Wang, Feng; Letort, Véronique; Lu, Qi; Bai, Xuefeng; Guo, Yan; de Reffye, Philippe; Li, Baoguo
2012-01-01
Mongolian Scots pine (Pinus sylvestris var. mongolica) is one of the principal tree species in the network of Three-North Shelterbelt for windbreak and sand stabilisation in China. The functions of shelterbelts are highly correlated with the architecture and eco-physiological processes of individual tree. Thus, model-assisted analysis of canopy architecture and function dynamic in Mongolian Scots pine is of value for better understanding its role and behaviour within shelterbelt ecosystems in these arid and semiarid regions. We present here a single-tree functional and structural model, derived from the GreenLab model, which is adapted for young Mongolian Scots pines by incorporation of plant biomass production, allocation, allometric rules and soil water dynamics. The model is calibrated and validated based on experimental measurements taken on Mongolian Scots pines in 2007 and 2006 under local meteorological conditions. Measurements include plant biomass, topology and geometry, as well as soil attributes and standard meteorological data. After calibration, the model allows reconstruction of three-dimensional (3D) canopy architecture and biomass dynamics for trees from one- to six-year-old at the same site using meteorological data for the six years from 2001 to 2006. Sensitivity analysis indicates that rainfall variation has more influence on biomass increment than on architecture, and the internode and needle compartments and the aboveground biomass respond linearly to increases in precipitation. Sensitivity analysis also shows that the balance between internode and needle growth varies only slightly within the range of precipitations considered here. The model is expected to be used to investigate the growth of Mongolian Scots pines in other regions with different soils and climates. PMID:22927982
NASA Astrophysics Data System (ADS)
Llorens, Pilar; Garcia-Estringana, Pablo; Latron, Jérôme; Molina, Antonio J.; Gallart, Francesc
2014-05-01
The spatio-temporal variability of throughfall is the result of the interaction of biotic factors, related to the canopy traits, and abiotic factors, linked to the meteorological conditions. This variability may lead to significant differences in the volume of water and solutes that reach the ground in each location, and beyond in the hydrological and biogeochemical dynamics of forest soils. Two forest stands in Mediterranean climatic conditions were studied to analyse the role of biotic and abiotic factors in the temporal and spatial redistribution of throughfall. The monitored stands are a Downy oak forest (Quercus pubescens) and a Scots pine forest (Pinus sylvestris), both located in the Vallcebre research catchments (NE Spain, 42º 12'N, 1º 49'E). The study plots are representative of Mediterranean mountain areas with spontaneous afforestation by Scots pine as a consequence of the abandonment of agricultural terraces, formerly covered by Downy oaks. The monitoring design of each plot consisted of a set of 20 automatic rain recorders and 40 automatic soil moisture probes located below the canopy. 100 hemispheric photographs of the canopy were used to place the instruments at representative locations (in terms of canopy cover) within the plot. Bulk rainfall, stemflow and meteorological conditions above the forest cover were also automatically recorded. Canopy cover as well as biometric characteristics of the plots were also regularly measured. The results indicate a temporal persistence of throughfall in both stands, as observed elsewhere. However, for the oak plot the seasonal evolution of canopy traits added additional variability, with higher variability in summer and different locations of wet and dry spots depending on the season. Furthermore, this work investigates the influence of canopy structure on the spatial variability of throughfall by analysing a large set of forest parameters, from main canopy traits to detailed leaves and wood characteristics. The analysis includes the consideration of the interaction of main abiotic factors with canopy traits.
NASA Astrophysics Data System (ADS)
Garcia-Estringana, Pablo; Latron, Jérôme; Molina, Antonio J.; Llorens, Pilar
2013-04-01
The large degree of temporal and spatial variability of throughfall input patterns may lead to significant changes in the volume of water that reach the soil in each location, and beyond in the hydrological response of forested hillslopes. To explore the role of vegetation in the temporal and spatial redistribution of rainfall in Mediterranean climatic conditions two contrasted stands were monitored. One is a Downy oak forest (Quercus pubescens) and the other is a Scots pine forest (Pinus sylvestris), both are located in the Vallcebre research catchments (NE Spain, 42° 12'N, 1° 49'E). These plots are representative of Mediterranean mountain areas with spontaneous afforestation by Scots pine as a consequence of the abandonment of agricultural terraces, formerly covered by Downy oaks. The monitoring design of each plot consists of a set of 20 automatic rain recorders and 40 automatic soil moisture probes located below the canopy. 100 hemispheric photographs of the canopy were used to place the instruments at representative locations (in terms of canopy cover) within the plot. Bulk rainfall, stemflow and meteorological conditions above the forest cover are also automatically recorded. Canopy cover as well as biometric characteristics of the plots are also regularly measured. This work presents the first results describing the variability of throughfall beneath each forest stand and compares the persistence of temporal patterns among stands, and for the oaks stand among the leafed and the leafless period. Furthermore, canopy structure, rainfall characteristics and meteorological conditions of rainfall events are evaluated as main drivers of throughfall redistribution.
Are Scots pine forest edges particularly prone to drought-stress?
NASA Astrophysics Data System (ADS)
Buras, Allan; Schunk, Christian; Taeger, Steffen; Lemme, Hannes; Gößwein, Sebastian; Menzel, Annette
2017-04-01
In 2016, Scots pine (Pinus sylvestris L.) forests experienced a pronounced dieback in several regions across Germany. Being an economically important tree species, a thorough identification of the reasons for this dieback is of high interest. The dieback is likely to be associated with a record drought event which occurred in summer 2015. However, visual observations indicate that forest edges were particularly affected. This observation is supported by a study from Sweden which showed that Scots pine trees growing at a north-facing forest edge expressed a higher water use if compared to trees from the interior (Cienciala et al., 2002). We therefore hypothesize that Scots pine trees are more prone to drought-stress induced dieback when growing at the forest edge. To test this hypothesis, we investigated the growth performance of Scots pine across three affected stands in Franconia, southern Germany. The stands were selected to represent differing conditions along a gradient of forest fragmentation, ranging from the forest interior, over a forest edge situation, to a small forest island. By means of dendroclimatology and UAV-borne remote sensing, Scots pine growth performance and vitality was compared among the three stands. Our results revealed differing Scots pine growth reactions between the forest interior and forest edge as indicated by the identification of different responder groups (Buras et al., 2016). The forest edge and the forest island expressed significantly higher correlations with the drought-index SPEI (Vicente-Serrano et al., 2009) if compared to the forest interior. Moreover, NDVI of Scots Pine canopies significantly decreased towards the forest edge, this indicating lower vitality of corresponding trees. In conclusion, our results highlight Scots pine to be more prone to drought-stress when growing at the forest edge. This finding has important implications for forest management activities in the context of climate change adaptation, since foresters may need to revise concepts of Scots pine management at forest edges and in forest islands under an increasingly warmer and drier climate. 1. Cienciala, E. et al. The effect of a north-facing forest edge on tree water use in a boreal Scots pine stand. Can. J. For. Res. 32, 693-702 (2002). 2. Buras, A. et al. Tuning the Voices of a Choir: Detecting Ecological Gradients in Time-Series Populations. PLOS ONE 11, e0158346 (2016). 3. Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Climate 23, 1696-1718 (2009).
Ge, Zhen-Ming; Kellomäki, Seppo; Peltola, Heli; Zhou, Xiao; Wang, Kai-Yun; Väisänen, Hannu
2011-03-01
A process-based ecosystem model was used to assess the impacts of changing climate on net photosynthesis and total stem wood growth in relation to water availability in two unmanaged Norway spruce (Picea abies) dominant stands with a mixture of Scots pine (Pinus sylvestris) and birch (Betula sp.). The mixed stands were grown over a 100-year rotation (2000-99) in southern and northern Finland with initial species shares of 50, 25 and 25% for Norway spruce, Scots pine and birch, respectively. In addition, pure Norway spruce, Scots pine and birch stands were used as a comparison to identify whether species' response is different in mixed and pure stands. Soil type and moisture conditions (moderate drought) were expected to be the same at the beginning of the simulations irrespective of site location. Regardless of tree species, both annual net canopy photosynthesis (P(nc)) and total stem wood growth (V(s)) were, on average, lower on the southern site under the changing climate compared with the current climate (difference increasing toward the end of the rotation); the opposite was the case for the northern site. Regarding the stand water budget, evapotranspiration (E(T)) was higher under the changing climate regardless of site location. Transpiration and evaporation from the canopy affected water depletion the most. Norway spruce and birch accounted for most of the water depletion in mixed stands on both sites regardless of climatic condition. The annual soil water deficit (W(d)) was higher on the southern site under the changing climate. On the northern site, the situation was the opposite. According to our results, the growth of pure Norway spruce stands in southern Finland could be even lower than the growth of Norway spruce in mixed stands under the changing climate. The opposite was found for pure Scots pine and birch stands due to lower water depletion. This indicates that in the future the management should be properly adapted to climate change in order to sustain the productivity of mixed stands dominated by Norway spruce.
Poyatos, Rafael; Aguadé, David; Galiano, Lucía; Mencuccini, Maurizio; Martínez-Vilalta, Jordi
2013-10-01
Drought-induced defoliation has recently been associated with the depletion of carbon reserves and increased mortality risk in Scots pine (Pinus sylvestris). We hypothesize that defoliated individuals are more sensitive to drought, implying that potentially higher gas exchange (per unit of leaf area) during wet periods may not compensate for their reduced photosynthetic area. We measured sap flow, needle water potentials and whole-tree hydraulic conductance to analyse the drought responses of co-occurring defoliated and nondefoliated Scots pines in northeast Spain during typical (2010) and extreme (2011) drought conditions. Defoliated Scots pines showed higher sap flow per unit leaf area during spring, but were more sensitive to summer drought, relative to nondefoliated pines. This pattern was associated with a steeper decline in soil-to-leaf hydraulic conductance with drought and an enhanced sensitivity of canopy conductance to soil water availability. Near-homeostasis in midday water potentials was observed across years and defoliation classes, with minimum values of -2.5 MPa. Enhanced sensitivity to drought and prolonged periods of near-zero gas exchange were consistent with low levels of carbohydrate reserves in defoliated trees. Our results support the critical links between defoliation, water and carbon availability, and their key roles in determining tree survival and recovery under drought. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Wang, Feng; Kang, Mengzhen; Lu, Qi; Letort, Véronique; Han, Hui; Guo, Yan; de Reffye, Philippe; Li, Baoguo
2011-01-01
Background and Aims Mongolian Scots pine (Pinus sylvestris var. mongolica) is one of the principal species used for windbreak and sand stabilization in arid and semi-arid areas in northern China. A model-assisted analysis of its canopy architectural development and functions is valuable for better understanding its behaviour and roles in fragile ecosystems. However, due to the intrinsic complexity and variability of trees, the parametric identification of such models is currently a major obstacle to their evaluation and their validation with respect to real data. The aim of this paper was to present the mathematical framework of a stochastic functional–structural model (GL2) and its parameterization for Mongolian Scots pines, taking into account inter-plant variability in terms of topological development and biomass partitioning. Methods In GL2, plant organogenesis is determined by the realization of random variables representing the behaviour of axillary or apical buds. The associated probabilities are calibrated for Mongolian Scots pines using experimental data including means and variances of the numbers of organs per plant in each order-based class. The functional part of the model relies on the principles of source–sink regulation and is parameterized by direct observations of living trees and the inversion method using measured data for organ mass and dimensions. Key Results The final calibration accuracy satisfies both organogenetic and morphogenetic processes. Our hypothesis for the number of organs following a binomial distribution is found to be consistent with the real data. Based on the calibrated parameters, stochastic simulations of the growth of Mongolian Scots pines in plantations are generated by the Monte Carlo method, allowing analysis of the inter-individual variability of the number of organs and biomass partitioning. Three-dimensional (3D) architectures of young Mongolian Scots pines were simulated for 4-, 6- and 8-year-old trees. Conclusions This work provides a new method for characterizing tree structures and biomass allocation that can be used to build a 3D virtual Mongolian Scots pine forest. The work paves the way for bridging the gap between a single-plant model and a stand model. PMID:21062760
Wang, Feng; Kang, Mengzhen; Lu, Qi; Letort, Véronique; Han, Hui; Guo, Yan; de Reffye, Philippe; Li, Baoguo
2011-04-01
Mongolian Scots pine (Pinus sylvestris var. mongolica) is one of the principal species used for windbreak and sand stabilization in arid and semi-arid areas in northern China. A model-assisted analysis of its canopy architectural development and functions is valuable for better understanding its behaviour and roles in fragile ecosystems. However, due to the intrinsic complexity and variability of trees, the parametric identification of such models is currently a major obstacle to their evaluation and their validation with respect to real data. The aim of this paper was to present the mathematical framework of a stochastic functional-structural model (GL2) and its parameterization for Mongolian Scots pines, taking into account inter-plant variability in terms of topological development and biomass partitioning. In GL2, plant organogenesis is determined by the realization of random variables representing the behaviour of axillary or apical buds. The associated probabilities are calibrated for Mongolian Scots pines using experimental data including means and variances of the numbers of organs per plant in each order-based class. The functional part of the model relies on the principles of source-sink regulation and is parameterized by direct observations of living trees and the inversion method using measured data for organ mass and dimensions. The final calibration accuracy satisfies both organogenetic and morphogenetic processes. Our hypothesis for the number of organs following a binomial distribution is found to be consistent with the real data. Based on the calibrated parameters, stochastic simulations of the growth of Mongolian Scots pines in plantations are generated by the Monte Carlo method, allowing analysis of the inter-individual variability of the number of organs and biomass partitioning. Three-dimensional (3D) architectures of young Mongolian Scots pines were simulated for 4-, 6- and 8-year-old trees. This work provides a new method for characterizing tree structures and biomass allocation that can be used to build a 3D virtual Mongolian Scots pine forest. The work paves the way for bridging the gap between a single-plant model and a stand model.
