Sample records for scintillator-photodiode detectors

  1. Measurement of nuclear resonant scattering on 61Ni with fast scintillation detector using proportional-mode silicon avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Inoue, Keisuke; Kobayashi, Yasuhiro; Yoda, Yoshitaka; Koshimizu, Masanori; Nishikido, Fumihiko; Haruki, Rie; Kishimoto, Shunji

    2018-02-01

    We developed a new scintillation timing detector using a proportional-mode silicon avalanche photodiode (Si-APD) for synchrotron radiation nuclear resonant scattering. We report on the nuclear forward scattering measurement on 61Ni with a prototype detector using a lead-loaded plastic scintillator (EJ-256, 3 mm in diameter and 2 mm in thickness), mounted on a proportional-mode Si-APD. Using synchrotron X-rays of 67.41 keV, we successfully measured the time spectra of nuclear forward scattering on 61Ni enriched metal foil and 61Ni86V14 alloy. The prototype detector confirmed the expected dynamical beat structure with a time resolution of 0.53 ns (FWHM).

  2. Observation of 67 keV x-rays with a scintillation detector using proportional-mode silicon avalanche photodiode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Keisuke; Kishimoto, Shunji, E-mail: syunji.kishimoto@kek.jp; Inst. of Materials Structure Science, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801

    2016-07-27

    We developed a scintillation X-ray detector using a proportional-mode silicon avalanche photodiode (Si-APD). We report a prototype detector using a lead-loaded plastic scintillator mounted on a proportional-mode Si-APD (active area size: 3 mm in diameter), which is operated at a low temperature. Using 67.41 keV X-rays, we could measure pulse-height spectra of scintillation light with a charge-sensitive preamplifier at 20, 0, and −35°C. Time spectra of the X-ray bunch structure were successfully recorded using a wideband and 60-dB-gain amplifier in hybrid-mode operation of the Photon Factory ring. We obtained a better time resolution of 0.51 ns (full width at half-maximum)more » for the single-bunch X-ray peak at −35°C. We were also able to observe a linear response of the scintillation pulses up to 8 Mcps for input photon rates up to 1.4 × 10{sup 8} photons/s.« less

  3. 64-element photodiode array for scintillation detection of x-rays

    NASA Astrophysics Data System (ADS)

    Wegrzecki, Maciej; Wolski, Dariusz; Bar, Jan; Budzyński, Tadeusz; Chłopik, Arkadiusz; Grabiec, Piotr; Kłos, Helena; Panas, Andrzej; Piotrowski, Tadeusz; Słysz, Wojciech; Stolarski, Maciej; Szmigiel, Dariusz; Wegrzecka, Iwona; Zaborowski, Michał

    2014-08-01

    The paper presents the design, technology and parameters of a new, silicon 64-element linear photodiode array developed at the Institute of Electron Technology (ITE) for the detection of scintillations emitted by CsI scintillators (λ≈550 nm). The arrays are used in a device for examining the content of containers at border crossings under development at the National Centre for Nuclear Research. Two arrays connected with a scintillator block (128 CsI scintillators) form a 128-channel detection module. The array consists of 64 epiplanar photodiode structures (5.1 × 7.2 mm) and a 5.3 mm module. p+-ν-n+ photodiode structures are optimised for the detection of radiation of λ≈ 550 nm wavelength with no voltage applied (photovoltaic mode). The structures are mounted on an epoxy-glass laminate substrate, copper-clad on both sides, on which connections with a common anode and separate cathode leads are located. The photosensitive surface of photodiodes is covered with a special silicone gel, which protects photodiodes against the mechanical impact of scintillators

  4. Neutron flux measurements using scintillator-photodiode-preamplifier system and new types of scintillators

    NASA Astrophysics Data System (ADS)

    Ryzhikov, Vladimir D.; Burachas, S. F.; Volkov, V. G.; Danshin, Evgeniy A.; Lisetskaya, Elena K.; Piven, L. A.; Svishch, Vladimir M.; Chernikov, Vyacheslav V.; Filimonov, A. E.

    1997-02-01

    After the Chernobyl catastrophe among the problems of current concern a question arose of detection of 'hot' particles formed from plutonium alloys with carbon, nitrogen, silicon, etc. For this purpose, the instruments are needed, which would be able to detect not only alpha- particles and low energy gamma-radiation, but also neutrons and high energy gamma-quanta from ((alpha) , n(gamma) ) - reactions. At present for each kind of radiation detectors of different types are used. A general drawback of all these instruments is their narrow dynamic range of dose rates and energies, and especially impossibility to registrate n-flux in condition large background activity gamma-rays nuclei, which makes each of them applicable only under certain specific conditions. For detection of 'hot' particles, oxide and semiconductor scintillators were used, which contained elements with large capture cross section for thermal neutrons. In this paper we try to determine possibilities and limitations of solid-state neutron detectors based on CdS(Te), ZnSe(Te), CdWO4 (CWO), Gd2SiO5 (GSO) scintillators developed and produced by the Science and Technology Center for Radiation Instruments of the Institute for Single Crystals. The instruments developed by Center are based preferable on a very promising system 'scintillator- photodiode-preamplifier' matched with modern computer data processing techniques.

  5. Efficient light collection from crystal scintillators using a compound parabolic concentrator coupled to an avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Jenke, P. A.; Briggs, M. S.; Bhat, P. N.; Reardon, P.; Connaughton, V.; Wilson-Hodge, C.

    2013-09-01

    In support of improved gamma-ray detectors for astrophysics and observations of Terrestrial Gamma-ray Flashes (TGFs), we have designed a new approach for the collection and detection of optical photons from scintillators such as Sodium Iodide and Lanthanum Bromide using a light concentrator coupled to an Avalanche photodiode (APD). The APD has many advantages over traditional photomultiplier tubes such as their low power consumption, their compact size, their durability, and their very high quantum efficiency. The difficulty in using these devices in gamma-ray astronomy has been coupling their relatively small active area to the large scintillators necessary for gamma-ray science. Our solution is to use an acrylic Compound Parabolic Concentrator (CPC) to match the large output area of the scintillation crystal to the smaller photodiode. These non-imaging light concentrators exceed the light concentration of focused optics and are light and inexpensive to produce. We present our results from the analysis and testing of such a system including gains in light collecting efficiency, energy resolution of nuclear decay lines, as well as our design for a new, fast TGF detector.

  6. Smaller, Lower-Power Fast-Neutron Scintillation Detectors

    NASA Technical Reports Server (NTRS)

    Patel, Jagdish; Blaes, Brent

    2008-01-01

    Scintillation-based fast-neutron detectors that are smaller and less power-hungry than mainstream scintillation-based fast-neutron detectors are undergoing development. There are numerous applications for such detectors in monitoring fast-neutron fluxes from nuclear reactors, nuclear materials, and natural sources, both on Earth and in outer space. A particularly important terrestrial application for small, low-power, portable fast-neutron detectors lies in the requirement to scan for nuclear materials in cargo and baggage arriving at international transportation facilities. The present development of miniature, low-power scintillation-based fast-neutron detectors exploits recent advances in the fabrication of avalanche photodiodes (APDs). Basically, such a detector includes a plastic scintillator, typically between 300 and 400 m thick with very thin silver mirror coating on all its faces except the one bonded to an APD. All photons generated from scintillation are thus internally reflected and eventually directed to the APD. This design affords not only compactness but also tight optical coupling for utilization of a relatively large proportion of the scintillation light. The combination of this tight coupling and the avalanche-multiplication gain (typically between 750 and 1,000) of the APD is expected to have enough sensitivity to enable monitoring of a fast-neutron flux as small as 1,000 cm(exp -2)s(exp -1). Moreover, pulse-height analysis can be expected to provide information on the kinetic energies of incident neutrons. It has been estimated that a complete, fully developed fast-neutron detector of this type, would be characterized by linear dimensions of the order of 10 cm or less, a mass of no more than about 0.5 kg, and a power demand of no more than a few watts.

  7. Optimum design calculations for detectors based on ZnSe(Те,О) scintillators

    NASA Astrophysics Data System (ADS)

    Katrunov, K.; Ryzhikov, V.; Gavrilyuk, V.; Naydenov, S.; Lysetska, O.; Litichevskyi, V.

    2013-06-01

    Light collection in scintillators ZnSe(X), where X is an isovalent dopant, was studied using Monte Carlo calculations. Optimum design was determined for detectors of "scintillator—Si-photodiode" type, which can involve either one scintillation element or scintillation layers of large area made of small-crystalline grains. The calculations were carried out both for determination of the optimum scintillator shape and for design optimization of light guides, on the surface of which the layer of small-crystalline grains is formed.

  8. Evaluation of a LiI(Eu) neutron detector with coincident double photodiode readout

    NASA Astrophysics Data System (ADS)

    Yang, H.; Menaa, N.; Bronson, F.; Kastner, M.; Venkataraman, R.; Mueller, W. F.

    2011-10-01

    Previous work showed that enriched 6Li halide scintillation crystal is a good candidate for portable neutron-sensitive detectors. Photodiode readout is a good alternative to PMT in compact devices. These detectors are often required to work in presence of a strong gamma background. Therefore, great discrimination against gamma rays is crucial. Because of the high Q-value of the 6Li(n,α) 3H reaction, the light yield of a neutron capture signal corresponds to 3-4 MeV gamma equivalent in spite of the quenching effect of heavily charged particles. As a result, energy discrimination is quite effective against gamma signals generated in thin crystals. However, direct gamma interactions inside the photodiode can create pulses whose amplitude is large enough to interfere with thermal neutron peak. This study shows an innovative design based on coincident readout to solve this problem. In this design, two photodiodes are attached on both sides of the LiI crystal. The output signal is only accepted when both photodiodes give out coincident output. The method is proved to effectively suppress background in the neutron window in a 420 mR/h 137Cs field down to the level of natural background.

  9. Investigation of Avalanche Photodiodes and Multipixel Photon Counters as Light Detectors for Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Vasquez, Jaime; Saavedra, Arthur; Ramos, Roxana; Tavares, Pablo; Wade, Marcus; Fan, Sewan; Haag, Brooke

    2013-04-01

    Through the Research Scholars Institute, students of Hartnell Community College experimented with the application of avalanche photodiodes (APDs) as cosmic ray detectors during the summer of 2012. An APD detector was coupled with a 10 meter long wavelength shifting fiber (WSF) wrapped around a cylindrical plastic scintillator to maximize signal detection. A photomultiplier tube (PMT) was used in conjunction to detect the same scintillation light caused by incoming cosmic rays. Two APD detectors were evaluated to confirm the viability of the setup. In addition, a similar setup was recently utilized to implement multi-pixel photon counters (MPPCs) as readout detectors. Under this configuration, a high gain preamplifier was used to amplify the signals for both the MPPC and APD detectors. We report on our results characterizing the MPPC and discuss its overall performance. Compared to the APD, our findings suggest that the MPPC detector has greater sensitivity in detecting weak light signals, and can be used in place of the PMT for certain counting applications.

  10. Studies of Avalanche Photodiodes (APDS) as Readout Devices for Scintillating Fibers for High Energy Gamma-Ray Astronomy Telescopes

    NASA Technical Reports Server (NTRS)

    Vasile, Stefan; Shera, Suzanne; Shamo, Denis

    1998-01-01

    New gamma ray and charged particle telescope designs based on scintillating fiber arrays could provide low cost, high resolution, lightweight, very large area and multi radiation length instrumentation for planned NASA space exploration. The scintillating fibers low visible light output requires readout sensors with single photon detection sensitivity and low noise. The sensitivity of silicon Avalanche Photodiodes (APDS) matches well the spectral output of the scintillating fibers. Moreover, APDs have demonstrated single photon capability. The global aim of our work is to make available to NASA a novel optical detector concept to be used as scintillating fiber readouts and meeting the requirements of the new generations of space-borne gamma ray telescopes. We proposed to evaluate the feasibility of using RMD's small area APDs ((mu)APD) as scintillating fiber readouts and to study possible alternative (mu)APD array configurations for space borne readout scintillating fiber systems, requiring several hundred thousand to one million channels. The evaluation has been conducted in accordance with the task description and technical specifications detailed in the NASA solicitation "Studies of Avalanche Photodiodes (APD as readout devices for scintillating fibers for High Energy Gamma-Ray Astronomy Telescopes" (#8-W-7-ES-13672NAIS) posted on October 23, 1997. The feasibility study we propose builds on recent developments of silicon APD arrays and light concentrators advances at RMD, Inc. and on more than 5 years of expertise in scintillating fiber detectors. In a previous program we carried out the initial research to develop a high resolution, small pixel, solid-state, silicon APD array which exhibited very high sensitivity in the UV-VIS spectrum. This (mu)APD array is operated in Geiger mode and results in high gain (greater than 10(exp 8)), extremely low noise, single photon detection capability, low quiescent power (less than 10 (mu)W/pixel for 30 micrometers sensitive

  11. Large dynamic range radiation detector and methods thereof

    DOEpatents

    Marrs, Roscoe E [Livermore, CA; Madden, Norman W [Sparks, NV

    2012-02-14

    According to one embodiment, a radiation detector comprises a scintillator and a photodiode optically coupled to the scintillator. The radiation detector also includes a bias voltage source electrically coupled to the photodiode, a first detector operatively electrically coupled to the photodiode for generating a signal indicative of a level of a charge at an output of the photodiode, and a second detector operatively electrically coupled to the bias voltage source for generating a signal indicative of an amount of current flowing through the photodiode.

  12. Achieving a Linear Dose Rate Response in Pulse-Mode Silicon Photodiode Scintillation Detectors Over a Wide Range of Excitations

    NASA Astrophysics Data System (ADS)

    Carroll, Lewis

    2014-02-01

    We are developing a new dose calibrator for nuclear pharmacies that can measure radioactivity in a vial or syringe without handling it directly or removing it from its transport shield “pig”. The calibrator's detector comprises twin opposing scintillating crystals coupled to Si photodiodes and current-amplifying trans-resistance amplifiers. Such a scheme is inherently linear with respect to dose rate over a wide range of radiation intensities, but accuracy at low activity levels may be impaired, beyond the effects of meager photon statistics, by baseline fluctuation and drift inevitably present in high-gain, current-mode photodiode amplifiers. The work described here is motivated by our desire to enhance accuracy at low excitations while maintaining linearity at high excitations. Thus, we are also evaluating a novel “pulse-mode” analog signal processing scheme that employs a linear threshold discriminator to virtually eliminate baseline fluctuation and drift. We will show the results of a side-by-side comparison of current-mode versus pulse-mode signal processing schemes, including perturbing factors affecting linearity and accuracy at very low and very high excitations. Bench testing over a wide range of excitations is done using a Poisson random pulse generator plus an LED light source to simulate excitations up to ˜106 detected counts per second without the need to handle and store large amounts of radioactive material.

  13. Inorganic scintillating materials and scintillation detectors

    PubMed Central

    YANAGIDA, Takayuki

    2018-01-01

    Scintillation materials and detectors that are used in many applications, such as medical imaging, security, oil-logging, high energy physics and non-destructive inspection, are reviewed. The fundamental physics understood today is explained, and common scintillators and scintillation detectors are introduced. The properties explained here are light yield, energy non-proportionality, emission wavelength, energy resolution, decay time, effective atomic number and timing resolution. For further understanding, the emission mechanisms of scintillator materials are also introduced. Furthermore, unresolved problems in scintillation phenomenon are considered, and my recent interpretations are discussed. These topics include positive hysteresis, the co-doping of non-luminescent ions, the introduction of an aimed impurity phase, the excitation density effect and the complementary relationship between scintillators and storage phosphors. PMID:29434081

  14. Improved scintillation detector performance via a method of enhanced layered coatings

    DOE PAGES

    Wakeford, Daniel Tyler; Tornga, Shawn Robert; Adams, Jillian Cathleen; ...

    2016-11-16

    Increasing demand for better detection performance with a simultaneous reduction in size, weight and power consumption has motivated the use of compact semiconductors as photo-converters for many gamma-ray and neutron scintillators. The spectral response of devices such as silicon avalanche photodiodes (APDs) is poorly matched to many common high-performance scintillators. We have developed a generalized analytical method that utilizes an optical reference database to match scintillator luminescence to the excitation spectrum of high quantum efficiency semiconductor detectors. This is accomplished by the fabrication and application of a series of high quantum yield, short fluorescence lifetime, wavelengthshifting coatings. Furthermore, we showmore » here a 22% increase in photoelectron collection and a 10% improvement in energy resolution when applying a layered coating to an APD-coupled, cerium-doped, yttrium oxyorthosilicate (YSO:Ce) scintillator. Wavelength-shifted radioluminescence emission and rise time analysis are also discussed.« less

  15. Multi-Layer Organic Squaraine-Based Photodiode for Indirect X-Ray Detection

    NASA Astrophysics Data System (ADS)

    Iacchetti, Antonio; Binda, Maddalena; Natali, Dario; Giussani, Mattia; Beverina, Luca; Fiorini, Carlo; Peloso, Roberta; Sampietro, Marco

    2012-10-01

    The paper presents an organic-based photodiode coupled to a CsI(Tl) scintillator to realize an X-ray detector. A suitable blend of an indolic squaraine derivative and of fullerene derivative has been used for the photodiode, thus allowing external quantum efficiency in excess of 10% at a wavelength of 570 nm, well matching the scintillator output spectrum. Thanks to the additional deposition of a 15 nm thin layer of a suitable low electron affinity polymer, carriers injection from the metal into the organic semiconductor has been suppressed, and dark current density as low as has been obtained, which is comparable to standard Si-based photodiodes. By using a collimated X-ray beam impinging onto the scintillator mounted over the photodiode we have been able to measure current variations in the order of 150 pA on a dark current floor of less than 50 pA when operating the X-ray tube in switching mode, thus proving the feasibility of indirect X-ray detection by means of organic semiconductors.

  16. Predictable quantum efficient detector based on n-type silicon photodiodes

    NASA Astrophysics Data System (ADS)

    Dönsberg, Timo; Manoocheri, Farshid; Sildoja, Meelis; Juntunen, Mikko; Savin, Hele; Tuovinen, Esa; Ronkainen, Hannu; Prunnila, Mika; Merimaa, Mikko; Tang, Chi Kwong; Gran, Jarle; Müller, Ingmar; Werner, Lutz; Rougié, Bernard; Pons, Alicia; Smîd, Marek; Gál, Péter; Lolli, Lapo; Brida, Giorgio; Rastello, Maria Luisa; Ikonen, Erkki

    2017-12-01

    The predictable quantum efficient detector (PQED) consists of two custom-made induced junction photodiodes that are mounted in a wedged trap configuration for the reduction of reflectance losses. Until now, all manufactured PQED photodiodes have been based on a structure where a SiO2 layer is thermally grown on top of p-type silicon substrate. In this paper, we present the design, manufacturing, modelling and characterization of a new type of PQED, where the photodiodes have an Al2O3 layer on top of n-type silicon substrate. Atomic layer deposition is used to deposit the layer to the desired thickness. Two sets of photodiodes with varying oxide thicknesses and substrate doping concentrations were fabricated. In order to predict recombination losses of charge carriers, a 3D model of the photodiode was built into Cogenda Genius semiconductor simulation software. It is important to note that a novel experimental method was developed to obtain values for the 3D model parameters. This makes the prediction of the PQED responsivity a completely autonomous process. Detectors were characterized for temperature dependence of dark current, spatial uniformity of responsivity, reflectance, linearity and absolute responsivity at the wavelengths of 488 nm and 532 nm. For both sets of photodiodes, the modelled and measured responsivities were generally in agreement within the measurement and modelling uncertainties of around 100 parts per million (ppm). There is, however, an indication that the modelled internal quantum deficiency may be underestimated by a similar amount. Moreover, the responsivities of the detectors were spatially uniform within 30 ppm peak-to-peak variation. The results obtained in this research indicate that the n-type induced junction photodiode is a very promising alternative to the existing p-type detectors, and thus give additional credibility to the concept of modelled quantum detector serving as a primary standard. Furthermore, the manufacturing of

  17. Subnanosecond Scintillation Detector

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael (Inventor); Hennessy, John (Inventor); Hitlin, David (Inventor)

    2017-01-01

    A scintillation detector, including a scintillator that emits scintillation; a semiconductor photodetector having a surface area for receiving the scintillation, wherein the surface area has a passivation layer configured to provide a peak quantum efficiency greater than 40% for a first component of the scintillation, and the semiconductor photodetector has built in gain through avalanche multiplication; a coating on the surface area, wherein the coating acts as a bandpass filter that transmits light within a range of wavelengths corresponding to the first component of the scintillation and suppresses transmission of light with wavelengths outside said range of wavelengths; and wherein the surface area, the passivation layer, and the coating are controlled to increase the temporal resolution of the semiconductor photodetector.

  18. Integrated semiconductor quantum dot scintillation detector: Ultimate limit for speed and light yield

    DOE PAGES

    Oktyabrsky, Serge; Yakimov, Michael; Tokranov, Vadim; ...

    2016-03-30

    Here, a picosecond-range timing of charged particles and photons is a long-standing challenge for many high-energy physics, biophysics, medical and security applications. We present a design, technological pathway and challenges, and some properties important for realization of an ultrafast high-efficient room-temperature semiconductor scintillator based on self-assembled InAs quantum dots (QD) embedded in a GaAs matrix. Low QD density (<; 10 15 cm -3), fast (~5 ps) electron capture, luminescence peak redshifted by 0.2-0.3 eV from GaAs absorption edge with fast decay time (0.5-1 ns) along with the efficient energy transfer in the GaAs matrix (4.2 eV/pair) allows for fabrication ofmore » a semiconductor scintillator with the unsurpassed performance parameters. The major technological challenge is fabrication of a large volume (> 1 cm 3 ) of epitaxial QD medium. This requires multiple film separation and bonding, likely using separate epitaxial films as waveguides for improved light coupling. Compared to traditional inorganic scintillators, the semiconductor-QD based scintillators could have about 5x higher light yield and 20x faster decay time, opening a way to gamma detectors with the energy resolution better than 1% and sustaining counting rates MHz. Picosecond-scale timing requires segmented low-capacitance photodiodes integrated with the scintillator. For photons, the proposed detector inherently provides the depth-of-interaction information.« less

  19. Silicon avalanche photodiodes developed at the Institute of Electron Technology

    NASA Astrophysics Data System (ADS)

    Wegrzecka, Iwona; Wegrzecki, Maciej; Bar, Jan; Grynglas, Maria; Uszynski, Andrzej; Grodecki, Remigiusz; Grabiec, Piotr B.; Krzeminski, Sylwester; Budzynski, Tadeusz

    2004-07-01

    Silicon avalanche photodiodes (APDs) -- due to the effect of avalanche multiplication of carriers in their structure -- are most sensitive and fastest detectors of visible and near infrared radiation. Also the value of noise equivalent power NEP of these detectors is the smallest. In the paper, the design, technology and properties of the silicon avalanche photodiodes with a n+ - p - π - p+ epiplanar structure developed at the Institute of Electron Technology (ITE) are presented. The diameters of photosensitive area range from 0.3 mm to 5 mm. The ITE photodiodes are optimized for the detection of the 800 nm - 850 nm radiation, but the detailed research on spectral dependencies of the gain and noise parameters has revealed that the spectral operating range of the ITE photodiodes is considerable wider and achieves 550 - 1000 nm. These photodiodes can be used in detection of very weak and very fast optical signals. Presently in the world, the studies are carried out on applying the avalanche photodiodes in detection of X radiation and in the scintillation detection of nuclear radiation.

  20. The properties of ITE's silicon avalanche photodiodes within the spectral range used in scintillation detection

    NASA Astrophysics Data System (ADS)

    Wegrzecka, Iwona; Wegrzecki, Maciej

    1999-04-01

    The design and properties of 3 mm silicon avalanche photodiodes developed at ITE are presented. Their performance parameters within the spectral range applicable in scintillation detection (400-700 nm) are discussed and compared to those for near infrared radiation.

  1. Application of photodiodes to the detection of electromagnetic bursts

    NASA Technical Reports Server (NTRS)

    Fukushima, Y.; Saito, T.; Sakata, M.; Shima, M.; Yamamoto, Y.

    1985-01-01

    A new type of photodiode + scintillator (1 m2 x 1 cm) detector is developed to detect the large electro-magnetic burst under an EX-chamber. The threshold burst size is found to be 4.3 x 10 the 5 particles at the center of the scintillator. Therefore a gamma-ray family of 10 TeV is detectable by it, when it is set under 14 r.1. of iron. In addition, a very fast (2.4 nsec width) and very bright (correspond to 10 to the 6 particles) scintillation pulse has become avarable for this study.

  2. Scintillator Detector Development at Central Michigan University

    NASA Astrophysics Data System (ADS)

    McClain, David; Estrade, Alfredo; Neupane, Shree

    2017-09-01

    Experimental nuclear physics relies both on the accuracy and precision of the instruments for radiation detection used in experimental setups. At Central Michigan University we have setup a lab to work with scintillator detectors for radioactive ion beam experiments, using a Picosecond Laser and radioactive sources for testing. We have tested the resolution for prototypes of large area scintillators that could be used for fast timing measurements in the focal plane of spectrometers, such as the future High Rigidity Spectrometer at the Facility for Rare Isotope Beams (FRIB). We measured the resolution as a function of the length of the detector, and also the position of the beam along the scintillator. We have also designed a scintillating detector to veto light ion background in beta-decay experiments with the Advanced Implantation Detector Array (AIDA) at RIKEN in Japan. We tested different configurations of Silicon Photomultipliers and scintillating fiber optics to find the best detection efficiency.

  3. A radiation detector fabricated from silicon photodiode.

    PubMed

    Yamamoto, H; Hatakeyama, S; Norimura, T; Tsuchiya, T

    1984-12-01

    A silicon photodiode is converted to a low energy charged particle radiation detector. The window thickness of the fabricated detector is evaluated to be 50 micrograms/cm2. The area of the depletion region is 13.2 mm2 and the depth of it is estimated to be about 100 microns. The energy resolution (FWHM) is 14.5 ke V for alpha-particles from 241Am and 2.5 ke V for conversion electrons from 109Cd, respectively.

  4. A bench-top megavoltage fan-beam CT using CdWO4-photodiode detectors. I. System description and detector characterization.

    PubMed

    Rathee, S; Tu, D; Monajemi, T T; Rickey, D W; Fallone, B G

    2006-04-01

    We describe the components of a bench-top megavoltage computed tomography (MVCT) scanner that uses an 80-element detector array consisting of CdWO4 scintillators coupled to photodiodes. Each CdWO4 crystal is 2.75 x 8 x 10 mm3. The detailed design of the detector array, timing control, and multiplexer are presented. The detectors show a linear response to dose (dose rate was varied by changing the source to detector distance) with a correlation coefficient (R2) nearly unity with the standard deviation of signal at each dose being less than 0.25%. The attenuation of a 6 MV beam by solid water measured by this detector array indicates a small, yet significant spectral hardening that needs to be corrected before image reconstruction. The presampled modulation transfer function is strongly affected by the detector's large pitch and a large improvement can be obtained by reducing the detector pitch. The measured detective quantum efficiency at zero spatial frequency is 18.8% for 6 MV photons which will reduce the dose to the patient in MVCT applications. The detector shows a less than a 2% reduction in response for a dose of 24.5 Gy accumulated in 2 h; however, the lost response is recovered on the following day. A complete recovery can be assumed within the experimental uncertainty (standard deviation <0.5%); however, any smaller permanent damage could not be assessed.

  5. Neutron position-sensitive scintillation detector

    DOEpatents

    Strauss, Michael G.; Brenner, Raul

    1984-01-01

    A device is provided for mapping one- and two-dimensional distributions of neutron-positions in a scintillation detector. The device consists of a lithium glass scintillator coupled by an air gap and a light coupler to an array of photomultipliers. The air gap concentrates light flashes from the scintillator, whereas the light coupler disperses this concentrated light to a predetermined fraction of the photomultiplier tube array.

  6. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOEpatents

    Neal, John S.; Mihalczo, John T.

    2006-11-28

    A detector system that combines a .sup.6Li loaded glass fiber scintillation thermal neutron detector with a fast scintillation detector in a single layered structure. Detection of thermal and fast neutrons and ionizing electromagnetic radiation is achieved in the unified detector structure. The fast scintillator replaces the polyethelene moderator layer adjacent the .sup.6Li loaded glass fiber panel of the neutron detector and acts as the moderator for the glass fibers. Fast neutrons, x-rays and gamma rays are detected in the fast scintillator. Thermal neutrons, x-rays and gamma rays are detected in the glass fiber scintillator.

  7. SCINTILLATION EXPOSURE RATE DETECTOR

    DOEpatents

    Spears, W.G.

    1960-11-01

    A radiation detector for gamma and x rays is described. The detector comprises a scintillation crystal disposed between a tantalum shield and the input of a photomultiplier tube, the crystal and the shield cooperating so that their combined response to a given quantity of radiation at various energy levels is substantially constant.

  8. Scintillator-fiber charged particle track-imaging detector

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.

    1983-01-01

    A scintillator-fiber charged-particle track-imaging detector was developed using a bundle of square cross section plastic scintillator fiber optics, proximity focused onto an image intensified charge injection device (CID) camera. The tracks of charged particle penetrating into the scintillator fiber bundle are projected onto the CID camera and the imaging information is read out in video format. The detector was exposed to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei and images of their tracks were obtained. Details of the detector technique, properties of the tracks obtained, and preliminary range measurements of 15 MeV protons stopping in the fiber bundle are presented.

  9. X-ray radiation detectors of ``scintillator-photoreceiving device type'' for industrial digital radiography with improved spatial resolution

    NASA Astrophysics Data System (ADS)

    Ryzhykov, V. D.; Lysetska, O. K.; Opolonin, O. D.; Kozin, D. N.

    2003-06-01

    Main types of photoreceivers used in X-ray digital radiography systems are luminescent screens that transfer the optical image onto charge collection instruments, which require cooling, and semiconductor silicon detectors, which limit the contrast sensitivity. We have developed and produced X-ray radiation detectors of "scintillator-photoreceiving device" (S-PRD) type, which are integrally located on the inverse side of the photodiode (PD). The receiving-converting circuit (RCC) is designed for data conversion into digital form and their input into PC. Software is provided for RCC control and image visualization. Main advantages of these detectors are high industrial resolution (3-5 line pairs per mm), detecting activity up to 20 μm, controlled sensitivity, low weight and small size, imaging low (0.1-0.3 mrad) object dose in real time. In this work, main characteristics of 32-, 64- and 1024-channel detectors of S-PRD type were studied and compared for X-ray sensitivity with S-PD detectors. Images of the tested objects have been obtained. Recommendations are given on the use of different scintillation materials, depending upon the purpose of a digital radiographic system. The detectors operate in a broad energy range of ionizing radiation, hence the size of the controlled object is not limited. The system is sufficiently powerful to ensure frontal (through two walls) observation of pipelines with wall thickness up to 10 cm.

  10. Multisector scintillation detector with fiber-optic light collection

    NASA Astrophysics Data System (ADS)

    Ampilogov, N. V.; Denisov, S. P.; Kokoulin, R. P.; Petrukhin, A. A.; Prokopenko, N. N.; Shulzhenko, I. A.; Unatlokov, I. B.; Yashin, I. I.

    2017-07-01

    A new type of scintillation detector for the use in high energy physics is described. The octagonal detector consists of eight triangular scintillator sectors with total area of 1 m2. Each sector represents two plates of 2 cm thick plastic scintillator. Seven 1 mm thick WLS fibers are laid evenly between the plates. The space between the fibers is filled with silicone compound to provide better light collection. Fiber ends from all eight sectors are gathered in the central part of the detector into a bunch and docked to the cathode of a FEU-115m photomultiplier. The read-out of the counter signals is carried out from 7th and 12th dynodes, providing a wide dynamic range up to about 10000 particles. The front-end electronics of the detector is based on the flash-ADC with a sampling frequency of 200 MHz. The features of detecting and recording systems of the multisector scintillation detector (MSD) and the results of its testing are discussed.

  11. Photodiode radiation hardness, lyman-alpha emitting galaxies and photon detection in liquid argon neutrino detectors

    NASA Astrophysics Data System (ADS)

    Baptista, Brian

    2013-12-01

    My dissertation is comprised of three projects: 1) studies of Lyman-alpha Emitting galaxies (LAEs), 2) radiation hardness studies of InGaAs photodiodes (PDs), and 3) scintillation photon detection in liquid argon (LAr) neutrino detectors. I began work on the project that has now become WFIRST, developing a science case that would use WFIRST after launch for the observation of LAEs. The radiation hardness of PDs was as an effort to support the WFIRST calibration team. When WFIRST was significantly delayed, I joined an R&D effort that applied my skills to work on photon detection in LAr neutrino detectors. I report results on a broadband selection method developed to detect high equivalent width (EW) LAEs. Using photometry from the CFHT-Legacy Survey Deep 2 and 3 fields, I have spectroscopically confirmed 63 z=2.5-3.5 LAEs using the WIYN/Hydra spectrograph. Using UV continuum-fitting techniques I computed properties such as EWs, internal reddening and star formation rates. 62 of my LAEs show evidence to be normal dust-free LAEs. Second, I present an investigation into the effects of ionizing proton radiation on commercial off-the-shelf InGaAs PDs. I developed a monochromator-based test apparatus that utilized NIST-calibrated reference PDs. I tested the PDs for changes to their dark current, relative responsivity as a function of wavelength, and absolute responsivity. I irradiated the test PDs using 30, 52, and 98 MeV protons at the IU Cyclotron Facility. I found the InGaAs PDs showed increased dark current as the fluence increased with no evidence of broadband response degradation at the fluences expected at an L2 orbit and a 10-year mission lifetime. Finally, I detail my efforts on technology development of both optical detector technologies and waveshifting light guide construction for LAr vacuum UV scintillation light. Cryogenic neutrino detectors use photon detection for both accelerator based science and for SNe neutrino detection and proton decay. I have

  12. Neutron detector using lithiated glass-scintillating particle composite

    DOEpatents

    Wallace, Steven [Knoxville, TN; Stephan, Andrew C [Knoxville, TX; Dai, Sheng [Knoxville, TN; Im, Hee-Jung [Knoxville, TN

    2009-09-01

    A neutron detector composed of a matrix of scintillating particles imbedded in a lithiated glass is disclosed. The neutron detector detects the neutrons by absorbing the neutron in the lithium-6 isotope which has been enriched from the natural isotopic ratio to a commercial ninety five percent. The utility of the detector is optimized by suitably selecting scintillating particle sizes in the range of the alpha and the triton. Nominal particle sizes are in the range of five to twenty five microns depending upon the specific scintillating particle selected.

  13. New prototype scintillator detector for the Tibet ASγ experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Gou, Q.-B.; Cai, H.; Chen, T.-L.; Danzengluobu; Feng, C.-F.; Feng, Y.-L.; Feng, Z.-Y.; Gao, Q.; Gao, X.-J.; Guo, Y.-Q.; Guo, Y.-Y.; Hou, Y.-Y.; Hu, H.-B.; Jin, C.; Li, H.-J.; Liu, C.; Liu, M.-Y.; Qian, X.-L.; Tian, Z.; Wang, Z.; Xue, L.; Zhang, X.-Y.; Zhang, Xi-Ying

    2017-11-01

    The hybrid Tibet AS array was successfully constructed in 2014. It has 4500 m2 underground water Cherenkov pools used as the muon detector (MD) and 789 scintillator detectors covering 36900 m2 as the surface array. At 100 TeV, cosmic-ray background events can be rejected by approximately 99.99%, according to the full Monte Carlo (MC) simulation for γ-ray observations. In order to use the muon detector efficiently, we propose to extend the surface array area to 72900 m2 by adding 120 scintillator detectors around the current array to increase the effective detection area. A new prototype scintillator detector is developed via optimizing the detector geometry and its optical surface, by selecting the reflective material and adopting dynode readout. {This detector can meet our physics requirements with a positional non-uniformity of the output charge within 10% (with reference to the center of the scintillator), time resolution FWHM of ~2.2 ns, and dynamic range from 1 to 500 minimum ionization particles}.

  14. Photon counting photodiode array detector for far ultraviolet (FUV) astronomy

    NASA Technical Reports Server (NTRS)

    Hartig, G. F.; Moos, H. W.; Pembroke, R.; Bowers, C.

    1982-01-01

    A compact, stable, single-stage intensified photodiode array detector designed for photon-counting, far ultraviolet astronomy applications employs a saturable, 'C'-type MCP (Galileo S. MCP 25-25) to produce high gain pulses with a narrowly peaked pulse height distribution. The P-20 output phosphor exhibits a very short decay time, due to the high current density of the electron pulses. This intensifier is being coupled to a self-scanning linear photodiode array which has a fiber optic input window which allows direct, rigid mechanical coupling with minimal light loss. The array was scanned at a 250 KHz pixel rate. The detector exhibits more than adequate signal-to-noise ratio for pulse counting and event location. Previously announced in STAR as N82-19118

  15. Plastic scintillator detector for pulsed flux measurements

    NASA Astrophysics Data System (ADS)

    Kadilin, V. V.; Kaplun, A. A.; Taraskin, A. A.

    2017-01-01

    A neutron detector, providing charged particle detection capability, has been designed. The main purpose of the detector is to measure pulsed fluxes of both charged particles and neutrons during scientific experiments. The detector consists of commonly used neutron-sensitive ZnS(Ag) / 6LiF scintillator screens wrapping a layer of polystyrene based scintillator (BC-454, EJ-254 or equivalent boron loaded plastic). This type of detector design is able to log a spatial distribution of events and may be scaled to any size. Different variations of the design were considered and modelled in specialized toolkits. The article presents a review of the detector design features as well as simulation results.

  16. Energy calibration of organic scintillation detectors for. gamma. rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu Jiahui; Xiao Genlai; Liu Jingyi

    1988-10-01

    An experimental method of calibrating organic detectors is described. A NaI(T1) detector has some advantages of high detection efficiency, good energy resolution, and definite position of the back-scattering peak. The precise position of the Compton edge can be determined by coincidence measurement between the pulse of an organic scintillation detector and the pulse of the back-scattering peak from NaI(T1) detector. It can be used to calibrate various sizes and shapes of organic scintillation detectors simply and reliably. The home-made plastic and organic liquid scintillation detectors are calibrated and positions of the Compton edge as a function of ..gamma..-ray energies aremore » obtained.« less

  17. Scintillator-fiber charged-particle track-imaging detector

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.

    1983-01-01

    A scintillator-fiber charged-particle track-imaging detector has been developed using a bundle of square cross-section plastic scintillator fiber optics, proximity focused onto an image intensified Charge Injection Device (CID) camera. Detector to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei have been exposed and images of their tracks are obtained. This paper presents details of the detector technique, properties of the tracks obtained, and range measurements of 15 MeV protons stopping in the fiber bundle.

  18. Fission-fragment detector for DANCE based on thin scintillating films

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Roman, A. R.; Daum, J. K.; Springs, R. K.; Bond, E. M.; Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Ullmann, J. L.; Walker, C. L.

    2015-12-01

    A fission-fragment detector based on thin scintillating films has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing 4 π detection of the fission fragments. The scintillation photons were registered with silicon photomultipliers. A measurement of the 235U (n , f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described.

  19. A photon-counting photodiode array detector for far ultraviolet (FUV) astronomy

    NASA Technical Reports Server (NTRS)

    Hartig, G. F.; Moos, H. W.; Pembroke, R.; Bowers, C.

    1982-01-01

    A compact, stable, single-stage intensified photodiode array detector designed for photon-counting, far ultraviolet astronomy applications employs a saturable, 'C'-type MCP (Galileo S. MCP 25-25) to produce high gain pulses with a narrowly peaked pulse height distribution. The P-20 output phosphor exhibits a very short decay time, due to the high current density of the electron pulses. This intensifier is being coupled to a self-scanning linear photodiode array which has a fiber optic input window which allows direct, rigid mechanical coupling with minimal light loss. The array was scanned at a 250 KHz pixel rate. The detector exhibits more than adequate signal-to-noise ratio for pulse counting and event location.

  20. Long-distance transmission of light in a scintillator-based radiation detector

    DOEpatents

    Dowell, Jonathan L.; Talbott, Dale V.; Hehlen, Markus P.

    2017-07-11

    Scintillator-based radiation detectors capable of transmitting light indicating the presence of radiation for long distances are disclosed herein. A radiation detector can include a scintillator layer and a light-guide layer. The scintillator layer is configured to produce light upon receiving incident radiation. The light-guide layer is configured to receive light produced by the scintillator layer and either propagate the received light through the radiation detector or absorb the received light and emit light, through fluorescence, that is propagated through the radiation detector. A radiation detector can also include an outer layer partially surrounding the scintillator layer and light-guide layer. The index of refraction of the light-guide layer can be greater than the index of refraction of adjacent layers.

  1. Large-area, low-noise, high-speed, photodiode-based fluorescence detectors with fast overdrive recovery

    NASA Astrophysics Data System (ADS)

    Bickman, S.; DeMille, D.

    2005-11-01

    Two large-area, low-noise, high-speed fluorescence detectors have been built. One detector consists of a photodiode with an area of 28mm×28mm and a low-noise transimpedance amplifier. This detector has a input light-equivalent spectral noise density of less than 3pW/√Hz , can recover from a large scattered light pulse within 10μs, and has a bandwidth of at least 900 kHz. The second detector consists of a 16-mm-diam avalanche photodiode and a low-noise transimpedance amplifier. This detector has an input light-equivalent spectral noise density of 0.08pW/√Hz , also can recover from a large scattered light pulse within 10μs, and has a bandwidth of 1 MHz.

  2. Performance of a junction termination extension avalanche photodiode for use with scintillators

    NASA Astrophysics Data System (ADS)

    Gramsch, E.; Pcheliakov, O.; Chistokhin, Igor B.

    2008-11-01

    An avalanche photodiode with a ring structure called junction termination extension (JTE) was built and tested. It has three diffused rings around the main junction to avoid early breakdown at the surface. The ITE rings have less doping than the main junction and can be built by well controlled single ion-implantation through a single mask. Avalanche photodiodes with two mm diameter active area have been have been built by implantation of boron with a dose of 2, 3, 4 and 5 × 1012 cm-2, followed by deep diffusion of the junction up to 14 μm. The dark current is strongly dependent on the implantation dose, decreasing with decreasing charge. For the APDs with implanted dose of 5 × 1012 cm-2 a gain of 8 is obtained at 1120 V. The energy resolution from a 137Cs source was measured to be 24.4% FWHM with a 2 × 2 × 2 mm3 BGO scintillator. We have also performed simulations of the gain and breakdown voltage that correlate well with the results.

  3. Detection of gamma-neutron radiation by solid-state scintillation detectors. Detection of gamma-neutron radiation by novel solid-state scintillation detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryzhikov, V.; Grinyov, B.; Piven, L.

    It is known that solid-state scintillators can be used for detection of both gamma radiation and neutron flux. In the past, neutron detection efficiencies of such solid-state scintillators did not exceed 5-7%. At the same time it is known that the detection efficiency of the gamma-neutron radiation characteristic of nuclear fissionable materials is by an order of magnitude higher than the efficiency of detection of neutron fluxes alone. Thus, an important objective is the creation of detection systems that are both highly efficient in gamma-neutron detection and also capable of exhibiting high gamma suppression for use in the role ofmore » detection of neutron radiation. In this work, we present the results of our experimental and theoretical studies on the detection efficiency of fast neutrons from a {sup 239}Pu-Be source by the heavy oxide scintillators BGO, GSO, CWO and ZWO, as well as ZnSe(Te, O). The most probable mechanism of fast neutron interaction with nuclei of heavy oxide scintillators is the inelastic scattering (n, n'γ) reaction. In our work, fast neutron detection efficiencies were determined by the method of internal counting of gamma-quanta that emerge in the scintillator from (n, n''γ) reactions on scintillator nuclei with the resulting gamma energies of ∼20-300 keV. The measured efficiency of neutron detection for the scintillation crystals we considered was ∼40-50 %. The present work included a detailed analysis of detection efficiency as a function of detector and area of the working surface, as well as a search for new ways to create larger-sized detectors of lower cost. As a result of our studies, we have found an unusual dependence of fast neutron detection efficiency upon thickness of the oxide scintillators. An explanation for this anomaly may involve the competition of two factors that accompany inelastic scattering on the heavy atomic nuclei. The transformation of the energy spectrum of neutrons involved in the (n, n'γ) reactions

  4. Large-area, low-noise, high-speed, photodiode-based fluorescence detectors with fast overdrive recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bickman, S.; DeMille, D.

    2005-11-15

    Two large-area, low-noise, high-speed fluorescence detectors have been built. One detector consists of a photodiode with an area of 28 mmx28 mm and a low-noise transimpedance amplifier. This detector has a input light-equivalent spectral noise density of less than 3 pW/{radical}(Hz), can recover from a large scattered light pulse within 10 {mu}s, and has a bandwidth of at least 900 kHz. The second detector consists of a 16-mm-diam avalanche photodiode and a low-noise transimpedance amplifier. This detector has an input light-equivalent spectral noise density of 0.08 pW/{radical}(Hz), also can recover from a large scattered light pulse within 10 {mu}s, andmore » has a bandwidth of 1 MHz.« less

  5. High quantum efficiency megavoltage imaging with thick scintillator detectors for image guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Gopal, Arun

    In image guided radiation therapy (IGRT), imaging devices serve as guidance systems to aid patient set-up and tumor volume localization. Traditionally, 2-D megavoltage x-ray imagers, referred to as electronic portal imaging devices (EPIDs), have been used for planar target localization, and have recently been extended to perform 3-D volumetric reconstruction via cone-beam computed tomography (CBCT). However, current EPIDs utilize thin and inefficient phosphor screen detectors and are subsequently limited by poor soft tissue visualization, which limits their use for CBCT. Therefore, the use of thick scintillation media as megavoltage x-ray detectors for greater x-ray sensitivity and enhanced image quality has recently been of significant interest. In this research, two candidates for thick scintillators: CsI(Tl) and terbium doped scintillation glass were investigated in separate imaging configurations. In the first configuration, a thick scintillation crystal (TSC) consisting of a thick, monolithic slab of CsI(Tl) was coupled to a mirror-lens-camera system. The second configuration is based on a fiber-optic scintillation glass array (FOSGA), wherein the scintillation glass is drawn into long fiber-optic conduits, inserted into a grid-type housing constructed out of polymer-tungsten alloy, and coupled to an array of photodiodes for digital read-out. The imaging prototypes were characterized using theoretical studies and imaging measurements to obtain fundamental metrics of imaging performance. Spatial resolution was measured based on a modulation transfer function (MTF), noise was evaluated in terms of a noise power spectrum (NPS), and overall contrast was characterized in the form of detective quantum efficiency (DQE). The imaging studies were used to optimize the TSC and FOSGA imagers and propose prototype configurations for order-of-magnitude improvements in overall image quality. In addition, a fast and simple technique was developed to measure the MTF, NPS, and

  6. Organic scintillator detector response simulations with DRiFT

    NASA Astrophysics Data System (ADS)

    Andrews, M. T.; Bates, C. R.; McKigney, E. A.; Solomon, C. J.; Sood, A.

    2016-09-01

    This work presents the organic scintillation simulation capabilities of DRiFT, a post-processing Detector Response Function Toolkit for MCNP® output. DRiFT is used to create realistic scintillation detector response functions to incident neutron and gamma mixed-field radiation. As a post-processing tool, DRiFT leverages the extensively validated radiation transport capabilities of MCNP® 6 , which also provides the ability to simulate complex sources and geometries. DRiFT is designed to be flexible, it allows the user to specify scintillator material, PMT type, applied PMT voltage, and quenching data used in simulations. The toolkit's capabilities, which include the generation of pulse shape discrimination plots and full-energy detector spectra, are demonstrated in a comparison of measured and simulated neutron contributions from 252Cf and PuBe, and photon spectra from 22Na and 228Th sources. DRiFT reproduced energy resolution effects observed in EJ-301 measurements through the inclusion of scintillation yield variances, photon transport noise, and PMT photocathode and multiplication noise.

  7. Flexible composite radiation detector

    DOEpatents

    Cooke, D Wayne [Santa Fe, NM; Bennett, Bryan L [Los Alamos, NM; Muenchausen, Ross E [Los Alamos, NM; Wrobleski, Debra A [Los Alamos, NM; Orler, Edward B [Los Alamos, NM

    2006-12-05

    A flexible composite scintillator was prepared by mixing fast, bright, dense rare-earth doped powdered oxyorthosilicate (such as LSO:Ce, LSO:Sm, and GSO:Ce) scintillator with a polymer binder. The binder is transparent to the scintillator emission. The composite is seamless and can be made large and in a wide variety of shapes. Importantly, the composite can be tailored to emit light in a spectral region that matches the optimum response of photomultipliers (about 400 nanometers) or photodiodes (about 600 nanometers), which maximizes the overall detector efficiency.

  8. Large volume flow-through scintillating detector

    DOEpatents

    Gritzo, Russ E.; Fowler, Malcolm M.

    1995-01-01

    A large volume flow through radiation detector for use in large air flow situations such as incinerator stacks or building air systems comprises a plurality of flat plates made of a scintillating material arranged parallel to the air flow. Each scintillating plate has a light guide attached which transfers light generated inside the scintillating plate to an associated photomultiplier tube. The output of the photomultiplier tubes are connected to electronics which can record any radiation and provide an alarm if appropriate for the application.

  9. An efficient energy response model for liquid scintillator detectors

    NASA Astrophysics Data System (ADS)

    Lebanowski, Logan; Wan, Linyan; Ji, Xiangpan; Wang, Zhe; Chen, Shaomin

    2018-05-01

    Liquid scintillator detectors are playing an increasingly important role in low-energy neutrino experiments. In this article, we describe a generic energy response model of liquid scintillator detectors that provides energy estimations of sub-percent accuracy. This model fits a minimal set of physically-motivated parameters that capture the essential characteristics of scintillator response and that can naturally account for changes in scintillator over time, helping to avoid associated biases or systematic uncertainties. The model employs a one-step calculation and look-up tables, yielding an immediate estimation of energy and an efficient framework for quantifying systematic uncertainties and correlations.

  10. The beam test of muon detector parameters for the SHiP experiment at CERN

    NASA Astrophysics Data System (ADS)

    Likhacheva, V. L.; Kudenko, Yu. G.; Mefodiev, A. V.; Mineev, O. V.; Khotyantsev, A. N.

    2018-01-01

    Scintillation detectors based on extruded plastics have been tested in a 10 GeV/c beam at CERN. The scintillation signal readout was provided using optical wavelength shifting fibers Y11 Kuraray and Hamamatsu MPPC micropixel avalanche photodiodes. The light yield was scanned along and across the detectors. Time resolution was found by fitting the MPPC digitized pulse rise and other methods.

  11. Distributed imaging for liquid scintillation detectors

    NASA Astrophysics Data System (ADS)

    Dalmasson, J.; Gratta, G.; Jamil, A.; Kravitz, S.; Malek, M.; Wells, K.; Bentley, J.; Steven, S.; Su, J.

    2018-03-01

    We discuss a novel paradigm in the optical readout of scintillation radiation detectors. In one common configuration, such detectors are homogeneous and the scintillation light is collected and recorded by external photodetectors. It is usually assumed that imaging in such a photon-starved and large-emittance regime is not possible. Here we show that the appropriate optics, matched with highly segmented photodetector coverage and dedicated reconstruction software, can be used to produce images of the radiation-induced events. In particular, such a "distributed imaging" system can discriminate between events produced as a single cluster and those resulting from more delocalized energy depositions. This is crucial in discriminating many common backgrounds at MeV energies. With the use of simulation, we demonstrate the performance of a detector augmented with a practical, if preliminary, set of optics. Finally, we remark that this new technique lends itself to be adapted to different detector sizes and briefly discuss the implications for a number of common applications in science and technology.

  12. Unitary scintillation detector and system

    DOEpatents

    McElhaney, Stephanie A.; Chiles, Marion M.

    1994-01-01

    The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations.

  13. Unitary scintillation detector and system

    DOEpatents

    McElhaney, S.A.; Chiles, M.M.

    1994-05-31

    The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations. 10 figs.

  14. Studying the response of a plastic scintillator to gamma rays using the Geant4 Monte Carlo code.

    PubMed

    Ghadiri, Rasoul; Khorsandi, Jamshid

    2015-05-01

    To determine the gamma ray response function of an NE-102 scintillator and to investigate the gamma spectra due to the transport of optical photons, we simulated an NE-102 scintillator using Geant4 code. The results of the simulation were compared with experimental data. Good consistency between the simulation and data was observed. In addition, the time and spatial distributions, along with the energy distribution and surface treatments of scintillation detectors, were calculated. This simulation makes us capable of optimizing the photomultiplier tube (or photodiodes) position to yield the best coupling to the detector. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Probing Cherenkov and Scintillation Light Separation for Next-Generation Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    Caravaca, J.; Descamps, F. B.; Land, B. J.; Orebi Gann, G. D.; Wallig, J.; Yeh, M.

    2017-09-01

    The ability to separate Cherenkov and scintillation signals in liquid scintillator detectors would enable outstanding background rejection for next-generation neutrino experiments. Reconstruction of directional information, ring imaging, and sub-Cherenkov threshold detection all have the potential to substantially improve particle and event identification. The Cherenkov-Scintillation Separation (CHESS) experiment uses an array of small, fast photomultipliers (PMTs) and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillation medium based on photon hit times and detected charge. This setup has been used to characterize the ability to detect Cherenkov light in a range of target media. We show results with pure organic scintillator (LAB) and the prospects with scintillators with a secondary fluor (LAB/PPO). There are future plans to deploy the newly developed water-based liquid scintillator, a medium with a higher Cherenkov/Scintillation light yield ratio than conventional pure liquid scintillators, enhancing the visibility of the less abundant Cherenkov light in the presence of scintillation light. These results can inform the development of future large-scale detectors, such as the proposed Theia experiment, or other large detectors at underground laboratories such as the far-site of the new Long Baseline Neutrino Facility at the Sanford Underground Research Facility. CHESS detector calibrations and commissioning will be discussed, and the latest results will be presented.

  16. Organic Scintillator Detector Response Simulations with DRiFT

    DOE PAGES

    Andrews, Madison Theresa; Bates, Cameron Russell; Mckigney, Edward Allen; ...

    2016-06-11

    Here, this work presents the organic scintillation simulation capabilities of DRiFT, a post-processing Detector Response Function Toolkit for MCNPR output. DRiFT is used to create realistic scintillation detector response functions to incident neutron and gamma mixed- field radiation. As a post-processing tool, DRiFT leverages the extensively validated radiation transport capabilities of MCNPR ®6, which also provides the ability to simulate complex sources and geometries. DRiFT is designed to be flexible, it allows the user to specify scintillator material, PMT type, applied PMT voltage, and quenching data used in simulations. The toolkit's capabilities, which include the generation of pulse shape discriminationmore » plots and full-energy detector spectra, are demonstrated in a comparison of measured and simulated neutron contributions from 252Cf and PuBe, and photon spectra from 22Na and 228Th sources. DRiFT reproduced energy resolution effects observed in EJ-301 measurements through the inclusion of scintillation yield variances, photon transport noise, and PMT photocathode and multiplication noise.« less

  17. Improved LabPET Detectors Using Lu1.8Gd0.2SiO5:Ce (LGSO) Scintillator Blocks

    NASA Astrophysics Data System (ADS)

    Bergeron, Mélanie; Pepin, Catherine M.; Cadorette, Jules; Loignon-Houle, Francis; Fontaine, Réjean; Lecomte, Roger

    2015-02-01

    The scintillator is one of the key building blocks that critically determine the physical performance of PET detectors. The quest for scintillation crystals with improved characteristics has been crucial in designing scanners with superior imaging performance. Recently, it was shown that the decay time constant of high lutetium content Lu1.8Gd0.2SiO5: Ce (LGSO) scintillators can be adjusted by varying the cerium concentration from 0.025 mol% to 0.75 mol%, thus providing interesting characteristics for phoswich detectors. The high light output (90%-120% NaI) and the improved spectral match of these scintillators with avalanche photodiode (APD) readout promise superior energy and timing resolutions. Moreover, their improved mechanical properties, as compared to conventional LGSO ( Lu0.4Gd1.6SiO5: Ce), make block array manufacturing readily feasible. To verify these assumptions, new phoswich block arrays made of LGSO-90%Lu with low and high mol% Ce concentrations were fabricated and assembled into modules dedicated to the LabPET scanner. Typical crystal decay time constants were 31 ns and 47 ns, respectively. Phoswich crystal identification performed using a digital pulse shape discrimination algorithm yielded an average 8% error. At 511 keV, an energy resolution of 17-21% was obtained, while coincidence timing resolution between 4.6 ns and 5.2 ns was achieved. The characteristics of this new LGSO-based phoswich detector module are expected to improve the LabPET scanner performance. The higher stopping power would increase the detection efficiency. The better timing resolution would also allow the use of a narrower coincidence window, thus minimizing the random event rate. Altogether, these two improvements will significantly enhance the noise equivalent count rate performance of an all LGSO-based LabPET scanner.

  18. Influence of depth of interaction upon the performance of scintillator detectors.

    PubMed

    Brown, Mark S; Gundacker, Stefan; Taylor, Alaric; Tummeltshammer, Clemens; Auffray, Etiennette; Lecoq, Paul; Papakonstantinou, Ioannis

    2014-01-01

    The uncertainty in time of particle detection within a scintillator detector, characterised by the coincidence time resolution (CTR), is explored with respect to the interaction position within the scintillator crystal itself. Electronic collimation between two scintillator detectors is utilised to determine the CTR with depth of interaction (DOI) for different materials, geometries and wrappings. Significantly, no relationship between the CTR and DOI is observed within experimental error. Confinement of the interaction position is seen to degrade the CTR in long scintillator crystals by 10%.

  19. Scintillation Detector for the Measurement of Ultra-Heavy Cosmic Rays on the Super-TIGER Experiment

    NASA Technical Reports Server (NTRS)

    Link, Jason

    2011-01-01

    We discuss the design and construction of the scintillation detectors for the Super-TIGER experiment. Super-TIGER is a large-area (5.4sq m) balloon-borne experiment designed to measure the abundances of cosmic-ray nuclei between Z= 10 and Z=56. It is based on the successful TIGER experiment that flew in Antarctica in 2001 and 2003. Super-TIGER has three layers of scintillation detectors, two Cherenkov detectors and a scintillating fiber hodoscope. The scintillation detector employs four wavelength shifter bars surrounding the edges of the scintillator to collect the light from particles traversing the detector. PMTs are optically coupled at both ends of the bars for light collection. We report on laboratory performance of the scintillation counters using muons. In addition we discuss the design challenges and detector response over this broad charge range including the effect of scintilator saturation.

  20. Simulations of Si-PIN photodiode based detectors for underground explosives enhanced by ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Yücel, Mete; Bayrak, Ahmet; Yücel, Esra Barlas; Ozben, Cenap S.

    2018-02-01

    Massive Ammonium Nitrate (NH4-NO3) based explosives buried underground are commonly used in terror attacks. These explosives can be detected using neutron scattering method with some limitations. Simulations are very useful tools for designing a possible detection system for these kind of explosives. Geant4 simulations were used for generating neutrons at 14 MeV energy and tracking them through the scattering off the explosive embedded in soil. Si-PIN photodiodes were used as detector elements in the design for their low costs and simplicity for signal readout electronics. Various neutron-charge particle converters were applied on to the surface of the photodiodes to increase the detection efficiency. Si-PIN photodiodes coated with 6LiF provided the best result for a certain energy interval. Energy depositions in silicon detector from all secondary particles generated including photons were taken into account to generate a realistic background. Humidity of soil, one of the most important parameter for limiting the detection, was also studied.

  1. Influence of Depth of Interaction upon the Performance of Scintillator Detectors

    PubMed Central

    Brown, Mark S.; Gundacker, Stefan; Taylor, Alaric; Tummeltshammer, Clemens; Auffray, Etiennette; Lecoq, Paul; Papakonstantinou, Ioannis

    2014-01-01

    The uncertainty in time of particle detection within a scintillator detector, characterised by the coinci- dence time resolution (CTR), is explored with respect to the interaction position within the scintillator crystal itself. Electronic collimation between two scintillator detectors is utilised to determine the CTR with depth of interaction (DOI) for different materials, geometries and wrappings. Significantly, no rela- tionship between the CTR and DOI is observed within experimental error. Confinement of the interaction position is seen to degrade the CTR in long scintillator crystals by 10%. PMID:24875832

  2. A new scintillator detector system for the quality assurance of 60Co and high-energy therapy machines.

    PubMed

    Beddar, A S

    1994-02-01

    A new single-channel detector system has been developed to perform routine quality assurance of 60Co and high-energy therapy machines. This detector is composed of an orange plastic scintillator, optically coupled to a radiation-resistant polycarbonate light pipe and a shielded silicon photodiode imbedded in a hollow solid water phantom block. No temperature and pressure corrections are required. Stability results were consistent with standard deviations fluctuating from 0.03% up to 0.09% for 60Co and from 0.05% up to 0.18% for other high energies. This device provides a quick, easy and reliable beam output check remotely, using an automatic reset based on a radiation triggering system device, storing multiple sequential readings. The reproducibility of this detector was checked on a daily and weekly basis at different energies (60Co, 6 MV and 18 MV x-rays and 6, 9, 12, 16 and 20 MeV electron beams). These results were found to be consistent with those obtained using an ion chamber. Other characteristics of this detector, including the consequences of the radiation-induced light in the light pipe (stem effect) and the radiation damage on this system are briefly discussed.

  3. Neutron detection with plastic scintillators coupled to solid state photomultiplier detectors

    NASA Astrophysics Data System (ADS)

    Christian, James F.; Johnson, Erik B.; Fernandez, Daniel E.; Vogel, Samuel; Frank, Rebecca; Stoddard, Graham; Stapels, Christopher; Pereira, Jorge; Zegers, Remco

    2017-09-01

    The recent reduction of dark current in Silicon Solid-state photomultipliers (SiSSPMs) makes them an attractive alternative to conventional photomultiplier tubes (PMTs) for scintillation detection applications. Nuclear Physics experiments often require large detector volumes made using scintillation materials, which require sensitive photodetectors, such as a PMTs. PMTs add to the size, fragility, and high-voltage requirements as well as distance requirements for experiments using magnetic fields. This work compares RMD's latest detector modules, denoted as the "year 2 prototype", of plastic scintillators that discriminate gamma and high-energy particle events from neutron events using pulse shape discrimination (PSD) coupled to a SiSSPM to the following two detector modules: a similar "year 1 prototype" and a scintillator coupled to a PMT module. It characterizes the noise floor, relative signal-to-noise ratio (SNR), the timing performance, the PSD figure-of-merit (FOM) and the neutron detection efficiency of RMD's detectors. This work also evaluates the scaling of SiSSPM detector modules to accommodate the volumes needed for many Nuclear Physics experiments. The Si SSPM detector module provides a clear advantage in Nuclear Physics experiments that require the following attributes: discrimination of neutron and gamma-ray events, operation in or near strong magnetic fields, and segmentation of the detector.

  4. Apparatus and method for temperature correction and expanded count rate of inorganic scintillation detectors

    DOEpatents

    Ianakiev, Kiril D [Los Alamos, NM; Hsue, Sin Tao [Santa Fe, NM; Browne, Michael C [Los Alamos, NM; Audia, Jeffrey M [Abiquiu, NM

    2006-07-25

    The present invention includes an apparatus and corresponding method for temperature correction and count rate expansion of inorganic scintillation detectors. A temperature sensor is attached to an inorganic scintillation detector. The inorganic scintillation detector, due to interaction with incident radiation, creates light pulse signals. A photoreceiver processes the light pulse signals to current signals. Temperature correction circuitry that uses a fast light component signal, a slow light component signal, and the temperature signal from the temperature sensor to corrected an inorganic scintillation detector signal output and expanded the count rate.

  5. Deriving detector-specific correction factors for rectangular small fields using a scintillator detector.

    PubMed

    Qin, Yujiao; Zhong, Hualiang; Wen, Ning; Snyder, Karen; Huang, Yimei; Chetty, Indrin J

    2016-11-08

    The goal of this study was to investigate small field output factors (OFs) for flat-tening filter-free (FFF) beams on a dedicated stereotactic linear accelerator-based system. From this data, the collimator exchange effect was quantified, and detector-specific correction factors were generated. Output factors for 16 jaw-collimated small fields (from 0.5 to 2 cm) were measured using five different detectors including an ion chamber (CC01), a stereotactic field diode (SFD), a diode detector (Edge), Gafchromic film (EBT3), and a plastic scintillator detector (PSD, W1). Chamber, diodes, and PSD measurements were performed in a Wellhofer water tank, while films were irradiated in solid water at 100 cm source-to-surface distance and 10 cm depth. The collimator exchange effect was quantified for rectangular fields. Monte Carlo (MC) simulations of the measured configurations were also performed using the EGSnrc/DOSXYZnrc code. Output factors measured by the PSD and verified against film and MC calculations were chosen as the benchmark measurements. Compared with plastic scintillator detector (PSD), the small volume ion chamber (CC01) underestimated output factors by an average of -1.0% ± 4.9% (max. = -11.7% for 0.5 × 0.5 cm2 square field). The stereotactic diode (SFD) overestimated output factors by 2.5% ± 0.4% (max. = 3.3% for 0.5 × 1 cm2 rectangular field). The other diode detector (Edge) also overestimated the OFs by an average of 4.2% ± 0.9% (max. = 6.0% for 1 × 1 cm2 square field). Gafchromic film (EBT3) measure-ments and MC calculations agreed with the scintillator detector measurements within 0.6% ± 1.8% and 1.2% ± 1.5%, respectively. Across all the X and Y jaw combinations, the average collimator exchange effect was computed: 1.4% ± 1.1% (CC01), 5.8% ± 5.4% (SFD), 5.1% ± 4.8% (Edge diode), 3.5% ± 5.0% (Monte Carlo), 3.8% ± 4.7% (film), and 5.5% ± 5.1% (PSD). Small field detectors should be used with caution with a clear understanding of their

  6. Particle detector spatial resolution

    DOEpatents

    Perez-Mendez, Victor

    1992-01-01

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector.

  7. Cryogenic phonon-scintillation detectors with PMT readout for rare event search experiments

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Lin, J.; Mikhailik, V. B.; Kraus, H.

    2016-06-01

    Cryogenic phonon-scintillation detectors (CPSD) for rare event search experiments require reliable, efficient and robust photon detectors that can resolve individual photons in a scintillation event. We report on a cryogenic detector containing a scintillating crystal, equipped with an NTD-Ge phonon sensor and a photon detector based on a low-temperature photomultiplier tube (PMT) that is powered by a Cockcroft-Walton generator. Here we present results from the characterisation of two detector modules, one with CaWO4, the other with CaMoO4 as scintillator. The energy resolutions (FWHM) at 122.1 keV for the scintillation/PMT channel are 19.9% and 29.7% respectively for CaWO4 and CaMoO4 while the energy resolutions (FWHM) for the phonon channels are 2.17 keV (1.8%) and 0.97 keV (0.79%). These characteristics compare favourably with other CPSDs currently used in cryogenic rare-event search experiments. The detection module with PMT readout benefits from the implementation of a well-understood, reliable, and commercially available component and improved time resolution, while retaining the major advantages of conventional CPSD, such as high sensitivity, resolving power and discrimination ability.

  8. A first comparison of the responses of a 4He-based fast-neutron detector and a NE-213 liquid-scintillator reference detector

    NASA Astrophysics Data System (ADS)

    Jebali, R.; Scherzinger, J.; Annand, J. R. M.; Chandra, R.; Davatz, G.; Fissum, K. G.; Friederich, H.; Gendotti, U.; Hall-Wilton, R.; Håkansson, E.; Kanaki, K.; Lundin, M.; Murer, D.; Nilsson, B.; Rosborg, A.; Svensson, H.

    2015-09-01

    A first comparison has been made between the pulse-shape discrimination characteristics of a novel 4He-based pressurized scintillation detector and a NE-213 liquid-scintillator reference detector using an Am/Be mixed-field neutron and gamma-ray source and a high-resolution scintillation-pulse digitizer. In particular, the capabilities of the two fast neutron detectors to discriminate between neutrons and gamma-rays were investigated. The NE-213 liquid-scintillator reference cell produced a wide range of scintillation-light yields in response to the gamma-ray field of the source. In stark contrast, due to the size and pressure of the 4He gas volume, the 4He-based detector registered a maximum scintillation-light yield of 750keVee to the same gamma-ray field. Pulse-shape discrimination for particles with scintillation-light yields of more than 750keVee was excellent in the case of the 4He-based detector. Above 750keVee its signal was unambiguously neutron, enabling particle identification based entirely upon the amount of scintillation light produced.

  9. Use of internal scintillator radioactivity to calibrate DOI function of a PET detector with a dual-ended-scintillator readout.

    PubMed

    Bircher, Chad; Shao, Yiping

    2012-02-01

    Positron emission tomography (PET) detectors that use a dual-ended-scintillator readout to measure depth-of-interaction (DOI) must have an accurate DOI function to provide the relationship between DOI and signal ratios to be used for detector calibration and recalibration. In a previous study, the authors used a novel and simple method to accurately and quickly measure DOI function by irradiating the detector with an external uniform flood source; however, as a practical concern, implementing external uniform flood sources in an assembled PET system is technically challenging and expensive. In the current study, therefore, the authors investigated whether the same method could be used to acquire DOI function from scintillator-generated (i.e., internal) radiation. The authors also developed a method for calibrating the energy scale necessary to select the events within the desired energy window. The authors measured the DOI function of a PET detector with lutetium yttrium orthosilicate (LYSO) scintillators. Radiation events originating from the scintillators' internal Lu-176 beta decay were used to measure DOI functions which were then compared with those measured from both an external uniform flood source and an electronically collimated external point source. The authors conducted these studies with several scintillators of differing geometries (1.5 × 1.5 and 2.0 × 2.0 mm(2) cross-section area and 20, 30, and 40 mm length) and various surface finishes (mirror-finishing, saw-cut rough, and other finishes in between), and in a prototype array. All measured results using internal and external radiation sources showed excellent agreement in DOI function measurement. The mean difference among DOI values for all scintillators measured from internal and external radiation sources was less than 1.0 mm for different scintillator geometries and various surface finishes. The internal radioactivity of LYSO scintillators can be used to accurately measure DOI function

  10. Use of internal scintillator radioactivity to calibrate DOI function of a PET detector with a dual-ended-scintillator readout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bircher, Chad; Shao Yiping

    Purpose: Positron emission tomography (PET) detectors that use a dual-ended-scintillator readout to measure depth-of-interaction (DOI) must have an accurate DOI function to provide the relationship between DOI and signal ratios to be used for detector calibration and recalibration. In a previous study, the authors used a novel and simple method to accurately and quickly measure DOI function by irradiating the detector with an external uniform flood source; however, as a practical concern, implementing external uniform flood sources in an assembled PET system is technically challenging and expensive. In the current study, therefore, the authors investigated whether the same method couldmore » be used to acquire DOI function from scintillator-generated (i.e., internal) radiation. The authors also developed a method for calibrating the energy scale necessary to select the events within the desired energy window. Methods: The authors measured the DOI function of a PET detector with lutetium yttrium orthosilicate (LYSO) scintillators. Radiation events originating from the scintillators' internal Lu-176 beta decay were used to measure DOI functions which were then compared with those measured from both an external uniform flood source and an electronically collimated external point source. The authors conducted these studies with several scintillators of differing geometries (1.5 x 1.5 and 2.0 x 2.0 mm{sup 2} cross-section area and 20, 30, and 40 mm length) and various surface finishes (mirror-finishing, saw-cut rough, and other finishes in between), and in a prototype array. Results: All measured results using internal and external radiation sources showed excellent agreement in DOI function measurement. The mean difference among DOI values for all scintillators measured from internal and external radiation sources was less than 1.0 mm for different scintillator geometries and various surface finishes. Conclusions: The internal radioactivity of LYSO scintillators can

  11. DETECTORS AND EXPERIMENTAL METHODS: Studies of a scintillator-bar detector for a neutron wall at an external target facility

    NASA Astrophysics Data System (ADS)

    Yu, Yu-Hong; Xu, Hua-Gen; Xu, Hu-Shan; Zhan, Wen-Long; Sun, Zhi-Yu; Guo, Zhong-Yan; Hu, Zheng-Guo; Wang, Jian-Song; Chen, Jun-Ling; Zheng, Chuan

    2009-07-01

    To achieve a better time resolution of a scintillator-bar detector for a neutron wall at the external target facility of HIRFL-CSR, we have carried out a detailed study of the photomultiplier, the wrapping material and the coupling media. The timing properties of a scintillator-bar detector have been studied in detail with cosmic rays using a high and low level signal coincidence. A time resolution of 80 ps has been achieved in the center of the scintillator-bar detector.

