP forensic locus. Python scripts were designed to automatically make allele calls starting from raw MPS data. We also present a method to assess the usefulness and overall performance of a forensic locus with respect to MPS, as well as methods to estimate whether an unknown allele, which sequence is not present in the MySQL database, is in fact a new allele or a sequencing error. The MyFLq framework was applied to an Illumina MiSeq dataset of a forensic Illumina amplicon library, generated from multilocus STR polymerase chain reaction (PCR) on both single contributor samples and multiple person DNA mixtures. Although the multilocus PCR was not yet optimized for MPS in terms of amplicon length or locus selection, the results show excellent results for most loci. The results show a high signal-to-noise ratio, correct allele calls, and a low limit of detection for minor DNA contributors in mixed DNA samples. Technically, forensic MPS affords great promise for routine implementation in forensic genomics. The method is also applicable to adjacent disciplines such as molecular autopsy in legal medicine and in mitochondrial DNA research. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Lim, An Suk; Jeong, Hae Jin; Jang, Tae Young; Kang, Nam Seon; Lee, Sung Yeon; Yoo, Yeong Du; Kim, Hyung Seop
2013-03-01
Prorocentrum spp. are planktonic and/or benthic species. Benthic Prorocentrum species are of primary concern to scientists and the public because some of them are toxic. We established clonal cultures of 3 strains of Prorocentrum species that were collected from the thalli of a macroalga in the coastal waters off Jeju Island, located at the southern end of Korea. The Korean strains of P. cf. rhathymum, which are morphologically almost identical to the Virgin Island strain of P. rhathymum, were different from P. mexicanum because the former dinoflagellate has one simple collar-like spine in the periflagellar area, while the latter dinoflagellate has a 2- or 3-horned spine. In addition, the sequences of the small subunit (SSU) rDNA of the Korean strains were identical to those of the Malaysian and Floridian strains of P. rhathymum, while the sequences of the large subunit (LSU) rDNA of the Korean strains were 0.1-0.9% different from those of the Iranian and Malaysian strains of P. rhathymum. In phylogenetic trees based on the SSU rDNA sequences, the Korean strains of P. rhathymum formed a clade with the Malaysian and Floridian strains of P. rhathymum and the Vietnamese and Polynesian strains of P. mexicanum. However, in phylogenetic trees based on the LSU rDNA sequences, the Korean strains of P. rhathymum formed a clade with the Iranian strain of P. rhathymum and the Spanish and Mexican strains of P. mexicanum. Therefore, the molecular characterization of the Korean strains does not allow us to clearly classify them as P. rhathymum, nor P. mexicanum, although their morphology has so far been reported to be closer to that of P. rhathymum than P. mexicanum and thus we designated them as P. cf. rhathymum.
Geller, Gail; Bernhardt, Barbara A; Gardner, Mary; Rodgers, Joann; Holtzman, Neil A
2005-03-01
To describe the relationship between scientists and science writers and their experiences with media reporting of genetic discoveries. This study included individual interviews with 15 scientists who specialize in genetics and 22 science writers who have covered their stories and a qualitative analysis of the data. Scientists and science writers place an equally high priority on accuracy of media reports. They agree on what makes genetics stories newsworthy and the particular challenges in reporting genetic discoveries (i.e., poor public understanding of genetics, the association of genetics with eugenics, and the lack of immediately apparent applications of genetic discoveries to human health). The relationship between scientists and bona fide science writers is largely positive. Scientists tend to trust, respect, and be receptive to science writers. Both scientists and science writers acknowledge that trust is an essential component of a good interview. Science writers report a fair degree of autonomy with respect to the relationship they have with their editors. To the degree that trust facilitates the access that science writers have to scientists, as well as higher quality interviews between scientists and science writers, trust might also contribute to higher quality media reporting. Therefore, scientists and science writers have an ethical obligation to foster trusting relationships with each other. Future research should systematically explore ways to cultivate such relationships and assess their impact on the quality of science journalism.
Preservice Teachers' Images of Scientists: Do Prior Science Experiences Make a Difference?
NASA Astrophysics Data System (ADS)
Milford, Todd M.; Tippett, Christine D.
2013-06-01
This article presents the results of a mixed methods study that used the Draw-a-Scientist Test as a visual tool for exploring preservice teachers' beliefs about scientists. A questionnaire was also administered to 165 students who were enrolled in elementary (K-8) and secondary (8-12) science methods courses. Taken as a whole, the images drawn by preservice teachers reflected the stereotype of a scientist as a man with a wild hairdo who wears a lab coat and glasses while working in a laboratory setting. However, results indicated statistically significant differences in stereotypical components of representations of scientists depending on preservice teachers' program and previous science experiences. Post degree students in secondary science methods courses created images of scientists with fewer stereotypical elements than drawings created by students in the regular elementary program.
Sorrentino, Carmen; Boggio, Andrea; Confalonieri, Stefano; Hemenway, David; Scita, Giorgio; Ballabeni, Andrea
2016-01-01
Basic scientific research generates knowledge that has intrinsic value which is independent of future applications. Basic research may also lead to practical benefits, such as a new drug or diagnostic method. Building on our previous study of basic biomedical and biological researchers at Harvard, we present findings from a new survey of similar scientists from three countries. The goal of this study was to design policies to enhance both the public health potential and the work satisfaction and test scientists' attitudes towards these factors. The present survey asked about the scientists' motivations, goals and perspectives along with their attitudes concerning policies designed to increase both the practical (i.e. public health) benefits of basic research as well as their own personal satisfaction. Close to 900 basic investigators responded to the survey; results corroborate the main findings from the previous survey of Harvard scientists. In addition, we find that most bioscientists disfavor present policies that require a discussion of the public health potential of their proposals in grants but generally favor softer policies aimed at increasing the quality of work and the potential practical benefits of basic research. In particular, bioscientists are generally supportive of those policies entailing the organization of more meetings between scientists and the general public, the organization of more academic discussion about the role of scientists in the society, and the implementation of a "basic bibliography" for each new approved drug.
Premji, Stephanie; Messing, Karen; Lippel, Katherine
2008-03-01
When research results concerning occupational health are expressed ambiguously, compensation and prevention can be affected. This study examined the language used by scientists to discuss the relation between work and musculoskeletal disorders (MSDs). Language regarding work and MSDs in twenty articles from two peer-reviewed journals was compared with that in 94 messages on MSDs posted by published scientists to an internet list. Almost all the articles found some link between work and MSDs. However, few articles expressed belief in such a link unambiguously in the title or abstract, and language on links was often hard for a non-health scientist to interpret. Language and methods gave excess weight to negative results. On the listserve, many scientists expressed unambiguous views on linkages between work and MSDs. Scientists must express their opinions more forthrightly if they wish their results to be used to favour prevention and to foster access to workers' compensation.
The enduring effect of scientific interest on trust in climate scientists in the United States
NASA Astrophysics Data System (ADS)
Motta, Matthew
2018-06-01
People who distrust scientists are more likely to reject scientific consensus, and are more likely to support politicians who are sceptical of scientific research1. Consequently, boosting Americans' trust in scientists is a central goal of science communication2. However, while previous research has identified several correlates of distrust in climate scientists3 and scientists more broadly4, far less is known about potential long-term influences taking root in young adulthood. This omission is notable, as previous research suggests that attitudes towards science formulated in pre-teenage years play a key role in shaping attitudes in adulthood5. Using data from the Longitudinal Study of American Youth, I find that interest in science at age 12-14 years is associated with increased trust in climate scientists in adulthood (mid thirties), irrespective of Americans' political ideology. The enduring and bipartisan effects of scientific interest at young ages suggest a potential direction for future efforts to boost mass trust in climate scientists.
The climate change consensus extends beyond climate scientists
NASA Astrophysics Data System (ADS)
Carlton, J. S.; Perry-Hill, Rebecca; Huber, Matthew; Prokopy, Linda S.
2015-09-01
The existence of anthropogenic climate change remains a public controversy despite the consensus among climate scientists. The controversy may be fed by the existence of scientists from other disciplines publicly casting doubt on the validity of climate science. The extent to which non-climate scientists are skeptical of climate science has not been studied via direct survey. Here we report on a survey of biophysical scientists across disciplines at universities in the Big 10 Conference. Most respondents (93.6%) believe that mean temperatures have risen and most (91.9%) believe in an anthropogenic contribution to rising temperatures. Respondents strongly believe that climate science is credible (mean credibility score 6.67/7). Those who disagree about climate change disagree over basic facts (e.g., the effects of CO2 on climate) and have different cultural and political values. These results suggest that scientists who are climate change skeptics are outliers and that the majority of scientists surveyed believe in anthropogenic climate change and that climate science is credible and mature.
NASA Astrophysics Data System (ADS)
Kuhn, William F.
At the core of what it means to be a scientist or engineer is the ability to think rationally using scientific reasoning methods. Yet, typically if asked, scientist and engineers are hard press for a reply what that means. Some may argue that the meaning of scientific reasoning methods is a topic for the philosophers and psychologist, but this study believes and will prove that the answers lie with the scientists and engineers, for who really know the workings of the scientific reasoning thought process than they. This study will provide evidence to the aims: (a) determine the fundamental characteristics of cognitive reasoning methods exhibited by engineer/scientists working in R&D projects, (b) sample the engineer/scientist community to determine their views as to the importance, frequency, and ranking of each of characteristics towards benefiting their R&D projects, (c) make concluding remarks regarding any identified competency gaps in the exhibited or expected cognitive reasoning methods of engineer/scientists working on R&D projects. To drive these aims are the following three research questions. The first, what are the salient characteristics of cognitive reasoning methods exhibited by engineer/scientists in an R&D environment? The second, what do engineer/scientists consider to be the frequency and importance of the salient cognitive reasoning methods characteristics? And the third, to what extent, if at all, do patent holders and technical fellows differ with regard to their perceptions of the importance and frequency of the salient cognitive reasoning characteristics of engineer/scientists? The methodology and empirical approach utilized and described: (a) literature search, (b) Delphi technique composed of seven highly distinguish engineer/scientists, (c) survey instrument directed to distinguish Technical Fellowship, (d) data collection analysis. The results provide by Delphi Team answered the first research question. The collaborative effort validated presented characteristic and most importantly presents ten additional novel or new reasoning characteristics. These characteristics were then presented and evaluated by the Technical Fellows. Their findings answered the second and third research question. With interesting results including the data indicating "imagination" as highest in importance and frequency, and comparison analysis of the patent holders showing those having five or more patents significantly valued "intuition (independent).
Gene Editing of Human Hematopoietic Stem and Progenitor Cells: Promise and Potential Hurdles.