NASA Astrophysics Data System (ADS)
Poyatos, R.; Aguadé, D.; Gómez, M.; Mencuccini, M.; Martínez-Vilalta, J.
2013-12-01
Drought-induced defoliation has recently been associated with depletion of carbohydrate reserves and increased mortality risk in Scots pine (Pinus sylvestris L.) at its dry limit. Are defoliated pines hydraulically impaired compared to non-defoliated pines? Moreover, how do defoliated pines cope with potentially lethal droughts, as compared to non-defoliated pines in the same population? In order to address these questions, we measured the seasonal dynamics of sap flow and needle water potentials (2010-2012), hydraulic function and non-structural carbohydrates (NSC) (2012) in healthy and defoliated pines in the Prades mountains (NE Spain). The summer drought was mild in 2010, intense in 2012 and extremely long in 2011. Defoliated Scots pines showed higher sap flow per unit leaf area during spring, but they were more sensitive to summer drought (Figure 1). This pattern was associated with a steeper decline in soil-to-leaf hydraulic conductance, which could not be explained by differences in branch vulnerability to embolism across defoliation classes. Accordingly, the native loss of xylem conductivity in branches, measured in 2012, remained similar across defoliation classes and reached >65% at the peak of the drought. However, a steeper vulnerability curve was observed for root xylem of defoliated pines. Xylem diameter variations (2011-2012) will be used to further investigate possible differences in the aboveground/belowground partitioning of hydraulic resistance across defoliation classes. NSC levels varied across tree organs (leaves>branches>roots>trunk) and strongly declined with drought. Defoliated pines displayed reduced NSC levels throughout the study period, despite enhanced water transport capacity and increased gas exchange rates during spring. Overall, the defoliated vs. healthy status seems to be more associated to differences in carbohydrate storage and dynamics than to hydraulic differences per se. However, starch conversion to soluble sugars during drought also suggests that NSC may be actively involved in the maintenance of xylem and phloem transport. These results highlight the close connection between carbon and water relations in declining Scots pines. Seasonal course (2010-2012) of VPD (upper panel), soil moisture (mid panel) and sap flow per unit leaf area of defoliated and non defoliated Scots pines (lower panel).
Picon-Cochard, Catherine; Coll, Lluis; Balandier, Philippe
2006-06-01
In abandoned or extensively managed grasslands, the mechanisms involved in pioneer tree species success are not fully explained. Resource competition among plants and microclimate modifications have been emphasised as possible mechanisms to explain variation of survivorship and growth. In this study, we evaluated a number of mechanisms that may lead to successful survival and growth of seedlings of a pioneer tree species (Pinus sylvestris) in a grass-dominated grassland. Three-year-old Scots pines were planted in an extensively managed grassland of the French Massif Central and for 2 years were either maintained in bare soil or subjected to aerial and below-ground interactions induced by grass vegetation. Soil temperatures were slightly higher in bare soil than under the grass vegetation, but not to an extent explaining pine growth differences. The tall grass canopy reduced light transmission by 77% at ground level and by 20% in the upper part of Scots pine seedlings. Grass vegetation presence also significantly decreased soil volumetric water content (Hv) and soil nitrate in spring and in summer. In these conditions, the average tree height was reduced by 5% compared to trees grown in bare soil, and plant biomass was reduced by 85%. Scots pine intrinsic water-use efficiency (A/g), measured by leaf gas-exchange, increased when Hv decreased owing to a rapid decline of stomatal conductance (g). This result was also confirmed by delta 13C analyses of needles. A summer 15N labelling of seedlings and grass vegetation confirmed the higher NO3 capture capacity of grass vegetation in comparison with Scots pine seedlings. Our results provide evidence that the seedlings' success was linked to tolerance of below-ground resource depletion (particularly water) induced by grass vegetation based on morphological and physiological plasticity as well as to resource conservation.
Diurnal patterns in Scots pine stem oleoresin pressure in a boreal forest.
Rissanen, K; Hölttä, T; Vanhatalo, A; Aalto, J; Nikinmaa, E; Rita, H; Bäck, J
2016-03-01
Coniferous tree stems contain large amounts of oleoresin under positive pressure in the resin ducts. Studies in North-American pines indicated that the stem oleoresin exudation pressure (OEP) correlates negatively with transpiration rate and soil water content. However, it is not known how the OEP changes affect the emissions of volatile vapours from the trees. We measured the OEP, xylem diameter changes indicating changes in xylem water potential and monoterpene emissions under field conditions in mature Scots pine (Pinus sylvestris L.) trees in southern Finland. Contrary to earlier reports, the diurnal OEP changes were positively correlated with temperature and transpiration rate. OEP was lowest at the top part of the stem, where water potentials were also more negative, and often closely linked to ambient temperature and stem monoterpene emissions. However, occasionally OEP was affected by sudden changes in vapour pressure deficit (VPD), indicating the importance of xylem water potential on OEP as well. We conclude that the oleoresin storage pools in tree stems are in a dynamic relationship with ambient temperature and xylem water potential, and that the canopy monoterpene emission rates may therefore be also regulated by whole tree processes and not only by the conditions prevailing in the upper canopy. © 2015 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Jocher, Georg; Marshall, John; Nilsson, Mats B.; Linder, Sune; De Simon, Giuseppe; Hörnlund, Thomas; Lundmark, Tomas; Näsholm, Torgny; Ottosson Löfvenius, Mikaell; Tarvainen, Lasse; Wallin, Göran; Peichl, Matthias
2018-02-01
Apparent net uptake of carbon dioxide (CO2) during wintertime by an ˜ 90 year old Scots pine stand in northern Sweden led us to conduct canopy decoupling and subcanopy advection investigations over an entire year. Eddy covariance (EC) measurements ran simultaneously above and within the forest canopy for that purpose. We used the correlation of above- and below-canopy standard deviation of vertical wind speed (σw) as decoupling indicator. We identified 0.33 m s-1 and 0.06 m s-1 as site-specific σw thresholds for above- and below-canopy coupling during nighttime (global radiation <20 W m-2) and 0.23 m s-1 and 0.06 m s-1 as daytime (global radiation >20 W m-2) σw thresholds. Decoupling occurred in 53% of the annual nighttime and 14% of the annual daytime. The annual net ecosystem exchange (NEE), gross ecosystem exchange (GEE), and ecosystem respiration (Reco) derived via two-level filtered EC data were -357 g C m-2, -1,138 g C m-2, and 781 g C m-2, respectively. In comparison, both single-level friction velocity (u*) and quality filtering resulted in 22% higher NEE, mainly caused by 16% lower Reco. GEE remained similar among filtering regimes. Accounting for changes of CO2 storage across the canopy in the single-level filtered data could only marginally decrease these discrepancies. Consequently, advection appears to be responsible for the major part of this divergence. We conclude that the two-level filter is necessary to adequately address decoupling and subcanopy advection at our site, and we recommend this filter for all forested EC sites.
NASA Astrophysics Data System (ADS)
Arneth, A.; Lloyd, J.; Šantrůčková, H.; Bird, M.; Grigoryev, S.; Kalaschnikov, Y. N.; Gleixner, G.; Schulze, E.-D.
2002-01-01
Twenty tree ring 13C / 12C ratio chronologies from Pinus sylvestris (Scots pine) trees were determined from five locations sampled along the Yenisei River, spaced over a total distance of ~1000 km between the cities of Turuhansk (66°N) and Krasnoyarsk (56°N). The transect covered the major part of the natural distribution of Scots pine in the region with median growing season temperatures and precipitation varying from 12.2°C and 218 mm to 14.0°C and 278 mm for Turuhansk and Krasnoyarsk, respectively. A key focus of the study was to investigate the effects of variations in temperature, precipitation, and atmospheric CO2 concentration on long- and short-term variation in photosynthetic 13C discrimination during photosynthesis and the marginal cost of tree water use, as reflected in the differences in the historical records of the 13C / 12C ratio in wood cellulose compared to that of the atmosphere (Δ13Cc). In 17 of the 20 samples, trees Δ13Cc has declined during the last 150 years, particularly so during the second half of the twentieth century. Using a model of stomatal behaviour combined with a process-based photosynthesis model, we deduce that this trend indicates a long-term decrease in canopy stomatal conductance, probably in response to increasing atmospheric CO2 concentrations. This response being observed for most trees along the transect is suggestive of widespread decreases in Δ13Cc and increased water use efficiency for Scots pine in central Siberia over the last century. Overlying short-term variations in Δ13Cc were also accounted for by the model and were related to variations in growing season soil water deficit and atmospheric humidity.
NASA Astrophysics Data System (ADS)
Kowalska, Anna; Boczoń, Andrzej; Hildebrand, Robert; Polkowska, Żaneta
2016-07-01
Vegetation cover affects the amount of precipitation, its chemical composition and its spatial distribution, and this may have implications for the distribution of water, nutrients and contaminants in the subsurface soil layer. The aim of this study was a detailed diagnosis of the spatio-temporal variability in the amount of throughfall (TF) and its chemical components in a 72-year-old pine stand with an admixture of oak and birch. The spatio-temporal variability in the amount of TF water and the concentrations and deposition of the TF components were studied. The components that are exchanged in canopy (H+, K, Mg, Mn, DOC, NH4+) were more variable than the components whose TF deposition is the sum of wet and dry (including gas) deposition and which undergo little exchange in the canopy (Na, Cl, NO3-, SO42-). The spatial distribution was temporally stable, especially during the leafed period. This study also investigated the effect of the selected pine stand characteristics on the spatial distribution of throughfall and its chemical components; the characteristics included leaf area index (LAI), the proportion of the canopy covered by deciduous species and pine crowns, and the distance from the nearest tree trunk. The LAI measured during the leafed and leafless periods had the greatest effect on the spatial distribution of TF deposition. No relationship was found between the spatial distribution of the amount of TF water and (i) the LAI; (ii) the canopy cover of broadleaf species or pines; or (iii) the distance from the trunks.
Nine Years of Irrigation Cause Vegetation and Fine Root Shifts in a Water-Limited Pine Forest
Herzog, Claude; Steffen, Jan; Graf Pannatier, Elisabeth; Hajdas, Irka; Brunner, Ivano
2014-01-01
Scots pines (Pinus sylvestris L.) in the inner-Alpine dry valleys of Switzerland have suffered from increased mortality during the past decades, which has been caused by longer and more frequent dry periods. In addition, a proceeding replacement of Scots pines by pubescent oaks (Quercus pubescens Willd.) has been observed. In 2003, an irrigation experiment was performed to track changes by reducing drought pressure on the natural pine forest. After nine years of irrigation, we observed major adaptations in the vegetation and shifts in Scots pine fine root abundance and structure. Irrigation permitted new plant species to assemble and promote canopy closure with a subsequent loss of herb and moss coverage. Fine root dry weight increased under irrigation and fine roots had a tendency to elongate. Structural composition of fine roots remained unaffected by irrigation, expressing preserved proportions of cellulose, lignin and phenolic substances. A shift to a more negative δ13C signal in the fine root C indicates an increased photosynthetic activity in irrigated pine trees. Using radiocarbon (14C) measurement, a reduced mean age of the fine roots in irrigated plots was revealed. The reason for this is either an increase in newly produced fine roots, supported by the increase in fine root biomass, or a reduced lifespan of fine roots which corresponds to an enhanced turnover rate. Overall, the responses belowground to irrigation are less conspicuous than the more rapid adaptations aboveground. Lagged and conservative adaptations of tree roots with decadal lifespans are challenging to detect, hence demanding for long-term surveys. Investigations concerning fine root turnover rate and degradation processes under a changing climate are crucial for a complete understanding of C cycling. PMID:24802642
Above- and belowground fluxes of CH4 from boreal shrubs and Scots pine
NASA Astrophysics Data System (ADS)
Halmeenmäki, Elisa; Heinonsalo, Jussi; Santalahti, Minna; Putkinen, Anuliina; Fritze, Hannu; Pihlatie, Mari
2016-04-01
Boreal upland forests are considered as an important sink for the greenhouse gas methane (CH4) due to CH4 oxidizing microbes in the soil. However, recent evidence suggests that vegetation can act as a significant source of CH4. Also, preliminary measurements indicate occasional emissions of CH4 above the tree canopies of a boreal forest. Nevertheless, the sources and the mechanisms of the observed CH4 emissions are still mostly unknown. Furthermore, the majority of CH4 flux studies have been conducted with the soil chamber method, thus not considering the role of the vegetation itself. We conducted a laboratory experiment to study separately the above- and belowground CH4 fluxes of bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), heather (Calluna vulgaris), and Scots pine (Pinus sylvestris), which were grown in microcosms. The above- and belowground fluxes of the plants were measured separately, and these fluxes were compared to fluxes of microcosms containing only humus soil. In addition to the flux measurements, we analysed the CH4 producing archaea (methanogens) and the CH4 consuming bacteria (methanotrophs) with the qPCR method to discover whether these microbes contribute to the CH4 exchange from the plant material and the soil. The results of the flux measurements indicate that the humus soil with roots of lingonberry, heather, and Scots pine consume CH4 compared to bare humus soil. Simultaneously, the shoots of heather and Scots pine emit small amounts of CH4. We did not find detectable amounts of methanogens from any of the samples, suggesting the produced CH4 could be of non-microbial origin, or produced by very small population of methanogens. Based on the first preliminary results, methanotrophs were present in all the studied plant species, and especially in high amounts in the rooted soils, thus implying that the methanotrophs could be responsible of the CH4 uptake in the root-soil systems.