  12. Principal Component Analysis for pulse-shape discrimination of scintillation radiation detectors

    NASA Astrophysics Data System (ADS)

    Alharbi, T.

    2016-01-01

    In this paper, we report on the application of Principal Component analysis (PCA) for pulse-shape discrimination (PSD) of scintillation radiation detectors. The details of the method are described and the performance of the method is experimentally examined by discriminating between neutrons and gamma-rays with a liquid scintillation detector in a mixed radiation field. The performance of the method is also compared against that of the conventional charge-comparison method, demonstrating the superior performance of the method particularly at low light output range. PCA analysis has the important advantage of automatic extraction of the pulse-shape characteristics which makes the PSD method directly applicable to various scintillation detectors without the need for the adjustment of a PSD parameter.

  13. On a Three-Channel Cosmic Ray Detector based on Aluminum Blocks

    NASA Astrophysics Data System (ADS)

    Arceo, L.; Félix, J.

    2017-10-01

    There are many general purpose cosmic ray detectors based on plastic scintillators and electronic boards from the market. This is a new cosmic ray detector designed on three 2.54 cm × 5.08 cm × 20.32 cm Aluminum blocks in stack arrangement, and three Hamamatsu S12572-100P photodiodes. The photodiode board, the passive electronic board, and the discriminator board are own designed. The electronic signals are stored with a CompactRIO -cRIO- by National Instruments. It is presented the design, the construction, the data acquisition system algorithm, and the preliminary physical results.

  14. A prototype scintillating fibre beam profile monitor for Ion Therapy beams

    NASA Astrophysics Data System (ADS)

    Leverington, B. D.; Dziewiecki, M.; Renner, L.; Runze, R.

    2018-05-01

    A prototype plastic scintillating fibre based beam profile monitor was tested at the Heidelberg Ion Therapy Centre/Heidelberg Ionenstrahl Therapiezentrum (HIT) in 2016 to determine its beam property reconstruction performance and the feasibility of further developing an expanded system. At HIT protons, helium, carbon, and oxygen ions are available for therapy and experiments. The beam can be scanned in two dimensions using fast deflection magnets. A tracking system is used to monitor beam position and to adjust scanning magnet currents online. A new detector system with a finer granularity and without the drift time delay of the current MWPC system with a similar amount of material along the beamline would prove valuable in patient treatment. The sensitive detector components in the tested prototype detector are double-clad Kuraray SCSF-78MJ scintillating fibres with a diameter of 0.250 mm wound as a thin multi-layer ribbon. The scintillation light is detected at the end of the ribbon with Hamamatsu S11865-64 photodiode arrays with a pitch of 0.8 mm. Commercial or readily available readout electronics have been used to evaluate the system feasibility. The results shown in this paper include the linearity with respect to beam intensity, the RMS of the beam intensity as measured by two planes, along with the RMS of the mean position, and the measured beam width RMS. The Signal-to-Noise ratio of the current system is also measured as an indicator of potential performance. Additionally, the non-linear light yield of the scintillating fibres as measured by the photodiode arrays is compared to two models which describe the light yield as a function of the ion stopping power and Lorentz β.

  15. Neutron spectroscopy with scintillation detectors using wavelets

    NASA Astrophysics Data System (ADS)

    Hartman, Jessica

    The purpose of this research was to study neutron spectroscopy using the EJ-299-33A plastic scintillator. This scintillator material provided a novel means of detection for fast neutrons, without the disadvantages of traditional liquid scintillation materials. EJ-299-33A provided a more durable option to these materials, making it less likely to be damaged during handling. Unlike liquid scintillators, this plastic scintillator was manufactured from a non-toxic material, making it safer to use, as well as easier to design detectors. The material was also manufactured with inherent pulse shape discrimination abilities, making it suitable for use in neutron detection. The neutron spectral unfolding technique was developed in two stages. Initial detector response function modeling was carried out through the use of the MCNPX Monte Carlo code. The response functions were developed for a monoenergetic neutron flux. Wavelets were then applied to smooth the response function. The spectral unfolding technique was applied through polynomial fitting and optimization techniques in MATLAB. Verification of the unfolding technique was carried out through the use of experimentally determined response functions. These were measured on the neutron source based on the Van de Graff accelerator at the University of Kentucky. This machine provided a range of monoenergetic neutron beams between 0.1 MeV and 24 MeV, making it possible to measure the set of response functions of the EJ-299-33A plastic scintillator detector to neutrons of specific energies. The response of a plutonium-beryllium (PuBe) source was measured using the source available at the University of Nevada, Las Vegas. The neutron spectrum reconstruction was carried out using the experimentally measured response functions. Experimental data was collected in the list mode of the waveform digitizer. Post processing of this data focused on the pulse shape discrimination analysis of the recorded response functions to remove the

  16. Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors.

    PubMed

    Zhou, Xiang; Liu, Qian; Wurm, Michael; Zhang, Qingmin; Ding, Yayun; Zhang, Zhenyu; Zheng, Yangheng; Zhou, Li; Cao, Jun; Wang, Yifang

    2015-07-01

    Rayleigh scattering poses an intrinsic limit for the transparency of organic liquid scintillators. This work focuses on the Rayleigh scattering length of linear alkylbenzene (LAB), which will be used as the solvent of the liquid scintillator in the central detector of the Jiangmen Underground Neutrino Observatory. We investigate the anisotropy of the Rayleigh scattering in LAB, showing that the resulting Rayleigh scattering length will be significantly shorter than reported before. Given the same overall light attenuation, this will result in a more efficient transmission of photons through the scintillator, increasing the amount of light collected by the photosensors and thereby the energy resolution of the detector.

  17. Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiang, E-mail: xiangzhou@whu.edu.cn; Zhang, Zhenyu; Liu, Qian

    2015-07-15

    Rayleigh scattering poses an intrinsic limit for the transparency of organic liquid scintillators. This work focuses on the Rayleigh scattering length of linear alkylbenzene (LAB), which will be used as the solvent of the liquid scintillator in the central detector of the Jiangmen Underground Neutrino Observatory. We investigate the anisotropy of the Rayleigh scattering in LAB, showing that the resulting Rayleigh scattering length will be significantly shorter than reported before. Given the same overall light attenuation, this will result in a more efficient transmission of photons through the scintillator, increasing the amount of light collected by the photosensors and therebymore » the energy resolution of the detector.« less

  18. Particle detector spatial resolution

    DOEpatents

    Perez-Mendez, V.

    1992-12-15

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution is disclosed. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector. 12 figs.

  19. Use of internal scintillator radioactivity to calibrate DOI function of a PET detector with a dual-ended-scintillator readout

    PubMed Central

    Bircher, Chad; Shao, Yiping

    2012-01-01

    Purpose: Positron emission tomography (PET) detectors that use a dual-ended-scintillator readout to measure depth-of-interaction (DOI) must have an accurate DOI function to provide the relationship between DOI and signal ratios to be used for detector calibration and recalibration. In a previous study, the authors used a novel and simple method to accurately and quickly measure DOI function by irradiating the detector with an external uniform flood source; however, as a practical concern, implementing external uniform flood sources in an assembled PET system is technically challenging and expensive. In the current study, therefore, the authors investigated whether the same method could be used to acquire DOI function from scintillator-generated (i.e., internal) radiation. The authors also developed a method for calibrating the energy scale necessary to select the events within the desired energy window. Methods: The authors measured the DOI function of a PET detector with lutetium yttrium orthosilicate (LYSO) scintillators. Radiation events originating from the scintillators’ internal Lu-176 beta decay were used to measure DOI functions which were then compared with those measured from both an external uniform flood source and an electronically collimated external point source. The authors conducted these studies with several scintillators of differing geometries (1.5 × 1.5 and 2.0 × 2.0 mm2 cross-section area and 20, 30, and 40 mm length) and various surface finishes (mirror-finishing, saw-cut rough, and other finishes in between), and in a prototype array. Results: All measured results using internal and external radiation sources showed excellent agreement in DOI function measurement. The mean difference among DOI values for all scintillators measured from internal and external radiation sources was less than 1.0 mm for different scintillator geometries and various surface finishes. Conclusions: The internal radioactivity of LYSO scintillators can be

  20. Silicon photodiode as a detector in the rocket-borne photometry of the near infrared airglow.

    PubMed

    Schaeffer, R C

    1976-11-01

    The application of a silicon P-I-N photodiode to the dc measurement of low levels of near ir radiation is described. It is shown that the threshold of signal detection is set by the current amplifier voltage noise, the effect of which at the output is determined by the value of source resistance of the photodiode. The photodiode was used as the detector in a compact interference filter photometer designed for rocket-borne studies of the airglow. Flight results have proved the instrument's capability to provide measurements sufficiently precise to yield an accurate height profile of the (0-0) atmospheric band of O(2) night airglow at lambda762 nm.

  1. A New Columnar CsI(Tl) Scintillator for iQID detectors

    PubMed Central

    Han, Ling; Miller, Brian W.; Barber, H. Bradford; Nagarkar, Vivek V.; Furenlid, Lars R.

    2015-01-01

    A 1650 μm thick columnar CsI(Tl) scintillator for upgrading iQID detectors, which is a high-resolution photon-counting gamma-ray and x-ray detector recently developed at the Center for Gamma-Ray Imaging (CGRI), has been studied in terms of sensitivity, spatial resolution and depth-of-interaction effects. To facilitate these studies, a new frame-parsing algorithm for processing raw event data is also proposed that has more degrees of freedom in data processing and can discriminate against a special kind of noise present in some low-cost intensifiers. The results show that in comparison with a 450 μm-thickness columnar CsI(Tl) scintillator, the 1650 μm thick CsI(Tl) scintillator provides more than twice the sensitivity at the expense of some spatial resolution degradation. The depth-of-interaction study also shows that event size and amplitude vary with scintillator thickness, which can assist in future detector simulations and 3D-interaction-position estimation. PMID:26146444

  2. A New Columnar CsI(Tl) Scintillator for iQID detectors.

    PubMed

    Han, Ling; Miller, Brian W; Barber, H Bradford; Nagarkar, Vivek V; Furenlid, Lars R

    2014-09-12

    A 1650 μm thick columnar CsI(Tl) scintillator for upgrading iQID detectors, which is a high-resolution photon-counting gamma-ray and x-ray detector recently developed at the Center for Gamma-Ray Imaging (CGRI), has been studied in terms of sensitivity, spatial resolution and depth-of-interaction effects. To facilitate these studies, a new frame-parsing algorithm for processing raw event data is also proposed that has more degrees of freedom in data processing and can discriminate against a special kind of noise present in some low-cost intensifiers. The results show that in comparison with a 450 μm-thickness columnar CsI(Tl) scintillator, the 1650 μm thick CsI(Tl) scintillator provides more than twice the sensitivity at the expense of some spatial resolution degradation. The depth-of-interaction study also shows that event size and amplitude vary with scintillator thickness, which can assist in future detector simulations and 3D-interaction-position estimation.

  3. Liquid scintillator composition optimization for use in ultra-high energy cosmic ray detector systems

    NASA Astrophysics Data System (ADS)

    Beznosko, Dmitriy; Batyrkhanov, Ayan; Iakovlev, Alexander; Yelshibekov, Khalykbek

    2017-06-01

    The Horizon-T (HT) detector system and the currently under R&D HT-KZ detector system are designed for the detection of Extensive Air Showers (EAS) with energies above ˜1016 eV (˜1017 eV for HT-KZ). The main challenges in both detector systems are the fast time resolutions needed for studying the temporary structure of EAS, and the extremely wide dynamic range needed to study the spatial distribution of charged particles in EAS disks. In order to detect the low-density of charged particles far from the EAS axis, a large-area detector is needed. Liquid scintillator with low cost would be a possible solution for such a detector, including the recently developed safe and low-cost water-based liquid scintillators. Liquid organic scintillators give a fast and high light yield (LY) for charged particle detection. It is similar to plastic scintillator in properties but is cost effective for large volumes. With liquid scintillator, one can create detection volumes that are symmetric and yet retain high LY detection. Different wavelength shifters affect the scintillation light by changing the output spectrum into the best detection region. Results of the latest studies of the components optimization in the liquid scintillator formulae are presented.

  4. SU-E-T-167: Characterization of In-House Plastic Scintillator Detectors Array for Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, T; Liu, H; Dimofte, A

    Purpose: To characterize basic performance of plastic scintillator detectors (PSD) array designed for dosimetry of radiation therapy. Methods: An in-house PSD array has been developed by placing single point PSD into customized 2D holder. Each point PSD is a plastic scintillating fiber-based detector designed for highly accurate measurement of small radiotherapy fields used in patient plan verification and machine commissioning and QA procedures. A parallel fiber without PSD is used for Cerenkov separation by subtracting from PSD readings. Cerenkov separation was confirmed by optical spectroscopy. Alternative Cerenkov separation approaches are also investigated. The optical signal was converted to electronic signalmore » with a photodiode and then subsequently amplified. We measured its dosimetry performance, including percentage depth dose and output factor, and compared with reference ion chamber measurements. The PSD array is then placed along the radiation beam for multiple point dose measurement, representing subsets of PDD measurements, or perpendicular to the beam for profile measurements. Results: The dosimetry results of PSD point measurements agree well with reference ion chamber measurements. For percentage depth dose, the maximal differences between PSD and ion chamber results are 3.5% and 2.7% for 6MV and 15MV beams, respectively. For the output factors, PSD measurements are within 3% from ion chamber results. PDD and profile measurement with PSD array are also performed. Conclusions: The current design of multichannel PSD array is feasible for the dosimetry measurement in radiation therapy. Dose distribution along or perpendicular to the beam path could be measured. It might as well be used as range verification in proton therapy.A PS hollow fiber detector will be investigated to eliminate the Cerenkov radiation effect so that all 32 channels can be used.« less

  5. Gamma-ray detector employing scintillators coupled to semiconductor drift photodetectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwanczyk, Jan S.; Patt, Bradley E.

    Radiation detectors according to one embodiment of the invention are implemented using scintillators combined with a semiconductor drift photodetectors wherein the components are specifically constructed in terms of their geometry, dimensions, and arrangement so that the scintillator decay time and drift time in the photodetector pairs are matched in order to achieve a greater signal-to-noise ratio. The detectors may include electronics for amplification of electrical signals produced by the silicon drift photodetector, the amplification having a shaping time optimized with respect to the decay time of the scintillator and time spread of the signal in the silicon drift photodetector tomore » substantially maximize the ratio of the signal to the electronic noise.« less

  6. Measurement of Total Scatter Factor for Stereotactic Cones with Plastic Scintillation Detector.

    PubMed

    Chaudhari, Suresh H; Dobhal, Rishabh; Kinhikar, Rajesh A; Kadam, Sudarshan S; Deshpande, Deepak D

    2017-01-01

    Advanced radiotherapy modalities such as stereotactic radiosurgery (SRS) and image-guided radiotherapy may employ very small beam apertures for accurate localized high dose to target. Accurate measurement of small radiation fields is a well-known challenge for many dosimeters. The purpose of this study was to measure total scatter factors for stereotactic cones with plastic scintillation detector and its comparison against diode detector and theoretical estimates. Measurements were performed on Novalis Tx ™ linear accelerator for 6MV SRS beam with stereotactic cones of diameter 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm. The advantage of plastic scintillator detector is in its energy dependence. The total scatter factor was measured in water at the depth of dose maximum. Total scatter factor with plastic scintillation detector was determined by normalizing the readings to field size of 10 cm × 10 cm. To overcome energy dependence of diode detector for the determination of scatter factor with diode detector, daisy chaining method was used. The plastic scintillator detector was calibrated against the ionization chamber, and the reproducibility in the measured doses was found to be within ± 1%. Total scatter factor measured with plastic scintillation detector was 0.728 ± 0.3, 0.783 ± 0.05, 0.866 ± 0.55, 0.885 ± 0.5, and 0.910 ± 0.06 for cone sizes of 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. Total scatter factor measured with diode detector was 0.733 ± 0.03, 0.782 ± 0.02, 0.834 ± 0.07, 0.854 ± 0.02, and 0.872 ± 0.02 for cone sizes of 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. The variation in the measurement of total scatter factor with published Monte Carlo data was found to be -1.3%, 1.9%, -0.4%, and 0.4% for cone sizes of 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. We conclude that total scatter factor measurements for stereotactic cones can be adequately carried out with a plastic scintillation detector. Our results show a

  7. Low-Timing-Jitter Near-Infrared Single-Photon-Sensitive 16-Channel Intensified-Photodiode Detector

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Lu, Wei; Yang, Guangning; Sun, Xiaoli; Sykora, Derek; Jurkovic, Mike; Aebi, Verle; Costello, Ken; Burns, Richard

    2011-01-01

    We developed a 16-channel InGaAsP photocathode intensified-photodiode (IPD) detector with 78 ps (1-sigma) timing-jitter, less than 500 ps FWHM impulse response, greater than 15% quantum efficiency at 1064 nm wavelength with 131 kcps dark counts at 15 C.

  8. Maximum likelihood positioning and energy correction for scintillation detectors

    NASA Astrophysics Data System (ADS)

    Lerche, Christoph W.; Salomon, André; Goldschmidt, Benjamin; Lodomez, Sarah; Weissler, Björn; Solf, Torsten

    2016-02-01

    An algorithm for determining the crystal pixel and the gamma ray energy with scintillation detectors for PET is presented. The algorithm uses Likelihood Maximisation (ML) and therefore is inherently robust to missing data caused by defect or paralysed photo detector pixels. We tested the algorithm on a highly integrated MRI compatible small animal PET insert. The scintillation detector blocks of the PET gantry were built with the newly developed digital Silicon Photomultiplier (SiPM) technology from Philips Digital Photon Counting and LYSO pixel arrays with a pitch of 1 mm and length of 12 mm. Light sharing was used to readout the scintillation light from the 30× 30 scintillator pixel array with an 8× 8 SiPM array. For the performance evaluation of the proposed algorithm, we measured the scanner’s spatial resolution, energy resolution, singles and prompt count rate performance, and image noise. These values were compared to corresponding values obtained with Center of Gravity (CoG) based positioning methods for different scintillation light trigger thresholds and also for different energy windows. While all positioning algorithms showed similar spatial resolution, a clear advantage for the ML method was observed when comparing the PET scanner’s overall single and prompt detection efficiency, image noise, and energy resolution to the CoG based methods. Further, ML positioning reduces the dependence of image quality on scanner configuration parameters and was the only method that allowed achieving highest energy resolution, count rate performance and spatial resolution at the same time.

  9. Ultralow-noise readout circuit with an avalanche photodiode: toward a photon-number-resolving detector.

    PubMed

    Tsujino, Kenji; Akiba, Makoto; Sasaki, Masahide

    2007-03-01

    The charge-integration readout circuit was fabricated to achieve an ultralow-noise preamplifier for photoelectrons generated in an avalanche photodiode with linear mode operation at 77 K. To reduce the various kinds of noise, the capacitive transimpedance amplifier was used and consisted of low-capacitance circuit elements that were cooled with liquid nitrogen. As a result, the readout noise is equal to 3.0 electrons averaged for a period of 40 ms. We discuss the requirements for avalanche photodiodes to achieve photon-number-resolving detectors below this noise level.

  10. A new detector for mass spectrometry: direct detection of low energy ions using a multi-pixel photon counter.

    PubMed

    Wilman, Edward S; Gardiner, Sara H; Nomerotski, Andrei; Turchetta, Renato; Brouard, Mark; Vallance, Claire

    2012-01-01

    A new type of ion detector for mass spectrometry and general detection of low energy ions is presented. The detector consists of a scintillator optically coupled to a single-photon avalanche photodiode (SPAD) array. A prototype sensor has been constructed from a LYSO (Lu(1.8)Y(0.2)SiO(5)(Ce)) scintillator crystal coupled to a commercial SPAD array detector. As proof of concept, the detector is used to record the time-of-flight mass spectra of butanone and carbon disulphide, and the dependence of detection sensitivity on the ion kinetic energy is characterised.

  11. Characterization of the scintillation anisotropy in crystalline stilbene scintillator detectors

    DOE PAGES

    Schuster, P.; Brubaker, E.

    2016-11-23

    This study reports a series of measurements that characterize the directional dependence of the scintillation response of crystalline melt-grown and solution-grown trans-stilbene to incident DT and DD neutrons. These measurements give the amplitude and pulse shape dependence on the proton recoil direction over one hemisphere of the crystal, confirming and extending previous results in the literature for melt-grown stilbene and providing the first measurements for solution-grown stilbene. In similar measurements of liquid and plastic detectors, no directional dependence was observed, confirming the hypothesis that the anisotropy in stilbene and other organic crystal scintillators is a result of internal effects duemore » to the molecular or crystal structure and not an external effect on the measurement system.« less

  12. Neutron response characterization for an EJ299-33 plastic scintillation detector

    DOE PAGES

    Lawrence, Chris C.; Febbraro, Michael; Massey, Thomas N.; ...

    2014-05-10

    Organic scintillation detectors have shown promise as neutron detectors for characterizing special nuclear materials in various arms-control and homeland security applications. Recent advances have yielded a new plastic scintillator - EJ299-33 - with pulse-shape-discrimination (PSD) capability. Plastic scintillators would have a much expanded range of deployment relative to liquids and crystals. Here in this paper, we present a full characterization of pulse height response to fission-energy neutrons for an EJ299-33 detector with 7.62-by-7.62-cm cylindrical active volume, and compare with an EJ309 liquid scintillator in the same assembly. Scintillation light output relations, energy resolutions, and response matrices are presented for bothmore » detectors. A Continuous spectrum neutron source, obtained via the bombardment of 27Al with 7.44-MeV deuterons at the Edwards Accelerator Facility at Ohio University, was used for the measurement. A new procedure for evaluating and comparing PSD performance is presented which accounts for the effect of the light output relation on the ability to detect low energy neutrons. The EJ299-33 is shown to have considerable deficit in matrix condition, and in PSD figure of merit when compared to EJ309, especially when neutron energy is taken into account. Furthermore the EJ299 is likely to bring a modest PSD capability into a array of held applications that are not accessible to liquids or crystals.« less

  13. High-efficiency scintillation detector for combined of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, Marion M.; Mihalczo, John T.; Blakeman, Edward D.

    1989-02-07

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation even count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  14. High-efficiency scintillation detector for combined of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, Marion M.; Mihalczo, John T.; Blakeman, Edward D.

    1989-01-01

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation even count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  15. TU-E-BRA-05: Reverse Geometry Imaging with MV Detector for Improved Image Resolution.

    PubMed

    Ganguly, A; Abel, E; Sun, M; Fahrig, R; Virshup, G; Star-Lack, J

    2012-06-01

    Thick pixilated scintillators can offer significant improvements in quantum efficiency over phosphor screen megavoltage (MV) detectors. However spatial resolution can be compromised due to the spreading of light across pixels within septa. Of particular interest are the lower energy x-ray photons and associated light photons that produce higher image contrast but are stopped near the scintillator entrance surface. They suffer the most scattering in the scintillator prior to detection in the photodiodes. Reversing the detector geometry, so that the incident x-ray beam passes through the photodiode array into the scintillator, allows the light to scatter less prior to detection. This also reduces the Swank noise since now higher and lower energy x-ray photons tend to produce similar electronic signals. In this work, we present simulations and measurements of detector MTF for the conventional/forward and reverse geometries to demonstrate this phenomenon. A tabletop system consisting of a Varian CX1 1MeV linear accelerator and a modified Varian Paxscan4030 with the readout electronics moved away from the incident the beam was used. A special holder was used to press a 2.5W×5.0L×2.0Hcm 3 pixellated Cesium Iodide (CsI:Tl) scintillator array on to the detector glass. The CsI array had a pitch of 0.784mm with plastic septa between pixels and the photodiode array pitch was 0.192 mm. The MTF in the forward and reverse geometries was measured using a 0.5mm thick Tantalum slanted edge. Geant4-based Monte Carlo simulations were performed for comparison. The measured and simulated MTFs matched to within 3.4(±3.7)% in the forward and 4.4(±1.5)% in reverse geometries. The reverse geometry MTF was higher than the forward geometry MTF at all spatial frequencies and doubled to .25 at 0.3lp/mm. A novel method of improving the image resolution at MV energies was demonstrated. The improvements should be more pronounced with increased scintillator thickness. Funding support provided

  16. Measurement of Total Scatter Factor for Stereotactic Cones with Plastic Scintillation Detector

    PubMed Central

    Chaudhari, Suresh H; Dobhal, Rishabh; Kinhikar, Rajesh A.; Kadam, Sudarshan S.; Deshpande, Deepak D.

    2017-01-01

    Advanced radiotherapy modalities such as stereotactic radiosurgery (SRS) and image-guided radiotherapy may employ very small beam apertures for accurate localized high dose to target. Accurate measurement of small radiation fields is a well-known challenge for many dosimeters. The purpose of this study was to measure total scatter factors for stereotactic cones with plastic scintillation detector and its comparison against diode detector and theoretical estimates. Measurements were performed on Novalis Tx™ linear accelerator for 6MV SRS beam with stereotactic cones of diameter 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm. The advantage of plastic scintillator detector is in its energy dependence. The total scatter factor was measured in water at the depth of dose maximum. Total scatter factor with plastic scintillation detector was determined by normalizing the readings to field size of 10 cm × 10 cm. To overcome energy dependence of diode detector for the determination of scatter factor with diode detector, daisy chaining method was used. The plastic scintillator detector was calibrated against the ionization chamber, and the reproducibility in the measured doses was found to be within ± 1%. Total scatter factor measured with plastic scintillation detector was 0.728 ± 0.3, 0.783 ± 0.05, 0.866 ± 0.55, 0.885 ± 0.5, and 0.910 ± 0.06 for cone sizes of 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. Total scatter factor measured with diode detector was 0.733 ± 0.03, 0.782 ± 0.02, 0.834 ± 0.07, 0.854 ± 0.02, and 0.872 ± 0.02 for cone sizes of 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. The variation in the measurement of total scatter factor with published Monte Carlo data was found to be −1.3%, 1.9%, −0.4%, and 0.4% for cone sizes of 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. We conclude that total scatter factor measurements for stereotactic cones can be adequately carried out with a plastic scintillation detector. Our results show

  17. A fast and compact electromagnetic calorimeter for the PANDA detector at FAIR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilms, Andrea

    2005-10-26

    In this presentation we report on the electromagnetic calorimeter of the 4{pi} detector PANDA to be installed at the antiproton storage ring of the proposed Facility for Antiproton and Ion Research (FAIR). We present details of the R and D work with two scintillator materials, PbWO4 (PWO) and BGO, and the new developed large area avalanche photodiodes (LAAPDs) as detector readout.

  18. Fast range measurement of spot scanning proton beams using a volumetric liquid scintillator detector.

    PubMed

    Hui, CheukKai; Robertson, Daniel; Alsanea, Fahed; Beddar, Sam

    2015-08-01

    Accurate confirmation and verification of the range of spot scanning proton beams is crucial for correct dose delivery. Current methods to measure proton beam range using ionization chambers are either time-consuming or result in measurements with poor spatial resolution. The large-volume liquid scintillator detector allows real-time measurements of the entire dose profile of a spot scanning proton beam. Thus, liquid scintillator detectors are an ideal tool for measuring the proton beam range for commissioning and quality assurance. However, optical artefacts may decrease the accuracy of measuring the proton beam range within the scintillator tank. The purpose of the current study was to 1) develop a geometric calibration system to accurately calculate physical distances within the liquid scintillator detector, taking into account optical artefacts; and 2) assess the accuracy, consistency, and robustness of proton beam range measurement using the liquid scintillator detector with our geometric calibration system. The range of the proton beam was measured with the calibrated liquid scintillator system and was compared to the nominal range. Measurements were made on three different days to evaluate the setup robustness from day to day, and three sets of measurements were made for each day to evaluate the consistency from delivery to delivery. All proton beam ranges measured using the liquid scintillator system were within half a millimeter of the nominal range. The delivery-to-delivery standard deviation of the range measurement was 0.04 mm, and the day-to-day standard deviation was 0.10 mm. In addition to the accuracy and robustness demonstrated by these results when our geometric calibration system was used, the liquid scintillator system allowed the range of all 94 proton beams to be measured in just two deliveries, making the liquid scintillator detector a perfect tool for range measurement of spot scanning proton beams.

  19. Fast range measurement of spot scanning proton beams using a volumetric liquid scintillator detector

    PubMed Central

    Hui, CheukKai; Robertson, Daniel; Alsanea, Fahed; Beddar, Sam

    2016-01-01

    Accurate confirmation and verification of the range of spot scanning proton beams is crucial for correct dose delivery. Current methods to measure proton beam range using ionization chambers are either time-consuming or result in measurements with poor spatial resolution. The large-volume liquid scintillator detector allows real-time measurements of the entire dose profile of a spot scanning proton beam. Thus, liquid scintillator detectors are an ideal tool for measuring the proton beam range for commissioning and quality assurance. However, optical artefacts may decrease the accuracy of measuring the proton beam range within the scintillator tank. The purpose of the current study was to 1) develop a geometric calibration system to accurately calculate physical distances within the liquid scintillator detector, taking into account optical artefacts; and 2) assess the accuracy, consistency, and robustness of proton beam range measurement using the liquid scintillator detector with our geometric calibration system. The range of the proton beam was measured with the calibrated liquid scintillator system and was compared to the nominal range. Measurements were made on three different days to evaluate the setup robustness from day to day, and three sets of measurements were made for each day to evaluate the consistency from delivery to delivery. All proton beam ranges measured using the liquid scintillator system were within half a millimeter of the nominal range. The delivery-to-delivery standard deviation of the range measurement was 0.04 mm, and the day-to-day standard deviation was 0.10 mm. In addition to the accuracy and robustness demonstrated by these results when our geometric calibration system was used, the liquid scintillator system allowed the range of all 94 proton beams to be measured in just two deliveries, making the liquid scintillator detector a perfect tool for range measurement of spot scanning proton beams. PMID:27274863

  20. A scintillating gas detector for 2D dose measurements in clinical carbon beams.

    PubMed

    Seravalli, E; de Boer, M; Geurink, F; Huizenga, J; Kreuger, R; Schippers, J M; van Eijk, C W E; Voss, B

    2008-09-07

    A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.

  1. A scintillating gas detector for 2D dose measurements in clinical carbon beams

    NASA Astrophysics Data System (ADS)

    Seravalli, E.; de Boer, M.; Geurink, F.; Huizenga, J.; Kreuger, R.; Schippers, J. M.; van Eijk, C. W. E.; Voss, B.

    2008-09-01

    A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.

  2. High-efficiency scintillation detector for combined detection of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, M.M.; Mihalczo, J.T.; Blakeman, E.D.

    1987-02-27

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation event count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  3. The readout electronics for Plastic Scintillator Detector of DAMPE

    NASA Astrophysics Data System (ADS)

    Kong, Jie; Yang, Haibo; Zhao, Hongyun; Su, Hong; Sun, Zhiyu; Yu, Yuhong; JingZhe, Zhang; Wang, XiaoHui; Liu, Jie; Xiao, Guoqing; Ma, Xinwen

    2016-07-01

    The Dark Matter Particle Explorer (DAMPE) satellite, which launched in December 2015, is designed to find the evidence of the existence of dark matter particles in the universe via the detection of the high-energy electrons and gamma-ray particles produced possibly by the annihilation of dark matter particles. Plastic Scintillator Detector (PSD) is one of major part of the satellite payload, which is comprised of a crossed pair of layers with 41 plastic scintillator-strips, each read out from both ends by the same Hamamatsu R4443MOD2 photo-multiplier tubes (PMTs). In order to extend linear dynamic range of detector, PMTs read out each plastic scintillator-strip separately with two dynode pickoffs. Therefore, the readout electronics system comprises of four Front-end boards to receive the pulses from 328 PMTs and implement charge measurement, which is based on the Application Specific Integrated Circuit (ASIC) chip VA160, 16 bits ADC and FPGA. The electronics of the detector has been designed following stringent requirements on mechanical and thermal stability, power consumption, radiation hardness and double redundancy. Various experiments are designed and implemented to check the performance of the electronics, some excellent results has been achieved.According to experimental results analysis, it is proved that the readout electronics works well.

  4. Real-Time Capabilities of a Digital Analyzer for Mixed-Field Assay Using Scintillation Detectors

    NASA Astrophysics Data System (ADS)

    Aspinall, M. D.; Joyce, M. J.; Lavietes, A.; Plenteda, R.; Cave, F. D.; Parker, H.; Jones, A.; Astromskas, V.

    2017-03-01

    Scintillation detectors offer a single-step detection method for fast neutrons and necessitate real-time acquisition, whereas this is redundant in two-stage thermal detection systems using helium-3 and lithium-6, where the fast neutrons need to be thermalized prior to detection. The relative affordability of scintillation detectors and the associated fast digital acquisition systems have enabled entirely new measurement setups that can consist of sizeable detector arrays. These detectors in most cases rely on photomultiplier tubes, which have significant tolerances and result in variations in detector response functions. The detector tolerances and other environmental instabilities must be accounted for in measurements that depend on matched detector performance. This paper presents recent advances made to a high-speed FPGA-based digitizer. The technology described offers a complete solution for fast-neutron scintillation detectors by integrating multichannel high-speed data acquisition technology with dedicated detector high-voltage supplies. This configuration has significant advantages for large detector arrays that require uniform detector responses. We report on bespoke control software and firmware techniques that exploit real-time functionality to reduce setup and acquisition time, increase repeatability, and reduce statistical uncertainties.

  5. Development of a thin scintillation films fission-fragment detector and a novel neutron source

    DOE PAGES

    Rusev, Gencho Yordanov; Jandel, Marian; Baramsai, Bayarbadrakh; ...

    2015-08-26

    Here, investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flightmore » spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.« less

  6. Development of a thin scintillation films fission-fragment detector and a novel neutron source

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Jandel, M.; Baramsai, B.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Daum, J. K.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Roman, A. R.; Springs, R. K.; Ullmann, J. L.; Walker, C. L.

    2015-08-01

    Investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  7. Temperature dependence of the plastic scintillator detector for DAMPE

    NASA Astrophysics Data System (ADS)

    Wang, Zhao-Min; Yu, Yu-Hong; Sun, Zhi-Yu; Yue, Ke; Yan, Duo; Zhang, Yong-Jie; Zhou, Yong; Fang, Fang; Huang, Wen-Xue; Chen, Jun-Ling

    2017-01-01

    The Plastic Scintillator Detector (PSD) is one of the main sub-detectors in the DArk Matter Particle Explorer (DAMPE) project. It will be operated over a large temperature range from -10 to 30 °C, so the temperature effect of the whole detection system should be studied in detail. The temperature dependence of the PSD system is mainly contributed by the three parts: the plastic scintillator bar, the photomultiplier tube (PMT), and the Front End Electronics (FEE). These three parts have been studied in detail and the contribution of each part has been obtained and discussed. The temperature coefficient of the PMT is -0.320(±0.033)%/°C, and the coefficient of the plastic scintillator bar is -0.036(±0.038)%/°C. This result means that after subtracting the FEE pedestal, the variation of the signal amplitude of the PMT-scintillator system due to temperature mainly comes from the PMT, and the plastic scintillator bar is not sensitive to temperature over the operating range. Since the temperature effect cannot be ignored, the temperature dependence of the whole PSD has been also studied and a correction has been made to minimize this effect. The correction result shows that the effect of temperature on the signal amplitude of the PSD system can be suppressed. Supported by Strategic Priority Research Program on Space Science of the Chinese Academy of Sciences (XDA04040202-3) and Youth Innovation Promotion Association, CAS

  8. The timing resolution of scintillation-detector systems: Monte Carlo analysis

    NASA Astrophysics Data System (ADS)

    Choong, Woon-Seng

    2009-11-01

    Recent advancements in fast scintillating materials and fast photomultiplier tubes (PMTs) have stimulated renewed interest in time-of-flight (TOF) positron emission tomography (PET). It is well known that the improvement in the timing resolution in PET can significantly reduce the noise variance in the reconstructed image resulting in improved image quality. In order to evaluate the timing performance of scintillation detectors used in TOF PET, we use Monte Carlo analysis to model the physical processes (crystal geometry, crystal surface finish, scintillator rise time, scintillator decay time, photoelectron yield, PMT transit time spread, PMT single-electron response, amplifier response and time pick-off method) that can contribute to the timing resolution of scintillation-detector systems. In the Monte Carlo analysis, the photoelectron emissions are modeled by a rate function, which is used to generate the photoelectron time points. The rate function, which is simulated using Geant4, represents the combined intrinsic light emissions of the scintillator and the subsequent light transport through the crystal. The PMT output signal is determined by the superposition of the PMT single-electron response resulting from the photoelectron emissions. The transit time spread and the single-electron gain variation of the PMT are modeled in the analysis. Three practical time pick-off methods are considered in the analysis. Statistically, the best timing resolution is achieved with the first photoelectron timing. The calculated timing resolution suggests that a leading edge discriminator gives better timing performance than a constant fraction discriminator and produces comparable results when a two-threshold or three-threshold discriminator is used. For a typical PMT, the effect of detector noise on the timing resolution is negligible. The calculated timing resolution is found to improve with increasing mean photoelectron yield, decreasing scintillator decay time and

  9. The timing resolution of scintillation-detector systems: Monte Carlo analysis.

    PubMed

    Choong, Woon-Seng

    2009-11-07

    Recent advancements in fast scintillating materials and fast photomultiplier tubes (PMTs) have stimulated renewed interest in time-of-flight (TOF) positron emission tomography (PET). It is well known that the improvement in the timing resolution in PET can significantly reduce the noise variance in the reconstructed image resulting in improved image quality. In order to evaluate the timing performance of scintillation detectors used in TOF PET, we use Monte Carlo analysis to model the physical processes (crystal geometry, crystal surface finish, scintillator rise time, scintillator decay time, photoelectron yield, PMT transit time spread, PMT single-electron response, amplifier response and time pick-off method) that can contribute to the timing resolution of scintillation-detector systems. In the Monte Carlo analysis, the photoelectron emissions are modeled by a rate function, which is used to generate the photoelectron time points. The rate function, which is simulated using Geant4, represents the combined intrinsic light emissions of the scintillator and the subsequent light transport through the crystal. The PMT output signal is determined by the superposition of the PMT single-electron response resulting from the photoelectron emissions. The transit time spread and the single-electron gain variation of the PMT are modeled in the analysis. Three practical time pick-off methods are considered in the analysis. Statistically, the best timing resolution is achieved with the first photoelectron timing. The calculated timing resolution suggests that a leading edge discriminator gives better timing performance than a constant fraction discriminator and produces comparable results when a two-threshold or three-threshold discriminator is used. For a typical PMT, the effect of detector noise on the timing resolution is negligible. The calculated timing resolution is found to improve with increasing mean photoelectron yield, decreasing scintillator decay time and

  10. Evaluation of Large Volume SrI2(Eu) Scintillator Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sturm, B W; Cherepy, N J; Drury, O B

    2010-11-18

    There is an ever increasing demand for gamma-ray detectors which can achieve good energy resolution, high detection efficiency, and room-temperature operation. We are working to address each of these requirements through the development of large volume SrI{sub 2}(Eu) scintillator detectors. In this work, we have evaluated a variety of SrI{sub 2} crystals with volumes >10 cm{sup 3}. The goal of this research was to examine the causes of energy resolution degradation for larger detectors and to determine what can be done to mitigate these effects. Testing both packaged and unpackaged detectors, we have consistently achieved better resolution with the packagedmore » detectors. Using a collimated gamma-ray source, it was determined that better energy resolution for the packaged detectors is correlated with better light collection uniformity. A number of packaged detectors were fabricated and tested and the best spectroscopic performance was achieved for a 3% Eu doped crystal with an energy resolution of 2.93% FWHM at 662keV. Simulations of SrI{sub 2}(Eu) crystals were also performed to better understand the light transport physics in scintillators and are reported. This study has important implications for the development of SrI{sub 2}(Eu) detectors for national security purposes.« less

  11. Modeling of high-precision wavefront sensing with new generation of CMT avalanche photodiode infrared detectors.

    PubMed

    Gousset, Silvère; Petit, Cyril; Michau, Vincent; Fusco, Thierry; Robert, Clelia

    2015-12-01

    Near-infrared wavefront sensing allows for the enhancement of sky coverage with adaptive optics. The recently developed HgCdTe avalanche photodiode arrays are promising due to their very low detector noise, but still present an imperfect cosmetic that may directly impact real-time wavefront measurements for adaptive optics and thus degrade performance in astronomical applications. We propose here a model of a Shack-Hartmann wavefront measurement in the presence of residual fixed pattern noise and defective pixels. To adjust our models, a fine characterization of such an HgCdTe array, the RAPID sensor, is proposed. The impact of the cosmetic defects on the Shack-Hartmann measurement is assessed through numerical simulations. This study provides both a new insight on the applicability of cadmium mercury telluride (CMT) avalanche photodiodes detectors for astronomical applications and criteria to specify the cosmetic qualities of future arrays.

  12. Rejection of Alpha Surface Background in Non-scintillating Bolometric Detectors: The ABSuRD Project

    DOE PAGES

    Biassoni, M.; Brofferio, C.; Bucci, C.; ...

    2016-01-14

    Due to their excellent energy resolution values and the vast choice of possible materials, bolometric detectors are currently widely used in the physics of rare events. A limiting aspect for bolometers rises from their inability to discriminate among radiation types or surface from bulk events. It has been demonstrated that the main limitation to sensitivity for purely bolometric detectors is represented by surface alpha contaminations, causing a continuous background that cannot be discriminated. A new scintillation based technique for the rejection of surface alpha background in non- scintillating bolometric experiments is proposed in this work. The idea is to combinemore » a scintillating and a high sensitivity photon detector with a non- scintillating absorber. Finally, we present results showing the possibility to reject events due to alpha decay at or nearby the surface of the crystal.« less

  13. Proton-induced radioactivity in NaI (Tl) scintillation detectors

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1977-01-01

    Radioactivity induced by protons in sodium iodide scintillation crystals were calculated and directly measured. These data are useful in determining trapped radiation and cosmic-ray induced, background-counting rates in spaceborne detectors.

  14. Scintillator based detector for fast-ion losses induced by magnetohydrodynamic instabilities in the ASDEX upgrade tokamak.

    PubMed

    García-Muñoz, M; Fahrbach, H-U; Zohm, H

    2009-05-01

    A scintillator based detector for fast-ion losses has been designed and installed on the ASDEX upgrade (AUG) tokamak [A. Herrmann and O. Gruber, Fusion Sci. Technol. 44, 569 (2003)]. The detector resolves in time the energy and pitch angle of fast-ion losses induced by magnetohydrodynamics (MHD) fluctuations. The use of a novel scintillator material with a very short decay time and high quantum efficiency allows to identify the MHD fluctuations responsible for the ion losses through Fourier analysis. A Faraday cup (secondary scintillator plate) has been embedded behind the scintillator plate for an absolute calibration of the detector. The detector is mounted on a manipulator to vary its radial position with respect to the plasma. A thermocouple on the inner side of the graphite protection enables the safety search for the most adequate radial position. To align the scintillator light pattern with the light detectors a system composed by a lens and a vacuum-compatible halogen lamp has been allocated within the detector head. In this paper, the design of the scintillator probe, as well as the new technique used to analyze the data through spectrograms will be described. A last section is devoted to discuss the diagnosis prospects of this method for ITER [M. Shimada et al., Nucl. Fusion 47, S1 (2007)].

  15. Gross beta determination in drinking water using scintillating fiber array detector.

    PubMed

    Lv, Wen-Hui; Yi, Hong-Chang; Liu, Tong-Qing; Zeng, Zhi; Li, Jun-Li; Zhang, Hui; Ma, Hao

    2018-04-04

    A scintillating fiber array detector for measuring gross beta counting is developed to monitor the real-time radioactivity in drinking water. The detector, placed in a stainless-steel tank, consists of 1096 scintillating fibers, both sides of which are connected to a photomultiplier tube. The detector parameters, including working voltage, background counting rate and stability, are tested, and the detection efficiency is calibrated using standard potassium chloride solution. Water samples are measured with the detector and the results are compared with those by evaporation method. The results show consistency with those by evaporation method. The background counting rate of the detector is 38.131 ± 0.005 cps, and the detection efficiency for β particles is 0.37 ± 0.01 cps/(Bq/l). The MDAC of this system can be less than 1.0 Bq/l for β particles in 120 min without pre-concentration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Characterizing energy dependence and count rate performance of a dual scintillator fiber-optic detector for computed tomography.

    PubMed

    Hoerner, Matthew R; Stepusin, Elliott J; Hyer, Daniel E; Hintenlang, David E

    2015-03-01

    Kilovoltage (kV) x-rays pose a significant challenge for radiation dosimetry. In the kV energy range, even small differences in material composition can result in significant variations in the absorbed energy between soft tissue and the detector. In addition, the use of electronic systems in light detection has demonstrated measurement losses at high photon fluence rates incident to the detector. This study investigated the feasibility of using a novel dual scintillator detector and whether its response to changes in beam energy from scatter and hardening is readily quantified. The detector incorporates a tissue-equivalent plastic scintillator and a gadolinium oxysulfide scintillator, which has a higher sensitivity to scatter x-rays. The detector was constructed by coupling two scintillators: (1) small cylindrical plastic scintillator, 500 μm in diameter and 2 mm in length, and (2) 100 micron sheet of gadolinium oxysulfide 500 μm in diameter, each to a 2 m long optical fiber, which acts as a light guide to transmit scintillation photons from the sensitive element to a photomultiplier tube. Count rate linearity data were obtained from a wide range of exposure rates delivered from a radiological x-ray tube by adjusting the tube current. The data were fitted to a nonparalyzable dead time model to characterize the time response. The true counting rate was related to the reference free air dose air rate measured with a 0.6 cm(3) Radcal(®) thimble chamber as described in AAPM Report No. 111. Secondary electron and photon spectra were evaluated using Monte Carlo techniques to analyze ionization quenching and photon energy-absorption characteristics from free-in-air and in phantom measurements. The depth/energy dependence of the detector was characterized using a computed tomography dose index QA phantom consisting of nested adult head and body segments. The phantom provided up to 32 cm of acrylic with a compatible 0.6 cm(3) calibrated ionization chamber to measure the

  17. Development of a cylindrical tracking detector with multichannel scintillation fibers and pixelated photon detector readout

    NASA Astrophysics Data System (ADS)

    Akazawa, Y.; Miwa, K.; Honda, R.; Shiozaki, T.; Chiga, N.

    2015-07-01

    We are developing a cylindrical tracking detector for a Σp scattering experiment in J-PARC with scintillation fibers and the Pixelated Photon Detector (PPD) readout, which is called as cylindrical fiber tracker (CFT), in order to reconstruct trajectories of charged particles emitted inside CFT. CFT works not only as a tracking detector but also a particle identification detector from energy deposits. A prototype CFT consisting of two straight layers and one spiral layer was constructed. About 1100 scintillation fibers with a diameter of 0.75 mm (Kuraray SCSF-78 M) were used. Each fiber signal was read by Multi-Pixel Photon Counter (MPPC, HPK S10362-11-050P, 1×1 mm2, 400 pixels) fiber by fiber. MPPCs were handled with Extended Analogue Silicon Photomultipliers Integrated ReadOut Chip (EASIROC) boards, which were developed for the readout of a large number of MPPCs. The energy resolution of one layer was 28% for a 70 MeV proton where the energy deposit in fibers was 0.7 MeV.

  18. Building a multi-cathode-gas-filled scintillator detector for fission fragments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahgoub, M., E-mail: mmahgoub@jazanu.edu.sa; Physics department, Technical University of Munich, D-85748 Garching

    2016-06-10

    Radiation cannot be detected directly by human senses, indeed detecting and identifying the fission products or decay yield with high accuracy is a great challenge for experimental physicist. In this work we are building a Multi-Cathode-Gas-filled Scintillator MCGS detector. The detector consists of two parts. First: anode-wire proportional chamber and cathode strip foil, which measure the energy loss of the particles in the gas, due to the ionization, and identifies the position of the products on the detector plane depending on their energy with the presence of a magnetic field. Second: a 7 mm thick scintillator attached to a photomultipliermore » tube in the back end of the detector. This part measures the rest energy of the particles. A data acquisition system records the events and the particles infonnation. The yields are identified from the energy loss to rest energy ratio.« less

  19. Thin-film-based scintillators for hard x-ray microimaging detectors: the ScinTAX Project

    NASA Astrophysics Data System (ADS)

    Rack, A.; Cecilia, A.; Douissard, P.-A.; Dupré, K.; Wesemann, V.; Baumbach, T.; Couchaud, M.; Rochet, X.; Riesemeier, H.; Radtke, M.; Martin, T.

    2014-09-01

    The project ScinTAX developed novel thin scintillating films for the application in high performance X-ray imaging and subsequent introduced new X-ray detectors to the market. To achieve this aim lutetium orthosilicate (LSO) scintillators doped with different activators were grown successfully by liquid phase epitaxy. The high density of LSO (7.4 g/cm3), the effective atomic number (65.2) and the high light yield make this scintillator highly applicable for indirect X-ray detection in which the ionizing radiation is converted into visible light and then registered by a digital detector. A modular indirect detection system has been developed to fully exploit the potential of this thin film scintillator for radiographic and tomographic imaging. The system is compatible for high-resolution imaging with moderate dose as well as adaptable to intense high-dose applications where radiation hard microimaging detectors are required. This proceedings article shall review the achieved performances and technical details on this high-resolution detector system which is now available. A selected example application demonstrates the great potential of the optimized detector system for hard X-ray microimaging, i.e. either to improve image contrast due to the availability of efficient thin crystal films or to reduce the dose to the sample.

  20. High resolution scintillation detector with semiconductor readout

    DOEpatents

    Levin, Craig S.; Hoffman, Edward J.

    2000-01-01

    A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.

  1. Characterizing energy dependence and count rate performance of a dual scintillator fiber-optic detector for computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoerner, Matthew R., E-mail: mrh5038@ufl.edu; Stepusin, Elliott J.; Hyer, Daniel E.

    Purpose: Kilovoltage (kV) x-rays pose a significant challenge for radiation dosimetry. In the kV energy range, even small differences in material composition can result in significant variations in the absorbed energy between soft tissue and the detector. In addition, the use of electronic systems in light detection has demonstrated measurement losses at high photon fluence rates incident to the detector. This study investigated the feasibility of using a novel dual scintillator detector and whether its response to changes in beam energy from scatter and hardening is readily quantified. The detector incorporates a tissue-equivalent plastic scintillator and a gadolinium oxysulfide scintillator,more » which has a higher sensitivity to scatter x-rays. Methods: The detector was constructed by coupling two scintillators: (1) small cylindrical plastic scintillator, 500 μm in diameter and 2 mm in length, and (2) 100 micron sheet of gadolinium oxysulfide 500 μm in diameter, each to a 2 m long optical fiber, which acts as a light guide to transmit scintillation photons from the sensitive element to a photomultiplier tube. Count rate linearity data were obtained from a wide range of exposure rates delivered from a radiological x-ray tube by adjusting the tube current. The data were fitted to a nonparalyzable dead time model to characterize the time response. The true counting rate was related to the reference free air dose air rate measured with a 0.6 cm{sup 3} Radcal{sup ®} thimble chamber as described in AAPM Report No. 111. Secondary electron and photon spectra were evaluated using Monte Carlo techniques to analyze ionization quenching and photon energy-absorption characteristics from free-in-air and in phantom measurements. The depth/energy dependence of the detector was characterized using a computed tomography dose index QA phantom consisting of nested adult head and body segments. The phantom provided up to 32 cm of acrylic with a compatible 0.6 cm{sup 3

  2. Capture-gated Spectroscopic Measurements of Monoenergetic Neutrons with a Composite Scintillation Detector

    NASA Astrophysics Data System (ADS)

    Nattress, Jason; Mayer, M.; Foster, A.; Meddeb, A. Barhoumi; Trivelpiece, C.; Ounaies, Z.; Jovanovic, I.

    2016-04-01

    We report on the measurements of monoenergetic neutrons from DD and DT fusion reactions by use of the capture gating method in a heterogeneous plastic-glass composite scintillation detector. The cylindrical detector is 5.08 cm in diameter and 5.05 cm in height and was fabricated using 1-mm diameter Li-doped glass rods (GS20) and scintillating polyvinyl toluene (EJ-290). Different scintillation decay constants are used to identify energy depositions in two materials constituting the composite scintillator. Geant4 simulations of the neutron thermalization and capture process were conducted, finding a mean capture time of approximately 2.6 μs for both DD and DT neutrons. A capture gating time acceptance window based on simulation results was used to identify the neutron thermalization pulses. The total scintillation light yield produced in neutron thermalization was measured and found to show consistency on event-by-event basis despite the variety of neutron thermalization histories prior to capture. The ratio of light yields from thermalization of 14.1 MeV and 2.45 MeV neutrons in the EJ-290 scintillator was determined to be 14.6, and the light output from 2.45 MeV neutrons was also correlated to its electron equivalent, obtaining a value of 0.58±0.05 MeVee.

  3. Exploring detection of nuclearites in a large liquid scintillator neutrino detector

    NASA Astrophysics Data System (ADS)

    Guo, Wan-Lei; Xia, Cheng-Jun; Lin, Tao; Wang, Zhi-Min

    2017-01-01

    We take the JUNO experiment as an example to explore nuclearites in the future large liquid scintillator detector. Comparing to the previous calculations, the visible energy of nuclearites across the liquid scintillator will be reestimated for the liquid scintillator based detector. Then the JUNO sensitivities to the nuclearite flux are presented. It is found that the JUNO projected sensitivities can be better than 7.7 ×10-17 cm-2 s-1 sr-1 for the nuclearite mass 1 015 GeV ≤M ≤1 024 GeV and initial velocity 10-4≤β0≤10-1 with a 20 year running. Note that the JUNO will give the most stringent limits for downgoing nuclearites with 1.6 ×1 013 GeV ≤M ≤4.0 ×1 015 GeV and a typical galactic velocity β0=10-3.

  4. Effects of detector-source distance and detector bias voltage variations on time resolution of general purpose plastic scintillation detectors.

    PubMed

    Ermis, E E; Celiktas, C

    2012-12-01

    Effects of source-detector distance and the detector bias voltage variations on time resolution of a general purpose plastic scintillation detector such as BC400 were investigated. (133)Ba and (207)Bi calibration sources with and without collimator were used in the present work. Optimum source-detector distance and bias voltage values were determined for the best time resolution by using leading edge timing method. Effect of the collimator usage on time resolution was also investigated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. High density scintillating glass proton imaging detector

    NASA Astrophysics Data System (ADS)

    Wilkinson, C. J.; Goranson, K.; Turney, A.; Xie, Q.; Tillman, I. J.; Thune, Z. L.; Dong, A.; Pritchett, D.; McInally, W.; Potter, A.; Wang, D.; Akgun, U.

    2017-03-01

    In recent years, proton therapy has achieved remarkable precision in delivering doses to cancerous cells while avoiding healthy tissue. However, in order to utilize this high precision treatment, greater accuracy in patient positioning is needed. An accepted approximate uncertainty of +/-3% exists in the current practice of proton therapy due to conversions between x-ray and proton stopping power. The use of protons in imaging would eliminate this source of error and lessen the radiation exposure of the patient. To this end, this study focuses on developing a novel proton-imaging detector built with high-density glass scintillator. The model described herein contains a compact homogeneous proton calorimeter composed of scintillating, high density glass as the active medium. The unique geometry of this detector allows for the measurement of both the position and residual energy of protons, eliminating the need for a separate set of position trackers in the system. Average position and energy of a pencil beam of 106 protons is used to reconstruct the image rather than by analyzing individual proton data. Simplicity and efficiency were major objectives in this model in order to present an imaging technique that is compact, cost-effective, and precise, as well as practical for a clinical setting with pencil-beam scanning proton therapy equipment. In this work, the development of novel high-density glass scintillator and the unique conceptual design of the imager are discussed; a proof-of-principle Monte Carlo simulation study is performed; preliminary two-dimensional images reconstructed from the Geant4 simulation are presented.

  6. Testing a new NIF neutron time-of-flight detector with a bibenzyl scintillator on OMEGA.

    PubMed

    Glebov, V Yu; Forrest, C; Knauer, J P; Pruyne, A; Romanofsky, M; Sangster, T C; Shoup, M J; Stoeckl, C; Caggiano, J A; Carman, M L; Clancy, T J; Hatarik, R; McNaney, J; Zaitseva, N P

    2012-10-01

    A new neutron time-of-flight (nTOF) detector with a bibenzyl crystal as a scintillator has been designed and manufactured for the National Ignition Facility (NIF). This detector will replace a nTOF20-Spec detector with an oxygenated xylene scintillator currently operational on the NIF to improve the areal-density measurements. In addition to areal density, the bibenzyl detector will measure the D-D and D-T neutron yield and the ion temperature of indirect- and direct-drive-implosion experiments. The design of the bibenzyl detector and results of tests on the OMEGA Laser System are presented.

  7. Performance of a SiPM based semi-monolithic scintillator PET detector.

    PubMed

    Zhang, Xianming; Wang, Xiaohui; Ren, Ning; Kuang, Zhonghua; Deng, Xinhan; Fu, Xin; Wu, San; Sang, Ziru; Hu, Zhanli; Liang, Dong; Liu, Xin; Zheng, Hairong; Yang, Yongfeng

    2017-09-21

    A depth encoding PET detector module using semi-monolithic scintillation crystal single-ended readout by a SiPM array was built and its performance was measured. The semi-monolithic scintillator detector consists of 11 polished LYSO slices measuring 1  ×  11.6  ×  10 mm 3 . The slices are glued together with enhanced specular reflector (ESR) in between and outside of the slices. The bottom surface of the slices is coupled to a 4  ×  4 SiPM array with a 1 mm light guide and silicon grease between them. No reflector is used on the top surface and two sides of the slices to reduce the scintillation photon reflection. The signals of the 4  ×  4 SiPM array are grouped along rows and columns separately into eight signals. Four SiPM column signals are used to identify the slices according to the center of the gravity of the scintillation photon distribution in the pixelated direction. Four SiPM row signals are used to estimate the y (monolithic direction) and z (depth of interaction) positions according to the center of the gravity and the width of the scintillation photon distribution in the monolithic direction, respectively. The detector was measured with 1 mm sampling interval in both the y and z directions with electronic collimation by using a 0.25 mm diameter 22 Na point source and a 1  ×  1  ×  20 mm 3 LYSO crystal detector. An average slice based energy resolution of 14.9% was obtained. All slices of 1 mm thick were clearly resolved and a detector with even thinner slices could be used. The y positions calculated with the center of gravity method are different for interactions happening at the same y, but different z positions due to depth dependent edge effects. The least-square minimization and the maximum likelihood positioning algorithms were developed and both methods improved the spatial resolution at the edges of the detector as compared with the center of gravity method. A mean absolute

  8. Performance of a SiPM based semi-monolithic scintillator PET detector

    NASA Astrophysics Data System (ADS)

    Zhang, Xianming; Wang, Xiaohui; Ren, Ning; Kuang, Zhonghua; Deng, Xinhan; Fu, Xin; Wu, San; Sang, Ziru; Hu, Zhanli; Liang, Dong; Liu, Xin; Zheng, Hairong; Yang, Yongfeng

    2017-10-01

    A depth encoding PET detector module using semi-monolithic scintillation crystal single-ended readout by a SiPM array was built and its performance was measured. The semi-monolithic scintillator detector consists of 11 polished LYSO slices measuring 1  ×  11.6  ×  10 mm3. The slices are glued together with enhanced specular reflector (ESR) in between and outside of the slices. The bottom surface of the slices is coupled to a 4  ×  4 SiPM array with a 1 mm light guide and silicon grease between them. No reflector is used on the top surface and two sides of the slices to reduce the scintillation photon reflection. The signals of the 4  ×  4 SiPM array are grouped along rows and columns separately into eight signals. Four SiPM column signals are used to identify the slices according to the center of the gravity of the scintillation photon distribution in the pixelated direction. Four SiPM row signals are used to estimate the y (monolithic direction) and z (depth of interaction) positions according to the center of the gravity and the width of the scintillation photon distribution in the monolithic direction, respectively. The detector was measured with 1 mm sampling interval in both the y and z directions with electronic collimation by using a 0.25 mm diameter 22Na point source and a 1  ×  1  ×  20 mm3 LYSO crystal detector. An average slice based energy resolution of 14.9% was obtained. All slices of 1 mm thick were clearly resolved and a detector with even thinner slices could be used. The y positions calculated with the center of gravity method are different for interactions happening at the same y, but different z positions due to depth dependent edge effects. The least-square minimization and the maximum likelihood positioning algorithms were developed and both methods improved the spatial resolution at the edges of the detector as compared with the center of gravity method. A mean absolute error

  9. Characterization of scintillator-based detectors for few-ten-keV high-spatial-resolution x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsson, Jakob C., E-mail: jakob.larsson@biox.kth.se; Lundström, Ulf; Hertz, Hans M.

    2016-06-15

    Purpose: High-spatial-resolution x-ray imaging in the few-ten-keV range is becoming increasingly important in several applications, such as small-animal imaging and phase-contrast imaging. The detector properties critically influence the quality of such imaging. Here the authors present a quantitative comparison of scintillator-based detectors for this energy range and at high spatial frequencies. Methods: The authors determine the modulation transfer function, noise power spectrum (NPS), and detective quantum efficiency for Gadox, needle CsI, and structured CsI scintillators of different thicknesses and at different photon energies. An extended analysis of the NPS allows for direct measurements of the scintillator effective absorption efficiency andmore » effective light yield as well as providing an alternative method to assess the underlying factors behind the detector properties. Results: There is a substantial difference in performance between the scintillators depending on the imaging task but in general, the CsI based scintillators perform better than the Gadox scintillators. At low energies (16 keV), a thin needle CsI scintillator has the best performance at all frequencies. At higher energies (28–38 keV), the thicker needle CsI scintillators and the structured CsI scintillator all have very good performance. The needle CsI scintillators have higher absorption efficiencies but the structured CsI scintillator has higher resolution. Conclusions: The choice of scintillator is greatly dependent on the imaging task. The presented comparison and methodology will assist the imaging scientist in optimizing their high-resolution few-ten-keV imaging system for best performance.« less

  10. Characterization of scintillator-based detectors for few-ten-keV high-spatial-resolution x-ray imaging.

    PubMed

    Larsson, Jakob C; Lundström, Ulf; Hertz, Hans M

    2016-06-01

    High-spatial-resolution x-ray imaging in the few-ten-keV range is becoming increasingly important in several applications, such as small-animal imaging and phase-contrast imaging. The detector properties critically influence the quality of such imaging. Here the authors present a quantitative comparison of scintillator-based detectors for this energy range and at high spatial frequencies. The authors determine the modulation transfer function, noise power spectrum (NPS), and detective quantum efficiency for Gadox, needle CsI, and structured CsI scintillators of different thicknesses and at different photon energies. An extended analysis of the NPS allows for direct measurements of the scintillator effective absorption efficiency and effective light yield as well as providing an alternative method to assess the underlying factors behind the detector properties. There is a substantial difference in performance between the scintillators depending on the imaging task but in general, the CsI based scintillators perform better than the Gadox scintillators. At low energies (16 keV), a thin needle CsI scintillator has the best performance at all frequencies. At higher energies (28-38 keV), the thicker needle CsI scintillators and the structured CsI scintillator all have very good performance. The needle CsI scintillators have higher absorption efficiencies but the structured CsI scintillator has higher resolution. The choice of scintillator is greatly dependent on the imaging task. The presented comparison and methodology will assist the imaging scientist in optimizing their high-resolution few-ten-keV imaging system for best performance.

  11. Performance of photomultiplier tubes and sodium iodide scintillation detector systems

    NASA Technical Reports Server (NTRS)

    Meegan, C. A.

    1981-01-01

    The performance of photomultiplier tubes (PMT's) and scintillation detector systems incorporating 50.8 by 1.27 cm NaI (T l) crystals was investigated to determine the characteristics of the photomultiplier tubes and optimize the detector geometry for the Burst and Transient Source Experiment on the Gamma Ray Observatory. Background information on performance characteristics of PMT's and NaI (T l) detectors is provided, procedures for measurement of relevant parameters are specified, and results of these measurements are presented.

  12. Hard x-ray and gamma-ray imaging and spectroscopy using scintillators coupled to silicon drift detectors

    NASA Astrophysics Data System (ADS)

    Lechner, P.; Eckhard, R.; Fiorini, C.; Gola, A.; Longoni, A.; Niculae, A.; Peloso, R.; Soltau, H.; Strüder, L.

    2008-07-01

    Silicon Drift Detectors (SDDs) are used as low-capacitance photon detectors for the optical light emitted by scintillators. The scintillator crystal is directly coupled to the SDD entrance window. The entrance window's transmittance can be optimized for the scintillator characteristic by deposition of a wavelength-selective anti-reflective coating. Compared to conventional photomultiplier tubes the SDD readout offers improved energy resolution and avoids the practical problems of incompatibility with magnetic fields, instrument volume and requirement of high voltage. A compact imaging spectrometer for hard X-rays and γ-rays has been developed by coupling a large area (29 × 26 mm2) monolithic SDD array with 77 hexagonal cells to a single non-structured CsI-scintillator of equal size. The scintillation light generated by the absorption of an energetic photon is seen by a number of detector cells and the position of the photon interaction is reconstructed by the centroid method. The measured spatial resolution of the system (<= 500 μm) is considerably smaller than the SDD cell size (3.2 mm) and in the order required at the focal plane of high energy missions. The energy information is obtained by summing the detector cell signals. Compared to direct converting pixelated detectors, e.g. CdTe with equal position resolution the scintillator-SDD combination requires a considerably lower number of readout channels. In addition it has the advantages of comprehensive material experience, existing technologies, proven long term stability, and practically unlimited availability of high quality material.

  13. Monte Carlo simulations and measurements for efficiency determination of lead shielded plastic scintillator detectors

    NASA Astrophysics Data System (ADS)

    Yasin, Zafar; Negoita, Florin; Tabbassum, Sana; Borcea, Ruxandra; Kisyov, Stanimir

    2017-12-01

    The plastic scintillators are used in different areas of science and technology. One of the use of these scintillator detectors is as beam loss monitors (BLM) for new generation of high intensity heavy ion in superconducting linear accelerators. Operated in pulse counting mode with rather high thresholds and shielded by few centimeters of lead in order to cope with radiofrequency noise and X-ray background emitted by accelerator cavities, they preserve high efficiency for high energy gamma ray and neutrons produced in the nuclear reactions of lost beam particles with accelerator components. Efficiency calculation and calibration of detectors is very important before their practical usage. In the present work, the efficiency of plastic scintillator detectors is simulated using FLUKA for different gamma and neutron sources like, 60Co, 137Cs and 238Pu-Be. The sources are placed at different positions around the detector. Calculated values are compared with the measured values and a reasonable agreement is observed.

  14. Performance of SEM scintillation detector evaluated by modulation transfer function and detective quantum efficiency function.

    PubMed

    Bok, Jan; Schauer, Petr

    2014-01-01

    In the paper, the SEM detector is evaluated by the modulation transfer function (MTF) which expresses the detector's influence on the SEM image contrast. This is a novel approach, since the MTF was used previously to describe only the area imaging detectors, or whole imaging systems. The measurement technique and calculation of the MTF for the SEM detector are presented. In addition, the measurement and calculation of the detective quantum efficiency (DQE) as a function of the spatial frequency for the SEM detector are described. In this technique, the time modulated e-beam is used in order to create well-defined input signal for the detector. The MTF and DQE measurements are demonstrated on the Everhart-Thornley scintillation detector. This detector was alternated using the YAG:Ce, YAP:Ce, and CRY18 single-crystal scintillators. The presented MTF and DQE characteristics show good imaging properties of the detectors with the YAP:Ce or CRY18 scintillator, especially for a specific type of the e-beam scan. The results demonstrate the great benefit of the description of SEM detectors using the MTF and DQE. In addition, point-by-point and continual-sweep e-beam scans in SEM were discussed and their influence on the image quality was revealed using the MTF. © 2013 Wiley Periodicals, Inc.