Yu, Kyung-Rok; Natanson, Hannah; Dunbar, Cynthia E
2016-10-01
Hematopoietic stem and progenitor cells (HSPCs) have great therapeutic potential because of their ability to both self-renew and differentiate. It has been proposed that, given their unique properties, a small number of genetically modified HSPCs could accomplish lifelong, corrective reconstitution of the entire hematopoietic system in patients with various hematologic disorders. Scientists have demonstrated that gene addition therapies-targeted to HSPCs and using integrating retroviral vectors-possess clear clinical benefits in multiple diseases, among them immunodeficiencies, storage disorders, and hemoglobinopathies. Scientists attempting to develop clinically relevant gene therapy protocols have, however, encountered a number of unexpected hurdles because of their incomplete knowledge of target cells, genomic control, and gene transfer technologies. Targeted gene-editing technologies using engineered nucleases such as ZFN, TALEN, and/or CRISPR/Cas9 RGEN show great clinical promise, allowing for the site-specific correction of disease-causing mutations-a process with important applications in autosomal dominant or dominant-negative genetic disorders. The relative simplicity of the CRISPR/Cas9 system, in particular, has sparked an exponential increase in the scientific community's interest in and use of these gene-editing technologies. In this minireview, we discuss the specific applications of gene-editing technologies in human HSPCs, as informed by prior experience with gene addition strategies. HSPCs are desirable but challenging targets; the specific mechanisms these cells evolved to protect themselves from DNA damage render them potentially more susceptible to oncogenesis, especially given their ability to self-renew and their long-term proliferative potential. We further review scientists' experience with gene-editing technologies to date, focusing on strategies to move these techniques toward implementation in safe and effective clinical trials.
NASA Astrophysics Data System (ADS)
Haines-Stiles, G.
2015-12-01
Long-standing citizen science projects such as Audubon's Christmas Bird Count have generated useful data about species range and population numbers for more than 100 years. Recent IPCC reports and the U.S. National Climate Assessment (NCA) routinely include data about changing ecosystems and enviroments. Today new forms of citizen science are beginning to join such classic examples and broaden the demographics of participants and the kinds of information that can be captured, shared and analyzed. Surfers and scientists are hoping to record near-shore measurements of ocean acidification in Smartfin, through GPS, accelerometers and pH sensors on surfboards. Trout Unlimited is working on "Angler Science", documenting water temperature and stream quality in a changing climate, and using DNA analysis to track invasive species. The West Oakland Environmental Indicators Project is adding community mobilization in the face of sea level rise to its decade-long work on air pollution, particulates and asthma. The National Phenology Network encourages year-long observations using the "-Nature's Notebook" app that extend beyond anything possible using government-funded research alone. Understanding oceans, protecting rivers and identifying long-term patterns can contribute useful data to future NCAs, helping meet the otherwise challenging goal of "continuous assessment." How can we manage what we can't measure, for reasons of limited staff or resources? This presentation will offer one answer: by enlisting more and more citizen scientists--sportsmen and women, hobbyists and outdoor enthusiasts who may not even self identify as "citizen scientists"--pursuing their passions while also contributing valuable GEC data. The presentation will also touch on what kinds of information infrastructure can help assure data quality when traditional citizen science is expanded in these ways.
Navigating the Path to a Biomedical Science Career
NASA Astrophysics Data System (ADS)
Zimmerman, Andrea McNeely
The number of biomedical PhD scientists being trained and graduated far exceeds the number of academic faculty positions and academic research jobs. If this trend is compelling biomedical PhD scientists to increasingly seek career paths outside of academia, then more should be known about their intentions, desires, training experiences, and career path navigation. Therefore, the purpose of this study was to understand the process through which biomedical PhD scientists are trained and supported for navigating future career paths. In addition, the study sought to determine whether career development support efforts and opportunities should be redesigned to account for the proportion of PhD scientists following non-academic career pathways. Guided by the social cognitive career theory (SCCT) framework this study sought to answer the following central research question: How does a southeastern tier 1 research university train and support its biomedical PhD scientists for navigating their career paths? Key findings are: Many factors influence PhD scientists' career sector preference and job search process, but the most influential were relationships with faculty, particularly the mentor advisor; Planned activities are a significant aspect of the training process and provide skills for career success; and Planned activities provided skills necessary for a career, but influential factors directed the career path navigated. Implications for practice and future research are discussed.
Genome editing for crop improvement: Challenges and opportunities
Abdallah, Naglaa A; Prakash, Channapatna S; McHughen, Alan G
2015-01-01
ABSTRACT Genome or gene editing includes several new techniques to help scientists precisely modify genome sequences. The techniques also enables us to alter the regulation of gene expression patterns in a pre-determined region and facilitates novel insights into the functional genomics of an organism. Emergence of genome editing has brought considerable excitement especially among agricultural scientists because of its simplicity, precision and power as it offers new opportunities to develop improved crop varieties with clear-cut addition of valuable traits or removal of undesirable traits. Research is underway to improve crop varieties with higher yields, strengthen stress tolerance, disease and pest resistance, decrease input costs, and increase nutritional value. Genome editing encompasses a wide variety of tools using either a site-specific recombinase (SSR) or a site-specific nuclease (SSN) system. Both systems require recognition of a known sequence. The SSN system generates single or double strand DNA breaks and activates endogenous DNA repair pathways. SSR technology, such as Cre/loxP and Flp/FRT mediated systems, are able to knockdown or knock-in genes in the genome of eukaryotes, depending on the orientation of the specific sites (loxP, FLP, etc.) flanking the target site. There are 4 main classes of SSN developed to cleave genomic sequences, mega-nucleases (homing endonuclease), zinc finger nucleases (ZFNs), transcriptional activator-like effector nucleases (TALENs), and the CRISPR/Cas nuclease system (clustered regularly interspaced short palindromic repeat/CRISPR-associated protein). The recombinase mediated genome engineering depends on recombinase (sub-) family and target-site and induces high frequencies of homologous recombination. Improving crops with gene editing provides a range of options: by altering only a few nucleotides from billions found in the genomes of living cells, altering the full allele or by inserting a new gene in a targeted region of the genome. Due to its precision, gene editing is more precise than either conventional crop breeding methods or standard genetic engineering methods. Thus this technology is a very powerful tool that can be used toward securing the world's food supply. In addition to improving the nutritional value of crops, it is the most effective way to produce crops that can resist pests and thrive in tough climates. There are 3 types of modifications produced by genome editing; Type I includes altering a few nucleotides, Type II involves replacing an allele with a pre-existing one and Type III allows for the insertion of new gene(s) in predetermined regions in the genome. Because most genome-editing techniques can leave behind traces of DNA alterations evident in a small number of nucleotides, crops created through gene editing could avoid the stringent regulation procedures commonly associated with GM crop development. For this reason many scientists believe plants improved with the more precise gene editing techniques will be more acceptable to the public than transgenic plants. With genome editing comes the promise of new crops being developed more rapidly with a very low risk of off-target effects. It can be performed in any laboratory with any crop, even those that have complex genomes and are not easily bred using conventional methods. PMID:26930114
NASA Astrophysics Data System (ADS)
Schill, Janna Marie
Professional socialization is a process that individuals experience as members of a profession and consists of the knowledge, attitudes, and experiences that influence and shape their professional identity. The process of professional socialization has not been studied in the clinical laboratory science profession. Clinical laboratory science is an allied health profession that is faced by a workforce shortage that has been caused by a decrease in new graduates, decreased retention of qualified professionals, and increased retirements. Other allied health professions such as nursing, athletic training, and pharmacy have studied professional socialization as a way to identify factors that may influence the retention of early career professionals. This mixed method study, which quantitatively used Hall's Professionalism Scale (1968) in addition to qualitative focus group interviews, sought to identify the professional attitudes and behaviors, sense of belonging, and professional socialization of early career clinical laboratory scientists. Early career clinical laboratory scientists were divided into two groups based upon the amount of work experience they had; new clinical laboratory science graduates have had less than one year of work experience and novice clinical laboratory scientists had between one and three years of work experience. This study found that early career clinical laboratory scientists have established professional identities and view themselves as members of the clinical laboratory science field within four proposed stages of professional socialization consisting of pre-arrival, encounter, adaptation, and commitment. New CLS graduates and novice clinical laboratory scientists were found to be at different stages of the professional stage process. New CLS graduates, who had less than one year of work experience, were found to be in the encounter stage. Novice clinical laboratory scientists, with one to three years of work experience, were found to be in the adaptation stage. In order for early career clinical laboratory scientists to successfully transition from student to committed professional, increased support from more experienced colleagues needs to be provided for this group of laboratory professionals. This study provided an initial examination of the professional socialization process in the CLS profession and adds to existing professional socialization studies in allied health.
Meet EPA Scientist Jane Gallagher, Ph.D.
Dr. Jane Gallagher is an EPA research health scientist working with expertise in both field and clinical studies. She develops, tests, and integrates new methods, approaches and biomarkers to study human health risks posed by environmental chemicals
NASA Astrophysics Data System (ADS)
Yore, Larry D.; Hand, Brian M.; Prain, Vaughan
2002-09-01
This study attempted to establish an image of a science writer based on a synthesis of writing theory, models, and research literature on academic writing in science and other disciplines and to contrast this image with an actual prototypical image of scientists as writers of science. The synthesis was used to develop a questionnaire to assess scientists' writing habits, beliefs, strategies, and perceptions about print-based language. The questionnaire was administered to 17 scientists from science and applied science departments of a large Midwestern land grant university. Each respondent was interviewed following the completion of the questionnaire with a custom-designed semistructured protocol to elaborate, probe, and extend their written responses. These data were analyzed in a stepwise fashion using the questionnaire responses to establish tentative assertions about the three major foci (type of writing done, criteria of good science writing, writing strategies used) and the interview responses to verify these assertions. Two illustrative cases (a very experienced, male physical scientist and a less experienced, female applied biological scientist) were used to highlight diversity in the sample. Generally, these 17 scientists are driven by the academy's priority of publishing their research results in refereed, peer-reviewed journals. They write their research reports in isolation or as a member of a large research team, target their writing to a few journals that they also read regularly, use writing in their teaching and scholarship to inform and persuade science students and other scientists, but do little border crossing into other discourse communities. The prototypical science writer found in this study did not match the image based on a synthesis of the writing literature in that these scientists perceived writing as knowledge telling not knowledge building, their metacognition of written discourse was tacit, and they used a narrow array of genre, strategies, target audiences, and expectations for their writing.
ERIC Educational Resources Information Center
Albert, Mathieu; Laberge, Suzanne; McGuire, Wendy
2012-01-01
This study empirically addresses the claim made by Gibbons et al ("The new production of knowledge: The dynamics of science and research in contemporary societies." Sage, Thousand Oaks, 1994) that a novel form of quality control (associated with Mode 2 knowledge production) is supplementing the "traditional" peer-review process…
Superheroes and Supervillains: Reconstructing the Mad-Scientist Stereotype in School Science
ERIC Educational Resources Information Center
Avraamidou, Lucy
2013-01-01
Background: Reform recommendations around the world call for an understanding about the nature of science and the work of scientists. However, related research findings provide evidence that students hold stereotypical views of scientists and the nature of their work. Purpose: The aim of this case study was to examine the impact of an intervention…
What Scientists Say: Scientists' Views of Nature of Science and Relation to Science Context
ERIC Educational Resources Information Center
Schwartz, Renee; Lederman, Norman
2008-01-01
The purpose of this study is to examine practicing scientists' views of nature of science (NOS) and explore possible relationships between these views and science context. Science educators emphasize teaching NOS through inquiry-based learning experiences throughout science disciplines. Yet aspects of NOS that are agreed upon as relevant to…
Brazilian Primary and Secondary School Pupils' Perception of Science and Scientists
ERIC Educational Resources Information Center
Bartoszeck, Amauri Betini; Bartoszeck, Flavio Kulevicz
2017-01-01
The purpose of this study is to understand in an exploratory way pupils' perception of science and the image of scientists at primary and secondary school levels. Data was collected by means of a survey questionnaire and a drawing representing pupils' depiction what scientists do during their working hours. A questionnaire anchored on a Likert…
ERIC Educational Resources Information Center
Peker, Deniz; Dolan, Erin
2012-01-01
As student-teacher-scientist partnerships become more widespread, there is a need for research to understand the roles assumed by scientists and teachers as they interact with students in general and in inquiry learning environments in particular. Although teacher roles during inquiry learning have been studied, there is a paucity of research…
American and Greek Children's Visual Images of Scientists: Enduring or Fading Stereotypes?