Brian W. Geils; Ned B. Klopfenstein; Mee-Sook Kim; Pauline Spaine; Bryce A. Richardson; Paul J. Zambino; Charles G. Shaw; James Walla; Russ Bulluck; Laura Redmond; Kent Smith
2009-01-01
The sexually reproducing form of Scots pine blister rust, C. flaccidum, completes its life cycle alternating between pines of the subgenus Pinus and seed-plants of various families. Scots pine blister rust is also caused by a form of the rust that spreads directly from pine to pine and is named, Peridermium pini...
Radial diffusion, vertical transport, and refixation of labeled bicarbonate in scots pine stems
NASA Astrophysics Data System (ADS)
Marshall, J. D.; Tarvainen, L.; Wallin, G.
2016-12-01
The CO2 produced by a respiring stem provides an index of metabolic activity in the stem and a quantitative estimate of an important component of the forest carbon budget. Production of CO2 by a given stem volume is lost by three competing processes. First, some diffuses radially outward through the bark. Second, some is dissolved and vertically transported upward out of the control volume by the xylem stream. Third, some is refixed by photosynthesis under the bark. The relative balance among these pathways was quantified in 17-m Scots pine trees by 13C-bicarbonate labeling of the xylem stream and monitoring of the 13CO2 in the xylem water, along with continuous monitoring of the radial diffusive flux at four canopy heights and in transpiration from leaves. Most of the label diffused out radially, as 13CO2, immediately above the labeling site, over about a week. The pulse was weakly and briefly detected 4 m above that height. Further up the stem it was not detected at all. We detected significant refixation of CO2 in the stems at all heights above 4 m, where the bark becomes papery and thin, but the label was so weak at this height that refixation had little influence on the pulse chase. We conclude that the vertical flux is negligible in Scots pine, but that the refixation flux must be accounted for in estimates of whole-stem CO2 efflux.
NASA Astrophysics Data System (ADS)
Granier, A.; Biron, P.; Köstner, B.; Gay, L. W.; Najjar, G.
1996-03-01
Simultaneous measurements of xylem sap flow and water vapour flux over a Scots pine ( Pinus sylvestris) forest (Hartheim, Germany), were carried out during the Hartheim Experiment (HartX), an intensive observation campaign of the international programme REKLIP. Sap flow was measured every 30 min using both radial constant heating (Granier, 1985) and two types of Cermak sap flowmeters installed on 24 trees selected to cover a wide range of the diameter classes of the stand (min 8 cm; max 17.5 cm). Available energy was high during the observation period (5.5 to 6.9 mm.day-1), and daily cumulated sap flow on a ground area basis varied between 2.0 and 2.7 mm day-1 depending on climate conditions. Maximum hourly values of sap flow reached 0.33 mm h-1, i.e., 230 W m-2. Comparisons of sap flow with water vapour flux as measured with two OPEC (One Propeller Eddy Correlation, University of Arizona) systems showed a time lag between the two methods, sap flow lagging about 90 min behind vapour flux. After taking into account this time lag in the sap flow data set, a good agreement was found between both methods: sap flow = 0.745* vapour flux, r 2 = 0.86. The difference between the two estimates was due to understory transpiration. Canopy conductance ( g c ) was calculated from sap flow measurements using the reverse form of Penman-Monteith equation and climatic data measured 4 m above the canopy. Variations of g c were well correlated ( r 2 = 0.85) with global radiation ( R) and vapour pressure deficit ( vpd). The quantitative expression for g c = f ( R, vpd) was very similar to that previously found with maritime pine ( Pinus pinaster) in the forest of Les Landes, South Western France.
Kuznetsova, Tatjana; Tilk, Mari; Pärn, Henn; Lukjanova, Aljona; Mandre, Malle
2011-12-01
The investigation was carried out in 8-year-old Scots pine (Pinus sylvestris L.) and lodgepole pine (Pinus contorta var. latifolia Engelm.) plantations on post-mining area, Northeast Estonia. The aim of the study was to assess the suitability of lodgepole pine for restoration of degraded lands by comparing the growth, biomass, and nutrient concentration of studied species. The height growth of trees was greater in the Scots pine stand, but the tree aboveground biomass was slightly larger in the lodgepole pine stand. The aboveground biomass allocation to the compartments did not differ significantly between species. The vertical distribution of compartments showed that 43.2% of the Scots pine needles were located in the middle layer of the crown, while 58.5% of the lodgepole pine needles were in the lowest layer of the crown. The largest share of the shoots and stem of both species was allocated to the lowest layer of the crown. For both species, the highest NPK concentrations were found in the needles and the lowest in the stems. On the basis of the present study results, it can be concluded that the early growth of Scots pine and lodgepole pine on oil shale post-mining landscapes is similar.
Response of Scots pine stand vitality to changes in environmental factors in Poland, 1991-1995
Jerzy Wawrzoniak
1998-01-01
Vitality inventories of Scots pine stands, the most common species in Poland, have been done since 1991 by using the ICP-Forest methodology. In Scots pine stands older than 40 years, 1,040 observation plots were established. Defoliation was used as the primary indicator of stand vitality. During 1991 to 1995, SO2 and NOx...
Delayed soil thawing affects root and shoot functioning and growth in Scots pine.
Repo, Tapani; Lehto, Tarja; Finér, Leena
2008-10-01
In boreal regions, soil can remain frozen after the start of the growing season. We compared relationships between root characteristics and water relations in Scots pine (Pinus sylvestris L.) saplings subjected to soil frost treatments before and during the first week of the growing period in a controlled environment experiment. Delayed soil thawing delayed the onset of sap flow or totally blocked it if soil thawing lagged the start of the growing period by 7 days. This effect was reflected in the electrical impedance of needles and trunks and in the relative electrolyte leakage of needles. Prolonged soil frost reduced or completely inhibited root growth. In unfrozen soil, limited trunk sap flow was observed despite unfavorable aboveground growing conditions (low temperature, low irradiance, short photoperiod). Following the earliest soil thaw, sap flow varied during the growing season, depending on light and temperature conditions, phenological stage of the plant and the amount of live needles in the canopy. The results suggest that delayed soil thawing can reduce tree growth, and if prolonged, it can be lethal.
Chiron, H; Drouet, A; Claudot, A C; Eckerskorn, C; Trost, M; Heller, W; Ernst, D; Sandermann, H
2000-12-01
Formation of pinosylvin (PS) and pinosylvin 3-O-monomethyl ether (PSM), as well as the activities of stilbene synthase (STS) and S-adenosyl-1-methionine (SAM):pinosylvin O-methyltransferase (PMT), were induced strongly in needles of Scots pine seedlings upon ozone treatment, as well as in cell suspension cultures of Scots pine upon fungal elicitation. A SAM-dependent PMT protein was purified and partially characterised. A cDNA encoding PMT was isolated from an ozone-induced Scots pine cDNA library. Southern blot analysis of the genomic DNA suggested the presence of a gene family. The deduced protein sequence showed the typical highly conserved regions of O-methyltransferases (OMTs), and average identities of 20-56% to known OMTs. PMT expressed in Escherichia coli corresponded to that of purified PMT (40 kDa) from pine cell cultures. The recombinant enzyme catalysed the methylation of PS, caffeic acid, caffeoyl-CoA and quercetin. Several other substances, such as astringenin, resveratrol, 5-OH-ferulic acid, catechol and luteolin, were also methylated. Recombinant PMT thus had a relatively broad substrate specificity. Treatment of 7-year old Scots pine trees with ozone markedly increased the PMT mRNA level. Our results show that PMT represents a new SAM-dependent OMT for the methylation of stress-induced pinosylvin in Scots pine needles.
Drought-induced adaptation of the xylem in Scots pine and pubescent oak.
Eilmann, Britta; Zweifel, Roman; Buchmann, Nina; Fonti, Patrick; Rigling, Andreas
2009-08-01
Drought impairs tree growth in the inner-Alpine valleys of Central Europe. We investigated species-specific responses to contrasting water supply, with Scots pine (Pinus sylvestris L.), threatened by drought-induced mortality, and pubescent oak (Quercus pubescens Willd.), showing no connection between drought events and mortality. The two co-occurring tree species were compared, growing either along an open water channel or at a site with naturally dry conditions. In addition, the growth response of Scots pine to a draining of a water channel was studied. We analysed the radial increment for the last 100 years and wood anatomical parameters for the last 45 years. Drought reduced the conduit area of pubescent oak, but increased the radial lumen diameter of the conduits in Scots pine. Both species decreased their radial increment under drought. In Scots pine, radial increment was generally more dependent on water availability than that in pubescent oak. Irrigated trees responded less negatively to high temperature as seen in the increase in the conduit area in pubescent oak and the removal of the limitation of cell division by high temperatures. After irrigation stopped, tree-ring width for Scots pine decreased within 1-year delay, whereas lumen diameter and cell-wall thickness responded with a 4-year delay. Scots pine seemed to optimize the carbon-per-conduit-costs under drought by increasing conduits diameter while decreasing cell numbers. This strategy might lead to a complete loss of tree rings under severe drought and thus to an impairment of water transport. In contrast, in pubescent oak tree-ring width is less affected by summer drought because parts of the earlywood are built in early spring. Thus, pubescent oak might have gradual advantages over pine in today's climate of the inner-Alpine valley.
Razzak, Abdur; Ranade, Sonali Sachin; Strand, Åsa; García-Gil, M R
2017-08-01
We investigated the response to increasing intensity of red (R) and far-R (FR) light and to a decrease in R:FR ratio in Pinus sylvestris L. (Scots pine) seedling. The results showed that FR high-irradiance response for hypocotyl elongation may be present in Scots pine and that this response is enhanced by increasing light intensity. However, both hypocotyl inhibition and pigment accumulation were more strongly affected by the R light compared with FR light. This is in contrast to previous reports in Arabidopsis thaliana (L.) Heynh. In the angiosperm, A. thaliana R light shows an overall milder effect on inhibition of hypocotyl elongation and on pigment biosynthesis compared with FR suggesting conifers and angiosperms respond very differently to the different light regimes. Scots pine shade avoidance syndrome with longer hypocotyls, shorter cotyledons and lower chlorophyll content in response to shade conditions resembles the response observed in A. thaliana. However, anthocyanin accumulation increased with shade in Scots pine, which again differs from what is known in angiosperms. Overall, the response of seedling development and physiology to R and FR light in Scots pine indicates that the regulatory mechanism for light response may differ between gymnosperms and angiosperms. © 2017 John Wiley & Sons Ltd.
HS-SPME analysis of volatile organic compounds of coniferous needle litter
NASA Astrophysics Data System (ADS)
Isidorov, V. A.; Vinogorova, V. T.; Rafałowski, K.
The composition of volatile emission of Scots pine ( Pinus sylvestris) and spruce ( Picea exelsa) litter was studied by gas chromatography-mass spectrometry (GC-MS) and samples were collected by solid-phase microextraction (SPME) method. The list of identified compounds includes over 60 organic substances of different classes. It was established that volatile emission contain not only components of essential oils of pine and spruce needles but also a large number of organic compounds which are probably secondary metabolites of litter-decomposing fungi. They include lower carbonyl compounds and alcohols as well as products of terpene dehydration and oxidation. These data show that the processes of litter decomposition are an important source of reactive organic compounds under canopy of coniferous forests.
Seidel, Hannes; Menzel, Annette
2016-01-01
Seedling establishment is a critical part of the life cycle, thus seedling survival might be even more important for forest persistence under recent and future climate change. Scots pine forests have been disproportionally more affected by climate change triggered forest-dieback. Nevertheless, some Scots pine provenances might prove resilient to future drought events because of the species’ large distributional range, genetic diversity, and adaptation potential. However, there is a lack of knowledge on provenance-specific survival under severe drought events and on how acclimation alters survival rates in Scots pine seedlings. We therefore conducted two drought-induced mortality experiments with potted Scots pine seedlings in a greenhouse. In the first experiment, 760 three-year-old seedlings from 12 different provenances of the south-western distribution range were subjected to the same treatment followed by the mortality experiment in 2014. In the second experiment, we addressed the question of whether acclimation to re-occurring drought stress events and to elevated temperature might decrease mortality rates. Thus, 139 four-year-old seedlings from France, Germany, and Poland were subjected to different temperature regimes (2012–2014) and drought treatments (2013–2014) before the mortality experiment in 2015. Provenances clearly differed in their hazard of drought-induced mortality, which was only partly related to the climate of their origin. Drought acclimation decreased the hazard of drought-induced mortality. Above-ground dry weight and height were the main determinants for the hazard of mortality, i.e., heavier and taller seedlings were more prone to mortality. Consequently, Scots pine seedlings exhibit a considerable provenance-specific acclimation potential against drought mortality and the selection of suitable provenances might thus facilitate seedling establishment and the persistence of Scots pine forest. PMID:27458477
[Post-logging organic matter recovery in forest ecosystems of eastern Baikal region].