  15. Ruby-based inorganic scintillation detectors for 192Ir brachytherapy

    NASA Astrophysics Data System (ADS)

    Kertzscher, Gustavo; Beddar, Sam

    2016-11-01

    We tested the potential of ruby inorganic scintillation detectors (ISDs) for use in brachytherapy and investigated various unwanted luminescence properties that may compromise their accuracy. The ISDs were composed of a ruby crystal coupled to a poly(methyl methacrylate) fiber-optic cable and a charge-coupled device camera. The ISD also included a long-pass filter that was sandwiched between the ruby crystal and the fiber-optic cable. The long-pass filter prevented the Cerenkov and fluorescence background light (stem signal) induced in the fiber-optic cable from striking the ruby crystal, which generates unwanted photoluminescence rather than the desired radioluminescence. The relative contributions of the radioluminescence signal and the stem signal were quantified by exposing the ruby detectors to a high-dose-rate brachytherapy source. The photoluminescence signal was quantified by irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and compared the ISDs to commonly used organic scintillator detectors (BCF-12, BCF-60). When the brachytherapy source dwelled 0.5 cm away from the fiber-optic cable, the unwanted photoluminescence was reduced from  >5% to  <1% of the total signal as long as the ISD incorporated the long-pass filter. The stem signal was suppressed with a band-pass filter and was  <3% as long as the source distance from the scintillator was  <7 cm. Some ruby crystals exhibited time-dependent luminescence properties that altered the ruby signal by  >5% within 10 s from the onset of irradiation and after the source had retracted. The ruby-based ISDs generated signals of up to 20 times that of BCF-12-based detectors. The study presents solutions to unwanted luminescence properties of ruby-based ISDs for high-dose-rate brachytherapy. An optic filter should be sandwiched between the ruby crystal and the fiber-optic cable to suppress the

  16. Ruby-based inorganic scintillation detectors for 192Ir brachytherapy

    PubMed Central

    Kertzscher, Gustavo; Beddar, Sam

    2016-01-01

    We tested the potential of ruby inorganic scintillation detectors (ISDs) for use in brachytherapy and investigated various unwanted luminescence properties that may compromise their accuracy. The ISDs were composed of a ruby crystal coupled to a poly(methyl methacrylate) fiber-optic cable and a charge-coupled device camera. The ISD also included a long-pass filter that was sandwiched between the ruby crystal and the fiber-optic cable. The long-pass filter prevented the Cerenkov and fluorescence background light (stem signal) induced in the fiber-optic cable from striking the ruby crystal, which generates unwanted photoluminescence rather than the desired radioluminescence. The relative contributions of the radioluminescence signal and the stem signal were quantified by exposing the ruby detectors to a high-dose-rate brachytherapy source. The photoluminescence signal was quantified by irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and compared the ISDs to commonly used organic scintillator detectors (BCF-12, BCF-60). When the brachytherapy source dwelled 0.5 cm away from the fiber-optic cable, the unwanted photoluminescence was reduced from > 5% to < 1% of the total signal as long as the ISD incorporated the long-pass filter. The stem signal was suppressed with a band-pass filter and was < 3% as long as the source distance from the scintillator was < 7 cm. Some ruby crystals exhibited time-dependent luminescence properties that altered the ruby signal by > 5% within 10 s from the onset of irradiation and after the source had retracted. The ruby-based ISDs generated signals of up to 20 times that of BCF-12-based detectors. The study presents solutions to unwanted luminescence properties of ruby-based ISDs for high-dose-rate brachytherapy. An optic filter should be sandwiched between the ruby crystal and the fiber-optic cable to suppress the photoluminescence. Furthermore, we

  17. Ruby-based inorganic scintillation detectors for 192Ir brachytherapy.

    PubMed

    Kertzscher, Gustavo; Beddar, Sam

    2016-11-07

    We tested the potential of ruby inorganic scintillation detectors (ISDs) for use in brachytherapy and investigated various unwanted luminescence properties that may compromise their accuracy. The ISDs were composed of a ruby crystal coupled to a poly(methyl methacrylate) fiber-optic cable and a charge-coupled device camera. The ISD also included a long-pass filter that was sandwiched between the ruby crystal and the fiber-optic cable. The long-pass filter prevented the Cerenkov and fluorescence background light (stem signal) induced in the fiber-optic cable from striking the ruby crystal, which generates unwanted photoluminescence rather than the desired radioluminescence. The relative contributions of the radioluminescence signal and the stem signal were quantified by exposing the ruby detectors to a high-dose-rate brachytherapy source. The photoluminescence signal was quantified by irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and compared the ISDs to commonly used organic scintillator detectors (BCF-12, BCF-60). When the brachytherapy source dwelled 0.5 cm away from the fiber-optic cable, the unwanted photoluminescence was reduced from  >5% to  <1% of the total signal as long as the ISD incorporated the long-pass filter. The stem signal was suppressed with a band-pass filter and was  <3% as long as the source distance from the scintillator was  <7 cm. Some ruby crystals exhibited time-dependent luminescence properties that altered the ruby signal by  >5% within 10 s from the onset of irradiation and after the source had retracted. The ruby-based ISDs generated signals of up to 20 times that of BCF-12-based detectors. The study presents solutions to unwanted luminescence properties of ruby-based ISDs for high-dose-rate brachytherapy. An optic filter should be sandwiched between the ruby crystal and the fiber-optic cable to suppress the

  18. Energy dependent response of plastic scintillation detectors to photon radiation of low to medium energy.

    PubMed

    Ebenau, Melanie; Radeck, Désirée; Bambynek, Markus; Sommer, Holger; Flühs, Dirk; Spaan, Bernhard; Eichmann, Marion

    2016-08-01

    Plastic scintillation detectors are promising candidates for the dosimetry of low- to medium-energy photons but quantitative knowledge of their energy response is a prerequisite for their correct use. The purpose of this study was to characterize the energy dependent response of small scintillation detectors (active volume <1 mm(3)) made from the commonly used plastic scintillator BC400. Different detectors made from BC400 were calibrated at a number of radiation qualities ranging from 10 to 280 kV and at a (60)Co beam. All calibrations were performed at the Physikalisch-Technische Bundesanstalt, the National Metrology Institute of Germany. The energy response in terms of air kerma, dose to water, and dose to the scintillator was determined. Conversion factors from air kerma to dose to water and to dose to the scintillator were derived from Monte Carlo simulations. In order to quantitatively describe the energy dependence, a semiempirical model known as unimolecular quenching or Birks' formula was fitted to the data and from this the response to secondary electrons generated within the scintillator material BC400 was derived. The detector energy response in terms of air kerma differs for different scintillator sizes and different detector casings. It is therefore necessary to take attenuation within the scintillator and in the casing into account when deriving the response in terms of dose to water from a calibration in terms of air kerma. The measured energy response in terms of dose to water for BC400 cannot be reproduced by the ratio of mean mass energy-absorption coefficients for polyvinyl toluene to water but shows evidence of quenching. The quenching parameter kB in Birks' formula was determined to be kB = (12.3 ± 0.9) mg MeV(-1) cm(-2). The energy response was quantified relative to the response to (60)Co which is the common radiation quality for the calibration of therapy dosemeters. The observed energy dependence could be well explained with the

  19. SU-E-T-641: Proton Range Measurements Using a Geometrically Calibrated Liquid Scintillator Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui, C; Robertson, D; Alsanea, F

    2015-06-15

    Purpose: The purpose of this work is to develop a geometric calibration method to accurately calculate physical distances within a liquid scintillator detector and to assess the accuracy, consistency, and robustness of proton beam range measurements when using a liquid scintillator detector system with the proposed geometric calibration process. Methods: We developed a geometric calibration procedure to accurately convert pixel locations in the camera frame into physical locations in the scintillator frame. To ensure accuracy, the geometric calibration was performed before each experiment. The liquid scintillator was irradiated with spot scanning proton beams of 94 energies in two deliveries. Amore » CCD camera was used to capture the two-dimensional scintillation light profile of each of the proton energies. An algorithm was developed to automatically calculate the proton range from the acquired images. The measured range was compared to the nominal range to assess the accuracy of the detector. To evaluate the robustness of the detector between each setup, the experiments were repeated on three different days. To evaluate the consistency of the measurements between deliveries, three sets of measurements were acquired for each experiment. Results: Using this geometric calibration procedure, the proton beam ranges measured using the liquid scintillator system were all within 0.3mm of the nominal range. The average difference between the measured and nominal ranges was −0.20mm. The delivery-to-delivery standard deviation of the proton range measurement was 0.04mm, and the setup-to-setup standard deviation of the measurement was 0.10mm. Conclusion: The liquid scintillator system can measure the range of all 94 beams in just two deliveries. With the proposed geometric calibration, it can measure proton range with sub-millimeter accuracy, and the measurements were shown to be consistent between deliveries and setups. Therefore, we conclude that the liquid

  20. Fast-Neutron Survey With Compact Plastic Scintillation Detectors.

    PubMed

    Preston, Rhys M; Tickner, James R

    2017-07-01

    With the rise of the Silicon Photomultiplier (SiPM), it is now practical to build compact scintillation detectors well suited to portable use. A prototype survey meter for fast-neutrons and gamma-rays, based around an EJ-299-34 plastic scintillator with SiPM readout, has been developed and tested. A custom digital pulse processor was used to perform pulse shape discrimination on-the-fly. Ambient dose equivalent H*(10) was calculated by means of two energy-dependent 'G-functions'. The sensitivity was calculated to be between 0.10 and 0.22 cps/(µSv/hr) for fast-neutrons with energies above 2.5 MeV. The prototype was used to survey various laboratory radiation fields, with the readings compared with commercial survey meters. The high sensitivity and lightweight nature of this detector makes it promising for rapid survey of the mixed neutron/gamma-ray fields encountered in industry and homeland security. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Prompt directional detection of galactic supernova by combining large liquid scintillator neutrino detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, V.; Chirac, T.; Lasserre, T., E-mail: vincent.fischer@cea.fr, E-mail: tchirac@gmail.fr, E-mail: thierry.lasserre@cea.fr

    2015-08-01

    Core-collapse supernovae produce an intense burst of electron antineutrinos in the few-tens-of-MeV range. Several Large Liquid Scintillator-based Detectors (LLSD) are currently operated worldwide, being very effective for low energy antineutrino detection through the Inverse Beta Decay (IBD) process. In this article, we develop a procedure for the prompt extraction of the supernova location by revisiting the details of IBD kinematics over the broad energy range of supernova neutrinos. Combining all current scintillator-based detector, we show that one can locate a canonical supernova at 10 kpc with an accuracy of 45 degrees (68% C.L.). After the addition of the next generationmore » of scintillator-based detectors, the accuracy could reach 12 degrees (68% C.L.), therefore reaching the performances of the large water Čerenkov neutrino detectors. We also discuss a possible improvement of the SuperNova Early Warning System (SNEWS) inter-experiment network with the implementation of a directionality information in each experiment. Finally, we discuss the possibility to constrain the neutrino energy spectrum as well as the mass of the newly born neutron star with the LLSD data.« less

  2. Prompt directional detection of galactic supernova by combining large liquid scintillator neutrino detectors

    NASA Astrophysics Data System (ADS)

    Fischer, V.; Chirac, T.; Lasserre, T.; Volpe, C.; Cribier, M.; Durero, M.; Gaffiot, J.; Houdy, T.; Letourneau, A.; Mention, G.; Pequignot, M.; Sibille, V.; Vivier, M.

    2015-08-01

    Core-collapse supernovae produce an intense burst of electron antineutrinos in the few-tens-of-MeV range. Several Large Liquid Scintillator-based Detectors (LLSD) are currently operated worldwide, being very effective for low energy antineutrino detection through the Inverse Beta Decay (IBD) process. In this article, we develop a procedure for the prompt extraction of the supernova location by revisiting the details of IBD kinematics over the broad energy range of supernova neutrinos. Combining all current scintillator-based detector, we show that one can locate a canonical supernova at 10 kpc with an accuracy of 45 degrees (68% C.L.). After the addition of the next generation of scintillator-based detectors, the accuracy could reach 12 degrees (68% C.L.), therefore reaching the performances of the large water Čerenkov neutrino detectors. We also discuss a possible improvement of the SuperNova Early Warning System (SNEWS) inter-experiment network with the implementation of a directionality information in each experiment. Finally, we discuss the possibility to constrain the neutrino energy spectrum as well as the mass of the newly born neutron star with the LLSD data.

  3. Scintillator and solid-state neutron detectors and their applications

    NASA Astrophysics Data System (ADS)

    Carturan, Sara Maria; Marchi, Tommaso; Fanchini, Erica; De Vita, Raffaella; Finocchiaro, Paolo; Pappalardo, Alfio

    2014-10-01

    The application range of neutron detectors covers many topics, not only involving experimental research, but spanning tens of industrial, health, transport, cultural heritage fields of interest. Several studies focus on new scintillating materials where the light response, under fast and slow neutrons exposure, is triggered by proton recoil or by the presence of neutron capture materials as 10B, 6Li or 157Gd. Neutron monitors, where the robustness of silicon-based detectors can be fully exploited by coupling with suitable neutron absorber/converter materials, have recently proved their outstanding performances. Discrimination between neutron signals from other radiations, such as - or cosmic rays, is achieved through timing techniques or with pulse shape analysis. Furthermore, the choice of the detection/discrimination techniques depends on the type of application the detector will be used for. An example is Radiation Portal Monitors (RPM) for cargo inspection or luggage control that are required to satisfy specific international standards for and neutron detection efficiencies. This paper is an overview of some of the National Institute of Nuclear Physics (INFN) activities in the field of neutron detection, involving novel technologies. We will describe the most recent advances related to scintillators and silicon-based detectors coupled with thin films of suitable converters for neutron detection and we will discuss applications in the field of nuclear security.

  4. Advanced Multilayer Composite Heavy-Oxide Scintillator Detectors for High Efficiency Fast Neutron Detection

    NASA Astrophysics Data System (ADS)

    Ryzhikov, Vladimir D.; Naydenov, Sergei V.; Pochet, Thierry; Onyshchenko, Gennadiy M.; Piven, Leonid A.; Smith, Craig F.

    2018-01-01

    We have developed and evaluated a new approach to fast neutron and neutron-gamma detection based on large-area multilayer composite heterogeneous detection media consisting of dispersed granules of small-crystalline scintillators contained in a transparent organic (plastic) matrix. Layers of the composite material are alternated with layers of transparent plastic scintillator material serving as light guides. The resulting detection medium - designated as ZEBRA - serves as both an active neutron converter and a detection scintillator which is designed to detect both neutrons and gamma-quanta. The composite layers of the ZEBRA detector consist of small heavy-oxide scintillators in the form of granules of crystalline BGO, GSO, ZWO, PWO and other materials. We have produced and tested the ZEBRA detector of sizes 100x100x41 mm and greater, and determined that they have very high efficiency of fast neutron detection (up to 49% or greater), comparable to that which can be achieved by large sized heavy-oxide single crystals of about Ø40x80 cm3 volume. We have also studied the sensitivity variation to fast neutron detection by using different types of multilayer ZEBRA detectors of 100 cm2 surface area and 41 mm thickness (with a detector weight of about 1 kg) and found it to be comparable to the sensitivity of a 3He-detector representing a total cross-section of about 2000 cm2 (with a weight of detector, including its plastic moderator, of about 120 kg). The measured count rate in response to a fast neutron source of 252Cf at 2 m for the ZEBRA-GSO detector of size 100x100x41 mm3 was 2.84 cps/ng, and this count rate can be doubled by increasing the detector height (and area) up to 200x100 mm2. In summary, the ZEBRA detectors represent a new type of high efficiency and low cost solid-state neutron detector that can be used for stationary neutron/gamma portals. They may represent an interesting alternative to expensive, bulky gas counters based on 3He or 10B neutron

  5. Improved DQE by means of X-ray spectra and scintillator optimization for FFDM

    NASA Astrophysics Data System (ADS)

    Job, Isaias D.; Taie-Nobraie, Nima; Colbeth, Richard E.; Mollov, Ivan; Gray, Keith D.; Webb, Chris; Pavkovich, John M.; Zoghi, Fred; Tognina, Carlo A.; Roos, Pieter G.

    2012-03-01

    The focus of this work was to improve the DQE performance of a full-field digital mammography (FFDM) system by means of selecting an optimal X-ray tube anode-filter combination in conjunction with an optimal scintillator configuration. The flat panel detector in this work is a Varian PaxScan 3024M. The detector technology is comprised of a 2816 row × 3584 column amorphous silicon (a-Si) photodiode array with a pixel pitch of 83μm. The scintillator is cesium iodide and is deposited directly onto the photodiode array and available with configurable optical and x-ray properties. Two X-ray beam spectra were generated with the anode/filter combinations, Molybdenum/Molybdenum (Mo/Mo) and Tungsten/Aluminum (W/Al), to evaluate the imaging performance of two types of scintillators, high resolution (HR) type and high light output (HL) type. The results for the HR scintillator with W/Al anode-filter (HRW/ Al) yielded a DQE(0) of 67%, while HR-Mo/Mo was lower with a DQE(0) of 50%. In addition, the DQE(0) of the HR-W/Al configuration was comparable to the DQE(0) of the HL-Mo/Mo configuration. The significance of this result is the HR type scintillator yields about twice the light output with the W/Al spectrum, at about half the dose, as compared to the Mo/Mo spectrum. The light output or sensitivity was measured in analog-to-digital convertor units (ADU) per dose. The sensitivities (ADU/uGy) were 8.6, 16.8 and 25.4 for HR-Mo/Mo, HR-W/Al, HL-Mo/Mo, respectively. The Nyquist frequency for the 83 μm pixel is 6 lp/mm. The MTF at 5 lp/mm for HR-Mo/Mo and HR-W/Al were equivalent at 37%, while the HL-Mo/Mo MTF was 24%. According to the DQE metric, the more favorable anodefilter combination was W/Al with the HR scintillator. Future testing will evaluate the HL-W/Al configuration, as well as other x-ray filters materials and other scintillator optimizations. While higher DQE values were achieved, the more general conclusion is that the imaging performance can be tuned as required by

  6. Development of a Compton camera for medical applications based on silicon strip and scintillation detectors

    NASA Astrophysics Data System (ADS)

    Krimmer, J.; Ley, J.-L.; Abellan, C.; Cachemiche, J.-P.; Caponetto, L.; Chen, X.; Dahoumane, M.; Dauvergne, D.; Freud, N.; Joly, B.; Lambert, D.; Lestand, L.; Létang, J. M.; Magne, M.; Mathez, H.; Maxim, V.; Montarou, G.; Morel, C.; Pinto, M.; Ray, C.; Reithinger, V.; Testa, E.; Zoccarato, Y.

    2015-07-01

    A Compton camera is being developed for the purpose of ion-range monitoring during hadrontherapy via the detection of prompt-gamma rays. The system consists of a scintillating fiber beam tagging hodoscope, a stack of double sided silicon strip detectors (90×90×2 mm3, 2×64 strips) as scatter detectors, as well as bismuth germanate (BGO) scintillation detectors (38×35×30 mm3, 100 blocks) as absorbers. The individual components will be described, together with the status of their characterization.

  7. Developing LAr Scintillation Light Collection Ideas in the Short Baseline Neutrino Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szelc, A. M.

    2016-02-08

    Scintillation light is becoming the most rapidly developing feature of Liquid Argon Time Projection Chamber (LArTPC) neutrino detectors due to its capability to enhance and expand their physics reach traditionally based on charge readout. The SBND detector, set to be built on the Booster Neutrino Beam Line at Fermilab, is in a unique position to test novel liquid argon scintillation light readout systems in a detector with physics neutrino events. The different ideas under consideration by the collaboration are described, including an array of PMTs detecting direct light, SiPM coupled lightguide bars and a setup which uses PMTs/SiPMS and wavelengthmore » shifter covered reflector foils, as well as their respective strengths and physics foci and the benchmarks used to compare them.« less

  8. Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection.

    PubMed

    Pham, Thach; Du, Wei; Tran, Huong; Margetis, Joe; Tolle, John; Sun, Greg; Soref, Richard A; Naseem, Hameed A; Li, Baohua; Yu, Shui-Qing

    2016-03-07

    Normal-incidence Ge 1-x Sn x photodiode detectors with Sn compositions of 7 and 10% have been demonstrated. Such detectors were based on Ge/Ge 1-x Sn x /Ge double heterostructures grown directly on a Si substrate via a chemical vapor deposition system. A temperature-dependence study of these detectors was conducted using both electrical and optical characterizations from 300 to 77 K. Spectral response up to 2.6 µm was achieved for a 10% Sn device at room temperature. The peak responsivity and specific detectivity (D*) were measured to be 0.3 A/W and 4 × 10 9 cmHz 1/2 W -1 at 1.55 µm, respectively. The spectral D* of a 7% Sn device at 77 K was only one order-of-magnitude lower than that of an extended-InGaAs photodiode operating in the same wavelength range, indicating the promising future of GeSn-based photodetectors.

  9. In vivo dosimeters for HDR brachytherapy: a comparison of a diamond detector, MOSFET, TLD, and scintillation detector.

    PubMed

    Lambert, Jamil; Nakano, Tatsuya; Law, Sue; Elsey, Justin; McKenzie, David R; Suchowerska, Natalka

    2007-05-01

    The large dose gradients in brachytherapy necessitate a detector with a small active volume for accurate dosimetry. The dosimetric performance of a novel scintillation detector (BrachyFOD) is evaluated and compared to three commercially available detectors, a diamond detector, a MOSFET, and LiF TLDs. An 192Ir HDR brachytherapy source is used to measure the depth dependence, angular dependence, and temperature dependence of the detectors. Of the commercially available detectors, the diamond detector was found to be the most accurate, but has a large physical size. The TLDs cannot provide real time readings and have depth dependent sensitivity. The MOSFET used in this study was accurate to within 5% for distances of 20 to 50 mm from the 192Ir source in water but gave errors of 30%-40% for distances greater than 50 mm from the source. The BrachyFOD was found to be accurate to within 3% for distances of 10 to 100 mm from an HDR 192Ir brachytherapy source in water. It has an angular dependence of less than 2% and the background signal created by Cerenkov radiation and fluorescence of the plastic optical fiber is insignificant compared to the signal generated in the scintillator. Of the four detectors compared in this study the BrachyFOD has the most favorable combination of characteristics for dosimetry in HDR brachytherapy.

  10. Detector optimization for hand-held CsI(Tl)/HgI{sub 2} gamma-ray scintillation spectrometer applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.J.; Patt, B.E.; Iwanczyk, J.S.

    Gamma-ray spectrometers using mercuric iodide (HgI{sub 2}) photodetectors (PDs) coupled with CsI(Tl) scintillators have shown excellent energy resolutions and high detection efficiency at room temperature. Additionally HgI{sub 2} semiconductor PDs allow for extreme miniaturization of the detector packaging compared with photomultiplier tube (PMT) based detectors. These advantages make possible the construction of a new generation of hand-held gamma-ray spectrometers. Studies of detector optimization for this application have been undertaken. Several contact materials including hydrogen and semi-transparent metal films have been evaluated and compared for their performances and long term stability. In order to provide higher gamma-ray detection efficiency (i.e., largermore » scintillator volume), but without causing significant degradation of the excellent response achieved with the matched scintillator/PD interface, the scintillator/PD configuration has been studied. A Monte Carlo simulation model has been developed so that the spectral shape can be predicted for various scintillator shapes and surface treatments.« less

  11. HgCdTe Avalanche Photodiode Detectors for Airborne and Spaceborne Lidar at Infrared Wavelengths

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Abshire, James B.; Beck, Jeffrey D.; Mitra, Pradip; Reiff, Kirk; Yang, Guangning

    2017-01-01

    We report results from characterizing the HgCdTe avalanche photodiode (APD) sensorchip assemblies (SCA) developed for lidar at infrared wavelength using the high density vertically integrated photodiodes (HDVIP) technique. These devices demonstrated high quantum efficiency, typically greater than 90 between 0.8 micrometers and the cut-off wavelength, greater than 600 APD gain, near unity excess noise factor, 6-10 MHz electrical bandwidth and less than 0.5 fW/Hz(exp.1/2) noise equivalent power (NEP). The detectors provide linear analog output with a dynamic range of 2-3 orders of magnitude at a fixed APD gain without averaging, and over 5 orders of magnitude by adjusting the APD and preamplifier gain settings. They have been successfully used in airborne CO2 and CH4 integrated path differential absorption (IPDA) lidar as a precursor for space lidar applications.

  12. Polycrystalline scintillators for large area detectors in HEP experiments

    NASA Astrophysics Data System (ADS)

    Dosovitskiy, G.; Fedorov, A.; Karpyuk, P.; Kuznetsova, D.; Mikhlin, A.; Kozlov, D.; Dosovitskiy, A.; Korjik, M.

    2017-06-01

    After significant increase of the accelerator luminosity throughout the High Luminosity phase of LHC, charged hadrons and neutrons with fluences higher than 1014 p/cm2 per year in the largest pseudo-rapidity regions of the detectors will cause increased radiation damage of materials. Increasing activation of the experimental equipment will make periodical maintenance and replacement of detector components difficult. Therefore, the selected materials for new detectors should be tolerant to radiation damage. Y3Al5O12:Ce (YAG:Ce) crystal was found to be one of the most radiation hard scintillation materials. However, production of YAG:Ce in a single crystalline form is costly, because crystal growth is performed at temperature near 1900°C with a very low rate of transformation of a raw material into a crystal. We propose translucent YAG:Ce ceramics as an alternative cheaper solution. Ceramic samples were sintered up to density ~98% of the theoretical value and were translucent. The samples have demonstrated light yield of 2200 phot./MeV under 662 keV γ-quanta, which gives the expected response to minimum ionizing particle around 3000 phot. for 2 mm thick plate. Scintillation light yield, registered under surface layer excitation with α-particles, was 50-70% higher than for the reference single crystal YAG:Ce.

  13. Development of a flexible γ-ray detector using a liquid scintillation light guide (LSLG).

    PubMed

    Nomura, Kiyoshi; Yunoki, Akira; Hara, Masayuki; Morito, Yuko; Fujishima, Akira

    2018-04-10

    A flexible γ detector using a liquid scintillation light guide (LSLG) was developed. The analyzed pulse height (PHA) spectrum depended on the diameter, length and scintillator concentration of the LSLG, and the distance of a γ ray irradiation point from the head of photomultiplier tube (PMT). From the analysis of PHA spectrum, it was found that the count ratio of two divided channel regions linearly decreases as the distance from the PMT head increases. It was further found that the radiation dose rate can be estimated by setting the flexible LSLG tube to a circular shape since the count rate is proportional to the dose rate measured by a conventional NaI (Tl) scintillation detector. Therefore, a flexible and long LSLG detector using a single PMT is useful for determination of the dose rate and has a potential to detect local contaminations in a certain narrow space. Copyright © 2018. Published by Elsevier Ltd.

  14. Monte Carlo code G3sim for simulation of plastic scintillator detectors with wavelength shifter fiber readout.

    PubMed

    Mohanty, P K; Dugad, S R; Gupta, S K

    2012-04-01

    A detailed description of a compact Monte Carlo simulation code "G3sim" for studying the performance of a plastic scintillator detector with wavelength shifter (WLS) fiber readout is presented. G3sim was developed for optimizing the design of new scintillator detectors used in the GRAPES-3 extensive air shower experiment. Propagation of the blue photons produced by the passage of relativistic charged particles in the scintillator is treated by incorporating the absorption, total internal, and diffuse reflections. Capture of blue photons by the WLS fibers and subsequent re-emission of longer wavelength green photons is appropriately treated. The trapping and propagation of green photons inside the WLS fiber is treated using the laws of optics for meridional and skew rays. Propagation time of each photon is taken into account for the generation of the electrical signal at the photomultiplier. A comparison of the results from G3sim with the performance of a prototype scintillator detector showed an excellent agreement between the simulated and measured properties. The simulation results can be parametrized in terms of exponential functions providing a deeper insight into the functioning of these versatile detectors. G3sim can be used to aid the design and optimize the performance of scintillator detectors prior to actual fabrication that may result in a considerable saving of time, labor, and money spent. © 2012 American Institute of Physics

  15. Best-Practice Criteria for Practical Security of Self-Differencing Avalanche Photodiode Detectors in Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Koehler-Sidki, A.; Dynes, J. F.; Lucamarini, M.; Roberts, G. L.; Sharpe, A. W.; Yuan, Z. L.; Shields, A. J.

    2018-04-01

    Fast-gated avalanche photodiodes (APDs) are the most commonly used single photon detectors for high-bit-rate quantum key distribution (QKD). Their robustness against external attacks is crucial to the overall security of a QKD system, or even an entire QKD network. We investigate the behavior of a gigahertz-gated, self-differencing (In,Ga)As APD under strong illumination, a tactic Eve often uses to bring detectors under her control. Our experiment and modeling reveal that the negative feedback by the photocurrent safeguards the detector from being blinded through reducing its avalanche probability and/or strengthening the capacitive response. Based on this finding, we propose a set of best-practice criteria for designing and operating fast-gated APD detectors to ensure their practical security in QKD.

  16. Shifting scintillator neutron detector

    DOEpatents

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  17. Scintillation light detectors with Neganov Luke amplification

    NASA Astrophysics Data System (ADS)

    Isaila, C.; Boslau, O.; Coppi, C.; Feilitzsch, F. v.; Goldstraß, P.; Jagemann, T.; Jochum, J.; Kemmer, J.; Lachenmaier, T.; Lanfranchi, J.-C.; Pahlke, A.; Potzel, W.; Rau, W.; Stark, M.; Wernicke, D.; Westphal, W.

    2006-04-01

    For an active suppression of the gamma and electron background in the Cryogenic Rare Event Search with Superconducting Thermometers (CRESST) dark matter experiment both phonons and scintillation light generated in a CaWO 4 crystal are detected simultaneously. The phonon signal is read out by a transition edge sensor (TES) on the CaWO 4 crystal. For light detection a silicon absorber equipped with a TES is employed. An efficient background discrimination requires very sensitive light detectors. The threshold can be improved by applying an electric field to the silicon crystal leading to an amplification of the thermal signal due to the Neganov-Luke effect. Measurements showing the improved sensitivity of the light detectors as well as future steps for reducing the observed extra noise will be presented.

  18. Polyethylene Naphthalate Scintillator: A Novel Detector for the Dosimetry of Radioactive Ophthalmic Applicators.

    PubMed

    Flühs, Dirk; Flühs, Andrea; Ebenau, Melanie; Eichmann, Marion

    2015-09-01

    Dosimetric measurements in small radiation fields with large gradients, such as eye plaque dosimetry with β or low-energy photon emitters, require dosimetrically almost water-equivalent detectors with volumes of <1 mm(3) and linear responses over several orders of magnitude. Polyvinyltoluene-based scintillators fulfil these conditions. Hence, they are a standard for such applications. However, they show disadvantages with regard to certain material properties and their dosimetric behaviour towards low-energy photons. Polyethylene naphthalate, recently recognized as a scintillator, offers chemical, physical and basic dosimetric properties superior to polyvinyltoluene. Its general applicability as a clinical dosimeter, however, has not been shown yet. To prove this applicability, extensive measurements at several clinical photon and electron radiation sources, ranging from ophthalmic plaques to a linear accelerator, were performed. For all radiation qualities under investigation, covering a wide range of dose rates, a linearity of the detector response to the dose was shown. Polyethylene naphthalate proved to be a suitable detector material for the dosimetry of ophthalmic plaques, including low-energy photon emitters and other small radiation fields. Due to superior properties, it has the potential to replace polyvinyltoluene as the standard scintillator for such applications.

  19. A systematic characterization of the low-energy photon response of plastic scintillation detectors.

    PubMed

    Boivin, Jonathan; Beddar, Sam; Bonde, Chris; Schmidt, Daniel; Culberson, Wesley; Guillemette, Maxime; Beaulieu, Luc

    2016-08-07

    To characterize the low energy behavior of scintillating materials used in plastic scintillation detectors (PSDs), 3 PSDs were developed using polystyrene-based scintillating materials emitting in different wavelengths. These detectors were exposed to National Institute of Standards and Technology (NIST)-matched low-energy beams ranging from 20 kVp to 250 kVp, and to (137)Cs and (60)Co beams. The dose in polystyrene was compared to the dose in air measured by NIST-calibrated ionization chambers at the same location. Analysis of every beam quality spectrum was used to extract the beam parameters and the effective mass energy-absorption coefficient. Monte Carlo simulations were also performed to calculate the energy absorbed in the scintillators' volume. The scintillators' expected response was then compared to the experimental measurements and an energy-dependent correction factor was identified to account for low-energy quenching in the scintillators. The empirical Birks model was then compared to these values to verify its validity for low-energy electrons. The clear optical fiber response was below 0.2% of the scintillator's light for x-ray beams, indicating that a negligible amount of fluorescence contamination was produced. However, for higher-energy beams ((137)Cs and (60)Co), the scintillators' response was corrected for the Cerenkov stem effect. The scintillators' response increased by a factor of approximately 4 from a 20 kVp to a (60)Co beam. The decrease in sensitivity from ionization quenching reached a local minimum of about [Formula: see text] between 40 keV and 60 keV x-ray beam mean energy, but dropped by 20% for very low-energy (13 keV) beams. The Birks model may be used to fit the experimental data, but it must take into account the energy dependence of the kB quenching parameter. A detailed comprehension of intrinsic scintillator response is essential for proper calibration of PSD dosimeters for radiology.

  20. An ultrafast X-ray scintillating detector made of ZnO(Ga)

    NASA Astrophysics Data System (ADS)

    Zhang, Qingmin; Yan, Jun; Deng, Bangjie; Zhang, Jingwen; Lv, Jinge; Wen, Xin; Gao, Keqing

    2017-12-01

    Owing to its ultrafast scintillation, quite high light yield, strong radiation resistance, and non-deliquescence, ZnO(Ga) is a highly promising choice for an ultrafast X-ray detector. Because of its high deposition rate, good production repeatability and strong adhesive force, reactive magnetron sputtering was used to produce a ZnO(Ga) crystal on a quartz glass substrate, after the production conditions were optimized. The fluorescence lifetime of the sample was 173 ps. An ultrafast X-ray scintillating detector, equipped with a fast microchannel plate (MCP) photomultiplier tube (PMT), was developed and the X-ray tests show a signal full width at half maximum (FWHM) of only 385.5 ps. Moreover, derivation from the previous measurement shows the ZnO(Ga) has an ultrafast time response (FWHM = 355.1 ps) and a high light yield (14740 photons/MeV).

  1. High-resolution extremity cone-beam CT with a CMOS detector: Task-based optimization of scintillator thickness.

    PubMed

    Cao, Q; Brehler, M; Sisniega, A; Stayman, J W; Yorkston, J; Siewerdsen, J H; Zbijewski, W

    2017-03-01

    CMOS x-ray detectors offer small pixel sizes and low electronic noise that may support the development of novel high-resolution imaging applications of cone-beam CT (CBCT). We investigate the effects of CsI scintillator thickness on the performance of CMOS detectors in high resolution imaging tasks, in particular in quantitative imaging of bone microstructure in extremity CBCT. A scintillator thickness-dependent cascaded systems model of CMOS x-ray detectors was developed. Detectability in low-, high- and ultra-high resolution imaging tasks (Gaussian with FWHM of ~250 μ m, ~80 μ m and ~40 μ m, respectively) was studied as a function of scintillator thickness using the theoretical model. Experimental studies were performed on a CBCT test bench equipped with DALSA Xineos3030 CMOS detectors (99 μ m pixels) with CsI scintillator thicknesses of 400 μ m and 700 μ m, and a 0.3 FS compact rotating anode x-ray source. The evaluation involved a radiographic resolution gauge (0.6-5.0 lp/mm), a 127 μm tungsten wire for assessment of 3D resolution, a contrast phantom with tissue-mimicking inserts, and an excised fragment of human tibia for visual assessment of fine trabecular detail. Experimental studies show ~35% improvement in the frequency of 50% MTF modulation when using the 400 μ m scintillator compared to the standard nominal CsI thickness of 700 μ m. Even though the high-frequency DQE of the two detectors is comparable, theoretical studies show a 14% to 28% increase in detectability index ( d' 2 ) of high- and ultrahigh resolution tasks, respectively, for the detector with 400 μ m CsI compared to 700 μ m CsI. Experiments confirm the theoretical findings, showing improvements with the adoption of 400 μ m panel in the visibility of the radiographic pattern (2× improvement in peak-to-through distance at 4.6 lp/mm) and a 12.5% decrease in the FWHM of the tungsten wire. Reconstructions of the tibial plateau reveal enhanced visibility of trabecular structures with

  2. High-resolution extremity cone-beam CT with a CMOS detector: Task-based optimization of scintillator thickness

    PubMed Central

    Cao, Q.; Brehler, M.; Sisniega, A.; Stayman, J. W.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.

    2017-01-01

    Purpose CMOS x-ray detectors offer small pixel sizes and low electronic noise that may support the development of novel high-resolution imaging applications of cone-beam CT (CBCT). We investigate the effects of CsI scintillator thickness on the performance of CMOS detectors in high resolution imaging tasks, in particular in quantitative imaging of bone microstructure in extremity CBCT. Methods A scintillator thickness-dependent cascaded systems model of CMOS x-ray detectors was developed. Detectability in low-, high- and ultra-high resolution imaging tasks (Gaussian with FWHM of ~250 μm, ~80 μm and ~40 μm, respectively) was studied as a function of scintillator thickness using the theoretical model. Experimental studies were performed on a CBCT test bench equipped with DALSA Xineos3030 CMOS detectors (99 μm pixels) with CsI scintillator thicknesses of 400 μm and 700 μm, and a 0.3 FS compact rotating anode x-ray source. The evaluation involved a radiographic resolution gauge (0.6–5.0 lp/mm), a 127 μm tungsten wire for assessment of 3D resolution, a contrast phantom with tissue-mimicking inserts, and an excised fragment of human tibia for visual assessment of fine trabecular detail. Results Experimental studies show ~35% improvement in the frequency of 50% MTF modulation when using the 400 μm scintillator compared to the standard nominal CsI thickness of 700 μm. Even though the high-frequency DQE of the two detectors is comparable, theoretical studies show a 14% to 28% increase in detectability index (d′2) of high- and ultrahigh resolution tasks, respectively, for the detector with 400 μm CsI compared to 700 μm CsI. Experiments confirm the theoretical findings, showing improvements with the adoption of 400 μm panel in the visibility of the radiographic pattern (2× improvement in peak-to-through distance at 4.6 lp/mm) and a 12.5% decrease in the FWHM of the tungsten wire. Reconstructions of the tibial plateau reveal enhanced visibility of trabecular

  3. Optimizing ZnS/6LiF scintillators for wavelength-shifting-fiber neutron detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crow, Lowell; Funk, Loren L; Hannan, Bruce W

    2016-01-01

    In this paper we compare the performance of grooved and flat ZnS/6LiF scintillators in a wavelength shifting-fiber (WLSF) detector. Flat ZnS/6LiF scintillators with the thickness L=0.2-0.8 mm were characterized using photon counting and pulse-height analysis and compared to a grooved scintillator of approximately 0.8 mm thick. While a grooved scintillator considerably increases the apparent thickness of the scintillator to neutrons for a given coating thickness, we find that the flat scintillators perform better than the grooved scintillators in terms of both light yield and neutron detection efficiency. The flat 0.8-mm-thick scintillator has the highest light output, and it is 52%more » higher compared with a grooved scintillator of same thickness. The lower light output of the grooved scintillator as compared to the flat scintillator is consistent with the greater scintillator-WLSF separation and the much larger average emission angle of the grooved scintillator. We also find that the average light cone width, or photon travel-length as measured using time-of-flight powder diffraction of diamond and vanadium, decreases with increasing L in the range of L=0.6-0.8 mm. This result contrasts with the traditional Swank diffusion model for micro-composite scintillators, and could be explained by a decrease in photon diffusion-coefficient or an increase in micro-particle content in the flat scintillator matrix for the thicker scintillators.« less

  4. Detection of Extensive Cosmic Air Showers by Small Scintillation Detectors with Wavelength-Shifting Fibres

    ERIC Educational Resources Information Center

    Aiola, Salvatore; La Rocca, Paola; Riggi, Francesco; Riggi, Simone

    2012-01-01

    A set of three small scintillation detectors was employed to measure correlated events due to the passage of cosmic muons originating from extensive air showers. The coincidence rate between (any) two detectors was extracted as a function of their relative distance. The difference between the arrival times in three non-aligned detectors was used…

  5. An economical fluorescence detector for lab-on-a-chip devices with a light emitting photodiode and a low-cost avalanche photodiode.

    PubMed

    Wu, Jing; Liu, Xianhu; Wang, Lili; Dong, Lijun; Pu, Qiaosheng

    2012-01-21

    An economical fluorescence detector was developed with an LED as the exciting source and a low-cost avalanche photodiode (APD) module as a photon sensor. The detector was arranged in an epifluorescence configuration using a microscope objective (20× or 40×) and a dichroic mirror. The low-cost APD was biased by a direct current (DC) high voltage power supply at 121 V, which is much lower than that normally used for a PMT. Both DC and square wave (SW) supplies were used to power the LED and different data treatment protocols, such as simple average for DC mode, software based lock-in amplification and time specific average for SW mode, were tested to maximize the signal-to-noise ratio. Using an LED at a DC mode with simple data averaging, a limit of detection of 0.2 nmol L(-1) for sodium fluorescein was attained, which is among the lowest ever achieved with an LED as an excitation source. The detector was successfully used in both capillary and chip electrophoresis. The most significant advantages of the detector are the compact size and low cost of its parts. The aim of the work is to prove that widely available, low-cost components for civilian use can be successfully used for miniaturized analytical devices.

  6. High energy resolution plastic scintillator

    NASA Astrophysics Data System (ADS)

    van Loef, Edgar V.; Feng, Patrick; Markosyan, Gary; Shirwadkar, Urmila; Doty, Patrick; Shah, Kanai S.

    2016-09-01

    In this paper we present results on a novel tin-loaded plastic scintillator. We will show that this particular plastic scintillator has a light output similar to that of BGO, a fast scintillation decay (< 10 ns), exhibits good neutron/gamma PSD with a Figure-of-Merit of 1.3 at 2.5 MeVee cut-off energy, and excellent energy resolution of about 12% (FWHM) at 662 keV. Under X-ray excitation, the radioluminescence spectrum exhibits a broad band between 350 and 500 nm peaking at 420 nm which is well-matched to bialkali photomultiplier tubes and UV-enhanced photodiodes.

  7. Characterization of the exradin W1 plastic scintillation detector for small field applications in proton therapy.

    PubMed

    Hoehr, C; Lindsay, C; Beaudry, J; Penner, C; Strgar, V; Lee, R; Duzenli, C

    2018-05-04

    Accurate dosimetry in small field proton therapy is challenging, particularly for applications such as ocular therapy, and suitable detectors for this purpose are sought. The Exradin W1 plastic scintillating fibre detector is known to out-perform most other detectors for determining relative dose factors for small megavoltage photon beams used in radiotherapy but its potential in small proton beams has been relatively unexplored in the literature. The 1 mm diameter cylindrical geometry and near water equivalence of the W1 makes it an attractive alternative to other detectors. This study examines the dosimetric performance of the W1 in a 74 MeV proton therapy beam with particular focus on detector response characteristics relevant to relative dose measurement in small fields suitable for ocular therapy. Quenching of the scintillation signal is characterized and demonstrated not to impede relative dose measurements at a fixed depth. The background cable-only (Čerenkov and radio-fluorescence) signal is 4 orders of magnitude less than the scintillation signal, greatly simplifying relative dose measurements. Comparison with other detectors and Monte Carlo simulations indicate that the W1 is useful for measuring relative dose factors for field sizes down to 5 mm diameter and shallow spread out Bragg peaks down to 6 mm in depth.

  8. Characterization of the exradin W1 plastic scintillation detector for small field applications in proton therapy

    NASA Astrophysics Data System (ADS)

    Hoehr, C.; Lindsay, C.; Beaudry, J.; Penner, C.; Strgar, V.; Lee, R.; Duzenli, C.

    2018-05-01

    Accurate dosimetry in small field proton therapy is challenging, particularly for applications such as ocular therapy, and suitable detectors for this purpose are sought. The Exradin W1 plastic scintillating fibre detector is known to out-perform most other detectors for determining relative dose factors for small megavoltage photon beams used in radiotherapy but its potential in small proton beams has been relatively unexplored in the literature. The 1 mm diameter cylindrical geometry and near water equivalence of the W1 makes it an attractive alternative to other detectors. This study examines the dosimetric performance of the W1 in a 74 MeV proton therapy beam with particular focus on detector response characteristics relevant to relative dose measurement in small fields suitable for ocular therapy. Quenching of the scintillation signal is characterized and demonstrated not to impede relative dose measurements at a fixed depth. The background cable-only (Čerenkov and radio-fluorescence) signal is 4 orders of magnitude less than the scintillation signal, greatly simplifying relative dose measurements. Comparison with other detectors and Monte Carlo simulations indicate that the W1 is useful for measuring relative dose factors for field sizes down to 5 mm diameter and shallow spread out Bragg peaks down to 6 mm in depth.

  9. Development of neutron-monitor detector using liquid organic scintillator coupled with 6Li + ZnS(Ag) Sheet.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Yamaguchi, Yasuhiro; Takahashi, Fumiaki

    2004-01-01

    A phoswitch-type detector has been developed for monitoring neutron doses in high-energy accelerator facilities. The detector is composed of a liquid organic scintillator (BC501A) coupled with ZnS(Ag) sheets doped with 6Li. The dose from neutrons with energies above 1 MeV is evaluated from the light output spectrum of the BC501A by applying the G-function, which relates the spectrum to the neutron dose directly. The dose from lower energy neutrons, on the other hand, is estimated from the number of scintillations emitted from the ZnS(Ag) sheets. Characteristics of the phoswitch-type detector were studied experimentally in some neutron fields. It was found from the experiments that the detector has an excellent property of pulse-shape discrimination between the scintillations of BC501A and the ZnS(Ag) sheets. The experimental results also indicate that the detector is capable of reproducing doses from thermal neutrons as well as neutrons with energies from one to several tens of megaelectronvolts (MeV).

  10. High speed photodiodes in standard nanometer scale CMOS technology: a comparative study.

    PubMed

    Nakhkoob, Behrooz; Ray, Sagar; Hella, Mona M

    2012-05-07

    This paper compares various techniques for improving the frequency response of silicon photodiodes fabricated in mainstream CMOS technology for fully integrated optical receivers. The three presented photodiodes, Spatially Modulated Light detectors, Double, and Interrupted P-Finger photodiodes, aim at reducing the low speed diffusive component of the photo generated current. For the first photodiode, Spatially Modulated Light (SML) detectors, the low speed current component is canceled out by converting it to a common mode current driving a differential transimpedance amplifier. The Double Photodiode (DP) uses two depletion regions to increase the fast drift component, while the Interrupted-P Finger Photodiode (IPFPD) redirects the low speed component towards a different contact from the main fast terminal of the photodiode. Extensive device simulations using 130 nm CMOS technology-parameters are presented to compare their performance using the same technological platform. Finally a new type of photodiode that uses triple well CMOS technology is introduced that can achieve a bandwidth of roughly 10 GHz without any process modification or high reverse bias voltages that would jeopardize the photodetector and subsequent transimpedance amplifier reliability.

  11. Polyethylene Naphthalate Scintillator: A Novel Detector for the Dosimetry of Radioactive Ophthalmic Applicators

    PubMed Central

    Flühs, Dirk; Flühs, Andrea; Ebenau, Melanie; Eichmann, Marion

    2015-01-01

    Background Dosimetric measurements in small radiation fields with large gradients, such as eye plaque dosimetry with β or low-energy photon emitters, require dosimetrically almost water-equivalent detectors with volumes of <1 mm3 and linear responses over several orders of magnitude. Polyvinyltoluene-based scintillators fulfil these conditions. Hence, they are a standard for such applications. However, they show disadvantages with regard to certain material properties and their dosimetric behaviour towards low-energy photons. Purpose, Materials and Methods Polyethylene naphthalate, recently recognized as a scintillator, offers chemical, physical and basic dosimetric properties superior to polyvinyltoluene. Its general applicability as a clinical dosimeter, however, has not been shown yet. To prove this applicability, extensive measurements at several clinical photon and electron radiation sources, ranging from ophthalmic plaques to a linear accelerator, were performed. Results For all radiation qualities under investigation, covering a wide range of dose rates, a linearity of the detector response to the dose was shown. Conclusion Polyethylene naphthalate proved to be a suitable detector material for the dosimetry of ophthalmic plaques, including low-energy photon emitters and other small radiation fields. Due to superior properties, it has the potential to replace polyvinyltoluene as the standard scintillator for such applications. PMID:27171681

  12. Neutron response function characterization of 4He scintillation detectors

    DOE PAGES

    Kelley, Ryan P.; Rolison, Lucas M.; Lewis, Jason M.; ...

    2015-04-15

    Time-of-flight measurements were conducted to characterize the neutron energy response of pressurized 4He fast neutron scintillation detectors for the first time, using the Van de Graaff generator at Ohio University. The time-of-flight spectra and pulse height distributions were measured. This data was used to determine the light output response function, which was found to be linear at energies below 3.5 MeV. The intrinsic efficiency of the detector as a function of incident energy was also calculated: the average efficiency up to 10 MeV was 3.1%, with a maximum efficiency of 6.6% at 1.05 MeV. Furthermore, these results will enable developmentmore » of neutron spectrum unfolding algorithms for neutron spectroscopy applications with these detectors.« less

  13. Plastic scintillation detectors for precision Time-of-Flight measurements of relativistic heavy ions

    NASA Astrophysics Data System (ADS)

    Lin, Wen-Jian; Zhao, Jian-Wei; Sun, Bao-Hua; He, Liu-Chun; Lin, Wei-Ping; Liu, Chuan-Ye; Tanihata, Isao; Terashima, Satoru; Tian, Yi; Wang, Feng; Wang, Meng; Zhang, Guang-Xin; Zhang, Xue-Heng; Zhu, Li-Hua; Duan, Li-Min; Hu, Rong-Jiang; Liu, Zhong; Lu, Chen-Gui; Ren, Pei-Pei; Sheng, Li-Na; Sun, Zhi-Yu; Wang, Shi-Tao; Wang, Tao-Feng; Xu, Zhi-Guo; Zheng, Yong

    2017-06-01

    Plastic scintillation detectors for Time-of-Flight (TOF) measurements are almost essential for event-by-event identification of relativistic rare isotopes. In this work, a pair of plastic scintillation detectors of dimensions 50 × 50 × 3t mm3 and 80 × 100 × 3t mm3 have been set up at the External Target Facility (ETF), Institute of Modern Physics (IMP). Their time, energy and position responses are measured with the 18O primary beam at 400 MeV/nucleon. After off-line corrections for walk effect and position, the time resolutions of the two detectors are determined to be 27 ps (σ) and 36 ps (σ), respectively. Both detectors have nearly the same energy resolution of 3.1% (σ) and position resolution of about 3.4 mm (σ). The detectors have been used successfully in nuclear reaction cross section measurements, and will be be employed for upgrading the RIBLL2 beam line at IMP as well as for the high energy branch at HIAF. Supported by National Natural Science Foundation of China (11475014,11235002) and National Key Research and Development Program (2016YFA0400500)

  14. Monte Carlo simulation of a very high resolution thermal neutron detector composed of glass scintillator microfibers.

    PubMed

    Song, Yushou; Conner, Joseph; Zhang, Xiaodong; Hayward, Jason P

    2016-02-01

    In order to develop a high spatial resolution (micron level) thermal neutron detector, a detector assembly composed of cerium doped lithium glass microfibers, each with a diameter of 1 μm, is proposed, where the neutron absorption location is reconstructed from the observed charged particle products that result from neutron absorption. To suppress the cross talk of the scintillation light, each scintillating fiber is surrounded by air-filled glass capillaries with the same diameter as the fiber. This pattern is repeated to form a bulk microfiber detector. On one end, the surface of the detector is painted with a thin optical reflector to increase the light collection efficiency at the other end. Then the scintillation light emitted by any neutron interaction is transmitted to one end, magnified, and recorded by an intensified CCD camera. A simulation based on the Geant4 toolkit was developed to model this detector. All the relevant physics processes including neutron interaction, scintillation, and optical boundary behaviors are simulated. This simulation was first validated through measurements of neutron response from lithium glass cylinders. With good expected light collection, an algorithm based upon the features inherent to alpha and triton particle tracks is proposed to reconstruct the neutron reaction position in the glass fiber array. Given a 1 μm fiber diameter and 0.1mm detector thickness, the neutron spatial resolution is expected to reach σ∼1 μm with a Gaussian fit in each lateral dimension. The detection efficiency was estimated to be 3.7% for a glass fiber assembly with thickness of 0.1mm. When the detector thickness increases from 0.1mm to 1mm, the position resolution is not expected to vary much, while the detection efficiency is expected to increase by about a factor of ten. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Optical scattering lengths in large liquid-scintillator neutrino detectors.

    PubMed

    Wurm, M; von Feilitzsch, F; Göger-Neff, M; Hofmann, M; Lachenmaier, T; Lewke, T; Marrodán Undagoitia, T; Meindl, Q; Möllenberg, R; Oberauer, L; Potzel, W; Tippmann, M; Todor, S; Traunsteiner, C; Winter, J

    2010-05-01

    For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents phenylxylylethane, linear alkylbenzene (LAB), and dodecane, which are under discussion for next-generation experiments such as SNO+ (Sudbury Neutrino Observatory), HanoHano, or LENA (Low Energy Neutrino Astronomy). Results comprise the wavelength range of 415-440 nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.

  16. Optical scattering lengths in large liquid-scintillator neutrino detectors

    NASA Astrophysics Data System (ADS)

    Wurm, M.; von Feilitzsch, F.; Göger-Neff, M.; Hofmann, M.; Lachenmaier, T.; Lewke, T.; Undagoitia, T. Marrodán; Meindl, Q.; Möllenberg, R.; Oberauer, L.; Potzel, W.; Tippmann, M.; Todor, S.; Traunsteiner, C.; Winter, J.

    2010-05-01

    For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents phenylxylylethane, linear alkylbenzene (LAB), and dodecane, which are under discussion for next-generation experiments such as SNO+ (Sudbury Neutrino Observatory), HanoHano, or LENA (Low Energy Neutrino Astronomy). Results comprise the wavelength range of 415-440 nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.

  17. Performance of Large Neutron Detectors Containing Lithium-Gadolinium-Borate Scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slaughter, David M.; Stuart, Cory R.; Klaass, R. Fred

    2015-07-01

    This paper describes the development and testing of a neutron counter, spectrometer, and dosimeter that is compact, efficient, and accurate. A self-contained neutron detection instrument has wide applications in health physics, scientific research, and programs to detect, monitor, and control strategic nuclear materials (SNM). The 1.3 liter detector head for this instrument is a composite detector with an organic scintillator containing uniformly distributed {sup 6}Li{sub 6}{sup nat}Gd{sup 10}B{sub 3}O{sub 9}:Ce (LGB:Ce) microcrystals. The plastic scintillator acts to slow impinging neutrons and emits light proportional to the energy lost by the neutrons as they moderate in the detector body. Moderating neutronsmore » that have slowed sufficiently capture in one of the Lithium-6, Boron-10, or Gadolinium-157 atoms in the LGB:Ce scintillator, which then releases the capture energy in a characteristic cerium emission pulse. The measured captured pulses indicate the presence of neutrons. When a scintillating fluor is present in the plastic, the light pulse resulting from the neutron moderating in the plastic is paired with the LGB:Ce capture pulse to identify the energy of the neutron. About 2% of the impinging neutrons lose all of their energy in a single collision with the detector. There is a linear relationship between the pulse areas of this group of neutrons and energy. The other 98% of neutrons have a wide range of collision histories within the detector body. When these neutrons are 'binned' into energy groups, each group contains a distribution of pulse areas. This data was used to assist in the unfolding of the neutron spectra. The unfolded spectra were then validated with known spectra, at both neutron emitting isotopes and fission/accelerator facilities. Having validated spectra, the dose equivalent and dose rate are determined by applying standard, regulatory damage coefficients to the measured neutron counts for each energy bin of the spectra. Testing

  18. 2D dosimetry in a proton beam with a scintillating GEM detector

    NASA Astrophysics Data System (ADS)

    Seravalli, E.; de Boer, M. R.; Geurink, F.; Huizenga, J.; Kreuger, R.; Schippers, J. M.; van Eijk, C. W. E.

    2009-06-01

    A two-dimensional position-sensitive dosimetry system based on a scintillating gas detector is being developed for pre-treatment verification of dose distributions in particle therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two gas electron multiplier (GEM) structures are mounted (Seravalli et al 2008b Med. Phys. Biol. 53 4651-65). Photons emitted by the excited Ar/CF4 gas molecules during the gas multiplication in the GEM holes are detected by a mirror-lens-CCD camera system. The intensity distribution of the measured light spot is proportional to the 2D dose distribution. In this work, we report on the characterization of the scintillating GEM detector in terms of those properties that are of particular importance in relative dose measurements, e.g. response reproducibility, dose dependence, dose rate dependence, spatial and time response, field size dependence, response uniformity. The experiments were performed in a 150 MeV proton beam. We found that the detector response is very stable for measurements performed in succession (σ = 0.6%) and its response reproducibility over 2 days is about 5%. The detector response was found to be linear with the dose in the range 0.05-19 Gy. No dose rate effects were observed between 1 and 16 Gy min-1 at the shallow depth of a water phantom and 2 and 38 Gy min-1 at the Bragg peak depth. No field size effects were observed in the range 120-3850 mm2. A signal rise and fall time of 2 µs was recorded and a spatial response of <=1 mm was measured.

  19. Timing Characterization of Helium-4 Fast Neutron Detector with EJ-309 Organic Liquid Scintillator

    NASA Astrophysics Data System (ADS)

    Liang, Yinong; Zhu, Ting; Enqvist, Andreas

    2018-01-01

    Recently, the Helium-4 gas fast neutron scintillation detectors is being used in time-sensitive measurements, such time-of-flight and multiplicity counting. In this paper, a set of time aligned signals was acquired in a coincidence measurement using the Helium-4 gas detectors and EJ-309 liquid scintillators. The high-speed digitizer system is implanted with a trigger moving average window (MAW) unit combing with its constant fraction discriminator (CFD) feature. It can calculate a "time offset" to the timestamp value to get a higher resolution timestamp (up to 50 ps), which is better than the digitizer's time resolution (4 ns) [1]. The digitized waveforms were saved to the computer hard drive and post processed with digital analysis code to determine the difference of their arrival times. The full-width at half-maximum (FWHM) of the Gaussian fit was used as to examine the resolution. For the cascade decay of Cobalt-60 (1.17 and 1.33 MeV), the first version of the Helium-4 detector with two Hamamatsu R580 photomultipliers (PMT) installed at either end of the cylindrical gas chamber (20 cm in length and 4.4 cm in diameter) has a time resolution which is about 3.139 ns FWHM. With improved knowledge of the timing performance, the Helium-4 scintillation detectors are excellent for neutron energy spectrometry applications requiring high temporal and energy resolutions.

  20. First-principles Electronic Structure Calculations for Scintillation Phosphor Nuclear Detector Materials

    NASA Astrophysics Data System (ADS)

    Canning, Andrew

    2013-03-01

    Inorganic scintillation phosphors (scintillators) are extensively employed as radiation detector materials in many fields of applied and fundamental research such as medical imaging, high energy physics, astrophysics, oil exploration and nuclear materials detection for homeland security and other applications. The ideal scintillator for gamma ray detection must have exceptional performance in terms of stopping power, luminosity, proportionality, speed, and cost. Recently, trivalent lanthanide dopants such as Ce and Eu have received greater attention for fast and bright scintillators as the optical 5d to 4f transition is relatively fast. However, crystal growth and production costs remain challenging for these new materials so there is still a need for new higher performing scintillators that meet the needs of the different application areas. First principles calculations can provide a useful insight into the chemical and electronic properties of such materials and hence can aid in the search for better new scintillators. In the past there has been little first-principles work done on scintillator materials in part because it means modeling f electrons in lanthanides as well as complex excited state and scattering processes. In this talk I will give an overview of the scintillation process and show how first-principles calculations can be applied to such systems to gain a better understanding of the physics involved. I will also present work on a high-throughput first principles approach to select new scintillator materials for fabrication as well as present more detailed calculations to study trapping process etc. that can limit their brightness. This work in collaboration with experimental groups has lead to the discovery of some new bright scintillators. Work supported by the U.S. Department of Homeland Security and carried out under U.S. Department of Energy Contract no. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory.

  1. Plastic scintillation detectors for dose monitoring in digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Antunes, J.; Machado, J.; Peralta, L.; Matela, N.

    2018-01-01

    Plastic scintillators detectors (PSDs) have been studied as dosimeters, since they provide a cost-effective alternative to conventional ionization chambers. Measurement and analysis of energy dependency were performed on a Siemens Mammomat tomograph for two different peak kilovoltages: 26 kV and 35 kV. Both PSD displayed good linearity for each energy considered and almost no energy dependence.

  2. Sub-200 ps CRT in monolithic scintillator PET detectors using digital SiPM arrays and maximum likelihood interaction time estimation.

    PubMed

    van Dam, Herman T; Borghi, Giacomo; Seifert, Stefan; Schaart, Dennis R

    2013-05-21

    Digital silicon photomultiplier (dSiPM) arrays have favorable characteristics for application in monolithic scintillator detectors for time-of-flight positron emission tomography (PET). To fully exploit these benefits, a maximum likelihood interaction time estimation (MLITE) method was developed to derive the time of interaction from the multiple time stamps obtained per scintillation event. MLITE was compared to several deterministic methods. Timing measurements were performed with monolithic scintillator detectors based on novel dSiPM arrays and LSO:Ce,0.2%Ca crystals of 16 × 16 × 10 mm(3), 16 × 16 × 20 mm(3), 24 × 24 × 10 mm(3), and 24 × 24 × 20 mm(3). The best coincidence resolving times (CRTs) for pairs of identical detectors were obtained with MLITE and measured 157 ps, 185 ps, 161 ps, and 184 ps full-width-at-half-maximum (FWHM), respectively. For comparison, a small reference detector, consisting of a 3 × 3 × 5 mm(3) LSO:Ce,0.2%Ca crystal coupled to a single pixel of a dSiPM array, was measured to have a CRT as low as 120 ps FWHM. The results of this work indicate that the influence of the optical transport of the scintillation photons on the timing performance of monolithic scintillator detectors can at least partially be corrected for by utilizing the information contained in the spatio-temporal distribution of the collection of time stamps registered per scintillation event.

  3. Sub-200 ps CRT in monolithic scintillator PET detectors using digital SiPM arrays and maximum likelihood interaction time estimation

    NASA Astrophysics Data System (ADS)

    van Dam, Herman T.; Borghi, Giacomo; Seifert, Stefan; Schaart, Dennis R.

    2013-05-01

    Digital silicon photomultiplier (dSiPM) arrays have favorable characteristics for application in monolithic scintillator detectors for time-of-flight positron emission tomography (PET). To fully exploit these benefits, a maximum likelihood interaction time estimation (MLITE) method was developed to derive the time of interaction from the multiple time stamps obtained per scintillation event. MLITE was compared to several deterministic methods. Timing measurements were performed with monolithic scintillator detectors based on novel dSiPM arrays and LSO:Ce,0.2%Ca crystals of 16 × 16 × 10 mm3, 16 × 16 × 20 mm3, 24 × 24 × 10 mm3, and 24 × 24 × 20 mm3. The best coincidence resolving times (CRTs) for pairs of identical detectors were obtained with MLITE and measured 157 ps, 185 ps, 161 ps, and 184 ps full-width-at-half-maximum (FWHM), respectively. For comparison, a small reference detector, consisting of a 3 × 3 × 5 mm3 LSO:Ce,0.2%Ca crystal coupled to a single pixel of a dSiPM array, was measured to have a CRT as low as 120 ps FWHM. The results of this work indicate that the influence of the optical transport of the scintillation photons on the timing performance of monolithic scintillator detectors can at least partially be corrected for by utilizing the information contained in the spatio-temporal distribution of the collection of time stamps registered per scintillation event.

  4. Accelerated Aging Test for Plastic Scintillator Gamma Ray Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kouzes, Richard T.

    Polyvinyl toluene (PVT) and polystyrene (PS), collectively referred to as “plastic scintillator,” are synthetic polymer materials used to detect gamma radiation, and are commonly used in instrumentation. Recent studies have revealed that plastic scintillator undergoes an environmentally related material degradation that adversely affects performance under certain conditions and histories. A significant decrease in gamma ray sensitivity has been seen in some detectors in systems as they age. The degradation of sensitivity of plastic scintillator over time is due to a variety of factors, and the term “aging” is used to encompass all factors. Some plastic scintillator samples show no agingmore » effects (no significant change in sensitivity over more than 10 years), while others show severe aging (significant change in sensitivity in less than 5 years). Aging effects arise from weather (variations in heat and humidity), chemical exposure, mechanical stress, light exposure, and loss of volatile components. The damage produced by these various causes can be cumulative, causing observable damage to increase over time. Damage may be reversible up to some point, but becomes permanent under some conditions. It has been demonstrated that exposure of plastic scintillator in an environmental chamber to 30 days of high temperature and humidity (90% relative humidity and 55°C) followed by a single cycle to cold temperature (-30°C) will produce severe fogging in all PVT samples. This thermal cycle will be referred to as the “Accelerated Aging Test.” This document describes the procedure for performing this Accelerated Aging Test.« less

  5. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    NASA Astrophysics Data System (ADS)

    Fujiwara, T.; Mitsuya, Y.; Fushie, T.; Murata, K.; Kawamura, A.; Koishikawa, A.; Toyokawa, H.; Takahashi, H.

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 μm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  6. Organic Scintillation Detectors for Spectroscopic Radiation Portal Monitors

    NASA Astrophysics Data System (ADS)

    Paff, Marc Gerrit

    Thousands of radiation portal monitors have been deployed worldwide to detect and deter the smuggling of nuclear and radiological materials that could be used in nefarious acts. Radiation portal monitors are often installed at bottlenecks where large amounts of people or goods must traverse. Examples of use include scanning cargo containers at shipping ports, vehicles at border crossings, and people at high profile functions and events. Traditional radiation portal monitors contain separate detectors for passively measuring neutron and gamma ray count rates. 3He tubes embedded in polyethylene and slabs of plastic scintillators are the most common detector materials used in radiation portal monitors. The radiation portal monitor alarm mechanism relies on measuring radiation count rates above user defined alarm thresholds. These alarm thresholds are set above natural background count rates. Minimizing false alarms caused by natural background and maximizing sensitivity to weakly emitting threat sources must be balanced when setting these alarm thresholds. Current radiation portal monitor designs suffer from frequent nuisance radiation alarms. These radiation nuisance alarms are most frequently caused by shipments of large quantities of naturally occurring radioactive material containing cargo, like kitty litter, as well as by humans who have recently undergone a nuclear medicine procedure, particularly 99mTc treatments. Current radiation portal monitors typically lack spectroscopic capabilities, so nuisance alarms must be screened out in time-intensive secondary inspections with handheld radiation detectors. Radiation portal monitors using organic liquid scintillation detectors were designed, built, and tested. A number of algorithms were developed to perform on-the-fly radionuclide identification of single and combination radiation sources moving past the portal monitor at speeds up to 2.2 m/s. The portal monitor designs were tested extensively with a variety of

  7. A novel method to calibrate DOI function of a PET detector with a dual-ended-scintillator readout.

    PubMed

    Shao, Yiping; Yao, Rutao; Ma, Tianyu

    2008-12-01

    The detection of depth-of-interaction (DOI) is a critical detector capability to improve the PET spatial resolution uniformity across the field-of-view and will significantly enhance, in particular, small bore system performance for brain, breast, and small animal imaging. One promising technique of DOI detection is to use dual-ended-scintillator readout that uses two photon sensors to detect scintillation light from both ends of a scintillator array and estimate DOI based on the ratio of signals (similar to Anger logic). This approach needs a careful DOI function calibration to establish accurate relationship between DOI and signal ratios, and to recalibrate if the detection condition is shifted due to the drift of sensor gain, bias variations, or degraded optical coupling, etc. However, the current calibration method that uses coincident events to locate interaction positions inside a single scintillator crystal has severe drawbacks, such as complicated setup, long and repetitive measurements, and being prone to errors from various possible misalignments among the source and detector components. This method is also not practically suitable to calibrate multiple DOI functions of a crystal array. To solve these problems, a new method has been developed that requires only a uniform flood source to irradiate a crystal array without the need to locate the interaction positions, and calculates DOI functions based solely on the uniform probability distribution of interactions over DOI positions without knowledge or assumption of detector responses. Simulation and experiment have been studied to validate the new method, and the results show that the new method, with a simple setup and one single measurement, can provide consistent and accurate DOI functions for the entire array of multiple scintillator crystals. This will enable an accurate, simple, and practical DOI function calibration for the PET detectors based on the design of dual-ended-scintillator readout. In

  8. A novel method to calibrate DOI function of a PET detector with a dual-ended-scintillator readout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao Yiping; Yao Rutao; Ma Tianyu

    The detection of depth-of-interaction (DOI) is a critical detector capability to improve the PET spatial resolution uniformity across the field-of-view and will significantly enhance, in particular, small bore system performance for brain, breast, and small animal imaging. One promising technique of DOI detection is to use dual-ended-scintillator readout that uses two photon sensors to detect scintillation light from both ends of a scintillator array and estimate DOI based on the ratio of signals (similar to Anger logic). This approach needs a careful DOI function calibration to establish accurate relationship between DOI and signal ratios, and to recalibrate if the detectionmore » condition is shifted due to the drift of sensor gain, bias variations, or degraded optical coupling, etc. However, the current calibration method that uses coincident events to locate interaction positions inside a single scintillator crystal has severe drawbacks, such as complicated setup, long and repetitive measurements, and being prone to errors from various possible misalignments among the source and detector components. This method is also not practically suitable to calibrate multiple DOI functions of a crystal array. To solve these problems, a new method has been developed that requires only a uniform flood source to irradiate a crystal array without the need to locate the interaction positions, and calculates DOI functions based solely on the uniform probability distribution of interactions over DOI positions without knowledge or assumption of detector responses. Simulation and experiment have been studied to validate the new method, and the results show that the new method, with a simple setup and one single measurement, can provide consistent and accurate DOI functions for the entire array of multiple scintillator crystals. This will enable an accurate, simple, and practical DOI function calibration for the PET detectors based on the design of dual-ended-scintillator readout

  9. Characteristics of Un doped and Europium-dopedSrI2 Scintillator Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sturm, Benjamin; Cherepy, Nerine; Drury, Owen

    2012-01-01

    High energy resolution gamma-ray detectors that can be formed into relatively large sizes while operating at room temperature offer many advantages for national security applications. We are working toward that goal through the development of SrI{sub 2}(Eu) scintillator detectors, which routinely provide <;3.0% energy resolution at 662 keV with volumes >;10 cm{sup 3}. In this study, we have tested pure, undoped SrI{sub 2} to gain a better understanding of the scintillation properties and spectroscopic performance achievable without activation. An undoped crystal grown from 99.999% pure SrI{sub 2} pellets was tested for its spectroscopic performance, its light yield, and uniformity ofmore » scintillation light collection as a function of gamma-ray interaction position relative to the crystal growth direction. Undoped SrI{sub 2} was found to provide energy resolution of 5.3% at 662 keV, and the light collection nonuniformity varied by only 0.72% over the length of the crystal. Measurements of both a 3% Eu-doped and the undoped SrI{sub 2} crystal were carried out in the SLYNCI facility and indicate differences in their light yield non-proportionality. The surprisingly good scintillation properties of the pure SrI{sub 2} crystal suggests that with high-purity feedstock, further reduction of the Eu concentration can be made to grow larger crystals while not adversely impacting the spectroscopic performance.« less

  10. Towards monolithic scintillator based TOF-PET systems: practical methods for detector calibration and operation.

    PubMed

    Borghi, Giacomo; Tabacchini, Valerio; Schaart, Dennis R

    2016-07-07

    Gamma-ray detectors based on thick monolithic scintillator crystals can achieve spatial resolutions  <2 mm full-width-at-half-maximum (FWHM) and coincidence resolving times (CRTs) better than 200 ps FWHM. Moreover, they provide high sensitivity and depth-of-interaction (DOI) information. While these are excellent characteristics for clinical time-of-flight (TOF) positron emission tomography (PET), the application of monolithic scintillators has so far been hampered by the lengthy and complex procedures needed for position- and time-of-interaction estimation. Here, the algorithms previously developed in our group are revised to make the calibration and operation of a large number of monolithic scintillator detectors in a TOF-PET system practical. In particular, the k-nearest neighbor (k-NN) classification method for x,y-position estimation is accelerated with an algorithm that quickly preselects only the most useful reference events, reducing the computation time for position estimation by a factor of ~200 compared to the previously published k-NN 1D method. Also, the procedures for estimating the DOI and time of interaction are revised to enable full detector calibration by means of fan-beam or flood irradiations only. Moreover, a new technique is presented to allow the use of events in which some of the photosensor pixel values and/or timestamps are missing (e.g. due to dead time), so as to further increase system sensitivity. The accelerated methods were tested on a monolithic scintillator detector specifically developed for clinical PET applications, consisting of a 32 mm  ×  32 mm  ×  22 mm LYSO : Ce crystal coupled to a digital photon counter (DPC) array. This resulted in a spatial resolution of 1.7 mm FWHM, an average DOI resolution of 3.7 mm FWHM, and a CRT of 214 ps. Moreover, the possibility of using events missing the information of up to 16 out of 64 photosensor pixels is shown. This results in only a small

  11. Characterization of high-purity 82Se-enriched ZnSe for double-beta decay bolometer/scintillation detectors

    NASA Astrophysics Data System (ADS)

    Silva, B. C.; de Oliveira, R.; Ribeiro, G. M.; Cury, L. A.; Leal, A. S.; Nagorny, S.; Krambrock, K.

    2018-02-01

    Zinc selenide (ZnSe), when enriched with 82Se isotope, is one of the most promising materials for the construction of a bolometer/scintillation detector to study neutrinoless double beta decay (0νDBD). Because the 0νDBD is a very rare event, a high quantity of high-purity monocrystalline ZnSe is needed, which means high costs. Therefore, the knowledge of the best material parameters, especially the presence of point defects, is essential to make feasible the construction of such a detector. In this work, both the as-grown and thermally annealed ZnSe enriched to 95% with the 82Se isotope grown by the Bridgman technique from high-purity starting materials were characterized by electron paramagnetic resonance (EPR), photo-EPR, neutron activation, photoluminescence, and electrical measurements. It is shown that although thermal annealing increases crystal homogeneity and reduces microcracks, the scintillation efficiency is much better for the as-grown material. The higher scintillation efficiency is due to the presence of donor acceptor pairs in the as-grown material, which are responsible for strong luminescence/scintillation in the red spectral region. By photo-EPR, the donor acceptor pairs are identified as closed VZn - AlZn pairs which are lost during the annealing procedure. Electrical characterization shows that the as-grown material is of good quality as it has high electron mobility at low temperatures. Excellent material parameters for the construction of the bolometer/scintillation detector based on enriched Zn82Se are discussed.

  12. Segmented scintillation antineutrino detector

    DOEpatents

    Reyna, David

    2017-05-09

    The various technologies presented herein relate to incorporating a wavelength-shifting material in a scintillator to facilitate absorption of a first electromagnetic particle (e.g., a first photon) having a first wavelength and subsequent generation and emission of a second electromagnetic particle (e.g., a second photon) having a second wavelength. The second electromagnetic particle can be emitted isotropically, with a high probability that the direction of emission of the second electromagnetic particle is disparate to the direction of travel of the first electromagnetic particle (and according angle of incidence). Isotropic emission of the second electromagnetic particle enables the second electromagnetic particle to be retained in the scintillator owing to internal reflection. Accordingly, longer length scintillators can be constructed, and accordingly, the scintillator array has a greater area (and volume) over which to detect electromagnetic particles (e.g., antineutrinos) being emitted from a nuclear reaction.

  13. Photon statistics in scintillation crystals

    NASA Astrophysics Data System (ADS)

    Bora, Vaibhav Joga Singh

    Scintillation based gamma-ray detectors are widely used in medical imaging, high-energy physics, astronomy and national security. Scintillation gamma-ray detectors are eld-tested, relatively inexpensive, and have good detection eciency. Semi-conductor detectors are gaining popularity because of their superior capability to resolve gamma-ray energies. However, they are relatively hard to manufacture and therefore, at this time, not available in as large formats and much more expensive than scintillation gamma-ray detectors. Scintillation gamma-ray detectors consist of: a scintillator, a material that emits optical (scintillation) photons when it interacts with ionization radiation, and an optical detector that detects the emitted scintillation photons and converts them into an electrical signal. Compared to semiconductor gamma-ray detectors, scintillation gamma-ray detectors have relatively poor capability to resolve gamma-ray energies. This is in large part attributed to the "statistical limit" on the number of scintillation photons. The origin of this statistical limit is the assumption that scintillation photons are either Poisson distributed or super-Poisson distributed. This statistical limit is often dened by the Fano factor. The Fano factor of an integer-valued random process is dened as the ratio of its variance to its mean. Therefore, a Poisson process has a Fano factor of one. The classical theory of light limits the Fano factor of the number of photons to a value greater than or equal to one (Poisson case). However, the quantum theory of light allows for Fano factors to be less than one. We used two methods to look at the correlations between two detectors looking at same scintillation pulse to estimate the Fano factor of the scintillation photons. The relationship between the Fano factor and the correlation between the integral of the two signals detected was analytically derived, and the Fano factor was estimated using the measurements for SrI2:Eu, YAP

  14. Radioactive contamination of scintillators

    NASA Astrophysics Data System (ADS)

    Danevich, F. A.; Tretyak, V. I.