ERIC Educational Resources Information Center
Christidou, Vasilia; Bonoti, Fotini; Kontopoulou, Argiro
2016-01-01
This study explores American and Greek primary pupils' visual images of scientists by means of two nonverbal data collection tasks to identify possible convergences and divergences. Specifically, it aims to investigate whether their images of scientists vary according to the data collection instrument used and to gender. To this end, 91…
Pupils' Image of "The Scientist" among Two Communities in Israel: A Comparative Study
ERIC Educational Resources Information Center
Koren, Pazit; Bar, Varda
2009-01-01
The image of "the scientist" and its effect on the willingness to be a scientist and to follow a career in science were investigated in two different cultural populations of elementary and junior high school pupils in Israel: Hebrew-speaking (secular) pupils (N = 390) and Arabic-speaking Bedouin pupils (N = 185). Five different tools…
The Climate for Women in Academic Science: The Good, the Bad, and the Changeable
ERIC Educational Resources Information Center
Settles, Isis H.; Cortina, Lilia M.; Malley, Janet; Stewart, Abigail J.
2006-01-01
Deficits theory posits that women scientists have not yet achieved parity with men scientists because of structural aspects of the scientific environment that provide them with fewer opportunities and more obstacles than men. The current study of 208 faculty women scientists tested this theory by examining the effect of personal negative…
Contemporary High-Profile Scientists and Their Interactions with the Community
ERIC Educational Resources Information Center
Smith, Dorothy V.; Mulhall, Pamela J.; Hart, Christina E.; Gunstone, Richard F.
2016-01-01
This article presents a case study of 10 high-profile Australian research scientists. These scientists are highly committed to engaging with the public. They interact with a wide range of groups in the community, including the traditional media. They are aware that they are seen as representatives of science at a time when the authority of science…
Analysis of the Image of Scientists Portrayed in the Lebanese National Science Textbooks
ERIC Educational Resources Information Center
Yacoubian, Hagop A.; Al-Khatib, Layan; Mardirossian, Taline
2017-01-01
This article presents an analysis of how scientists are portrayed in the Lebanese national science textbooks. The purpose of this study was twofold. First, to develop a comprehensive analytical framework that can serve as a tool to analyze the image of scientists portrayed in educational resources. Second, to analyze the image of scientists…
ERIC Educational Resources Information Center
Olsson, Ulf
2014-01-01
Scientists from five Swedish universities were interviewed about open second cycle education. Research groups and scientists collaborate closely with industry, and the selection of scientists for the study was made in relation to an interest in developing technology-enhanced open education, indicated by applications for funding from the Knowledge…
Greek Primary School Students' Images of Scientists and Their Work: Has Anything Changed?
ERIC Educational Resources Information Center
Emvalotis, Anastassios; Koutsianou, Athina
2018-01-01
Background: A growing interest in student's perceptions of scientists has been identified in the literature, relying on the argument that stereotypical perceptions of scientists may affect student attitudes towards science and their willingness to pursue a science-related career. Thus, over the past 30 years, many studies have investigated…
Human Genome Project discoveries: Dialectics and rhetoric in the science of genetics
NASA Astrophysics Data System (ADS)
Robidoux, Charlotte A.
The Human Genome Project (HGP), a $437 million effort that began in 1990 to chart the chemical sequence of our three billion base pairs of DNA, was completed in 2003, marking the 50th anniversary that proved the definitive structure of the molecule. This study considered how dialectical and rhetorical arguments functioned in the science, political, and public forums over a 20-year period, from 1980 to 2000, to advance human genome research and to establish the official project. I argue that Aristotle's continuum of knowledge--which ranges from the probable on one end to certified or demonstrated knowledge on the other--provides useful distinctions for analyzing scientific reasoning. While contemporary scientific research seeks to discover certified knowledge, investigators generally employ the hypothetico-deductive or scientific method, which often yields probable rather than certain findings, making these dialectical in nature. Analysis of the discourse describing human genome research revealed the use of numerous rhetorical figures and topics. Persuasive and probable reasoning were necessary for scientists to characterize unknown genetic phenomena, to secure interest in and funding for large-scale human genome research, to solve scientific problems, to issue probable findings, to convince colleagues and government officials that the findings were sound and to disseminate information to the public. Both government and private venture scientists drew on these tools of reasoning to promote their methods of mapping and sequencing the genome. The debate over how to carry out sequencing was rooted in conflicting values. Scientists representing the academic tradition valued a more conservative method that would establish high quality results, and those supporting private industry valued an unconventional approach that would yield products and profits more quickly. Values in turn influenced political and public forum arguments. Agency representatives and investors sided with the approach that reflected values they supported. Fascinated with this controversy and the convincing comparisons, the media often endorsed Celera's work for its efficiency. The analysis of discourse from the science, political, and public forums revealed that value systems influenced the accuracy and quality of the arguments more than the type or number of figures used to describe the research to various audiences.
Eliciting expert opinion for economic models: an applied example.
Leal, José; Wordsworth, Sarah; Legood, Rosa; Blair, Edward
2007-01-01
Expert opinion is considered as a legitimate source of information for decision-analytic modeling where required data are unavailable. Our objective was to develop a practical computer-based tool for eliciting expert opinion about the shape of the uncertainty distribution around individual model parameters. We first developed a prepilot survey with departmental colleagues to test a number of alternative approaches to eliciting opinions on the shape of the uncertainty distribution around individual parameters. This information was used to develop a survey instrument for an applied clinical example. This involved eliciting opinions from experts to inform a number of parameters involving Bernoulli processes in an economic model evaluating DNA testing for families with a genetic disease, hypertrophic cardiomyopathy. The experts were cardiologists, clinical geneticists, and laboratory scientists working with cardiomyopathy patient populations and DNA testing. Our initial prepilot work suggested that the more complex elicitation techniques advocated in the literature were difficult to use in practice. In contrast, our approach achieved a reasonable response rate (50%), provided logical answers, and was generally rated as easy to use by respondents. The computer software user interface permitted graphical feedback throughout the elicitation process. The distributions obtained were incorporated into the model, enabling the use of probabilistic sensitivity analysis. There is clearly a gap in the literature between theoretical elicitation techniques and tools that can be used in applied decision-analytic models. The results of this methodological study are potentially valuable for other decision analysts deriving expert opinion.
An epigenetic basis for autism spectrum disorder risk and oral contraceptive use.
Strifert, Kim
2015-12-01
In the United States 1 in 68 children are diagnosed with autism spectrum disorder (ASD). Although the etiology is unknown, many scientists believe ASD is caused by a combination of genetic and environmental factors and/or epigenetic factors. The widespread use of oral contraceptives is one environmental risk factor that has been greatly overlooked in the biomedical literature. Oral contraceptives, synthetic hormones created to imitate natural human hormones and disrupt endogenous endocrine function to inhibit pregnancy, may be causing the harmful neurodevelopmental effects that result in the increased prevalence of ASD. It is conceivable that the synthetic hormones repeatedly assault the oocyte causing persistent changes in expression of the estrogen receptor beta gene. Ethinylestradiol, a known endocrine disruptor, may trigger DNA methylation of the estrogen receptor beta gene causing decreased mRNA resulting in impaired brain estrogen signaling in progeny. In addition, it is possible the deleterious effects are transgenerational as the estrogen receptor gene and many of its targets may be imprinted and the methylation marks protected from global demethylation and preserved through fertilization and beyond to progeny generations. This article will delineate the hypothesis that ethinylestradiol activates DNA methylation of the estrogen receptor beta gene causing decreased mRNA resulting in diminished brain estrogen signaling in offspring of mothers exposed to oral contraceptives. Considering the detrimental epigenetic and transgenerational effects proposed, it calls for further study. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Scientists Shaping the Discussion
NASA Astrophysics Data System (ADS)
Abraham, J. A.; Weymann, R.; Mandia, S. A.; Ashley, M.
2011-12-01
Scientific studies which directly impact the larger society require an engagement between the scientists and the larger public. With respect to research on climate change, many third-party groups report on scientific findings and thereby serve as an intermediary between the scientist and the public. In many cases, the third-party reporting misinterprets the findings and conveys inaccurate information to the media and the public. To remedy this, many scientists are now taking a more active role in conveying their work directly to interested parties. In addition, some scientists are taking the further step of engaging with the general public to answer basic questions related to climate change - even on sub-topics which are unrelated to scientists' own research. Nevertheless, many scientists are reluctant to engage the general public or the media. The reasons for scientific reticence are varied but most commonly are related to fear of public engagement, concern about the time required to properly engage the public, or concerns about the impact to their professional reputations. However, for those scientists who are successful, these engagement activities provide many benefits. Scientists can increase the impact of their work, and they can help society make informed choices on significant issues, such as mitigating global warming. Here we provide some concrete steps that scientists can take to ensure that their public engagement is successful. These steps include: (1) cultivating relationships with reporters, (2) crafting clear, easy to understand messages that summarize their work, (3) relating science to everyday experiences, and (4) constructing arguments which appeal to a wide-ranging audience. With these steps, we show that scientists can efficiently deal with concerns that would otherwise inhibit their public engagement. Various resources will be provided that allow scientists to continue work on these key steps.
Science@SLAC—Discovering New Drugs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drell, Persis; Smith, Clyde; Bushnell, Dave
2011-10-18
SLAC scientists and private-sector drug makers describe how a public--private partnership combined with the specialized X-rays from the Stanford Synchrotron Radiation Lightsource (SSRL) enable smart drug design that eliminates the costly trial-and-error approach used by traditional drug companies. SSRL is a synchrotron lightsource laboratory used by scientists from a range of disciplines to study matter on the scale of atoms and molecules. Featured in this video are SLAC Laboratory Director Persis Drell, SSRL staff scientist Clyde Smith, and Dave Bushnell, a scientist from startup drug maker Cocrystal Discovery Inc.
Science@SLACâDiscovering New Drugs
Drell, Persis; Smith, Clyde; Bushnell, Dave
2018-01-16
SLAC scientists and private-sector drug makers describe how a public--private partnership combined with the specialized X-rays from the Stanford Synchrotron Radiation Lightsource (SSRL) enable smart drug design that eliminates the costly trial-and-error approach used by traditional drug companies. SSRL is a synchrotron lightsource laboratory used by scientists from a range of disciplines to study matter on the scale of atoms and molecules. Featured in this video are SLAC Laboratory Director Persis Drell, SSRL staff scientist Clyde Smith, and Dave Bushnell, a scientist from startup drug maker Cocrystal Discovery Inc.