Vedrova, E F; Mukhortova, L V; Ivanov, V V; Krivobokov, L V; Boloneva, M V
2010-01-01
The dynamics of organic matter accumulated in the soil and main vegetation elements was analyzed for post-logging forest ecosystem succession series in eastern Baikal region. The phytomass was found to allocate up 63 and 50% of carbon in undisturbed Scots pine and fir stands, respectively. The post-logging phytomass contribution to the total carbon pool appeared to decrease down to 16% in Scots pine and 6% in fir stands. In Scots pine stands, carbon storage was determined to account for almost 70% of the initial carbon 60 years after logging. In 50- to 55-year-old fir stands, carbon recovered its initial pool only by 10%. Soil carbon recorded in recently logged Scots pine and fir sites appeared to be 5 and 16 times that accumulated in the phytomass, respectively. The ratio between phytomass carbon and soil organic matter recovered back to the prelogging level in Scots pine stands by the age of 50-60 years. While phytomass carbon also increased in fir stand of the same age, it did not reach the level of the control stand.
Developmental Changes in Scots Pine Transcriptome during Heartwood Formation1[OPEN
Paasela, Tanja; Harju, Anni; Paulin, Lars; Auvinen, Petri; Kärkkäinen, Katri
2016-01-01
Scots pine (Pinus sylvestris L.) wood is desired in woodworking industries due to its favorable timber characteristics and natural durability that is contributed by heartwood extractives. It has been discussed whether the Scots pine heartwood extractives (mainly stilbenes and resin acids) are synthesized in the cells of the transition zone between sapwood and heartwood, or if they are transported from the sapwood. Timing of heartwood formation during the yearly cycle has also not been unambiguously defined. We measured steady-state mRNA levels in Scots pine transition zone and sapwood using RNA sequencing. Year-round expression profiles of selected transcripts were further investigated by quantitative RT-PCR. Differentially accumulating transcripts suggest that, of the Scots pine heartwood extractives, stilbenes are synthesized in situ in the transition zone and gain their carbon-skeletons from Suc and triglycerides. Resin acids, on the other hand, are synthesized early in the spring mainly in the sapwood, meaning that they must be transported to the heartwood transition zone. Heartwood formation is marked by programmed cell death that occurs during the summer months in the transition zone. PMID:27600814
Hartley, J; Cairney, J W; Freestone, P; Woods, C; Meharg, A A
1999-09-01
Experiments were conducted to investigate the effects of single and multiple metal contamination (Cd, Pb, Zn, Sb, Cu) on Scots pine seedlings colonised by ectomycorrhizal (ECM) fungi from natural soil inoculum. Seedlings were grown in either contaminated field soil from the site of a chemical accident, soils amended with five metals contaminating the site, or in soil from an uncontaminated control site. Although contaminated and metal-amended soil significantly inhibited root and shoot growth of the Scots pine seedlings, total root tip density was not affected. Of the five metals tested in amended soils, Cd was the most toxic to ECM Scots pine. Field-contaminated soil had a toxic effect on ECM fungi associated with Scots pine seedlings and caused shifts in ECM species composition on ECM seedlings. When compared to soils amended with only one metal, soils amended with a combination of all five metals tested had lower relative toxicity and less accumulation of Pb, Zn and Sb into seedlings. This would indicate that the toxicity of multiple metal contamination cannot be predicted from the individual toxicity of the metals investigated.
Hui Ye; Robert A. Haack; Toby R. Petrice
2005-01-01
The pine shoot beetle, Tomicus piniperda (L.) (Coleoptera: Scolytidae), is an exotic bark beetle in North America that was first found in the Great Lakes region in 1992. We evaluated T. piniperda reproduction and development in one Eurasian pine (Scots pine, Pinus sylvestris L.) and three North American...
Growth responses of Scots pine to climatic factors on reclaimed oil shale mined land.
Metslaid, Sandra; Stanturf, John A; Hordo, Maris; Korjus, Henn; Laarmann, Diana; Kiviste, Andres
2016-07-01
Afforestation on reclaimed mining areas has high ecological and economic importance. However, ecosystems established on post-mining substrate can become vulnerable due to climate variability. We used tree-ring data and dendrochronological techniques to study the relationship between climate variables and annual growth of Scots pine (Pinus sylvestris L.) growing on reclaimed open cast oil shale mining areas in Northeast Estonia. Chronologies for trees of different age classes (50, 40, 30) were developed. Pearson's correlation analysis between radial growth indices and monthly climate variables revealed that precipitation in June-July and higher mean temperatures in spring season enhanced radial growth of pine plantations, while higher than average temperatures in summer months inhibited wood production. Sensitivity of radial increment to climatic factors on post-mining soils was not homogenous among the studied populations. Older trees growing on more developed soils were more sensitive to precipitation deficit in summer, while growth indices of two other stand groups (young and middle-aged) were highly correlated to temperature. High mean temperatures in August were negatively related to annual wood production in all trees, while trees in the youngest stands benefited from warmer temperatures in January. As a response to thinning, mean annual basal area increment increased up to 50 %. By managing tree competition in the closed-canopy stands, through the thinning activities, tree sensitivity and response to climate could be manipulated.
NASA Astrophysics Data System (ADS)
Köstner, B.
Spatial scaling from patch to the landscape level requires knowledge on the effects of vegetation structure on maximum surface conductances and evaporation rates. The following paper summarizes results on atmospheric, edaphic, and structural controls on forest evaporation and transpiration observed in stands of Norway spruce (Picea abies), Scots pine (Pinus sylvestris) and European beech (Fagus sylvatica). Forest canopy transpiration (Ec) was determined by tree sapflow measurements scaled to the stand level. Estimates of understory transpiration and forest floor evaporation were derived from lysimeter and chamber measurements. Strong reduction of Ec due to soil drought was only observed at a Scots pine stand when soil water content dropped below 16% v/v. Although relative responses of Ec on atmospheric conditions were similar, daily maximum rates of could differ more than 100% between forest patches of different structure (1.5-3.0mmd-1 and 2.6-6.4mmd-1 for spruce and beech, respectively). A significant decrease of Ecmax per leaf area index with increasing stand age was found for monocultures of Norway spruce, whereas no pronounced changes in were observed for beech stands. It is concluded that structural effects on Ecmax can be specified and must be considered for spatial scaling from forest stands to landscapes. Hereby, in conjunction with LAI, age-related structural parameters are important for Norway spruce stands. Although compensating effects of tree canopy layers and understory on total evaporation of forests were observed, more information is needed to quantify structure-function relationships in forests of heterogenous structure.
NASA Astrophysics Data System (ADS)
Volkova, Polina Yu.; Geras'Kin, Stanislav A.; Kazakova, Elizaveta A.
2017-02-01
Even 30 years after the Chernobyl accident, biological effects of irradiation are observed in the chronically exposed Scots pine populations. Chronic radiation exposure at dose rates above 50 mGy•yr-1 caused oxidative stress and led to the increase of antioxidants concentrations in these populations. Genetic variability was examined for 6 enzymes and 14 enzymatic loci of 6 Scots pine populations. Dose rates over 10 mGy•yr-1 caused the increased frequency of mutations and changes in genetic structure of Scots pine populations. However, the same dose rates had no effect on enzymatic activities. The results indicate that even relatively low dose rates of radiation can be considered as an ecological factor which should be taken into account for ecological management and radiation protection of biota species.
Tondi, G; Thevenon, M F; Mies, B; Standfest, G; Petutschnigg, A; Wieland, S
The impregnation process of Scots pine and beech samples with tannin solutions was investigated. The two materials involved in the process (impregnation solution and wood samples) are studied in depth. Viscosity of mimosa tannin solutions and the anatomical aspect of beech and Scots pine were analysed and correlated. The viscosity of tannin solutions presents a non-newtonian behaviour when its pH level increases, and in the case of addition of hexamine as a hardener, the crosslinking of the flavonoids turns out to be of great importance. During the impregnation of Scots pine ( Pinus sylvestris L.) and beech ( Fagus sylvatica L.), the liquid and solid uptakes were monitored while taking into consideration the different conditions of the impregnation process. This method allowed to identify the best conditions needed in order to get a successful preservative uptake for each wooden substrate. The penetration mechanism within the wood of both species was revealed with the aid of a microscopic analysis. Scots pine is impregnated through the tracheids in the longitudinal direction and through parenchyma rays in the radial direction, whereas in beech, the penetration occurs almost completely through longitudinal vessels.
Developmental Changes in Scots Pine Transcriptome during Heartwood Formation.
Lim, Kean-Jin; Paasela, Tanja; Harju, Anni; Venäläinen, Martti; Paulin, Lars; Auvinen, Petri; Kärkkäinen, Katri; Teeri, Teemu H
2016-11-01
Scots pine (Pinus sylvestris L.) wood is desired in woodworking industries due to its favorable timber characteristics and natural durability that is contributed by heartwood extractives. It has been discussed whether the Scots pine heartwood extractives (mainly stilbenes and resin acids) are synthesized in the cells of the transition zone between sapwood and heartwood, or if they are transported from the sapwood. Timing of heartwood formation during the yearly cycle has also not been unambiguously defined. We measured steady-state mRNA levels in Scots pine transition zone and sapwood using RNA sequencing. Year-round expression profiles of selected transcripts were further investigated by quantitative RT-PCR. Differentially accumulating transcripts suggest that, of the Scots pine heartwood extractives, stilbenes are synthesized in situ in the transition zone and gain their carbon-skeletons from Suc and triglycerides. Resin acids, on the other hand, are synthesized early in the spring mainly in the sapwood, meaning that they must be transported to the heartwood transition zone. Heartwood formation is marked by programmed cell death that occurs during the summer months in the transition zone. © 2016 American Society of Plant Biologists. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Middleton, Maarit; Närhi, Paavo; Sutinen, Raimo
In a humid northern boreal climate, the success rate of artificial regeneration to Scots pine ( Pinus sylvestris L.) can be improved by including a soil water content (SWC) based assessment of site suitability in the reforestation planning process. This paper introduces an application of airborne visible-near-infrared imaging spectroscopic data to identify suitable subregions of forest compartments for the low SWC-tolerant Scots pine. The spatial patterns of understorey plant species communities, recorded by the AISA (Airborne Imaging Spectrometer for Applications) sensor, were demonstrated to be dependant on the underlying SWC. According to the nonmetric multidimensional scaling and correlation results twelve understorey species were found to be most abundant on sites with high soil SWCs. The abundance of bare soil, rocks and abundance of more than ten species indicated low soil SWCs. The spatial patterns of understorey are attributed to time-stability of the underlying SWC patterns. A supervised artificial neural network (radial basis functional link network, probabilistic neural network) approach was taken to classify AISA imaging spectrometer data with dielectric (as a measure volumetric SWC) ground referencing into regimes suitable and unsuitable for Scots pine. The accuracy assessment with receiver operating characteristics curves demonstrated a maximum of 74.1% area under the curve values which indicated moderate success of the NN modelling. The results signified the importance of the training set's quality, adequate quantity (>2.43 points/ha) and NN algorithm selection over the NN algorithm training parameter optimization to perfection. This methodology for the analysis of site suitability of Scots pine can be recommended, especially when artificial regeneration of former mixed wood Norway spruce ( Picea abies L. Karst) - downy birch ( Betula pubenscens Ehrh.) stands is being considered, so that artificially regenerated areas to Scots pine can be optimized for forestry purposes.
Ostonen, Ivika; Lõhmus, Krista; Helmisaari, Heljä-Sisko; Truu, Jaak; Meel, Signe
2007-11-01
Variability in short root morphology of the three main tree species of Europe's boreal forest (Norway spruce (Picea abies L. Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth)) was investigated in four stands along a latitudinal gradient from northern Finland to southern Estonia. Silver birch and Scots pine were present in three stands and Norway spruce was present in all stands. For three fertile Norway spruce stands, fine root biomass and number of root tips per stand area or unit basal area were assessed from north to south. Principal component analysis indicated that short root morphology was significantly affected by tree species and site, which together explained 34.7% of the total variability. The range of variation in mean specific root area (SRA) was 51-74, 60-70 and 84-124 m(2) kg(-1) for Norway spruce, Scots pine and silver birch, respectively, and the corresponding ranges for specific root length were 37-47, 40-48 and 87-97 m g(-1). The range of variation in root tissue density of Norway spruce, Scots pine and silver birch was 113-182, 127-158 and 81-156 kg m(-3), respectively. Sensitivity of short root morphology to site conditions decreased in the order: Norway spruce > silver birch > Scots pine. Short root SRA increased with site fertility in all species. In Norway spruce, fine root biomass and number of root tips per m(2) decreased from north to south. The differences in morphological parameters among sites were significant but smaller than the site differences in fine root biomass and number of root tips.