    2018-03-01

    Low counting experiments (search for double β decay and dark matter particles, measurements of neutrino fluxes from different sources, search for hypothetical nuclear and subnuclear processes, low background α, β, γ spectrometry) require extremely low background of a detector. Scintillators are widely used to search for rare events both as conventional scintillation detectors and as cryogenic scintillating bolometers. Radioactive contamination of a scintillation material plays a key role to reach low level of background. Origin and nature of radioactive contamination of scintillators, experimental methods and results are reviewed. A programme to develop radiopure crystal scintillators for low counting experiments is discussed briefly.

  15. Tomographic analysis of neutron and gamma pulse shape distributions from liquid scintillation detectors at Joint European Torus.

    PubMed

    Giacomelli, L; Conroy, S; Gorini, G; Horton, L; Murari, A; Popovichev, S; Syme, D B

    2014-02-01

    The Joint European Torus (JET, Culham, UK) is the largest tokamak in the world devoted to nuclear fusion experiments of magnetic confined Deuterium (D)/Deuterium-Tritium (DT) plasmas. Neutrons produced in these plasmas are measured using various types of neutron detectors and spectrometers. Two of these instruments on JET make use of organic liquid scintillator detectors. The neutron emission profile monitor implements 19 liquid scintillation counters to detect the 2.45 MeV neutron emission from D plasmas. A new compact neutron spectrometer is operational at JET since 2010 to measure the neutron energy spectra from both D and DT plasmas. Liquid scintillation detectors are sensitive to both neutron and gamma radiation but give light responses of different decay time such that pulse shape discrimination techniques can be applied to identify the neutron contribution of interest from the data. The most common technique consists of integrating the radiation pulse shapes within different ranges of their rising and/or trailing edges. In this article, a step forward in this type of analysis is presented. The method applies a tomographic analysis of the 3-dimensional neutron and gamma pulse shape and pulse height distribution data obtained from liquid scintillation detectors such that n/γ discrimination can be improved to lower energies and additional information can be gained on neutron contributions to the gamma events and vice versa.

  16. Single-Photon-Sensitive HgCdTe Avalanche Photodiode Detector

    NASA Technical Reports Server (NTRS)

    Huntington, Andrew

    2013-01-01

    The purpose of this program was to develop single-photon-sensitive short-wavelength infrared (SWIR) and mid-wavelength infrared (MWIR) avalanche photodiode (APD) receivers based on linear-mode HgCdTe APDs, for application by NASA in light detection and ranging (lidar) sensors. Linear-mode photon-counting APDs are desired for lidar because they have a shorter pixel dead time than Geiger APDs, and can detect sequential pulse returns from multiple objects that are closely spaced in range. Linear-mode APDs can also measure photon number, which Geiger APDs cannot, adding an extra dimension to lidar scene data for multi-photon returns. High-gain APDs with low multiplication noise are required for efficient linear-mode detection of single photons because of APD gain statistics -- a low-excess-noise APD will generate detectible current pulses from single photon input at a much higher rate of occurrence than will a noisy APD operated at the same average gain. MWIR and LWIR electron-avalanche HgCdTe APDs have been shown to operate in linear mode at high average avalanche gain (M > 1000) without excess multiplication noise (F = 1), and are therefore very good candidates for linear-mode photon counting. However, detectors fashioned from these narrow-bandgap alloys require aggressive cooling to control thermal dark current. Wider-bandgap SWIR HgCdTe APDs were investigated in this program as a strategy to reduce detector cooling requirements.

  17. Effect of electron irradiation dose on the performance of avalanche photodiode electron detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawauchi, Taizo; Wilde, Markus; Fukutani, Katsuyuki

    2009-01-01

    Avalanche photodiodes (APDs) are efficient detectors for electrons with energies below 100 keV. The damaging effects of 8 keV electron beam irradiation on the dark current and the output signal of the APD detector were investigated in this study. The APD dark current increases after electron doses exceeding 1.4x10{sup 13} cm{sup -2}. Preirradiation by high doses of 8 keV electrons further causes a deformation of the pulse height distribution of the APD output in the subsequent detection of low-flux electrons. This effect is particularly prominent when the energy of the detected electrons is lower than that of the damaging electrons.more » By comparing the experimental data with results of a simulation based on an electron trapping model, we conclude that the degradation of the APD performance is attributable to an enhancement of secondary-electron trapping at irradiation induced defects.« less

  18. Development and Characterization of 6Li-doped Liquid Scintillator Detectors for PROSPECT

    NASA Astrophysics Data System (ADS)

    Gaison, Jeremy; Prospect Collaboration

    2016-09-01

    PROSPECT, the Precision Reactor Oscillation and Spectrum experiment, is a phased reactor antineutrino experiment designed to search for eV-scale sterile neutrinos via short-baseline neutrino oscillations and to make a precision measurement of the 235U reactor antineutrino spectrum. A multi-ton, optically segmented detector will be deployed at Oak Ridge National Laboratory's (ORNL) High Flux Isotope Reactor (HFIR) to measure the reactor spectrum at baselines ranging from 7-12m. A two-segment detector prototype with 50 liters of active liquid scintillator target has been built to verify the detector design and to benchmark its performance. In this presentation, we will summarize the performance of this detector prototype and describe the optical and energy calibration of the segmented PROSPECT detectors.

  19. Low noise scintillation detectors with a P-47 thin layer screen for electrons of several keV

    NASA Astrophysics Data System (ADS)

    Kajcsos, Zs.; Meisel, W.; Griesbach, P.; Gütlich, P.; Sauer, Ch.; Kurz, R.; Hildebrand, K.; Albrecht, R.; Ligtenberg, M. A. C.

    1994-09-01

    The applicability of a low-noise scintillation detector (ScD) for the registration of electrons of several keV energy has been studied employing photomultipliers (PM) of different types and sizes. With the application of a sedimented P-47 scintillation screen, the values of the low-energy sensitivity limit and those of the light conversion coefficient were determined as about 2.7-4.7 keV and 2.8-6.6 photoelectrons/keV, respectively, for the set of PM's (Philips-Valvo XP 2020, Philips-Valvo XP 2052, Philips-Valvo XP 2972, EMI 9124a) studied. It is concluded that such scintillation detectors might be used advantageously as electron counters in the range of E > 5 keV. Applications below this kinetic energy value are also feasible when applying a floating acceleration of several kV to the ScD — a voltage much lower than the values required for Everhart-Thornley detectors.

  20. Development of a real-time digital radiography system using a scintillator-type flat-panel detector

    NASA Astrophysics Data System (ADS)

    Ikeda, Shigeyuki; Suzuki, Katsumi; Ishikawa, Ken; Okajima, Kenichi

    2001-06-01

    In order to study the advantage and remaining problems of FPD (flat panel detector) for clinical use by the real-time DR (digital radiography) system, we developed a prototype system using a scintillator type FPD and which was compared with previous I.I.-CCD type real-time DR. We replaced the X- ray detector of DR-2000X from I.I.-4M (4 million pixels)-CCD camera to the scintillator type dynamic FPD(7' X 9', 127 micrometers ), which can take both radiographic and fluoroscopic images. We obtained the images of head and stomach phantoms, and discussed about the image quality with medical doctors.

  1. Used fuel storage monitoring using novel 4He scintillation fast neutron detectors and neutron energy discrimination analysis

    NASA Astrophysics Data System (ADS)

    Kelley, Ryan P.

    With an increasing quantity of spent nuclear fuel being stored at power plants across the United States, the demand exists for a new method of cask monitoring. Certifying these casks for transportation and long-term storage is a unique dilemma: their sealed nature lends added security, but at the cost of requiring non-invasive measurement techniques to verify their contents. This research will design and develop a new method of passively scanning spent fuel casks using 4He scintillation detectors to make this process more accurate. 4He detectors are a relatively new technological development whose full capabilities have not yet been exploited. These detectors take advantage of the high 4He cross section for elastic scattering at fast neutron energies, particularly the resonance around 1 MeV. If one of these elastic scattering interactions occurs within the detector, the 4He nucleus takes energy from the incident neutron, then de-excites by scintillation. Photomultiplier Tubes (PMTs) at either end of the detector tube convert this emitted light into an electrical signal. The goal of this research is to use the neutron spectroscopy features of 4He scintillation detectors to maintain accountability of spent fuel in storage. This project will support spent fuel safeguards and the detection of fissile material, in order to minimize the risk of nuclear proliferation and terrorism.

  2. Investigation of depth-of-interaction (DOI) effects in single- and dual-layer block detectors by the use of light sharing in scintillators.

    PubMed

    Yamamoto, Seiichi

    2012-01-01

    In block detectors for PET scanners that use different lengths of slits in scintillators to share light among photomultiplier tubes (PMTs), a position histogram is distorted when the depth of interaction (DOI) of the gamma photons is near the PMTs (DOI effect). However, it remains unclear whether a DOI effect is observed for block detectors that use light sharing in scintillators. To investigate the effect, I tested the effect for single- and dual-layer block detectors. In the single-layer block detector, Ce doped Gd₂SiO₅ (GSO) crystals of 1.9 × 1.9 × 15 mm³ (0.5 mol% Ce) were used. In the dual-layer block detector, GSO crystals of a 1.9 × 1.9 × 6 mm³ (1.5 mol% Ce) were used for the front layer and GSO crystals of 1.9 × 1.9 × 9 mm³ (0.5 mol% Ce) for the back layer. These scintillators were arranged to form an 8 × 8 matrix with multi-layer optical film inserted partly between the scintillators for obtaining an optimized position response with use of two dual-PMTs. Position histograms and energy responses were measured for these block detectors at three different DOI positions, and the flood histograms were obtained. The results indicated that DOI effects are observed in both block detectors, but the dual-layer block showed more severe distortion in the position histogram as well as larger energy variations. We conclude that, in the block detectors that use light sharing in the scintillators, the DOI effect is an important factor for the performance of the detectors, especially for DOI block detectors.

  3. Characterizing the response of a scintillator-based detector to single electrons.

    PubMed

    Sang, Xiahan; LeBeau, James M

    2016-02-01

    Here we report the response of a high angle annular dark field scintillator-based detector to single electrons. We demonstrate that care must be taken when determining the single electron intensity as significant discrepancies can occur when quantifying STEM images with different methods. To account for the detector response, we first image the detector using very low beam currents (∼8fA), and subsequently model the interval between consecutive single electrons events. We find that single electrons striking the detector present a wide distribution of intensities, which we show is not described by a simple function. Further, we present a method to accurately account for the electrons within the incident probe when conducting quantitative imaging. The role detector settings play on determining the single electron intensity is also explored. Finally, we extend our analysis to describe the response of the detector to multiple electron events within the dwell interval of each pixel. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Evaluating analytical ionization quenching correction models for 3D liquid organic scintillator detector

    NASA Astrophysics Data System (ADS)

    Alsanea, F.; Beddar, S.

    2017-05-01

    Proton therapy offers dosimetric advantage over conventional photon therapy due to the finite range of the proton beam, which improves dose conformity. However, one of the main challenges of proton beam therapy is verification of the complex treatment plans delivered to a patient. Thus, 3D measurements are needed to verify the complex dose distribution. A 3D organic scintillator detector is capable of such measurements. However, organic scintillators exhibit a non-linear relation to the ionization density called ionization quenching. The ionization quenching phenomenon in organic scintillators must be accounted for to obtain accurate dose measurements. We investigated the energy deposition by secondary electrons (EDSE) model to explain ionization quenching in 3D liquid organic scintillator when exposed to proton beams. The EDSE model was applied to volumetric scintillation measurement of proton pencil beam with energies of 85.6, 100.9, 144.9 and 161.9 MeV. The quenching parameter in EDSE model ρq was determined by plotting the total light output vs the initial energy of the ion. The results were compared to the Birks semi-empirical formula of scintillation light emission.

  5. Plastic Scintillator Based Detector for Observations of Terrestrial Gamma-ray Flashes.

    NASA Astrophysics Data System (ADS)

    Barghi, M. R., Sr.; Delaney, N.; Forouzani, A.; Wells, E.; Parab, A.; Smith, D.; Martinez, F.; Bowers, G. S.; Sample, J.

    2017-12-01

    We present an overview of the concept and design of the Light and Fast TGF Recorder (LAFTR), a balloon borne gamma-ray detector designed to observe Terrestrial Gamma-Ray Flashes (TGFs). Terrestrial Gamma-Ray Flashes (TGFs) are extremely bright, sub-millisecond bursts of gamma-rays observed to originate inside thunderclouds coincident with lightning. LAFTR is joint institutional project built by undergraduates at the University of California Santa Cruz and Montana State University. It consists of a detector system fed into analog front-end electronics and digital processing. The presentation focuses specifically on the UCSC components, which consists of the detector system and analog front-end electronics. Because of the extremely high count rates observed during TGFs, speed is essential for both the detector and electronics of the instrument. The detector employs a fast plastic scintillator (BC-408) read out by a SensL Silicon Photomultiplier (SiPM). BC-408 is chosen for its speed ( 4 ns decay time) and low cost and availability. Furthermore, GEANT3 simulations confirm the scintillator is sensitive to 500 counts at 7 km horizontal distance from the TGF source (for a 13 km source altitude and 26 km balloon altitude) and to 5 counts out to 20 km. The signal from the SiPM has a long exponential decay tail and is sent to a custom shaping circuit board that amplifies and shapes the signal into a semi-Gaussian pulse with a 40 ns FWHM. The signal is then input to a 6-channel discriminator board that clamps the signal and outputs a Low Voltage Differential Signal (LVDS) for processing by the digital electronics.

  6. Performance of a scintillation detector array operated with LHAASO-KM2A electronics

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Guo, Yiqing; Cai, Hui; Chang, Jinfan; Chen, Tianlu; Danzengluobu; Feng, Youliang; Gao, Qi; Gou, Quanbu; Guo, Yingying; Hou, Chao; Hu, Hongbo; Labaciren; Liu, Cheng; Li, Haijin; Liu, Jia; Liu, Maoyuan; Qiao, Bingqiang; Qian, Xiangli; Sheng, Xiangdong; Tian, Zhen; Wang, Qun; Xue, Liang; Yao, Yuhua; Zhang, Shaoru; Zhang, Xueyao; Zhang, Yi

    2018-04-01

    A scintillation detector array composed of 115 detectors and covering an area of about 20000 m2 was installed at the end of 2016 at the Yangbajing international cosmic ray observatory and has been taking data since then. The array is equipped with electronics from Large High Altitude Air Shower Observatory Square Kilometer Complex Array (LHAASO-KM2A) and, in turn, currently serves as the largest debugging and testing platform for the LHAASO-KM2A. Furthermore, the array was used to study the performance of a wide field-of-view air Cherenkov telescope by providing accurate information on the shower core, direction and energy, etc. This work is mainly dealing with the scintillation detector array. The experimental setup and the offline calibration are described in detail. Then, a thorough comparison between the data and Monte Carlo (MC) simulations is presented and a good agreement is obtained. With the even-odd method, the resolutions of the shower direction and core are measured. Finally, successful observations of the expected Moon's and Sun's shadows of cosmic rays (CRs) verify the measured angular resolution.

  7. High-Z Nanoparticle/Polymer Nanocomposites for Gamma-Ray Scintillation Detectors

    NASA Astrophysics Data System (ADS)

    Liu, Chao

    An affordable and reliable solution for spectroscopic gamma-ray detection has long been sought after due to the needs from research, defense, and medical applications. Scintillators resolve gamma energy by proportionally converting a single high-energy photon into a number of photomultiplier-tube-detectable low-energy photons, which is considered a more affordable solution for general purposes compared to the delicate semiconductor detectors. An ideal scintillator should simultaneously exhibit the following characteristics: 1) high atomic number (Z) for high gamma stopping power and photoelectron production; 2) high light yield since the energy resolution is inversely proportional to the square root of light yield; 3) short emission decay lifetime; and 4) low cost and scalable production. However, commercial scintillators made from either inorganic single crystals or plastics fail to satisfy all requirements due to their intrinsic material properties and fabrication limitations. The concept of adding high-Z constituents into plastic scintillators to harness high Z, low cost, and fast emission in the resulting nanocomposite scintillators is not new in and of itself. Attempts have been made by adding organometallics, quantum dots, and scintillation nanocrystals into the plastic matrix. High-Z organometallics have long been used to improve the Z of plastic scintillators; however, their strong spin-orbit coupling effect entails careful triplet energy matching using expensive triplet emitters to avoid severe quenching of the light yield. On the other hand, reported quantum dot- and nanocrystal-polymer nanocomposites suffer from moderate Z and high optical loss due to aggregation and self-absorption at loadings higher than 10 wt%, limiting their potential for practical application. This dissertation strives to improve the performance of nanoparticle-based nanocomposite scintillators. One focus is to synthesize transparent nanocomposites with higher loadings of high

  8. A Geant Study of the Scintillating Optical Fiber (SOFCAL) Cosmic Ray Detector

    NASA Technical Reports Server (NTRS)

    Munroe, Ray B., Jr.

    1998-01-01

    Recent energy measurements by balloon-borne passive emulsion chambers indicate that the flux ratios of protons to helium nuclei and of protons to all heavy nuclei decrease as the primary cosmic ray energy per nucleon increases above approx. 200 GeV/n, and suggest a "break" in the proton spectrum between 200 GeV and 5 TeV. However, these passive emulsion chambers are limited to a lower energy threshold of approx. 5 TeV/n, and cannot fully explore this energy regime. Because cosmic ray flux and composition details may be significant to acceleration models, a hybrid detector system called the Scintillating Optical Fiber Calorimeter (SOFCAL) has been designed and flown. SOFCAL incorporates both conventional passive emulsion chambers and an active calorimeter utilizing scintillating plastic fibers as detectors. These complementary types of detectors allow the balloon-borne SOFCAL experiment to measure the proton and helium spectra from approx. 400 GeV/n to approx. 20 TeV. The fundamental purpose of this study is to use the GEANT simulation package to model the hadronic and electromagnetic shower evolution of cosmic rays incident on the SOFCAL detector. This allows the interpretation of SOFCAL data in terms of charges and primary energies of cosmic rays, thus allowing the determinations of cosmic ray flux and composition as functions of primary energy.

  9. Scintillation detector efficiencies for neutrons in the energy region above 20 MeV

    NASA Astrophysics Data System (ADS)

    Dickens, J. K.

    The computer program SCINFUL (for SCINtillator FUL1 response) is a program designed to provide a calculated complete pulse-height response anticipated for neutrons being detected by either an NE-213 (liquid) scintillator or an NE-110 (solid) scintillator in the shape of a right circular cylinder. The point neutron source may be placed at any location with respect to the detector, even inside of it. The neutron source may be monoenergetic, or Maxwellian distributed, or distributed between chosen lower and upper bounds. The calculational method uses Monte Carlo techniques, and it is relativistically correct. Extensive comparisons with a variety of experimental data were made. There is generally overall good agreement (less than 10 pct. differences) of results for SCINFUL calculations with measured integral detector efficiencies for the design incident neutron energy range of 0.1 to 80 MeV. Calculations of differential detector responses, i.e., yield versus response pulse height, are generally within about 5 pct. on the average for incident neutron energies between 16 and 50 MeV and for the upper 70 pct. of the response pulse height. For incident neutron energies between 50 and 80 MeV, the calculated shape of the response agrees with measurements, but the calculations tend to underpredict the absolute values of the measured responses. Extension of the program to compute responses for incident neutron energies greater than 80 MeV will require new experimental data on neutron interactions with carbon.

  10. Fundamental limits of scintillation detector timing precision

    NASA Astrophysics Data System (ADS)

    Derenzo, Stephen E.; Choong, Woon-Seng; Moses, William W.

    2014-07-01

    In this paper we review the primary factors that affect the timing precision of a scintillation detector. Monte Carlo calculations were performed to explore the dependence of the timing precision on the number of photoelectrons, the scintillator decay and rise times, the depth of interaction uncertainty, the time dispersion of the optical photons (modeled as an exponential decay), the photodetector rise time and transit time jitter, the leading-edge trigger level, and electronic noise. The Monte Carlo code was used to estimate the practical limits on the timing precision for an energy deposition of 511 keV in 3 mm × 3 mm × 30 mm Lu2SiO5:Ce and LaBr3:Ce crystals. The calculated timing precisions are consistent with the best experimental literature values. We then calculated the timing precision for 820 cases that sampled scintillator rise times from 0 to 1.0 ns, photon dispersion times from 0 to 0.2 ns, photodetector time jitters from 0 to 0.5 ns fwhm, and A from 10 to 10 000 photoelectrons per ns decay time. Since the timing precision R was found to depend on A-1/2 more than any other factor, we tabulated the parameter B, where R = BA-1/2. An empirical analytical formula was found that fit the tabulated values of B with an rms deviation of 2.2% of the value of B. The theoretical lower bound of the timing precision was calculated for the example of 0.5 ns rise time, 0.1 ns photon dispersion, and 0.2 ns fwhm photodetector time jitter. The lower bound was at most 15% lower than leading-edge timing discrimination for A from 10 to 10 000 photoelectrons ns-1. A timing precision of 8 ps fwhm should be possible for an energy deposition of 511 keV using currently available photodetectors if a theoretically possible scintillator were developed that could produce 10 000 photoelectrons ns-1.

  11. Fundamental Limits of Scintillation Detector Timing Precision

    PubMed Central

    Derenzo, Stephen E.; Choong, Woon-Seng; Moses, William W.

    2014-01-01

    In this paper we review the primary factors that affect the timing precision of a scintillation detector. Monte Carlo calculations were performed to explore the dependence of the timing precision on the number of photoelectrons, the scintillator decay and rise times, the depth of interaction uncertainty, the time dispersion of the optical photons (modeled as an exponential decay), the photodetector rise time and transit time jitter, the leading-edge trigger level, and electronic noise. The Monte Carlo code was used to estimate the practical limits on the timing precision for an energy deposition of 511 keV in 3 mm × 3 mm × 30 mm Lu2SiO5:Ce and LaBr3:Ce crystals. The calculated timing precisions are consistent with the best experimental literature values. We then calculated the timing precision for 820 cases that sampled scintillator rise times from 0 to 1.0 ns, photon dispersion times from 0 to 0.2 ns, photodetector time jitters from 0 to 0.5 ns fwhm, and A from 10 to 10,000 photoelectrons per ns decay time. Since the timing precision R was found to depend on A−1/2 more than any other factor, we tabulated the parameter B, where R = BA−1/2. An empirical analytical formula was found that fit the tabulated values of B with an rms deviation of 2.2% of the value of B. The theoretical lower bound of the timing precision was calculated for the example of 0.5 ns rise time, 0.1 ns photon dispersion, and 0.2 ns fwhm photodetector time jitter. The lower bound was at most 15% lower than leading-edge timing discrimination for A from 10 to 10,000 photoelectrons/ns. A timing precision of 8 ps fwhm should be possible for an energy deposition of 511 keV using currently available photodetectors if a theoretically possible scintillator were developed that could produce 10,000 photoelectrons/ns. PMID:24874216

  12. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, Stephen E.; Moses, William W.

    1991-01-01

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

  13. EXPERIMENTAL AND MONTE CARLO INVESTIGATIONS OF BCF-12 SMALL‑AREA PLASTIC SCINTILLATION DETECTORS FOR NEUTRON PINHOLE CAMERA.

    PubMed

    Bielecki, J; Drozdowicz, K; Dworak, D; Igielski, A; Janik, W; Kulinska, A; Marciniak, L; Scholz, M; Turzanski, M; Wiacek, U; Woznicka, U; Wójcik-Gargula, A

    2017-12-11

    Plastic organic scintillators such as the blue-emitting BCF-12 are versatile and inexpensive tools. Recently, BCF-12 scintillators have been foreseen for investigation of the spatial distribution of neutrons emitted from dense magnetized plasma. For this purpose, small-area (5 mm × 5 mm) detectors based on BCF-12 scintillation rods and Hamamatsu photomultiplier tubes were designed and constructed at the Institute of Nuclear Physics. They will be located inside the neutron pinhole camera of the PF-24 plasma focus device. Two different geometrical layouts and approaches to the construction of the scintillation element were tested. The aim of this work was to determine the efficiency of the detectors. For this purpose, the experimental investigations using a neutron generator and a Pu-Be source were combined with Monte Carlo computations using the Geant4 code. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. The Use of Self-scanned Silicon Photodiode Arrays for Astronomical Spectrophotometry

    NASA Technical Reports Server (NTRS)

    Cochran, A. L.

    1984-01-01

    The use of a Reticon self scanned silicon photodiode array for precision spectrophotometry is discussed. It is shown that internal errors are + or - 0.003 mag. Observations obtained with a photodiode array are compared with observations obtained with other types of detectors with agreement, from 3500 A to 10500 A, of 1%. The photometric properties of self scanned photodiode arrays are discussed. Potential pitfalls are given.

  15. Arrays of Segmented, Tapered Light Guides for Use With Large, Planar Scintillation Detectors

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Vaigneur, Keith; Stolin, Alexander V.; Jaliparthi, Gangadhar

    2015-06-01

    Metabolic imaging techniques can potentially improve detection and diagnosis of cancer in women with radiodense and/or fibrocystic breasts. Our group has previously developed a high-resolution positron emission tomography imaging and biopsy device (PEM-PET) to detect and guide the biopsy of suspicious breast lesions. Initial testing revealed that the imaging field-of-view (FOV) of the scanner was smaller than the physical size of the detector's active area, which could hinder sampling of breast areas close to the chest wall. The purpose of this work was to utilize segmented, tapered light guides for optically coupling the scintillator arrays to arrays of position-sensitive photomultipliers to increase both the active FOV and identification of individual scintillator elements. Testing of the new system revealed that the optics of these structures made it possible to discern detector elements from the complete active area of the detector face. In the previous system the top and bottom rows and left and right columns were not identifiable. Additionally, use of the new light guides increased the contrast of individual detector elements by up to 129%. Improved element identification led to a spatial resolution increase by approximately 12%. Due to attenuation of light in the light guides the detector energy resolution decreased from 18.5% to 19.1%. Overall, these improvements should increase the field-of-view and spatial resolution of the dedicated breast-PET system.

  16. Simple algorithms for digital pulse-shape discrimination with liquid scintillation detectors

    NASA Astrophysics Data System (ADS)

    Alharbi, T.

    2015-01-01

    The development of compact, battery-powered digital liquid scintillation neutron detection systems for field applications requires digital pulse processing (DPP) algorithms with minimum computational overhead. To meet this demand, two DPP algorithms for the discrimination of neutron and γ-rays with liquid scintillation detectors were developed and examined by using a NE213 liquid scintillation detector in a mixed radiation field. The first algorithm is based on the relation between the amplitude of a current pulse at the output of a photomultiplier tube and the amount of charge contained in the pulse. A figure-of-merit (FOM) value of 0.98 with 450 keVee (electron equivalent energy) energy threshold was achieved with this method when pulses were sampled at 250 MSample/s and with 8-bit resolution. Compared to the similar method of charge-comparison this method requires only a single integration window, thereby reducing the amount of computations by approximately 40%. The second approach is a digital version of the trailing-edge constant-fraction discrimination method. A FOM value of 0.84 with an energy threshold of 450 keVee was achieved with this method. In comparison with the similar method of rise-time discrimination this method requires a single time pick-off, thereby reducing the amount of computations by approximately 50%. The algorithms described in this work are useful for developing portable detection systems for applications such as homeland security, radiation dosimetry and environmental monitoring.

  17. TH-C-19A-11: Toward An Optimized Multi-Point Scintillation Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duguay-Drouin, P; Delage, ME; Centre Hospitalier University de Quebec, Quebec, QC

    Purpose: The purpose of this work is to characterize a 2-points mPSDs' optical chain using a spectral analysis to help selecting the optimal components for the detector. Methods: Twenty different 2-points mPSD combinations were built using 4 plastic scintillators (BCF10, BCF12, BCF60, BC430; St-Gobain) and quantum dots (QDs). The scintillator is said to be proximal when near the photodetector, and distal otherwise. A 15m optical fiber (ESKA GH-4001) was coupled to the scintillating component and connected to a spectrometer (Shamrock, Andor and QEPro, OceanOptics). These scintillation components were irradiated at 125kVp; a spectrum for each scintillator was obtained by irradiationmore » of individual scintillator and shielding the second component, thus talking into account light propagation in all components and interfaces. The combined total spectrum was also acquired and involved simultaneous irradiation of the two scintillators for each possible combination. The shape and intensity were characterized. Results: QDs in proximal position absorb almost all the light signal from distal plastic scintillators and emit in its own emission wavelength, with 100% of the signal in the QD range (625–700nm) for the combination BCF12/QD. However, discrimination is possible when QD is in distal position in combination with blue scintillators, total signal being 73% in the blue range (400-550nm) and 27% in QD range. Similar results are obtained with the orange scintillator (BC430). For optimal signal intensity, BCF12 should always be in proximal position, e.g. having 50% more intensity when coupled with BCF60 in distal position (BCF12/BCF60) compared to the BCF60/BCF12 combination. Conclusion: Different combinations of plastic scintillators and QD were built and their emission spectra were studied. We established a preferential order for the scintillating components in the context of an optimized 2-points mPSD. In short, the components with higher wavelength emission

  18. Development of depth encoding small animal PET detectors using dual-ended readout of pixelated scintillator arrays with SiPMs.

    PubMed

    Kuang, Zhonghua; Sang, Ziru; Wang, Xiaohui; Fu, Xin; Ren, Ning; Zhang, Xianming; Zheng, Yunfei; Yang, Qian; Hu, Zhanli; Du, Junwei; Liang, Dong; Liu, Xin; Zheng, Hairong; Yang, Yongfeng

    2018-02-01

    The performance of current small animal PET scanners is mainly limited by the detector performance and depth encoding detectors are required to develop PET scanner to simultaneously achieve high spatial resolution and high sensitivity. Among all depth encoding PET detector approaches, dual-ended readout detector has the advantage to achieve the highest depth of interaction (DOI) resolution and spatial resolution. Silicon photomultiplier (SiPM) is believed to be the photodetector of the future for PET detector due to its excellent properties as compared to the traditional photodetectors such as photomultiplier tube (PMT) and avalanche photodiode (APD). The purpose of this work is to develop high resolution depth encoding small animal PET detector using dual-ended readout of finely pixelated scintillator arrays with SiPMs. Four lutetium-yttrium oxyorthosilicate (LYSO) arrays with 11 × 11 crystals and 11.6 × 11.6 × 20 mm 3 outside dimension were made using ESR, Toray and BaSO 4 reflectors. The LYSO arrays were read out with Hamamatsu 4 × 4 SiPM arrays from both ends. The SiPM array has a pixel size of 3 × 3 mm 2 , 0.2 mm gap in between the pixels and a total active area of 12.6 × 12.6 mm 2 . The flood histograms, DOI resolution, energy resolution and timing resolution of the four detector modules were measured and compared. All crystals can be clearly resolved from the measured flood histograms of all four arrays. The BaSO 4 arrays provide the best and the ESR array provides the worst flood histograms. The DOI resolution obtained from the DOI profiles of the individual crystals of the four array is from 2.1 to 2.35 mm for events with E > 350 keV. The DOI ratio variation among crystals is bigger for the BaSO 4 arrays as compared to both the ESR and Toray arrays. The BaSO 4 arrays provide worse detector based DOI resolution. The photopeak amplitude of the Toray array had the maximum change with depth, it provides the worst energy resolution of

  19. Development of high resolution phoswich depth-of-interaction block detectors utilizing Mg co-doped new scintillators

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takahiro; Yamamoto, Seiichi; Yeom, Jung-Yeol; Kamada, Kei; Yoshikawa, Akira

    2017-12-01

    To correct for parallax error in positron emission tomography (PET), phoswich depth-of-interaction (DOI) detector using multiple scintillators with different decay times is a practical approach. However not many scintillator combinations suitable for phoswich DOI detector have been reported. Ce doped Gd3Ga3Al2O12 (GFAG) is a newly developed promising scintillator for PET detector, which has high density, high light output, appropriate light emission wavelength for silicon-photomultiplier (Si-PM) and faster decay time than that of Ce doped Gd3Al2Ga3O12 (GAGG). In this study, we developed a Si-PM based phoswich DOI block detector of GFAG with GAGG crystal arrays and evaluated its performance. We assembled a GFAG block and a GAGG block and they were optically coupled in depth direction to form a phoswich detector block. The phoswich block was optically coupled to a Si-PM array with a 1 mm thick light guide. The sizes of the GFAG and GAGG pixels were 0.9 mm x 0.9 mm x 7.5 mm and they were arranged into 24 x 24 matrix with 0.1 mm thick BaSO4 as reflector. We conducted the performance evaluation for two types of configurations; GFAG block arranged in upper layer (GFAG/GAGG) and GAGG arranged in upper layer (GAGG/GFAG). The measured two dimensional position histograms of these block detectors showed good separation and pulse shape spectra produced two distinct peaks for both configurations although some difference in energy spectra were observed. These results indicate phoswich block detectors composed of GFAG and GAGG are promising for high resolution DOI PET systems.

  20. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, S.E.; Moses, W.W.

    1991-05-14

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses. 3 figures.

  1. Characteristics of Various Photodiode Structures in CMOS Technology with Monolithic Signal Processing Electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Sourav; Chandratre, V. B.; Sukhwani, Menka

    2011-10-20

    Monolithic optical sensor with readout electronics are needed in optical communication, medical imaging and scintillator based gamma spectroscopy system. This paper presents the design of three different CMOS photodiode test structures and two readout channels in a commercial CMOS technology catering to the need of nuclear instrumentation. The three photodiode structures each of 1 mm{sup 2} with readout electronics are fabricated in 0.35 um, 4 metal, double poly, N-well CMOS process. These photodiode structures are based on available P-N junction of standard CMOS process i.e. N-well/P-substrate, P+/N-well/P-substrate and inter-digitized P+/N-well/P-substrate. The comparisons of typical characteristics among three fabricated photo sensorsmore » are reported in terms of spectral sensitivity, dark current and junction capacitance. Among the three photodiode structures N-well/P-substrate photodiode shows higher spectral sensitivity compared to the other two photodiode structures. The inter-digitized P+/N-well/P-substrate structure has enhanced blue response compared to N-well/P-substrate and P+/N-well/P-substrate photodiode. Design and test results of monolithic readout electronics, for three different CMOS photodiode structures for application related to nuclear instrumentation, are also reported.« less

  2. Near midplane scintillator-based fast ion loss detector on DIII-D.

    PubMed

    Chen, X; Fisher, R K; Pace, D C; García-Muñoz, M; Chavez, J A; Heidbrink, W W; Van Zeeland, M A

    2012-10-01

    A new scintillator-based fast-ion loss detector (FILD) installed near the outer midplane of the plasma has been commissioned on DIII-D. This detector successfully measures coherent fast ion losses produced by fast-ion driven instabilities (≤500 kHz). Combined with the first FILD at ∼45° below the outer midplane [R. K. Fisher, et al., Rev. Sci. Instrum. 81, 10D307 (2010)], the two-detector system measures poloidal variation of losses. The phase space sensitivity of the new detector (gyroradius r(L) ∼ [1.5-8] cm and pitch angle α ∼ [35°-85°]) is calibrated using neutral beam first orbit loss measurements. Since fast ion losses are localized poloidally, having two FILDs at different poloidal locations allows for the study of losses over a wider range of plasma shapes and types of loss orbits.

  3. Alpha/beta pulse shape discrimination in plastic scintillation using commercial scintillation detectors.

    PubMed

    Bagán, H; Tarancón, A; Rauret, G; García, J F

    2010-06-18

    Activity determination in different types of samples is a current need in many different fields. Simultaneously analysing alpha and beta emitters is now a routine option when using liquid scintillation (LS) and pulse shape discrimination. However, LS has an important drawback, the generation of mixed waste. Recently, several studies have shown the capability of plastic scintillation (PS) as an alternative to LS, but no research has been carried out to determine its capability for alpha/beta discrimination. The objective of this study was to evaluate the capability of PS to discriminate alpha/beta emitters on the basis of pulse shape analysis (PSA). The results obtained show that PS pulses had lower energy than LS pulses. As a consequence, a lower detection efficiency, a shift to lower energies and a better discrimination of beta and a worst discrimination of alpha disintegrations was observed for PS. Colour quenching also produced a decrease in the energy of the particles, as well as the effects described above. It is clear that in PS, the discrimination capability was correlated with the energy of the particles detected. Taking into account the discrimination capabilities of PS, a protocol for the measurement and the calculation of alpha and beta activities in mixtures using PS and commercial scintillation detectors has been proposed. The new protocol was applied to the quantification of spiked river water samples containing a pair of radionuclides ((3)H-(241)Am or (90)Sr/(90)Y-(241)Am) in different activity proportions. The relative errors in all determinations were lower than 7%. These results demonstrate the capability of PS to discriminate alpha/beta emitters on the basis of pulse shape and to quantify mixtures without generating mixed waste. 2010 Elsevier B.V. All rights reserved.

  4. Inorganic scintillation detectors based on Eu-activated phosphors for 192Ir brachytherapy

    PubMed Central

    Kertzscher, Gustavo; Beddar, Sam

    2017-01-01

    The availability of real-time treatment verification during high-dose-rate (HDR) brachytherapy is currently limited. Therefore, we studied the luminescence properties of the widely commercially available scintillators using the inorganic materials Eu-activated phosphors Y2O3:Eu, YVO4:Eu, Y2O2S:Eu, and Gd2O2S:Eu to determine whether they could be used to accurately and precisely verify HDR brachytherapy doses in real time. The suitability for HDR brachytherapy of inorganic scintillation detectors (ISDs) based on the 4 Eu-activated phosphors in powder form was determined based on experiments with a 192Ir HDR brachytherapy source. The scintillation intensities of the phosphors were 16 to 134 times greater than that of the commonly used organic plastic scintillator BCF-12. High signal intensities were achieved with an optimized packing density of the phosphor mixture and with a shortened fiber-optic cable. The influence of contaminating Cerenkov and fluorescence light induced in the fiber-optic cable (stem signal) was adequately suppressed by inserting between the fiber-optic cable and the photodetector a 25-nm band-pass filter centered at the emission peak. The spurious photoluminescence signal induced by the stem signal was suppressed by placing a long-pass filter between the scintillation detector volume and the fiber-optic cable. The time-dependent luminescence properties of the phosphors were quantified by measuring the non-constant scintillation during irradiation and the afterglow after the brachytherapy source had retracted. We demonstrated that a mixture of Y2O3:Eu and YVO4:Eu suppressed the time-dependence of the ISDs and that the time-dependence of Y2O2S:Eu and Gd2O2S:Eu introduced large measurement inaccuracies. We conclude that ISDs based on a mixture of Y2O3:Eu and YVO4:Eu are promising candidates for accurate and precise real-time verification technology for HDR BT that is cost effective and straightforward to manufacture. Widespread dissemination of

  5. Inorganic scintillation detectors based on Eu-activated phosphors for 192Ir brachytherapy

    NASA Astrophysics Data System (ADS)

    Kertzscher, Gustavo; Beddar, Sam

    2017-06-01

    The availability of real-time treatment verification during high-dose-rate (HDR) brachytherapy is currently limited. Therefore, we studied the luminescence properties of the widely commercially available scintillators using the inorganic materials Eu-activated phosphors Y2O3:Eu, YVO4:Eu, Y2O2S:Eu, and Gd2O2S:Eu to determine whether they could be used to accurately and precisely verify HDR brachytherapy doses in real time. The suitability for HDR brachytherapy of inorganic scintillation detectors (ISDs) based on the 4 Eu-activated phosphors in powder form was determined based on experiments with a 192Ir HDR brachytherapy source. The scintillation intensities of the phosphors were 16-134 times greater than that of the commonly used organic plastic scintillator BCF-12. High signal intensities were achieved with an optimized packing density of the phosphor mixture and with a shortened fiber-optic cable. The influence of contaminating Cerenkov and fluorescence light induced in the fiber-optic cable (stem signal) was adequately suppressed by inserting between the fiber-optic cable and the photodetector a 25 nm band-pass filter centered at the emission peak. The spurious photoluminescence signal induced by the stem signal was suppressed by placing a long-pass filter between the scintillation detector volume and the fiber-optic cable. The time-dependent luminescence properties of the phosphors were quantified by measuring the non-constant scintillation during irradiation and the afterglow after the brachytherapy source had retracted. We demonstrated that a mixture of Y2O3:Eu and YVO4:Eu suppressed the time-dependence of the ISDs and that the time-dependence of Y2O2S:Eu and Gd2O2S:Eu introduced large measurement inaccuracies. We conclude that ISDs based on a mixture of Y2O3:Eu and YVO4:Eu are promising candidates for accurate and precise real-time verification technology for HDR BT that is cost effective and straightforward to manufacture. Widespread dissemination of this

  6. The research program of the Liquid Scintillation Detector (LSD) in the Mont Blanc Laboratory

    NASA Technical Reports Server (NTRS)

    Dadykin, V. L.; Yakushev, V. F.; Korchagin, P. V.; Korchagin, V. B.; Malgin, A. S.; Ryassny, F. G.; Ryazhskaya, O. G.; Talochkin, V. P.; Zatsepin, G. T.; Badino, G.

    1985-01-01

    A massive (90 tons) liquid scintillation detector (LSD) has been running since October 1984 in the Mont Blanc Laboratory at a depth of 5,200 hg/sq cm of standard rock. The research program of the experiment covers a variety of topics in particle physics and astrophysics. The performance of the detector, the main fields of research are presented and the preliminary results are discussed.

  7. Scintillation detector efficiencies for neutrons in the energy region above 20 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickens, J.K.

    1991-01-01

    The computer program SCINFUL (for SCINtillator FUL1 response) is a program designed to provide a calculated complete pulse-height response anticipated for neutrons being detected by either an NE-213 (liquid) scintillator or an NE-110 (solid) scintillator in the shape of a right circular cylinder. The point neutron source may be placed at any location with respect to the detector, even inside of it. The neutron source may be monoenergetic, or Maxwellian distributed, or distributed between chosen lower and upper bounds. The calculational method uses Monte Carlo techniques, and it is relativistically correct. Extensive comparisons with a variety of experimental data havemore » been made. There is generally overall good agreement (less than 10% differences) of results for SCINFUL calculations with measured integral detector efficiencies for the design incident neutron energy range of 0.1 to 80 MeV. Calculations of differential detector responses, i.e. yield versus response pulse height, are generally within about 5% on the average for incident neutron energies between 16 and 50 MeV and for the upper 70% of the response pulse height. For incident neutron energies between 50 and 80 MeV, the calculated shape of the response agrees with measurements, but the calculations tend to underpredict the absolute values of the measured responses. Extension of the program to compute responses for incident neutron energies greater than 80 MeV will require new experimental data on neutron interactions with carbon. 32 refs., 6 figs., 2 tabs.« less

  8. A fast microchannel plate-scintillator detector for velocity map imaging and imaging mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winter, B.; King, S. J.; Vallance, C., E-mail: claire.vallance@chem.ox.ac.uk

    2014-02-15

    The time resolution achievable using standard position-sensitive ion detectors, consisting of a chevron pair of microchannel plates coupled to a phosphor screen, is primarily limited by the emission lifetime of the phosphor, around 70 ns for the most commonly used P47 phosphor. We demonstrate that poly-para-phenylene laser dyes may be employed extremely effectively as scintillators, exhibiting higher brightness and much shorter decay lifetimes than P47. We provide an extensive characterisation of the properties of such scintillators, with a particular emphasis on applications in velocity-map imaging and microscope-mode imaging mass spectrometry. The most promising of the new scintillators exhibits an electron-to-photonmore » conversion efficiency double that of P47, with an emission lifetime an order of magnitude shorter. The new scintillator screens are vacuum stable and show no signs of signal degradation even over longer periods of operation.« less

  9. An experimental study of antireflective coatings in Ge light detectors for scintillating bolometers

    NASA Astrophysics Data System (ADS)

    Mancuso, M.; Beeman, J. W.; Giuliani, A.; Dumoulin, L.; Olivieri, E.; Pessina, G.; Plantevin, O.; Rusconi, C.; Tenconi, M.

    2014-01-01

    Luminescent bolometers are double-readout devices able to measure simultaneously the phonon and the light yields after a particle interaction in the detector. This operation allows in some cases to tag the type of the interacting quantum, crucial issue for background control in rare event experiments such as the search for neutrinoless double beta decay and for interactions of particle dark matter candidates. The light detectors used in the LUCIFER and LUMINEU searches (projects aiming at the study of the double beta interesting candidates 82Se and 100Mo using ZnSe and ZnMoO4 scintillating bolometers) consist of hyper-pure Ge thin slabs equipped with NTD thermistors. A substantial sensitivity improvement of the Ge light detectors can be obtained applying a proper anti-reflective coatings on the Ge side exposed to the luminescent bolometer. The present paper deals with the investigation of this aspect, proving and quantifying the positive effect of a SiO2 and a SiO coating and setting the experimental bases for future tests of other coating materials. The results confirm that an appropriate coating procedure helps in improving the sensitivity of bolometric light detectors by an important factor (in the range 20% - 35%) and needs to be included in the recipe for the development of an optimized radio-pure scintillating bolometer.

  10. A comparative investigation of Lu2SiO5:Ce and Gd2O2S:Eu powder scintillators for use in x-ray mammography detectors

    NASA Astrophysics Data System (ADS)

    Michail, C. M.; Fountos, G. P.; David, S. L.; Valais, I. G.; Toutountzis, A. E.; Kalyvas, N. E.; Kandarakis, I. S.; Panayiotakis, G. S.

    2009-10-01

    The dominant powder scintillator in most medical imaging modalities for decades has been Gd2O2S:Tb due to the very good intrinsic properties and overall efficiency. Apart from Gd2O2S:Tb, there are alternative powder phosphor scintillators such as Lu2SiO5:Ce and Gd2O2S:Eu that have been suggested for use in various medical imaging modalities. Gd2O2S:Eu emits red light and can be combined mainly with digital mammography detectors such as CCDs. Lu2SiO5:Ce emits blue light and can be combined with blue sensitivity films, photocathodes and some photodiodes. For the purposes of the present study, two scintillating screens, one from Lu2SiO5:Ce and the other from Gd2O2S:Eu powders, were prepared using the method of sedimentation. The screen coating thicknesses were 25.0 and 33.1 mg cm-2 respectively. The screens were investigated by evaluating the following parameters: the output signal, the modulation transfer function, the noise equivalent passband, the informational efficiency, the quantum detection efficiency and the zero-frequency detective quantum efficiency. Furthermore, the spectral compatibility of those materials with various optical detectors was determined. Results were compared to published data for the commercially employed 'Kodak Min-R film-screen system', based on a 31.7 mg cm-2 thick Gd2O2S:Tb phosphor. For Gd2O2S:Eu, MTF data were found comparable to those of Gd2O2S:Tb, while the MTF of Lu2SiO5:Ce was even higher resulting in better spatial resolution and image sharpness properties. On the other hand, Gd2O2S:Eu was found to exhibit higher output signal and zero-frequency detective quantum efficiency than Lu2SiO5:Ce.

  11. X-ray spectrometer with a low-cost SiC photodiode

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Lioliou, G.; Barnett, A. M.

    2018-04-01

    A low-cost Commercial-Off-The-Shelf (COTS) 4H-SiC 0.06 mm2 UV p-n photodiode was coupled to a low-noise charge-sensitive preamplifier and used as photon counting X-ray spectrometer. The photodiode/spectrometer was investigated at X-ray energies from 4.95 keV to 21.17 keV: a Mo cathode X-ray tube was used to fluoresce eight high-purity metal foils to produce characteristic X-ray emission lines which were used to characterise the instrument. The energy resolution (full width at half maximum, FWHM) of the spectrometer was found to be 1.6 keV to 1.8 keV, across the energy range. The energy linearity of the detector/spectrometer (i.e. the detector's charge output per photon as a function of incident photon energy across the 4.95 keV to 21.17 keV energy range), as well as the count rate linearity of the detector/spectrometer (i.e. number of detected photons as a function of photon fluence at a specific energy) were investigated. The energy linearity of the detector/spectrometer was linear with an error < ± 0.7 %; the count rate linearity of the detector/spectrometer was linear with an error < ± 2 %. The use of COTS SiC photodiodes as detectors for X-ray spectrometers is attractive for nanosatellite/CubeSat applications (including solar flare monitoring), and for cost sensitive industrial uses.

  12. SU-F-T-180: Evaluation of a Scintillating Screen Detector for Proton Beam QA and Acceptance Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghebremedhin, A; Taber, M; Koss, P

    2016-06-15

    Purpose: To test the performance of a commercial scintillating screen detector for acceptance testing and Quality Assurance of a proton pencil beam scanning system. Method: The detector (Lexitek DRD 400) has 40cm × 40cm field, uses a thin scintillator imaged onto a 16-bit scientific CCD with ∼0.5mm resolution. A grid target and LED illuminators are provided for spatial calibration and relative gain correction. The detector mounts to the nozzle with micron precision. Tools are provided for image processing and analysis of single or multiple Gaussian spots. Results: The bias and gain of the detector were studied to measure repeatability andmore » accuracy. Gain measurements were taken with the LED illuminators to measure repeatability and variation of the lens-CCD pair as a function with f-stop. Overall system gain was measured with a passive scattering (broad) beam whose shape is calibrated with EDR film placed in front of the scintillator. To create a large uniform field, overlapping small fields were recorded with the detector translated laterally and stitched together to cover the full field. Due to the long exposures required to obtain multiple spills of the synchrotron and very high detector sensitivity, borated polyethylene shielding was added to reduce direct radiation events hitting the CCD. Measurements with a micro ion chamber were compared to the detector’s spot profile. Software was developed to process arrays of Gaussian spots and to correct for radiation events. Conclusion: The detector background has a fixed bias, a small component linear in time, and is easily corrected. The gain correction method was validated with 2% accuracy. The detector spot profile matches the micro ion chamber data over 4 orders of magnitude. The multiple spot analyses can be easily used with plan data for measuring pencil beam uniformity and for regular QA comparison.« less

  13. Silicon avalanche photodiode detector circuit for Nd:YAG laser scattering

    NASA Astrophysics Data System (ADS)

    Hsieh, C. L.; Haskovec, J.; Carlstrom, T. N.; DeBoo, J. C.; Greenfield, C. M.; Snider, R. T.; Trost, P.

    1990-10-01

    A silicon avalanche photodiode with an internal gain of about 50 to 100 is used in a temperature-controlled environment to measure the Nd:YAG laser Thomson scattered spectrum in the wavelength range from 700 to 1150 nm. A charge-sensitive preamplifier has been developed for minimizing the noise contribution from the detector electronics. Signal levels as low as 20 photoelectrons (S/N=1) can be detected. Measurements show that both the signal and the variance of the signal vary linearly with the input light level over the range of interest, indicating Poisson statistics. The signal is processed using a 100 ns delay line and a differential amplifier which subtracts the low-frequency background light component. The background signal is amplified with a computer-controlled variable gain amplifier and is used for an estimate of the measurement error, calibration, and Zeff measurements of the plasma. The signal processing has been analyzed using a theoretical model to aid the system design and establish the procedure for data error analysis.

  14. Air core detectors for Cerenkov-free scintillation dosimetry of brachytherapy β-sources.

    PubMed

    Eichmann, Marion; Thomann, Benedikt

    2017-09-01

    Plastic scintillation detectors are used for dosimetry in small radiation fields with high dose gradients, e.g., provided by β-emitting sources like 106 Ru/ 106 Rh eye plaques. A drawback is a background signal caused by Cerenkov radiation generated by electrons passing the optical fibers (light guides) of this dosimetry system. Common approaches to correct for the Cerenkov signal are influenced by uncertainties resulting from detector positioning and calibration procedures. A different approach to avoid any correction procedure is to suppress the Cerenkov signal by replacing the solid core optical fiber with an air core light guide, previously shown for external beam therapy. In this study, the air core concept is modified and applied to the requirements of dosimetry in brachytherapy, proving its usability for measuring water energy doses in small radiation fields. Three air core detectors with different air core lengths are constructed and their performance in dosimetry for brachytherapy β-sources is compared with a standard two-fiber system, which uses a second fiber for Cerenkov correction. The detector systems are calibrated with a 90 Sr/ 90 Y secondary standard and tested for their angular dependence as well as their performance in depth dose measurements of 106 Ru/ 106 Rh sources. The signal loss relative to the standard detector increases with increasing air core length to a maximum value of 58.3%. At the same time, however, the percentage amount of Cerenkov light in the total signal is reduced from at least 12.1% to a value below 1.1%. There is a linear correlation between induced dose and measured signal current. The air core detectors determine the dose rates for 106 Ru/ 106 Rh sources without any form of correction for the Cerenkov signal. The air core detectors show advantages over the standard two-fiber system especially when measuring in radiation fields with high dose gradients. They can be used as simple one-fiber systems and allow for an almost

  15. Development of an integrated four-channel fast avalanche-photodiode detector system with nanosecond time resolution

    NASA Astrophysics Data System (ADS)

    Li, Zhenjie; Li, Qiuju; Chang, Jinfan; Ma, Yichao; Liu, Peng; Wang, Zheng; Hu, Michael Y.; Zhao, Jiyong; Alp, E. E.; Xu, Wei; Tao, Ye; Wu, Chaoqun; Zhou, Yangfan

    2017-10-01

    A four-channel nanosecond time-resolved avalanche-photodiode (APD) detector system is developed at Beijing Synchrotron Radiation. It uses a single module for signal processing and readout. This integrated system provides better reliability and flexibility for custom improvement. The detector system consists of three parts: (i) four APD sensors, (ii) four fast preamplifiers and (iii) a time-digital-converter (TDC) readout electronics. The C30703FH silicon APD chips fabricated by Excelitas are used as the sensors of the detectors. It has an effective light-sensitive area of 10 × 10 mm2 and an absorption layer thickness of 110 μm. A fast preamplifier with a gain of 59 dB and bandwidth of 2 GHz is designed to readout of the weak signal from the C30703FH APD. The TDC is realized by a Spartan-6 field-programmable-gate-array (FPGA) with multiphase method in a resolution of 1ns. The arrival time of all scattering events between two start triggers can be recorded by the TDC. The detector has been used for nuclear resonant scattering study at both Advanced Photon Source and also at Beijing Synchrotron Radiation Facility. For the X-ray energy of 14.4 keV, the time resolution, the full width of half maximum (FWHM) of the detector (APD sensor + fast amplifier) is 0.86 ns, and the whole detector system (APD sensors + fast amplifiers + TDC readout electronics) achieves a time resolution of 1.4 ns.

  16. New estimates of extensive-air-shower energies on the basis of signals in scintillation detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anyutin, N. V.; Dedenko, L. G., E-mail: ddn@dec1.sinp.msu.ru; Roganova, T. M.

    New formulas for estimating the energy of inclined extensive air showers (EASs) on the basis of signals in detectors by means of an original method and detailed tables of signals induced in scintillation detectors by photons, electrons, positrons, and muons and calculated with the aid of the GEANT4 code package were proposed in terms of the QGSJETII-04, EPOS LHC, and GHEISHA models. The parameters appearing in the proposed formulas were calculated by employing the CORSIKA code package. It is shown that, for showers of zenith angles in the range of 20◦–45◦, the standard constant-intensity-cut method, which is used to interpretmore » data from the Yakutsk EAS array, overestimates the shower energy by a factor of 1.2 to 1.5. It is proposed to employ the calculated VEM (Vertical Equivalent Muon) signal units of 10.8 and 11.4 MeV for, respectively, ground-based and underground scintillation detectors and to take into account the dependence of signals on the azimuthal angle of the detector position and fluctuations in the development of showers.« less

  17. Analytical Calculation of the Lower Bound on Timing Resolution for PET Scintillation Detectors Comprising High-Aspect-Ratio Crystal Elements

    PubMed Central

    Cates, Joshua W.; Vinke, Ruud; Levin, Craig S.

    2015-01-01

    Excellent timing resolution is required to enhance the signal-to-noise ratio (SNR) gain available from the incorporation of time-of-flight (ToF) information in image reconstruction for positron emission tomography (PET). As the detector’s timing resolution improves, so does SNR, reconstructed image quality, and accuracy. This directly impacts the challenging detection and quantification tasks in the clinic. The recognition of these benefits has spurred efforts within the molecular imaging community to determine to what extent the timing resolution of scintillation detectors can be improved and develop near-term solutions for advancing ToF-PET. Presented in this work, is a method for calculating the Cramér-Rao lower bound (CRLB) on timing resolution for scintillation detectors with long crystal elements, where the influence of the variation in optical path length of scintillation light on achievable timing resolution is non-negligible. The presented formalism incorporates an accurate, analytical probability density function (PDF) of optical transit time within the crystal to obtain a purely mathematical expression of the CRLB with high-aspect-ratio (HAR) scintillation detectors. This approach enables the statistical limit on timing resolution performance to be analytically expressed for clinically-relevant PET scintillation detectors without requiring Monte Carlo simulation-generated photon transport time distributions. The analytically calculated optical transport PDF was compared with detailed light transport simulations, and excellent agreement was found between the two. The coincidence timing resolution (CTR) between two 3×3×20 mm3 LYSO:Ce crystals coupled to analogue SiPMs was experimentally measured to be 162±1 ps FWHM, approaching the analytically calculated lower bound within 6.5%. PMID:26083559

  18. Analytical calculation of the lower bound on timing resolution for PET scintillation detectors comprising high-aspect-ratio crystal elements

    NASA Astrophysics Data System (ADS)

    Cates, Joshua W.; Vinke, Ruud; Levin, Craig S.

    2015-07-01

    Excellent timing resolution is required to enhance the signal-to-noise ratio (SNR) gain available from the incorporation of time-of-flight (ToF) information in image reconstruction for positron emission tomography (PET). As the detector’s timing resolution improves, so does SNR, reconstructed image quality, and accuracy. This directly impacts the challenging detection and quantification tasks in the clinic. The recognition of these benefits has spurred efforts within the molecular imaging community to determine to what extent the timing resolution of scintillation detectors can be improved and develop near-term solutions for advancing ToF-PET. Presented in this work, is a method for calculating the Cramér-Rao lower bound (CRLB) on timing resolution for scintillation detectors with long crystal elements, where the influence of the variation in optical path length of scintillation light on achievable timing resolution is non-negligible. The presented formalism incorporates an accurate, analytical probability density function (PDF) of optical transit time within the crystal to obtain a purely mathematical expression of the CRLB with high-aspect-ratio (HAR) scintillation detectors. This approach enables the statistical limit on timing resolution performance to be analytically expressed for clinically-relevant PET scintillation detectors without requiring Monte Carlo simulation-generated photon transport time distributions. The analytically calculated optical transport PDF was compared with detailed light transport simulations, and excellent agreement was found between the two. The coincidence timing resolution (CTR) between two 3× 3× 20 mm3 LYSO:Ce crystals coupled to analogue SiPMs was experimentally measured to be 162+/- 1 ps FWHM, approaching the analytically calculated lower bound within 6.5%.

  19. Advances in the growth of alkaline-earth halide single crystals for scintillator detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boatner, Lynn A; Ramey, Joanne Oxendine; Kolopus, James A

    2014-01-01

    Alkaline-earth scintillators such as strontium iodide and other alkaline-earth halides activated with divalent europium represent some of the most efficient and highest energy resolution scintillators for use as gamma-ray detectors in a wide range of applications. These applications include the areas of nuclear nonproliferation, homeland security, the detection of undeclared nuclear material, nuclear physics and materials science, medical diagnostics, space physics, high energy physics, and radiation monitoring systems for first responders, police, and fire/rescue personnel. Recent advances in the growth of large single crystals of these scintillator materials hold the promise of higher crystal yields and significantly lower detector productionmore » costs. In the present work, we describe new processing protocols that, when combined with our molten salt filtration methods, have led to advances in achieving a significant reduction of cracking effects during the growth of single crystals of SrI2:Eu2+. In particular, we have found that extended pumping on the molten crystal-growth charge under vacuum for time periods extending up to 48 hours is generally beneficial in compensating for variations in the alkaline-earth halide purity and stoichiometry of the materials as initially supplied by commercial sources. These melt-pumping and processing techniques are now being applied to the purification of CaI2:Eu2+ and some mixed-anion europium-doped alkaline-earth halides prior to single-crystal growth by means of the vertical Bridgman technique. The results of initial studies of the effects of aliovalent doping of SrI2:Eu2+ on the scintillation characteristics of this material are also described.« less

  20. Liquid Scintillator Production for the NOvA Experiment

    DOE PAGES

    Mufson, S.; Baugh, B.; Bower, C.; ...

    2015-04-15

    The NOvA collaboration blended and delivered 8.8 kt (2.72M gal) of liquid scintillator as the active detector medium to its near and far detectors. The composition of this scintillator was specifically developed to satisfy NOvA's performance requirements. A rigorous set of quality control procedures was put in place to verify that the incoming components and the blended scintillator met these requirements. The scintillator was blended commercially in Hammond, IN. The scintillator was shipped to the NOvA detectors using dedicated stainless steel tanker trailers cleaned to food grade.

  1. A high-rate 10B-loaded liquid scintillation detector for parity-violation studies in neutron resonances

    NASA Astrophysics Data System (ADS)

    Yen, Yi-Fen; Bowman, J. D.; Bolton, R. D.; Crawford, B. E.; Delheij, P. P. J.; Hart, G. W.; Haseyama, T.; Frankle, C. M.; Iinuma, M.; Knudson, J. N.; Masaike, A.; Masuda, Y.; Matsuda, Y.; Mitchell, G. E.; Penttilä, S. I.; Roberson, N. R.; Seestrom, S. J.; Sharapov, E.; Shimizu, H. M.; Smith, D. A.; Stephenson, S. L.; Szymanski, J. J.; Yoo, S. H.; Yuan, V. W.

    2000-06-01

    We have developed a large-area 10B-loaded liquid scintillation detector for parity-violation studies in neutron resonances with high instantaneous neutron fluxes from the LANSCE short-pulse spallation source. The detector has an efficiency of 95%, 85% and 71% at neutron energies of 10, 100 and 1000 eV, respectively. The neutron mean capture time in the detector is (416±5) ns. We describe the detector and the current-mode signal processing system, that can handle neutron rates up to 500 MHz.

  2. A systematic characterization of the low-energy photon response of plastic scintillation detectors

    NASA Astrophysics Data System (ADS)

    Boivin, Jonathan; Beddar, Sam; Bonde, Chris; Schmidt, Daniel; Culberson, Wesley; Guillemette, Maxime; Beaulieu, Luc

    2016-08-01

    To characterize the low energy behavior of scintillating materials used in plastic scintillation detectors (PSDs), 3 PSDs were developed using polystyrene-based scintillating materials emitting in different wavelengths. These detectors were exposed to National Institute of Standards and Technology (NIST)-matched low-energy beams ranging from 20 kVp to 250 kVp, and to 137Cs and 60Co beams. The dose in polystyrene was compared to the dose in air measured by NIST-calibrated ionization chambers at the same location. Analysis of every beam quality spectrum was used to extract the beam parameters and the effective mass energy-absorption coefficient. Monte Carlo simulations were also performed to calculate the energy absorbed in the scintillators’ volume. The scintillators’ expected response was then compared to the experimental measurements and an energy-dependent correction factor was identified to account for low-energy quenching in the scintillators. The empirical Birks model was then compared to these values to verify its validity for low-energy electrons. The clear optical fiber response was below 0.2% of the scintillator’s light for x-ray beams, indicating that a negligible amount of fluorescence contamination was produced. However, for higher-energy beams (137Cs and 60Co), the scintillators’ response was corrected for the Cerenkov stem effect. The scintillators’ response increased by a factor of approximately 4 from a 20 kVp to a 60Co beam. The decrease in sensitivity from ionization quenching reached a local minimum of about 11%+/- 1% between 40 keV and 60 keV x-ray beam mean energy, but dropped by 20% for very low-energy (13 keV) beams. The Birks model may be used to fit the experimental data, but it must take into account the energy dependence of the kB quenching parameter. A detailed comprehension of intrinsic scintillator response is essential for proper calibration of PSD dosimeters for radiology.

  3. Measurements of the Reactor Antineutrino with Solid State Scintillation Detector

    NASA Astrophysics Data System (ADS)

    Alekseev, I.; Belov, V.; Brudanin, V.; Danilov, M.; Egorov, V.; Filosofov, D.; Fomina, M.; Hons, Z.; Kazartsev, S.; Kobyakin, A.; Kuznetsov, A.; Machikhiliyan, I.; Medvedev, D.; Nesterov, V.; Olshevsky, A.; Pogorelov, N.; Ponomarev, D.; Rozova, I.; Rumyantseva, N.; Rusinov, V.; Salamatin, A.; Samigullin, E.; Shevchik, Ye.; Shirchenko, M.; Shitov, Yu.; Skrobova, N.; Starostin, A.; Svirida, D.; Tarkovsky, E.; Tikhomirov, I.; Vlášek, J.; Zhitnikov, I.; Zinatulina, D.

    Measurements of reactor antineutrino play an important role in the efforts at the frontier of the modern physics. The DANSS collaboration presents preliminary results of a one year run with a cubic meter solid state detector placed below 3.1 GW industrial light water reactor. The experiment is sensitive to sterile neutrino in the most interesting region of mixing parameter space. 2500 scintillation strips of the sensitive volume of the detector have multilayer passive shielding of copper, lead and borated polyethylene and active muon veto. Detector position below the reactor gives an advantage of overburden about 50 m of water equivalent providing factor of six in cosmic muon suppression and eliminating fast neutrons.The detector is placed on a vertically movable platform which allows to change the distance to the reactor core center in the range 10.7-12.7 m within a few minutes. The strips are read out individually by SiPMs and in groups of 50 by PMTs. 5000 inverse beta-decay events per day are collected in the fiducial volume, which is 78% of the whole detector, at the position closest to the reactor. Overburden, active veto and good segmentation of the detector result in an excellent signal to background ratio. The talk is dedicated to the data analysis and preliminary results. The experiment status is also presented.

  4. Calculations and measurements of the scintillator-to-water stopping power ratio of liquid scintillators for use in proton radiotherapy.

    PubMed

    Ingram, W Scott; Robertson, Daniel; Beddar, Sam

    2015-03-11

    Liquid scintillators are a promising detector for high-resolution three-dimensional proton therapy dosimetry. Because the scintillator comprises both the active volume of the detector and the phantom material, an ideal scintillator will exhibit water equivalence in its radiological properties. One of the most fundamental of these is the scintillator's stopping power. The objective of this study was to compare calculations and measurements of scintillator-to-water stopping power ratios to evaluate the suitability of the liquid scintillators BC-531 and OptiPhase HiSafe 3 for proton dosimetry. We also measured the relative scintillation output of the two scintillators. Both calculations and measurements show that the linear stopping power of OptiPhase is significantly closer to water than that of BC-531. BC-531 has a somewhat higher scintillation output. OptiPhase can be mixed with water at high concentrations, which further improves its scintillator-to-water stopping power ratio. However, this causes the solution to become cloudy, which has a negative impact on the scintillation output and spatial resolution of the detector. OptiPhase is preferred over BC-531 for proton dosimetry because its density and scintillator-to-water stopping power ratio are more water equivalent.

  5. Guided-wave photodiode using through-absorber quantum-well-intermixing and methods thereof

    DOEpatents

    Skogen, Erik J.

    2016-10-25

    The present invention includes a high-speed, high-saturation power detector (e.g., a photodiode) compatible with a relatively simple monolithic integration process. In particular embodiments, the photodiode includes an intrinsic bulk absorption region, which is grown above a main waveguide core including a number of quantum wells (QWs) that are used as the active region of a phase modulator. The invention also includes methods of fabricating integrated photodiode and waveguide assemblies using a monolithic, simplified process.

  6. The SNO+ Scintillator Purification Plant and Projected Sensitivity to Solar Neutrinos in the Pure Scintillator Phase

    NASA Astrophysics Data System (ADS)

    Pershing, Teal; SNO+ Collaboration

    2016-03-01

    The SNO+ detector is a neutrino and neutrinoless double-beta decay experiment utilizing the renovated SNO detector. In the second phase of operation, the SNO+ detector will contain 780 tons of organic liquid scintillator composed of 2 g/L 2,5-diphenyloxazole (PPO) in linear alkylbenzene (LAB). In this phase, SNO+ will strive to detect solar neutrinos in the sub-MeV range, including CNO production neutrinos and pp production neutrinos. To achieve the necessary detector sensitivity, a four-part scintillator purification plant has been constructed in SNOLAB for the removal of ionic and radioactive impurities. We present an overview of the SNO+ scintillator purification plant stages, including distillation, water extraction, gas stripping, and metal scavenger columns. We also give the projected SNO+ sensitivities to various solar-produced neutrinos based on the scintillator plant's projected purification efficiency.

  7. Development of a (Hg, Cd)Te photodiode detector, Phase 2. [for 10.6 micron spectral region

    NASA Technical Reports Server (NTRS)

    1972-01-01

    High speed sensitive (Hg,Cd)Te photodiode detectors operating in the 77 to 90 K temperature range have been developed for the 10.6 micron spectral region. P-N junctions formed by impurity (gold) diffusion in p-type (Hg, Cd) Te have been investigated. It is shown that the bandwidth and quantum efficiency of a diode are a constant for a fixed ratio of mobility/lifetime ratio of minority carriers. The minority carrier mobility and lifetime uniquely determine the bandwidth and quantum efficiency and indicate the shallow n on p (Hg,Cd) Te diodes are preferable as high performance, high frequency devices.

  8. Neutron light output response and resolution functions in EJ-309 liquid scintillation detectors

    DOE PAGES

    Enqvist, Andreas; Lawrence, Christopher C.; Wieger, Brian M.; ...

    2013-03-26

    Here, the neutron light output response functions and detector resolution functions were measured at Ohio University's tandem Van de Graaff generator for three cylindrical EJ-309 liquid scintillator cells, having dimensions 12.7(circle divide)-by-12.7, 7.6-by-7.6, and 7.6-by-5.1 cm. A 7.44 MeV deuteron beam was used on an Al-27 target generating a continuous spectrum over the energy range from a few hundred keV to over 10 MeV. The light output response functions are determined using an exponential fit. Detector resolution functions are obtained for the 12.7-by-12.7 and 7.6-by-7.6 cm detectors. It is demonstrated that the dependence on detector size is important for themore » light output response functions, but not to the same extent for the resolution function, even when photomultiplier tubes, detector material, and other detector characteristics are carefully matched.« less

  9. Development and operation of a 6LiF:ZnS(Ag)-scintillating plastic capture-gated detector

    NASA Astrophysics Data System (ADS)

    Wilhelm, K.; Nattress, J.; Jovanovic, I.

    2017-01-01

    We report on the design, construction, and operation of a capture-gated neutron detector based on a heterogeneous scintillating structure comprising two scintillator types. A flat, 500 μm thick sheet composed of a mixture of lithium-6-fluoride capture agent, 6LiF, and zinc sulfide phosphor, ZnS(Ag), is wrapped around scintillating polyvinyl toluene (PVT) in a form of cylinder. The 6LiF: ZnS(Ag) sheet uses an aluminum foil backing as a support for the scintillating material and as an optical reflector, and its optical properties have been characterized independently. The composite scintillator was tested using 252Cf, DD fusion, 137Cs, and 60Co sources. The intrinsic detection efficiency for neutrons from an unmoderated 252Cf source and rejection of gammas from 137Cs were measured to be 3.6 % and 10-6, respectively. A figure of merit for pulse shape discrimination of 4.6 was achieved, and capture-gated spectroscopic analysis is demonstrated.

  10. Predicting the sensitivity of the beryllium/scintillator layer neutron detector using Monte Carlo and experimental response functions.

    PubMed

    Styron, J D; Cooper, G W; Ruiz, C L; Hahn, K D; Chandler, G A; Nelson, A J; Torres, J A; McWatters, B R; Carpenter, Ken; Bonura, M A

    2014-11-01

    A methodology for obtaining empirical curves relating absolute measured scintillation light output to beta energy deposited is presented. Output signals were measured from thin plastic scintillator using NIST traceable beta and gamma sources and MCNP5 was used to model the energy deposition from each source. Combining the experimental and calculated results gives the desired empirical relationships. To validate, the sensitivity of a beryllium/scintillator-layer neutron activation detector was predicted and then exposed to a known neutron fluence from a Deuterium-Deuterium fusion plasma (DD). The predicted and the measured sensitivity were in statistical agreement.

  11. A compact and modular x- and gamma-ray detector with a CsI scintillator and double-readout Silicon Drift Detectors

    NASA Astrophysics Data System (ADS)

    Campana, R.; Fuschino, F.; Labanti, C.; Marisaldi, M.; Amati, L.; Fiorini, M.; Uslenghi, M.; Baldazzi, G.; Bellutti, P.; Evangelista, Y.; Elmi, I.; Feroci, M.; Ficorella, F.; Frontera, F.; Picciotto, A.; Piemonte, C.; Rachevski, A.; Rashevskaya, I.; Rignanese, L. P.; Vacchi, A.; Zampa, G.; Zampa, N.; Zorzi, N.