NASA Astrophysics Data System (ADS)
Glen, Nicole J.; Dotger, Sharon
2013-10-01
This qualitative study examined the connections between elementary teachers’ conceptions of how scientists use writing and how the teachers used writing during science lessons. Data collected included lesson observations, interviews, handouts to students, and curriculum resources. The findings revealed that teachers in this study thought scientists write for several purposes: the presentation of data, observations, experiences, procedures, and facts. The teachers used writing tasks that mirrored this with their students. The teachers also had a limited definition of creativity in writing, and when they had students write creatively in science it was to add in fictional elements. Implications of this study include providing teachers with better models for how and why scientists write, including these models in more inquiry-based science lessons, and directly relating concepts of nature of science to elementary science writing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, R.
Scientists from NOAA and Exxon dispute whether the Prince William Sound ecosystem is recovering from the Exxon Valdez spill. NOAA scientists claim that the Sound is still staggering from a major ecological blow and that crude oil weathering products are contaminating vast numbers of Alaskan wildlife. Exxon scientists claim that most of the biota of the Sound is returning to full strength and is largely free of oil from the spill. At the heart of the dispute is the technique of hydrocarbon fingerprinting to identify the source of crude. Exxon scientists claim that government scientists do not know how tomore » interpret the data, and that what they claim is contamination from Valdez crude actually comes from other sources, such as diesel soot from the smokestacks of ships used to collect fish for study. NOAA scientists claim that hydrocarbon fingerprinting is an inappropriate method for tracking oil-spill damage to biota, due to the varied ways in which living organisms metabolize petroleum.« less
New genetic and morphological evidence suggests a single hoaxer created `Piltdown man'
NASA Astrophysics Data System (ADS)
De Groote, Isabelle; Flink, Linus Girdland; Abbas, Rizwaan; Bello, Silvia M.; Burgia, Lucia; Buck, Laura Tabitha; Dean, Christopher; Freyne, Alison; Higham, Thomas; Jones, Chris G.; Kruszynski, Robert; Lister, Adrian; Parfitt, Simon A.; Skinner, Matthew M.; Shindler, Karolyn; Stringer, Chris B.
2016-08-01
In 1912, palaeontologist Arthur Smith Woodward and amateur antiquarian and solicitor Charles Dawson announced the discovery of a fossil that supposedly provided a link between apes and humans: Eoanthropus dawsoni (Dawson's dawn man). The publication generated huge interest from scientists and the general public. However, `Piltdown man's' initial celebrity has long been overshadowed by its subsequent infamy as one of the most famous scientific frauds in history. Our re-evaluation of the Piltdown fossils using the latest scientific methods (DNA analyses, high-precision measurements, spectroscopy and virtual anthropology) shows that it is highly likely that a single orang-utan specimen and at least two human specimens were used to create the fake fossils. The modus operandi was found consistent throughout the assemblage (specimens are stained brown, loaded with gravel fragments and restored using filling materials), linking all specimens from the Piltdown I and Piltdown II sites to a single forger-Charles Dawson. Whether Dawson acted alone is uncertain, but his hunger for acclaim may have driven him to risk his reputation and misdirect the course of anthropology for decades. The Piltdown hoax stands as a cautionary tale to scientists not to be led by preconceived ideas, but to use scientific integrity and rigour in the face of novel discoveries.
Berg, Paul
2008-01-01
Devoted teachers and mentors during early childhood and adolescence nurtured my ambition to become a scientist, but it was not until I actually began doing experiments in college and graduate school that I was confident about that choice and of making it a reality. During my postdoctoral experiences and thereafter, I made several significant advances, most notably the discovery of the then novel acyl- and aminoacyl adenylates: the former as intermediates in fatty acyl coenzyme A (CoA) formation and the latter as precursors to aminoacyl tRNAs. In the early 1970s, my research changed from a focus on transcription and translation in Escherichia coli to the molecular genetics of mammalian cells. To that end, my laboratory developed a method for creating recombinant DNAs that led us and others, over the next two decades, to create increasingly sophisticated ways for introducing "foreign" DNAs into cultured mammalian cells and to target modifications of specific chromosomal loci. Circumstances surrounding that work drew me into the public policy debates regarding recombinant DNA practices. As an outgrowth of my commitment to teaching, I co-authored several textbooks on molecular genetics and a biography of George Beadle. The colleagues, students, and wealth of associates with whom I interacted have made being a scientist far richer than I can have imagined.
New genetic and morphological evidence suggests a single hoaxer created 'Piltdown man'.
De Groote, Isabelle; Flink, Linus Girdland; Abbas, Rizwaan; Bello, Silvia M; Burgia, Lucia; Buck, Laura Tabitha; Dean, Christopher; Freyne, Alison; Higham, Thomas; Jones, Chris G; Kruszynski, Robert; Lister, Adrian; Parfitt, Simon A; Skinner, Matthew M; Shindler, Karolyn; Stringer, Chris B
2016-08-01
In 1912, palaeontologist Arthur Smith Woodward and amateur antiquarian and solicitor Charles Dawson announced the discovery of a fossil that supposedly provided a link between apes and humans: Eoanthropus dawsoni (Dawson's dawn man). The publication generated huge interest from scientists and the general public. However, 'Piltdown man's' initial celebrity has long been overshadowed by its subsequent infamy as one of the most famous scientific frauds in history. Our re-evaluation of the Piltdown fossils using the latest scientific methods (DNA analyses, high-precision measurements, spectroscopy and virtual anthropology) shows that it is highly likely that a single orang-utan specimen and at least two human specimens were used to create the fake fossils. The modus operandi was found consistent throughout the assemblage (specimens are stained brown, loaded with gravel fragments and restored using filling materials), linking all specimens from the Piltdown I and Piltdown II sites to a single forger-Charles Dawson. Whether Dawson acted alone is uncertain, but his hunger for acclaim may have driven him to risk his reputation and misdirect the course of anthropology for decades. The Piltdown hoax stands as a cautionary tale to scientists not to be led by preconceived ideas, but to use scientific integrity and rigour in the face of novel discoveries.
Safari, Mohammad-Reza
2010-03-01
Free radicals especially reactive oxygen metabolites can damage DNA, protein, enzymes, and membrane lipids. Lipid peroxidation in hepatocyte membrane may be involved in hepatic diseases. Antioxidants may inhibit this reaction. Due to oxidant-antioxidant imbalance, free radicals may cause destructive effects. For several years, scientists tried to find antioxidant compounds. In this study, the effects of lycopene and ubiquinol-10 on the oxidative stress in rat hepatocytes induced by t-buthyl hydroperoxide was determined. First, rat hepatocytes were isolated and then incubated in the presence of tert-buthyl hydroperoxide and the amount of malondialdehyde, as a marker of lipid peroxidation, was determined. Then, this reaction was performed in the presence of various concentrations of each lycopene and ubiquinol-10, and the malondialdehyde level was determined. The results of this study showed that in the presence of various concentrations of lycopene and ubiquinol-10 the levels of lipid peroxidation products significantly decreased (P<0.05). Thus, lycopene and ubiquinol-10 have inhibitory effects on lipid peroxidation reaction. This study showed the potential utility of lycopene and ubiquinol-10 in prevention of hepatic dysfunction.
2010-01-01
Free radicals especially reactive oxygen metabolites can damage DNA, protein, enzymes, and membrane lipids. Lipid peroxidation in hepatocyte membrane may be involved in hepatic diseases. Antioxidants may inhibit this reaction. Due to oxidant-antioxidant imbalance, free radicals may cause destructive effects. For several years, scientists tried to find antioxidant compounds. In this study, the effects of lycopene and ubiquinol-10 on the oxidative stress in rat hepatocytes induced by t-buthyl hydroperoxide was determined. First, rat hepatocytes were isolated and then incubated in the presence of tert-buthyl hydroperoxide and the amount of malondialdehyde, as a marker of lipid peroxidation, was determined. Then, this reaction was performed in the presence of various concentrations of each lycopene and ubiquinol-10, and the malondialdehyde level was determined. The results of this study showed that in the presence of various concentrations of lycopene and ubiquinol-10 the levels of lipid peroxidation products significantly decreased (P<0.05). Thus, lycopene and ubiquinol-10 have inhibitory effects on lipid peroxidation reaction. This study showed the potential utility of lycopene and ubiquinol-10 in prevention of hepatic dysfunction. PMID:27683352
Lunar Gene Bank For Endangered Species
NASA Astrophysics Data System (ADS)
Swain, R.; Behera, D.; Sahoo, P. K.; Swain, S. K.; Sasmal, A.
2012-09-01
Before the dawn of the 22nd century, we face the huge risk of losing our genetic heritage accumulated during aeons of evolution. The losses include hundreds of vertebrates, hundreds of thousands of plants and over a million insect species. The gene pools of many human ethnic groups are also threatened. As we have observed, adequate conservation of habitat is unfeasible and active breeding programs cover only a handful of the many thousand species threatened. Against such indispensable losses scientists are starting cryopreservation of germplasms by creation of gene banks. I propose to construct a cDNA library based gene bank for endangered species in the permanently shadowed polar lunar craters that would provide immunity from both natural disadvantages and humanitarian intrusions [4].
NASA Astrophysics Data System (ADS)
Crutchfield, James; Wiesner, Karoline
2010-02-01
Is anything ever simple? When confronted with a complicated system, scientists typically strive to identify underlying simplicity, which we articulate as natural laws and fundamental principles. This simplicity is what makes nature appear so organized. Atomic physics, for example, approached a solid theoretical foundation when Niels Bohr uncovered the organization of electronic energy levels, which only later were redescribed as quantum wavefunctions. Charles Darwin's revolutionary idea about the "origin" of species emerged by mapping how species are organized and discovering why they came to be that way. And James Watson and Francis Crick's interpretation of DNA diffraction spectra was a discovery of the structural organization of genetic information - it was neither about the molecule's disorder (thermodynamic entropy) nor about the statistical randomness of its base-pair sequences.
ERIC Educational Resources Information Center
Fauville, Géraldine
2017-01-01
In this article, 61 high-school students learned about ocean acidification through a virtual laboratory followed by a virtual lecture and an asynchronous discussion with a marine scientist on an online platform: VoiceThread. This study focuses on the students' development of ocean literacy when prompted to ask questions to the scientist. The…
Preservice Teachers' Images of Scientists: Do Prior Science Experiences Make a Difference?
ERIC Educational Resources Information Center
Milford, Todd M.; Tippett, Christine D.