Barba, Josep; Curiel Yuste, Jorge; Poyatos, Rafael; Janssens, Ivan A; Lloret, Francisco
2016-09-01
How forests cope with drought-induced perturbations and how the dependence of soil respiration on environmental and biological drivers is affected in a warming and drying context are becoming key questions. The aims of this study were to determine whether drought-induced die-off and forest succession were reflected in soil respiration and its components and to determine the influence of climate on the soil respiration components. We used the mesh exclusion method to study seasonal variations in soil respiration (R S) and its components: heterotrophic (R H) and autotrophic (R A) [further split into fine root (R R) and mycorrhizal respiration (R M)] in a mixed Mediterranean forest where Scots pine (Pinus sylvestris L.) is undergoing a drought-induced die-off and is being replaced by holm oak (Quercus ilex L.). Drought-induced pine die-off was not reflected in R S nor in its components, which denotes a high functional resilience of the plant and soil system to pine die-off. However, the succession from Scots pine to holm oak resulted in a reduction of R H and thus in an important decrease of total respiration (R S was 36 % lower in holm oaks than in non-defoliated pines). Furthermore, R S and all its components were strongly regulated by soil water content-and-temperature interaction. Since Scots pine die-off and Quercus species colonization seems to be widely occurring at the driest limit of the Scots pine distribution, the functional resilience of the soil system over die-off and the decrease of R S from Scots pine to holm oak could have direct consequences for the C balance of these ecosystems.
Tree water relations can trigger monoterpene emissions from Scots pine stems during spring recovery
NASA Astrophysics Data System (ADS)
Vanhatalo, A.; Chan, T.; Aalto, J.; Korhonen, J. F.; Kolari, P.; Hölttä, T.; Nikinmaa, E.; Bäck, J.
2015-09-01
Tree canopies are known to emit large amounts of VOCs (volatile organic compounds) such as monoterpenes into the surrounding air. High VOC emission rates from boreal forests have been observed during the transition from winter to summer activity. The most important sources of these are considered to be the green foliage, understory vegetation and soil organisms, but emissions from the living stand woody compartments have so far not been quantified. We analyzed whether the non-foliar components could partially explain the springtime high emission rates. We measured the monoterpene emissions from Scots pine (Pinus sylvestris L.) stem and shoots during the dehardening phase of trees in field conditions in two consecutive springs. We observed a large, transient monoterpene burst from the stem, while the shoot monoterpene emissions remained low. The burst lasted about 12 h. Simultaneously, an unusual nighttime sap flow and a non-systematic diurnal pattern of tree diameter were detected. Hence, we suggest that the monoterpene burst was a consequence of the recovery of the stem from wintertime, and likely related to the refilling of embolized tracheids and/or phenological changes in the living cells of the stem. This indicates that the dominant processes and environmental drivers triggering the monoterpene emissions are different between the stem and the foliage.
Mistletoe-induced growth reductions at the forest stand scale.
Kollas, Chris; Gutsch, Martin; Hommel, Robert; Lasch-Born, Petra; Suckow, Felicitas
2018-05-01
The hemiparasite European mistletoe (Viscum album L.) adversely affects growth and reproduction of the host Scots pine (Pinus sylvestris L.) and in consequence may lead to tree death. Here, we aimed to estimate mistletoe-induced losses in timber yield applying the process-based forest growth model 4C. The parasite was implemented into the eco-physiological forest growth model 4C using (literature-derived) established impacts of the parasite on the tree's water and carbon cycle. The amended model was validated simulating a sample forest stand in the Berlin area (Germany) comprising trees with and without mistletoe infection. At the same forest stand, tree core measurements were taken to evaluate simulated and observed growth. A subsample of trees were harvested to quantify biomass compartments of the tree canopy and to derive a growth function of the mistletoe population. The process-based simulations of the forest stand revealed 27% reduction in basal area increment (BAI) during the last 9 years of heavy infection, which was confirmed by the measurements (29% mean growth reduction). The long-term simulations of the forest stand before and during the parasite infection showed that the amended forest growth model 4C depicts well the BAI growth pattern during >100 years and also quantifies well the mistletoe-induced growth reductions in Scots pine stands.
Turtola, Satu; Sallas, Leena; Holopainen, Jarmo K; Julkunen-Tiitto, Riitta; Kainulainen, Pirjo
2006-11-01
The effects of long-term enhanced UV-B radiation on growth and secondary compounds of two conifer species were studied in an outdoor experiment. Scots pine (Pinus sylvestris) seedlings were exposed for two growing seasons and Norway spruce (Picea abies) seedlings for three growing seasons to supplemental UV-B radiation, corresponding to a 30% increase in ambient UV-B radiation. The experiment also included appropriate controls for ambient and increased UV-A radiation. Enhanced UV-B did not affect the growth of the conifer seedlings. In addition, neither the concentrations of terpenes and phenolics in the needles nor the concentrations of terpenes in the wood were affected. However, in the UV-A control treatment the concentrations of diterpenes in the wood of Scots pine decreased significantly compared to the ambient control. Apparently, a small increase in UV-B radiation has no significant effects on the secondary compounds and growth of Scots pine and Norway spruce seedlings.
NASA Astrophysics Data System (ADS)
Llorens, Pilar; Garcia-Estringana, Pablo; Cayuela, Carles; Latron, Jérôme; Molina, Antonio; Gallart, Francesc
2015-04-01
Temporal and spatial variability of throughfall and stemflow patterns, due to differences in forest structure and seasonality of Mediterranean climate, may lead to significant changes in the volume of water that locally reaches the soil, with a potential effect on groundwater recharge and on hydrological response of forested hillslopes. Two forest stands in Mediterranean climatic conditions were studied to explore the role of vegetation on the temporal and spatial redistribution of rainfall. One is a Downy oak forest (Quercus pubescens) and the other is a Scots pine forest (Pinus sylvestris), both located in the Vallcebre research catchments (NE Spain, 42° 12'N, 1° 49'E). These plots are representative of Mediterranean mountain areas with spontaneous afforestation by Scots pine as a consequence of the abandonment of agricultural terraces, formerly covered by Downy oaks. The monitoring design of each plot consists of 20 automatic rain recorders to measuring throughfall, 7 stemflow rings connected to tipping-buckets and 40 automatic soil moisture probes. All data were recorded each 5 min. Bulk rainfall and meteorological conditions above both forest covers were also recorded, and canopy cover and biometric characteristics of the plots were measured. Results indicate a marked temporal stability of throughfall in both stands, and a lower persistence of spatial patterns in the leafless period than in the leafed one in the oaks stand. Moreover, in the oaks plot the ranks of gauges in the leafed and leafless periods were not significantly correlated, indicating different wet and dry hotspots in each season. The spatial distribution of throughfall varied significantly depending on rainfall volume, with small events having larger variability, whereas large events tended to homogenize the relative differences in point throughfall. Soil water content spatial variability increased with increasing soil water content, but direct dependence of soil water content variability on throughfall patterns is difficult to establish.
NASA Astrophysics Data System (ADS)
Puig, R.; Àvila, A.; Soler, A.
Stable sulphur isotopes and major ionic composition were analysed in precipitation and throughfall samples from a Scots pine ( Pinus sylvestris, L.) forest near the Cercs coal-fired power plant (Catalonia, NE Spain). The purpose of the study was to determine the main sources of sulphur deposition on this pine forest. Sulphur isotope measurements from the SO 2 power plant stack emissions were used to identify the isotopic signature of this source. Net throughfall fluxes of sulphur (26.1 kg S ha 1 yr -1) and nitrogen (16.3 kg N ha -1 yr -1) were higher—5-25 times higher for S and 5-15 times for N—at this site than in other forests in Catalonia. Sulphur isotope analysis confirmed that the net throughfall fluxes of sulphur were mostly due to the dry deposition of the SO 2 power plant emissions onto the pine canopies. Two potential atmospheric end-members were distinguished: regional background rainwater (δ 34S=+7.2‰) and power plant emissions (δ 34S=-2.8‰). By applying a two-component sulphur isotope mixing model, we found that during periods of low power plant activity (⩽10 emission h day -1), 62% of the throughfall sulphate could be attributed to the power plant emissions. At higher activity periods (⩾14 emission h day -1), this contribution rose to 73%. Although power plant contribution to bulk deposition was lower in both cases (34% and 45%), the possible influence of sulphate coming with long-range transport events from the polluted areas in the Mediterranean basin (δ 34S≈0‰) was not discarded.
Geras'kin, Stanislav; Oudalova, Alla; Dikareva, Nina; Spiridonov, Sergey; Hinton, Thomas; Chernonog, Elena; Garnier-Laplace, Jacqueline
2011-08-01
A 6 year study of Scots pine populations inhabiting sites in the Bryansk region of Russia radioactively contaminated as a result of the Chernobyl accident is presented. In six study sites, (137)Cs activity concentrations and heavy metal content in soils, as well as (137)Cs, (90)Sr and heavy metal concentrations in cones were measured. Doses absorbed in reproduction organs of pine trees were calculated using a dosimetric model. The maximum annual dose absorbed at the most contaminated site was about 130 mGy. Occurrence of aberrant cells scored in the root meristem of germinated seeds collected from pine trees growing on radioactively contaminated territories for over 20 years significantly exceeded the reference levels during all 6 years of the study. The data suggest that cytogenetic effects occur in Scots pine populations due to the radioactive contamination. However, no consistent differences in reproductive ability were detected between the impacted and reference populations as measured by the frequency of abortive seeds. Even though the Scots pine populations have occupied radioactively contaminated territories for two decades, there were no clear indications of adaptation to the radiation, when measured by the number of aberrant cells in root meristems of seeds exposed to an additional acute dose of radiation.
Features of Scots pine radial growth in conditions of provenance trial
NASA Astrophysics Data System (ADS)
Kuzmin, S.
2012-12-01
Provenance trial of Scots pine in Boguchany forestry of Krasnoyarsk krai is conducted on two different soils - dark-grey loam forest soil and sod-podzol sandy soil. Complex of negative factors for plant growth and development appears in dry conditions of sandy soil. It could results in decrease of resistance to diseases. Sandy soils in different climatic zones have such common traits as low absorbing capacity, poorness of elemental nutrition, low microbiological activity and moisture capacity, very high water permeability. But Scots pine trees growing in such conditions could have certain advantages and perspectives of use. In the scope of climate change (global warming) the study of Scots pine growth on sandy soil become urgent because of more frequent appearance of dry seasons. Purpose of the work is revelation of radial growth features of Scots pine with different origin in dry conditions of sandy soil and assessment of external factors influence. The main feature of radial growth of majority of studied pine provenances in conditions of sandy soil is presence of significant variation of increment with distinct decline in 25-years old with loss of tree rings in a number of cases. The reason of it is complex of factors: deficit of June precipitation and next following outbreak of fungal disease. Found «frost rings» for all trees of studied clymatypes in 1992 are the consequence of temperature decline from May 21 to June 2 - from 23 C degrees up to 2 C. Perspective climatypes with biggest radial increments and least sensitivity to fungal disease were revealed.
Caledonian scots pine: origins and genetic structure
Bohun B Kinloch; R. D. Westfall; G. I. Forrest
1986-01-01
Monoterpene and isozyme loci, used as markers to study the genetic structure of Scots pine (Pinus sylvestris L.) native to Scotland, showed that the endemic populations are not genetically impoverished, in spite of severe contraction in range and numbers as a result of both natural and anthropogenic causes. On the contrary, variability in the relict...
Ectomycorrhizae of young and mature Scots pine trees in industrial regions in Poland
Barbara Kieliszewska-Rokicka; Maria Rudawska; Tomasz Leski
1998-01-01
Ectomycorrhizae of Scots pine (Pinus sylvestris L.) trees grown in forests influenced by different levels of air pollutants were investigated. Total numbers of mycorrhizal root tips in the soil horizons and the frequency of mycorrhizal morphotypes were compared as indicators of ectomycorrhizal status. The studies were conducted in two comparable...
Turtola, Satu; Manninen, Anne-Marja; Rikala, Risto; Kainulainen, Pirjo
2003-09-01
Drought is known to have an impact on the resistance of conifers to various pests, for example, by affecting resin flow in trees. Little is known, however, about the quantitative and qualitative changes in resin when trees are growing in low moisture conditions. We exposed Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) seedlings to medium and severe drought stress for two growing seasons and analyzed the monoterpenes and resin acids in the main stem wood after two years of treatment. In addition to secondary chemistry, we measured the level of nutrients in the needles and the growth response of seedlings. After the first year of treatment, drought stress did not affect the growth of seedlings, but in the second year, shoot growth was retarded, especially in Scots pine. In both conifer species, severe drought increased the concentrations of several individual monoterpenes and resin acids. Total monoterpenes and resin acids were 39 and 32% higher in severe drought-treated Scots pine seedlings than in the controls, and 35 and 45% higher in Norway spruce seedlings. In Scots pine needles, the concentrations of nitrogen and phosphorus increased, while magnesium and calcium decreased compared to controls. In Norway spruce needles, nutrient concentrations were not affected. The results suggest that drought stress substantially affects both the growth of conifers and the chemical quality of the wood. We discuss the potential trade-off in growth and defense of small conifer seedlings.