    2016-07-01

    A future compact and modular X and gamma-ray spectrometer (XGS) has been designed and a series of proto- types have been developed and tested. The experiment envisages the use of CsI scintillator bars read out at both ends by single-cell 25 mm2 Silicon Drift Detectors. Digital algorithms are used to discriminate between events absorbed in the Silicon layer (lower energy X rays) and events absorbed in the scintillator crystal (higher energy X rays and -rays). The prototype characterization is shown and the modular design for future experiments with possible astrophysical applications (e.g. for the THESEUS mission proposed for the ESA M5 call) are discussed.

  12. SU-D-BRC-07: System Design for a 3D Volumetric Scintillation Detector Using SCMOS Cameras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darne, C; Robertson, D; Alsanea, F

    2016-06-15

    Purpose: The purpose of this project is to build a volumetric scintillation detector for quantitative imaging of 3D dose distributions of proton beams accurately in near real-time. Methods: The liquid scintillator (LS) detector consists of a transparent acrylic tank (20×20×20 cm{sup 3}) filled with a liquid scintillator that when irradiated with protons generates scintillation light. To track rapid spatial and dose variations in spot scanning proton beams we used three scientific-complementary metal-oxide semiconductor (sCMOS) imagers (2560×2160 pixels). The cameras collect optical signal from three orthogonal projections. To reduce system footprint two mirrors oriented at 45° to the tank surfaces redirectmore » scintillation light to cameras for capturing top and right views. Selection of fixed focal length objective lenses for these cameras was based on their ability to provide large depth of field (DoF) and required field of view (FoV). Multiple cross-hairs imprinted on the tank surfaces allow for image corrections arising from camera perspective and refraction. Results: We determined that by setting sCMOS to 16-bit dynamic range, truncating its FoV (1100×1100 pixels) to image the entire volume of the LS detector, and using 5.6 msec integration time imaging rate can be ramped up to 88 frames per second (fps). 20 mm focal length lens provides a 20 cm imaging DoF and 0.24 mm/pixel resolution. Master-slave camera configuration enable the slaves to initiate image acquisition instantly (within 2 µsec) after receiving a trigger signal. A computer with 128 GB RAM was used for spooling images from the cameras and can sustain a maximum recording time of 2 min per camera at 75 fps. Conclusion: The three sCMOS cameras are capable of high speed imaging. They can therefore be used for quick, high-resolution, and precise mapping of dose distributions from scanned spot proton beams in three dimensions.« less

  13. Solid-state detector system for measuring concentrations of tritiated water vapour and other radioactive gases

    NASA Astrophysics Data System (ADS)

    Nunes, J. C.; Surette, R. A.; Wood, M. J.

    1999-08-01

    A detector system was built using a silicon photodiode plus preamplifier and a cesium iodide scintillator plus preamplifier that were commercially available. The potential of the system for measuring concentrations of tritiated water vapour in the presence of other radioactive sources was investigated. For purposes of radiation protection, the sensitivity of the detector system was considered too low for measuring tritiated water vapour concentrations in workplaces such as nuclear power plants. Nevertheless, the spectrometry capability of the system was used successfully to differentiate amongst some radioactive gases in laboratory tests. Although this relatively small system can measure radioactive noble gases as well as tritiated water vapour concentrations, its response to photons remains an issue.

  14. Vertical Isolation for Photodiodes in CMOS Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata

    2008-01-01

    In a proposed improvement in complementary metal oxide/semi conduct - or (CMOS) image detectors, two additional implants in each pixel would effect vertical isolation between the metal oxide/semiconductor field-effect transistors (MOSFETs) and the photodiode of the pixel. This improvement is expected to enable separate optimization of the designs of the photodiode and the MOSFETs so as to optimize their performances independently of each other. The purpose to be served by enabling this separate optimization is to eliminate or vastly reduce diffusion cross-talk, thereby increasing sensitivity, effective spatial resolution, and color fidelity while reducing noise.

  15. Digital pulse shape discrimination methods for n-γ separation in an EJ-301 liquid scintillation detector

    NASA Astrophysics Data System (ADS)

    Wan, Bo; Zhang, Xue-Ying; Chen, Liang; Ge, Hong-Lin; Ma, Fei; Zhang, Hong-Bin; Ju, Yong-Qin; Zhang, Yan-Bin; Li, Yan-Yan; Xu, Xiao-Wei

    2015-11-01

    A digital pulse shape discrimination system based on a programmable module NI-5772 has been established and tested with an EJ-301 liquid scintillation detector. The module was operated by running programs developed in LabVIEW, with a sampling frequency up to 1.6 GS/s. Standard gamma sources 22Na, 137Cs and 60Co were used to calibrate the EJ-301 liquid scintillation detector, and the gamma response function was obtained. Digital algorithms for the charge comparison method and zero-crossing method have been developed. The experimental results show that both digital signal processing (DSP) algorithms can discriminate neutrons from γ-rays. Moreover, the zero-crossing method shows better n-γ discrimination at 80 keVee and lower, whereas the charge comparison method gives better results at higher thresholds. In addition, the figure-of-merit (FOM) for detectors of two different dimensions were extracted at 9 energy thresholds, and it was found that the smaller detector presented better n-γ separation for fission neutrons. Supported by National Natural Science Foundation of China (91226107, 11305229) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA03030300)

  16. Single photon detection using Geiger mode CMOS avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Lawrence, William G.; Stapels, Christopher; Augustine, Frank L.; Christian, James F.

    2005-10-01

    Geiger mode Avalanche Photodiodes fabricated using complementary metal-oxide-semiconductor (CMOS) fabrication technology combine high sensitivity detectors with pixel-level auxiliary circuitry. Radiation Monitoring Devices has successfully implemented CMOS manufacturing techniques to develop prototype detectors with active diameters ranging from 5 to 60 microns and measured detection efficiencies of up to 60%. CMOS active quenching circuits are included in the pixel layout. The actively quenched pixels have a quenching time less than 30 ns and a maximum count rate greater than 10 MHz. The actively quenched Geiger mode avalanche photodiode (GPD) has linear response at room temperature over six orders of magnitude. When operating in Geiger mode, these GPDs act as single photon-counting detectors that produce a digital output pulse for each photon with no associated read noise. Thermoelectrically cooled detectors have less than 1 Hz dark counts. The detection efficiency, dark count rate, and after-pulsing of two different pixel designs are measured and demonstrate the differences in the device operation. Additional applications for these devices include nuclear imaging and replacement of photomultiplier tubes in dosimeters.

  17. Solar flare and pulsar detection with small balloon borne scintillator detector

    NASA Astrophysics Data System (ADS)

    Sarkar, Ritabrata; Chakrabarti, Sandip Kumar; Bhowmick, Debashis; Bhattacharya, Arnab

    2016-07-01

    We present radiation measurement data from the Sun and the Crab Pulsar using a very light weight payload comprising a scintillator detector from one of the ongoing missions carried out by Indian Centre for Space Physics, India. This is a unique observation in the sense that the payload containing the detector unit was carried off above the Earth atmosphere using small weather balloons in a very cost effective way and with severe weight constraints. In this Mission we have been able to observe two consecutive solar flares and radiation from the Crab pulsar when the payload was under 30 km altitude. We present a brief description of the mission strategy and the temporal and spectral analysis of the data from those sources.

  18. SU-F-J-51: A Cone-Based Scintillator Detector for IGRT QA for Scattered and Scanning Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oesten, H; Clasie, B; Jee, K

    Purpose: IGRT commissioning and QA are critical components for precise delivery of proton treatment beams to patients. In order to ensure high quality IGRT, a new cone-based scintillator detector was evaluated for our QA activities for double-scattered and scanning proton modalities. This allows a routine evaluation of the gantry-angle dependent position offset between the radiation and imaging. Methods: The cone-based scintillator detector (XRV-124, Logos Systems, Int’l CA, USA) features a unique configuration of measuring stereotactic paths of proton and x-ray beams in a single setup with arbitrary gantry angles. For the beams-eye-view (BEV) analysis of x-ray crosshair images, a cylindricalmore » representation of the cone image was newly developed. The calibration accuracy was evaluated using different CT resolutions for a range of 55 – 95mm in patient’s cranial direction and ±9mm in the lateral direction. Energy-dependent spot sizes (σ) of pencil beams were characterized and compared to measurements by the MatriXX detector (IBA, Germany). Iso-centric deviations between radiation and x-ray imaging were characterized as a function of gantry angle. Results: The position calibration of the detector was successfully verified with a reproducible positioning by x-ray imaging. The measurements were reproducible within clinical tolerances (±1mm). The spot size vs. energy at zero gantry angle measured with the scintillating cone detector agreed with the MatriXX detector measurements within 17%. Conclusion: The new approach to investigate the accuracy of IGRT and pencil beam properties could successfully be implemented into the QA program. The system will improve efficiency in our QA activities for proton treatments.« less

  19. Characterizations of BC501A and BC537 liquid scintillator detectors.

    PubMed

    Qin, Jianguo; Lai, Caifeng; Ye, Bangjiao; Liu, Rong; Zhang, Xinwei; Jiang, Li

    2015-10-01

    Two 2″×2″ liquid scintillator detectors BC537 and BC501A have been characterized for their responses and efficiencies to γ-ray detection. Light output resolution and response functions were derived by least-squares minimization of a simulated response function, fitted to experimental data. The γ-ray response matrix and detection efficiency were simulated with Monte Carlo (MC) methods and validated. For photon energies below 2.4 MeVee, the resolution, as well as the efficiency, of BC501A is better than BC537 scintillator. The situation is reversed when the energy is higher than 2.4 MeVee. BC537 has higher γ-ray detection efficiency than BC501A if the impinging photon energy is more than 2 MeV due to different ratios of C to H/D atoms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. High-pressure plastic scintillation detector for measuring radiogenic gases in flow systems

    NASA Astrophysics Data System (ADS)

    Schell, W. R.; Vives-Batlle, J.; Yoon, S. R.; Tobin, M. J.

    1999-02-01

    Radioactive gases are emitted into the atmosphere from nuclear electric power and nuclear fuel reprocessing plants, from hospitals discarding xenon used in diagnostic medicine, as well as from nuclear weapons tests. A high-pressure plastic scintillation detector was constructed to measure atmospheric levels of such radioactive gases by detecting the beta and internal conversion (IC) electron decays. Operational tests and calibrations were made that permit integration of the flow detectors into a portable Gas Analysis, Separation and Purification system (GASP). The equipment developed can be used for measuring fission gases released from nuclear reactor sources and/or as part of monitoring equipment for enforcing the Comprehensive Test Ban Treaty. The detector is being used routinely for in-line gas separation efficiency measurements, at the elevated operational pressures used for the high-pressure swing analysis system (2070 kPa) and at flow rates of 5-15 l/min [1, 2]. This paper presents the design features, operational methods, calibration, and detector applications.

  1. A silicon avalanche photodiode detector circuit for Nd:YAG laser scattering

    NASA Astrophysics Data System (ADS)

    Hsieh, C.-L.; Haskovec, J.; Carlstrom, T. N.; Deboo, J. C.; Greenfield, C. M.; Snider, R. T.; Trost, P.

    1990-06-01

    A silicon avalanche photodiode with an internal gain of about 50 to 100 is used in a temperature controlled environment to measure the Nd:YAG laser Thomson scattered spectrum in the wavelength range from 700 to 1150 nm. A charge sensitive preamplifier was developed for minimizing the noise contribution from the detector electronics. Signal levels as low as 20 photoelectrons (S/N = 1) can be detected. Measurements show that both the signal and the variance of the signal vary linearly with the input light level over the range of interest, indicating Poisson statistics. The signal is processed using a 100 ns delay line and a differential amplifier which subtracts the low frequency background light component. The background signal is amplified with a computer controlled variable gain amplifier and is used for an estimate of the measurement error, calibration, and Z sub eff measurements of the plasma. The signal processing was analyzed using a theoretical model to aid the system design and establish the procedure for data error analysis.

  2. Improving photoelectron counting and particle identification in scintillation detectors with Bayesian techniques

    NASA Astrophysics Data System (ADS)

    Akashi-Ronquest, M.; Amaudruz, P.-A.; Batygov, M.; Beltran, B.; Bodmer, M.; Boulay, M. G.; Broerman, B.; Buck, B.; Butcher, A.; Cai, B.; Caldwell, T.; Chen, M.; Chen, Y.; Cleveland, B.; Coakley, K.; Dering, K.; Duncan, F. A.; Formaggio, J. A.; Gagnon, R.; Gastler, D.; Giuliani, F.; Gold, M.; Golovko, V. V.; Gorel, P.; Graham, K.; Grace, E.; Guerrero, N.; Guiseppe, V.; Hallin, A. L.; Harvey, P.; Hearns, C.; Henning, R.; Hime, A.; Hofgartner, J.; Jaditz, S.; Jillings, C. J.; Kachulis, C.; Kearns, E.; Kelsey, J.; Klein, J. R.; Kuźniak, M.; LaTorre, A.; Lawson, I.; Li, O.; Lidgard, J. J.; Liimatainen, P.; Linden, S.; McFarlane, K.; McKinsey, D. N.; MacMullin, S.; Mastbaum, A.; Mathew, R.; McDonald, A. B.; Mei, D.-M.; Monroe, J.; Muir, A.; Nantais, C.; Nicolics, K.; Nikkel, J. A.; Noble, T.; O'Dwyer, E.; Olsen, K.; Orebi Gann, G. D.; Ouellet, C.; Palladino, K.; Pasuthip, P.; Perumpilly, G.; Pollmann, T.; Rau, P.; Retière, F.; Rielage, K.; Schnee, R.; Seibert, S.; Skensved, P.; Sonley, T.; Vázquez-Jáuregui, E.; Veloce, L.; Walding, J.; Wang, B.; Wang, J.; Ward, M.; Zhang, C.

    2015-05-01

    Many current and future dark matter and neutrino detectors are designed to measure scintillation light with a large array of photomultiplier tubes (PMTs). The energy resolution and particle identification capabilities of these detectors depend in part on the ability to accurately identify individual photoelectrons in PMT waveforms despite large variability in pulse amplitudes and pulse pileup. We describe a Bayesian technique that can identify the times of individual photoelectrons in a sampled PMT waveform without deconvolution, even when pileup is present. To demonstrate the technique, we apply it to the general problem of particle identification in single-phase liquid argon dark matter detectors. Using the output of the Bayesian photoelectron counting algorithm described in this paper, we construct several test statistics for rejection of backgrounds for dark matter searches in argon. Compared to simpler methods based on either observed charge or peak finding, the photoelectron counting technique improves both energy resolution and particle identification of low energy events in calibration data from the DEAP-1 detector and simulation of the larger MiniCLEAN dark matter detector.

  3. Large surface scintillators as base of impact point detectors and their application in Space Weather

    NASA Astrophysics Data System (ADS)

    Ayuso, Sindulfo; Medina, José; Gómez-Herrero, Raul; José Blanco, Juan; García-Tejedor, Ignacio; García-Población, Oscar; Díaz-Romeral, Gonzalo

    2016-04-01

    The use of a pile of two 100 cm x 100 cm x 5 cm BC-400 organic scintillators is proposed as ground-based cosmic ray detector able to provide directional information on the incident muons. The challenge is to get in real time the muon impact point on the scintillator and its arrival direction using as few Photomultiplier Tubes (PMTs) as possible. The instrument is based on the dependence of attenuation of light with the traversed distance in each scintillator. For the time being, four photomultiplier tubes gather the light through the lateral faces (100 cm x 5 cm) of the scintillator. Several experiments have already been carried out. The results show how data contain information about the muon trajectory through the scintillator. This information can be extracted using the pulse heights collected by the PMTs working in coincidence mode. Reliability and accuracy of results strongly depend on the number of PMTs used and mainly on their appropriate geometrical arrangement with regard to the scintillator. In order to determine the optimal position and the minimum number of PMTs required, a Montecarlo simulation code has been developed. Preliminary experimental and simulation results are presented and the potential of the system for space weather monitoring is discussed.

  4. Detectors for optical communications: A review

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1983-01-01

    Detectors for optical communications in the visible and near infrared regions of the spectrum are reviewed. The three generic types of detectors described are: photomultipliers, photodiodes and avalanche photodiodes. Most of the information is applicable to other optical communications systems.

  5. Development of a scintillating G-GEM detector for a 6-MeV X-band Linac for medical applications

    NASA Astrophysics Data System (ADS)

    Fujiwara, T.; Tanaka, S.; Mitsuya, Y.; Takahashi, H.; Tagi, K.; Kusano, J.; Tanabe, E.; Yamamoto, M.; Nakamura, N.; Dobashi, K.; Tomita, H.; Uesaka, M.

    2013-12-01

    We recently developed glass gas electron multipliers (G-GEMs) with an entirely new process using photo-etchable glass. The photo-etchable glass used for the substrate is called PEG3 (Hoya Corporation). Taking advantage of low outgassing material, we have envisioned a medical application of G-GEMs. A two-dimensional position-sensitive dosimetry system based on a scintillating gas detector is being developed for real-time dose distribution monitoring in X-ray radiation therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside of which G-GEM structures are mounted. Photons produced by the excited Ar/CF4 gas molecules during the gas multiplication in the GEM holes are detected by a mirror-lens-CCD-camera system. We found that the intensity distribution of the measured light spot is proportional to the 2D dose distribution. In this work, we report on the first results from a scintillating G-GEM detector for a position-sensitive X-ray beam dosimeter.

  6. High-symmetry organic scintillator systems

    DOEpatents

    Feng, Patrick L.

    2018-02-06

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  7. High-symmetry organic scintillator systems

    DOEpatents

    Feng, Patrick L.

    2017-07-18

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  8. High-symmetry organic scintillator systems

    DOEpatents

    Feng, Patrick L.

    2017-06-14

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  9. High-symmetry organic scintillator systems

    DOEpatents

    Feng, Patrick L.

    2017-09-05

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  10. Calculations and measurements of the scintillator-to-water stopping power ratio of liquid scintillators for use in proton radiotherapy

    PubMed Central

    Ingram, W. Scott; Robertson, Daniel; Beddar, Sam

    2015-01-01

    Liquid scintillators are a promising detector for high-resolution three-dimensional proton therapy dosimetry. Because the scintillator comprises both the active volume of the detector and the phantom material, an ideal scintillator will exhibit water equivalence in its radiological properties. One of the most fundamental of these is the scintillator’s stopping power. The objective of this study was to compare calculations and measurements of scintillator-to-water stopping power ratios to evaluate the suitability of the liquid scintillators BC-531 and OptiPhase HiSafe 3 for proton dosimetry. We also measured the relative scintillation output of the two scintillators. Both calculations and measurements show that the linear stopping power of OptiPhase is significantly closer to water than that of BC-531. BC-531 has a somewhat higher scintillation output. OptiPhase can be mixed with water at high concentrations, which further improves its scintillator-to-water stopping power ratio. However, this causes the solution to become cloudy, which has a negative impact on the scintillation output and spatial resolution of the detector. OptiPhase is preferred over BC-531 for proton dosimetry because its density and scintillator-to-water stopping power ratio are more water equivalent. PMID:25705066

  11. SU-F-J-50: Study On the Magnetic Field Effect On the Exradin W1 Plastic Scintillation Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Z; Therriault-Proulx, F; Owens, C

    2016-06-15

    Purpose: To study the response of the Exradin W1 plastic scintillator detector to a 6 MV photon field in the presence of a strong magnetic field (B). Methods: An Exradin W1 scintillator detector coupled to a SuperMax two-channel electrometer, both manufactured by Standard Imaging, Inc., was first calibrated in a Co-60 beam. The Cerenkov Light Ratio (CLR) was obtained following the procedure recommended by the manufacturer. Subtracting signal in channel 2 multiplied by CLR from the signal in channel 1 should lead to a Cerenkov-free signal. The W1 scintillator was placed in a plastic phantom inside a dipole electromagnet (GMWmore » Associates) that could produce a strong B field, and irradiated using a 6 MV beam from an Elekta Versa HD LINAC. Signals from both channels of the W1 scintillator were acquired as a function of B (0 - 1.5 T). Results: The signals from both channels increased as a function of the B field strength. At 1.5 T, channel 1 increased by 11% compared to the baseline (B=0 T), while channel 2 increased by 22%. Applying the recommended Cerenkov correction led to a 2% difference between dose measurement with and without a magnetic field. The values between B=0.3 T and B=1.5 T remained constant. Conclusion: Signals from the Exradin W1 plastic scintillation detector increased as the B field increased. This increase mainly comes from a change in the amount of Cerenkov light coupled within the optical fiber. Removing the Cerenkov component following the procedure recommended by the manufacturer showed to be an effective way to measure dose accurately in strong magnetic fields. The cause for the residual 2% difference is currently under investigation. We acknowledge research support from Elekta AB.« less

  12. Comparison of magnetic resonance imaging-compatible optical detectors for in-magnet tissue spectroscopy: photodiodes versus silicon photomultipliers

    PubMed Central

    El-Ghussein, Fadi; Jiang, Shudong; Pogue, Brian W.; Paulsen, Keith D.

    2014-01-01

    Abstract. Tissue spectroscopy inside the magnetic resonance imaging (MRI) system adds a significant value by measuring fast vascular hemoglobin responses or completing spectroscopic identification of diagnostically relevant molecules. Advances in this type of spectroscopy instrumentation have largely focused on fiber coupling into and out of the MRI; however, nonmagnetic detectors can now be placed inside the scanner with signal amplification performed remotely to the high field environment for optimized light detection. In this study, the two possible detector options, such as silicon photodiodes (PD) and silicon photomultipliers (SiPM), were systematically examined for dynamic range and wavelength performance. Results show that PDs offer 108 (160 dB) dynamic range with sensitivity down to 1 pW, whereas SiPMs have 107 (140 dB) dynamic range and sensitivity down to 10 pW. A second major difference is the spectral sensitivity of the two detectors. Here, wavelengths in the 940 nm range are efficiently captured by PDs (but not SiPMs), likely making them the superior choice for broadband spectroscopy guided by MRI. PMID:25006986

  13. Photodetection Characterization of SiPM Technologies for their Application in Scintillator based Neutron Detectors

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Durini, D.; Degenhardt, C.; van Waasen, S.

    2018-01-01

    Small-angle neutron scattering (SANS) experiments have become one of the most important techniques in the investigation of the properties of material on the atomic scale. Until 2001, nearly exclusively 3He-based detectors were used for neutron detection in these experiments, but due to the scarcity of 3He and its steeply rising price, researchers started to look for suitable alternatives. Scintillation based solid state detectors appeared as a prominent alternative. Silicon photomultipliers (SiPM), having single photon resolution, lower bias voltages compared to photomultiplier tubes (PMT), insensitivity to magnetic fields, low cost, possibility of modular design and higher readout rates, have the potential of becoming a photon detector of choice in scintillator based neutron detectors. The major concerns for utilizing the SiPM technology in this kind of applications are the increase in their noise performance and the decrease in their photon detection efficiency (PDE) due to direct exposure to neutrons. Here, a detailed comparative analysis of the PDE performance in the range between UV and NIR parts of the spectra for three different SiPM technologies, before and after irradiation with cold neutrons, has been carried out. For this investigation, one digital and two analog SiPM arrays were irradiated with 5Å wavelength cold neutrons and up to a dose of 6×1012 n/cm2 at the KWS-1 instrument of the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, Germany.

  14. Development of the Fast Scintillation Detector with Programmable High Voltage Adjustment Suitable for Moessbauer Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prochazka, R.; Frydrych, J.; Pechousek, J.

    2010-07-13

    This work is focused on a development of a compact fast scintillation detector suitable for Moessbauer spectroscopy (low energy X-ray/{gamma}-ray detection) where high counting rates are inevitable. Optimization of this part was necessary for a reliable function, better time resolution and to avoid a detector pulses pile-up effect. The pile-up effect decreases the measurement performance, significantly depends on the source activity and also on the pulse duration. Our new detection unit includes a fast scintillation crystal YAP:Ce, an R6095 photomultiplier tube, a high voltage power supply socket C9028-01 assembly, an AD5252 digital potentiometer with an I2C interface and an AD8000more » ultra fast operation preamplifier. The main advantages of this solution lie in a short pulse duration (less than 200 ns), stable operation for high activities, programmable gain of the high voltage supply and compact design in the aluminum housing.« less

  15. Cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS flat panel detector: visibility of simulated microcalcifications.

    PubMed

    Shen, Youtao; Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng; Shaw, Chris C

    2013-10-01

    To measure and investigate the improvement of microcalcification (MC) visibility in cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS/CsI flat panel detector (Dexela 2923, Perkin Elmer). Aluminum wires and calcium carbonate grains of various sizes were embedded in a paraffin cylinder to simulate imaging of calcifications in a breast. Phantoms were imaged with a benchtop experimental cone beam CT system at various exposure levels. In addition to the Dexela detector, a high pitch (50 μm), thin (150 μm) scintillator CMOS/CsI flat panel detector (C7921CA-09, Hamamatsu Corporation, Hamamatsu City, Japan) and a widely used low pitch (194 μm), thick (600 μm) scintillator aSi/CsI flat panel detector (PaxScan 4030CB, Varian Medical Systems) were also used in scanning for comparison. The images were independently reviewed by six readers (imaging physicists). The MC visibility was quantified as the fraction of visible MCs and measured as a function of the estimated mean glandular dose (MGD) level for various MC sizes and detectors. The modulation transfer functions (MTFs) and detective quantum efficiencies (DQEs) were also measured and compared for the three detectors used. The authors have demonstrated that the use of a high pitch (75 μm) CMOS detector coupled with a thick (500 μm) CsI scintillator helped make the smaller 150-160, 160-180, and 180-200 μm MC groups more visible at MGDs up to 10.8, 9, and 10.8 mGy, respectively. It also made the larger 200-212 and 212-224 μm MC groups more visible at MGDs up to 7.2 mGy. No performance improvement was observed for 224-250 μm or larger size groups. With the higher spatial resolution of the Dexela detector based system, the apparent dimensions and shapes of MCs were more accurately rendered. The results show that with the aforementioned detector, a 73% visibility could be achieved in imaging 160-180 μm MCs as compared to 28% visibility achieved by the low pitch (194 μm) aSi/CsI flat

  16. High-symmetry organic scintillator systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Patrick L.

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based onmore » the pulse shapes of the output signals.« less

  17. Development of a novel scintillation-trigger detector for the MTV experiment using aluminum-metallized film tapes

    NASA Astrophysics Data System (ADS)

    Tanaka, S.; Ozaki, S.; Sakamoto, Y.; Tanuma, R.; Yoshida, T.; Murata, J.

    2014-07-01

    A new type of a trigger-scintillation counter array designed for the MTV experiment at TRIUMF-ISAC has been developed, which uses aluminum-metallized film tape for wrapping to achieve the required assembling precision of ±0.5 mm. The MTV experiment uses a cylindrical drift chamber (CDC) as the main electron-tracking detector. The barrel-type trigger counter is placed inside the CDC to generate a trigger signal using 1 mm thick, 300 mm long thin plastic scintillation counters. Detection efficiency and light attenuation compared with conventional wrapping materials are studied.

  18. Multi-layer plastic scintillation detector for intermediate- and high-energy neutrons with n- γ discrimination capability

    NASA Astrophysics Data System (ADS)

    Yu, L.; Terashima, S.; Ong, H. J.; Chan, P. Y.; Tanihata, I.; Iwamoto, C.; Tran, D. T.; Tamii, A.; Aoi, N.; Fujioka, H.; Gey, G.; Sakaguchi, H.; Sakaue, A.; Sun, B. H.; Tang, T. L.; Wang, T. F.; Watanabe, Y. N.; Zhang, G. X.

    2017-09-01

    A new type of neutron detector, named Stack Structure Solid organic Scintillator (S4), consisting of multi-layer plastic scintillators with capability to suppress low-energy γ rays under high-counting rate has been constructed and tested. To achieve n- γ discrimination, we exploit the difference in the ranges of the secondary charged particles produced by the interactions of neutrons and γ rays in the scintillator material. The thickness of a plastic scintillator layer was determined based on the results of Monte Carlo simulations using the Geant4 toolkit. With layer thicknesses of 5 mm, we have achieved a good separation between neutrons and γ rays at 5 MeVee threshold setting. We have also determined the detection efficiencies using monoenergetic neutrons at two energies produced by the d + d → n+3He reaction. The results agree well with the Geant4 simulations implementing the Li e ̀ge Intranuclear Cascade hadronic model (INCL++) and the high-precision model of low-energy neutron interactions (NeutronHP).

  19. SU-C-201-01: Investigation of the Effects of Scintillator Surface Treatment On Light Output Measurements with SiPM Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valenciaga, Y; Prout, D; Chatziioannou, A

    2015-06-15

    Purpose: To examine the effect of different scintillator surface treatments (BGO crystals) on the fraction of scintillation photons that exit the crystal and reach the photodetector (SiPM). Methods: Positron Emission Tomography is based on the detection of light that exits scintillator crystals, after annihilation photons deposit energy inside these crystals. A considerable fraction of the scintillation light gets trapped or absorbed after going through multiple internal reflections on the interfaces surrounding the crystals. BGO scintillator crystals generate considerably less scintillation light than crystals made of LSO and its variants. Therefore, it is crucial that the small amount of light producedmore » by BGO exits towards the light detector. The surface treatment of scintillator crystals is among the factors affecting the ability of scintillation light to reach the detectors. In this study, we analyze the effect of different crystal surface treatments on the fraction of scintillation light that is detected by the solid state photodetector (SiPM), once energy is deposited inside a BGO crystal. Simulations were performed by a Monte Carlo based software named GATE, and validated by measurements from individual BGO crystals coupled to Philips digital-SiPM sensor (DPC-3200). Results: The results showed an increment in light collection of about 4 percent when only the exit face of the BGO crystal, is unpolished; compared to when all the faces are polished. However, leaving several faces unpolished caused a reduction of at least 10 percent of light output when the interaction occurs as far from the exit face of the crystal as possible compared to when it occurs very close to the exit face. Conclusion: This work demonstrates the advantages on light collection from leaving unpolished the exit face of BGO crystals. The configuration with best light output will be used to obtain flood images from BGO crystal arrays coupled to SiPM sensors.« less

  20. Measuring muon-induced neutrons with liquid scintillation detector at Soudan mine

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Mei, D.-M.

    2014-12-01

    We report a direct detection of muon-induced high-energy neutrons with a 12-liter neutron detector fabricated with EJ-301 liquid scintillator operating at Soudan mine for about two years. The detector response to energy from a few MeV up to ˜20 MeV has been calibrated using radioactive sources and cosmic-ray muons. Subsequently, we have calculated the scintillation efficiency for nuclear recoils, up to a few hundred MeV, using Birks' law in the Monte Carlo simulation. Data from an exposure of 655.1 days were analyzed and neutron-induced recoil events were observed in the energy region from 4 to 50 MeV, corresponding to fast neutrons with kinetic energy up to a few hundred MeV, depending on the scattering angle. Combining with the Monte Carlo simulation, the measured muon-induced fast neutron flux is determined to be (2.23 ±0.52 (sta)±0.99 (sys))×10-9 cm-2 s-1 (En >20 MeV ), in a reasonable agreement with the model prediction. The muon flux is found to be (1.65 ±0.02 (sta)±0.1 (sys))×10-7 cm-2 s-1 (Eμ >1 GeV ), consistent with other measurements. As a result, the muon-induced high-energy gamma-ray flux is simulated to be 7.08 ×10-7 cm-2 s-1 (Eγ > 1 MeV ) for the depth of Soudan.

  1. The plastic scintillator detector calibration circuit for DAMPE

    NASA Astrophysics Data System (ADS)

    Yang, Haibo; Kong, Jie; Zhao, Hongyun; Su, Hong

    2016-07-01

    The Dark Matter Particle Explorer (DAMPE) is being constructed as a scientific satellite to observe high energy cosmic rays in space. Plastic scintillator detector array (PSD), developed by Institute of Modern Physics, Chinese Academy of Sciences (IMPCAS), is one of the most important parts in the payload of DAMPE which is mainly used for the study of dark matter. As an anti-coincidence detector, and a charged-particle identification detector, the PSD has a total of 360 electronic readout channels, which are distributed at four sides of PSD using four identical front end electronics (FEE). Each FEE reads out 90 charge signals output by the detector. A special calibration circuit is designed in FEE. FPGA is used for on-line control, enabling the calibration circuit to generate the pulse signal with known charge. The generated signal is then sent to the FEE for calibration and self-test. This circuit mainly consists of DAC, operation amplifier, analog switch, capacitance and resistance. By using controllable step pulse, the charge can be coupled to the charge measuring chip using the small capacitance. In order to fulfill the system's objective of large dynamic range, the FEE is required to have good linearity. Thus, the charge-controllable signal is needed to do sweep test on all channels in order to obtain the non-linear parameters for off-line correction. On the other hand, the FEE will run on the satellite for three years. The changes of the operational environment and the aging of devices will lead to parameter variation of the FEE, highlighting the need for regular calibration. The calibration signal generation circuit also has a compact structure and the ability to work normally, with the PSD system's voltage resolution being higher than 0.6%.

  2. Development of a Scintillation Detector and the Influence on Clinical Imaging

    NASA Astrophysics Data System (ADS)

    Panetta, Joseph Vincent

    The detector is the functional unit within a Positron Emission Tomography (PET) scanner, serving to convert the energy of radiation emitted from a patient into positional information, and as such contributes significantly to the performance of the scanner. Excellent spatial resolution in continuous detectors that are thick has proven difficult to achieve using simple positioning algorithms, leading to research in the field to improve performance. This thesis aims to investigate the effect of modifications to the scintillation light spread within the bulk of the scintillator to improve performance, focusing on the use of laser induced optical barriers (LIOBs) etched within thick continuous crystals, and furthermore aims to translate the effect on detector performance to scanner quantitation in patient studies. The conventional continuous detector is first investigated by analyzing the various components of the detector as well as its limitations. It is seen that the performance of the detector is affected by a number of variables that either cannot be improved or may be improved only at the expense of greater complexity or computing time; these include the photodetector, the positioning algorithm, and Compton scatter in the detector. The performance of the detectors, however, is fundamentally determined by the light spread within the detector, and limited by the depth-dependence of the light spread and poor performance in the entrance region, motivating efforts to modify this aspect of the detector. The feasibility and potential of LIOBs to fine-tune this light spread and improve these limitations is then studied using both experiments and simulations. The behavior of the LIOBs in response to optical light is investigated, and the opacity of the etchings is shown to be dependent on the parameters of the etching procedure. Thick crystals were also etched with LIOBs in their entrance region in a grid pattern in order to improve the resolution in the entrance region

  3. Cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS flat panel detector: Visibility of simulated microcalcifications

    PubMed Central

    Shen, Youtao; Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng; Shaw, Chris C.

    2013-01-01

    Purpose: To measure and investigate the improvement of microcalcification (MC) visibility in cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS/CsI flat panel detector (Dexela 2923, Perkin Elmer). Methods: Aluminum wires and calcium carbonate grains of various sizes were embedded in a paraffin cylinder to simulate imaging of calcifications in a breast. Phantoms were imaged with a benchtop experimental cone beam CT system at various exposure levels. In addition to the Dexela detector, a high pitch (50 μm), thin (150 μm) scintillator CMOS/CsI flat panel detector (C7921CA-09, Hamamatsu Corporation, Hamamatsu City, Japan) and a widely used low pitch (194 μm), thick (600 μm) scintillator aSi/CsI flat panel detector (PaxScan 4030CB, Varian Medical Systems) were also used in scanning for comparison. The images were independently reviewed by six readers (imaging physicists). The MC visibility was quantified as the fraction of visible MCs and measured as a function of the estimated mean glandular dose (MGD) level for various MC sizes and detectors. The modulation transfer functions (MTFs) and detective quantum efficiencies (DQEs) were also measured and compared for the three detectors used. Results: The authors have demonstrated that the use of a high pitch (75 μm) CMOS detector coupled with a thick (500 μm) CsI scintillator helped make the smaller 150–160, 160–180, and 180–200 μm MC groups more visible at MGDs up to 10.8, 9, and 10.8 mGy, respectively. It also made the larger 200–212 and 212–224 μm MC groups more visible at MGDs up to 7.2 mGy. No performance improvement was observed for 224–250 μm or larger size groups. With the higher spatial resolution of the Dexela detector based system, the apparent dimensions and shapes of MCs were more accurately rendered. The results show that with the aforementioned detector, a 73% visibility could be achieved in imaging 160–180 μm MCs as compared to 28% visibility achieved by

  4. Cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS flat panel detector: Visibility of simulated microcalcifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Youtao; Zhong, Yuncheng; Lai, Chao-Jen

    2013-10-15

    Purpose: To measure and investigate the improvement of microcalcification (MC) visibility in cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS/CsI flat panel detector (Dexela 2923, Perkin Elmer).Methods: Aluminum wires and calcium carbonate grains of various sizes were embedded in a paraffin cylinder to simulate imaging of calcifications in a breast. Phantoms were imaged with a benchtop experimental cone beam CT system at various exposure levels. In addition to the Dexela detector, a high pitch (50 μm), thin (150 μm) scintillator CMOS/CsI flat panel detector (C7921CA-09, Hamamatsu Corporation, Hamamatsu City, Japan) and a widelymore » used low pitch (194 μm), thick (600 μm) scintillator aSi/CsI flat panel detector (PaxScan 4030CB, Varian Medical Systems) were also used in scanning for comparison. The images were independently reviewed by six readers (imaging physicists). The MC visibility was quantified as the fraction of visible MCs and measured as a function of the estimated mean glandular dose (MGD) level for various MC sizes and detectors. The modulation transfer functions (MTFs) and detective quantum efficiencies (DQEs) were also measured and compared for the three detectors used.Results: The authors have demonstrated that the use of a high pitch (75 μm) CMOS detector coupled with a thick (500 μm) CsI scintillator helped make the smaller 150–160, 160–180, and 180–200 μm MC groups more visible at MGDs up to 10.8, 9, and 10.8 mGy, respectively. It also made the larger 200–212 and 212–224 μm MC groups more visible at MGDs up to 7.2 mGy. No performance improvement was observed for 224–250 μm or larger size groups. With the higher spatial resolution of the Dexela detector based system, the apparent dimensions and shapes of MCs were more accurately rendered. The results show that with the aforementioned detector, a 73% visibility could be achieved in imaging 160–180 μm MCs as compared to 28% visibility

  5. Photodiodes for ten micrometer laser communication systems

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1972-01-01

    The performance is discussed of 10-micron mercury-cadmiumtelluride and lead-tin-telluride photodiodes in laser heterodyne communication systems. The dependence of detector quantum efficiency, resistance, frequency response, and signal-to-noise ratio on temperature, bias, and local oscillator power are examined. Included in the discussion is an analysis of the feasibility of high temperature operation, and ability of the detector to dissipate power to a heat sink is explored. Some aspects of direct detection response are considered and figures showing flux levels from a blackbody presented.

  6. Investigation of three-dimensional localisation of radioactive sources using a fast organic liquid scintillator detector

    NASA Astrophysics Data System (ADS)

    Gamage, K. A. A.; Joyce, M. J.; Taylor, G. C.

    2013-04-01

    In this paper we discuss the possibility of locating radioactive sources in space using a scanning-based method, relative to the three-dimensional location of the detector. The scanning system comprises an organic liquid scintillator detector, a tungsten collimator and an adjustable equatorial mount. The detector output is connected to a bespoke fast digitiser (Hybrid Instruments Ltd., UK) which streams digital samples to a personal computer. A radioactive source has been attached to a vertical wall and the data have been collected in two stages. In the first case, the scanning system was placed a couple of metres away from the wall and in the second case it moved few centimetres from the previous location, parallel to the wall. In each case data were collected from a grid of measurement points (set of azimuth angles for set of elevation angles) which covered the source on the wall. The discrimination of fast neutrons and gamma rays, detected by the organic liquid scintillator detector, is carried out on the basis of pulse gradient analysis. Images are then produced in terms of the angular distribution of events for total counts, gamma rays and neutrons for both cases. The three-dimensional location of the neutron source can be obtained by considering the relative separation of the centres of the corresponding images of angular distribution of events. The measurements have been made at the National Physical Laboratory, Teddington, Middlesex, UK.

  7. Gamma-gamma coincidence performance of LaBr 3:Ce scintillation detectors vs HPGe detectors in high count-rate scenarios

    DOE PAGES

    Drescher, A.; Yoho, M.; Landsberger, S.; ...

    2017-01-15

    In this study, a radiation detection system consisting of two cerium doped lanthanum bromide (LaBr 3:Ce) scintillation detectors in a gamma-gamma coincidence configuration has been used to demonstrate the advantages that coincident detection provides relative to a single detector, and the advantages that LaBr 3:Ce detectors provide relative to high purity germanium (HPGe) detectors. Signal to noise ratios of select photopeak pairs for these detectors have been compared to high-purity germanium (HPGe) detectors in both single and coincident detector configurations in order to quantify the performance of each detector configuration. The efficiency and energy resolution of LaBr 3:Ce detectors havemore » been determined and compared to HPGe detectors. Coincident gamma-ray pairs from the radionuclides 152Eu and 133Ba have been identified in a sample that is dominated by 137Cs. Gamma-gamma coincidence successfully reduced the Compton continuum from the large 137Cs peak, revealed several coincident gamma energies characteristic of these nuclides, and improved the signal-to-noise ratio relative to single detector measurements. LaBr 3:Ce detectors performed at count rates multiple times higher than can be achieved with HPGe detectors. The standard background spectrum consisting of peaks associated with transitions within the LaBr 3:Ce crystal has also been significantly reduced. Finally, it is shown that LaBr 3:Ce detectors have the unique capability to perform gamma-gamma coincidence measurements in very high count rate scenarios, which can potentially benefit nuclear safeguards in situ measurements of spent nuclear fuel.« less

  8. Gamma-gamma coincidence performance of LaBr 3:Ce scintillation detectors vs HPGe detectors in high count-rate scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drescher, A.; Yoho, M.; Landsberger, S.

    In this study, a radiation detection system consisting of two cerium doped lanthanum bromide (LaBr 3:Ce) scintillation detectors in a gamma-gamma coincidence configuration has been used to demonstrate the advantages that coincident detection provides relative to a single detector, and the advantages that LaBr 3:Ce detectors provide relative to high purity germanium (HPGe) detectors. Signal to noise ratios of select photopeak pairs for these detectors have been compared to high-purity germanium (HPGe) detectors in both single and coincident detector configurations in order to quantify the performance of each detector configuration. The efficiency and energy resolution of LaBr 3:Ce detectors havemore » been determined and compared to HPGe detectors. Coincident gamma-ray pairs from the radionuclides 152Eu and 133Ba have been identified in a sample that is dominated by 137Cs. Gamma-gamma coincidence successfully reduced the Compton continuum from the large 137Cs peak, revealed several coincident gamma energies characteristic of these nuclides, and improved the signal-to-noise ratio relative to single detector measurements. LaBr 3:Ce detectors performed at count rates multiple times higher than can be achieved with HPGe detectors. The standard background spectrum consisting of peaks associated with transitions within the LaBr 3:Ce crystal has also been significantly reduced. Finally, it is shown that LaBr 3:Ce detectors have the unique capability to perform gamma-gamma coincidence measurements in very high count rate scenarios, which can potentially benefit nuclear safeguards in situ measurements of spent nuclear fuel.« less

  9. Fast neutron measurement at Soudan Mine using a large liquid scintillation detector

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Mei, Dongming

    2014-03-01

    Characterizing neutron background is extremely important to the success of rare-event physics searching for neutrinoless double-beta decay and dark matter searches. Measuring the energy spectrum of fast neutrons for an underground laboratory is difficult and it requires intensive R&D for a given technology. EJ-301 liquid scintillator(known also as NE-213) is implemented as the target for a 12 liter neutron detector fabricated at the University of South Dakota. The light output response to atmospheric neutrons from a few MeV up to ~ 70 MeV has been calibrated for this detector. The detector has been taking data at Soudan Mine for over two years. We report the measured muon-induced neutrons in this paper. This work is supported in part by NSF PHY-0758120, PHYS-0919278, PHYS-0758120, PHYS-1242640, DOE grant DE-FG02-10ER46709, the Office of Research at the University of South Dakota and a 2010 research center support by the State of South Dakota.

  10. ScintSim1: A new Monte Carlo simulation code for transport of optical photons in 2D arrays of scintillation detectors.

    PubMed

    Mosleh-Shirazi, Mohammad Amin; Zarrini-Monfared, Zinat; Karbasi, Sareh; Zamani, Ali

    2014-01-01

    Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all <1%. The results validate the accuracy of the new code, which is a useful tool in scintillation detector optimization.

  11. Advanced Scintillator Detectors for Neutron Imaging in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Geppert-Kleinrath, Verena; Danly, Christopher; Merrill, Frank; Simpson, Raspberry; Volegov, Petr; Wilde, Carl

    2016-10-01

    The neutron imaging team at Los Alamos National Laboratory (LANL) has been providing two-dimensional neutron imaging of the inertial confinement fusion process at the National Ignition Facility (NIF) for over five years. Neutron imaging is a powerful tool in which position-sensitive detectors register neutrons emitted in the fusion reactions, producing a picture of the burning fuel. Recent images have revealed possible multi-dimensional asymmetries, calling for additional views to facilitate three-dimensional imaging. These will be along shorter lines of sight to stay within the existing facility at NIF. In order to field imaging capabilities equivalent to the existing system several technological challenges have to be met: high spatial resolution, high light output, and fast scintillator response to capture lower-energy neutrons, which have scattered from non-burning regions of fuel. Deuterated scintillators are a promising candidate to achieve the timing and resolution required; a systematic study of deuterated and non-deuterated polystyrene and liquid samples is currently ongoing. A test stand has been implemented to measure the response function, and preliminary data on resolution and light output have been obtained at the LANL Weapons Neutrons Research facility.

  12. MODELING TIME DISPERSION DUE TO OPTICAL PATH LENGTH DIFFERENCES IN SCINTILLATION DETECTORS*

    PubMed Central

    Moses, W.W.; Choong, W.-S.; Derenzo, S.E.

    2015-01-01

    We characterize the nature of the time dispersion in scintillation detectors caused by path length differences of the scintillation photons as they travel from their generation point to the photodetector. Using Monte Carlo simulation, we find that the initial portion of the distribution (which is the only portion that affects the timing resolution) can usually be modeled by an exponential decay. The peak amplitude and decay time depend both on the geometry of the crystal, the position within the crystal that the scintillation light originates from, and the surface finish. In a rectangular parallelpiped LSO crystal with 3 mm × 3 mm cross section and polished surfaces, the decay time ranges from 10 ps (for interactions 1 mm from the photodetector) up to 80 ps (for interactions 50 mm from the photodetector). Over that same range of distances, the peak amplitude ranges from 100% (defined as the peak amplitude for interactions 1 mm from the photodetector) down to 4% for interactions 50 mm from the photodetector. Higher values for the decay time are obtained for rough surfaces, but the exact value depends on the simulation details. Estimates for the decay time and peak amplitude can be made for different cross section sizes via simple scaling arguments. PMID:25729464

  13. Modeling Time Dispersion Due to Optical Path Length Differences in Scintillation Detectors

    DOE PAGES

    Moses, W. W.; Choong, W. -S.; Derenzo, S. E.

    2014-08-20

    In this paper, we characterize the nature of the time dispersion in scintillation detectors caused by path length differences of the scintillation photons as they travel from their generation point to the photodetector. Using Monte Carlo simulation, we find that the initial portion of the distribution (which is the only portion that affects the timing resolution) can usually be modeled by an exponential decay. The peak amplitude and decay time depend both on the geometry of the crystal, the position within the crystal that the scintillation light originates from, and the surface finish. In a rectangular parallelpiped LSO crystal withmore » 3 mm × 3 mm cross section and polished surfaces, the decay time ranges from 10 ps (for interactions 1 mm from the photodetector) up to 80 ps (for interactions 50 mm from the photodetector). Over that same range of distances, the peak amplitude ranges from 100% (defined as the peak amplitude for interactions 1 mm from the photodetector) down to 4% for interactions 50 mm from the photodetector. Higher values for the decay time are obtained for rough surfaces, but the exact value depends on the simulation details. Finally, estimates for the decay time and peak amplitude can be made for different cross section sizes via simple scaling arguments.« less

  14. Studying radiation hardness of a cadmium tungstate crystal based radiation detector

    NASA Astrophysics Data System (ADS)

    Shtein, M. M.; Smekalin, L. F.; Stepanov, S. A.; Zatonov, I. A.; Tkacheva, T. V.; Usachev, E. Yu

    2016-06-01

    The given article considers radiation hardness of an X-ray detector used in production of non-destructive testing instruments and inspection systems. In the course of research, experiments were carried out to estimate radiation hardness of a detector based on cadmium tungstate crystal and its structural components individually. The article describes a layout of an experimental facility that was used for measurements of radiation hardness. The radiation dose dependence of the photodiode current is presented, when it is excited by a light flux of a scintillator or by an external light source. Experiments were carried out to estimate radiation hardness of two types of optical glue used in detector production; they are based on silicon rubber and epoxy. With the help of a spectrophotometer and cobalt gun, each of the glue samples was measured for a relative light transmission factor with different wavelengths, depending on the radiation dose. The obtained data are presented in a comprehensive analysis of the results. It was determined, which of the glue samples is most suitable for production of detectors working under exposure to strong radiation.

  15. Development of InP solid state detector and liquid scintillator containing metal complex for measurement of pp/7Be solar neutrinos and neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Fukuda, Yoshiyuki; Moriyama, Shigetaka

    2012-07-01

    A large volume solid state detector using a semi-insulating Indium Phosphide (InP) wafer have been developed for measurement of pp/7Be solar neutrinos. Basic performance such as the charge collection efficiency and the energy resolution were measured by 60% and 20%, respectively. In order to detect two gammas (115keV and 497keV) from neutrino capture, we have designed hybrid detector which consist InP detector and liquid xenon scintillator for IPNOS experiment. New InP detector with thin electrode (Cr 50Å- Au 50Å). For another possibility, an organic liquid scintillator containing indium complex and zirconium complex were studied for a measurement of low energy solar neutrinos and neutrinosless double beta decay, respectively. Benzonitrile was chosen as a solvent because of good solubility for the quinolinolato complexes (2 wt%) and of good light yield for the scintillation induced by gamma-ray irradiation. The photo-luminescence emission spectra of InQ3 and ZrQ4 in benzonitrile was measured and liquid scintillator cocktail using InQ3 and ZrQ4 (50mg) in benzonitrile solutions (20 mL) with secondary scintillators with PPO (100mg) and POPOP (10mg) was made. The energy spectra of incident gammas were measured, and they are first results of the gamma-ray energy spectra using luminescent of metal complexes.

  16. The light-yield response of a NE-213 liquid-scintillator detector measured using 2-6 MeV tagged neutrons

    NASA Astrophysics Data System (ADS)

    Scherzinger, J.; Al Jebali, R.; Annand, J. R. M.; Fissum, K. G.; Hall-Wilton, R.; Kanaki, K.; Lundin, M.; Nilsson, B.; Perrey, H.; Rosborg, A.; Svensson, H.

    2016-12-01

    The response of a NE-213 liquid-scintillator detector has been measured using tagged neutrons from 2 to 6 MeV originating from an Am/Be neutron source. The neutron energies were determined using the time-of-flight technique. Pulse-shape discrimination was employed to discern between gamma-rays and neutrons. The behavior of both the fast (35 ns) and the combined fast and slow (475 ns) components of the neutron scintillation-light pulses were studied. Three different prescriptions were used to relate the neutron maximum energy-transfer edges to the corresponding recoil-proton scintillation-light yields, and the results were compared to simulations. The overall normalizations of parametrizations which predict the fast or total light yield of the scintillation pulses were also tested. Our results agree with both existing data and existing parametrizations. We observe a clear sensitivity to the portion and length of the neutron scintillation-light pulse considered.

  17. HgCdTe avalanche photodiodes: A review

    NASA Astrophysics Data System (ADS)

    Singh, Anand; Srivastav, Vanya; Pal, Ravinder

    2011-10-01

    This paper presents a comprehensive review of fundamental issues, device architectures, technology development and applications of HgCdTe based avalanche photodiodes (APD). High gain, above 5×10 3, a low excess noise factor close to unity, THz gain-bandwidth product, and fast response in the range of pico-seconds has been achieved by electron-initiated avalanche multiplication for SWIR, MWIR, and LWIR detector applications involving low optical signals. Detector arrays with good element-to-element uniformity have been fabricated paving the way for fabrication of HgCdTe-APD FPAs.

  18. Beta ray spectroscopy based on a plastic scintillation detector/silicon surface barrier detector coincidence telescope

    NASA Astrophysics Data System (ADS)

    Horowitz, Y. S.; Hirning, C. R.; Yuen, P.; Aikens, M.

    1994-01-01

    Beta radiation is now recognized as a significant radiation safety problem and several international conferences have recently been devoted to the problems of mixed field beta/photon dosimetry. Conventional dosimetry applies algorithms to thermoluminescence dosimetry (TLD) multi-element badges which attempt to extract dose information based on the comparison of TL signals from ``thick/thin'' and/or ``bare/filtered'' elements. These may be grossly innacurate due to inadequate or non-existant knowledge of the energy spectrum of both the beta radiation and the accompanying photon field, as well as other factors. In this paper, we discuss the operation of a beta-ray energy spectrometer based on a two element, E × dE detector telescope intended to support dose algorithms with beta spectral information. Beta energies are measured via a 5 cm diameter × 2 cm thick BC-404 plastic scintillator preceded by a single, 100 μm thick, totally depleted, silicon dE detector. Photon events in the E detector are rejected by requiring a coincidence between the E and dE detectors. Photon rejection ratios vary from 225:1 at 1.25 MeV (60Co) to 360:1 at 0.36 MeV (133Ba). The spectrometer is capable of measuring electron energies from a lower energy coincidence threshold of approximately 125 keV to an upper limit of 3.5 MeV. This energy range spans the great majority of beta-emitting radionuclides in nuclear facilities.

  19. Scintillator materials containing lanthanum fluorides

    DOEpatents

    Moses, William W.

    1991-01-01

    An improved radiation detector containing a crystalline mixture of LaF.sub.3 and CeF.sub.3 as the scintillator element is disclosed. Scintillators made with from 25% to 99.5% LaF.sub.3 and the remainder CeF.sub.3 have been found to provide a balance of good stopping power, high light yield and short decay constant that is equal to or superior to other known scintillator materials, and which may be processed from natural starting materials containing both rare earth elements. The radiation detectors disclosed are favorably suited for use in general purpose detection and in positron emission tomography.

  20. Scintillator materials containing lanthanum fluorides

    DOEpatents

    Moses, W.W.

    1991-05-14

    An improved radiation detector containing a crystalline mixture of LaF[sub 3] and CeF[sub 3] as the scintillator element is disclosed. Scintillators made with from 25% to 99.5% LaF[sub 3] and the remainder CeF[sub 3] have been found to provide a balance of good stopping power, high light yield and short decay constant that is equal to or superior to other known scintillator materials, and which may be processed from natural starting materials containing both rare earth elements. The radiation detectors disclosed are favorably suited for use in general purpose detection and in positron emission tomography. 2 figures.

  1. Imaging characterization of a new gamma ray detector based on CRY019 scintillation crystal for PET and SPECT applications

    NASA Astrophysics Data System (ADS)

    Polito, C.; Pani, R.; Trigila, C.; Cinti, M. N.; Fabbri, A.; Frantellizzi, V.; De Vincentis, G.; Pellegrini, R.; Pani, R.

    2017-02-01

    In the last 40 years, in the field of Molecular Medicine imaging there has been a huge growth in the employment and in the improvement of detectors for PET and SPECT applications in order to reach accurate diagnosis of the diseases. The most important feature required to these detectors is an high quality of images that is usually obtained benefitting from the development of a wide number of new scintillation crystals with high imaging performances. In this contest, features like high detection efficiency, short decay time, great spectral match with photodetectors, absence of afterglow and low costs are surely attractive. However, there are other factors playing an important role in the realization of high quality images such as energy and spatial resolutions, position linearity and contrast resolution. With the aim to realize an high performace gamma ray detector for PET and SPECT applications, this work is focused on the evaluation of the imaging characteristics of a recently developed scintillation crystal, CRY019.

  2. Radiation detection measurements with a new ``Buried Junction'' silicon avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Lecomte, R.; Pepin, C.; Rouleau, D.; Dautet, H.; McIntyre, R. J.; McSween, D.; Webb, P.

    1999-02-01

    An improved version of a recently developed "Buried Junction" avalanche photodiode (APD), designed for use with scintillators, is described and characterized. This device, also called the "Reverse APD", is designed to have a wide depletion layer and thus low capacitance, but to have high gain only for e-h pairs generated within the first few microns of the depletion layer. Thus it has high gain for light from scintillators emitting in the 400-600 nm range, with relatively low dark current noise and it is relatively insensitive to minimum ionizing particles (MIPs). An additional feature is that the metallurgical junction is at the back of the wafer, leaving the front surface free to be coupled to a scintillator without fear of junction contamination. The modifications made in this device, as compared with the earlier diode, have resulted in a lower excess noise factor, lower dark current, and much-reduced trapping. The electrical and optical characteristics of this device are described and measurements of energy and timing resolution of this device with several scintillators (BGO, LSO and GSO) of potential interest in high-energy physics and PET imaging systems are presented.

  3. A PET detector prototype based on digital SiPMs and GAGG scintillators.

    PubMed

    Schneider, Florian R; Shimazoe, Kenji; Somlai-Schweiger, Ian; Ziegler, Sibylle I

    2015-02-21

    Silicon Photomultipliers (SiPM) are interesting light sensors for Positron Emission Tomography (PET). The detector signal of analog SiPMs is the total charge of all fired cells. Energy and time information have to be determined with dedicated readout electronics. Philips Digital Photon Counting has developed a SiPM with added electronics on cell level delivering a digital value of the time stamp and number of fired cells. These so called Digital Photon Counters (DPC) are fully digital devices. In this study, the feasibility of using DPCs in combination with LYSO (Lutetium Yttrium Oxyorthosilicate) and GAGG (Gadolinium Aluminum Gallium Garnet) scintillators for PET is tested. Each DPC module has 64 channels with 3.2 × 3.8775 mm(2), comprising 3200 cells each. GAGG is a recently developed scintillator (Zeff = 54, 6.63 g cm(-3), 520 nm peak emission, 46 000 photons MeV(-1), 88 ns (92%) and 230 ns (8%) decay times, non-hygroscopic, chemically and mechanically stable). Individual crystals of 2 × 2 × 6 mm(3) were coupled onto each DPC pixel. LYSO coupled to the DPC results in a coincidence time resolution (CTR) of 171 ps FWHM and an energy resolution of 12.6% FWHM at 511 keV. Using GAGG, coincidence timing is 310 ps FWHM and energy resolution is 8.5% FWHM. A PET detector prototype with 2 DPCs equipped with a GAGG array matching the pixel size (3.2 × 3.8775 × 8 mm(3)) was assembled. To emulate a ring of 10 modules, objects are rotated in the field of view. CTR of the PET is 619 ps and energy resolution is 9.2% FWHM. The iterative MLEM reconstruction is based on system matrices calculated with an analytical detector response function model. A phantom with rods of different diameters filled with (18)F was used for tomographic tests.

  4. A PET detector prototype based on digital SiPMs and GAGG scintillators

    NASA Astrophysics Data System (ADS)

    Schneider, Florian R.; Shimazoe, Kenji; Somlai-Schweiger, Ian; Ziegler, Sibylle I.

    2015-02-01

    Silicon Photomultipliers (SiPM) are interesting light sensors for Positron Emission Tomography (PET). The detector signal of analog SiPMs is the total charge of all fired cells. Energy and time information have to be determined with dedicated readout electronics. Philips Digital Photon Counting has developed a SiPM with added electronics on cell level delivering a digital value of the time stamp and number of fired cells. These so called Digital Photon Counters (DPC) are fully digital devices. In this study, the feasibility of using DPCs in combination with LYSO (Lutetium Yttrium Oxyorthosilicate) and GAGG (Gadolinium Aluminum Gallium Garnet) scintillators for PET is tested. Each DPC module has 64 channels with 3.2 × 3.8775 mm2, comprising 3200 cells each. GAGG is a recently developed scintillator (Zeff = 54, 6.63 g cm-3, 520 nm peak emission, 46 000 photons MeV-1, 88 ns (92%) and 230 ns (8%) decay times, non-hygroscopic, chemically and mechanically stable). Individual crystals of 2 × 2 × 6 mm3 were coupled onto each DPC pixel. LYSO coupled to the DPC results in a coincidence time resolution (CTR) of 171 ps FWHM and an energy resolution of 12.6% FWHM at 511 keV. Using GAGG, coincidence timing is 310 ps FWHM and energy resolution is 8.5% FWHM. A PET detector prototype with 2 DPCs equipped with a GAGG array matching the pixel size (3.2 × 3.8775 × 8 mm3) was assembled. To emulate a ring of 10 modules, objects are rotated in the field of view. CTR of the PET is 619 ps and energy resolution is 9.2% FWHM. The iterative MLEM reconstruction is based on system matrices calculated with an analytical detector response function model. A phantom with rods of different diameters filled with 18F was used for tomographic tests.

  5. Amplifiers dedicated for large area SiC photodiodes

    NASA Astrophysics Data System (ADS)

    Doroz, P.; Duk, M.; Korwin-Pawlowski, M. L.; Borecki, M.

    2016-09-01

    Large area SiC photodiodes find applications in optoelectronic sensors working at special conditions. These conditions include detection of UV radiation in harsh environment. Moreover, the mentioned sensors have to be selective and resistant to unwanted signals. For this purpose, the modulation of light at source unit and the rejection of constant current and low frequency component of signal at detector unit are used. The popular frequency used for modulation in such sensor is 1kHz. The large area photodiodes are characterized by a large capacitance and low shunt resistance that varies with polarization of the photodiode and can significantly modify the conditions of signal pre-amplification. In this paper two pre-amplifiers topology are analyzed: the transimpedance amplifier and the non-inverting voltage to voltage amplifier with negative feedback. The feedback loops of both pre-amplifiers are equipped with elements used for initial constant current and low frequency signals rejections. Both circuits are analyzed and compared using simulation and experimental approaches.

  6. ScintSim1: A new Monte Carlo simulation code for transport of optical photons in 2D arrays of scintillation detectors

    PubMed Central

    Mosleh-Shirazi, Mohammad Amin; Zarrini-Monfared, Zinat; Karbasi, Sareh; Zamani, Ali

    2014-01-01

    Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all <1%. The results validate the accuracy of the new code, which is a useful tool in scintillation detector optimization. PMID:24600168

  7. ANTS — a simulation package for secondary scintillation Anger-camera type detector in thermal neutron imaging

    NASA Astrophysics Data System (ADS)

    Morozov, A.; Defendi, I.; Engels, R.; Fraga, F. A. F.; Fraga, M. M. F. R.; Guerard, B.; Jurkovic, M.; Kemmerling, G.; Manzin, G.; Margato, L. M. S.; Niko, H.; Pereira, L.; Petrillo, C.; Peyaud, A.; Piscitelli, F.; Raspino, D.; Rhodes, N. J.; Sacchetti, F.; Schooneveld, E. M.; Van Esch, P.; Zeitelhack, K.

    2012-08-01

    A custom and fully interactive simulation package ANTS (Anger-camera type Neutron detector: Toolkit for Simulations) has been developed to optimize the design and operation conditions of secondary scintillation Anger-camera type gaseous detectors for thermal neutron imaging. The simulation code accounts for all physical processes related to the neutron capture, energy deposition pattern, drift of electrons of the primary ionization and secondary scintillation. The photons are traced considering the wavelength-resolved refraction and transmission of the output window. Photo-detection accounts for the wavelength-resolved quantum efficiency, angular response, area sensitivity, gain and single-photoelectron spectra of the photomultipliers (PMTs). The package allows for several geometrical shapes of the PMT photocathode (round, hexagonal and square) and offers a flexible PMT array configuration: up to 100 PMTs in a custom arrangement with the square or hexagonal packing. Several read-out patterns of the PMT array are implemented. Reconstruction of the neutron capture position (projection on the plane of the light emission) is performed using the center of gravity, maximum likelihood or weighted least squares algorithm. Simulation results reproduce well the preliminary results obtained with a small-scale detector prototype. ANTS executables can be downloaded from http://coimbra.lip.pt/~andrei/.

  8. Use of GaN as a Scintillating Ionizing Radiation Detector

    NASA Astrophysics Data System (ADS)

    Wensman, Johnathan; Guardala, Noel; Mathur, Veerendra; Alasagas, Leslie; Vanhoy, Jeffrey; Statham, John; Marron, Daniel; Millett, Marshall; Marsh, Jarrod; Currie, John; Price, Jack

    2017-09-01

    Gallium nitride (GaN) is a III/V direct bandgap semiconductor which has been used in light emitting diodes (LEDs) since the 1990s. Currently, due to a potential for increased efficiency, GaN is being investigated as a replacement for silicon in power electronics finding potential uses ranging from data centers to electric vehicles. In addition to LEDs and power electronics though, doped GaN can be used as a gamma insensitive fast neutron detector due to the direct band-gap, light propagation properties, and response to ionizing radiations. Investigation of GaN as a semiconductor scintillator for use in a radiation detection system involves mapping the response function of the detector crystal over a range of photon and neutron energies, and measurements of light generation in the GaN crystal due to proton, alpha, and nitrogen projectiles. In this presentation we discuss the measurements made to date, and plausible interpretations of the response functions. This work funded in part by the Naval Surface Warfare Center, Carderock Division In-house Laboratory Independent Research program.

  9. Limits on low-energy neutrino fluxes with the Mont Blanc liquid scintillator detector

    NASA Astrophysics Data System (ADS)

    Aglietta, M.; Antonioli, P.; Badino, G.; Bologna, G.; Castagnoli, C.; Castellina, A.; Dadykin, V. L.; Fulgione, W.; Galeotti, P.; Khalchukov, F. F.; Korolkova, E. V.; Kortchaguin, P. V.; Kortchaguin, V. B.; Kudryavtsev, V. A.; Malguin, A. S.; Periale, L.; Ryassny, V. G.; Ryazhskaya, O. G.; Saavedra, O.; Trinchero, G.; Vernetto, S.; Yakushev, V. F.; Zatsepin, G. T.

    1992-11-01

    The LSD liquid scintillation detector has been operating since 1985 as an underground neutrino observatory in the Mont Blanc Laboratory with the main objective of detecting antineutrino bursts from collapsing stars. In August 1988 the construction of an additional lead and borex paraffin shield considerably reduced the radioactive background and increased the sensitivity of the apparatus. In this way the search for steady fluxes of low-energy neutrinos of different flavours through their interactions with free protons and carbon nuclei of the scintillator was made possible. No evidence for a galactic collapse was observed during the whole period of measurement. The corresponding 90% c.l. upper limit on the galactic collapses rate is 0.45 y -1 for a burst duration of ΔT ⩽ 10 s. After analysing the last 3 years data, the following 90% c.l. upper limits on the steady neutrino and antineutrino fluxes were obtained:

  10. Characterisation of a plastic scintillation detector to be used in a multicentre stereotactic radiosurgery dosimetry audit

    NASA Astrophysics Data System (ADS)

    Dimitriadis, A.; Patallo, I. Silvestre; Billas, I.; Duane, S.; Nisbet, A.; Clark, C. H.

    2017-11-01

    Scintillation detectors are considered highly suitable for dosimetric measurement of small fields in radiotherapy due to their near-tissue equivalence and their small size. A commercially available scintillation detector, the Exradin W1 (Standard Imaging, Middleton, USA), has been previously characterised by two independent studies (Beierholm et al., 2014; Carrasco et al., 2015a, 2015b) but the results from these publications differed in some aspects (e.g. energy dependence, long term stability). The respective authors highlighted the need for more studies to be published (Beierholm et al., 2015; Carrasco et al., 2015a, 2015b). In this work, the Exradin W1 was characterised in terms of dose response, dependence on dose rate, energy, temperature and angle of irradiation, and long-term stability. The observed dose linearity, short-term repeatability and temperature dependence were in good agreement with previously published data. Appropriate corrections should therefore be applied, where possible, in order to achieve measurements with low-uncertainty. The angular dependence was characterised along both the symmetrical and polar axis of the detector for the first time in this work and a dose variation of up to 1% was observed. The response of the detector was observed to decrease at a rate of approximately 1.6% kGy-1 for the first 5 kGy delivered, and then stabilised to 0.2% kGy-1 in the subsequent 20 kGy. The main goal of this work was to assess the suitability of the Exradin W1 for use in dose verification measurements for stereotactic radiosurgery. The results obtained confirm that the detector is suitable for use in such situations. The detector is now utilised in a multi-centre stereotactic radiosurgery dosimetric audit, with the application of appropriate correction factors.

  11. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOEpatents

    Neal, John S.; Mihalczo, John T

    2007-10-30

    A system for detecting fissile and fissionable material originating external to the system includes: a .sup.6Li loaded glass fiber scintillator for detecting thermal neutrons, x-rays and gamma rays; a fast scintillator for detecting fast neutrons, x-rays and gamma rays, the fast scintillator conjoined with the glass fiber scintillator such that the fast scintillator moderates fast neutrons prior to their detection as thermal neutrons by the glass fiber scintillator; and a coincidence detection system for processing the time distributions of arriving signals from the scintillators.

  12. Characterization of scintillator materials for fast-ion loss detectors in nuclear fusion reactors

    NASA Astrophysics Data System (ADS)

    Jiménez-Ramos, M. C.; García López, J.; García-Muñoz, M.; Rodríguez-Ramos, M.; Carmona Gázquez, M.; Zurro, B.

    2014-08-01

    In fusion plasma reactors, fast ion generated by heating systems and fusion born particles must be well confined. The presence of magnetohydrodynamic (MHD) instabilities can lead to a significant loss of these ions, which may reduce drastically the heating efficiency and may cause damage to plasma facing components in the vacuum vessel. In order to understand the physics underlying the fast ion loss mechanism, scintillator based detectors have been installed in several fusion devices. In this work we present the absolute photon yield and its degradation with ion fluence in terms of the number of photons emitted per incident ion of several scintillators thin coatings: SrGa2S4:Eu2+ (TG-Green), Y3Al5O12:Ce3+ (P46) and Y2O3:Eu3+ (P56) when irradiated with light ions of different masses (deuterium ions, protons and α-particles) at energies between approximately 575 keV and 3 MeV. The photon yield will be discussed in terms of the energy deposited by the particles into the scintillator. For that, the actual composition and thickness of the thin layers were determined by Rutherford Backscattering Spectrometry (RBS). A collimator with 1 mm of diameter, which defines the beam size for the experiments, placed at the entrance of the chamber. An electrically isolated sample holder biased to +300 V to collect the secondary electrons, connected to a digital current integrator (model 439 by Ortec) to measure the incident beam current. A home made device has been used to store the real-time evolution of the beam current in a computer file allowing the correction of the IL yields due to the current fluctuations. The target holder is a rectangle of 150 × 112 mm2 and can be tilted. The X and Y movements are controlled through stepping motors, which permits a fine control of the beam spot positioning as well as the study of several samples without venting the chamber. A silica optical fiber of 1 mm diameter fixed to the vacuum chamber, which collects the light from the scintillators

  13. Development of a new scintillation-trigger detector for the MTV experiment using aluminum-metallized film tape

    NASA Astrophysics Data System (ADS)

    Sakamoto, Yuko; Ozaki, Sachi; Tanaka, Saki; Tanuma, Ryosuke; Yoshida, Tatsuru; Murata, Jiro

    2014-09-01

    A new type of trigger-scintillation counter array designed for the MTV experiment at TRIUMF-ISAC has been developed, using aluminum-metallized film tape for wrapping. The MTV experiment aims to perform the finest precision test of time reversal symmetry in nuclear beta decay. In that purpose, we search non-zero T-Violating transverse polarization of electrons emitted from polarized Li-8 nuclei. It uses a cylindrical drift chamber (CDC) as the main electron-tracking detector. The trigger-scintillation counter consists of 12-segmented 1 mm thick 300 mm long thin plastic scintillation counters. This counter is placed inside the CDC to generate a trigger signal. The required assembling precision of +-0.5 mm was a tricky point when we tried to use conventional total reflection mode. Indeed, produce an air-layer surrounding the scintillating bar to keep good light transmission was the main issue. For this reason, we tried to use a new wrapping material made of metallized-aluminum tape, which has a good mirror-like reflecting surface on both sides of the tape. Through this report, we will compare detection efficiency and light attenuation between conventional and new wrapping materials.