2013-01-01
This article presents the results of a mixed methods study that used the Draw-a-Scientist Test as a visual tool for exploring preservice teachers' beliefs about scientists. A questionnaire was also administered to 165 students who were enrolled in elementary (K-8) and secondary (8-12) science methods courses. Taken as a whole, the images drawn by…
ERIC Educational Resources Information Center
Ginexi, Elizabeth M.; Huang, Grace; Steketee, Michael; Tsakraklides, Sophia; MacAllum, Keith; Bromberg, Julie; Huffman, Amanda; Luke, Douglas A.; Leischow, Scott J.; Okamoto, Janet M.; Rogers, Todd
2017-01-01
This article presents a case study of a scientist-practitioner research network established by the National Cancer Institute's State and Community Tobacco Control Research Initiative. While prior programs have focused on collaboration among scientists, a goal here was to encourage collaborations with non-university, practice-based partners. Two…
From Scientists to Teachers: The Role of Student Epistemology in Lesson Plans of Career Switchers
ERIC Educational Resources Information Center
Burton, Erin Peters; Burton, Stephen
2016-01-01
Professional scientists who pursue a teaching credential bring a great deal of background to students in a classroom, but they may have barriers to the ways they portray the field of science. This study used a multiple-case replication design to determine the role of epistemology in lesson plans of seven scientists becoming teachers. Data sources…
ERIC Educational Resources Information Center
Bankole, Olubanke M.
2013-01-01
Purpose: This study aims to investigate the extent and level of internet access and use among scientists at Olabisi Onabanjo University (OOU), Ago Iwoye, Nigeria, its impact on their academic activities and the constraints faced in internet use. Design/methodology/approach: A questionnaire survey with all the 125 scientists in the Faculty of…
Circulating nucleic acids and evolution.
Anker, Philippe; Stroun, Maurice
2012-06-01
J.B. Lamarck in 1809 was the first to present a theory of evolution. He proposed it was due to the adaptation of species to environmental changes, this adaptation being acquired by the offspring. In 1868, Darwin suggested that cells excrete gemmules, which circulate through the body and reach the gonads where they are transmitted to the next generation. His main argument came from graft hybrids. In the fifties and sixties, Russian geneticists, rejecting neo-Darwinism, said that acquired characteristics were the basis of evolution. The main experiments on which they based their theory were the transmission of hereditary characteristics by a special technique of grafting between two varieties of plants. We repeated this kind of experiment and also succeeded in obtaining hereditary modifications of the pupil plants that acquired some characteristics of the mentor variety. Rather than adopting the views of the Russian scientists, we suggested that DNA was circulating between the mentor and pupil plants. Hirata's group have shown recently, by using molecular techniques such as cloning, RFLP PCR and sequencing some genes of their graft hybrids of pepper plants, that transfer of informative molecules from the mentor to the pupil plant does exist. Nucleic acids are actively released by cells; they circulate in the body. They can transform oncogenically or trigger antibody response but the only genetic transformation showing that DNA can go from the soma to the germen comes from graft hybrids. This suggests that circulating nucleic acids, in this case DNA, like Darwin's gemmules, play a role in the mechanism of evolution.
Issues of social policy and ethics in gene technology.
Sade, R M
1994-09-01
Technical developments in the last ten years have made possible mapping and sequencing of the entire human genome, along with the possibility of treating genetic disorders by manipulating DNA. A variety of issues regarding potential uses and abuses of these technologies have become apparent. They relate to both genetic screening and gene therapy. Problems facing individuals and their families mostly revolve around rights of self-determination and of confidentiality. Health care professionals will need to design optimal systems to provide genetic counseling and to protect confidentiality of DNA data bases. Society and social institutions will need to develop policies and laws that protect the privacy of individuals whose DNA is stored in data banks. Patenting of the results of gene research remains controversial internationally. Moreover, there is concern in many quarters about society's potential abuse of gene technology for eugenic purposes. Gene therapy is now a reality. There is little disagreement on the use of gene therapy to treat genetic diseases in individuals by somatic cell therapy. There is much controversy, however, over the use of germ-line cell therapy. Gene technology has contributed to the growth among a small group of influential people of the Post-Modern Movement, which is strongly antiscience and antitechnology. This movement may pose a long-term threat to future technological advances and should not be ignored. There is much outside of the laboratory that scientists, particularly molecular biologists, can do to assure a secure place for science and technology in our culture.
Aghili, Zahra; Nasirizadeh, Navid; Divsalar, Adeleh; Shoeibi, Shahram; Yaghmaei, Parichehreh
2017-09-15
Genetically Modified Organisms, have been entered our food chain and detection of these organisms in market products are still the main challenge for scientists. Among several developed detection/quantification methods for detection of these organisms, the electrochemical nanobiosensors are the most attended which are combining the advantages of using nanomaterials, electrochemical methods and biosensors. In this research, a novel and sensitive electrochemical nanobiosensor for detection/quantification of these organisms have been developed using nanomaterials; Exfoliated Graphene Oxide and Gold Nano-Urchins for modification of the screen-printed carbon electrode, and also applying a specific DNA probe as well as hematoxylin for electrochemical indicator. Application time period and concentration of the components have been optimized and also several reliable methods have been used to assess the correct assembling of the nanobiosensor e.g. field emission scanning electron microscope, cyclic voltammetry and electrochemical impedance spectroscopy. The results shown the linear range of the sensor was 40.0-1100.0 femtomolar and the limit of detection calculated as 13.0 femtomolar. Besides, the biosensor had good selectivity towards the target DNA over the non-specific sequences and also it was cost and time-effective and possess ability to be used in real sample environment of extracted DNA of Genetically Modified Organism products. Therefore, the superiority of the aforementioned specification to the other previously published methods was proved adequate. Copyright © 2017. Published by Elsevier B.V.
The technical communication practices of Russian and U.S. aerospace engineers and scientists
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Flammia, Madelyn; Kennedy, John M.
1993-01-01
As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communication practices of Russian and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions; second, to determine the use and production of technical communication by aerospace engineers and scientists; third, to seek their views about the appropriate content of the undergraduate course in technical communication; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self administered questionnaire was distributed to Russian aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI) and to their U.S. counterparts at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. Responses of the Russian and U.S. participants to selected questions are presented in this paper.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.
1993-01-01
As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Project, two studies were conducted that investigated the technical communications practices of Russian and U.S. aerospace engineers and scientists. Both studies have the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI), NASA ARC, and NASA LaRC. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. The responses of the Russian and U.S. participants, to selected questions, are presented in this report.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Flammia, Madelyn; Kennedy, John M.
1993-01-01
As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communication practices of Russian and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions; second, to determine the use and production of technical communication by aerospace engineers and scientists; third, to seek their views about the appropriate content of the undergraduate course in technical communication; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self administered questionnaire was distributed to Russian aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI) and to their U.S. counterparts at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. Responses of the Russian and U.S. participants to selected questions are presented in this paper.
The Future of the Internet in Science
NASA Technical Reports Server (NTRS)
Guice, Jon; Duffy, Robert
2000-01-01
How are scientists going to make use of the Internet several years from now? This is a case study of a leading-edge experiment in building a 'virtual institute'-- using electronic communication tools to foster collaboration among geographically dispersed scientists. Our experience suggests: Scientists will want to use web-based document management systems. There will be a demand for Internet-enabled meeting support tools. While internet videoconferencing will have limited value for scientists, webcams will be in great demand as a tool for transmitting pictures of objects and settings, rather than "talking heads." and a significant share of scientists who do fieldwork will embrace mobile voice, data and video communication tools. The setting for these findings is a research consortium called the NASA Astrobiology Institute.
Physician Scientist Training in the United States: A Survey of the Current Literature.
Kosik, R O; Tran, D T; Fan, Angela Pei-Chen; Mandell, G A; Tarng, D C; Hsu, H S; Chen, Y S; Su, T P; Wang, S J; Chiu, A W; Lee, C H; Hou, M C; Lee, F Y; Chen, W S; Chen, Q
2016-03-01
The declining number of physician scientists is an alarming issue. A systematic review of all existing programs described in the literature was performed, so as to highlight which programs may serve as the best models for the training of successful physician scientists. Multiple databases were searched, and 1,294 articles related to physician scientist training were identified. Preference was given to studies that looked at number of confirmed publications and/or research grants as primary outcomes. Thirteen programs were identified in nine studies. Eighty-three percent of Medical Scientist Training Program (MSTP) graduates, 77% of Clinician Investigator Training Program (CI) graduates, and only 16% of Medical Fellows Program graduates entered a career in academics. Seventy-eight percent of MSTP graduates succeeded in obtaining National Institute of Health (NIH) grants, while only 15% of Mayo Clinic National Research Service Award-T32 graduates obtained NIH grants. MSTP physician scientists who graduated in 1990 had 13.5 ± 12.5 publications, while MSTP physician scientists who graduated in 1975 had 51.2 ± 38.3 publications. Additionally, graduates from the Mayo Clinic's MD-PhD Program, the CI Program, and the NSRA Program had 18.2 ± 20.1, 26.5 ± 24.5, and 17.9 ± 26.3 publications, respectively. MSTP is a successful model for the training of physician scientists in the United States, but training at the postgraduate level also shows promising outcomes. An increase in the number of positions available for training at the postgraduate level should be considered. © The Author(s) 2014.
Nauroth, Peter; Gollwitzer, Mario; Kozuchowski, Henrik; Bender, Jens; Rothmund, Tobias
2017-10-01
Public debates about socio-scientific issues (e.g. climate change or violent video games) are often accompanied by attacks on the reputation of the involved scientists. Drawing on the social identity approach, we report a minimal group experiment investigating the conditions under which scientists are perceived as non-prototypical, non-reputable, and incompetent. Results show that in-group affirming and threatening scientific findings (compared to a control condition) both alter laypersons' evaluations of the study: in-group affirming findings lead to more positive and in-group threatening findings to more negative evaluations. However, only in-group threatening findings alter laypersons' perceptions of the scientists who published the study: scientists were perceived as less prototypical, less reputable, and less competent when their research results imply a threat to participants' social identity compared to a non-threat condition. Our findings add to the literature on science reception research and have implications for understanding the public engagement with science.
Scientists' perception of ethical issues in nanomedicine: a case study.
Silva Costa, Helena; Sethe, Sebastian; Pêgo, Ana P; Olsson, I Anna S
2011-06-01
Research and development in nanomedicine has been accompanied by the consideration of ethical issues; however, little is known about how researchers working in this area perceive such issues. This case-study explores scientists' attitude towards and knowledge of ethical issues. Data were collected by semi-structured interviews with 22 nanomedicine practitioners and subject to content analysis. We found that scientists reflect with ambiguity on the reputed novelty of nanomedicine and what the ethical issues and risks are in their work. Respondents see no necessity for a paradigm shift in ethical considerations, but view ethical issues in nanomedicine as overlapping with those of other areas of biomedical research. Most respondents discuss ethical issues they faced in scientific work with their colleagues, but expect benefit from additional information and training on ethics. Our findings that scientists are motivated to reflect on ethical issues in their work, can contribute to the design of new strategies, including training programs, to engage scientists in ethical discussion and stimulate their responsibility as nanomedicine practitioners.
Feldstein Ewing, Sarah W; Saitz, Richard
2015-02-01
Peer review aims to ensure the quality and credibility of research reporting. Conducted by volunteer scientists who receive no guidance or direction, peer review widely varies from fast and facilitative, to unclear and obstructive. Poor quality is an issue because most science research is publicly funded, whereby scientists must make an effort to quickly disseminate their findings back to the public. An unfortunately not uncommon barrier in this process is ineffective peer review. Most scientists agree that when done well, editors and reviewers drive and maintain the high standards of science. At the same time, ineffective peer review can cause great delay with no introduced improvement in final product. These delays and requests interfere with the path of communication between scientist and public, at a great cost to editors, reviewers, authors and those who stand to benefit from application of the results of the studies. We offer a series of concrete recommendations to improve this process.