Know your limits? Climate extremes impact the range of Scots pine in unexpected places
Julio Camarero, J.; Gazol, Antonio; Sancho-Benages, Santiago; Sangüesa-Barreda, Gabriel
2015-01-01
Background and Aims Although extreme climatic events such as drought are known to modify forest dynamics by triggering tree dieback, the impact of extreme cold events, especially at the low-latitude margin (‘rear edge’) of species distributional ranges, has received little attention. The aim of this study was to examine the impact of one such extreme cold event on a population of Scots pine (Pinus sylvestris) along the species’ European southern rear-edge range limit and to determine how such events can be incorporated into species distribution models (SDMs). Methods A combination of dendrochronology and field observation was used to quantify how an extreme cold event in 2001 in eastern Spain affected growth, needle loss and mortality of Scots pine. Long-term European climatic data sets were used to contextualize the severity of the 2001 event, and an SDM for Scots pine in Europe was used to predict climatic range limits. Key Results The 2001 winter reached record minimum temperatures (equivalent to the maximum European-wide diurnal ranges) and, for trees already stressed by a preceding dry summer and autumn, this caused dieback and large-scale mortality. Needle loss and mortality were particularly evident in south-facing sites, where post-event recovery was greatly reduced. The SDM predicted European Scots pine distribution mainly on the basis of responses to maximum and minimum monthly temperatures, but in comparison with this the observed effects of the 2001 cold event at the southerly edge of the range limit were unforeseen. Conclusions The results suggest that in order to better forecast how anthropogenic climate change might affect future forest distributions, distribution modelling techniques such as SDMs must incorporate climatic extremes. For Scots pine, this study shows that the effects of cold extremes should be included across the entire distribution margin, including the southern ‘rear edge’, in order to avoid biased predictions based solely on warmer climatic scenarios. PMID:26292992
Martínez-Sancho, Elisabet; Dorado-Liñán, Isabel; Hacke, Uwe G.; Seidel, Hannes; Menzel, Annette
2017-01-01
Many temperate European tree species have their southernmost distribution limits in the Mediterranean Basin. The projected climatic conditions, particularly an increase in dryness, might induce an altitudinal and latitudinal retreat at their southernmost distribution limit. Therefore, characterizing the morphological and physiological variability of temperate tree species under dry conditions is essential to understand species’ responses to expected climate change. In this study, we compared branch-level hydraulic traits of four Scots pine and four sessile oak natural stands located at the western and central Mediterranean Basin to assess their adjustment to water limiting conditions. Hydraulic traits such as xylem- and leaf-specific maximum hydraulic conductivity (KS-MAX and KL-MAX), leaf-to-xylem area ratio (AL:AX) and functional xylem fraction (FX) were measured in July 2015 during a long and exceptionally dry summer. Additionally, xylem-specific native hydraulic conductivity (KS-N) and native percentage of loss of hydraulic conductivity (PLC) were measured for Scots pine. Interspecific differences in these hydraulic traits as well as intraspecific variability between sites were assessed. The influence of annual, summer and growing season site climatic aridity (P/PET) on intraspecific variability was investigated. Sessile oak displayed higher values of KS-MAX, KL-MAX, AL:AX but a smaller percentage of FX than Scots pines. Scots pine did not vary in any of the measured hydraulic traits across the sites, and PLC values were low for all sites, even during one of the warmest summers in the region. In contrast, sessile oak showed significant differences in KS-MAX, KL-MAX, and FX across sites, which were significantly related to site aridity. The striking similarity in the hydraulic traits across Scots pine sites suggests that no adjustment in hydraulic architecture was needed, likely as a consequence of a drought-avoidance strategy. In contrast, sessile oak displayed adjustments in the hydraulic architecture along an aridity gradient, pointing to a drought-tolerance strategy. PMID:28473841
Scots pine in eastern Nebraska: A provenance study
Ralph A. Read
1971-01-01
Seedling progenies of 36 rangewide provenances of Scots pine (Pinus sylvestris) were established in a field test in eastern Nebraska. Results in growth and other characteristics after 8 years reveal that (1) southern origins bordering the Mediterranean grow slowly to moderately fast and remain dark green in winter, (2) central European origins grow very fast and turn...
Influence of long-term chronic exposure and weather conditions on Scots pine populations.
Geras'kin, Stanislav; Vasiliyev, Denis; Makarenko, Ekaterina; Volkova, Polina; Kuzmenkov, Alexey
2017-04-01
Over a period of 8 years (2007-2014), we were evaluating seed quality and morphological abnormalities in Scots pine trees affected as a result of the Chernobyl accident. The calculated dose rates for the trees at the study sites varied from background values at the reference sites to 40 mGy/year at the most contaminated site. We investigated whether radioactive contamination and/or weather factors could decrease the reproductive capacity or increase the frequency of morphological abnormalities of needles in pine trees. Scots pine seeds are characterized by high interannual variability of viability, which is largely determined by weather conditions. No consistent differences in reproductive capacity were detected between the impacted and reference populations. Brachyblasts with three needles were found only in the affected populations; however, their frequency was very low and only at the very border of significance at the p < 0.10 level.
Wojciech Dmuchowski; Ewa U. Kurczynska; Wieslaw Wloch
1998-01-01
The impact of environmental pollution is defined for the chemical composition of Scots pine (Pinus sylvestris L.) needles and cambial activity in the tree stems in Polish forests. The research investigated 20-year-old trees growing in two areas in significantly different levels of pollution. The highly polluted area was located near the Warsaw...
Know your limits? Climate extremes impact the range of Scots pine in unexpected places.
Julio Camarero, J; Gazol, Antonio; Sancho-Benages, Santiago; Sangüesa-Barreda, Gabriel
2015-11-01
Although extreme climatic events such as drought are known to modify forest dynamics by triggering tree dieback, the impact of extreme cold events, especially at the low-latitude margin ('rear edge') of species distributional ranges, has received little attention. The aim of this study was to examine the impact of one such extreme cold event on a population of Scots pine (Pinus sylvestris) along the species' European southern rear-edge range limit and to determine how such events can be incorporated into species distribution models (SDMs). A combination of dendrochronology and field observation was used to quantify how an extreme cold event in 2001 in eastern Spain affected growth, needle loss and mortality of Scots pine. Long-term European climatic data sets were used to contextualize the severity of the 2001 event, and an SDM for Scots pine in Europe was used to predict climatic range limits. The 2001 winter reached record minimum temperatures (equivalent to the maximum European-wide diurnal ranges) and, for trees already stressed by a preceding dry summer and autumn, this caused dieback and large-scale mortality. Needle loss and mortality were particularly evident in south-facing sites, where post-event recovery was greatly reduced. The SDM predicted European Scots pine distribution mainly on the basis of responses to maximum and minimum monthly temperatures, but in comparison with this the observed effects of the 2001 cold event at the southerly edge of the range limit were unforeseen. The results suggest that in order to better forecast how anthropogenic climate change might affect future forest distributions, distribution modelling techniques such as SDMs must incorporate climatic extremes. For Scots pine, this study shows that the effects of cold extremes should be included across the entire distribution margin, including the southern 'rear edge', in order to avoid biased predictions based solely on warmer climatic scenarios. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sánchez-Salguero, Raúl; Camarero, Jesus Julio; Gutiérrez, Emilia; González Rouco, Fidel; Gazol, Antonio; Sangüesa-Barreda, Gabriel; Andreu-Hayles, Laia; Linares, Juan Carlos; Seftigen, Kristina
2017-07-01
Growth models can be used to assess forest vulnerability to climate warming. If global warming amplifies water deficit in drought-prone areas, tree populations located at the driest and southernmost distribution limits (rear-edges) should be particularly threatened. Here, we address these statements by analyzing and projecting growth responses to climate of three major tree species (silver fir, Abies alba; Scots pine, Pinus sylvestris; and mountain pine, Pinus uncinata) in mountainous areas of NE Spain. This region is subjected to Mediterranean continental conditions, it encompasses wide climatic, topographic and environmental gradients, and, more importantly, it includes rear-edges of the continuous distributions of these tree species. We used tree-ring width data from a network of 110 forests in combination with the process-based Vaganov-Shashkin-Lite growth model and climate-growth analyses to forecast changes in tree growth during the 21st century. Climatic projections were based on four ensembles CO 2 emission scenarios. Warm and dry conditions during the growing season constrain silver fir and Scots pine growth, particularly at the species rear-edge. By contrast, growth of high-elevation mountain pine forests is enhanced by climate warming. The emission scenario (RCP 8.5) corresponding to the most pronounced warming (+1.4 to 4.8 °C) forecasted mean growth reductions of -10.7% and -16.4% in silver fir and Scots pine, respectively, after 2050. This indicates that rising temperatures could amplify drought stress and thus constrain the growth of silver fir and Scots pine rear-edge populations growing at xeric sites. Contrastingly, mountain pine growth is expected to increase by +12.5% due to a longer and warmer growing season. The projections of growth reduction in silver fir and Scots pine portend dieback and a contraction of their species distribution areas through potential local extinctions of the most vulnerable driest rear-edge stands. Our modeling approach provides accessible tools to evaluate forest vulnerability to warmer conditions. © 2016 John Wiley & Sons Ltd.
Volkova, P Yu; Geras'kin, S A; Horemans, N; Makarenko, E S; Saenen, E; Duarte, G T; Nauts, R; Bondarenko, V S; Jacobs, G; Voorspoels, S; Kudin, M
2018-01-01
Genetic and epigenetic changes were investigated in chronically irradiated Scots pine (Pinus sylvestris L.) populations from territories that were heavily contaminated by radionuclides as result of the Chernobyl Nuclear Power Plant accident. In comparison to the reference site, the genetic diversity revealed by electrophoretic mobility of AFLPs was found to be significantly higher at the radioactively contaminated areas. In addition, the genome of pine trees was significantly hypermethylated at 4 of the 7 affected sites. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Marconi, S.; Collalti, A.; Santini, M.; Valentini, R.
2013-12-01
3D-CMCC-Forest Ecosystem Model is a process based model formerly developed for complex forest ecosystems to estimate growth, water and carbon cycles, phenology and competition processes on a daily/monthly time scale. The Model integrates some characteristics of the functional-structural tree models with the robustness of the light use efficiency approach. It treats different heights, ages and species as discrete classes, in competition for light (vertical structure) and space (horizontal structure). The present work evaluates the results of the recently developed daily version of 3D-CMCC-FEM for two neighboring different even aged and mono specific study cases. The former is a heterogeneous Pedunculate oak forest (Quercus robur L. ), the latter a more homogeneous Scot pine forest (Pinus sylvestris L.). The multi-layer approach has been evaluated against a series of simplified versions to determine whether the improved model complexity in canopy structure definition increases its predictive ability. Results show that a more complex structure (three height layers) should be preferable to simulate heterogeneous scenarios (Pedunculate oak stand), where heights distribution within the canopy justify the distinction in dominant, dominated and sub-dominated layers. On the contrary, it seems that using a multi-layer approach for more homogeneous stands (Scot pine stand) may be disadvantageous. Forcing the structure of an homogeneous stand to a multi-layer approach may in fact increase sources of uncertainty. On the other hand forcing complex forests to a mono layer simplified model, may cause an increase in mortality and a reduction in average DBH and Height. Compared with measured CO2 flux data, model results show good ability in estimating carbon sequestration trends, on both a monthly/seasonal and daily time scales. Moreover the model simulates quite well leaf phenology and the combined effects of the two different forest stands on CO2 fluxes.
NASA Astrophysics Data System (ADS)
Cayuela, Carles; Garcia-Estringana, Pablo; Latron, Jérôme; Llorens, Pilar
2015-04-01
Although stemflow is only a small portion of rainfall, it may represent an important local input of water and nutrients at the plant stem. Previous studies have shown that stemflow has a significant influence on hydrological and biogeochemical processes. Stemflow volume is affected by many biotic factors as species, age, branch or bark characteristics. Moreover, the seasonality of the rainfall regime in Mediterranean areas, which includes both frontal rainfall events and short convective storms, can add complexity to the rainfall-stemflow relationship. This work investigates stemflow dynamics and the influence of biotic and abiotic factors on stemflow rates in two Mediterranean stands during the leafed period - from May to October. The monitored stands are a Downy oak forest (Quercus pubescens) and a Scots pine forest (Pinus sylvestris), both located in the Vallcebre research catchments (NE Spain, 42° 12'N, 1° 49'E). The monitoring design of each plot consists of 7 stemflow rings connected to tipping-buckets, bulk rainfall measured in a nearby clearing and meteorological conditions above the canopies. All data were recorded at 5 min interval. Biometric characteristics of the measured trees were also measured. The analysis of 39 rainfall events (65% smaller than 10 mm) shows that stemflow accounted for less than 1% of the bulk rainfall in both stands. Results also show that, on average, the rainfall amount required for the start of the stemflow and the time delay between the beginning of the precipitation and the start of stemflow are higher in the Downy oak forest. As suggested by stemflow funneling ratios, these differences might be linked to the canopy structure and bark water storage capacity of the trees, indicating that during low magnitude events, oaks have more difficulty to reach storage capacity. The role of other biotic and abiotic parameters on stemflow variability in both stands is still under investigation.