  14. Calibration and operational data for a compact photodiode detector useful for monitoring the location of moving sources of positron emitting radioisotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsland, M. G.; Dehnel, M. P.; Theroux, J.

    2013-04-19

    D-Pace has developed a compact cost-effective gamma detector system based on technology licensed from TRIUMF. These photodiode detectors are convenient for detecting the presence of positron emitting radioisotopes, particularly for the case of transport of radioisotopes from a PET cyclotron to hotlab, or from one location to another in an automated radiochemistry processing unit. This paper describes recent calibration experiments undertaken at the Turku PET Centre for stationary and moving sources of F18 and C11 in standard setups. The practical diagnostic utility of using several of these devices to track the transport of radioisotopes from the cyclotron to hotlab ismore » illustrated. For example, such a detector system provides: a semi-quantitative indication of total activity, speed of transport, location of any activity lost en route and effectiveness of follow-up system flushes, a means of identifying bolus break-up, feedback useful for deciding when to change out tubing.« less

  15. Scintillator Waveguide For Sensing Radiation

    DOEpatents

    Bliss, Mary; Craig, Richard A.; Reeder; Paul L.

    2003-04-22

    The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.

  16. Scalability, Scintillation Readout and Charge Drift in a Kilogram Scale Solid Xenon Particle Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, J.; Cease, H.; Jaskierny, W. F.

    2014-10-23

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employ a liquid nitrogen cooled cryostat combined with a xenon purification and chiller system to measure the scintillation light output and electron drift speed from both the solid and liquid phases of xenon. Scintillation light output from sealed radioactive sources is measured by a set of high quantum efficiency photomultiplier tubes suitable for cryogenic applications. We observed a reduced amount of photons in solid phase compared to that in liquid phase. We used amore » conventional time projection chamber system to measure the electron drift time in a kilogram of solid xenon and observed faster electron drift speed in the solid phase xenon compared to that in the liquid phase.« less

  17. High energy resolution with transparent ceramic garnet scintillators

    NASA Astrophysics Data System (ADS)

    Cherepy, N. J.; Seeley, Z. M.; Payne, S. A.; Beck, P. R.; Swanberg, E. L.; Hunter, S.; Ahle, L.; Fisher, S. E.; Melcher, C.; Wei, H.; Stefanik, T.; Chung, Y.-S.; Kindem, J.

    2014-09-01

    Breakthrough energy resolution, R(662keV) < 4%, has been achieved with an oxide scintillator, Cerium-doped Gadolinium Yttrium Gallium Aluminum Garnet, or GYGAG(Ce). Transparent ceramic GYGAG(Ce), has a peak emission wavelength of 550 nm that is better matched to Silicon photodetectors than to standard PMTs. We are therefore developing a spectrometer based on pixelated GYGAG(Ce) on a Silicon photodiode array that can provide R(662 keV) = 3.6%. In comparison, with large 1-2 in3 size GYGAG(Ce) ceramics we obtain R(662 keV) = 4.6% with PMT readout. We find that ceramic GYGAG(Ce) of a given stoichiometric chemical composition can exhibit very different scintillation properties, depending on sintering conditions and post-anneal treatments. Among the characteristics of transparent ceramic garnet scintillators that can be controlled by fabrication conditions are: scintillation decay components and their amplitudes, intensity and duration of afterglow, thermoluminescence glow curve peak positions and amplitudes, integrated light yield, light yield non-proportionality - as measured in the Scintillator Light Yield Non-Proportionality Characterization Instrument (SLYNCI), and energy resolution for gamma spectroscopy. Garnet samples exhibiting a significant fraction of Cerium dopant in the tetravalent valence also exhibit: faster overall scintillation decay, very low afterglow, high light yield, but poor light yield proportionality and degraded energy resolution.

  18. The blocking probability of Geiger-mode avalanche photo-diodes

    NASA Technical Reports Server (NTRS)

    Moision, Bruce; Srinivasan, Meera; Hamkins, Jon

    2005-01-01

    When a photo is detected by a Geiger-mode avalanche photo-diode (GMAPD), the detector is rendered inactive, or blocked, for a certain period of time. In this paper we derive the blocking probability for a GMAPD whose input is either an unmodulated, Benoulli modulated or pulse-position-modulated Poisson process.

  19. Compact low-noise preamplifier for noise spectroscopy with biased photodiodes in cargo inspection systems

    NASA Astrophysics Data System (ADS)

    Benetti, Bob; Langeveld, Willem G. J.

    2013-09-01

    Noise Spectroscopy, a.k.a. Z-determination by Statistical Count-rate ANalysis (Z-SCAN), is a statistical technique to determine a quantity called the "noise figure" from digitized waveforms of pulses of transmitted x-rays in cargo inspection systems. Depending only on quantities related to the x-ray energies, it measures a characteristic of the transmitted x-ray spectrum, which depends on the atomic number, Z, of the material penetrated. The noise figure can thus be used for material separation. In an 80-detector prototype, scintillators are used with large-area photodiodes biased at 80V and digitized using 50-MSPS 12-bit ADC boards. We present an ultra-compact low-noise preamplifier design, with one high-gain and one low-gain channel per detector for improved dynamic range. To achieve adequate detection sensitivity and spatial resolution each dual-gain preamplifier channel must fit within a 12.7 mm wide circuit board footprint and maintain adequate noise immunity to conducted and radiated interference from adjacent channels. The novel design included iterative SPICE analysis of transient response, dynamic range, frequency response, and noise analysis to optimize the selection and configuration of amplifiers and filter response. We discuss low-noise active and passive components and low-noise techniques for circuit board layout that are essential to achieving the design goals, and how the completed circuit board performed in comparison to the predicted responses.

  20. Development and Testing of Scintillating Detectors for the Muon g-2 Experiment

    NASA Astrophysics Data System (ADS)

    Martinez, Benjamin; Diamond, Edward; Sblendorio, Alec; Gray, Frederick

    2016-09-01

    The precise value of the muon's anomalous magnetic moment that was measured at Brookhaven National Laboratory E821 differed by more than three standard deviations from predictions of the Standard Model. The Muon g-2 Experiment at Fermilab will attain a more precise measurement by a factor of three by observing the muon spin precession frequency in a magnetic field. This improved measurement could lead to evidence of physics beyond the Standard Model. A thin-scintillator entrance (T0) counter prototype is being tested for possible use in the experiment to determine the intensity and temporal profile of the beam as it is injected into the muon storage ring. The counter is also being evaluated to determine whether it can monitor undesired particles that arrive after the main beam pulse. The unique design of the entrance counter uses a silicon photomultiplier to read the light output from a scintillator. The progress of the design of the T0 entrance counter along with the results of light output tests from a beta source and the SLAC high-energy electron beam are the primary foci of this presentation. The status of scintillating fiber harp beam monitor detectors that will also be used in the g-2 Experiment to detect the position and width of the muon beam will also be presented. This material is based upon work supported by the National Science Foundation under Grant No. PHY-1505887.

  1. Nanophosphor composite scintillator with a liquid matrix

    DOEpatents

    McKigney, Edward Allen; Burrell, Anthony Keiran; Bennett, Bryan L.; Cooke, David Wayne; Ott, Kevin Curtis; Bacrania, Minesh Kantilal; Del Sesto, Rico Emilio; Gilbertson, Robert David; Muenchausen, Ross Edward; McCleskey, Thomas Mark

    2010-03-16

    An improved nanophosphor scintillator liquid comprises nanophosphor particles in a liquid matrix. The nanophosphor particles are optionally surface modified with an organic ligand. The surface modified nanophosphor particle is essentially surface charge neutral, thereby preventing agglomeration of the nanophosphor particles during dispersion in a liquid scintillator matrix. The improved nanophosphor scintillator liquid may be used in any conventional liquid scintillator application, including in a radiation detector.

  2. X-ray detectors in medical imaging

    NASA Astrophysics Data System (ADS)

    Spahn, Martin

    2013-12-01

    Healthcare systems are subject to continuous adaptation, following trends such as the change of demographic structures, the rise of life-style related and chronic diseases, and the need for efficient and outcome-oriented procedures. This also influences the design of new imaging systems as well as their components. The applications of X-ray imaging in the medical field are manifold and have led to dedicated modalities supporting specific imaging requirements, for example in computed tomography (CT), radiography, angiography, surgery or mammography, delivering projection or volumetric imaging data. Depending on the clinical needs, some X-ray systems enable diagnostic imaging while others support interventional procedures. X-ray detector design requirements for the different medical applications can vary strongly with respect to size and shape, spatial resolution, frame rates and X-ray flux, among others. Today, integrating X-ray detectors are in common use. They are predominantly based on scintillators (e.g. CsI or Gd2O2S) and arrays of photodiodes made from crystalline silicon (Si) or amorphous silicon (a-Si) or they employ semiconductors (e.g. Se) with active a-Si readout matrices. Ongoing and future developments of X-ray detectors will include optimization of current state-of-the-art integrating detectors in terms of performance and cost, will enable the usage of large size CMOS-based detectors, and may facilitate photon counting techniques with the potential to further enhance performance characteristics and foster the prospect of new clinical applications.

  3. New perspectives for undoped CaF2 scintillator as a threshold activation neutron detector

    NASA Astrophysics Data System (ADS)

    Sibczynski, Pawel; Dziedzic, Andrzej; Grodzicki, Krystian; Iwanowska-Hanke, Joanna; Moszyński, Marek; Swiderski, Lukasz; Syntfeld-Każuch, Agnieszka; Wolski, Dariusz; Carrel, Frédérick; Grabowski, Amélie; Hamel, Matthieu; Laine, Frederic; Sari, Adrien; Iovene, Alessandro; Tintori, Carlo; Fontana, Cristiano; Pino, Felix

    2018-01-01

    In this paper we present the prompt photofission neutron detection performance of undoped CaF2 scintillator using Threshold Activation Detection (TAD). The study is carried out in the frame of C-BORD Horizon 2020 project, during which an efficient toolbox for high volume freight non-intrusive inspection (NII) is under development. Technologies for radiation monitoring are the part of the project. Particularly, detection of various radiological threats on country borders plays an important significant role in Homeland Security applications. Detection of illegal transfer of Special Nuclear Material (SNM) - 235U, 233U and 239Pu - is particular due to the potential use for production of nuclear weapon as well as radiological dispersal device (RDD) V known also as a "dirty bomb". This technique relies on activation of 19F nuclei in the scintillator medium by fast neutrons and registration of high-energy β particles and γ-rays from the decay of reaction products. The radiation from SNM is detected after irradiation in order to avoid detector blinding. Despite the low 19F(n,α)16N or 19F(n,p)19O reaction cross-section, the method could be a good solution for detection of shielded nuclear material. Results obtained with the CaF2 detector were compared with the previous study done for BaF2 and 3He detector. These experimental results were obtained using 252Cf source and 9 MeV Varian Linatron M9 linear accelerator (LINAC). Finally, performance of the prompt neutron detection system based on CaF2 will be validated at Rotterdam Seaport during field trails in 2018.

  4. Nuclear resonant scattering measurements on (57)Fe by multichannel scaling with a 64-pixel silicon avalanche photodiode linear-array detector.

    PubMed

    Kishimoto, S; Mitsui, T; Haruki, R; Yoda, Y; Taniguchi, T; Shimazaki, S; Ikeno, M; Saito, M; Tanaka, M

    2014-11-01

    We developed a silicon avalanche photodiode (Si-APD) linear-array detector for use in nuclear resonant scattering experiments using synchrotron X-rays. The Si-APD linear array consists of 64 pixels (pixel size: 100 × 200 μm(2)) with a pixel pitch of 150 μm and depletion depth of 10 μm. An ultrafast frontend circuit allows the X-ray detector to obtain a high output rate of >10(7) cps per pixel. High-performance integrated circuits achieve multichannel scaling over 1024 continuous time bins with a 1 ns resolution for each pixel without dead time. The multichannel scaling method enabled us to record a time spectrum of the 14.4 keV nuclear radiation at each pixel with a time resolution of 1.4 ns (FWHM). This method was successfully applied to nuclear forward scattering and nuclear small-angle scattering on (57)Fe.

  5. Pulse Shape Analysis and Discrimination for Silicon-Photomultipliers in Helium-4 Gas Scintillation Neutron Detector

    NASA Astrophysics Data System (ADS)

    Barker, Cathleen; Zhu, Ting; Rolison, Lucas; Kiff, Scott; Jordan, Kelly; Enqvist, Andreas

    2018-01-01

    Using natural helium (helium-4), the Arktis 180-bar pressurized gas scintillator is capable of detecting and distinguishing fast neutrons and gammas. The detector has a unique design of three optically separated segments in which 12 silicon-photomultiplier (SiPM) pairs are positioned equilaterally across the detector to allow for them to be fully immersed in the helium-4 gas volume; consequently, no additional optical interfaces are necessary. The SiPM signals were amplified, shaped, and readout by an analog board; a 250 MHz, 14-bit digitizer was used to examine the output pulses from each SiPMpair channel. The SiPM over-voltage had to be adjusted in order to reduce pulse clipping and negative overshoot, which was observed for events with high scintillation production. Pulse shaped discrimination (PSD) was conducted by evaluating three different parameters: time over threshold (TOT), pulse amplitude, and pulse integral. In order to differentiate high and low energy events, a 30ns gate window was implemented to group pulses from two SiPM channels or more for the calculation of TOT. It was demonstrated that pulses from a single SiPM channel within the 30ns window corresponded to low-energy gamma events while groups of pulses from two-channels or more were most likely neutron events. Due to gamma pulses having lower pulse amplitude, the percentage of measured gamma also depends on the threshold value in TOT calculations. Similarly, the threshold values were varied for the optimal PSD methods of using pulse amplitude and pulse area parameters. Helium-4 detectors equipped with SiPMs are excellent for in-the-field radiation measurement of nuclear spent fuel casks. With optimized PSD methods, the goal of developing a fuel cask content monitoring and inspection system based on these helium-4 detectors will be achieved.

  6. Interplanetary Space Weather Effects on Lunar Reconnaissance Orbiter Avalanche Photodiode Performance

    NASA Technical Reports Server (NTRS)

    Clements, E. B.; Carlton, A. K.; Joyce, C. J.; Schwadron, N. A.; Spence, H. E.; Sun, X.; Cahoy, K.

    2016-01-01

    Space weather is a major concern for radiation-sensitive space systems, particularly for interplanetary missions, which operate outside of the protection of Earth's magnetic field. We examine and quantify the effects of space weather on silicon avalanche photodiodes (SiAPDs), which are used for interplanetary laser altimeters and communications systems and can be sensitive to even low levels of radiation (less than 50 cGy). While ground-based radiation testing has been performed on avalanche photodiode (APDs) for space missions, in-space measurements of SiAPD response to interplanetary space weather have not been previously reported. We compare noise data from the Lunar Reconnaissance Orbiter (LRO) Lunar Orbiter Laser Altimeter (LOLA) SiAPDs with radiation measurements from the onboard Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument. We did not find any evidence to support radiation as the cause of changes in detector threshold voltage during radiation storms, both for transient detector noise and long-term average detector noise, suggesting that the approximately 1.3 cm thick shielding (a combination of titanium and beryllium) of the LOLA detectors is sufficient for SiAPDs on interplanetary missions with radiation environments similar to what the LRO experienced (559 cGy of radiation over 4 years).

  7. X-ray spectroscopy with silicon pin and avalanche photo diodes

    NASA Technical Reports Server (NTRS)

    Desai, U. D.

    1992-01-01

    Results of an evaluation of silicon P-Intrinsic-N (PIN) photodiodes and Avalanche Photodiodes (APD) for the direct detection of soft x rays from 1 to 20 keV and for the detection of scintillation light output from CsI(TI) for higher x ray energies (30 to 1000 keV) are presented. About one keV resolution was achieved at room temperature for both the PIN and APD detectors for soft x rays (1 to 20 keV). Commercially available, low power (18 mV), low noise, hybrid preamplifiers, were used. These photodiodes were also coupled to CsI(TI) scintillator and obtained about 6 resolution at 662 keV. The photodiode frequency response matches well with the emission spectrum of the CsI(TI) scintillator providing good spectral resolution and a higher signal than NaI(TI) when viewed by conventional photomultipliers. A PIN-CsI(TI) combination provides a low energy threshold of around 60 keV while for the APD-CsI(TI) it is 15 keV.

  8. Method of making a scintillator waveguide

    DOEpatents

    Bliss, Mary; Craig, Richard A.; Reeder, Paul L.

    2000-01-01

    The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.

  9. High-Z Sensitized Plastic Scintillators: A Review.

    PubMed

    Hajagos, Tibor Jacob; Liu, Chao; Cherepy, Nerine J; Pei, Qibing

    2018-05-07

    The need for affordable and reliable radiation detectors has prompted significant investment in new radiation detector materials, due to concerns about national security and nuclear nonproliferation. Plastic scintillators provide an affordable approach to large volume detectors, yet their performance for high-energy gamma radiation is severely limited by the small radiation stopping power inherent to their low atomic number. Although some sensitization attempts with organometallics were made in the 1950s to 1960s, the concomitant decrease in light yield has limited the usefulness of these sensitized detectors. Recently, with new knowledge gained during the rapid development of organic optoelectronics and nanotechnology, there has been a revived interest in the field of heavy element sensitized plastic scintillators. Here, the recent efforts on sensitized plastic scintillators are summarized. Basic scintillator physics is first reviewed. The discussion then focuses on two major thrusts in the field: sensitization with: (1) organometallics and (2) oxide and fluoride nanoparticles. The design rationales and major results are examined in detail, with existing limitations and possible future pathways discussed. Special attention is paid to the underlying energy deposition and transfer processes, as these determine the key performance metrics such as light yield and radioluminescence decay lifetime. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Determination of the energy dependence of the BC-408 plastic scintillation detector in medium energy x-ray beams

    NASA Astrophysics Data System (ADS)

    Yücel, H.; Çubukçu, Ş.; Uyar, E.; Engin, Y.

    2014-11-01

    The energy dependence of the response of BC-408 plastic scintillator (PS), an approximately water-equivalent material, has been investigated by employing standardized x-ray beams. IEC RQA and ISO N series x-ray beam qualities, in the range of 40-100 kVp, were calibrated using a PTW-type ionization chamber. The energy response of a thick BC-408 PS detector was measured using the multichannel pulse height analysis method. The response of BC-408 PS increased gradually with increasing energy in the energy range of 40-80 kVp and then showed a flat behavior at about 80 to 120 kVp. This might be due to the self-attenuation of scintillation light by the scintillator itself and may also be partly due to the ionization quenching, leading to a reduction in the intensity of the light output from the scintillator. The results indicated that the sensitivity drop in BC-408 PS material at lower photon energies may be overcome by adding some high-Z elements to its polyvinyltoluene (PVT) base. The material modification may compensate for the drop in the response at lower photon energies. Thus plastic scintillation dosimetry is potentially suitable for applications in diagnostic radiology.

  11. Determination of the energy dependence of the BC-408 plastic scintillation detector in medium energy x-ray beams.

    PubMed

    Yücel, H; Çubukçu, Ş; Uyar, E; Engin, Y

    2014-11-21

    The energy dependence of the response of BC-408 plastic scintillator (PS), an approximately water-equivalent material, has been investigated by employing standardized x-ray beams. IEC RQA and ISO N series x-ray beam qualities, in the range of 40-100 kVp, were calibrated using a PTW-type ionization chamber. The energy response of a thick BC-408 PS detector was measured using the multichannel pulse height analysis method. The response of BC-408 PS increased gradually with increasing energy in the energy range of 40-80 kVp and then showed a flat behavior at about 80 to 120 kVp. This might be due to the self-attenuation of scintillation light by the scintillator itself and may also be partly due to the ionization quenching, leading to a reduction in the intensity of the light output from the scintillator. The results indicated that the sensitivity drop in BC-408 PS material at lower photon energies may be overcome by adding some high-Z elements to its polyvinyltoluene (PVT) base. The material modification may compensate for the drop in the response at lower photon energies. Thus plastic scintillation dosimetry is potentially suitable for applications in diagnostic radiology.

  12. Photonic crystal scintillators and methods of manufacture

    DOEpatents

    Torres, Ricardo D.; Sexton, Lindsay T.; Fuentes, Roderick E.; Cortes-Concepcion, Jose

    2015-08-11

    Photonic crystal scintillators and their methods of manufacture are provided. Exemplary methods of manufacture include using a highly-ordered porous anodic alumina membrane as a pattern transfer mask for either the etching of underlying material or for the deposition of additional material onto the surface of a scintillator. Exemplary detectors utilizing such photonic crystal scintillators are also provided.

  13. MO-F-CAMPUS-T-03: Verification of Range, SOBP Width, and Output for Passive-Scattering Proton Beams Using a Liquid Scintillator Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, T; Robertson, D; Therriault-Proulx, F

    2015-06-15

    Purpose: Liquid scintillators have been shown to provide fast and high-resolution measurements of radiation beams. However, their linear energy transfer-dependent response (quenching) limits their use in proton beams. The purpose of this study was to develop a simple and fast method to verify the range, spread-out Bragg peak (SOBP) width, and output of a passive-scattering proton beam with a liquid scintillator detector, without the need for quenching correction. Methods: The light signal from a 20×20×20 cm3 liquid scintillator tank was collected with a CCD camera. Reproducible landmarks on the SOBP depth-light curve were identified which possessed a linear relationship withmore » the beam range and SOBP width. The depth-light profiles for three beam energies (140, 160 and 180 MeV) with six SOBP widths at each energy were measured with the detector. Beam range and SOBP width calibration factors were obtained by comparing the depth-light curve landmarks with the nominal range and SOBP width for each beam setting. The daily output stability of the liquid scintillator detector was also studied by making eight repeated output measurements in a cobalt-60 beam over the course of two weeks. Results: The mean difference between the measured and nominal beam ranges was 0.6 mm (σ=0.2 mm), with a maximum difference of 0.9 mm. The mean difference between the measured and nominal SOBP widths was 0.1 mm (σ=1.8 mm), with a maximum difference of 4.0 mm. Finally an output variation of 0.14% was observed for 8 measurements performed over 2 weeks. Conclusion: A method has been developed to determine the range and SOBP width of a passive-scattering proton beam in a liquid scintillator without the need for quenching correction. In addition to providing rapid and accurate beam range and SOBP measurements, the detector is capable of measuring the output consistency with a high degree of precision. This project was supported in part by award number CA182450 from the National Cancer

  14. Neutron detector and fabrication method thereof

    DOEpatents

    Bhandari, Harish B.; Nagarkar, Vivek V.; Ovechkina, Olena E.

    2016-08-16

    A neutron detector and a method for fabricating a neutron detector. The neutron detector includes a photodetector, and a solid-state scintillator operatively coupled to the photodetector. In one aspect, the method for fabricating a neutron detector includes providing a photodetector, and depositing a solid-state scintillator on the photodetector to form a detector structure.

  15. Optical Design Considerations for Efficient Light Collection from Liquid Scintillation Counters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernacki, Bruce E.; Douglas, Matthew; Erchinger, Jennifer L.

    2015-01-01

    Liquid scintillation counters measure charged particle-emitting radioactive isotopes and are used for environmental studies, nuclear chemistry, and life science. Alpha and beta emissions arising from the material under study interact with the scintillation cocktail to produce light. The prototypical liquid scintillation counter employs low-level photon-counting detectors to measure the arrival of the scintillation light produced as a result of the dissolved material under study interacting with the scintillation cocktail. For reliable operation the counting instrument must convey the scintillation light to the detectors efficiently and predictably. Current best practices employ the use of two or more detectors for coincidence processingmore » to discriminate true scintillation events from background events due to instrumental effects such as photomultiplier tube dark rates, tube flashing, or other light emission not generated in the scintillation cocktail vial. In low background liquid scintillation counters additional attention is paid to shielding the scintillation cocktail from naturally occurring radioactive material (NORM) present in the laboratory and within the instruments construction materials. Low background design is generally at odds with optimal light collection. This study presents the evolution of a light collection design for liquid scintillation counting in a low background shield. The basic approach to achieve both good light collection and a low background measurement is described. The baseline signals arising from the scintillation vial are modeled and methods to efficiently collect scintillation light are presented as part of the development of a customized low-background, high sensitivity liquid scintillation counting system.« less

  16. Study of Viability and Challenges of using SiPMs as an Alternative to PMT’s in Scintillation Detectors for Nuclear Safeguards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iliev, Metodi

    The goals of this project are to identify fundamental and practical problems and features with SiPMs as they relate to IAEA detector needs, Identify published results and implementations of scintillation detectors tat use SiPMs that are of interest to IAEA, asses how effectively the fundamental problems were addresses, and perform simulations and experiments as needed to reproduce crucial results and make recommendations.

  17. SHIELDING AND DETECTOR RESPONSE CALCULATIONS PERTAINING TO CATEGORY 1 QUANTITIES OF PLUTONIUM AND HAND-HELD PLASTIC SCINTILLATORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, A.

    2013-06-07

    Nuclear facilities sometimes use hand-held plastic scintillator detectors to detect attempts to divert special nuclear material in situations where portal monitors are impractical. MCNP calculations have been performed to determine the neutron and gamma radiation field arising from a Category I quantity of weapons-grade plutonium in various shielding configurations. The shields considered were composed of combinations of lead and high-density polyethylene such that the mass of the plutonium plus shield was 22.7 kilograms. Monte-Carlo techniques were also used to determine the detector response to each of the shielding configurations. The detector response calculations were verified using field measurements of high-,more » medium-, and low- energy gamma-ray sources as well as a Cf-252 neutron source.« less

  18. Cherenkov and scintillation light separation on the CheSS experiment

    NASA Astrophysics Data System (ADS)

    Caravaca, Javier; Land, Benjamin; Descamps, Freija; Orebi Gann, Gabriel D.

    2016-09-01

    Separation of the scintillation and Cherenkov light produced in liquid scintillators enables outstanding capabilities for future particle detectors, the most relevant being: particle directionality information in a low energy threshold detector and improved particle identification. The CheSS experiment uses an array of small, fast photomultipliers (PMTs) and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in liquid scintillator using two techniques: based on the photon density and using the photon hit time information. A charged particle ionizing a scintillation medium produces a prompt Cherenkov cone and late isotropic scintillation light, typically delayed by several ns. The fast response of our PMTs and DAQ provides a precision well below the ns level, making possible the time separation. Furthermore, the usage of the new developed water-based liquid scintillators (WbLS) enhances the separation since it allows tuning of the Cherenkov/Scintillation ratio. Latest results on the separation for pure liquid scintillators and WbLS will be presented.

  19. Status of the Top and Bottom Counting Detectors for the ISS-CREAM Experiment

    NASA Astrophysics Data System (ADS)

    Park, J. M.; ISS-CREAM Collaboration

    2017-11-01

    It is important to measure the cosmic ray spectra to study the origin, acceleration and propagation mechanisms of high-energy cosmic rays. A payload of the Cosmic Ray Energetics And Mass experiment is scheduled to be launched in 2017 to the International Space Station for measuring cosmic ray elemental spectra at energies beyond the reach of balloon instruments. Top Counting Detector and Bottom Counting Detector (T/BCD) as a two-dimensional detector are to separate electrons from protons for electron/gamma-ray physics. The T/BCD each consists of a plastic scintillator read out by 20 by 20 photodiodes and is placed before and after the Calorimeter, respectively. Energy and hit information of the T/BCD can distinguish shower profiles of electrons and protons, which show narrower and shorter showers from electrons at a given energy. The T/BCD performance has been studied with the Silicon Charge Detector and the calorimeter by using a GEANT3 + FLUKA 3.21 simulation package. By comparing the number of hits and shower width distributions between electrons and protons, we have studied optimal parameters for the e/p separation.

  20. Reflectance measurements of PTFE, Kapton, and PEEK for xenon scintillation light for the LZ detector.

    NASA Astrophysics Data System (ADS)

    Arthurs, M.; Batista, E.; Haefner, J.; Lorenzon, W.; Morton, D.; Neff, A.; Okunawo, M.; Pushkin, K.; Sander, A.; Stephenson, S.; Wang, Y.; LZ Collaboration

    2017-01-01

    LZ (LUX-Zeplin) is an international collaboration that will look for dark matter candidates, WIMPs (Weakly Interacting Massive Particles), through direct detection by dual-phase time projection chamber (TPC) using liquid xenon. The LZ detector will be located nearly a mile underground at SURF, South Dakota, shielded from cosmic background radiation. Seven tons active mass of liquid xenon will be used for detecting the weak interaction of WIMPs with ordinary matter. Over three years of operation it is expected to reach the ultimate sensitivity of 2x10-48 cm2 for a WIMP mass of 50 GeV. As for many other rare event searches, high light collection efficiency is essential for LZ detector. Moreover, in order to achieve greater active volume for detection as well as reduce potential backgrounds, thinner detector walls without significant loss in reflectance are desired. Reflectance measurements of polytetrafluoroethylene (PTFE), Kapton, and PEEK for xenon scintillation light (178 nm), conducted at the University of Michigan using the Michigan Xenon Detector (MiX) will be presented. The University of Michigan, LZ Collaboration, The US Department of Energy.

  1. A scintillator-based online detector for the angularly resolved measurement of laser-accelerated proton spectra.

    PubMed

    Metzkes, J; Karsch, L; Kraft, S D; Pawelke, J; Richter, C; Schürer, M; Sobiella, M; Stiller, N; Zeil, K; Schramm, U

    2012-12-01

    In recent years, a new generation of high repetition rate (~10 Hz), high power (~100 TW) laser systems has stimulated intense research on laser-driven sources for fast protons. Considering experimental instrumentation, this development requires online diagnostics for protons to be added to the established offline detection tools such as solid state track detectors or radiochromic films. In this article, we present the design and characterization of a scintillator-based online detector that gives access to the angularly resolved proton distribution along one spatial dimension and resolves 10 different proton energy ranges. Conceived as an online detector for key parameters in laser-proton acceleration, such as the maximum proton energy and the angular distribution, the detector features a spatial resolution of ~1.3 mm and a spectral resolution better than 1.5 MeV for a maximum proton energy above 12 MeV in the current design. Regarding its areas of application, we consider the detector a useful complement to radiochromic films and Thomson parabola spectrometers, capable to give immediate feedback on the experimental performance. The detector was characterized at an electrostatic Van de Graaff tandetron accelerator and tested in a laser-proton acceleration experiment, proving its suitability as a diagnostic device for laser-accelerated protons.

  2. SU-F-BRE-07: Experimental Validation of a Lung SBRT Technique Using a Novel, True Volumetric Plenoptic-Plastic-Scintillator Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goulet, M; Rilling, M; Gingras, L

    2014-06-15

    Purpose: Lung SBRT is being used by an increasing number of clinics, including our center which recently treated its first patient. In order to validate this technique, the 3D dose distribution of the SBRT plan was measured using a previously developed 3D detector based on plenoptic camera and plastic scintillator technology. The excellent agreement between the detector measurement and the expected dose from the treatment planning system Pinnacle{sup 3} shows great promise and amply justify the development of the technique. Methods: The SBRT treatment comprised 8 non-coplanar 6MV photon fields with a mean field size of 12 cm{sup 2} atmore » isocentre and a total prescription dose of 12Gy per fraction for a total of 48Gy. The 3D detector was composed of a 10×10×10 cm{sup 2} EJ-260 water-equivalent plastic scintillator embedded inside a truncated cylindrical acrylic phantom of 10cm radius. The scintillation light was recorded using a static R5 light-field camera and the 3D dose was reconstructed at a 2mm resolution in all 3 dimensions using an iterative backprojection algorithm. Results: The whole 3D dose distribution was recorded at a rate of one acquisition per second. The mean absolute dose difference between the detector and Pinnacle{sup 3} was 1.3% over the region with more than 10% of the maximum dose. 3D gamma tests performed over the same region yield passing rates of 98.8% and 96.6% with criteria of 3%/1mm and 2%/1mm, respectively. Conclusion: Experimental results showed that our beam modeling and treatment planning system calculation was adequate for the safe administration of small field/high dose techniques such as SBRT. Moreover, because of the real-time capability of the detector, further validation of small field rotational, dynamic or gated technique can be monitored or verified by this system.« less

  3. Silicon photomultipliers in scintillation detectors used for gamma ray energies up to 6.1 MeV

    NASA Astrophysics Data System (ADS)

    Grodzicka-Kobylka, M.; Szczesniak, T.; Moszyński, M.; Swiderski, L.; Szawłowski, M.

    2017-12-01

    Majority of papers concerning scintillation detectors with light readout by means of silicon photomultipliers refer to nuclear medicine or radiation monitoring devices where energy of detected gamma rays do not exceed 2 MeV. Detection of gamma radiation with higher energies is of interest to e.g. high energy physics and plasma diagnostics. The aim of this paper is to study applicability (usefulness) of SiPM light readout in detection of gamma rays up to 6.1 MeV in combination with various scintillators. The reported measurements were made with 3 samples of one type of Hamamatsu TSV (Through-Silicon Via technology) MPPC arrays. These 4x4 channel arrays have a 50 × 50 μm2 cell size and 12 × 12 mm2 effective active area. The following scintillators were used: CeBr3, NaI:Tl, CsI:Tl. During all the tests detectors were located in a climatic chamber. The studies are focused on optimization of the MPPC performance for practical use in detection of high energy gamma rays. The optimization includes selection of the optimum operating voltage in respect to the required energy resolution, dynamic range, linearity and pulse amplitude. The presented temperature tests show breakdown voltage dependence on the temperature change and define requirements for a power supply and gain stabilization method. The energy spectra for energies between 511 keV and 6.1 MeV are also presented and compared with data acquired with a classic photomultiplier XP5212B readout. Such a comparison allowed study of nonlinearity of the tested MPPCs, correction of the energy spectra and proper analysis of the energy resolution.

  4. Temperature dependence of plastic scintillators

    NASA Astrophysics Data System (ADS)

    Peralta, L.

    2018-03-01

    Plastic scintillator detectors have been studied as dosimeters, since they provide a cost-effective alternative to conventional ionization chambers. Several articles have reported undesired response dependencies on beam energy and temperature, which provides the motivation to determine appropriate correction factors. In this work, we studied the light yield temperature dependency of four plastic scintillators, BCF-10, BCF-60, BC-404, RP-200A and two clear fibers, BCF-98 and SK-80. Measurements were made using a 50 kVp X-ray beam to produce the scintillation and/or radioluminescence signal. The 0 to 40 °C temperature range was scanned for each scintillator, and temperature coefficients were obtained.

  5. Neutron/gamma pulse shape discrimination (PSD) in plastic scintillators with digital PSD electronics

    NASA Astrophysics Data System (ADS)

    Hutcheson, Anthony L.; Simonson, Duane L.; Christophersen, Marc; Phlips, Bernard F.; Charipar, Nicholas A.; Piqué, Alberto

    2013-05-01

    Pulse shape discrimination (PSD) is a common method to distinguish between pulses produced by gamma rays and neutrons in scintillator detectors. This technique takes advantage of the property of many scintillators that excitations by recoil protons and electrons produce pulses with different characteristic shapes. Unfortunately, many scintillating materials with good PSD properties have other, undesirable properties such as flammability, toxicity, low availability, high cost, and/or limited size. In contrast, plastic scintillator detectors are relatively low-cost, and easily handled and mass-produced. Recent studies have demonstrated efficient PSD in plastic scintillators using a high concentration of fluorescent dyes. To further investigate the PSD properties of such systems, mixed plastic scintillator samples were produced and tested. The addition of up to 30 wt. % diphenyloxazole (DPO) and other chromophores in polyvinyltoluene (PVT) results in efficient detection with commercial detectors. These plastic scintillators are produced in large diameters up to 4 inches by melt blending directly in a container suitable for in-line detector use. This allows recycling and reuse of materials while varying the compositions. This strategy also avoids additional sample handling and polishing steps required when using removable molds. In this presentation, results will be presented for different mixed-plastic compositions and compared with known scintillating materials

  6. Applications of a pnCCD detector coupled to columnar structure CsI(Tl) scintillator system in ultra high energy X-ray Laue diffraction

    NASA Astrophysics Data System (ADS)

    Shokr, M.; Schlosser, D.; Abboud, A.; Algashi, A.; Tosson, A.; Conka, T.; Hartmann, R.; Klaus, M.; Genzel, C.; Strüder, L.; Pietsch, U.

    2017-12-01

    Most charge coupled devices (CCDs) are made of silicon (Si) with typical active layer thicknesses of several microns. In case of a pnCCD detector the sensitive Si thickness is 450 μm. However, for silicon based detectors the quantum efficiency for hard X-rays drops significantly for photon energies above 10 keV . This drawback can be overcome by combining a pixelated silicon-based detector system with a columnar scintillator. Here we report on the characterization of a low noise, fully depleted 128×128 pixels pnCCD detector with 75×75 μm2 pixel size coupled to a 700 μm thick columnar CsI(Tl) scintillator in the photon range between 1 keV to 130 keV . The excellent performance of the detection system in the hard X-ray range is demonstrated in a Laue type X-ray diffraction experiment performed at EDDI beamline of the BESSY II synchrotron taken at a set of several GaAs single crystals irradiated by white synchrotron radiation. With the columnar structure of the scintillator, the position resolution of the whole system reaches a value of less than one pixel. Using the presented detector system and considering the functional relation between indirect and direct photon events Laue diffraction peaks with X-ray energies up to 120 keV were efficiently detected. As one of possible applications of the combined CsI-pnCCD system we demonstrate that the accuracy of X-ray structure factors extracted from Laue diffraction peaks can be significantly improved in hard X-ray range using the combined CsI(Tl)-pnCCD system compared to a bare pnCCD.

  7. Spectral characterization of plastic scintillation detector response as a function of magnetic field strength

    NASA Astrophysics Data System (ADS)

    Simiele, E.; Kapsch, R.-P.; Ankerhold, U.; Culberson, W.; DeWerd, L.

    2018-04-01

    The purpose of this work was to characterize intensity and spectral response changes in a plastic scintillation detector (PSD) as a function of magnetic field strength. Spectra measurements as a function of magnetic field strength were performed using an optical spectrometer. The response of both a PSD and PMMA fiber were investigated to isolate the changes in response from the scintillator and the noise signal as a function of magnetic field strength. All irradiations were performed in water at a photon beam energy of 6 MV. Magnetic field strengths of (0, ±0.35, ±0.70, ±1.05, and  ±1.40) T were investigated. Four noise subtraction techniques were investigated to evaluate the impact on the resulting noise-subtracted scintillator response with magnetic field strength. The noise subtraction methods included direct spectral subtraction, the spectral method, and variants thereof. The PMMA fiber exhibited changes in response of up to 50% with magnetic field strength due to the directional light emission from \\breve{C} erenkov radiation. The PSD showed increases in response of up to 10% when not corrected for the noise signal, which agrees with previous investigations of scintillator response in magnetic fields. Decreases in the \\breve{C} erenkov light ratio with negative field strength were observed with a maximum change at  ‑1.40 T of 3.2% compared to 0 T. The change in the noise-subtracted PSD response as a function of magnetic field strength varied with the noise subtraction technique used. Even after noise subtraction, the PSD exhibited changes in response of up to 5.5% over the four noise subtraction methods investigated.

  8. Comparing the response of PSD-capable plastic scintillator to standard liquid scintillator

    NASA Astrophysics Data System (ADS)

    Woolf, Richard S.; Hutcheson, Anthony L.; Gwon, Chul; Phlips, Bernard F.; Wulf, Eric A.

    2015-06-01

    This work discusses a test campaign to characterize the response of the recently developed plastic scintillator with pulse shape discrimination (PSD) capabilities (EJ-299-33). PSD is a property exhibited by certain types of scintillating material in which incident stimuli (fast neutrons or γ rays) can be separated by exploiting differences in the scintillation light pulse tail. Detector geometries used were: a 10 cm×10 cm×10 cm cube and a 10-cm diameter×10-cm long cylinder. EJ-301 and EJ-309 liquid scintillators with well-known responses were also tested. The work was conducted at the University of Massachusetts Lowell Van De Graaff accelerator. The facility accelerated protons on a thin Li target to yield quasi-monoenergetic neutrons from the 7Li(p,n)7Be reaction (Q-value: -1.644 MeV). Collimated fast neutrons were obtained by placing detectors behind a neutron spectrometer. Rotating the spectrometer, and thus changing the neutron energy, allowed us to achieve 0.5-3.2 MeV neutrons in 200-300 keV steps. Data were acquired through a flash analog-to-digital converter (ADC) capable of performing digital PSD measurements. By using the PSD technique to separate the neutron events from unwanted γ background, we constructed a pulse height spectrum at each energy. Obtaining a relationship of the relative light output versus energy allowed us to construct the response function for the EJ-299-33 and liquid scintillator. The EJ-299-33 response in terms of electron equivalent energy (Ee.e.) vs. proton equivalent energy (Ep.e.), how it compared with the standard xylene-based EJ-301 (or, NE-213/BC-501 A equivalent) and EJ-309 liquid scintillator response, and how the EJ-301 and EJ-309 compared, are presented. We find that the EJ-299-33 demonstrated a lower light output by up to 40% for <1.0 MeV neutrons; and ranging between a 5-35% reduction for 2.5-3.0 MeV neutrons compared to the EJ-301/309, depending on the scintillator and geometry. Monte Carlo modeling techniques were

  9. A depth-of-interaction PET detector using a stair-shaped reflector arrangement and a single-ended scintillation light readout.

    PubMed

    Son, Jeong-Whan; Lee, Min Sun; Lee, Jae Sung

    2017-01-21

    Positron emission tomography (PET) detectors with the ability to encode depth-of-interaction (DOI) information allow us to simultaneously improve the spatial resolution and sensitivity of PET scanners. In this study, we propose a DOI PET detector based on a stair-pattern reflector arrangement inserted between pixelated crystals and a single-ended scintillation light readout. The main advantage of the proposed method is its simplicity; DOI information is decoded from a flood map and the data can be simply acquired by using a single-ended readout system. Another potential advantage is that the two-step DOI detectors can provide the largest peak position distance in a flood map because two-dimensional peak positions can be evenly distributed. We conducted a Monte Carlo simulation and obtained flood maps. Then, we conducted experimental studies using two-step DOI arrays of 5  ×  5 Lu 1.9 Y 0.1 SiO 5 :Ce crystals with a cross-section of 1.7  ×  1.7 mm 2 and different detector configurations: an unpolished single-layer ( U S) array, a polished single-layer ( P S) array and a polished stacked two-layer ( P T) array. For each detector configuration, both air gaps and room-temperature vulcanization (RTV) silicone gaps were tested. Detectors U S and P T showed good peak separation in each scintillator with an average peak-to-valley ratio (PVR) and distance-to-width ratio (DWR) of 2.09 and 1.53, respectively. Detector P S RTV showed lower PVR and DWR (1.65 and 1.34, respectively). The configuration of detector P T Air is preferable for the construction of time-of-flight-DOI detectors because timing resolution was degraded by only about 40 ps compared with that of a non-DOI detector. The performance of detectors U S Air and P S RTV was lower than that of a non-DOI detector, and thus these designs are favorable when the manufacturing cost is more important than timing performance. The results demonstrate that the proposed DOI-encoding method is a promising

  10. Crystal growth and characterization of europium doped lithium strontium iodide scintillator as an ionizing radiation detector

    NASA Astrophysics Data System (ADS)

    Uba, Samuel

    High performance detectors used in the detection of ionizing radiation is critical to nuclear nonproliferation applications and other radiation detectors applications. In this research we grew and tested Europium doped Lithium Strontium Iodide compound. A mixture of lithium iodide, strontium iodide and europium iodide was used as the starting materials for this research. Congruent melting and freezing temperature of the synthesized compound was determined by differential scanning calorimetry (DSC) using a Setaram Labsys Evo DSC-DTA instrument. The melting temperatures were recorded at 390.35°C, 407.59°C and freezing temperature was recorded at 322.84°C from a graph of heat flow plotted against temperature. The synthesized material was used as the charge for the vertical Bridgeman growth, and a 6.5 cm and 7.7cm length boule were grown in a multi-zone transparent Mullen furnace. A scintillating detector of thickness 2.53mm was fabricated by mechanical lapping in mineral oil, and scintillating response and timing were obtained to a cesium source using CS-137 isotope. An energy resolution (FWHM over peak position) of 12.1% was observed for the 662keV full absorption peak. Optical absorption in the UV-Vis wavelength range was recorded for the grown crystal using a U-2900 UV/VIS Spectrophotometer. Absorption peaks were recorded at 194nm, 273nm, and 344nm from the absorbance spectrum, various optical parameters such as absorption coefficient, extinction coefficient, refractive index, and optical loss were derived. The optical band gap energy was calculated using Tauc relation expression at 1.79eV.

  11. Optimized mounting of a polyethylene naphthalate scintillation material in a radiation detector.

    PubMed

    Nakamura, Hidehito; Yamada, Tatsuya; Shirakawa, Yoshiyuki; Kitamura, Hisashi; Shidara, Zenichiro; Yokozuka, Takayuki; Nguyen, Philip; Kanayama, Masaya; Takahashi, Sentaro

    2013-10-01

    Polyethylene naphthalate (PEN) has great potential as a scintillation material for radiation detection. Here the optimum mounting conditions to maximize the light collection efficiency from PEN in a radiation detector are discussed. To this end, we have determined light yields emitted from irradiated PEN for various optical couplings between the substrate and the photodetector, and for various substrate surface treatments. The results demonstrate that light extraction from PEN is more sensitive to the optical couplings due to its high refractive index. We also assessed the extent of radioactive impurities in PEN as background sources and found that the impurities are equivalent to the environmental background level. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Geiger-Mode Avalanche Photodiode Arrays Integrated to All-Digital CMOS Circuits.

    PubMed

    Aull, Brian

    2016-04-08

    This article reviews MIT Lincoln Laboratory's work over the past 20 years to develop photon-sensitive image sensors based on arrays of silicon Geiger-mode avalanche photodiodes. Integration of these detectors to all-digital CMOS readout circuits enable exquisitely sensitive solid-state imagers for lidar, wavefront sensing, and passive imaging.

  13. The enhanced photo absorption and carrier transportation of InGaN/GaN Quantum Wells for photodiode detector applications

    PubMed Central

    Yang, Haojun; Ma, Ziguang; Jiang, Yang; Wu, Haiyan; Zuo, Peng; Zhao, Bin; Jia, Haiqiang; Chen, Hong

    2017-01-01

    We have conducted a series of measurements of resonantly excited photoluminescence, photocurrent and photovoltage on InGaN/GaN quantum wells with and without a p-n junction under reverse bias condition. The results indicate that most of the resonantly excited photo-generated carriers are extracted from the quantum wells when a p-n junction exists, and the photon absorption of quantum wells is enhanced by the p-n junction. Additionally, the carrier extraction becomes more distinct under a reverse bias. Our finding brings better understanding of the physical characteristics of quantum wells with p-n junction, which also suggests that the quantum well is suitable for photodiode detectors applications when a p-n junction is used. PMID:28240254

  14. Superlinear threshold detectors in quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lydersen, Lars; Maroey, Oystein; Skaar, Johannes

    2011-09-15

    We introduce the concept of a superlinear threshold detector, a detector that has a higher probability to detect multiple photons if it receives them simultaneously rather than at separate times. Highly superlinear threshold detectors in quantum key distribution systems allow eavesdropping the full secret key without being revealed. Here, we generalize the detector control attack, and analyze how it performs against quantum key distribution systems with moderately superlinear detectors. We quantify the superlinearity in superconducting single-photon detectors based on earlier published data, and gated avalanche photodiode detectors based on our own measurements. The analysis shows that quantum key distribution systemsmore » using detector(s) of either type can be vulnerable to eavesdropping. The avalanche photodiode detector becomes superlinear toward the end of the gate. For systems expecting substantial loss, or for systems not monitoring loss, this would allow eavesdropping using trigger pulses containing less than 120 photons per pulse. Such an attack would be virtually impossible to catch with an optical power meter at the receiver entrance.« less

  15. Development of a Monte Carlo Simulation for APD-Based PET Detectors Using a Continuous Scintillating Crystal

    NASA Astrophysics Data System (ADS)

    Clowes, P.; Mccallum, S.; Welch, A.

    2006-10-01

    We are currently developing a multilayer avalanche photodiode (APD)-based detector for use in positron emission tomography (PET), which utilizes thin continuous crystals. In this paper, we developed a Monte Carlo-based simulation to aid in the design of such detectors. We measured the performance of a detector comprising a single thin continuous crystal (3.1 mm times 9.5 mm times 9.5 mm) of lutetium yttrium ortho-silicate (LYSO) and an APD array (4times4) elements; each element 1.6 mm2 and on a 2.3 mm pitch. We showed that a spatial resolution of better than 2.12 mm is achievable throughout the crystal provided that we adopt a Statistics Based Positioning (SBP) Algorithm. We then used Monte Carlo simulation to model the behavior of the detector. The accuracy of the Monte Carlo simulation was verified by comparing measured and simulated parent datasets (PDS) for the SBP algorithm. These datasets consisted of data for point sources at 49 positions uniformly distributed over the detector area. We also calculated the noise in the detector circuit and verified this value by measurement. The noise value was included in the simulation. We show that the performance of the simulation closely matches the measured performance. The simulations were extended to investigate the effect of different noise levels on positioning accuracy. This paper showed that if modest improvements could be made in the circuit noise then positioning accuracy would be greatly improved. In summary, we have developed a model that can be used to simulate the performance of a variety of APD-based continuous crystal PET detectors

  16. SNO+ Scintillator Purification and Assay

    NASA Astrophysics Data System (ADS)

    Ford, R.; Chen, M.; Chkvorets, O.; Hallman, D.; Vázquez-Jáuregui, E.

    2011-04-01

    We describe the R&D on the scintillator purification and assay methods and technology for the SNO+ neutrino and double-beta decay experiment. The SNO+ experiment is a replacement of the SNO heavy water with liquid scintillator comprised of 2 g/L PPO in linear alkylbenzene (LAB). During filling the LAB will be transported underground by rail car and purified by multi-stage distillation and steam stripping at a flow rate of 19 LPM. While the detector is operational the scintillator can be recirculated at 150 LPM (full detector volume in 4 days) to provide repurification as necessary by either water extraction (for Ra, K, Bi) or by functional metal scavenger columns (for Pb, Ra, Bi, Ac, Th) followed by steam stripping to remove noble gases and oxygen (Rn, O2, Kr, Ar). The metal scavenger columns also provide a method for scintillator assay for ex-situ measurement of the U and Th chain radioactivity. We have developed "natural" radioactive spikes of Pb and Ra in LAB and use these for purification testing. Lastly, we present the planned operating modes and purification strategies and the plant specifications and design.

  17. TH-CD-BRA-12: Impact of a Magnetic Field On the Response From a Plastic Scintillation Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Therriault-Proulx, F; Wen, Z; Ibbott, G

    Purpose: To study the effect of a strong magnetic field on the scintillation and the stem effect from a plastic scintillation detector (PSD) and evaluate its accuracy to measure dose. Methods: A plastic scintillation detector and a bare plastic fiber were placed inside a magnet of adjustable field strength (B=0−1.5T) and irradiated by a 6-MV photon beam (Elekta Versa HD LINAC). The PSD was built in-house using a scintillating fiber (BCF-60, 3-mm long × 1-mm diameter) coupled to an optical fiber similar to the bare fiber (PMMA, 12-m long, 1-mm diameter). Light output spectra were acquired with a spectrometer. Intensitymore » and shape of the output spectra were compared as a function of the magnetic field strength. The bare fiber was used to study the behavior of the stem effect (composed of Cerenkov and fluorescence). The spectrometry setup allowed to perform a previously demonstrated hyperspectral stem-effect removal and calculated dose was studied as a function of the magnetic field strength. Results: Signal intensities were shown to increase with the magnetic field strength by up to 19% and 79% at 1.5T in comparison to the irradiation without a magnetic field, for respectively the PSD and the bare fiber. The light produced by Cerenkov effect in the optical fiber was shown to be the major component affected by the magnetic field. Effect of the magnetic field on the electrons trajectory may explain this behavior. Finally, accounting for the stem effect using the hyperspectral approach led to accuracy in dose measurement within 2.6%. Interestingly, variations in accuracy were negligible for values over 0.3T. Conclusion: Dependence of PSDs to magnetic field is mainly due to the Cerenkov light. When accounting for it, PSDs become a candidate of choice for both quality assurance and in vivo dosimetry of therapy under strong magnetic fields (e.g. for MRI-Linacs).« less

  18. Silicon Photodiode Soft X-Ray Detectors for Pulsed Power Experiments

    DTIC Science & Technology

    1997-06-01

    AXUV -100 silicon photodiode were performed at the National Institute of Standards and Technology (NIST), our Bechtel Nevada laboratories, and the...NSLS at Brookhaven National Laboratory. The AXUV -100 diode is covered with a 60 angstrom Si02 window over its entire surface. The higher response lobes...in the visible and at higher x-ray energies seen by the HS-1 are absent in the AXUV -100 calibrations. The two model calculations assume 2.73 x 105 A

  19. Stability of Gadolinium-Doped Liquid Organic Scintillators

    NASA Astrophysics Data System (ADS)

    Gromov, M. B.; Kuznetsov, D. S.; Murchenko, A. E.; Novikova, G. Ya.; Obinyakov, B. A.; Oralbaev, A. Yu.; Plakitina, K. V.; Skorokhvatov, M. D.; Sukhotin, S. V.; Chepurnov, A. S.; Etenko, A. V.

    2018-03-01

    The technology of preparing a linear-alkylbenzene-based gadolinium-doped liquid organic scintillator (Gd-LOS) as a target material in reactor antineutrino detectors has been developed. Results of longterm measurements of the light yield of Gd-LOS in contact with acryl and stainless steel are presented, which confirm the compatibility of Gd-LOS with these materials. The measurements were performed for two otherwise identical LOS detectors only differing in wall materials of the sensitive volume: acryl versus stainless steel. The results of measurements over about one year showed almost the same, relatively small decreases in the light yield of both detectors. It is concluded that both structural materials can be used in detector parts contacting with Gd-doped scintillator. Such a long-term parallel comparative test was carried out for the first time.

  20. A comparison of digital zero-crossing and charge-comparison methods for neutron/γ-ray discrimination with liquid scintillation detectors

    NASA Astrophysics Data System (ADS)

    Nakhostin, M.

    2015-10-01

    In this paper, we have compared the performances of the digital zero-crossing and charge-comparison methods for n/γ discrimination with liquid scintillation detectors at low light outputs. The measurements were performed with a 2″×2″ cylindrical liquid scintillation detector of type BC501A whose outputs were sampled by means of a fast waveform digitizer with 10-bit resolution, 4 GS/s sampling rate and one volt input range. Different light output ranges were measured by operating the photomultiplier tube at different voltages and a new recursive algorithm was developed to implement the digital zero-crossing method. The results of our study demonstrate the superior performance of the digital zero-crossing method at low light outputs when a large dynamic range is measured. However, when the input range of the digitizer is used to measure a narrow range of light outputs, the charge-comparison method slightly outperforms the zero-crossing method. The results are discussed in regard to the effects of the quantization noise and the noise filtration performance of the zero-crossing filter.

  1. Toward a real-time in vivo dosimetry system using plastic scintillation detectors

    PubMed Central

    Archambault, Louis; Briere, Tina M.; Pönisch, Falk; Beaulieu, Luc; Kuban, Deborah A.; Lee, Andrew; Beddar, Sam

    2010-01-01

    Purpose In this work, we present and validate a plastic scintillation detector (PSD) system designed for real-time multi-probe in vivo measurements. Methods and Materials The PSDs were built with a dose-sensitive volume of 0.4 mm3. PSDs were assembled into modular detector patches, each containing 5 closely packed PSDs. Continuous dose readings were performed every 150 ms, with a gap between consecutive readings of less than 0.3 ms. We first studied the effect of electron multiplication. We then assessed system performance in acrylic and anthropomorphic pelvic phantoms. Results The PSDs are compatible with clinical rectal balloons and are easily inserted into the anthropomorphic phantom. With an electron multiplication average gain factor of 40, a twofold increase in the signal-to-noise ratio was observed, making near real-time dosimetry feasible. Under calibration conditions, the PSDs agreed with ion chamber measurements to 0.08%. Precision, evaluated as a function of the total dose delivered, ranged from 2.3% at 2 cGy to 0.4% at 200 cGy. Conclusion Real-time PSD measurements are highly accurate and precise. These PSDs can be mounted onto rectal balloons, transforming these clinical devices into in vivo dose detectors without modifying current clinical practice. Real-time monitoring of the dose delivered near the rectum during prostate radiation therapy should help radiation oncologists protect this sensitive normal structure. PMID:20231074

  2. Dosimetric characterization of small fields using a plastic scintillator detector: A large multicenter study.

    PubMed

    Mancosu, Pietro; Pasquino, Massimo; Reggiori, Giacomo; Masi, Laura; Russo, Serenella; Stasi, Michele

    2017-09-01

    In modern radiation therapy accurate small fields dosimetry is a challenge and its standardization is fundamental to harmonize delivered dose in different institutions. This study presents a multicenter characterization of MLC-defined small field for Elekta and Varian linear accelerators. Measurements were performed using the Exradin W1 plastic scintillator detector. The project enrolled 24 Italian centers. Each center performed Tissue Phantom Ratio (TPR), in-plane and cross-plane dose profiles of 0.8×0.8cm 2 field, and Output Factor (OF) measurements for square field sizes ranging from 0.8 to 10cm. Set-up conditions were 10cm depth in water phantom at SSD 90cm. Measurements were performed using two twin Exradin W1 plastic scintillator detectors (PSD) correcting for the Cerenkov effect as proposed by the manufacturer. Data analysis from 12 Varian and 12 Elekta centers was performed. Measurements of 7 centers were not included due to cable problems. TPR measurements showed standard deviations (SD)<1%; SD<0.4mm for the profile penumbra was obtained, while FWHM measurements showed SD<0.5mm. OF measurements showed SD<1.5% for field size greater than 2×2cm 2 . Median OFs values were in agreement with the recent bibliography. High degree of consistency was registered for all the considered parameters. This work confirmed the importance of multicenter dosimetric intercomparison. W1 PSD could be considered as a good candidate for small field measurements. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. Scintillator performance considerations for dedicated breast computed tomography

    NASA Astrophysics Data System (ADS)

    Vedantham, Srinivasan; Shi, Linxi; Karellas, Andrew

    2017-09-01

    Dedicated breast computed tomography (BCT) is an emerging clinical modality that can eliminate tissue superposition and has the potential for improved sensitivity and specificity for breast cancer detection and diagnosis. It is performed without physical compression of the breast. Most of the dedicated BCT systems use large-area detectors operating in cone-beam geometry and are referred to as cone-beam breast CT (CBBCT) systems. The large-area detectors in CBBCT systems are energy-integrating, indirect-type detectors employing a scintillator that converts x-ray photons to light, followed by detection of optical photons. A key consideration that determines the image quality achieved by such CBBCT systems is the choice of scintillator and its performance characteristics. In this work, a framework for analyzing the impact of the scintillator on CBBCT performance and its use for task-specific optimization of CBBCT imaging performance is described.

  4. Scintillator tiles read out with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Pooth, O.; Radermacher, T.; Weingarten, S.; Weinstock, L.

    2015-10-01

    A detector prototype based on a fast plastic scintillator read out with silicon photomultipliers is presented. All studies have been done with cosmic muons and focus on parameter optimization such as coupling the SiPM to the scintillator or wrapping the scintillator with reflective material. The prototype shows excellent results regarding the light-yield and offers a detection efficiency of 99.5% with a signal purity of 99.9% for cosmic muons.

  5. Methods of Fabricating Scintillators with Radioisotopes for Beta Battery Applications

    NASA Technical Reports Server (NTRS)

    Rensing, Noa M.; Squillante, Michael R.; Tieman, Timothy C.; Higgins, William; Shiriwadkar, Urmila

    2013-01-01

    Technology has been developed for a class of self-contained, long-duration power sources called beta batteries, which harvest the energy contained in the radioactive emissions from beta decay isotopes. The new battery is a significant improvement over the conventional phosphor/solar cell concept for converting this energy in three ways. First, the thin phosphor is replaced with a thick scintillator that is transparent to its own emissions. By using a scintillator sufficiently thick to completely stop all the beta particles, efficiency is greatly improved. Second, since the energy of the beta particles is absorbed in the scintillator, the semiconductor photodetector is shielded from radiation damage that presently limits the performance and lifetime of traditional phosphor converters. Finally, instead of a thin film of beta-emitting material, the isotopes are incorporated into the entire volume of the thick scintillator crystal allowing more activity to be included in the converter without self-absorption. There is no chemical difference between radioactive and stable strontium beta emitters such as Sr-90, so the beta emitter can be uniformly distributed throughout a strontium based scintillator crystal. When beta emitter material is applied as a foil or thin film to the surface of a solar cell or even to the surface of a scintillator, much of the radiation escapes due to the geometry, and some is absorbed within the layer itself, leading to inefficient harvesting of the energy. In contrast, if the emitting atoms are incorporated within the scintillator, the geometry allows for the capture and efficient conversion of the energy of particles emitted in any direction. Any gamma rays associated with secondary decays or Bremsstrahlung photons may also be absorbed within the scintillator, and converted to lower energy photons, which will in turn be captured by the photocell or photodiode. Some energy will be lost in this two-stage conversion process (high-energy particle

  6. SiC-based Photo-detectors for UV, VUV, EUV and Soft X-ray Detection

    NASA Technical Reports Server (NTRS)

    Yan, Feng

    2006-01-01

    A viewgraph presentation describing an ideal Silicon Carbide detector for ultraviolet, vacuum ultraviolet, extreme ultraviolet and soft x-ray detection is shown. The topics include: 1) An ideal photo-detector; 2) Dark current density of SiC photodiodes at room temperature; 3) Dark current in SiC detectors; 4) Resistive and capacitive feedback trans-impedance amplifier; 5) Avalanche gain; 6) Excess noise; 7) SNR in single photon counting mode; 8) Structure of SiC single photon counting APD and testing structure; 9) Single photon counting waveform and testing circuit; 10) Amplitude of SiC single photon counter; 11) Dark count of SiC APD photon counters; 12) Temperature-dependence of dark count rate; 13) Reduce the dark count rate by reducing the breakdown electric field; 14) Spectrum range for SiC detectors; 15) QE curves of Pt/4H-SiC photodiodes; 16) QE curve of SiC; 17) QE curves of SiC photodiode vs. penetration depth; 18) Visible rejection of SiC photodiodes; 19) Advantages of SiC photodiodes; 20) Competitors of SiC detectors; 21) Extraterrestrial solar spectra; 22) Visible-blind EUV detection; 23) Terrestrial solar spectra; and 24) Less than 1KeV soft x-ray detection.

  7. Experiment to demonstrate separation of Cherenkov and scintillation signals

    NASA Astrophysics Data System (ADS)

    Caravaca, J.; Descamps, F. B.; Land, B. J.; Wallig, J.; Yeh, M.; Orebi Gann, G. D.

    2017-05-01

    The ability to separately identify the Cherenkov and scintillation light components produced in scintillating mediums holds the potential for a major breakthrough in neutrino detection technology, allowing development of a large, low-threshold, directional detector with a broad physics program. The CHESS (CHErenkov/Scintillation Separation) experiment employs an innovative detector design with an array of small, fast photomultiplier tubes and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillating medium based on photon hit time and detected photoelectron density. This paper describes the physical properties and calibration of CHESS along with first results. The ability to reconstruct Cherenkov rings is demonstrated in a water target, and a time precision of 338 ±12 ps FWHM is achieved. Monte Carlo-based predictions for the ring imaging sensitivity with a liquid scintillator target predict an efficiency for identifying Cherenkov hits of 94 ±1 % and 81 ±1 % in pure linear alkyl benzene (LAB) and LAB loaded with 2 g/L of a fluor, PPO, respectively, with a scintillation contamination of 12 ±1 % and 26 ±1 % .

  8. Understanding the SNO+ Detector

    DOE PAGES

    Kamdin, K.

    2015-03-24

    SNO+, a large liquid scintillator experiment, is the successor of the Sudbury Neutrino Observatory (SNO) experiment. The scintillator volume will be loaded with large quantities of 130Te, an isotope that undergoes double beta decay, in order to search for neutrinoless double beta decay. In addition to this search, SNO+ has a broad physics program due to its sensitivity to solar and supernova neutrinos, as well as reactor and geo anti-neutrinos. SNO+ can also place competitive limits on certain modes of invisible nucleon decay during its first phase. The detector is currently undergoing commissioning in preparation for its first phase, inmore » which the detector is filled with ultra pure water. This will be followed by a pure scintillator phase, and then a Tellurium-loaded scintillator phase to search for neutrinoless double beta decay. Here we present the work done to model detector aging, which was first observed during SNO. The aging was found to reduce the optical response of the detector. We also describe early results from electronics calibration of SNO+.« less

  9. New concepts for HgI2 scintillator gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Iwanczyk, Jan S.

    1994-01-01

    The primary goals of this project are development of the technology for HgI2 photodetectors (PD's), development of a HgI2/scintillator gamma detector, development of electronics, and development of a prototype gamma spectrometer. Work on the HgI2 PD's involved HgI2 purification and crystal growth, detector surface and electrical contact studies, PD structure optimization, encapsulation and packaging, and testing. Work on the HgI2/scintillator gamma detector involved a study of the optical - mechanical coupling for the optimization of CsI(Tl)/HgI2 gamma ray detectors and determination of the relationship between resolution versus scintillator type and size. The development of the electronics focused on low noise amplification circuits using different preamp input FET's and the use of a coincidence technique to maximize the signal, minimize the noise contribution in the gamma spectra, and improve the overall system resolution.

  10. SU-F-T-73: Experimental Determination of the Effective Point of Measurement in Electron Beams Using a Commercial Scintillation Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simiele, E; Smith, B; Culberson, W

    2016-06-15

    Purpose: The aim of this work was to determine experimentally the effective point of measurement (EPOM) in clinical electron beams for three cylindrical ionization chambers using a commercial scintillation detector as a reference detector. Methods: Percent depth dose (PDD) curves were measured using an Exradin W1 scintillation detector and were used as a representative PDD to water. Depth dose curves were measured with the Exradin A18, A1SL, and A28 ionization chambers. The raw ionization chamber curve data were corrected by the chamber fluence perturbation correction factor and restricted mass collisional stopping power ratio at each depth to obtain a percentmore » depth dose curve to the gas volume (PDDGV) of the detector. Ratios of the W1 PDD to the ion chamber PDDGV were calculated for each measurement depth. The W1 PDD curve was shifted by small depth increments, Δz, until the ratio of the W1 PDD to the ion chamber PDDGV was depth-independent (optimal Δz). A MATLAB routine was developed to determine the optimal Δz value. Results: The optimal Δz shift was used as an estimate of the EPOM for each chamber. The average calculated EPOM shifts (expressed as a fraction of the chamber cavity radius) for the A18, A1SL, and A28 ionization chambers were 0.21 ± 0.04, 0.10 ± 0.05, and 0.22 ± 0.03, respectively. Conclusion: The experimentally determined EPOM values for the A18 and A1SL in this work agreed with the simulated values of Muir and Rogers (MedPhys 2014). The results also indicate that the Exradin W1 scintillator is water equivalent for electron energies of 6 MeV, 9 MeV, 12 MeV, and 16 MeV. In addition, we confirmed that the AAPM TG51 recommended EPOM shift of 0.5 times the cavity radius is not accurate for the A18 and A1SL chambers.« less

  11. DANSS: Detector of the reactor AntiNeutrino based on Solid Scintillator

    NASA Astrophysics Data System (ADS)

    Alekseev, I.; Belov, V.; Brudanin, V.; Danilov, M.; Egorov, V.; Filosofov, D.; Fomina, M.; Hons, Z.; Kazartsev, S.; Kobyakin, A.; Kuznetsov, A.; Machikhiliyan, I.; Medvedev, D.; Nesterov, V.; Olshevsky, A.; Ponomarev, D.; Rozova, I.; Rumyantseva, N.; Rusinov, V.; Salamatin, A.; Shevchik, Ye.; Shirchenko, M.; Shitov, Yu.; Skrobova, N.; Starostin, A.; Svirida, D.; Tarkovsky, E.; Tikhomirov, I.; Vlášek, J.; Zhitnikov, I.; Zinatulina, D.

    2016-11-01

    The DANSS project is aimed at creating a relatively compact neutrino spectrometer which does not contain any flammable or other dangerous liquids and may therefore be located very close to the core of an industrial power reactor. As a result, it is expected that high neutrino flux would provide about 15,000 IBD interactions per day in the detector with a sensitive volume of 1 m3. High segmentation of the plastic scintillator will allow to suppress a background down to a ~1% level. Numerous tests performed with a simplified pilot prototype DANSSino under a 3 GWth reactor of the Kalinin NPP have demonstrated operability of the chosen design. The DANSS detector surrounded with a composite shield is movable by means of a special lifting gear, varying the distance to the reactor core in a range from 10 m to 12 m. Due to this feature, it could be used not only for the reactor monitoring, but also for fundamental research including short-range neutrino oscillations to the sterile state. Supposing one-year measurement, the sensitivity to the oscillation parameters is expected to reach a level of sin2(2θnew) ~ 5 × 10-3 with Δ m2 ⊂ (0.02-5.0) eV2.

  12. New concepts for scintillator/HgI[sub 2] gamma ray spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.J.; Iwanczyk, J.S.; Patt, B.E.

    The construction of a high energy resolution gamma ray detector consisting of a scintillator/mercuric iodide photodetector combination has been investigated. Several HgI[sub 2] photodetectors have been fabricated and tested with standard NIM electronics. The energy resolution of a scintillator/HgI[sub 2] pair was found to be 4.75%, full width at half maximum, for 662 keV [sup 137]Cs gamma ray photons. Of five detectors fabricated with the new technique, all produced resolutions better than 5.6% FWHM. This technology makes it possible to reliably produce high quality HgI[sub 2] photodetectors. New design concepts for the HgI[sub 2] photocell, including the transparent entrance electrode,more » detector geometry, and detector packaging, are described in the paper. Advantages of gamma ray spectrometers based upon crystal scintillators optically coupled to HgI[sub 2] photodetectors (in contrast to coupling the scintillators to the more conventional light sensors, i.e., photomultiplier tubes (PMTs)) include greater ruggedness, improved energy resolution, markedly smaller size and weight, reduced power, and insensitivity to magnetic field perturbations.« less

  13. A flexible scintillation light apparatus for rare events searches

    NASA Astrophysics Data System (ADS)

    Gironi, L.; Baldazzi, G.; Bonvicini, V.; Campana, R.; Capelli, S.; Evangelista, Y.; Fasoli, M.; Feroci, M.; Fuschino, F.; Labanti, C.; Marisaldi, M.; Previtali, E.; Riganese, L.; Rashevsky, A.; Sisti, M.; Vacchi, A.; Vedda, A.; Zampa, G.; Zampa, N.; Zuffa, M.

    2016-05-01

    FLARES (a Flexible scintillation Light Apparatus for Rare Event Searches) is a project for an innovative detector technology to be applied to rare event searches, and in particular to neutrinoless double beta decay experiments. Its novelty is the enhancement and optimization of the collection of the scintillation light emitted by ultra-pure crystals through the use of arrays of high performance silicon photodetectors cooled to 120 K. This would provide scintillation detectors with ~1% level energy resolution, with the advantages of a technology offering relatively simple low cost mass scalability and powerful background reduction handles, as requested by future neutrinoless double beta decay experimental programs.

  14. Measurement of ortho-positronium properties in liquid scintillators

    NASA Astrophysics Data System (ADS)

    Perasso, S.; Consolati, G.; Franco, D.; Jollet, C.; Meregaglia, A.; Tonazzo, A.; Yeh, M.

    2014-03-01

    Pulse shape discrimination is a well-established technique for background rejection in liquid scintillator detectors. It is particularly effective in separating heavy particles from light particles, but not in distinguishing electrons from positrons. This inefficiency can be overtaken by exploiting the formation of ortho-positronium (o-Ps), which alters the time profile of light pulses induced by positrons. We characterized the o-Ps properties in the most commonly used liquid scintillators, i.e. PC, PXE, LAB, OIL and PC + PPO. In addition, we studied the effects of scintillator doping on the o-Ps properties for dopants used in neutrino-less double beta decay experiments (Nd and Te) and in anti-neutrino and neutron detection (Gd and Li respectively). We found that the o-Ps properties are similar in all the tested scintillators, with a lifetime around 3 ns and a formation probability of about 50%. This result indicates that an o-Ps-enhanced pulse shape discrimination can be applied in liquid scintillator detectors for neutrino and anti-neutrino detection and for neutrino-less double beta decay search.

  15. Light propagation and fluorescence quantum yields in liquid scintillators

    NASA Astrophysics Data System (ADS)

    Buck, C.; Gramlich, B.; Wagner, S.