An attack on science? Media use, trust in scientists, and perceptions of global warming.
Hmielowski, Jay D; Feldman, Lauren; Myers, Teresa A; Leiserowitz, Anthony; Maibach, Edward
2014-10-01
There is a growing divide in how conservatives and liberals in the USA understand the issue of global warming. Prior research suggests that the American public's reliance on partisan media contributes to this gap. However, researchers have yet to identify intervening variables to explain the relationship between media use and public opinion about global warming. Several studies have shown that trust in scientists is an important heuristic many people use when reporting their opinions on science-related topics. Using within-subject panel data from a nationally representative sample of Americans, this study finds that trust in scientists mediates the effect of news media use on perceptions of global warming. Results demonstrate that conservative media use decreases trust in scientists which, in turn, decreases certainty that global warming is happening. By contrast, use of non-conservative media increases trust in scientists, which, in turn, increases certainty that global warming is happening. © The Author(s) 2013.
Simulation in International Studies
ERIC Educational Resources Information Center
Boyer, Mark A.
2011-01-01
Social scientists have long worked to replicate real-world phenomena in their research and teaching environments. Unlike our biophysical science colleagues, we are faced with an area of study that is not governed by the laws of physics and other more predictable relationships. As a result, social scientists, and international studies scholars more…
How Middle Schoolers Draw Engineers and Scientists
NASA Astrophysics Data System (ADS)
Fralick, Bethany; Kearn, Jennifer; Thompson, Stephen; Lyons, Jed
2009-02-01
The perceptions young students have of engineers and scientists are often populated with misconceptions and stereotypes. Although the perceptions that young people have of engineers and of scientists have been investigated separately, they have not been systematically compared. The research reported in this paper explores the question "How are student perceptions of engineers and scientists similar and how are they different?" Approximately 1,600 middle school students from urban and suburban schools in the southeastern United States were asked to draw either an engineer or a scientist at work. Drawings included space for the students to explain what their person was doing in the picture. A checklist to code the drawings was developed and used by two raters. This paper discusses similarities and differences in middle school perceptions of scientists and engineers. Results reveal that the students involved in this study frequently perceive scientists as working indoors conducting experiments. A large fraction of the students have no perception of engineering. Others frequently perceive engineers as working outdoors in manual labor. The findings have implications for the development and implementation of engineering outreach efforts.
The Reputational Consequences of Failed Replications and Wrongness Admission among Scientists
Fetterman, Adam K.; Sassenberg, Kai
2015-01-01
Scientists are dedicating more attention to replication efforts. While the scientific utility of replications is unquestionable, the impact of failed replication efforts and the discussions surrounding them deserve more attention. Specifically, the debates about failed replications on social media have led to worry, in some scientists, regarding reputation. In order to gain data-informed insights into these issues, we collected data from 281 published scientists. We assessed whether scientists overestimate the negative reputational effects of a failed replication in a scenario-based study. Second, we assessed the reputational consequences of admitting wrongness (versus not) as an original scientist of an effect that has failed to replicate. Our data suggests that scientists overestimate the negative reputational impact of a hypothetical failed replication effort. We also show that admitting wrongness about a non-replicated finding is less harmful to one’s reputation than not admitting. Finally, we discovered a hint of evidence that feelings about the replication movement can be affected by whether replication efforts are aimed one’s own work versus the work of another. Given these findings, we then present potential ways forward in these discussions. PMID:26650842
The Reputational Consequences of Failed Replications and Wrongness Admission among Scientists.
Fetterman, Adam K; Sassenberg, Kai
2015-01-01
Scientists are dedicating more attention to replication efforts. While the scientific utility of replications is unquestionable, the impact of failed replication efforts and the discussions surrounding them deserve more attention. Specifically, the debates about failed replications on social media have led to worry, in some scientists, regarding reputation. In order to gain data-informed insights into these issues, we collected data from 281 published scientists. We assessed whether scientists overestimate the negative reputational effects of a failed replication in a scenario-based study. Second, we assessed the reputational consequences of admitting wrongness (versus not) as an original scientist of an effect that has failed to replicate. Our data suggests that scientists overestimate the negative reputational impact of a hypothetical failed replication effort. We also show that admitting wrongness about a non-replicated finding is less harmful to one's reputation than not admitting. Finally, we discovered a hint of evidence that feelings about the replication movement can be affected by whether replication efforts are aimed one's own work versus the work of another. Given these findings, we then present potential ways forward in these discussions.
NASA Astrophysics Data System (ADS)
Hellman, Leslie G.
This qualitative study uses children's writing to explore the divide between a conception of Science as a humanistic discipline reliant on creativity, ingenuity and out of the box thinking and a persistent public perception of science and scientists as rigid and methodical. Artifacts reviewed were 506 scripts written during 2014 and 2016 by 5th graders participating in an out-of classroom, mentor supported, free-choice 10-week arts and literacy initiative. 47% (237) of these scripts were found to contain content relating to Science, Scientists, Science Education and the Nature of Science. These 237 scripts were coded for themes; characteristics of named scientist characters were tracked and analyzed. Findings included NOS understandings being expressed by representation of Science and Engineering Practices; Ingenuity being primarily linked to Engineering tasks; common portrayals of science as magical or scientists as villains; and a persistence in negative stereotypes of scientists, including a lack of gender equity amongst the named scientist characters. Findings suggest that representations of scientists in popular culture highly influence the portrayals of scientists constructed by the students. Recommendations to teachers include encouraging explicit consideration of big-picture NOS concepts such as ethics during elementary school and encouraging the replacement of documentary or educational shows with more engaging fictional media.
Should We All be Scientists? Re-thinking Laboratory Research as a Calling.
Bezuidenhout, Louise; Warne, Nathaniel A
2017-07-19
In recent years there have been major shifts in how the role of science-and scientists-are understood. The critical examination of scientific expertise within the field of Science and Technology Studies (STS) are increasingly eroding notions of the "otherness" of scientists. It would seem to suggest that anyone can be a scientist-when provided with the appropriate training and access to data. In contrast, however, ethnographic evidence from the scientific community tells a different story. Scientists are quick to recognize that not everyone can-or should-be a scientist. Appealing to notions such as "good hands" or "gut feelings", scientists narrate a distinction between good and bad scientists that cannot be reduced to education, access, or opportunity. The key to good science requires scientists to express an intuitive feeling for their discipline, but also that individuals derive considerable personal satisfaction from their work. Discussing this personal joy in-and "fittingness" of-scientific occupations using the fields of STS, ethics and science policy is highly problematic. In this paper we turn to theology discourse to analyze the notion of "callings" as a means of understanding this issue. Callings highlight the identification and examination of individual talents to determine fit occupations for specific persons. Framing science as a calling represents a novel view of research that places the talents and dispositions of individuals and their relationship to the community at the center of flourishing practices.
Analysis of the Image of Scientists Portrayed in the Lebanese National Science Textbooks
NASA Astrophysics Data System (ADS)
Yacoubian, Hagop A.; Al-Khatib, Layan; Mardirossian, Taline
2017-07-01
This article presents an analysis of how scientists are portrayed in the Lebanese national science textbooks. The purpose of this study was twofold. First, to develop a comprehensive analytical framework that can serve as a tool to analyze the image of scientists portrayed in educational resources. Second, to analyze the image of scientists portrayed in the Lebanese national science textbooks that are used in Basic Education. An analytical framework, based on an extensive review of the relevant literature, was constructed that served as a tool for analyzing the textbooks. Based on evidence-based stereotypes, the framework focused on the individual and work-related characteristics of scientists. Fifteen science textbooks were analyzed using both quantitative and qualitative measures. Our analysis of the textbooks showed the presence of a number of stereotypical images. The scientists are predominantly white males of European descent. Non-Western scientists, including Lebanese and/or Arab scientists are mostly absent in the textbooks. In addition, the scientists are portrayed as rational individuals who work alone, who conduct experiments in their labs by following the scientific method, and by operating within Eurocentric paradigms. External factors do not influence their work. They are engaged in an enterprise which is objective, which aims for discovering the truth out there, and which involves dealing with direct evidence. Implications for science education are discussed.
Communicating the Needs of Climate Change Policy Makers to Scientists
NASA Technical Reports Server (NTRS)
Brown, Molly E.; Escobar, Vanessa M.; Lovell, Heather
2012-01-01
This chapter will describe the challenges that earth scientists face in developing science data products relevant to decision maker and policy needs, and will describe strategies that can improve the two-way communication between the scientist and the policy maker. Climate change policy and decision making happens at a variety of scales - from local government implementing solar homes policies to international negotiations through the United Nations Framework Convention on Climate Change. Scientists can work to provide data at these different scales, but if they are not aware of the needs of decision makers or understand what challenges the policy maker is facing, they are likely to be less successful in influencing policy makers as they wished. This is because the science questions they are addressing may be compelling, but not relevant to the challenges that are at the forefront of policy concerns. In this chapter we examine case studies of science-policy partnerships, and the strategies each partnership uses to engage the scientist at a variety of scales. We examine three case studies: the global Carbon Monitoring System pilot project developed by NASA, a forest biomass mapping effort for Silvacarbon project, and a forest canopy cover project being conducted for forest management in Maryland. In each of these case studies, relationships between scientists and policy makers were critical for ensuring the focus of the science as well as the success of the decision-making.
Autonomous system for Web-based microarray image analysis.
Bozinov, Daniel
2003-12-01
Software-based feature extraction from DNA microarray images still requires human intervention on various levels. Manual adjustment of grid and metagrid parameters, precise alignment of superimposed grid templates and gene spots, or simply identification of large-scale artifacts have to be performed beforehand to reliably analyze DNA signals and correctly quantify their expression values. Ideally, a Web-based system with input solely confined to a single microarray image and a data table as output containing measurements for all gene spots would directly transform raw image data into abstracted gene expression tables. Sophisticated algorithms with advanced procedures for iterative correction function can overcome imminent challenges in image processing. Herein is introduced an integrated software system with a Java-based interface on the client side that allows for decentralized access and furthermore enables the scientist to instantly employ the most updated software version at any given time. This software tool is extended from PixClust as used in Extractiff incorporated with Java Web Start deployment technology. Ultimately, this setup is destined for high-throughput pipelines in genome-wide medical diagnostics labs or microarray core facilities aimed at providing fully automated service to its users.