Predicting the decomposition of Scots pine, Norway spruce, and birch stems in Finland.
Mäkinen, Harri; Hynynen, Jari; Siitonen, Juha; Sievänen, Risto
2006-10-01
Models were developed for predicting the decomposition of dead wood for the main tree species in Finland, based on data collected from long-term thinning experiments in southern and central Finland. The decomposition rates were strongly related to the number of years after tree death. In contrast to previous studies, which have used the first-order exponential model, we found that the decomposition rate was not constant. Therefore, the Gompertz and Chapman-Richard's functions were fitted to the data. The slow initial decomposition period was mainly due to the fact that most dead trees remained standing as snags after their death. The initial period was followed by a period of rapid decomposition and, finally, by a period of moderately slow decomposition. Birch stems decomposed more rapidly than Scots pine and Norway spruce stems. Decomposition rates of Norway spruce stems were somewhat lower than those of Scots pine. Because the carbon concentration of decaying boles was relatively stable (about 50%) the rate of carbon loss follows that of mass loss. Models were also developed for the probability that a dead tree remains standing as a snag. During the first years after death, the probability was high. Thereafter, it decreased rapidly, the decrease being faster for birch stems than for Scots pine and Norway spruce stems. Almost all stems had fallen down within 40 years after their death. In Scots pine and Norway spruce, most snags remained hard and belonged to decay class 1. In birch, a higher proportion of snags belonged to the more advanced decay classes. The models provide a framework for predicting dead wood dynamics in managed as well as dense unthinned stands. The models can be incorporated into forest management planning systems, thereby facilitating estimates of carbon dynamics.
Korkut, Süleyman; Akgül, Mehmet; Dündar, Turker
2008-04-01
Heat treatment is often applied to wood species to improve their dimensional stability. This study examined the effect of heat treatment on certain mechanical properties of Scots pine (Pinus sylvestris L.), which has industrially high usage potential and large plantations in Turkey. Wood specimens obtained from Bolu, Turkey, were subjected to heat treatment under atmospheric pressure at varying temperatures (120, 150 and 180 degrees C) for varying durations (2, 6 and 10h). The test results of heat-treated Scots pine and control samples showed that technological properties including compression strength, bending strength, modulus of elasticity in bending, janka-hardness, impact bending strength and tension strength perpendicular to grain suffered with heat treatment, and increase in temperature and duration further diminished technological strength values of the wood specimens.
Geras'kin, Stanislav; Oudalova, Alla; Kuzmenkov, Alexey; Vasiliyev, Denis
2018-04-18
Over a period of 13 years (2003-2015), reproductive and cytogenetic effects are investigated in Scots pine populations growing in the Bryansk region of Russia radioactively contaminated as a result of the Chernobyl accident. In reference populations, the frequencies of cytogenetic abnormalities are shown to change with time in a cyclic manner. In chronically exposed populations, the cyclic patterns in temporal dynamics of cytogenetic abnormalities appear to be disturbed. In addition, a tendency to decrease in the frequencies of cytogenetic abnormalities with time as well as an increase in their variability with dose rate is revealed. In contrast, no significant impact of chronic radiation exposure on the time dynamics of reproductive indexes is detected. Finally, long-term observations on chronically exposed Scots pine populations revealed qualitative differences in the temporal dynamics of reproductive and cytogenetic indicators. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mohr, Manuel; Laemmel, Thomas; Maier, Martin; Schindler, Dirk
2017-04-01
Commonly it is assumed that soil gas transport is dominated by molecular diffusion. Few recent studies indicate that the atmosphere above the soil triggers non-diffusive gas transport processes in the soil, which can enhance soil gas transport and therefore soil gas efflux significantly. During high wind speed conditions, the so called pressure pumping effect has been observed: the enhancement of soil gas transport through dynamic changes in the air pressure field above the soil. However, the amplitudes and frequencies of the air pressure fluctuations responsible for pressure pumping are still uncertain. Moreover, an in situ observation of the pressure pumping effect is still missing. To investigate the pressure pumping effect, airflow measurements above and below the canopy of a Scots pine forest and high-precision relative air pressure measurements were conducted in the below-canopy space and in the soil over a measurement period of 16 weeks. To monitor the soil gas transport, a newly developed gas measurement system was used. The gas measurement system continuously injects helium as a tracer gas into the soil until a diffusive steady state is reached. With the steady state concentration profile of the tracer gas, it is possible to inversely model the gas diffusion coefficient profile of the soil. If the gas diffusion coefficient profile differed from steady state, we deduced that the soil gas transport is not only diffusive, but also influenced by non-diffusive processes. Results show that the occurrence of small air pressure fluctuations is strongly dependent on the mean above-canopy wind speed. The wind-induced air pressure fluctuations have mean amplitudes up to 10 Pa and lie in the frequency range 0.01-0.1 Hz. To describe the pumping motion of the air pressure field, the pressure pumping coefficient (PPC) was defined as the mean change in pressure per second. The PPC shows a clear quadratic dependence on mean above-canopy wind speed. Empirical modelling of the measured topsoil helium concentration demonstrated that the PPC is the most important predictor for changes in the topsoil helium concentration. Comparison of time periods with high PPC and periods of low PPC showed that the soil gas diffusion coefficient in depths between 5-10 cm increased up to 30% during periods of high PPC compared to steady state. Thus, the air pressure fluctuations observed in the atmosphere and described by the PPC penetrate into the soil and influence the topsoil gas transport.
NASA Astrophysics Data System (ADS)
Lovinska, Viktoriia; Wiche, Oliver
2016-04-01
Territory of Steppe in Ukraine is affected by significant anthropogenic impact caused with mining, metallurgical, chemicalplants and heat power stations. The priority pollutants of the region emissions of these enterprises are presented such heavy metals as Cd, Pb, Cu, Zn, Ni, Mn. The regional forest ecosystems can be considered as potential concentrators of pollutants borned with different technogenic impact. It is necessary to study an ability of forests wood to accumulate heavy metals because accumulated toxins are eliminated from biogeochemical cycle in forest ecosystem for a long time. This study goal is to determine the accumulation properties of forest-forming species - Pinus sylvestris (Scots pine) and Robinia pseudoacacia (black locust) difference age group in relation to heavy metals. It was considerable also to assess the heavy metal distribution in the wood tissue of referred species.Heavy metals content were determined with atomic absorption spectrophotometer using. Scots pine and black locust are the main forest-forming species of natural and artificial forests within Northern Steppe.They can be seen as transformers of the heavy metals cycle and selective concentrators of toxic elements, under the conditions of their excessive concentrations in the environment.It was established that wood tissue of Scots pine and black locust accumulated cadmium in high concentrations according to the age in both species. Indexes of zinc accumulation in the wood of Scots pine exceeded the maximal value in the wood tissue of black locust. The results of our research demonstrated antagonistic interaction of cadmium and zinc. The highest copper concentrations was found for the trees at the age of 45 years. Lead has been identified in wood sample of all ages. Accumulation maximum was fixed in the oldest samples. The trend of concentration increasing of metal didn't find for both species. As for nickel there was established the opposite tendention for both studied species. Nickel maximum accumulation in black locust was fixed for the youngest copies. The same tendency was observed for Scots pine in copies of 45 years old. We did not see relation with age for mangan content in both studied species. The absolute value of the amount of mangan for Scots pine is much higher comparatevelly to black locust.
Tree-growth analyses to estimate tree species' drought tolerance.
Eilmann, Britta; Rigling, Andreas
2012-02-01
Climate change is challenging forestry management and practices. Among other things, tree species with the ability to cope with more extreme climate conditions have to be identified. However, while environmental factors may severely limit tree growth or even cause tree death, assessing a tree species' potential for surviving future aggravated environmental conditions is rather demanding. The aim of this study was to find a tree-ring-based method suitable for identifying very drought-tolerant species, particularly potential substitute species for Scots pine (Pinus sylvestris L.) in Valais. In this inner-Alpine valley, Scots pine used to be the dominating species for dry forests, but today it suffers from high drought-induced mortality. We investigate the growth response of two native tree species, Scots pine and European larch (Larix decidua Mill.), and two non-native species, black pine (Pinus nigra Arnold) and Douglas fir (Pseudotsuga menziesii Mirb. var. menziesii), to drought. This involved analysing how the radial increment of these species responded to increasing water shortage (abandonment of irrigation) and to increasingly frequent drought years. Black pine and Douglas fir are able to cope with drought better than Scots pine and larch, as they show relatively high radial growth even after irrigation has been stopped and a plastic growth response to drought years. European larch does not seem to be able to cope with these dry conditions as it lacks the ability to recover from drought years. The analysis of trees' short-term response to extreme climate events seems to be the most promising and suitable method for detecting how tolerant a tree species is towards drought. However, combining all the methods used in this study provides a complete picture of how water shortage could limit species.
Does tree diversity increase wood production in pine forests?
Vilà, Montserrat; Vayreda, Jordi; Gracia, Carles; Ibáñez, Joan Josep
2003-04-01
Recent experimental advances on the positive effect of species richness on ecosystem productivity highlight the need to explore this relationship in communities other than grasslands and using non-synthetic experiments. We investigated whether wood production in forests dominated by Aleppo pine (Pinus halepensis) and Pyrenean Scots pine (Pinus sylvestris) differed between monospecific and mixed forests (2-5 species) using the Ecological and Forest Inventory of Catalonia (IEFC) database which contains biotic and environmental characteristics for 10,644 field plots distributed within a 31,944 km(2) area in Catalonia (NE Spain). We found that in Pyrenean Scots pine forests wood production was not significantly different between monospecific and mixed plots. In contrast, in Aleppo pine forests wood production was greater in mixed plots than in monospecific plots. However, when climate, bedrock types, radiation and successional stage per plot were included in the analysis, species richness was no longer a significant factor. Aleppo pine forests had the highest productivity in plots located in humid climates and on marls and sandstone bedrocks. Climate did not influence wood production in Pyrenean Scots pine forests, but it was highest on sandstone and consolidated alluvial materials. For both pine forests wood production was negatively correlated with successional stage. Radiation did not influence wood production. Our analysis emphasizes the influence of macroenvironmental factors and temporal variation on tree productivity at the regional scale. Well-conducted forest surveys are an excellent source of data to test for the association between diversity and productivity driven by large-scale environmental factors.
Twenty-two year results of a Scots pine (Pinus sylvestris L.) provenance test in North Dakota
Richard A. Cunningham; David F. Van Haverbeke
1991-01-01
A provenance test of 49 seed sources of Scots pine (Pinus sylvestris L.) from eastern Europe, Russia, and Siberia was established in two plantations in north-central North Dakota. After 22 years, trees from seed sources within the region bounded by 20° to 57° east longitude and 50° to 58° north latitude were taller, and larger in diameter, and had denser crown and...
Analysis, pretreatment and enzymatic saccharification of different fractions of Scots pine.
Normark, Monica; Winestrand, Sandra; Lestander, Torbjörn A; Jönsson, Leif J
2014-03-19
Forestry residues consisting of softwood are a major lignocellulosic resource for production of liquid biofuels. Scots pine, a commercially important forest tree, was fractionated into seven fractions of chips: juvenile heartwood, mature heartwood, juvenile sapwood, mature sapwood, bark, top parts, and knotwood. The different fractions were characterized analytically with regard to chemical composition and susceptibility to dilute-acid pretreatment and enzymatic saccharification. All fractions were characterized by a high glucan content (38-43%) and a high content of other carbohydrates (11-14% mannan, 2-4% galactan) that generate easily convertible hexose sugars, and by a low content of inorganic material (0.2-0.9% ash). The lignin content was relatively uniform (27-32%) and the syringyl-guaiacyl ratio of the different fractions were within the range 0.021-0.025. The knotwood had a high content of extractives (9%) compared to the other fractions. The effects of pretreatment and enzymatic saccharification were relatively similar, but without pretreatment the bark fraction was considerably more susceptible to enzymatic saccharification. Since sawn timber is a main product from softwood species such as Scots pine, it is an important issue whether different parts of the tree are equally suitable for bioconversion processes. The investigation shows that bioconversion of Scots pine is facilitated by that most of the different fractions exhibit relatively similar properties with regard to chemical composition and susceptibility to techniques used for bioconversion of woody biomass.
Hoai, Nguyen Thi; Duc, Ho Viet; Thao, Do Thi; Orav, Anne; Raal, Ain
2015-10-01
So far, the anticancer action of pine tree extracts has mainly been shown for the species distributed widely around the Asian countries. Therefore, this study was performed to examine the potential cytotoxicity of Scots pine (Pinus sylvestris L.) native also to the European region and growing widely in Estonia. The cytotoxic activity of methanol extract and essential oil of Scots pine needles was determined by sulforhodamine B assay in different human cancer cell lines. This needle extract was found to suppress the viability of several human cancer cell lines showing some selectivity to estrogen receptor negative breast cancer cells, MDA-MB-231(half maximal inhibitory concentration [IC50] 35 μg/ml) in comparison with estrogen receptor-positive breast cancer cells, MCF-7 (IC50 86 μg/ml). It is the strongest cytotoxic effect at all measured, thus far for the needles and leaves extracts derived from various pine species, and is also the first study comparing the anticancer effects of pine tree extracts on molecularly different human breast cancer cells. The essential oil showed the stronger cytotoxic effect to both negative and positive breast cancer cell lines (both IC50 29 μg/ml) than pine extract (IC50 42 and 80 μg/ml, respectively). The data from this report indicate that Scots pine needles extract and essential oil exhibits some potential as chemopreventive or chemotherapeutic agent for mammary tumors unresponsive to endocrine treatment.