    2015-09-01

    For the simulation of the scintillation and Cherenkov light propagation in large liquid scintillator detectors a detailed knowledge about the absorption and emission spectra of the scintillator molecules is mandatory. Furthermore reemission probabilities and quantum yields of the scintillator components influence the light propagation inside the liquid. Absorption and emission properties are presented for liquid scintillators using 2,5-Diphenyloxazole (PPO) and 4-bis-(2-Methylstyryl)benzene (bis-MSB) as primary and secondary wavelength shifter. New measurements of the quantum yields for various aromatic molecules are shown.

  16. Modelling the transport of optical photons in scintillation detectors for diagnostic and radiotherapy imaging

    NASA Astrophysics Data System (ADS)

    Roncali, Emilie; Mosleh-Shirazi, Mohammad Amin; Badano, Aldo

    2017-10-01

    Computational modelling of radiation transport can enhance the understanding of the relative importance of individual processes involved in imaging systems. Modelling is a powerful tool for improving detector designs in ways that are impractical or impossible to achieve through experimental measurements. Modelling of light transport in scintillation detectors used in radiology and radiotherapy imaging that rely on the detection of visible light plays an increasingly important role in detector design. Historically, researchers have invested heavily in modelling the transport of ionizing radiation while light transport is often ignored or coarsely modelled. Due to the complexity of existing light transport simulation tools and the breadth of custom codes developed by users, light transport studies are seldom fully exploited and have not reached their full potential. This topical review aims at providing an overview of the methods employed in freely available and other described optical Monte Carlo packages and analytical models and discussing their respective advantages and limitations. In particular, applications of optical transport modelling in nuclear medicine, diagnostic and radiotherapy imaging are described. A discussion on the evolution of these modelling tools into future developments and applications is presented. The authors declare equal leadership and contribution regarding this review.

  17. Cherenkov and scintillation light separation on the TheiaR &D experiment

    NASA Astrophysics Data System (ADS)

    Caravaca, Javier; Land, Benjamin

    2016-03-01

    Identifying by separate the scintillation and Cherenkov light produced in a scintillation medium enables outstanding capabilities for future particle detectors, being the most relevant: allowing particle directionality information in a low energy threshold detector and improved particle identification. The TheiaR &D experiment uses an array of small and fast photomultipliers (PMTs) and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillation medium, based on the number of produced photoelectrons and the timing information. A charged particle ionizing a scintillation medium produces a prompt Cherenkov cone and late isotropic scintillation light, typically delayed by <1ns. The fast response of our PMTs and DAQ provides a precision well below the ns level, making possible the time separation. Furthermore, the usage of the new developed water-based liquid scintillators (WBLS) provides a medium with a tunable Cherenkov/Scintillation light yield ratio, enhancing the visibility of the dimer Cherenkov light in presence of the scintillation light. Description of the experiment, details of the analysis and preliminary results of the first months of running will be discussed.

  18. Large-Format AlGaN PIN Photodiode Arrays for UV Images

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid; Franz, David

    2010-01-01

    A large-format hybridized AlGaN photodiode array with an adjustable bandwidth features stray-light control, ultralow dark-current noise to reduce cooling requirements, and much higher radiation tolerance than previous technologies. This technology reduces the size, mass, power, and cost of future ultraviolet (UV) detection instruments by using lightweight, low-voltage AlGaN detectors in a hybrid detector/multiplexer configuration. The solar-blind feature eliminates the need for additional visible light rejection and reduces the sensitivity of the system to stray light that can contaminate observations.

  19. Research on photodiode detector-based spatial transient light detection and processing system

    NASA Astrophysics Data System (ADS)

    Liu, Meiying; Wang, Hu; Liu, Yang; Zhao, Hui; Nan, Meng

    2016-10-01

    In order to realize real-time signal identification and processing of spatial transient light, the features and the energy of the captured target light signal are first described and quantitatively calculated. Considering that the transient light signal has random occurrence, a short duration and an evident beginning and ending, a photodiode detector based spatial transient light detection and processing system is proposed and designed in this paper. This system has a large field of view and is used to realize non-imaging energy detection of random, transient and weak point target under complex background of spatial environment. Weak signal extraction under strong background is difficult. In this paper, considering that the background signal changes slowly and the target signal changes quickly, filter is adopted for signal's background subtraction. A variable speed sampling is realized by the way of sampling data points with a gradually increased interval. The two dilemmas that real-time processing of large amount of data and power consumption required by the large amount of data needed to be stored are solved. The test results with self-made simulative signal demonstrate the effectiveness of the design scheme. The practical system could be operated reliably. The detection and processing of the target signal under the strong sunlight background was realized. The results indicate that the system can realize real-time detection of target signal's characteristic waveform and monitor the system working parameters. The prototype design could be used in a variety of engineering applications.

  20. SU-E-T-486: In Vivo Skin Dosimetry Using the Exradin W1 Plastic Scintillation Detector for Passively Scattered Proton Beam Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alsanea, F; Kudchadker, R; Usama, M

    Purpose: To evaluate the accuracy and usefulness of plastic scintillation detectors used for skin dosimetry of patients undergoing passive scatter proton therapy. Methods: Following an IRB approved protocol, six patients undergoing passively scattered proton beam therapy for prostate cancer were selected for in vivo skin dosimetry using the Exradin W1 plastic scintillator. The detector was calibrated on a Cobalt-60 unit, and phantom measurements in the proton beam with the W1 and a calibrated parallel plate ion chamber were used to account for the under-response due to high LET at energies used for treatment. Measurements made in a heated water tankmore » were used to account for temperature dependence. For in vivo measurements, the W1 is fixed to the patient’s skin with medical tape in the center of each of two laterally opposed treatment fields. Measurements will be performed once per week for each patient for the duration of treatment, for a total of thirty six measurements. The measured dose will be compared to the expected dose, extracted from the Eclipse treatment planning system. The average difference over all measurements and per-patient will be computed, as well as standard deviations. Results: The calibrated detector exhibited a 7% under-response in 225 and 250 MeV beams, and a 4% under-response when used at 37 °C (relative to the response at the calibration temperature of 20 °C). Patient measurements are ongoing. Conclusion: The Exradin W1 plastic scintillator detector is a strong candidate for in vivo skin dosimetry in passively scattered proton beams as PSDs are water equivalent and very small (2mm in diameter), permitting accurate measurements that do not perturb the delivered dose. This project was supported in part by award number CA182450 from the National Cancer Institute.« less

  1. Optochemical sensor based on screenprinted fluorescent sensorspots surrounded by organic photodiodes for multianalyte detection

    NASA Astrophysics Data System (ADS)

    Kraker, E.; Lamprecht, B.; Haase, A.; Jakopic, G.; Abel, T.; Konrad, C.; Köstler, S.; Tscherner, M.; Stadlober, B.; Mayr, T.

    2010-08-01

    A compact, integrated photoluminescence based oxygen sensor, utilizing an organic light emitting device (OLED) as the light source and an organic photodiode (OPD) as the detection unit, is described. The detection system of the sensor array consists of an array of circular screen-printed fluorescent sensor spots surrounded by organic photodiodes as integrated fluorescence detectors. The OPD originates from the well-known Tang photodiode, consisting of a stacked layer of copper phthalocyanine (CuPc, p-type material) and perylene tetracarboxylic bisbenzimidazole (PTCBi, n-type material). An additional layer of tris-8-hydroxyquinolinatoaluminium (Alq3, n-type material) was inserted between the PTCBi layer and cathode. An ORMOCERR layer was used as encapsulation layer. For excitation an organic light emitting diode is used. The sensor spot and the detector are processed on the same flexible substrate. This approach not only simplifies the detection system by minimizing the numbers of required optical components - no optical filters have to be used for separating the excitation light and the luminescent emission-, but also has a large potential for low-cost sensor applications. The feasibility of the concept is demonstrated by an integrated oxygen sensor, indicating good performance. Sensor schemes for other chemical parameters are proposed.

  2. Low Energy Neutrino Astronomy in the future large-volume liquid-scintillator detector LENA

    NASA Astrophysics Data System (ADS)

    Wurm, Michael; Feilitzsch, F. V.; Göger-Neff, M.; Lewke, T.; Marrodan Undagoitia, T.; Oberauer, L.; Potzel, W.; Todor, S.; Winter, J.

    2008-11-01

    The recent successes in neutrino physics prove that liquid-scintillator detectors allow to combine high energy resolution, efficient means of background reduction, and a large detection volume. In the planned LENA (Low Energy Neutrino Astronomy) experiment, a target mass of 50 kt will enable the investigation of a variety of terrestrial and astrophysical neutrino sources. The high-statistics spectroscopy of geoneutrinos, solar neutrinos and supernova neutrinos will provide new insights in the heat production processes of Earth and Sun, and the workings of a gravitational collapse. The same measurements will as well investigate neutrino properties as oscillation parameters and mass hierarchy. A first spectroscopic measurement of the low flux of diffuse supernova neutrino background is within the sensitivity of the LENA detector. Finally, a life-time limit of several 1034 years can be set to the proton decay into proton and anti-neutrino, testing the predictions of SUSY theory. The present contribution includes a review of the scientific studies that were performed in the last years as well as a report on currently on-going R&D activities.

  3. Strontium iodide scintillators for high energy resolution gamma ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Wilson, Cody M.; van Loef, Edgar V.; Glodo, Jarek; Cherepy, Nerine; Hull, Giulia; Payne, Stephen; Choong, Woon-Seng; Moses, William; Shah, Kanai S.

    2008-08-01

    Recently SrI2, a scintillator patented by Hofstadter in 1968, has been rediscovered and shown to possess remarkable scintillation properties. The light output of SrI2:Eu2+ has been measured to be even higher than previously observed and exceeds 120,000 photons/MeV, making it one of the brightest scintillators in existence. The crystal also has excellent energy resolution of less than 3% at 662 keV. The response is highly linear over a wide range of gamma ray energies. The emission of SrI2:Eu2+ and SrI2:Ce3+/Na+ is well-matched to both photomultiplier tubes and blue-enhanced silicon photodiodes. While SrI2:Eu2+ is relatively slow, SrI2:Ce3+/Na+ has a fast response. SrI2 crystals with many different dopant concentrations have been grown and characterized. In this presentation, crystal growth techniques as well as the effects of dopant concentration on the scintillation properties of SrI2, over the range 0.5% to 8% Eu2+ and 0.5% to 2% Ce3+/Na+, will be discussed in detail.

  4. Basic performance of Mg co-doped new scintillator used for TOF-DOI-PET systems

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takahiro; Yamamoto, Seiichi; Okumura, Satoshi; Yeom, Jung Yeol; Kamada, Kei; Yoshikawa, Akira

    2017-01-01

    Phoswich depth-of-interaction (DOI) detectors utilizing multiple scintillators with different decay time are a useful device for developing a high spatial resolution, high sensitivity PET scanner. However, in order to apply pulse shape discrimination (PSD), there are not many combinations of scintillators for which phoswich technique can be implemented. Ce doped Gd3Ga3Al2O12 (GFAG) is a recently developed scintillator with a fast decay time. This scintillator is similar to Ce doped Gd3Al2Ga3O12 (GAGG), which is a promising scintillator for PET detector with high light yield. By stacking these scintillators, it may be possible to realize a high spatial resolution and high timing resolution phoswich DOI detector. Such phoswich DOI detector may be applied to time-of-flight (TOF) systems with high timing performance. Therefore, in this study, we tested the basic performance of the new scintillator -GFAG for use in a TOF phoswich detector. The measured decay time of a GFAG element of 2.9 mmx2.9 mmx10 mm in dimension, which was optically coupled to a photomultiplier tube (PMT), was faster (66 ns) than that of same sized GAGG (103 ns). The energy resolution of the GFAG element was 5.7% FWHM which was slightly worse than that of GAGG with 4.9% FWHM for 662 keV gamma photons without saturation correction. Then we assembled the GFAG and the GAGG crystals in the depth direction to form a 20 mm long phoswich element (GFAG/GAGG). By pulse shape analysis, the two types of scintillators were clearly resolved. Measured timing resolution of a pair of opposing GFAG/GAGG phoswich scintillator coupled to Silicon Photomultipliers (Si-PM) was good with coincidence resolving time of 466 ps FWHM. These results indicate that the GFAG combined with GAGG can be a candidate for TOF-DOI-PET systems.

  5. A helical scintillating fiber hodoscope

    NASA Astrophysics Data System (ADS)

    Altmeier, M.; Bauer, F.; Bisplinghoff, J.; Bissel, T.; Bollmann, R.; Busch, M.; Büßer, K.; Colberg, T.; Demirörs, L.; Diehl, O.; Dohrmann, F.; Engelhardt, H. P.; Eversheim, P. D.; Felden, O.; Gebel, R.; Glende, M.; Greiff, J.; Groß, A.; Groß-Hardt, R.; Hinterberger, F.; Jahn, R.; Jeske, M.; Jonas, E.; Krause, H.; Lahr, U.; Langkau, R.; Lindemann, T.; Lindlein, J.; Maier, R.; Maschuw, R.; Mayer-Kuckuck, T.; Meinerzhagen, A.; Nähle, O.; Pfuff, M.; Prasuhn, D.; Rohdjeß, H.; Rosendaal, D.; von Rossen, P.; Sanz, B.; Schirm, N.; Schulz-Rojahn, M.; Schwarz, V.; Scobel, W.; Thomas, S.; Trelle, H. J.; Weise, E.; Wellinghausen, A.; Wiedmann, W.; Woller, K.; Ziegler, R.; EDDA Collaboration

    1999-07-01

    A novel scintillating fiber hodoscope in helically cylindric geometry has been developed for detection of low multiplicity events of fast protons and other light charged particles in the internal target experiment EDDA at the Cooler Synchrotron COSY. The hodoscope consists of 640 scintillating fibers (2.5 mm diameter), arranged in four layers surrounding the COSY beam pipe. The fibers are helically wound in opposing directions and read out individually using 16-channel photomultipliers connected to a modified commercial encoding system. The detector covers an angular range of 9°⩽ Θ⩽72° and 0°⩽ ϕ⩽360° in the lab frame. The detector length is 590 mm, the inner diameter 161 mm. Geometry and granularity of the hodoscope afford a position resolution of about 1.3 mm. The detector design took into consideration a maximum of reliability and a minimum of maintenance. An LED array may be used for monitoring purposes.

  6. 1985 Nuclear Science Symposium, 32nd, and 1985 Symposium on Nuclear Power Systems, 17th, San Francisco, CA, October 23-25, 1985, Proceedings

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The present conference ranges over topics in high energy physics instrumentation, detectors, nuclear medical applications, health physics and environmental monitoring, reactor instrumentation, nuclear spacecraft instrumentation, the 'Fastbus' data acquisition system, circuits and systems for nuclear research facilities, and the development status of nuclear power systems. Specific attention is given to CCD high precision detectors, a drift chamber preamplifier, a Cerenkov ring imaging detector, novel scintillation glasses and scintillating fibers, a modular multidrift vertex detector, radial wire drift chambers, liquid argon polarimeters, a multianode photomultiplier, the reliability of planar silicon detectors, the design and manufacture of wedge and strip anodes, ultrafast triode photodetectors, photomultiplier tubes, a barium fluoride plastic scintillator, a fine grained neutron hodoscope, the stability of low leakage silicon photodiodes for crystal calorimeters, and X-ray proportional counters. Also considered are positron emission tomography, single photon emission computed tomography, nuclear magnetic resonance imaging, Geiger-Muller detectors, nuclear plant safeguards, a 32-bit Fastbus computer, an advanced light water reactor, and nuclear plant maintenance.

  7. On the response of Y 3Al 5O 12: Ce (YAG: Ce) powder scintillating screens to medical imaging X-rays

    NASA Astrophysics Data System (ADS)

    Kandarakis, I.; Cavouras, D.; Sianoudis, I.; Nikolopoulos, D.; Episkopakis, A.; Linardatos, D.; Margetis, D.; Nirgianaki, E.; Roussou, M.; Melissaropoulos, P.; Kalivas, N.; Kalatzis, I.; Kourkoutas, K.; Dimitropoulos, N.; Louizi, A.; Nomicos, C.; Panayiotakis, G.

    2005-02-01

    The aim of this study was to examine Y 3Al 5O 12:Ce (also known as YAG:Ce) powder scintillator under X-ray imaging conditions. This material shows a very fast scintillation decay time and it has never been used in X-ray medical imaging. In the present study various scintillator layers (screens) with coating thickness ranging from 13 to 166 mg/cm 2 were prepared in our laboratory by sedimentation of Y 3Al 5O 12: Ce powder. Optical emission spectra and light emission efficiency (spectrum area over X-ray exposure) of the layers were measured under X-ray excitation using X-ray tube voltages (80-120 kVp) often employed in general medical radiography and fluoroscopy. Spectral compatibility with various optical photon detectors (photodiodes, photocathodes, charge coupled devices, films) and intrinsic conversion efficiency values were determined using emission spectrum data. In addition, parameters related to X-ray detection, energy absorption efficiency and K-fluorescence characteristic emission were calculated. A theoretical model describing radiation and light transfer through scattering media was used to fit experimental data. Intrinsic conversion efficiency (η≈0.03-0.05) and light attenuation coefficients (σ≈26.5 cm/g) were derived through this fitting. Y 3Al 5O 12:Ce showed peak emission in the wavelength range 530-550 nm. The light emission efficiency was found to be maximum for the 107 mg/cm 2 layer. Due to its "green" emission spectrum, Y 3Al 5O 12:Ce showed excellent compatibility (of the order of 0.9) with the sensitivity of many currently used photodetectors. Taking into account its very fast response Y 3Al 5O 12:Ce could be considered for application in X-ray imaging especially in various digital detectors.

  8. A compound crystal with film scintillator for electron detection

    NASA Astrophysics Data System (ADS)

    McKinney, George; McDonnald, Warren; Tzolov, Marian

    2015-03-01

    Yttrium Aluminum Garnets (YAG) and Yttrium Aluminum Perovskite (YAP) are widely used as electron detectors. This application requires a top conducting layer which hinders their application at low electron energies. We have developed a layer of zinc tungstate which delivers conductivity large enough to prevent charging while still being an efficient scintillator. For better coupling between the two systems we have studied their optical properties. Ce doping is an essential element in YAP and YAG in order for them to be efficient scintillators. We have studied the Ce content and we show that higher Ce content leads to reabsorption in the YAP scintillators. These details were revealed by using photoluminescence emission and excitation spectroscopy. The absorption spectrum for the YAG scintillators coincides with the excitation for the main emission lines. The optical studies of the zinc tungstate films and a single crystal have shown that the films are more efficient light emitters. We have integrated the zinc tungstate films with YAG scintillators and we will report on the performance of this compound scintillator. It is expected that it will perform well at low and high electron energies, which makes it a very cost effective platform for electron detectors.

  9. Experiment to demonstrate separation of Cherenkov and scintillation signals

    DOE PAGES

    Caravaca, J.; Descamps, F. B.; Land, B. J.; ...

    2017-05-05

    The ability to separately identify the Cherenkov and scintillation light components produced in scintillating mediums holds the potential for a major breakthrough in neutrino detection technology, allowing development of a large, low-threshold, directional detector with a broad physics program. Furthermore, the CHESS (CHErenkov/Scintillation Separation) experiment employs an innovative detector design with an array of small, fast photomultiplier tubes and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillating medium based on photon hit time and detected photoelectron density. Our paper describes the physical properties and calibration of CHESS along with first results. The ability to reconstructmore » Cherenkov rings are demonstrated in a water target, and a time precision of 338 ± 12 ps FWHM is achieved. Finally, Monte Carlo–based predictions for the ring imaging sensitivity with a liquid scintillator target predict an efficiency for identifying Cherenkov hits of 94 ± 1 % and 81 ± 1 % in pure linear alkyl benzene (LAB) and LAB loaded with 2 g/L of a fluor, PPO, respectively, with a scintillation contamination of 12 ± 1 % and 26 ± 1 % .« less

  10. Radiation Response of Emerging High Gain, Low Noise Detectors

    NASA Technical Reports Server (NTRS)

    Becker, Heidi N.; Farr, William H; Zhu, David Q.

    2007-01-01

    Data illustrating the radiation response of emerging high gain, low noise detectors are presented. Ionizing dose testing of silicon internal discrete avalanche photodiodes, and 51-MeV proton testing of InGaAs/InAlAs avalanche photodiodes operated in Geiger mode are discussed.

  11. Novel scintillators and silicon photomultipliers for nuclear physics and applications

    NASA Astrophysics Data System (ADS)

    Jenkins, David

    2015-06-01

    Until comparatively recently, scintillator detectors were seen as an old-fashioned tool of nuclear physics with more attention being given to areas such as gamma-ray tracking using high-purity germanium detectors. Next-generation scintillator detectors, such as lanthanum bromide, which were developed for the demands of space science and gamma- ray telescopes, are found to have strong applicability to low energy nuclear physics. Their excellent timing resolution makes them very suitable for fast timing measurements and their much improved energy resolution compared to conventional scintillators promises to open up new avenues in nuclear physics research which were presently hard to access. Such "medium-resolution" spectroscopy has broad interest across several areas of contemporary interest such as the study of nuclear giant resonances. In addition to the connections to space science, it is striking that the demands of contemporary medical imaging have strong overlap with those of experimental nuclear physics. An example is the interest in PET-MRI combined imaging which requires putting scintillator detectors in a high magnetic field environment. This has led to strong advances in the area of silicon photomultipliers, a solid-state replacement for photomultiplier tubes, which are insensitive to magnetic fields. Broad application to nuclear physics of this technology may be foreseen.

  12. X-ray detection properties of plastic scintillators containing surface-modified Bi2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Hiyama, Fumiyuki; Noguchi, Takio; Koshimizu, Masanori; Kishimoto, Shunji; Haruki, Rie; Nishikido, Fumihiko; Fujimoto, Yutaka; Aida, Tsutomu; Takami, Seiichi; Adschiri, Tadafumi; Asai, Keisuke

    2018-05-01

    Plastic scintillators containing Bi2O3 nanoparticles (NPs) were developed as detectors for X-ray synchrotron radiation. A hydrothermal method was used to synthesize the NPs that had average particle sizes of less than 10 nm. Higher NP concentration led to a higher detection efficiency at 67.4 keV. The light yield of the scintillator containing 5 wt % Bi2O3 NPs was comparable with or higher than that of the commercially available plastic scintillator, EJ 256. The time resolution of the developed scintillation detector equipped with each sample scintillator was approximately 0.6 ns. Dispersion of nanoparticles within plastic scintillators is generally applicable and has wide application as a method for preparation of plastic scintillators for detecting X-ray synchrotron radiation.

  13. Quenching measurements and modeling of a boron-loaded organic liquid scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westerdale, S.; Xu, J.; Shields, E.

    Organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section of 10B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters o protons in the scintillator or when it captures on 10B. Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding how nuclear recoils are quenched in these scintillators is an important and dicult problem. In this article,more » we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic liquid scintillator at recoil energies ranging from 57-467 keV, and we compare these measurements to predictions from different quenching models. We and that a modified Birks' model whose denominator is quadratic in dE=dx best describes the measurements, with χ 2/NDF = 1:6. This result will help model nuclear recoil scintillation in similar detectors and can be used to improve their neutron tagging efficiency.« less

  14. Quenching measurements and modeling of a boron-loaded organic liquid scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westerdale, S.; Xu, J.; Shields, E.

    Organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section ofmore » $$^{10}$$B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters off protons in the scintillator or when it captures on $$^{10}$$B. Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding how nuclear recoils are quenched in these scintillators is an important and difficult problem. In this article, we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic liquid scintillator at recoil energies ranging from 57--467 keV, and we compare these measurements to predictions from different quenching models. We find that a modified Birks' model whose denominator is quadratic in $dE/dx$ best describes the measurements, with $$\\chi^2$$/NDF$=1.6$. This result will help model nuclear recoil scintillation in similar detectors and can be used to improve their neutron tagging efficiency.« less

  15. Gadolinium-loaded gel scintillators for neutron and antineutrino detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riddle, Catherine Lynn; Akers, Douglas William; Demmer, Ricky Lynn

    A gadolinium (Gd) loaded scintillation gel (Gd-ScintGel) compound allows for neutron and gamma-ray detection. The unique gel scintillator encompasses some of the best features of both liquid and solid scintillators, yet without many of the disadvantages associated therewith. Preferably, the gel scintillator is a water soluble Gd-DTPA compound and water soluble fluorophores such as: CdSe/ZnS (or ZnS) quantum dot (Q-dot) nanoparticles, coumarin derivatives 7-hydroxy-4-methylcoumarin, 7-hydroxy-4-methylcoumarin-3-acetic acid, 7-hydroxycoumarin-3-carboxylic acid, and Alexa Fluor 350 as well as a carbostyril compound, carbostyril 124 in a stable water-based gel, such as methylcellulose or polyacrylamide polymers. The Gd-loaded ScintGel allows for a homogenious distribution ofmore » the Gd-DTPA and the fluorophores, and yields clean fluorescent emission peaks. A moderator, such as deuterium or a water-based clear polymer, can be incorporated in the Gd-ScintGel. The gel scintillators can be used in compact detectors, including neutron and antineutrino detectors.« less

  16. The Vacuum Silicon Photomultiplier Tube (VSiPMT): A new version of a hybrid photon detector

    NASA Astrophysics Data System (ADS)

    Russo, Stefano; Barbarino, Giancarlo; de Asmundis, Riccardo; De Rosa, Gianfranca

    2010-11-01

    The future astroparticle experiments will study both energetic phenomena and extremely rare events from astrophysical sources. Since most of these families of experiments are carried out by using scintillation phenomena, Cherenkov or fluorescence radiation, the development of photosensitive detectors seems to be the right way to increase the experimental sensitivity. Therefore we propose an innovative design for a modern, high gain, silicon-based Vacuum Silicon Photomultiplier Tube (VSiPMT), which combines three fully established and well-understood technologies: the manufacture of hemispherical vacuum tubes with the possibility of very large active areas, the photocathode glass deposition and the novel Geiger-mode avalanche silicon photodiode (G-APD) for which a mass production is today available. This new design, based on G-APD as the electron multiplier, allows overcoming the limits of a classical PMT dynode chain.

  17. Pulsed neutron detector

    DOEpatents

    Robertson, deceased, J. Craig; Rowland, Mark S.

    1989-03-21

    A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.

  18. Metal-loaded organic scintillators for neutrino physics

    DOE PAGES

    Buck, Christian; Yeh, Minfang

    2016-08-03

    Organic liquid scintillators are used in many neutrino physics experiments of the past and present. In particular for low energy neutrinos when realtime and energy information are required, liquid scintillators have several advantages compared to other technologies. In many cases the organic liquid needs to be loaded with metal to enhance the neutrino signal over background events. Several metal loaded scintillators of the past suffered from chemical and optical instabilities, limiting the performance of these neutrino detectors. Different ways of metal loading are described in the article with a focus on recent techniques providing metal loaded scintillators that can bemore » used under stable conditions for many years even in ton scale experiments. Lastly, we review applications of metal loaded scintillators in neutrino experiments and compare the performance as well as the prospects of different scintillator types.« less

  19. Theory of single-photon detectors employing smart strategies of detection

    NASA Astrophysics Data System (ADS)

    Silva, João Batista Rosa; Ramos, Rubens Viana

    2005-11-01

    Single-photon detectors have become more important with the advent of set-ups for optical communication using single-photon pulses, mainly quantum key distribution. The performance of quantum key distribution systems depends strongly on the performance of single-photon detectors. In this paper, aiming to overcome the afterpulsing that limits strongly the maximal transmission rate of quantum key distribution systems, three smart strategies for single-photon detection are discussed using analytical and numerical procedures. The three strategies are: hold-off time conditioned to avalanche presence, termed the Norwegian strategy, using one avalanche photodiode, using two raffled avalanche photodiodes and using two switched avalanche photodiodes. Finally we give examples using these strategies in a quantum key distribution set-up.

  20. Real-Time, Digital Pulse-Shape Discrimination in Non-Hazardous Fast Liquid Scintillation Detectors: Prospects for Safety and Security

    NASA Astrophysics Data System (ADS)

    Joyce, Malcolm J.; Aspinall, Michael D.; Cave, Francis D.; Lavietes, Anthony D.

    2012-08-01

    Pulse-shape discrimination (PSD) in fast, organic scintillation detectors is a long-established technique used to separate neutrons and γ rays in mixed radiation fields. In the analogue domain the method can achieve separation in real time, but all knowledge of the pulses themselves is lost thereby preventing the possibility of any post- or repeated analysis. Also, it is typically reliant on electronic systems that are largely obsolete and which require significant experience to set up. In the digital domain, PSD is often more flexible but significant post-processing has usually been necessary to obtain neutron/γ-ray separation. Moreover, the scintillation media on which the technique relies usually have a low flashpoint and are thus deemed hazardous. This complicates the ease with which they are used in industrial applications. In this paper, results obtained with a new portable digital pulse-shape discrimination instrument are described. This instrument provides real-time, digital neutron/γ-ray separation whilst preserving the synchronization with the time-of-arrival for each event, and realizing throughputs of 3 × 106 events per second. Furthermore, this system has been tested with a scintillation medium that is non-flammable and not hazardous.

  1. Four-arm variable-resolution x-ray detector for CT target imaging

    NASA Astrophysics Data System (ADS)

    DiBianca, Frank A.; Gulabani, Daya; Jordan, Lawrence M.; Vangala, Sravanthi; Rendon, David; Laughter, Joseph S.; Melnyk, Roman; Gaber, M. W.; Keyes, Gary S.

    2005-04-01

    The basic VRX technique boosts spatial resolution of a CT scanner in the scan plane by two or more orders of magnitude by reducing the angle of incidence of the x-ray beam with respect to the detector surface. A four-arm Variable-Resolution X-ray (VRX) detector has been developed for CT scanning. The detector allows for "target imaging" in which an area of interest is scanned at higher resolution than the remainder of the subject, yielding even higher resolution for the focal area than that obtained from the basic VRX technique. The new VRX-CT detector comprises four quasi-identical arms each containing six 24-cell modules (576 cells total). The modules are made of individual custom CdWO4 scintillators optically-coupled to custom photodiode arrays. The maximum scan field is 40 cm for a magnification of 1.4. A significant advantage of the four-arm geometry is that it can transform quickly to the two-arm, or even the single-arm geometry, for comparison studies. These simpler geometries have already been shown experimentally to yield in-plane CT detector resolution exceeding 60 cy/mm (<8μ) for small fields of view. Geometrical size and resolution limits of the target VRX field are calculated. Two-arm VRX-CT data are used to simulate and establish the feasibility of VRX CT target imaging. A prototype target VRX-CT scanner has been built and is undergoing initial testing.

  2. The 1.06 micrometer avalanche photodiode detectors with integrated circuit preamplifiers

    NASA Technical Reports Server (NTRS)

    Eden, R. C.

    1975-01-01

    The development of a complete solid state 1.06 micron optical receiver which can be used in optical communications at data rates approaching 1.5 Gb/s, or in other applications requiring sensitive, short-pulse detection, is reported. This work entailed both the development of a new type of heterojunction 3-5 semiconductor alloy avalanche photodiode and an extremely charge-sensitive wideband low-noise preamp design making use of GaAs Schottky barrier-gate field effect transistors.

  3. Hybrid UV Imager Containing Face-Up AlGaN/GaN Photodiodes

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu; Pain, Bedabrata

    2005-01-01

    A proposed hybrid ultraviolet (UV) image sensor would comprise a planar membrane array of face-up AlGaN/GaN photodiodes integrated with a complementary metal oxide/semiconductor (CMOS) readout-circuit chip. Each pixel in the hybrid image sensor would contain a UV photodiode on the AlGaN/GaN membrane, metal oxide/semiconductor field-effect transistor (MOSFET) readout circuitry on the CMOS chip underneath the photodiode, and a metal via connection between the photodiode and the readout circuitry (see figure). The proposed sensor design would offer all the advantages of comparable prior CMOS active-pixel sensors and AlGaN UV detectors while overcoming some of the limitations of prior (AlGaN/sapphire)/CMOS hybrid image sensors that have been designed and fabricated according to the methodology of flip-chip integration. AlGaN is a nearly ideal UV-detector material because its bandgap is wide and adjustable and it offers the potential to attain extremely low dark current. Integration of AlGaN with CMOS is necessary because at present there are no practical means of realizing readout circuitry in the AlGaN/GaN material system, whereas the means of realizing readout circuitry in CMOS are well established. In one variant of the flip-chip approach to integration, an AlGaN chip on a sapphire substrate is inverted (flipped) and then bump-bonded to a CMOS readout circuit chip; this variant results in poor quantum efficiency. In another variant of the flip-chip approach, an AlGaN chip on a crystalline AlN substrate would be bonded to a CMOS readout circuit chip; this variant is expected to result in narrow spectral response, which would be undesirable in many applications. Two other major disadvantages of flip-chip integration are large pixel size (a consequence of the need to devote sufficient area to each bump bond) and severe restriction on the photodetector structure. The membrane array of AlGaN/GaN photodiodes and the CMOS readout circuit for the proposed image sensor would

  4. Binary-selectable detector holdoff circuit

    NASA Technical Reports Server (NTRS)

    Kadrmas, K. A.

    1974-01-01

    High-speed switching circuit protects detectors from sudden, extremely-intense backscattered radiation that results from short-range atmospheric dust layers, or low-level clouds, entering laser/radar field of view. Function of circuit is to provide computer-controlled switching of photodiode detector, preamplifier power-supply voltages, in approximately 10 nanoseconds.

  5. AN EVALUATION OF THE BASIC CHARACTERISTICS OF A PLASTIC SCINTILLATING FIBRE DETECTOR IN CT RADIATION FIELDS.

    PubMed

    Terasaki, Kento; Fujibuchi, Toshioh; Toyoda, Takatoshi; Yoshida, Yutaka; Akasaka, Tsutomu; Nohtomi, Akihiro; Morishita, Junji

    2016-12-01

    The ionisation chamber for computed tomography (CT) is an instrument that is most commonly used to measure the computed tomography dose index. However, it has been reported that the 10 cm effective detection length of the ionisation chamber is insufficient due to the extent of the dose distribution outside the chamber. The purpose of this study was to estimate the basic characteristics of a plastic scintillating fibre (PSF) detector with a long detection length of 50 cm in CT radiation fields. The authors investigated position dependence using diagnostic X-ray equipment and dependencies for energy, dose rate and slice thickness using an X-ray CT system. The PSF detector outputs piled up at a count rate of 10 000 counts ms -1 in dose rate dependence study. With calibration, this detector may be useful as a CT dosemeter with a long detection length except for the measurement at high dose rate. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. New Developments in Scintillators for Security Applications

    NASA Astrophysics Data System (ADS)

    Glodo, Jarek; Wang, Yimin; Shawgo, Ryan; Brecher, Charles; Hawrami, Rastgo H.; Tower, Joshua; Shah, Kanai S.

    Radiation is an important part of security space: It is detected either passively in search of special nuclear materials or actively to monitor or interrogate objects of interest. Systems relying on radiation require adequate detectors. The most common radiation detectors are based on scintillating materials that convert hard (gamma, x-ray or neutron) radiation into visible light registered by a photodetector. The last decade has seen development of new materials driven by various security applications. This included the search for He-3 replacement technologies, which resulted in development of neutron sensing scintillators such as Ce-doped Cs2LiYCl6 (CLYC) or more recently Cs2LiLa(Br,Cl)6 (CLLBC). Since they are also good gamma-ray scintillators, they have also penetrated the detection market for passive dual-mode (gamma and neutron) detection systems, replacing scintillators such as NaI(Tl) or CsI(Tl) and competing with LaBr3(Ce). High-energy Non-Intrusive Inspection is another area where active research is being pursued in order to replace existing scintillator choices such as CdWO4, which is commonly used in simple radiography, and PbWO4, which is being studied for spectroscopic alternatives to radiography. For radiography, in particular, new ceramic scintillators such as Ce-doped GLuGAG (garnet) are considered, and for spectroscopy, Yb doped Lu2O3. In this paper we provide a short overview of these technologies.

  7. Scintillator fiber optic long counter

    DOEpatents

    McCollum, Tom; Spector, Garry B.

    1994-01-01

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected.

  8. Barium iodide and strontium iodide crystals andd scintillators implementing the same

    DOEpatents

    Payne, Stephen A; Cherepy, Nerine J; Hull, Giulia E; Drobshoff, Alexander D; Burger, Arnold

    2013-11-12

    In one embodiment, a material comprises a crystal comprising strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector according to another embodiment includes a scintillator optic comprising europium-doped strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector in yet another embodiment includes a scintillator optic comprising SrI.sub.2 and BaI.sub.2, wherein a ratio of SrI.sub.2 to BaI.sub.2 is in a range of between 0:1 A method for manufacturing a crystal suitable for use in a scintillator includes mixing strontium iodide-containing crystals with a source of Eu.sup.2+, heating the mixture above a melting point of the strontium iodide-containing crystals, and cooling the heated mixture near the seed crystal for growing a crystal. Additional materials, systems, and methods are presented.

  9. WE-C-217BCD-08: Rapid Monte Carlo Simulations of DQE(f) of Scintillator-Based Detectors.

    PubMed

    Star-Lack, J; Abel, E; Constantin, D; Fahrig, R; Sun, M

    2012-06-01

    Monte Carlo simulations of DQE(f) can greatly aid in the design of scintillator-based detectors by helping optimize key parameters including scintillator material and thickness, pixel size, surface finish, and septa reflectivity. However, the additional optical transport significantly increases simulation times, necessitating a large number of parallel processors to adequately explore the parameter space. To address this limitation, we have optimized the DQE(f) algorithm, reducing simulation times per design iteration to 10 minutes on a single CPU. DQE(f) is proportional to the ratio, MTF(f)̂2 /NPS(f). The LSF-MTF simulation uses a slanted line source and is rapidly performed with relatively few gammas launched. However, the conventional NPS simulation for standard radiation exposure levels requires the acquisition of multiple flood fields (nRun), each requiring billions of input gamma photons (nGamma), many of which will scintillate, thereby producing thousands of optical photons (nOpt) per deposited MeV. The resulting execution time is proportional to the product nRun x nGamma x nOpt. In this investigation, we revisit the theoretical derivation of DQE(f), and reveal significant computation time savings through the optimization of nRun, nGamma, and nOpt. Using GEANT4, we determine optimal values for these three variables for a GOS scintillator-amorphous silicon portal imager. Both isotropic and Mie optical scattering processes were modeled. Simulation results were validated against the literature. We found that, depending on the radiative and optical attenuation properties of the scintillator, the NPS can be accurately computed using values for nGamma below 1000, and values for nOpt below 500/MeV. nRun should remain above 200. Using these parameters, typical computation times for a complete NPS ranged from 2-10 minutes on a single CPU. The number of launched particles and corresponding execution times for a DQE simulation can be dramatically reduced allowing for

  10. Neutron coincidence detectors employing heterogeneous materials

    DOEpatents

    Czirr, J. Bartley; Jensen, Gary L.

    1993-07-27

    A neutron detector relies upon optical separation of different scintillators to measure the total energy and/or number of neutrons from a neutron source. In pulse mode embodiments of the invention, neutrons are detected in a first detector which surrounds the neutron source and in a second detector surrounding the first detector. An electronic circuit insures that only events are measured which correspond to neutrons first detected in the first detector followed by subsequent detection in the second detector. In spectrometer embodiments of the invention, neutrons are thermalized in the second detector which is formed by a scintillator-moderator and neutron energy is measured from the summed signals from the first and second detectors.

  11. Time and position sensitive single photon detector for scintillator read-out

    NASA Astrophysics Data System (ADS)

    Schössler, S.; Bromberger, B.; Brandis, M.; Schmidt, L. Ph H.; Tittelmeier, K.; Czasch, A.; Dangendorf, V.; Jagutzki, O.

    2012-02-01

    We have developed a photon counting detector system for combined neutron and γ radiography which can determine position, time and intensity of a secondary photon flash created by a high-energy particle or photon within a scintillator screen. The system is based on a micro-channel plate photomultiplier concept utilizing image charge coupling to a position- and time-sensitive read-out anode placed outside the vacuum tube in air, aided by a standard photomultiplier and very fast pulse-height analyzing electronics. Due to the low dead time of all system components it can cope with the high throughput demands of a proposed combined fast neutron and dual discrete energy γ radiography method (FNDDER). We show tests with different types of delay-line read-out anodes and present a novel pulse-height-to-time converter circuit with its potential to discriminate γ energies for the projected FNDDER devices for an automated cargo container inspection system (ACCIS).

  12. Dosimetric characterization and behaviour in small X-ray fields of a microchamber and a plastic scintillator detector.

    PubMed

    Pasquino, Massimo; Cutaia, Claudia; Radici, Lorenzo; Valzano, Serena; Gino, Eva; Cavedon, Carlo; Stasi, Michele

    2017-01-01

    The aim of this work was to investigate the main dosimetric characteristics and the performance of an A26 Exradin ionization microchamber (A26 IC) and a W1 Exradin plastic scintillation detector (W1 PSD) in small photon beam dosimetry for treatment planning system commissioning and quality assurance programme. Detector characterization measurements (short-term stability, dose linearity, angular dependence and energy dependence) were performed in water for field sizes up to 10 × 10 cm 2 . Polarity effect (P pol ) was examined for the A26 IC. The behaviour of the detectors in small field relative dosimetry [percentage depth dose, dose profiles often called the off-axis ratio and output factors (OFs)] was investigated for field sizes ranging from 1 × 1 to 3 × 3 cm 2 . Results were compared with those obtained with other detectors we already use for small photon beam dosimetry. A26 IC and W1 PSD showed a linear dose response. While the A26 IC showed no energy dependence, the W1 PSD showed energy dependence within 2%; no angular dependence was registered. P pol values for A26 IC were below 0.9% (0.5% for field size >2 × 2 cm 2 ). A26 IC and W1 PSD depth-dose curves and lateral profiles agreed with those obtained with an EDGE diode. No differences were observed among the detectors in OF measurement for field sizes larger than 1 × 1 cm 2 , with average differences <1%. For field sizes <1 × 1 cm 2 , the effective volume of ionization chamber and non-water equivalence of EDGE diode become significant. A26 IC OF values were significantly lower than EDGE diode and W1 PSD values, with percentage differences of about -23 and -13% for the smallest field, respectively. W1 PSD OF values lay between ion chambers and diode values, with a maximum percentage difference of about -10% with respect to the EDGE diode, for a 6 × 6-mm 2 field size. The results of our investigation confirm that A26 IC and W1 PSD could play an important role in

  13. Commissioning the SNO+ Detector

    NASA Astrophysics Data System (ADS)

    Caden, E.; Coulter, I.; SNO+ Collaboration

    2017-09-01

    SNO+ is a multipurpose liquid scintillator neutrino experiment based at SNOLAB in Sudbury, Ontario, Canada. The experiment’s main physics goal is a search for neutrinoless double beta decay in Tellurium-130, but SNO+ will also study low energy solar neutrinos, geo- and reactor-antineutrinos, among other topics. We are reusing much of the hardware from the original SNO experiment, but significant work has taken place to transform the heavy water detector into a liquid scintillator detector. We present upgrades and improvements to the read-out electronics and trigger system to handle the higher data rates expected by a scintillator experiment. We show the successful installation and testing of a hold-down rope net for the acrylic vessel to counter-act the buoyancy of organic liquid scintillator. We also describe the new scintillator process plant and cover gas systems that have been constructed to achieve the purification necessary to meet our physics goals. We are currently commissioning the experiment with ultra-pure water in preparation for filling with scintillator in early 2017 and present the current status of this work.

  14. SU-F-T-09: In Phantom Full-Implant Validation of Plastic Scintillation Detectors for in Vivo Dosimetry During Low Dose Rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Therriault-Proulx, F; Bruno, T; Beddar, S

    Purpose: To validate in a water phantom the use of plastic scintillation detectors to measure dose to the urethra and the rectal wall during a clinically realistic low dose rate (LDR) brachytherapy implant. Methods: A template was designed to replicate a clinically realistic LDR brachytherapy prostate implant inside a water phantom. Twenty-two catheters were inserted, including one mimicking the urethra and another the rectal wall. The needles inserted in the remaining 20 catheters were composed of thin-walled nylon tubes in which I-125 radioactive seeds (Air Kerma Strengths of (0.328±0.020)U) were abutted together with plastic spacers to replicate a typical loading.more » A plastic scintillation detector (PSD) with a 5-mm long × 1-mm diameter sensitive element was first placed inside the urethra and 1-second measurements were performed for 60s after each needle implant. Measurements were also performed at multiple positions along the urethra once all the needles were inserted. The procedure was then repeated with the PSD placed at the rectal wall. Results: Individual dose-rates ranging from 0.07µGy/s to 1.5µGy/s were measured after each needle implant. The average absolute relative differences were (6.2±3.6)% and (6.9±6.5)% to the values calculated with the TG-43 formalism, for the urethra and rectal wall respectively. These results are within expectations from the error uncertainty budget once accounting for uncertainties in seeds’ strength and positioning. Interestingly, the PSD allowed for unplanned error detection as the study was performed. Finally, the measured dose after the full implant at different positions along the mimicked organs at risk were in agreement with TG-43 values for all of the positions tested. Conclusion: Plastic scintillation detectors could be used as in vivo detectors for LDR brachytherapy as they would provide accurate dose information after each needle implant as well as along the organs at risk at the end of the implant.« less

  15. Quenching measurements and modeling of a boron-loaded organic liquid scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westerdale, S.; Xu, J.; Shields, E.

    We present that organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section of 10B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters off protons in the scintillator or when it captures on 10B. Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding how nuclear recoils are quenched in these scintillators is an important and difficult problem.more » In this article, we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic liquid scintillator at recoil energies ranging from 57–467 keV, and we compare these measurements to predictions from different quenching models. We find that a modified Birks' model whose denominator is quadratic in dE/dx best describes the measurements, with χ2/NDF=1.6. In conclusion, this result will help model nuclear recoil scintillation in similar detectors and can be used to improve their neutron tagging efficiency.« less

  16. Quenching measurements and modeling of a boron-loaded organic liquid scintillator

    DOE PAGES

    Westerdale, S.; Xu, J.; Shields, E.; ...

    2017-08-03

    We present that organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section of 10B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters off protons in the scintillator or when it captures on 10B. Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding how nuclear recoils are quenched in these scintillators is an important and difficult problem.more » In this article, we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic liquid scintillator at recoil energies ranging from 57–467 keV, and we compare these measurements to predictions from different quenching models. We find that a modified Birks' model whose denominator is quadratic in dE/dx best describes the measurements, with χ2/NDF=1.6. In conclusion, this result will help model nuclear recoil scintillation in similar detectors and can be used to improve their neutron tagging efficiency.« less

  17. HgCdTe barrier infrared detectors

    NASA Astrophysics Data System (ADS)

    Kopytko, M.; Rogalski, A.

    2016-05-01

    In the last decade, new strategies to achieve high-operating temperature (HOT) detectors have been proposed, including barrier structures such as nBn devices, unipolar barrier photodiodes, and multistage (cascade) infrared detectors. The ability to tune the positions of the conduction and valence band edges independently in a broken-gap type-II superlattices is especially helpful in the design of unipolar barriers. This idea has been also implemented in HgCdTe ternary material system. However, the implementation of this detector structure in HgCdTe material system is not straightforward due to the existence of a valence band discontinuity (barrier) at the absorber-barrier interface. In this paper we present status of HgCdTe barrier detectors with emphasis on technological progress in fabrication of MOCVD-grown HgCdTe barrier detectors achieved recently at the Institute of Applied Physics, Military University of Technology. Their performance is comparable with state-of-the-art of HgCdTe photodiodes. From the perspective of device fabrication their important technological advantage results from less stringent surface passivation requirements and tolerance to threading dislocations.

  18. Characterization of Dual-Band Infrared Detectors for Application to Remote Sensing

    NASA Technical Reports Server (NTRS)

    Abedin, M. Nurul; Refaat, Tamer F.; Xiao, Yegao; Bhat, Ishwara

    2005-01-01

    NASA Langley Research Center (LaRC), in partnership with the Rensselaer Polytechnic Institute (RPI), developed photovoltaic infrared (IR) detectors suitable at two different wavelengths using Sb-based material systems. Using lattice-matched InGaAsSb grown on GaSb substrates, dual wavelength detectors operating at 1.7 and 2.5 micron wavelengths can be realized. P-N junction diodes are fabricated on both GaSb and InGaAsSb materials. The photodiode on GaSb detects wavelengths at 1.7 micron and the InGaAsSb detector detects wavelengths at 2.2 micron or longer depending on the composition. The films for these devices are grown by metal-organic vapor phase epitaxy (MOVPE). The cross section of the independently accessed back-to-back photodiode dual band detector consists of a p-type substrate on which n-on-p GaInAsSb junction is grown, followed by a p-on-n GaSb junction. There are three ohmic contacts in this structure, one to the p-GaSb top layer, one to the n-GaSb/n-GaInAsSb layer and one to the p-type GaSb substrate. The common terminal is the contact to the n-GaSb/n-GaInAsSb layer. The contact to the n-GaSb/p-GaInAsSb region of the photodiode in the dual band is electrically connected and is accessed at the edge of the photodiode. NASA LaRC acquired the fabricated dual band detector from RPI and characterized the detector at its Detector Characterization Laboratory. Characterization results, such as responsivity, noise, quantum efficiency, and detectivity will be presented.

  19. Liquid xenon scintillation measurements and pulse shape discrimination in the LUX dark matter detector

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Carmona-Benitez, M. C.; Chan, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Druszkiewicz, E.; Edwards, B. N.; Fallon, S. R.; Fan, A.; Fiorucci, S.; Gaitskell, R. J.; Genovesi, J.; Ghag, C.; Gilchriese, M. G. D.; Hall, C. R.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Lenardo, B. G.; Lesko, K. T.; Liao, J.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Utku, U.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration

    2018-06-01

    Weakly interacting massive particles (WIMPs) are a leading candidate for dark matter and are expected to produce nuclear recoil (NR) events within liquid xenon time-projection chambers. We present a measurement of the scintillation timing characteristics of liquid xenon in the LUX dark matter detector and develop a pulse shape discriminant to be used for particle identification. To accurately measure the timing characteristics, we develop a template-fitting method to reconstruct the detection times of photons. Analyzing calibration data collected during the 2013-2016 LUX WIMP search, we provide a new measurement of the singlet-to-triplet scintillation ratio for electron recoils (ER) below 46 keV, and we make, to our knowledge, a first-ever measurement of the NR singlet-to-triplet ratio at recoil energies below 74 keV. We exploit the difference of the photon time spectra for NR and ER events by using a prompt fraction discrimination parameter, which is optimized using calibration data to have the least number of ER events that occur in a 50% NR acceptance region. We then demonstrate how this discriminant can be used in conjunction with the charge-to-light discrimination to possibly improve the signal-to-noise ratio for nuclear recoils.

  20. Transparent ceramic garnet scintillator optimization via composition and co-doping for high-energy resolution gamma spectrometers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Beck, Patrick R.; Swanberg, Erik L.; Hunter, Steven L.

    2016-09-01

    Breakthrough energy resolution, R(662keV) <4%, has been achieved with an oxide scintillator, Cerium-doped Gadolinium Yttrium Gallium Aluminum Garnet, or GYGAG(Ce), by optimizing fabrication conditions. Here we describe the dependence of scintillation light yield and energy resolution on several variables: (1) Stoichiometry, in particular Gd/Y and Ga/Al ratios which modify the bandgap energy, (2) Processing methods, including vacuum vs. oxygen sintering, and (3) Trace co-dopants that influence the formation of Ce4+ and modify the intra-bandgap trap distribution. To learn about how chemical composition influences the scintillation properties of transparent ceramic garnet scintillators, we have measured: scintillation decay component amplitudes; intensity and duration of afterglow; thermoluminescence glow curve peak positions and amplitudes; integrated light yield; light yield non-proportionality, as measured in the Scintillator Light Yield Non-Proportionality Characterization Instrument (SLYNCI); and energy resolution for gamma spectroscopy. Optimized GYGAG(Ce) provides R(662 keV) =3.0%, for 0.05 cm3 size ceramics with Silicon photodiode readout, and R(662 keV) =4.6%, at 2 in3 size with PMT readout.

  1. Silicon photomultipliers for scintillating trackers

    NASA Astrophysics Data System (ADS)

    Rabaioli, S.; Berra, A.; Bolognini, D.; Bonvicini, V.; Bosisio, L.; Ciano, S.; Iugovaz, D.; Lietti, D.; Penzo, A.; Prest, M.; Rashevskaya, I.; Reia, S.; Stoppani, L.; Vallazza, E.

    2012-12-01

    In recent years, silicon photomultipliers (SiPMs) have been proposed as a new kind of readout device for scintillating detectors in many experiments. A SiPM consists of a matrix of parallel-connected pixels, which are independent photon counters working in Geiger mode with very high gain (∼106). This contribution presents the use of an array of eight SiPMs (manufactured by FBK-irst) for the readout of a scintillating bar tracker (a small size prototype of the Electron Muon Ranger detector for the MICE experiment). The performances of the SiPMs in terms of signal to noise ratio, efficiency and time resolution will be compared to the ones of a multi-anode photomultiplier tube (MAPMT) connected to the same bars. Both the SiPMs and the MAPMT are interfaced to a VME system through a 64 channel MAROC ASIC.

  2. Multispectral breast imaging using a ten-wavelength, 64 x 64 source/detector channels silicon photodiode-based diffuse optical tomography system.

    PubMed

    Li, Changqing; Zhao, Hongzhi; Anderson, Bonnie; Jiang, Huabei

    2006-03-01

    We describe a compact diffuse optical tomography system specifically designed for breast imaging. The system consists of 64 silicon photodiode detectors, 64 excitation points, and 10 diode lasers in the near-infrared region, allowing multispectral, three-dimensional optical imaging of breast tissue. We also detail the system performance and optimization through a calibration procedure. The system is evaluated using tissue-like phantom experiments and an in vivo clinic experiment. Quantitative two-dimensional (2D) and three-dimensional (3D) images of absorption and reduced scattering coefficients are obtained from these experiments. The ten-wavelength spectra of the extracted reduced scattering coefficient enable quantitative morphological images to be reconstructed with this system. From the in vivo clinic experiment, functional images including deoxyhemoglobin, oxyhemoglobin, and water concentration are recovered and tumors are detected with correct size and position compared with the mammography.

  3. Scintillator fiber optic long counter

    DOEpatents

    McCollum, T.; Spector, G.B.

    1994-03-29

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected is described. 11 figures.

  4. Scintillator-based fast ion loss measurements in the EAST.

    PubMed

    Chang, J F; Isobe, M; Ogawa, K; Huang, J; Wu, C R; Xu, Z; Jin, Z; Lin, S Y; Hu, L Q

    2016-11-01

    A new scintillator-based fast ion loss detector (FILD) has been installed on Experimental Advanced Superconducting Tokamak (EAST) to investigate the fast ion loss behavior in high performance plasma with neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH). A two dimensional 40 mm × 40 mm scintillator-coated (ZnS:Ag) stainless plate is mounted in the front of the detector, capturing the escaping fast ions. Photons from the scintillator plate are imaged with a Phantom V2010 CCD camera. The lost fast ions can be measured with the pitch angle from 60° to 120° and the gyroradius from 10 mm to 180 mm. This paper will describe the details of FILD diagnostic on EAST and describe preliminary measurements during NBI and ICRH heating.

  5. Noise and frequency response of silicon photodiode operational amplifier combination.

    PubMed

    Hamstra, R H; Wendland, P

    1972-07-01

    The noise in dark and illuminated Schottky barrier and diffused PIN non-guard-ring photodiodes has been measured between 0.1 Hz and 10 kHz and compared to theory with an excellent fit. It is shown that diodes used photovoltaically are free of 1/f noise in the dark. It is also demonstrated that there is an optimum bias (ca. 100 mV) for minimum noise equivalent power. When only a resistive load is used with a detector, it often determines the frequency response and noise of the detector circuit. We develop and demonstrate equations for the major improvements in both noise and frequency response that can be obtained using a current mode (inverting) operational amplifier.

  6. Low-energy neutron detector based upon lithium lanthanide borate scintillators

    DOEpatents

    Czirr, John B.

    1998-01-01

    An apparatus for detecting neutrons includes a cerium activated scintillation crystal containing .sup.10 B, with the scintillation crystal emitting light in response to .alpha. particles emitted from the .sup.10 B(n,.alpha.)Li* reaction. The apparatus also includes a gamma scintillator positioned adjacent the crystal and which generates light in response to gamma rays emitted from the decay of Li*. The apparatus further includes a first and a second light-to-electronic signal converter each positioned to respectively receive light from the crystal and the gamma scintillator, and each respectively outputting first and second electronic signals representative of .alpha. particles from the .sup.10 B(n,.alpha.)Li* reaction and gamma rays from the .sup.10 B(n,.alpha.)Li* reaction. The apparatus includes a coincidence circuit connected to receive the first and second signals and which generates a coincidence signal when the first and second signals coincide. The apparatus also includes a data analyzer for receiving an additional signal from at least one of the first and second converters, and for operating in response to the coincidence signal.

  7. Study on the Characteristics of a Scintillator for Beta-ray Detection using Epoxy Resin

    NASA Astrophysics Data System (ADS)

    Nam, Jong Soo; Choi, Yong Seok; Hong, Sang Bum; Seo, Bum Kyung; Moon, Jei Kwon; Choi, Jong Won

    2017-09-01

    A thin plate of a plastic scintillator for detecting a beta-ray was developed. The plastic scintillator was made using epoxy resin and organic scintillators such as 2.5-diphenyloxazole (PPO) and 1,4-bis [5-phenyl-2-oxazole] benzene (POPOP). The mixture ratio of epoxy resin and the organic scintillators was determined using their absorbance, transmittance, emission spectra, and transparency. Their optimal weight percentage of PPO and POPOP in the organic scintillators was adjusted to 0.2 wt%:0.01 wt%. The prepared plastic scintillator was used to measure the standard source of Sr-90. The pulse height spectra and total counts of the prepared plastic scintillator were similar to a commercial plastic scintillator. Based on the above results, a large-area plastic scintillator was prepared for rapid investigation of a site contaminated with Sr-90. The prepared large-area plastic scintillator was evaluated for the characteristics in the laboratory. The evaluation results are expected to be usefully utilized in the development of a large-area plastic scintillation detector. The large-area plastic scintillation detector developed on the basis of the evaluation results is expected to be utilized to quickly measure the contamination of Sr-90 in the grounds used as a nuclear power facility.

  8. Performance of a Facility for Measuring Scintillator Non-Proportionality

    NASA Astrophysics Data System (ADS)

    Choong, Woon-Seng; Hull, Giulia; Moses, William W.; Vetter, Kai M.; Payne, Stephen A.; Cherepy, Nerine J.; Valentine, John D.

    2008-06-01

    We have constructed a second-generation Compton coincidence instrument, known as the Scintillator Light Yield Non-proportionality Characterization Instrument (SLYNCI), to characterize the electron response of scintillating materials. While the SLYNCI design includes more and higher efficiency HPGe detectors than the original apparatus (five 25%-30% detectors versus one 10% detector), the most novel feature is that no collimator is placed in front of the HPGe detectors. Because of these improvements, the SLYNCI data collection rate is over 30 times higher than the original instrument. In this paper, we present a validation study of this instrument, reporting on the hardware implementation, calibration, and performance. We discuss the analysis method and present measurements of the electron response of two different NaI:Tl samples. We also discuss the systematic errors of the measurement, especially those that are unique to SLYNCI. We find that the apparatus is very stable, but that careful attention must be paid to the energy calibration of the HPGe detectors.

  9. Practical photon number detection with electric field-modulated silicon avalanche photodiodes.

    PubMed

    Thomas, O; Yuan, Z L; Shields, A J

    2012-01-24

    Low-noise single-photon detection is a prerequisite for quantum information processing using photonic qubits. In particular, detectors that are able to accurately resolve the number of photons in an incident light pulse will find application in functions such as quantum teleportation and linear optics quantum computing. More generally, such a detector will allow the advantages of quantum light detection to be extended to stronger optical signals, permitting optical measurements limited only by fluctuations in the photon number of the source. Here we demonstrate a practical high-speed device, which allows the signals arising from multiple photon-induced avalanches to be precisely discriminated. We use a type of silicon avalanche photodiode in which the lateral electric field profile is strongly modulated in order to realize a spatially multiplexed detector. Clearly discerned multiphoton signals are obtained by applying sub-nanosecond voltage gates in order to restrict the detector current.

  10. Monitoring Energy Calibration Drift Using the Scintillator Background Radiation

    NASA Astrophysics Data System (ADS)

    Conti, Maurizio; Eriksson, Lars; Hayden, Charles

    2011-06-01

    Scintillating materials commonly used in nuclear medicine can contain traces of isotopes that naturally emit gamma or beta radiation. Examples of these are 138La contained in LaBr3 and other Lanthanum based scintillators, and 176Lu contained in LSO, LYSO, LuYAP and other Lutetium based scintillators. In particular,176Lu decays into 176Hf and emits a beta particle with maximum energy 589 keV, and a cascade of gamma rays of energies 307 keV, 202 keV and 88 keV. We propose to use the background radiation for monitoring of detector calibration drift and for self-calibration of detectors in complex detector systems. A calibration drift due to random or systematic changes in photomultiplier tube (PMT) gain was studied in a Siemens PET scanner, based on LSO blocks. Both a conventional radioactive source (68Ge, 511 keV photons from electron-positron annihilation) and the LSO background radiation were used for calibration. The difference in the calibration peak shift at 511 keV estimated with the two methods was less than 10%.

  11. Results of low energy background measurements with the Liquid Scintillation Detector (LSD) of the Mont Blanc Laboratory

    NASA Technical Reports Server (NTRS)

    Aglietta, M.; Badino, G.; Bologna, G. F.; Castagnoli, C.; Fulgione, W.; Galeotti, P.; Saavedra, O.; Trinchero, G. C.; Vernetto, S.; Dadykin, V. L.

    1985-01-01

    The 90 tons liquid scintillation detector (LSD) is fully running since October 1984, at a depth of 5,200 hg/sq cm of standard rock underground. The main goal is to search for neutrino bursts from collapsing stars. The experiment is very sensitive to detect low energy particles and has a very good signature to gamma-rays from (n,p) reaction which follows the upsilon e + p yields n + e sup + neutrino capture. The analysis of data is presented and the preliminary results on low energy measurements are discussed.

  12. High-resolution x-ray imaging using a structured scintillator.

    PubMed

    Hormozan, Yashar; Sychugov, Ilya; Linnros, Jan

    2016-02-01

    In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator array to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.

  13. Simulating Silicon Photomultiplier Response to Scintillation Light

    PubMed Central

    Jha, Abhinav K.; van Dam, Herman T.; Kupinski, Matthew A.; Clarkson, Eric

    2015-01-01

    The response of a Silicon Photomultiplier (SiPM) to optical signals is affected by many factors including photon-detection efficiency, recovery time, gain, optical crosstalk, afterpulsing, dark count, and detector dead time. Many of these parameters vary with overvoltage and temperature. When used to detect scintillation light, there is a complicated non-linear relationship between the incident light and the response of the SiPM. In this paper, we propose a combined discrete-time discrete-event Monte Carlo (MC) model to simulate SiPM response to scintillation light pulses. Our MC model accounts for all relevant aspects of the SiPM response, some of which were not accounted for in the previous models. We also derive and validate analytic expressions for the single-photoelectron response of the SiPM and the voltage drop across the quenching resistance in the SiPM microcell. These analytic expressions consider the effect of all the circuit elements in the SiPM and accurately simulate the time-variation in overvoltage across the microcells of the SiPM. Consequently, our MC model is able to incorporate the variation of the different SiPM parameters with varying overvoltage. The MC model is compared with measurements on SiPM-based scintillation detectors and with some cases for which the response is known a priori. The model is also used to study the variation in SiPM behavior with SiPM-circuit parameter variations and to predict the response of a SiPM-based detector to various scintillators. PMID:26236040

  14. New fission-fragment detector for experiments at DANCE

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Roman, A. R.; Daum, J. K.; Springs, R. K.; Bond, E. M.; Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Ullmann, J. L.; Walker, C. L.

    2015-10-01

    A fission-fragment detector based on thin scintillating films has been built to serve as a veto/trigger detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4 π detection of the fission fragments. The scintillation events caused by the fission fragment interactions in the films are registered with silicon photomultipliers. Design of the detector and test measurements are described. Work supported by the U.S. Department of Energy through the LANL/LDRD Program and the U.S. Department of Energy, Office of Science, Nuclear Physics under the Early Career Award No. LANL20135009.

  15. Characterization of Deuterated-xylene Scintillator as a Neutron Spectrometer

    DOE PAGES

    Di Fulvio, Angela; Becchetti, F. D.; Raymond, R. S.; ...

    2016-11-16

    We have experimentally characterized the neutron light output response functions of a deuterated-xylene scintillator for neutron energies lower than 10 MeV. We then used the response matrix to unfold the energy distribution of neutrons produced via several reactions, i.e. spontaneous fission, d(d,n)3He, 27Al(d,n)28Si, and 9Be(alpha,n)12C. Organic scintillators based on deuterated compounds show a fast response and good gamma-neutron discrimination capability, similar to proton-based scintillators. Deuterated scintillators can also effectively provide neutron spectra by unfolding measured data with the detector response matrix, without the need of time-of-flight. Deuteron recoils, produced by elastic collisions between deuterium and impinging neutrons, are preferentially forward-scattered.more » This non-isotropic reaction results in distinct peaks in the response functions to monoenergetic neutrons. In this work, we evaluated a custom-fabricated 7.62 cm x 7.62 cm deuterated-xylene (EJ301D) liquid scintillator. This liquid has a low volatility and higher flash point, compared to benzene-based deuterated detectors, e.g. EJ315 and NE230. We measured the EJ301D detector neutron response matrix (up to 6 MeV neutron energy) using an intense Cf252 source and the time-of-flight technique. The number of response functions obtained using our method is only limited by counting statistics and by the experimentally achievable energy resolution. Multi-channel unfolding was performed successfully for neutron spectra with different energy spectra.« less

  16. Temperature dependence of commercial 4H-SiC UV Schottky photodiodes for X-ray detection and spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Lioliou, G.; Barnett, A. M.

    2017-07-01

    Two commercial-off-the-shelf (COTS) 4H-SiC UV photodiodes have been investigated for their suitability as low-cost high temperature tolerant X-ray detectors. Electrical characterisation of the photodiodes which had different active areas (0.06 mm2 and 0.5 mm2) is reported over the temperature range 0 °C to 140 °C together with measurements of the X-ray photocurrents generated when the detectors were illuminated with an 55Fe radioisotope X-ray source. The 0.06 mm2 photodiode was also investigated as a photon counting spectroscopic X-ray detector across the temperature range 0 °C to 100 °C. The depletion widths (at 120 V reverse bias) of the two diodes were found to be 2.3 μm and 4.5 μm, for the 0.06 mm2 and 0.5 mm2 detectors respectively, at 140 °C. Both devices had low leakage currents (<10 pA) at temperatures ≤40 °C even at high electric field strengths (500 kV/cm for 0.06 mm2 diode; 267 kV/cm for 0.5 mm2 diode). At 140 °C and similar field strengths (514 kV/cm for 0.06 mm2 diode; 269 kV/cm for 0.5 mm2 diode), the leakage currents of both diodes were <2 nA (corresponding to leakage current densities of 2.4 μA/cm2 and 0.3 μA/cm2 for each diode respectively). The results demonstrated that both devices could function as current mode detectors of soft X-rays at the temperatures <80 °C and that when coupled to a low noise charge sensitive preamplifier, the smaller diode functioned as a photon counting spectroscopic X-ray detector at temperatures ≤100 °C with modest energy resolution (1.6 keV FWHM at 5.9 keV at 0 °C; 2.6 keV FWHM at 5.9 keV at 100 °C). Due to their temperature tolerance, wide commercial availability, and the radiation hardness of SiC, such detectors are expected to find utility in future low-cost nanosatellite (cubesat) missions and cost-sensitive industrial applications.

  17. SU-G-TeP2-08: Evaluation of Plastic Scintillator Detector for Small Field Stereotactic Patient-Specific Quality Assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Y; Gardner, S; Huang, Y

    Purpose: To evaluate the performance of a commercial plastic scintillator detector (PSD) for small-field stereotactic patient-specific quality assurance using flattening-filter-free (FFF) beams. Methods: A total of ten spherical targets (volume range:[0.03cc–2cc]) were planned using Dynamic Conformal Arc(DCA-10 plans) and Volumetric Modulated Arc Therapy(VMAT-10 plans) techniques in Eclipse(AAA v.11, 1mm dose calculation grid size). Additionally, 15 previously-treated cranial and spine SRS plans were evaluated (6 DCA, 9 VMAT, volume range:[0.04cc–119.02cc]). All measurements were acquired using Varian Edge equipped with HDMLC. Three detectors were used: PinPoint ion chamber (PTW;active volume 0.015cc), Exradin W1 PSD (Standard Imaging;active volume 0.002cc), and Gafchromic EBT3 filmmore » (Ashland). PinPoint and PSD were positioned perpendicular to beam axis in a Lucy phantom (Standard Imaging). Films were placed at isocenter in solid water. Calibration films were delivered for absolute dose analysis. Results: For large spherical targets(>1.5cc) with DCA, all detectors agreed within 1% of AAA calculations. As target volume decreased, PSD measured higher doses than AAA (maximum difference: 3.3% at 0.03cc target), while PinPoint chamber measured lower doses (maximum difference:-3.8% at 0.03cc target). Inter-detector differences between pinpoint and PSD increased with decreasing target size; differences>5% were observed for targets<0.09cc. Similar trends for inter-detector behavior were observed for clinical plans. For target sizes<0.08cc, PSD measured>5% higher dose than PinPoint chamber (maximum difference: 9.25% at 0.04cc target). Film demonstrated agreement of −0.19±1.47% with PSD for all spherical targets, and agreement within −0.98±2.25% for all 15 clinical targets. Unlike DCA, VMAT plans did not show improved AAA-to-detector agreements for large targets. Conclusion: For all targets, the PSD measurements agreed with film within 1.0%, on average. For

  18. NaI(Tl) scintillator detectors stripping procedure for air kerma measurements of diagnostic X-ray beams

    NASA Astrophysics Data System (ADS)

    Oliveira, L. S. R.; Conti, C. C.; Amorim, A. S.; Balthar, M. C. V.

    2013-03-01

    Air kerma is an essential quantity for the calibration of national standards used in diagnostic radiology and the measurement of operating parameters used in radiation protection. Its measurement within the appropriate limits of accuracy, uncertainty and reproducibility is important for the characterization and control of the radiation field for the dosimetry of the patients submitted to diagnostic radiology and, also, for the assessment of the system which produces radiological images. Only the incident beam must be considered for the calculation of the air kerma. Therefore, for energy spectrum, counts apart the total energy deposition in the detector must be subtracted. It is necessary to establish a procedure to sort out the different contributions to the original spectrum and remove the counts representing scattered photons in the detector's materials, partial energy deposition due to the interactions in the detector active volume and, also, the escape peaks contributions. The main goal of this work is to present spectrum stripping procedure, using the MCNP Monte Carlo computer code, for NaI(Tl) scintillation detectors to calculate the air kerma due to an X-ray beam usually used in medical radiology. The comparison between the spectrum before stripping procedure against the reference value showed a discrepancy of more than 63%, while the comparison with the same spectrum after the stripping procedure showed a discrepancy of less than 0.2%.

  19. X-ray imaging performance of scintillator-filled silicon pore arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Matthias; Engel, Klaus Juergen; Menser, Bernd

    2008-03-15

    The need for fine detail visibility in various applications such as dental imaging, mammography, but also neurology and cardiology, is the driver for intensive efforts in the development of new x-ray detectors. The spatial resolution of current scintillator layers is limited by optical diffusion. This limitation can be overcome by a pixelation, which prevents optical photons from crossing the interface between two neighboring pixels. In this work, an array of pores was etched in a silicon wafer with a pixel pitch of 50 {mu}m. A very high aspect ratio was achieved with wall thicknesses of 4-7 {mu}m and pore depthsmore » of about 400 {mu}m. Subsequently, the pores were filled with Tl-doped cesium iodide (CsI:Tl) as a scintillator in a special process, which includes powder melting and solidification of the CsI. From the sample geometry and x-ray absorption measurement the pore fill grade was determined to be 75%. The scintillator-filled samples have a circular active area of 16 mm diameter. They are coupled with an optical sensor binned to the same pixel pitch in order to measure the x-ray imaging performance. The x-ray sensitivity, i.e., the light output per absorbed x-ray dose, is found to be only 2.5%-4.5% of a commercial CsI-layer of similar thickness, thus very low. The efficiency of the pores to transport the generated light to the photodiode is estimated to be in the best case 6.5%. The modulation transfer function is 40% at 4 lp/mm and 10%-20% at 8 lp/mm. It is limited most likely by the optical gap between scintillator and sensor and by K-escape quanta. The detective quantum efficiency (DQE) is determined at different beam qualities and dose settings. The maximum DQE(0) is 0.28, while the x-ray absorption with the given thickness and fill factor is 0.57. High Swank noise is suspected to be the reason, mainly caused by optical scatter inside the CsI-filled pores. The results are compared to Monte Carlo simulations of the photon transport inside the pore

  20. Development of real-time thermal neutron monitor using boron-loaded plastic scintillator with optical fiber for boron neutron capture therapy.