Synthetic Biology: Putting Synthesis into Biology
Liang, Jing; Luo, Yunzi; Zhao, Huimin
2010-01-01
The ability to manipulate living organisms is at the heart of a range of emerging technologies that serve to address important and current problems in environment, energy, and health. However, with all its complexity and interconnectivity, biology has for many years been recalcitrant to engineering manipulations. The recent advances in synthesis, analysis, and modeling methods have finally provided the tools necessary to manipulate living systems in meaningful ways, and have led to the coining of a field named synthetic biology. The scope of synthetic biology is as complicated as life itself – encompassing many branches of science, and across many scales of application. New DNA synthesis and assembly techniques have made routine the customization of very large DNA molecules. This in turn has allowed the incorporation of multiple genes and pathways. By coupling these with techniques that allow for the modeling and design of protein functions, scientists have now gained the tools to create completely novel biological machineries. Even the ultimate biological machinery – a self-replicating organism – is being pursued at this moment. It is the purpose of this review to dissect and organize these various components of synthetic biology into a coherent picture. PMID:21064036
Deep-sea sampling on CMarZ cruises in the Atlantic Ocean - an Introduction
NASA Astrophysics Data System (ADS)
Wiebe, Peter H.; Bucklin, Ann; Madin, Laurence; Angel, Martin V.; Sutton, Tracey; Pagés, Francesc; Hopcroft, Russell R.; Lindsay, Dhugal
2010-12-01
The deep-sea zooplankton assemblage is hypothesized to have high species diversity, with low abundances of each species. However, even rare species may have huge population sizes and play a critical role in the dynamics of deep-sea environments. The Census of Marine Zooplankton (CMarZ) study sought to accurately assess zooplankton diversity in the mesopelagic and bathypelagic zones of the subtropical/tropical of the northwest and eastern sections of the Atlantic Ocean using integrated morphological and molecular analysis of large-volume samples to depths of 5,000 m. The field surveys in April 2006 and November 2007 included scientists and students associated with the CMarZ. The cruise field work entailed at-sea analysis of samples and identification of specimens by expert taxonomists, with at-sea DNA sequencing to determine a barcode (i.e., a short DNA sequence for species recognition) for selected species. Environmental data and zooplankton samples were collected with 1-m 2 and 10-m 2 opening/closing MOCNESS (0-1000 m and 1000-5000 m, respectively), and with either a 0.25-m 2 MOCNESS or a 0.5-m 2 Multi-net above 1000 m. More than 500 species were identified and more than 1000 specimens placed in a queue for barcoding on each cruise; several hundred species were barcoded at sea. For several taxonomic groups, a significant fraction of the region's known species were collected and identified. For example, in the northwest Atlantic 93 of 140 known ostracod species for the Atlantic Ocean were collected, 6 undescribed species were found, and the first DNA barcode for a planktonic ostracod was obtained. The deployment of trawls with fine-mesh nets to sample large volumes at great depths for small zooplankton confirmed that there is considerable species diversity at depth, with more species yet to be discovered.
Sixty Years (1957–2017) of Research on Toxoplasmosis in China—An Overview
Pan, Ming; Lyu, Congcong; Zhao, Junlong; Shen, Bang
2017-01-01
Toxoplasma gondii is a ubiquitous zoonotic pathogen belonging to apicomplexan parasites. Infection in humans and animals may cause abortion and other severe symptoms under certain circumstances, leading to great economical losses and public health problems. T. gondii was first discovered in China in 1955 and the corresponding work was published in 1957. Since then, a lot of work has been done on this parasite and the diseases it causes. This review summarizes the major progress made by Chinese scientists over the last 60 years, and gives our perspectives on what should be done in the near future. A wide variety of diagnostic approaches were designed, including the ones to detect T. gondii specific antibodies in host sera, and T. gondii specific antigens or DNA in tissue and environmental samples. Further work will be needed to translate some of the laboratory assays into reliable products for clinic uses. Epidemiological studies were extensively done in China and the sero-prevalence in humans increased over the years, but is still below the world average, likely due to the unique eating and cooking habits. Infection rates were shown to be fairly high in meat producing animals such as, pigs, sheep, and chickens, as well as in the definitive host cats. Numerous subunit vaccines in the form of recombinant proteins or DNA vaccines were developed, but none of them is satisfactory in the current form. Live attenuated parasites using genetically modified strains may be a better option for vaccine design. The strains isolated from China are dominated by the ToxoDB #9 genotype, but it likely contains multiple subtypes since different ToxoDB #9 strains exhibited phenotypic differences. Further studies are needed to understand the general biology, as well as the unique features of strains prevalent in China. PMID:28993763
Rosenblum, Norman D; Kluijtmans, Manon; Ten Cate, Olle
2016-12-01
The clinician-scientist role is critical to the future of health care, and in 2010, the Carnegie Report on Educating Physicians focused attention on the professional identity of practicing clinicians. Although limited in number, published studies on the topic suggest that professional identity is likely a critical factor that determines career sustainability. In contrast to clinicians with a singular focus on clinical practice, clinician-scientists combine two major disciplines, clinical medicine and scientific research, to bridge discovery and clinical care. Despite its importance to advancing medical practice, the clinician-scientist career faced a variety of threats, which have been identified recently by the 2014 National Institutes of Health Physician Scientist Workforce. Yet, professional identity development in this career pathway is poorly understood. This Perspective focuses on the challenges to the clinician-scientist's professional identity and its development. First, the authors identify the particular challenges that arise from the different cultures of clinical care and science and the implications for clinician-scientist professional identity formation. Next, the authors synthesize insights about professional identity development within a dual-discipline career and apply their analysis to a discussion about the implications for clinician-scientist identity formation. Although not purposely developed to address identity formation, the authors highlight those elements within clinician-scientist training and career development programs that may implicitly support identity development. Finally, the authors highlight a need to identify empirically the elements that compose and determine clinician-scientist professional identity and the processes that shape its formation and sustainability.
A proposal to study the experience of female scientists in Mexico: Physicists as a case study
NASA Astrophysics Data System (ADS)
Martínez, Amalia; Blázquez, Norma; Gómez, Yolanda; Vales, Caridad; Meza-Montes, Lilia
2013-03-01
Although the design of public policies to support and improve the status and opportunities for female scientists requires reliable data, studies of this type have not been done in Mexico. We present a proposal to conduct such a study at the national level, with physicists as a test group.
Middle School Students' Attitudes toward Science, Scientists, Science Teachers and Classes
ERIC Educational Resources Information Center
Kapici, Hasan Özgür; Akçay, Hakan
2016-01-01
It is an indispensable fact that having a positive attitude towards science is one of the important factors that promotes students for studying in science. The study is a kind of national study that aims to investigate middle school students', from different regions of Turkey, attitudes toward science, scientists and science classes. The study was…
College Students' Representations of Science and the Scientist
ERIC Educational Resources Information Center
Bovina, I. B.; Dragul'skaia, L. Iu.
2008-01-01
For science to develop, self-reflection is essential. It is of interest to study the image of science and ordinary representations of science, as well as stereotypes and attitudes toward scientists. This aspect of the study of science has been presented extensively in social and psychological studies. In many of these studies a great deal of…
Expediency of Study of the Scientists' Biographies in Physics Course
ERIC Educational Resources Information Center
Korsun, Igor
2017-01-01
The aim of this article is a justification of the expediency of study of the scientists' biographies in physics course. Study of the biographic materials is one of the ways of motivation of learning and development of morality, humanity, internationalism. The selection criteria of biographic material have been allocated and method of study of the…
Scientists from the EPA and USGS are collaborating on a research study to determine the presence of contaminants of emerging concern in treated and untreated drinking water collected from drinking water treatment plants.
A Tale of Two scientists and their Involvement in Education & Outreach
NASA Astrophysics Data System (ADS)
McDonnell, J.
2004-12-01
Many scientists, when faced with developing an education and outreach plan for their research proposals, are unclear on what kinds of impacts they can have on broader non scientist audiences. Many scientists feel their only options are to develop a website or invite a teacher to get involved in their sampling or research cruises. Scientists, who are constrained by time and resources, are not aware of the range of education and outreach options available to them and of the great value their involvement can bring to the public. In an recent survey at the National Science Foundation sponsored ORION conference (January 2004), respondents stated that the greatest public benefits to having scientists involved in public education are (1) that they can present the benefits and relevance of research (26%), (2) focus awareness on environmental issues (26%), (3) serve as models for teachers and motivators for children (25%) and (4) increase public understanding, awareness and appreciation of science (about 22%). As a member of the Mid-Atlantic Center for Ocean Sciences Education Excellence (MACOSEE), the Institute of Marine & Coastal Sciences (IMCS) at Rutgers University is dedicated to helping scientists and educators realize the benefits of working together to advance ocean discovery and make known the vital role of the ocean in our lives. A website called "Scientist Connection" (www.macosee.net) was developed to help busy scientists choose a role in education and outreach that will make the most of their talent and time. The goal of the web site is to help scientists produce a worthwhile education project that complements and enriches their research. In this session, the author will present two case studies that demonstrate very different but effective approaches to scientist's involvement in education and outreach projects. In the first case, we will chronicle how a team of biologists and oceanographers in the Rutgers University, Coastal Ocean Observation Laboratory (or COOLroom) developed the education and outreach capacity to serve thousands of boaters, fisherman, and tourists daily with their real-time data products from experimental coastal observing systems. We also will touch on how scientists and educators at IMCS leveraged additional grants to support the translation of data and information from the coastal observatories into an instructional product called COOL Classroom, usable by educators and the public. This case study will show how MACOSEE is striving to use observing systems to provide the scientific backbone for an integrated program of science and education that improves user access to, and understanding of, modern ocean science and how it affects our daily lives. In the second case, we will show how Rutgers scientists are working with print media to support education and outreach. We will tell the story of how a small newspaper pilot project grew into a university wide mechanism for scientists to reach a half a million newspaper readers for minimal cost and time investment to the scientist.
ERIC Educational Resources Information Center
Pinelli, Thomas E.; And Others
An exploratory study investigated technical communications in aeronautics by surveying aeronautical engineers and scientists. The study had five specific objectives: to solicit the opinions of aeronautical engineers and scientists regarding the importance of technical communications to their profession; to determine their use and production of…
Toward an essential ethic for teaching science in the new millennium
NASA Astrophysics Data System (ADS)
Hays, Irene De La Bretonne
The purpose of this study was to identify and explore values and views that might underlie an essential ethic for teaching science in the new millennium. With such an ethic, teachers may be better able to prepare young people to form and fully participate in communities that restore and sustain Earth. Reviewed in the literature for this study were changing philosophies and theories from early indigenous cultures to the present on the nature of nature, the value of nature, and the human relationship with nature. These philosophies and theories were found to influence values that today underlie the work scientists do and the ways young people are educated in science. In the study, two groups of participants--Nature Writers and scientists--revealed the essence and meaning of their relationship with nature. A two-stage, modified Delphi method was used for collecting data. Stage One comprised the first "round" of the Delphi and involved content analysis of writings by a select group of U.S. Nature Writers from the early 1800s to the present. In Stage Two, comprising three rounds of the modified Delphi, perspectives of Nature Writers were imbedded in questionnaires and presented for response to a select group of scientists connected with research and education at National Laboratories across the country. Finally, results from each participant group were brought together in a recursive process, one with the other, to determine findings. Strong Earth-care values, including receptivity, responsibility, interdependence, respect, cooperation, love, and care, were found to be held in common by the Nature Writers and scientists in this study and could form the foundation for an essential ethic for teaching science. The strongest dissonance between Nature Writers and scientists was evident in emotional and spiritual domains--despite that many scientists revealed emotional and spiritual elements in stories told of their experiences with nature. Contrary to what might have been expected from scientists based on theories of science and practices of science education represented in the literature, few scientists revealed negative, utilitarian, or dominionistic affiliations with nature. In contrast, no Nature Writers revealed such affiliations.