    PubMed

    Ishikawa, M; Ono, K; Sakurai, Y; Unesaki, H; Uritani, A; Bengua, G; Kobayashi, T; Tanaka, K; Kosako, T

    2004-11-01

    A new thermal neutron monitor for boron neutron capture therapy was developed in this study. We called this monitor equipped boron-loaded plastic scintillator that uses optical fiber for signal transmission as an [scintillator with optical fiber] SOF detector. A water phantom experiment was performed to verify how the SOF detector compared with conventional method of measuring thermal neutron fluence. Measurements with a single SOF detector yielded indistinguishable signals for thermal neutrons and gamma rays. To account for the gamma ray contribution in the signal recorded by the SOF detector, a paired SOF detector system was employed. This was composed of an SOF detector with boron-loaded scintillator and an SOF detector with a boron-free scintillator. The difference between the recorded counts of these paired SOF detectors was used as the measure of the gamma ray contribution in the measured neutron fluence. The paired SOF detectors were ascertained to be effective in measuring thermal neutron flux in the range above 10(6)(n/cm(2)/s). Clinical trials using paired SOF to measure thermal neutron flux during therapy confirmed that paired SOF detectors were effective as a real-time thermal neutron flux monitor.

  1. The Monte Carlo simulation of the Borexino detector

    NASA Astrophysics Data System (ADS)

    Agostini, M.; Altenmüller, K.; Appel, S.; Atroshchenko, V.; Bagdasarian, Z.; Basilico, D.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Borodikhina, L.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Canepa, M.; Caprioli, S.; Carlini, M.; Cavalcante, P.; Chepurnov, A.; Choi, K.; D'Angelo, D.; Davini, S.; Derbin, A.; Ding, X. F.; Di Noto, L.; Drachnev, I.; Fomenko, K.; Formozov, A.; Franco, D.; Froborg, F.; Gabriele, F.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Houdy, T.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jany, A.; Jeschke, D.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Laubenstein, M.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Magnozzi, M.; Manuzio, G.; Marcocci, S.; Martyn, J.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Muratova, V.; Neumair, B.; Oberauer, L.; Opitz, B.; Ortica, F.; Pallavicini, M.; Papp, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Semenov, D.; Shakina, P.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stokes, L. F. F.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Vishneva, A.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2018-01-01

    We describe the Monte Carlo (MC) simulation of the Borexino detector and the agreement of its output with data. The Borexino MC "ab initio" simulates the energy loss of particles in all detector components and generates the resulting scintillation photons and their propagation within the liquid scintillator volume. The simulation accounts for absorption, reemission, and scattering of the optical photons and tracks them until they either are absorbed or reach the photocathode of one of the photomultiplier tubes. Photon detection is followed by a comprehensive simulation of the readout electronics response. The MC is tuned using data collected with radioactive calibration sources deployed inside and around the scintillator volume. The simulation reproduces the energy response of the detector, its uniformity within the fiducial scintillator volume relevant to neutrino physics, and the time distribution of detected photons to better than 1% between 100 keV and several MeV. The techniques developed to simulate the Borexino detector and their level of refinement are of possible interest to the neutrino community, especially for current and future large-volume liquid scintillator experiments such as Kamland-Zen, SNO+, and Juno.

  2. Development of an ultra-compact CsI/HgI{sub 2} gamma-ray scintillation spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, B.E.; Wang, Y.J.; Iwanczyk, J.S.

    A novel new semiconductor photodetector has been developed which utilizes large mercuric iodide photodetectors coupled to highly optimized CsI(T1) scintillators for gamma ray spectroscopy. With this new detector technology the authors have achieved energy resolution superior to that of any other scintillation detector. Furthermore, gamma probes based on the new HgI{sub 2}/CsI(Tl) detector can be highly miniaturized offering improved portability. A {1/2}-inch diameter HgI{sub 2} photodetector coupled with a {1/2}-inch diameter by {1/2}-inch high right-rectangular scintillator produced energy resolution of 4.58% FWHM for {sup 137}Cs (662 keV). This is perhaps the best result ever reported for room temperature scintillation spectroscopy.more » Evaluation of a prototype device with similar performance has been conducted at Los Alamos using Pu and U standard samples. Recently, Monte-Carlo simulations have been performed for co-optimization of the gamma-collection efficiency and light collection efficiency of the scintillator/photodetector pairs resulting in a new tapered scintillator geometry. Energy resolution of 5.69% FWHM at 662 keV was obtained for a 1-inch diameter photodetector coupled to a two-inch long conical CsI(Tl) scintillator; with dimensions: 1-inch diameter at the top tapered to 2-inch diameter at the bottom. The long term stability of the technology has been verified. Current efforts to optimize the detectors for specific applications in safeguards and in materials control and accountability are discussed.« less

  3. Commissioning the SNO+ detector

    NASA Astrophysics Data System (ADS)

    Descamps, Freija; SNO+ Collaboration

    2016-09-01

    The SNO+ experiment is the successor to the Sudbury Neutrino Observatory (SNO), in which SNO's heavy water is replaced by approximately 780T of liquid scintillator (LAB). The combination of the 2km underground location, the use of ultra-clean materials and the high light-yield of the liquid scintillator means that a low background level and a low energy threshold can be achieved. This creates a new multipurpose neutrino detector with the potential to address a diverse set of physics goals, including the detection of reactor, solar, geo- and supernova neutrinos. A main physics goal of SNO+ is the search for neutrinoless double beta decay. By loading the liquid scintillator with 0.5% of natural Tellurium, resulting in about 1300kg of 130Te (isotopic abundance is slightly over 34%), a competitive sensitivity to the effective neutrino mass can be reached. This talk will present the status of the SNO+ detector, specifically the results and status of the detector commissioning with water.

  4. Near-infrared scintillation of liquid argon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, T.; Escobar, C. O.; Lippincott, W. H.

    2016-03-03

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7more » $$\\mu$$m < $$\\lambda$$; < 1.5$$\\mu$$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.« less

  5. High-resolution x-ray imaging using a structured scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hormozan, Yashar, E-mail: hormozan@kth.se; Sychugov, Ilya; Linnros, Jan

    2016-02-15

    Purpose: In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Methods: Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator arraymore » to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. Results: The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. Conclusions: The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.« less

  6. Avalanche photodiode based time-of-flight mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogasawara, Keiichi, E-mail: kogasawara@swri.edu; Livi, Stefano A.; Desai, Mihir I.

    2015-08-15

    This study reports on the performance of Avalanche Photodiodes (APDs) as a timing detector for ion Time-of-Flight (TOF) mass spectroscopy. We found that the fast signal carrier speed in a reach-through type APD enables an extremely short timescale response with a mass or energy independent <2 ns rise time for <200 keV ions (1−40 AMU) under proper bias voltage operations. When combined with a microchannel plate to detect start electron signals from an ultra-thin carbon foil, the APD comprises a novel TOF system that successfully operates with a <0.8 ns intrinsic timing resolution even using commercial off-the-shelf constant-fraction discriminators. Bymore » replacing conventional total-energy detectors in the TOF-Energy system, APDs offer significant power and mass savings or an anti-coincidence background rejection capability in future space instrumentation.« less

  7. Utilization of wavelength-shifting fibers coupled to ZnS(Ag) and plastic scintillator for simultaneous detection of alpha/beta particles

    NASA Astrophysics Data System (ADS)

    Ifergan, Y.; Dadon, S.; Israelashvili, I.; Osovizky, A.; Gonen, E.; Yehuda-Zada, Y.; Smadja, D.; Knafo, Y.; Ginzburg, D.; Kadmon, Y.; Cohen, Y.; Mazor, T.

    2015-06-01

    Low level radioactive surface contamination measurements require lightweight, large area and high efficiency detector. In most existing scintillation detectors there is a tradeoff between effective area and scintillation light collection. By using wavelength shifting (WLS) fibers the scintillation light may be collected efficiently also in a large area detector. In this study, WLS fibers were coupled to a beta sensitive plastic scintillator layer and to a alpha sensitive silver-activated zinc sulfide ZnS(Ag) layer for detecting both alpha and beta particles. The WLS fibers collect the scintillation light from the whole detector and transfer it to a single PMT. This first prototype unique configuration enables monitoring radioactive contaminated surfaces by both sides of the detector and provides high gamma rejection. In this paper, the detector structure, as well as the detector's measured linear response, will be described. The measured detection efficiency of 238Pu alpha particles (5.5 MeV) is 63%. The measured detection efficiency for beta particles is 89% for 90Sr-90Y (average energy of 195.8 keV, 934.8 keV), 50% for 36Cl (average energy of 251.3 keV), and 35% for 137Cs (average energy of 156.8 keV).

  8. Measurement of ortho-positronium properties in liquid scintillators

    NASA Astrophysics Data System (ADS)

    Perasso, S.; Consolati, G.; Franco, D.; Hans, S.; Jollet, C.; Meregaglia, A.; Tonazzo, A.; Yeh, M.

    2013-08-01

    Pulse shape discrimination in liquid scintillator detectors is a well-established technique for the discrimination of heavy particles from light particles. Nonetheless, it is not efficient in the separation of electrons and positrons, as they give rise to indistinguishable scintillator responses. This inefficiency can be overtaken through the exploitation of the formation of ortho-Positronium (o-Ps), which alters the time profile of light pulses induced by positrons. We characterized the o-Ps properties in the most commonly used liquid scintillators, i.e. PC, PXE, LAB, OIL and PC + PPO. In addition, we studied the effects of scintillator doping on the o-Ps properties for dopants currently used in neutrino experiments, Gd and Nd. Further measurements for Li-loaded and Tl-loaded liquid scintillators are foreseen. We found that the o-Ps properties are suitable for enhancing the electron-positron discrimination.

  9. Depth of interaction determination in monolithic scintillator with double side SiPM readout.

    PubMed

    Morrocchi, Matteo; Ambrosi, Giovanni; Bisogni, Maria Giuseppina; Bosi, Filippo; Boretto, Marco; Cerello, Piergiorgio; Ionica, Maria; Liu, Ben; Pennazio, Francesco; Piliero, Maria Antonietta; Pirrone, Giovanni; Postolache, Vasile; Wheadon, Richard; Del Guerra, Alberto

    2017-12-01

    Monolithic scintillators read out by arrays of photodetectors represent a promising solution to obtain high spatial resolution and the depth of interaction (DOI) of the annihilation photon. We have recently investigated a detector geometry composed of a monolithic scintillator readout on two sides by silicon photomultiplier (SiPM) arrays, and we have proposed two parameters for the DOI determination: the difference in the number of triggered SiPMs on the two sides of the detector and the difference in the maximum collected signal on a single SiPM on each side. This work is focused on the DOI calibration and on the determination of the capability of our detector. For the DOI calibration, we studied a method which can be implemented also in detectors mounted in a full PET scanner. We used a PET detector module composed of a monolithic 20 × 20 × 10 mm 3 LYSO scintillator crystal coupled on two opposite faces to two arrays of SiPMs. On each side, the scintillator was coupled to 6 × 6 SiPMs. In this paper, the two parameters previously proposed for the DOI determination were calibrated with two different methods. The first used a lateral scan of the detector with a collimated 511 keV pencil beam at steps of 0.5 mm to study the detector DOI capability, while the second used the background radiation of the 176 Lu in the scintillator. The DOI determination capability was tested on different regions of the detector using each parameter and the combination of the two. With both parameters for the DOI determination, in the lateral scan, the bias between the mean reconstructed DOI and the real beam position was lower than 0.3 mm, and the DOI distribution had a standard deviation of about 1.5 mm. When using the calibration with the radioactivity of the LYSO, the mean bias increased of about 0.2 mm but with no degradation of the standard deviation of the DOI distribution. The two parameters allow to achieve a DOI resolution comparable with the state of the

  10. Optimization of a HOT LWIR HgCdTe Photodiode for Fast Response and High Detectivity in Zero-Bias Operation Mode

    NASA Astrophysics Data System (ADS)

    Kopytko, M.; Kębłowski, A.; Madejczyk, P.; Martyniuk, P.; Piotrowski, J.; Gawron, W.; Grodecki, K.; Jóźwikowski, K.; Rutkowski, J.

    2017-10-01

    Fast response is an important property of infrared detectors for many applications. Currently, high-temperature long-wavelength infrared HgCdTe heterostructure photodiodes exhibit subnanosecond time constants while operating under reverse bias. However, nonequilibrium devices exhibit excessive low-frequency 1/ f noise that extends up to MHz range, representing a severe obstacle to their widespread application. Present efforts are focused on zero-bias operation of photodiodes. Unfortunately, the time constant of unbiased photodiodes is still at the level of several nanoseconds. We present herein a theoretical investigation of device design for improved response time and detectivity of long-wavelength infrared HgCdTe photodiodes operating at 230 K in zero-bias mode. The calculation results show that highly doped p-type HgCdTe is the absorber material of choice for fast photodiodes due to its high electron diffusion coefficient. The detectivity of such a device can also be optimized by using absorber doping of N A = 1 × 1017 cm-3. Reduction of the thickness is yet another approach to improve the device response. Time constant below 1 ns is achieved for an unbiased photodiode with absorber thickness below 4 μm. A tradeoff between the contradictory requirements of achieving high detectivity and fast response time is expected in an optically immersed photodiode with very small active area.

  11. X-ray and gamma ray detector readout system

    DOEpatents

    Tumer, Tumay O; Clajus, Martin; Visser, Gerard

    2010-10-19

    A readout electronics scheme is under development for high resolution, compact PET (positron emission tomography) imagers based on LSO (lutetium ortho-oxysilicate, Lu.sub.2SiO.sub.5) scintillator and avalanche photodiode (APD) arrays. The key is to obtain sufficient timing and energy resolution at a low power level, less than about 30 mW per channel, including all required functions. To this end, a simple leading edge level crossing discriminator is used, in combination with a transimpedance preamplifier. The APD used has a gain of order 1,000, and an output noise current of several pA/ Hz, allowing bipolar technology to be used instead of CMOS, for increased speed and power efficiency. A prototype of the preamplifier and discriminator has been constructed, achieving timing resolution of 1.5 ns FWHM, 2.7 ns full width at one tenth maximum, relative to an LSO/PMT detector, and an energy resolution of 13.6% FWHM at 511 keV, while operating at a power level of 22 mW per channel. Work is in progress towards integration of this preamplifier and discriminator with appropriate coincidence logic and amplitude measurement circuits in an ASIC suitable for a high resolution compact PET instrument. The detector system and/or ASIC can also be used for many other applications for medical to industrial imaging.

  12. Gamma ray detector shield

    DOEpatents

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  13. Position sensitivity by light splitting in scintillator arrays

    NASA Astrophysics Data System (ADS)

    Bisplinghoff, J.; Bollmann, R.; Cloth, P.; Dohrmann, F.; Dorner, G.; Drüke, V.; Ernst, J.; Eversheim, P. D.; Filges, D.; Gasthuber, M.; Gebel, R.; Groβ, A.; Groβ-Hardt, R.; Hinterberger, F.; Jahn, R.; Kühl, L.; Lahr, U.; Langkau, R.; Lippert, G.; Mayer-Kuckuk, T.; Maschuw, R.; Mertler, G.; Metsch, B.; Mosel, F.; Paetz gen. Schieck, H.; Petry, H. R.; Prasuhn, D.; Przewoski, B. v.; Rohdjeβ, H.; Rosendaal, D.; Rossen, P. v.; Scheid, H.; Schirm, N.; Schwandt, F.; Scobel, W.; Sprute, L.; Stein, H.; Theis, D.; Weber, J.; Wiedmann, W.; Woller, K.; Ziegler, R.; EDDA Collaboration

    1993-05-01

    A novel detector design of overlapping plastic scintillator elements in cylindrical geometry has been developed for detection of low multiplicity events of fast protons and other light charged particles: each particle traversing the detector from the axis outwards will produce light in several elements. The relative amounts of energy deposited in those elements allow one to interpolate on the particle trajectory beyond the resolution given by the granularity. The detector covers the angular range 10° ≤ Θlab ≤ 72° and 0° ≤ ϕ ≤ 360° with an inner layer of scintillator bars of triangular cross section and an outer layer of rings. The material is BC408. Tests with minimum ionizing electron beams show that spatial resolutions of ΔΘlab ≈ 1.5° and Δϕ12 ≈ 1.5° (FWHM) can be obtained for electrons or proton pairs with energies in the GeV range. In the EDDA experiment the ultimate spatial resolution is then determined by the size of the interaction area rather than by the intrinsic pulse height resolution of the detector.

  14. Design and Prototyping of a High Granularity Scintillator Calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zutshi, Vishnu

    A novel approach for constructing fine-granularity scintillator calorimeters, based on the concept of an Integrated Readout Layer (IRL) was developed. The IRL consists of a printed circuit board inside the detector which supports the directly-coupled scintillator tiles, connects to the surface-mount SiPMs and carries the necessary front-end electronics and signal/bias traces. Prototype IRLs using this concept were designed, prototyped and successfully exposed to test beams. Concepts and implementations of an IRL carried out with funds associated with this contract promise to result in the next generation of scintillator calorimeters.

  15. Organic Scintillator for Real-Time Neutron Dosimetry

    DOE PAGES

    Beyer, Kyle A.; Di Fulvio, Angela; Stolarczyk, Liliana; ...

    2017-11-15

    We have developed a radiation detector based on an organic scintillator for spectrometry and dosimetry of out-of-field secondary neutrons from clinical proton beams. The detector consists of an EJ-299-34 crystalline organic scintillator, coupled by fiber optic cable to a silicon photomultiplier (SiPM). Proof of concept measurements were taken with 137Cs and 252Cf, and corresponding simulations were performed in MCNPX-PoliMi. Despite its small size, the detector is able to discriminate between neutron and gamma-rays via pulse shape discrimination. We simulated the response function of the detector to monoenergetic neutrons in the 100 keV–0 MeV range using MCNPX-PoliMi. The measured unfolded 252Cfmore » neutron spectrum is in good agreement with the theoretical Watt fission spectrum. We determined the ambient dose equivalent by folding the spectrum with the fluence-to-ambient dose conversion coefficient, with a 1.4% deviation from theory. Some preliminary proton beam experiments were preformed at the Bronowice Cyclotron Center patient treatment facility using a clinically relevant proton pencil beam for brain tumor and craino-spinal treatment directed at a child phantom.« less

  16. Organic Scintillator for Real-Time Neutron Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beyer, Kyle A.; Di Fulvio, Angela; Stolarczyk, Liliana

    We have developed a radiation detector based on an organic scintillator for spectrometry and dosimetry of out-of-field secondary neutrons from clinical proton beams. The detector consists of an EJ-299-34 crystalline organic scintillator, coupled by fiber optic cable to a silicon photomultiplier (SiPM). Proof of concept measurements were taken with 137Cs and 252Cf, and corresponding simulations were performed in MCNPX-PoliMi. Despite its small size, the detector is able to discriminate between neutron and gamma-rays via pulse shape discrimination. We simulated the response function of the detector to monoenergetic neutrons in the 100 keV–0 MeV range using MCNPX-PoliMi. The measured unfolded 252Cfmore » neutron spectrum is in good agreement with the theoretical Watt fission spectrum. We determined the ambient dose equivalent by folding the spectrum with the fluence-to-ambient dose conversion coefficient, with a 1.4% deviation from theory. Some preliminary proton beam experiments were preformed at the Bronowice Cyclotron Center patient treatment facility using a clinically relevant proton pencil beam for brain tumor and craino-spinal treatment directed at a child phantom.« less

  17. Design of an ultrathin cold neutron detector

    NASA Astrophysics Data System (ADS)

    Osovizky, A.; Pritchard, K.; Yehuda-Zada, Y.; Ziegler, J.; Binkley, E.; Tsai, P.; Thompson, A.; Hadad, N.; Jackson, M.; Hurlbut, C.; Baltic, G. M.; Majkrzak, C. F.; Maliszewskyj, N. C.

    2018-06-01

    We describe the design and performance of an ultrathin (<2 mm) cold neutron detector consisting of 6LiF:ZnS(Ag) scintillator in which wavelength shifting fibers have been embedded to conduct scintillation photons out of the medium to a silicon photomultiplier photosensor. The counter has a neutron sensitive volume of 12 mm wide × 30 mm high × 1.4 mm deep. Twenty-four 0.5 mm diameter wavelength shifting fibers conduct the scintillation light out of the plane of the detector and are concentrated onto a 3 mm × 3 mm silicon photomultiplier. The detector is demonstrated to possess a neutron detection efficiency of 93% for 3.27 meV neutrons with a gamma ray rejection ratio on the order of 10-7.

  18. Rejection of randomly coinciding events in Li_2^{100}MoO_4 scintillating bolometers using light detectors based on the Neganov-Luke effect

    NASA Astrophysics Data System (ADS)

    Chernyak, D. M.; Danevich, F. A.; Dumoulin, L.; Giuliani, A.; Mancuso, M.; Marcillac, P. de; Marnieros, S.; Nones, C.; Olivieri, E.; Poda, D. V.; Tretyak, V. I.

    2017-01-01

    Random coincidences of nuclear events can be one of the main background sources in low-temperature calorimetric experiments looking for neutrinoless double-beta decay, especially in those searches based on scintillating bolometers embedding the promising double-beta candidate ^{100} Mo, because of the relatively short half-life of the two-neutrino double-beta decay of this nucleus. We show in this work that randomly coinciding events of the two-neutrino double-beta decay of ^{100} Mo in enriched Li_2^{100} MoO_4 detectors can be effectively discriminated by pulse-shape analysis in the light channel if the scintillating bolometer is provided with a Neganov-Luke light detector, which can improve the signal-to-noise ratio by a large factor, assumed here at the level of {˜ }750 on the basis of preliminary experimental results obtained with these devices. The achieved pile-up rejection efficiency results in a very low contribution, of the order of {˜ }6× 10^{-5} counts/(keV\\cdot kg\\cdot y), to the background counting rate in the region of interest for a large volume ({˜ }90 cm^3) Li_2^{100} MoO_4 detector. This background level is very encouraging in view of a possible use of the Li_2^{100} MoO_4 solution for a bolometric tonne-scale next-generation experiment as that proposed in the CUPID project.

  19. Alpha spectroscopy by the Φ25 mm×0.1 mm YAlO3:Ce scintillation detector under atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Kvasnicka, Jiri; Urban, Tomas; Tous, Jan; Smejkal, Jan; Blazek, Karel; Nikl, Martin

    2017-06-01

    The YAlO3:Ce scintillation crystal has excellent mechanical properties and is not affected if used in chemically aggressive environments. The detector with the diameter of Φ25.4 mm and thickness of 0.1 mm was coupled with the PMT, associated electronics and the MCA in order to study its alpha spectroscopy properties. The measured alpha spectra of the surface calibration sources of 241Am and 230Th were compared with results of a Monte Carlo simulation. The experiment and the simulation were carried out for three distances between the detector and the surface alpha source in order to assess the effect of the distance on the detected energy of alpha radiation. Finally, the detector was used for the monitoring of radon (222Rn) decay products (radon daughters) in the air. It was concluded that the detector is suitable for the in-situ alpha spectroscopy monitoring under ambient atmospheric conditions. Nevertheless, in order to identify radionuclides and their activity from the measured alpha spectra a computer code would need to be developed.

  20. Use of a large time-compensated scintillation detector in neutron time-of-flight measurements

    DOEpatents

    Goodman, Charles D.

    1979-01-01

    A scintillator for neutron time-of-flight measurements is positioned at a desired angle with respect to the neutron beam, and as a function of the energy thereof, such that the sum of the transit times of the neutrons and photons in the scintillator are substantially independent of the points of scintillations within the scintillator. Extrapolated zero timing is employed rather than the usual constant fraction timing. As a result, a substantially larger scintillator can be employed that substantially increases the data rate and shortens the experiment time.

  1. Study of n- γ discrimination by zero-crossing method with SiPM based scintillation detectors

    NASA Astrophysics Data System (ADS)

    Grodzicka-Kobylka, M.; Szczesniak, T.; Moszyński, M.; Swiderski, L.; Wolski, D.; Baszak, J.; Korolczuk, S.; Schotanus, P.

    2018-03-01

    The paper presents a study of n / γ discrimination with 4x4 ch and 8x8 ch Multi Pixel Photon Counter (MPPC) arrays in neutron detectors based on Stilbene and EJ299-33 plastic scintillators. The n / γ discrimination showed an excellent capability of the MPPC arrays, comparable to that observed earlier with the classical PMTs. Particularly, an application of a zero-crossing method of n - γ discrimination prevented deterioration of the discrimination by the slow response of the Silicon Photomultiplier (SiPM, or MPPC interchangeably) array related to its large capacitance. It was confirmed by a good agreement of the Figure of Merit normalized to the number of photoelectrons determined for the MPPC arrays and XP5500 PMT.

  2. GPU-based optical propagation simulator of a laser-processed crystal block for the X'tal cube PET detector.

    PubMed

    Ogata, Yuma; Ohnishi, Takashi; Moriya, Takahiro; Inadama, Naoko; Nishikido, Fumihiko; Yoshida, Eiji; Murayama, Hideo; Yamaya, Taiga; Haneishi, Hideaki

    2014-01-01

    The X'tal cube is a next-generation DOI detector for PET that we are developing to offer higher resolution and higher sensitivity than is available with present detectors. It is constructed from a cubic monolithic scintillation crystal and silicon photomultipliers which are coupled on various positions of the six surfaces of the cube. A laser-processing technique is applied to produce 3D optical boundaries composed of micro-cracks inside the monolithic scintillator crystal. The current configuration is based on an empirical trial of a laser-processed boundary. There is room to improve the spatial resolution by optimizing the setting of the laser-processed boundary. In fact, the laser-processing technique has high freedom in setting the parameters of the boundary such as size, pitch, and angle. Computer simulation can effectively optimize such parameters. In this study, to design optical characteristics properly for the laser-processed crystal, we developed a Monte Carlo simulator which can model arbitrary arrangements of laser-processed optical boundaries (LPBs). The optical characteristics of the LPBs were measured by use of a setup with a laser and a photo-diode, and then modeled in the simulator. The accuracy of the simulator was confirmed by comparison of position histograms obtained from the simulation and from experiments with a prototype detector composed of a cubic LYSO monolithic crystal with 6 × 6 × 6 segments and multi-pixel photon counters. Furthermore, the simulator was accelerated by parallel computing with general-purpose computing on a graphics processing unit. The calculation speed was about 400 times faster than that with a CPU.

  3. SU-E-T-108: An Investigation of Cerenkov Light Production in the Exradin W1 Scintillator Under Various Measurement Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simiele, E; Culberson, W

    2015-06-15

    Purpose: To investigate the effects of depth, fiber-optic cable bends, and incident radiation angle on Cerenkov production in the Standard Imaging Exradin W1. Methods: Measurements were completed using a Varian Clinac 21EX linear accelerator with an Exradin W1 scintillator as well as a cable-only scintillator (no scintillation material) to isolate the Cerenkov signal. The effects of cable bend radius and location were investigated by bending the fiber-optic cable into a circle with radii ranging from 1.0 to 10.8 cm and positioning the center of the coil at distances ranging from 10.0 to 175.0 cm from the photodiode. The effects ofmore » depth and incident radiation angle were investigated by performing measurements in water at depths ranging from 1.0 cm to 25.0 cm and angles ranging from 0° to 80°. Eclipse treatment-planning software was utilized to ensure a consistent dose was delivered to the W1 regardless of depth or angle. Results: Measured signal in both channels of the cable-only scintillator decreased as the bend radius decreased and as the distance between the bend and photodiode increased. A fiber bend of 1.0 cm radius produced a 17.1% decrease in the green channel response in the cable-only scintillator. The effect of depth was less severe; a maximum increase of 6.6% in the green channel response was observed at a depth of 25.0 cm in the W1. In the angular dependence investigation, the signal in both channels of the W1 peaked at an angle of 40°; which is in agreement with the nominal Cerenkov emission angle of 45°. Conclusion: The green channel response in the W1 (mainly Cerenkov signal) varied with depth, fiber-optic cable bends, and incident radiation angle. Fully characterizing Cerenkov production is essential to ensure it is properly accounted for in scintillator measurements. Research funding and materials received by Standard Imaging, Inc. (Middleton WI)« less

  4. Buried plastic scintillator muon telescope

    NASA Astrophysics Data System (ADS)

    Sanchez, F.; Medina-Tanco, G.A.; D'Olivo, J.C.; Paic, G.; Patino Salazar, M.E.; Nahmad-Achar, E.; Valdes Galicia, J.F.; Sandoval, A.; Alfaro Molina, R.; Salazar Ibarguen, H.; Diozcora Vargas Trevino, M.A.; Vergara Limon, S.; Villasenor, L.M.

    Muon telescopes can have several applications, ranging from astrophysical to solar-terrestrial interaction studies, and fundamental particle physics. We show the design parameters, characterization and end-to-end simulations of a detector composed by a set of three parallel dual-layer scintillator planes, buried at fix depths ranging from 0.30 m to 3 m. Each layer is 4 m2 and is composed by 50 rectangular pixels of 4cm x 2 m, oriented at a 90 deg angle with respect to its companion layer. The scintillators are MINOS extruded polystyrene strips with two Bicron wavelength shifting fibers mounted on machined grooves. Scintillation light is collected by multi-anode PMTs of 64 pixels, accommodating two fibers per pixel. The front-end electronics has a time resolution of 7.5 nsec. Any strip signal above threshold opens a GPS-tagged 2 micro-seconds data collection window. All data, including signal and background, are saved to hard disk. Separation of extensive air shower signals from secondary cosmic-ray background muons and electrons is done offline using the GPS-tagged threefold coincidence signal from surface water cerenkov detectors located nearby in a triangular array. Cosmic-ray showers above 6 PeV are selected. The data acquisition system is designed to keep both, background and signals from extensive air showers for a detailed offline data.

  5. SU-E-CAMPUS-T-03: Four-Dimensional Dose Distribution Measurement Using Plastic Scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, M; Kozuka, T; Oguchi, M

    2014-06-15

    Purpose: To develop the detector for the four-dimensional dose distribution measurement. Methods: We made the prototype detector for four-dimensional dose distribution measurement using a cylindrical plastic scintillator (5 cm diameter) and a conical reflection grass. The plastic scintillator is used as a phantom. When the plastic scintillator is irradiated, the scintillation light was emitted according to absorbed dose distribution. The conical reflection grass was arranged to surround the plastic scintillator, which project to downstream the projection images of the scintillation light. Then, the projection image was reflected to 45 degree direction by flat reflection grass, and was recorded by camcorder.more » By reconstructing the three-dimensional dose distribution from the projection image recorded in each frame, we could obtain the four-dimensional dose distribution. First, we tested the characteristic according to the amount of emitted light. Then we compared of the light profile and the dose profile calculated with the radiotherapy treatment planning system. Results: The dose dependency of the amount of light showed linearity. The pixel detecting smaller amount of light had high sensitivity than the pixel detecting larger amount of light. However the difference of the sensitivity could be corrected from the amount of light detected in each pixel. Both of the depth light profile through the conical reflection grass and the depth dose profile showed the same attenuation in the region deeper than peak depth. In lateral direction, the difference of the both profiles was shown at outside field and penumbra region. We consider that the difference is occurred due to the scatter of the scintillation light in the plastic scintillator block. Conclusion: It was possible to obtain the amount of light corresponding to the absorbed dose distribution from the prototype detector. Four-dimensional dose distributions can be reconstructed with high accuracy by the

  6. Temperature dependence of alpha-induced scintillation in the 1,1,4,4-tetraphenyl-1,3-butadiene wavelength shifter

    NASA Astrophysics Data System (ADS)

    Veloce, L. M.; Kuźniak, M.; Di Stefano, P. C. F.; Noble, A. J.; Boulay, M. G.; Nadeau, P.; Pollmann, T.; Clark, M.; Piquemal, M.; Schreiner, K.

    2016-06-01

    Liquid noble based particle detectors often use the organic wavelength shifter 1,1,4,4-tetraphenyl-1,3-butadiene (TPB) which shifts UV scintillation light to the visible regime, facilitating its detection, but which also can scintillate on its own. Dark matter searches based on this type of detector commonly rely on pulse-shape discrimination (PSD) for background mitigation. Alpha-induced scintillation therefore represents a possible background source in dark matter searches. The timing characteristics of this scintillation determine whether this background can be mitigated through PSD. We have therefore characterized the pulse shape and light yield of alpha induced TPB scintillation at temperatures ranging from 300 K down to 4 K, with special attention given to liquid noble gas temperatures. We find that the pulse shapes and light yield depend strongly on temperature. In addition, the significant contribution of long time constants above ~50 K provides an avenue for discrimination between alpha decay events in TPB and nuclear-recoil events in noble liquid detectors.

  7. Nano-multiplication region avalanche photodiodes and arrays

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu (Inventor); Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor)

    2011-01-01

    An avalanche photodiode with a nano-scale reach-through structure comprising n-doped and p-doped regions, formed on a silicon island on an insulator, so that the avalanche photodiode may be electrically isolated from other circuitry on other silicon islands on the same silicon chip as the avalanche photodiode. For some embodiments, multiplied holes generated by an avalanche reduces the electric field in the depletion region of the n-doped and p-doped regions to bring about self-quenching of the avalanche photodiode. Other embodiments are described and claimed.

  8. Performance of an organic photodiode as an optical detector and its application to fluorometric flow-immunoassay for IgA.

    PubMed

    Miyake, Mayo; Nakajima, Hizuru; Hemmi, Akihide; Yahiro, Masayuki; Adachi, Chihaya; Soh, Nobuaki; Ishimatsu, Ryoichi; Nakano, Koji; Uchiyama, Katsumi; Imato, Toshihiko

    2012-07-15

    The performance of an organic thin film photodiode (OPD), fabricated from a hetero-junction comprised of two layers of C(60) and a phthalocyanine-Cu(II) complex was evaluated by detecting the chemiluminescence generated from the reaction of luminol with horseradish peroxidase in the presence of H(2)O(2), and the fluorescence from resorufin, as an optical detector. The photocurrent of the OPD was linear with respect to the power of light from a commercial LED. The sensitivity of the OPD was sufficient for detecting chemiluminescence with a power 0.1μW/cm(2). The OPD was successfully used in a flow-immunoassay for IgA, a marker of human stress, in which a sandwich immunoassay was carried out on the microchip and the fluorescence from resorufin, produced by the enzymatic reaction, was detected. The detection limits for resorufin and IgA were 5.0μM and 16ng/mL, respectively. The photosensitivity of the OPD remained relatively constant for a minimum of one year. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Measurements of high energy photons in Z-pinch experiments on primary test stand

    NASA Astrophysics Data System (ADS)

    Si, Fenni; Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin

    2015-08-01

    High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (±15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 1010 cm-2 (±20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region.

  10. Measurements of high energy photons in Z-pinch experiments on primary test stand.

    PubMed

    Si, Fenni; Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin

    2015-08-01

    High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (±15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 10(10) cm(-2) (±20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region.

  11. A polychromator-type near-infrared spectrometer with a high-sensitivity and high-resolution photodiode array detector for pharmaceutical process monitoring on the millisecond time scale.

    PubMed

    Murayama, Kodai; Genkawa, Takuma; Ishikawa, Daitaro; Komiyama, Makoto; Ozaki, Yukihiro

    2013-02-01

    In the fine chemicals industry, particularly in the pharmaceutical industry, advanced sensing technologies have recently begun being incorporated into the process line in order to improve safety and quality in accordance with process analytical technology. For estimating the quality of powders without preparation during drug formulation, near-infrared (NIR) spectroscopy has been considered the most promising sensing approach. In this study, we have developed a compact polychromator-type NIR spectrometer equipped with a photodiode (PD) array detector. This detector is consisting of 640 InGaAs-PD elements with 20-μm pitch. Some high-specification spectrometers, which use InGaAs-PD with 512 elements, have a wavelength resolution of about 1.56 nm when covering 900-1700 nm range. On the other hand, the newly developed detector, having the PD with one of the world's highest density, enables wavelength resolution of below 1.25 nm. Moreover, thanks to the combination with a highly integrated charge amplifier array circuit, measurement speed of the detector is higher by two orders than that of existing PD array detectors. The developed spectrometer is small (120 mm × 220 mm × 200 mm) and light (6 kg), and it contains various key devices including the high-density and high-sensitivity PD array detector, NIR technology, and spectroscopy technology for a spectroscopic analyzer that has the required detection mechanism and high sensitivity for powder measurement, as well as a high-speed measuring function for blenders. Moreover, we have evaluated the characteristics of the developed NIR spectrometer, and the measurement of powder samples confirmed that it has high functionality.

  12. A low cost X-ray imaging device based on BPW-34 Si-PIN photodiode

    NASA Astrophysics Data System (ADS)

    Emirhan, E.; Bayrak, A.; Yücel, E. Barlas; Yücel, M.; Ozben, C. S.

    2016-05-01

    A low cost X-ray imaging device based on BPW-34 silicon PIN photodiode was designed and produced. X-rays were produced from a CEI OX/70-P dental tube using a custom made ±30 kV power supply. A charge sensitive preamplifier and a shaping amplifier were built for the amplification of small signals produced by photons in the depletion layer of Si-PIN photodiode. A two dimensional position control unit was used for moving the detector in small steps to measure the intensity of X-rays absorbed in the object to be imaged. An Aessent AES220B FPGA module was used for transferring the image data to a computer via USB. Images of various samples were obtained with acceptable image quality despite of the low cost of the device.

  13. Moderate temperature detector development

    NASA Technical Reports Server (NTRS)

    Marciniec, J. W.; Briggs, R. J.; Sood, A. K.

    1981-01-01

    P-side backside reflecting constant, photodiode characterization, and photodiode diffusion and G-R currents were investigated in an effort to develop an 8 m to 12 m infrared quantum detector using mercury cadmium telluride. Anodization, phosphorus implantation, and the graded band gap concept were approaches considered for backside formation. Variable thickness diodes were fabricated with a back surface anodic oxide to investigate the effect of this surface preparation on the diffusion limited zero bias impedance. A modeling technique was refined to thoroughly model diode characteristics. Values for the surface recombination velocity in the depletion region were obtained. These values were improved by implementing better surface damage removal techniques.

  14. Characterization of EJ-200 plastic scintillators as active background shield for cosmogenic radiation

    NASA Astrophysics Data System (ADS)

    Tkaczyk, A. H.; Saare, H.; Ipbüker, C.; Schulte, F.; Mastinu, P.; Paepen, J.; Pedersen, B.; Schillebeeckx, P.; Varasano, G.

    2018-02-01

    This paper describes the characterization of commercially available plastic scintillation detectors to be used as an active shield or veto system to reduce the neutron background resulting from atmospheric muon interactions in low-level nuclear waste assay systems. The shield consists of an array of scintillation detectors surrounding a neutron detection system. Scintillation detectors with different thicknesses are characterized for their response to gamma rays, neutrons, and muons. Response functions to gamma rays were determined and measured in the energy range from 0.6 MeV to 6.0 MeV using radionuclide sources. Neutron response functions were derived from results of time-of-flight measurements at the Van de Graaff accelerator of the INFN Legnaro and from measurements with quasi mono-energetic neutron beams produced at the Van de Graaff accelerator of the JRC Geel. From these data, the light output and resolution functions for protons and electrons were derived. The response to muons was verified by background measurements, i.e. without the presence of any neutron or gamma source. It was found that the muon peak is more pronounced when the detectors are placed horizontally. The results indicate that a scintillator with a minimum thickness of 20 mm is needed to separate events due to atmospheric muons from natural gamma ray background, and contributions due to neutron production in nuclear waste based on only the total energy deposition in the detector. In addition, it was shown that muons can be identified with a coincidence pattern when the detectors are stacked. The effectiveness of the proposed system was demonstrated based on muon induced spallation reactions in a lead sample.

  15. Characterization of NaI crystal scintillators for the COHERENT collaboration

    NASA Astrophysics Data System (ADS)

    Erkela, Eric; Coherent Collaboration

    2017-09-01

    The COHERENT project aims to make a first observation of Coherent Elastic Neutrino-Nucleus Scattering (CEvNS) using a set of complimentary detector arrays located at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. Using NaI scintillators acquired from the DHS-ASP program, we plan to construct a multi-tonne array with the capacity to detect CEvNS even in the presence of moderate background. Such an array would also have sensitivity to charged-current scattering of the SNS' pion Decay-At-Rest neutrinos with potential application to neutrinoless double-beta decay nuclear matrix element calculations. Optimization of the array design requires detailed characterization of the NaI scintillators themselves. We will show results on measurements of the light response and its linearity, as well as the energy resolution as a function of detector voltage. We also measured detector thresholds, dynamic range, and spatial and temporal variation of the detector response. This work is supported by the University of Washington Royalty Research Fund.

  16. First-principles studies of Ce and Eu doped inorganic scintillator gamma ray detectors

    NASA Astrophysics Data System (ADS)

    Canning, Andrew; Chaudhry, Anurag; Boutchko, Rostyslav; Derenzo, Stephen

    2011-03-01

    We have performed DFT based band structure calculations for new Ce and Eu doped wide band gap inorganic materials to determine their potential as candidates for gamma ray scintillator detectors. These calculations are based on determining the 4f ground state level of the Ce and Eu relative to the valence band of the host as well as the position of the Ce and Eu 5d excited state relative to the conduction band of the host. Host hole and electron traps as well as STEs (self trapped excitons) can also limit the transfer of energy from the host to the Ce or Eu site and therefore limit the light output. We also present calculations for host hole traps and STEs to compare the energies to the Ce and Eu excited states. The work was supported by the U.S. Department of Homeland Security and carried out at the Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02- 05CH11231.

  17. Characterization of Geiger mode avalanche photodiodes for fluorescence decay measurements

    NASA Astrophysics Data System (ADS)

    Jackson, John C.; Phelan, Don; Morrison, Alan P.; Redfern, R. Michael; Mathewson, Alan

    2002-05-01

    Geiger mode avalanche photodiodes (APD) can be biased above the breakdown voltage to allow detection of single photons. Because of the increase in quantum efficiency, magnetic field immunity, robustness, longer operating lifetime and reduction in costs, solid-state detectors capable of operating at non-cryogenic temperatures and providing single photon detection capabilities provide attractive alternatives to the photomultiplier tube (PMT). Shallow junction Geiger mode APD detectors provide the ability to manufacture photon detectors and detector arrays with CMOS compatible processing steps and allows the use of novel Silicon-on-Insulator(SoI) technology to provide future integrated sensing solutions. Previous work on Geiger mode APD detectors has focused on increasing the active area of the detector to make it more PMT like, easing the integration of discrete reaction, detection and signal processing into laboratory experimental systems. This discrete model for single photon detection works well for laboratory sized test and measurement equipment, however the move towards microfluidics and systems on a chip requires integrated sensing solutions. As we move towards providing integrated functionality of increasingly nanoscopic sized emissions, small area detectors and detector arrays that can be easily integrated into marketable systems, with sensitive small area single photon counting detectors will be needed. This paper will demonstrate the 2-dimensional and 3-dimensional simulation of optical coupling that occurs in Geiger mode APDs. Fabricated Geiger mode APD detectors optimized for fluorescence decay measurements were characterized and preliminary results show excellent results for their integration into fluorescence decay measurement systems.

  18. Advanced optical simulation of scintillation detectors in GATE V8.0: first implementation of a reflectance model based on measured data

    NASA Astrophysics Data System (ADS)

    Stockhoff, Mariele; Jan, Sebastien; Dubois, Albertine; Cherry, Simon R.; Roncali, Emilie

    2017-06-01

    Typical PET detectors are composed of a scintillator coupled to a photodetector that detects scintillation photons produced when high energy gamma photons interact with the crystal. A critical performance factor is the collection efficiency of these scintillation photons, which can be optimized through simulation. Accurate modelling of photon interactions with crystal surfaces is essential in optical simulations, but the existing UNIFIED model in GATE is often inaccurate, especially for rough surfaces. Previously a new approach for modelling surface reflections based on measured surfaces was validated using custom Monte Carlo code. In this work, the LUT Davis model is implemented and validated in GATE and GEANT4, and is made accessible for all users in the nuclear imaging research community. Look-up-tables (LUTs) from various crystal surfaces are calculated based on measured surfaces obtained by atomic force microscopy. The LUTs include photon reflection probabilities and directions depending on incidence angle. We provide LUTs for rough and polished surfaces with different reflectors and coupling media. Validation parameters include light output measured at different depths of interaction in the crystal and photon track lengths, as both parameters are strongly dependent on reflector characteristics and distinguish between models. Results from the GATE/GEANT4 beta version are compared to those from our custom code and experimental data, as well as the UNIFIED model. GATE simulations with the LUT Davis model show average variations in light output of  <2% from the custom code and excellent agreement for track lengths with R 2  >  0.99. Experimental data agree within 9% for relative light output. The new model also simplifies surface definition, as no complex input parameters are needed. The LUT Davis model makes optical simulations for nuclear imaging detectors much more precise, especially for studies with rough crystal surfaces. It will be available in

  19. Continuous depth-of-interaction encoding using phosphor-coated scintillators.

    PubMed

    Du, Huini; Yang, Yongfeng; Glodo, Jarek; Wu, Yibao; Shah, Kanai; Cherry, Simon R

    2009-03-21

    We investigate a novel detector using a lutetium oxyorthosilicate (LSO) scintillator and YGG (yttrium-aluminum-gallium oxide:cerium, Y(3)(Al,Ga)(5)O(12):Ce) phosphor to construct a detector with continuous depth-of-interaction (DOI) information. The far end of the LSO scintillator is coated with a thin layer of YGG phosphor powder which absorbs some fraction of the LSO scintillation light and emits wavelength-shifted photons with a characteristic decay time of approximately 50 ns. The near end of the LSO scintillator is directly coupled to a photodetector. The photodetector detects a mixture of the LSO light and the light emitted by YGG. With appropriate placement of the coating, the ratio of the light converted from the YGG coating with respect to the unconverted LSO light can be made to depend on the interaction depth. DOI information can then be estimated by inspecting the overall light pulse decay time. Experiments were conducted to optimize the coating method. 19 ns decay time differences across the length of the detector were achieved experimentally when reading out a 1.5 x 1.5 x 20 mm(3) LSO crystal with unpolished surfaces and half-coated with YGG phosphor. The same coating scheme was applied to a 4 x 4 LSO array. Pulse shape discrimination (PSD) methods were studied to extract DOI information from the pulse shape changes. The DOI full-width-half-maximum (FWHM) resolution was found to be approximately 8 mm for this 2 cm thick array.

  20. Continuous Depth-of-Interaction Encoding Using Phosphor-Coated Scintillators

    PubMed Central

    Du, Huini; Yang, Yongfeng; Glodo, Jarek; Wu, Yibao; Shah, Kanai; Cherry, Simon R.

    2009-01-01

    We investigate a novel detector using lutetium oxyorthosilicate (LSO) scintillator and YGG (yttrium aluminum gallium oxide:cerium, Y3(Al,Ga)5O12:Ce) phosphor to construct a detector with continuous depth-of-interaction (DOI) information. The far end of the LSO scintillator is coated with a thin layer of YGG phosphor powder which absorbs some fraction of the LSO scintillation light and emits wavelength-shifted photons with a characteristic decay time of ∼ 50 ns. The near end of the LSO scintillator is directly coupled to a photodetector. The photodetector detects a mixture of the LSO light and the light emitted by YGG. With appropriate placement of the coating, the ratio of the light converted from the YGG coating with respect to the unconverted LSO light can be made to depend on the interaction depth. DOI information can then be estimated by inspecting the overall light pulse decay time. Experiments were conducted to optimize the coating method. 19 ns decay time differences across the length of the detector were achieved experimentally when reading out a 1.5×1.5×20 mm3 LSO crystal with unpolished surfaces and half-coated with YGG phosphor. The same coating scheme was applied to a 4 by 4 LSO array. Pulse shape discrimination (PSD) methods were studied to extract DOI information from the pulse shape changes. The DOI full-width-half-maximum (FWHM) resolution was found to be ∼8 mm for this 2 cm thick array. PMID:19258685

  1. ORGANIC SCINTILLATOR FOR REAL-TIME NEUTRON DOSIMETRY.

    PubMed

    Beyer, Kyle A; Di Fulvio, Angela; Stolarczyk, Liliana; Parol, Wiktor; Mojzeszek, Natalia; Kopéc, Renata; Clarke, Shaun D; Pozzi, Sara A

    2017-11-15

    We developed a radiation detector based on an organic scintillator for spectrometry and dosimetry of out-of-field secondary neutrons from clinical proton beams. The detector consists of an EJ-299-34 crystalline organic scintillator, coupled by fiber optic cable to a silicon photomultiplier (SiPM). Proof of concept measurements were taken with 137Cs and 252Cf, and corresponding simulations were performed in MCNPX-PoliMi. Despite its small size, the detector is able to discriminate between neutron and gamma-rays via pulse shape discrimination. We simulated the response function of the detector to monoenergetic neutrons in the 100 keV-0 MeV range using MCNPX-PoliMi. The measured unfolded 252Cf neutron spectrum is in good agreement with the theoretical Watt fission spectrum. We determined the ambient dose equivalent by folding the spectrum with the fluence-to-ambient dose conversion coefficient, with a 1.4% deviation from theory. Some preliminary proton beam experiments were preformed at the Bronowice Cyclotron Center patient treatment facility using a clinically relevant proton pencil beam for brain tumor and craino-spinal treatment directed at a child phantom. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Non-Proportionality of Electron Response and Energy Resolution of Compton Electrons in Scintillators

    NASA Astrophysics Data System (ADS)

    Swiderski, L.; Marcinkowski, R.; Szawlowski, M.; Moszynski, M.; Czarnacki, W.; Syntfeld-Kazuch, A.; Szczesniak, T.; Pausch, G.; Plettner, C.; Roemer, K.

    2012-02-01

    Non-proportionality of light yield and energy resolution of Compton electrons in three scintillators (LaBr3:Ce, LYSO:Ce and CsI:Tl) were studied in a wide energy range from 10 keV up to 1 MeV. The experimental setup was comprised of a High Purity Germanium detector and tested scintillators coupled to a photomultiplier. Probing the non-proportionality and energy resolution curves at different energies was obtained by changing the position of various radioactive sources with respect to both detectors. The distance between both detectors and source was kept small to make use of Wide Angle Compton Coincidence (WACC) technique, which allowed us to scan large range of scattering angles simultaneously and obtain relatively high coincidence rate of 100 cps using weak sources of about 10 μCi activity. The results are compared with those obtained by direct irradiation of the tested scintillators with gamma-ray sources and fitting the full-energy peaks.

  3. Organic non-volatile resistive photo-switches for flexible image detector arrays.

    PubMed

    Nau, Sebastian; Wolf, Christoph; Sax, Stefan; List-Kratochvil, Emil J W

    2015-02-01

    A unique implementation of an organic image detector using resistive photo-switchable pixels is presented. This resistive photo-switch comprises the vertical integration of an organic photodiode and an organic resistive switching memory element. The photodiodes act as a photosensitive element while the resistive switching elements simultaneously store the detected light information. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Comparison of SensL and Hamamatsu 4×4 channel SiPM arrays in gamma spectrometry with scintillators

    NASA Astrophysics Data System (ADS)

    Grodzicka-Kobylka, M.; Szczesniak, T.; Moszyński, M.

    2017-06-01

    The market of Silicon Photomultipliers (SiPMs) consists of many manufacturers that produce their detectors in different technology. Hamamatsu (Japan) and SensL (Ireland) seems to be the most popular companies that produce large SiPM arrays. The aim of this work is characterization and comparison of 4×4 channel SiPM arrays produced by these two producers. Both of the tested SiPMs are made in through-silicon via (TSV) technology, consist of 16, 3×3 mm avalanche photodiode (APD) cells and have fill factor slightly above 60%. The largest difference is a single APD cell size and hence total number of APD cells (55,424 for Hamamatsu, 76,640 for SensL). In the case of SensL SiPM, its spectral response characteristics is shifted slightly toward shorter wavelengths with maximum at 420 nm (450 nm for Hamamatsu). The presented measurements cover selection of the SiPM optimum operating voltage (in respect to energy resolution), verification of the excess noise factor and check of the linearity characteristics. Moreover, the gamma spectrometry with LSO, BGO and CsI:Tl scintillators together with pulse characteristics for these crystals (rise time and fall time) is reported, as well as temperature dependence. The presented measurements show better performance of the SensL array comparing to the Hamamatsu detector.

  5. Use and imaging performance of CMOS flat panel imager with LiF/ZnS(Ag) and Gadox scintillation screens for neutron radiography

    NASA Astrophysics Data System (ADS)

    Cha, B. K.; kim, J. Y.; Kim, T. J.; Sim, C.; Cho, G.; Lee, D. H.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2011-01-01

    In digital neutron radiography system, a thermal neutron imaging detector based on neutron-sensitive scintillating screens with CMOS(complementary metal oxide semiconductor) flat panel imager is introduced for non-destructive testing (NDT) application. Recently, large area CMOS APS (active-pixel sensor) in conjunction with scintillation films has been widely used in many digital X-ray imaging applications. Instead of typical imaging detectors such as image plates, cooled-CCD cameras and amorphous silicon flat panel detectors in combination with scintillation screens, we tried to apply a scintillator-based CMOS APS to neutron imaging detection systems for high resolution neutron radiography. In this work, two major Gd2O2S:Tb and 6LiF/ZnS:Ag scintillation screens with various thickness were fabricated by a screen printing method. These neutron converter screens consist of a dispersion of Gd2O2S:Tb and 6LiF/ZnS:Ag scintillating particles in acrylic binder. These scintillating screens coupled-CMOS flat panel imager with 25x50mm2 active area and 48μm pixel pitch was used for neutron radiography. Thermal neutron flux with 6x106n/cm2/s was utilized at the NRF facility of HANARO in KAERI. The neutron imaging characterization of the used detector was investigated in terms of relative light output, linearity and spatial resolution in detail. The experimental results of scintillating screen-based CMOS flat panel detectors demonstrate possibility of high sensitive and high spatial resolution imaging in neutron radiography system.

  6. Real-time in vivo rectal wall dosimetry using plastic scintillation detectors for patients with prostate cancer

    PubMed Central

    Wootton, Landon; Kudchadker, Rajat; Lee, Andrew; Beddar, Sam

    2014-01-01

    We designed and constructed an in vivo dosimetry system using plastic scintillation detectors (PSDs) to monitor dose to the rectal wall in patients undergoing intensity-modulated radiation therapy for prostate cancer. Five patients were enrolled in an Institutional Review Board–approved protocol for twice weekly in vivo dose monitoring with our system, resulting in a total of 142 in vivo dose measurements. PSDs were attached to the surface of endorectal balloons used for prostate immobilization to place the PSDs in contact with the rectal wall. Absorbed dose was measured in real time and the total measured dose was compared with the dose calculated by the treatment planning system on the daily CT image dataset. The mean difference between measured and calculated doses for the entire patient population was −0.4% (standard deviation 2.8%). The mean difference between daily measured and calculated doses for each patient ranged from −3.3% to 3.3% (standard deviation ranged from 5.6% to 7.1% for 4 patients and was 14.0% for the last, for whom optimal positioning of the detector was difficult owing to the patient’s large size). Patients tolerated the detectors well and the treatment workflow was not compromised. Overall, PSDs performed well as in vivo dosimeters, providing excellent accuracy, real-time measurement, and reusability. PMID:24434775

  7. Real-time in vivo rectal wall dosimetry using plastic scintillation detectors for patients with prostate cancer

    NASA Astrophysics Data System (ADS)

    Wootton, Landon; Kudchadker, Rajat; Lee, Andrew; Beddar, Sam

    2014-02-01

    We designed and constructed an in vivo dosimetry system using plastic scintillation detectors (PSDs) to monitor dose to the rectal wall in patients undergoing intensity-modulated radiation therapy for prostate cancer. Five patients were enrolled in an Institutional Review Board-approved protocol for twice weekly in vivo dose monitoring with our system, resulting in a total of 142 in vivo dose measurements. PSDs were attached to the surface of endorectal balloons used for prostate immobilization to place the PSDs in contact with the rectal wall. Absorbed dose was measured in real time and the total measured dose was compared with the dose calculated by the treatment planning system on the daily computed tomographic image dataset. The mean difference between measured and calculated doses for the entire patient population was -0.4% (standard deviation 2.8%). The mean difference between daily measured and calculated doses for each patient ranged from -3.3% to 3.3% (standard deviation ranged from 5.6% to 7.1% for four patients and was 14.0% for the last, for whom optimal positioning of the detector was difficult owing to the patient's large size). Patients tolerated the detectors well and the treatment workflow was not compromised. Overall, PSDs performed well as in vivo dosimeters, providing excellent accuracy, real-time measurement and reusability.

  8. GAGG:ce single crystalline films: New perspective scintillators for electron detection in SEM.

    PubMed

    Bok, Jan; Lalinský, Ondřej; Hanuš, Martin; Onderišinová, Zuzana; Kelar, Jakub; Kučera, Miroslav

    2016-04-01

    Single crystal scintillators are frequently used for electron detection in scanning electron microscopy (SEM). We report gadolinium aluminum gallium garnet (GAGG:Ce) single crystalline films as a new perspective scintillators for the SEM. For the first time, the epitaxial garnet films were used in a practical application: the GAGG:Ce scintillator was incorporated into a SEM scintillation electron detector and it showed improved image quality. In order to prove the GAGG:Ce quality accurately, the scintillation properties were examined using electron beam excitation and compared with frequently used scintillators in the SEM. The results demonstrate excellent emission efficiency of the GAGG:Ce single crystalline films together with their very fast scintillation decay useful for demanding SEM applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. New integration concept of PIN photodiodes in 0.35μm CMOS technologies

    NASA Astrophysics Data System (ADS)

    Jonak-Auer, I.; Teva, J.; Park, J. M.; Jessenig, S.; Rohrbacher, M.; Wachmann, E.

    2012-06-01

    We report on a new and very cost effective way to integrate PIN photo detectors into a standard CMOS process. Starting with lowly p-doped (intrinsic) EPI we need just one additional mask and ion implantation in order to provide doping concentrations very similar to standard CMOS substrates to areas outside the photoactive regions. Thus full functionality of the standard CMOS logic can be guaranteed while the photo detectors highly benefit from the low doping concentrations of the intrinsic EPI. The major advantage of this integration concept is that complete modularity of the CMOS process remains untouched by the implementation of PIN photodiodes. Functionality of the implanted region as host of logic components was confirmed by electrical measurements of relevant standard transistor as well as ESD protection devices. We also succeeded in establishing an EPI deposition process in austriamicrosystems 200mm wafer fabrication which guarantees the formation of very lowly p-doped intrinsic layers, which major semiconductor vendors could not provide. With our EPI deposition process we acquire doping levels as low as 1•1012/cm3. In order to maintain those doping levels during CMOS processing we employed special surface protection techniques. After complete CMOS processing doping concentrations were about 4•1013/cm3 at the EPI surface while the bulk EPI kept its original low doping concentrations. Photodiode parameters could further be improved by bottom antireflective coatings and a special implant to reduce dark currents. For 100×100μm2 photodiodes in 20μm thick intrinsic EPI on highly p-doped substrates we achieved responsivities of 0.57A/W at λ=675nm, capacitances of 0.066pF and dark currents of 0.8pA at 2V reverse voltage.

  10. Scintillator Development for the PROSPECT Experiment

    NASA Astrophysics Data System (ADS)

    Yeh, Minfang

    2014-03-01

    Doped scintillator is the target material of choice for antineutrino detection as it utilizes the time-delayed coincidence signature of the positron annihilation and neutron capture resulting from the Inverse Beta Decay (IBD) interaction. Additionally, the multiple gamma rays or heavy ions emitted after neutron capture on either Gd or 6Li respectively provide a distinct signal for the identification of antineutrino events and therefore significantly enhance accidental background reduction. The choice of scintillator and dopant depends on the detector requirements and scintillator performance criteria. Both Gd and 6Li doped scintillators have been used in past reactor antineutrino experiments such as Double Chooz, Daya Bay, RENO, and Bugey3 and are currently under investigation by the PROSPECT collaboration. Their properties in terms of light yield, optical transparency, chemical stability and background rejection efficiency using Pulse Shape Discrimination (PSD) will be reported. Research sponsored by the U.S. Department of Energy, Office of Nuclear Physics and Office of High Energy Physics, under contract with Brookhaven National Laboratory-Brookhaven Science Associates.

  11. Pixelated gamma detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolinsky, Sergei Ivanovich; Yanoff, Brian David; Guida, Renato

    2016-12-27

    A pixelated gamma detector includes a scintillator column assembly having scintillator crystals and optical transparent elements alternating along a longitudinal axis, a collimator assembly having longitudinal walls separated by collimator septum, the collimator septum spaced apart to form collimator channels, the scintillator column assembly positioned adjacent to the collimator assembly so that the respective ones of the scintillator crystal are positioned adjacent to respective ones of the collimator channels, the respective ones of the optical transparent element are positioned adjacent to respective ones of the collimator septum, and a first photosensor and a second photosensor, the first and the secondmore » photosensor each connected to an opposing end of the scintillator column assembly. A system and a method for inspecting and/or detecting defects in an interior of an object are also disclosed.« less

  12. Polystyrene-based scintillator with pulse-shape discrimination capability

    NASA Astrophysics Data System (ADS)

    Zhmurin, P. N.; Lebedev, V. N.; Titskaya, V. D.; Adadurov, A. F.; Elyseev, D. A.; Pereymak, V. N.

    2014-10-01

    Polystyrene-based scintillators with 2-phenyl-5-(4-tert-butylephenyl)-1,3,4-oxadiazole (tert-BuPPD) or 2,5-di-(3-methylphenyl)-1,3,4 oxadiazole (m-DMePPD) are proposed for pulse-shape n/γ-discrimination. These scintillators have improved mechanical properties, long operational time and high n/γ discrimination parameter - figure of merit (1.49 and 1.81 in a wide energy region), so they can be used as detectors of fast neutrons in the presence of gamma radiation background.

  13. High-responsivity vertical-illumination Si/Ge uni-traveling-carrier photodiodes based on silicon-on-insulator substrate.

    PubMed

    Li, Chong; Xue, ChunLai; Liu, Zhi; Cong, Hui; Cheng, Buwen; Hu, Zonghai; Guo, Xia; Liu, Wuming

    2016-06-09

    Si/Ge uni-traveling carrier photodiodes exhibit higher output current when space-charge effect is overcome and the thermal effects is suppressed. High current is beneficial for increasing the dynamic range of various microwave photonic systems and simplifying high-bit-rate digital receivers in many applications. From the point of view of packaging, detectors with vertical-illumination configuration can be easily handled by pick-and-place tools and are a popular choice for making photo-receiver modules. However, vertical-illumination Si/Ge uni-traveling carrier (UTC) devices suffer from inter-constraint between high speed and high responsivity. Here, we report a high responsivity vertical-illumination Si/Ge UTC photodiode based on a silicon-on-insulator substrate. When the transmission of the monolayer anti-reflection coating was maximum, the maximum absorption efficiency of the devices was 1.45 times greater than the silicon substrate owing to constructive interference. The Si/Ge UTC photodiode had a dominant responsivity at 1550 nm of 0.18 A/W, a 50% improvement even with a 25% thinner Ge absorption layer.

  14. High-responsivity vertical-illumination Si/Ge uni-traveling-carrier photodiodes based on silicon-on-insulator substrate

    PubMed Central

    Li, Chong; Xue, ChunLai; Liu, Zhi; Cong, Hui; Cheng, Buwen; Hu, Zonghai; Guo, Xia; Liu, Wuming

    2016-01-01

    Si/Ge uni-traveling carrier photodiodes exhibit higher output current when space-charge effect is overcome and the thermal effects is suppressed. High current is beneficial for increasing the dynamic range of various microwave photonic systems and simplifying high-bit-rate digital receivers in many applications. From the point of view of packaging, detectors with vertical-illumination configuration can be easily handled by pick-and-place tools and are a popular choice for making photo-receiver modules. However, vertical-illumination Si/Ge uni-traveling carrier (UTC) devices suffer from inter-constraint between high speed and high responsivity. Here, we report a high responsivity vertical-illumination Si/Ge UTC photodiode based on a silicon-on-insulator substrate. When the transmission of the monolayer anti-reflection coating was maximum, the maximum absorption efficiency of the devices was 1.45 times greater than the silicon substrate owing to constructive interference. The Si/Ge UTC photodiode had a dominant responsivity at 1550 nm of 0.18 A/W, a 50% improvement even with a 25% thinner Ge absorption layer. PMID:27279426

  15. High efficiency CsI(Tl)/HgI{sub 2} gamma ray spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.J.; Patt, B.E.; Iwanczyk, J.S.

    CsI(Tl)/HgI{sub 2} gamma-ray spectrometers have been constructed using 0.5 inch diameter detectors which show excellent energy resolution: 4.58% FWHM for 662 keV {sup 137}Cs gamma-ray photons. Further efforts have been focused on optimization of larger size ({ge} 1 inch diameter) detector structures and improvement of low noise electronics. In order to take full advantage of scintillation detectors for high energy gamma-rays, larger scintillators are always preferred for their higher detection efficiencies. However, the larger capacitance and higher dark current caused by the larger size of the detector could result in a higher FWHM resolution. Also, the increased probability of includingmore » nonuniformities in larger pieces of crystals makes it more difficult to obtain the high resolutions one obtains from small detectors. Thus for very large volume scintillators, it may be necessary to employ a photodiode (PD) with a sensitive area smaller than the cross-section of the scintillator. Monte Carlo simulations of the light collection for various tapered scintillator/PD configuration were performed in order to find those geometries which resulted in the best light collection. According to the simulation results, scintillators with the most favorable geometry, the conical frustum, have been fabricated and evaluated. The response of a large conical frustum (top-2 inch, bottom-1 inch, 2 inch high) CsI(Tl) scintillator coupled with a 1 inch HgI{sub 2} PD was measured. The energy resolution of the 662 keV peak was 5.57%. The spectrum shows much higher detection efficiency than those from smaller scintillators, i.e., much higher peak-to-Compton ratio in the spectrum.« less

  16. Solid state VRX CT detector

    NASA Astrophysics Data System (ADS)

    DiBianca, Frank A.; Melnyk, Roman; Sambari, Aniket; Jordan, Lawrence M.; Laughter, Joseph S.; Zou, Ping

    2000-04-01

    A technique called Variable-Resolution X-ray (VRX) detection that greatly increases the spatial resolution in computed tomography (CT) and digital radiography (DR) is presented. The technique is based on a principle called 'projective compression' that allows the resolution element of a CT detector to scale with the subject or field size. For very large (40 - 50 cm) field sizes, resolution exceeding 2 cy/mm is possible and for very small fields, microscopy is attainable with resolution exceeding 100 cy/mm. Preliminary results from a 576-channel solid-state detector are presented. The detector has a dual-arm geometry and is comprised of CdWO4 scintillator crystals arranged in 24 modules of 24 channels/module. The scintillators are 0.85 mm wide and placed on 1 mm centers. Measurements of signal level, MTF and SNR, all versus detector angle, are presented.

  17. Experimental Evaluation of a SiPM-Based Scintillation Detector for MR-Compatible SPECT Systems

    NASA Astrophysics Data System (ADS)

    Busca, Paolo; Occhipinti, Michele; Trigilio, Paolo; Cozzi, Giulia; Fiorini, Carlo; Piemonte, Claudio; Ferri, Alessandro; Gola, Alberto; Nagy, Kálmán; Bükki, Tamás; Rieger, Jan

    2015-10-01

    In the present work we briefly describe the architecture of a photo-detection module, designed in the framework of the INSERT (INtegrated SPECT/MRI for Enhanced Stratification in Radio-chemoTherapy) project, supported by the European Community. We focus on two main elements of the module: the SiPM photo-detector unit and the multi-channel ASIC. These two components have been investigated with dedicated and independent setups to assess preliminary performance of INSERT architecture. In details, we designed a 25.30 mm ×25.85 mm tile, comprising 9 pixels, each one with an 8 mm ×8 mm active area. We developed an Anger camera to characterize the tile coupled to a CsI:Tl scintillator (6 mm thick). We measured an average spatial resolution (FWHM) of 2 mm in the central region of the Field of View and a 15.3% energy resolution using a 57Co source (122 keV), when the tile is cooled down to 0 ° C to reduce the impact of the dark count rate. Furthermore, we developed ANGUS, a 36-channels 0.35 μm CMOS technology ASIC designed to cope with input capacitance up to 5 nF, typical of large area SiPM pixels. The spectroscopic capability of single readout channels were evaluated by coupling an 8 mm ×8 mm pixel with a cylindrical CsI:Tl scintillator (8 mm diameter, 10 mm thickness). Energy resolution at room temperature provided values between 13% and 13.5% (FWHM) at the 122 keV line for the nine pixels.

  18. Removal of ring artifacts in microtomography by characterization of scintillator variations.

    PubMed

    Vågberg, William; Larsson, Jakob C; Hertz, Hans M

    2017-09-18

    Ring artifacts reduce image quality in tomography, and arise from faulty detector calibration. In microtomography, we have identified that ring artifacts can arise due to high-spatial frequency variations in the scintillator thickness. Such variations are normally removed by a flat-field correction. However, as the spectrum changes, e.g. due to beam hardening, the detector response varies non-uniformly introducing ring artifacts that persist after flat-field correction. In this paper, we present a method to correct for ring artifacts from variations in scintillator thickness by using a simple method to characterize the local scintillator response. The method addresses the actual physical cause of the ring artifacts, in contrary to many other ring artifact removal methods which rely only on image post-processing. By applying the technique to an experimental phantom tomography, we show that ring artifacts are strongly reduced compared to only making a flat-field correction.

  19. Separation of scintillation and Cherenkov lights in linear alkyl benzene

    DOE PAGES

    Li, Mohan; Guo, Ziyi; Yeh, Minfang; ...

    2016-09-11

    To separate scintillation and Cherenkov lights in water-based liquid scintillator detectors is a desired feature for future neutrino and proton decay experiments. Linear alkyl benzene (LAB) is one important ingredient of a water-based liquid scintillator currently under development. In this paper we report on the separation of scintillation and Cherenkov lights observed in an LAB sample. The rise and decay times of the scintillation light are measured to be (7.7±3.0)ns and (36.6±2.4)ns, respectively, while the full width [–3σ, 3σ] of the Cherenkov light is 12 ns and is dominated by the time resolution of the photomultiplier tubes. Here, the scintillationmore » light yield was measured to be (1.01±0.12)×103photons/MeV.« less

  20. Early clinical experience utilizing scintillator with optical fiber (SOF) detector in clinical boron neutron capture therapy: its issues and solutions.

    PubMed

    Ishikawa, Masayori; Yamamoto, Tetsuya; Matsumura, Akira; Hiratsuka, Junichi; Miyatake, Shin-Ichi; Kato, Itsuro; Sakurai, Yoshinori; Kumada, Hiroaki; Shrestha, Shubhechha J; Ono, Koji

    2016-08-09

    Real-time measurement of thermal neutrons in the tumor region is essential for proper evaluation of the absorbed dose in boron neutron capture therapy (BNCT) treatment. The gold wire activation method has been routinely used to measure the neutron flux distribution in BNCT irradiation, but a real-time measurement using gold wire is not possible. To overcome this issue, the scintillator with optical fiber (SOF) detector has been developed. The purpose of this study is to demonstrate the feasibility of the SOF detector as a real-time thermal neutron monitor in clinical BNCT treatment and also to report issues in the use of SOF detectors in clinical practice and their solutions. Clinical measurements using the SOF detector were carried out in 16 BNCT clinical trial patients from December 2002 until end of 2006 at the Japanese Atomic Energy Agency (JAEA) and Kyoto University Research Reactor Institute (KURRI). The SOF detector worked effectively as a real-time thermal neutron monitor. The neutron fluence obtained by the gold wire activation method was found to differ from that obtained by the SOF detector. The neutron fluence obtained by the SOF detector was in better agreement with the expected fluence than with gold wire activation. The estimation error for the SOF detector was small in comparison to the gold wire measurement. In addition, real-time monitoring suggested that the neutron flux distribution and intensity at the region of interest (ROI) may vary due to the reactor condition, patient motion and dislocation of the SOF detector. Clinical measurements using the SOF detector to measure thermal neutron flux during BNCT confirmed that SOF detectors are effective as a real-time thermal neutron monitor. To minimize the estimation error due to the displacement of the SOF probe during treatment, a loop-type SOF probe was developed.