H-Index of Astrophysicists at Raman Research Institute: Performance of Different Calculators
NASA Astrophysics Data System (ADS)
Meera, B. M.; Manjunath, M.
2012-08-01
H-index, a single number proposed by J. E. Hirsch in 2005 has gained popularity as an index number to measure the research performance of individuals, institutions, universities, etc. There are many calculators to derive the h-in dex number, such as Google Scholar, Web of Science, Scopus, etc. However, h-index can be calculated manually, provided we have access to a complete list of publications of a scientist and the number of citations received by them. It is observed that h-index for a given scientist at a ny given point of time differs from one calculator to the other. Here is an attempt to calculate the H-index of scientists of the Astronomy and Astrophysics Group at Raman Research Institute using Google Scholar Free calculator, Web of Science Paid calculator and The SAO/NASA As trophysics Data System manual calculation and comparison of the results. Application of this h- index phenomenon to the research output of RRI scientists in a group is done while keeping in mi nd Hirsch's systematic in vestigation to predict the position of a scientist using h-index in physics. It is believed that the higher the academic age of a scientist, the higher will be the h-index. An attempt is made to find whether this assumption is true with respect to the sample studied by including the superannuated scientists from Astronomy and Astrophysics Group at Raman Research Institute under the purview of this study.
Science experiences of citizen scientists in entomology research
NASA Astrophysics Data System (ADS)
Lynch, Louise I.
Citizen science is an increasingly popular collaboration between members of the public and the scientific community to pursue current research questions. In addition to providing researchers with much needed volunteer support, it is a unique and promising form of informal science education that can counter declining public science literacy, including attitudes towards and understanding of science. However, the impacts of citizen science programs on participants' science literacy remains elusive. The purpose of this study was to balance the top-down approach to citizen science research by exploring how adult citizen scientists participate in entomology research based on their perceptions and pioneer mixed methods research to investigate and explain the impacts of citizen science programs. Transference, in which citizen scientists transfer program impacts to people around them, was uncovered in a grounded theory study focused on adults in a collaborative bumble bee research program. Most of the citizen scientists involved in entomology research shared their science experiences and knowledge with people around them. In certain cases, expertise was attributed to the individual by others. Citizen scientists then have the opportunity to acquire the role of expert to those around them and influence knowledge, attitudinal and behavioral changes in others. An intervention explanatory sequential mixed methods design assessed how entomology-based contributory citizen science affects science self-efficacy, self-efficacy for environmental action, nature relatedness and attitude towards insects in adults. However, no statistically significant impacts were evident. A qualitative follow-up uncovered a discrepancy between statistically measured changes and perceived influences reported by citizen scientists. The results have important implications for understanding how citizen scientists learn, the role of citizen scientists in entomology research, the broader program impacts and the value of qualitative methodologies in citizen science research. Citizen science is championed for its ability to extend the geographic, temporal and spatial reach of a research team. It can also extend the educational reach through citizen scientists that have acquired the role of expert.
Working with and promoting early career scientists within a larger community
NASA Astrophysics Data System (ADS)
Pratt, K.
2017-12-01
For many scientific communities, engaging early career researchers is critical for success. These young scientists (graduate students, postdocs, and newly appointed professors) are actively forming collaborations and instigating new research programs. They also stand to benefit hugely from being part of a scientific community, gaining access to career development activities, becoming part of strong collaborator networks, and achieving recognition in their field of study — all of which will help their professional development. There are many ways community leaders can work proactively to support and engage early career scientists, and it it is often a community manager's job to work with leadership to implement such activities. In this presentation, I will outline ways of engaging early career scientists at events and tailored workshops, of promoting development of their leadership skills, and of creating opportunities for recognizing early career scientists within larger scientific communities. In this talk, I will draw from my experience working with the Deep Carbon Observatory Early Career Scientist Network, supported by the Alfred P. Sloan Foundation.
Saukko, Paula M.; Reed, Matthew; Britten, Nicky; Hogarth, Stuart
2010-01-01
Genomics researchers and policy makers have accused nutrigenetic testing companies—which provide DNA-based nutritional advice online—of misleading the public. The UK and USA regulation of the tests has hinged on whether they are classed as “medical” devices, and alternative regulatory categories for “lifestyle” and less-serious genetic tests have been proposed. This article presents the findings of a qualitative thematic analysis of the webpages of nine nutrigenetic testing companies. We argue that the companies, mirroring and negotiating the regulatory debates, were creating a new social space for products between medicine and consumer culture. This space was articulated through three themes: (i) how “genes” and tests were framed, (ii) how the individual was imagined vis a vis health information, and (iii) the advice and treatments offered. The themes mapped onto four frames or models for genetic testing: (i) clinical genetics, (ii) medicine, (iii) intermediate, and (iv) lifestyle. We suggest that the genomics researchers and policy makers appeared to perform what Gieryn (Gieryn, T.F. (1983). Boundary-work and the demarcation of science from non-science: strains and interests in professional ideologies of scientists. American Sociological Review, 48, 781–795.) has termed “boundary work”, i.e., to delegitimize the tests as outside proper medicine and science. Yet, they legitimated them, though in a different way, by defining them as lifestyle, and we contend that the transformation of the boundaries of science into a creation of such hybrid or compromise categories is symptomatic of current historical times. Social scientists studying medicine have referred to the emergence of “lifestyle” products. This article contributes to this literature by examining the historical, regulatory and marketing processes through which certain goods and services become defined this way. PMID:20022680
Merrill, Stephen J; Ashrafi, Samira; Subramanian, Madhan; Godar, Dianne E
2015-01-01
For several decades the incidence of cutaneous malignant melanoma (CMM) steadily increased in fair-skinned, indoor-working people around the world. Scientists think poor tanning ability resulting in sunburns initiate CMM, but they do not understand why the incidence continues to increase despite the increased use of sunscreens and formulations offering more protection. This paradox, along with lower incidences of CMM in outdoor workers, although they have significantly higher annual UV doses than indoor workers have, perplexes scientists. We found a temporal exponential increase in the CMM incidence indicating second-order reaction kinetics revealing the existence of 2 major risk factors. From epidemiology studies, we know one major risk factor for getting CMM is poor tanning ability and we now propose the other major risk factor may be the Human Papilloma Virus (HPV) because clinicians find β HPVs in over half the biopsies. Moreover, we uncovered yet another paradox; the increasing CMM incidences significantly correlate with decreasing personal annual UV dose, a proxy for low vitamin D3 levels. We also discovered the incidence of CMM significantly increased with decreasing personal annual UV dose from 1960, when it was almost insignificant, to 2000. UV and other DNA-damaging agents can activate viruses, and UV-induced cytokines can hide HPV from immune surveillance, which may explain why CMM also occurs in anatomical locations where the sun does not shine. Thus, we propose the 2 major risk factors for getting CMM are intermittent UV exposures that result in low cutaneous levels of vitamin D3 and possibly viral infection. PMID:26413188
Tenure Track/Tenure Eligible Positions | Center for Cancer Research
The newly established RNA Biology Laboratory at the Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH) in Frederick, Maryland is recruiting Tenure-eligible or Tenure Track Investigators to join the Intramural Research Program’s mission of high impact, high reward science. These positions, which are supported with stable financial resources, are the equivalent of Assistant Professor/Associate Professor/Professor in an academic department. The RNA Biology Laboratory is looking for candidate(s) who will complement our current group of seven dynamic and collaborative principal investigators (https://ccr.cancer.gov/RNA-Biology-Laboratory). We encourage outstanding scientists investigating any area of RNA Biology to apply. Areas of interest include, but are not limited to, the roles of RNA-binding proteins, noncoding RNAs and nucleotide modifications in cell and organismal function; the ways in which alterations in RNA homeostasis resul t in diseases such as cancer, and the development of RNA therapeutics. About NCI's Center for Cancer Research The Center for Cancer Research (CCR) is an intramural research component of the National Cancer Institute (NCI). CCR’s enabling infrastructure facilitates clinical studies at the NIH Clinical Center, the world’s largest dedicated clinical research complex; provides extensive opportunities for collaboration; and allows scientists and clinicians to undertake high-impact laboratory- and clinic-based investigations. Investigators are supported by a wide array of intellectual and technological and research resources, including animal facilities and dedicated, high quality technology cores in areas such as imaging/microscopy, including cryo-electron microscopy; chemistry/purification, mass spectrometry, flow cytometry, SAXS, genomics/DNA sequencing, transgenics and knock out mice, arrays/molecular profiling, and human genetics/bioinformatics. For an overview of CCR, please visit http://ccr.cancer.gov/.
Saukko, Paula M; Reed, Matthew; Britten, Nicky; Hogarth, Stuart
2010-03-01
Genomics researchers and policy makers have accused nutrigenetic testing companies--which provide DNA-based nutritional advice online--of misleading the public. The UK and USA regulation of the tests has hinged on whether they are classed as "medical" devices, and alternative regulatory categories for "lifestyle" and less-serious genetic tests have been proposed. This article presents the findings of a qualitative thematic analysis of the webpages of nine nutrigenetic testing companies. We argue that the companies, mirroring and negotiating the regulatory debates, were creating a new social space for products between medicine and consumer culture. This space was articulated through three themes: (i) how "genes" and tests were framed, (ii) how the individual was imagined vis a vis health information, and (iii) the advice and treatments offered. The themes mapped onto four frames or models for genetic testing: (i) clinical genetics, (ii) medicine, (iii) intermediate, and (iv) lifestyle. We suggest that the genomics researchers and policy makers appeared to perform what Gieryn (Gieryn, T.F. (1983). Boundary-work and the demarcation of science from non-science: strains and interests in professional ideologies of scientists. American Sociological Review, 48, 781-795.) has termed "boundary work", i.e., to delegitimize the tests as outside proper medicine and science. Yet, they legitimated them, though in a different way, by defining them as lifestyle, and we contend that the transformation of the boundaries of science into a creation of such hybrid or compromise categories is symptomatic of current historical times. Social scientists studying medicine have referred to the emergence of "lifestyle" products. This article contributes to this literature by examining the historical, regulatory and marketing processes through which certain goods and services become defined this way. 2009 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.
1993-01-01
As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of India and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Indian Institute of Science and the NASA Langley Research Center. The completion rates for the India and U.S. surveys were 48 and 53 percent, respectively. Responses of the India and U.S. participants to selected questions are presented in this report.
NASA Technical Reports Server (NTRS)
Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.
1993-01-01
As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (NLR), and NASA Ames Research Center, and the NASA Langley Research Center. The completion rates for the Dutch and U.S. surveys were 55 and 61 percent, respectively. Responses of the Dutch and U.S. participants to selected questions are presented.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.
1994-01-01
As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Japanese and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third; to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists in Japan and at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Japanese and U.S. surveys were 85 and 61 percent, respectively. Responses of the Japanese and U.S. participants to selected questions are presented in this report.