Drought alters timing, quantity, and quality of wood formation in Scots pine.
Eilmann, Britta; Zweifel, Roman; Buchmann, Nina; Graf Pannatier, Elisabeth; Rigling, Andreas
2011-05-01
Drought has been frequently discussed as a trigger for forest decline. Today, large-scale Scots pine decline is observed in many dry inner-Alpine valleys, with drought discussed as the main causative factor. This study aimed to analyse the impact of drought on wood formation and wood structure. To study tree growth under contrasting water supply, an irrigation experiment was installed in a mature Scots pine (Pinus sylvestris L.) forest at a xeric site in a dry inner-Alpine valley. Inter- and intra-annual radial increments as well as intra-annual variations in wood structure of pine trees were studied. It was found that non-irrigated trees had a noticeably shorter period of wood formation and showed a significantly lower increment. The water conduction cells were significantly enlarged and had significantly thinner cell walls compared with irrigated trees. It is concluded that pine trees under drought stress build a more effective water-conducting system (larger tracheids) at the cost of a probably higher vulnerability to cavitation (larger tracheids with thinner cell walls) but without losing their capability to recover. The significant shortening of the growth period in control trees indicated that the period where wood formation actually takes place can be much shorter under drought than the 'potential' period, meaning the phenological growth period.
Features of Scots pine radial growth in conditions of provenance trial.
NASA Astrophysics Data System (ADS)
Kuzmin, Sergey; Kuzmina, Nina
2013-04-01
Provenance trial of Scots pine in Boguchany forestry of Krasnoyarsk krai is conducted on two different soils - dark-grey loam forest soil and sod-podzol sandy soil. Complex of negative factors for plant growth and development appears in dry conditions of sandy soil. It could results in decrease of resistance to diseases. Sandy soils in different climatic zones have such common traits as low absorbing capacity, poorness of elemental nutrition, low microbiological activity and moisture capacity, very high water permeability. But Scots pine trees growing in such conditions could have certain advantages and perspectives of use. In the scope of climate change (global warming) the study of Scots pine growth on sandy soil become urgent because of more frequent appearance of dry seasons. Purpose of the work is revelation of radial growth features of Scots pine with different origin in dry conditions of sandy soil and assessment of external factors influence. The main feature of radial growth of majority of studied pine provenances in conditions of sandy soil is presence of significant variation of increment with distinct decline in 25-years old with loss of tree rings in a number of cases. The reason of it is complex of factors: deficit of June precipitation and next following outbreak of fungal disease. Found «frost rings» for all trees of studied clymatypes in 1992 are the consequence of temperature decline from May 21 to June 2 - from 23 down to 2 degree Celsius. Perspective climatypes with biggest radial increments and least sensitivity to fungal disease were revealed. Eniseysk and Vikhorevka (from Krasnoyarsk krai and Irkutsk oblast)provenances of pine have the biggest radial increments, the least sensitivity to Cenangium dieback and smallest increments decline. These climatypes are in the group of perspective provenances and in present time they are recommended for wide trial in the region for future use in plantation forest growing. Kandalaksha (Murmansk oblast) climatype from northern taiga with good resistance to pathogen have nonsignificant decline in radial increment during epiphytoty in comparison with local and southern climatypes. Southern Chemal provenance (Altai) after influence of Cenangium dieback has more than others losses of tree rings as the result of nonresistance to this fungal disease.
Fluid self-diffusion in Scots pine sapwood tracheid cells.
Johannessen, Espen H; Hansen, Eddy W; Rosenholm, Jarl B
2006-02-09
The self-diffusion coefficients of water and toluene in Scots pine sapwood was measured using low field pulsed field gradient nuclear magnetic resonance (PFG-NMR). Wood chips of 8 mm diameter were saturated with the respective liquids, and liquid self-diffusion was then traced in one dimension orthogonal to the tracheid cell walls in the wood's radial direction. The experimental echo attenuation curves were exponential, and characteristic self-diffusion coefficients were produced for diffusion times spanning from very short times to times on the order of magnitude of seconds. Observed self-diffusion coefficients were decaying asymptotically as a function of diffusion time, an effect which was ascribed to the cell walls' restriction on confined liquid diffusion. The observed self-diffusion behavior in Scots pine sapwood was compared to self-diffusion coefficients obtained from simulations of diffusion in a square. Principles of molecular displacements in confined geometries were used for elucidating the wood's cellular structure from the observed diffusion coefficients. The results were compared with a mathematical model for diffusion between parallel planes.
NASA Astrophysics Data System (ADS)
Isidorov, Valery; Tyszkiewicz, Zofia; Pirożnikow, Ewa
2016-04-01
Leaf litter fungi are partly responsible for decomposition of dead material, nutrient mobilization and gas fluxes in forest ecosystems. It can be assumed that microbial destruction of dead plant materials is an important source of volatile organic compounds (VOCs) emitted into the atmosphere from terrestrial ecosystems. However, little information is available on both the composition of fungal VOCs and their producers whose community can be changed at different stages of litter decomposition. The fungal community succession was investigated in a litter bag experiment with Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) needle litter. The succession process can be divided into a several stages controlled mostly by changes in litter quality. At the very first stages of decomposition the needle litter was colonized by ascomycetes which can use readily available carbohydrates. At the later stages, the predominance of Trichoderma sp., the known producers of cellulolytic enzymes, was documented. To investigate the fungi-derived VOCs, eight fungi species were isolated. As a result of gas chromatographic analyses, as many as 75C2sbnd C15 fungal volatile compounds were identified. Most components detected in emissions were very reactive substances: the principal groups of VOCs were formed by monoterpenes, carbonyl compounds and aliphatic alcohols. It was found that production of VOCs by fungi is species specific: only 10 metabolites were emitted into the gas phase by all eight species. The reported data confirm that the leave litter decomposition is important source of reactive organic compounds under the forest canopy.
Analysis, pretreatment and enzymatic saccharification of different fractions of Scots pine
2014-01-01
Background Forestry residues consisting of softwood are a major lignocellulosic resource for production of liquid biofuels. Scots pine, a commercially important forest tree, was fractionated into seven fractions of chips: juvenile heartwood, mature heartwood, juvenile sapwood, mature sapwood, bark, top parts, and knotwood. The different fractions were characterized analytically with regard to chemical composition and susceptibility to dilute-acid pretreatment and enzymatic saccharification. Results All fractions were characterized by a high glucan content (38-43%) and a high content of other carbohydrates (11-14% mannan, 2-4% galactan) that generate easily convertible hexose sugars, and by a low content of inorganic material (0.2-0.9% ash). The lignin content was relatively uniform (27-32%) and the syringyl-guaiacyl ratio of the different fractions were within the range 0.021-0.025. The knotwood had a high content of extractives (9%) compared to the other fractions. The effects of pretreatment and enzymatic saccharification were relatively similar, but without pretreatment the bark fraction was considerably more susceptible to enzymatic saccharification. Conclusions Since sawn timber is a main product from softwood species such as Scots pine, it is an important issue whether different parts of the tree are equally suitable for bioconversion processes. The investigation shows that bioconversion of Scots pine is facilitated by that most of the different fractions exhibit relatively similar properties with regard to chemical composition and susceptibility to techniques used for bioconversion of woody biomass. PMID:24641769
Hoai, Nguyen Thi; Duc, Ho Viet; Thao, Do Thi; Orav, Anne; Raal, Ain
2015-01-01
Background: So far, the anticancer action of pine tree extracts has mainly been shown for the species distributed widely around the Asian countries. Objective: Therefore, this study was performed to examine the potential cytotoxicity of Scots pine (Pinus sylvestris L.) native also to the European region and growing widely in Estonia. Materials and Methods: The cytotoxic activity of methanol extract and essential oil of Scots pine needles was determined by sulforhodamine B assay in different human cancer cell lines. Results: This needle extract was found to suppress the viability of several human cancer cell lines showing some selectivity to estrogen receptor negative breast cancer cells, MDA-MB-231(half maximal inhibitory concentration [IC50] 35 μg/ml) in comparison with estrogen receptor-positive breast cancer cells, MCF-7 (IC50 86 μg/ml). It is the strongest cytotoxic effect at all measured, thus far for the needles and leaves extracts derived from various pine species, and is also the first study comparing the anticancer effects of pine tree extracts on molecularly different human breast cancer cells. The essential oil showed the stronger cytotoxic effect to both negative and positive breast cancer cell lines (both IC50 29 μg/ml) than pine extract (IC50 42 and 80 μg/ml, respectively). Conclusion: The data from this report indicate that Scots pine needles extract and essential oil exhibits some potential as chemopreventive or chemotherapeutic agent for mammary tumors unresponsive to endocrine treatment. PMID:26664017
Time-of-Flight Adjustment Procedure for Acoustic Measurements in Structural Timber
Danbiel F. Llana; Guillermo Iñiguez-Gonzalez; Francisco Arriaga; Xiping Wang
2016-01-01
The effect of timber length on time-of-flight acoustic longitudinal measurements was investigated on the structural timber of four Spanish species: radiata pine (Pinus radiata D. Don), Scots pine (Pinus sylvestris L.), laricio pine (Pinus nigra Arn.), and maritime pine (Pinus pinaster Ait.). Time-of-flight longitudinal measurements were conducted on 120 specimens of...
Guada, Guillermo; Camarero, J. Julio; Sánchez-Salguero, Raúl; Cerrillo, Rafael M. Navarro
2016-01-01
Mediterranean pine forests display high resilience after extreme climatic events such as severe droughts. However, recent dry spells causing growth decline and triggering forest dieback challenge the capacity of some forests to recover following major disturbances. To describe how resilient the responses of forests to drought can be, we quantified growth dynamics in plantations of two pine species (Scots pine, black pine) located in south-eastern Spain and showing drought-triggered dieback. Radial growth was characterized at inter- (tree-ring width) and intra-annual (xylogenesis) scales in three defoliation levels. It was assumed that the higher defoliation the more negative the impact of drought on tree growth. Tree-ring width chronologies were built and xylogenesis was characterized 3 years after the last severe drought occurred. Annual growth data and the number of tracheids produced in different stages of xylem formation were related to climate data at several time scales. Drought negatively impacted growth of the most defoliated trees in both pine species. In Scots pine, xylem formation started earlier in the non-defoliated than in the most defoliated trees. Defoliated trees presented the shortest duration of the radial-enlargement phase in both species. On average the most defoliated trees formed 60% of the number of mature tracheids formed by the non-defoliated trees in both species. Since radial enlargement is the xylogenesis phase most tightly related to final growth, this explains why the most defoliated trees grew the least due to their altered xylogenesis phases. Our findings indicate a very limited resilience capacity of drought-defoliated Scots and black pines. Moreover, droughts produce legacy effects on xylogenesis of highly defoliated trees which could not recover previous growth rates and are thus more prone to die. PMID:27066053
Navrátil, Tomáš; Šimeček, Martin; Shanley, James B.; Rohovec, Jan; Hojdová, Maria; Houška, Jakub
2017-01-01
We assessed > 100 years of mercury (Hg) pollution recorded in the tree rings of Scots Pine near a Czech chlor-alkali plant operating since 1941. Hg concentrations in tree rings increased with the launching of plant operations and decreased when Hg emissions decreased in 1975 due to an upgrade in production technology. Similar to traditional bioindicators of pollution such as pine needles, bark and forest floor humus, Hg concentrations in Scots Pine boles decreased with distance from the plant. Mean Hg in pine bole in the 1940s ranged from 32.5 μg/kg Hg at a distance of 0.5 km from the plant to 5.4 μg/kg at a distance of > 4.7 km, where tree ring Hg was the same as at a reference site, and other bioindicators also suggest that the effect of the plant was no longer discernible. Tree ring Hg concentrations decreased by 8–29 μg/kg since the 1940s at all study sites including the reference site. The lack of exact correspondence between changes at the plant and tree ring Hg indicated some smearing of the signal due to lateral translocation of Hg from sapwood to heartwood. Bole Hg concentrations reflected local and regional atmospheric Hg concentrations, and not Hg wet deposition.
Vilà-Cabrera, Albert; Martínez-Vilalta, Jordi; Vayreda, Jordi; Retana, Javier
2011-06-01
The demographic rates of tree species typically show large spatial variation across their range. Understanding the environmental factors underlying this variation is a key topic in forest ecology, with far-reaching management implications. Scots pine (Pinus sylvestris L.) covers large areas of the Northern Hemisphere, the Iberian Peninsula being its southwestern distribution limit. In recent decades, an increase in severe droughts and a densification of forests as a result of changes in forest uses have occurred in this region. Our aim was to use climate and stand structure data to explain mortality and growth patterns of Scots pine forests across the Iberian Peninsula. We used data from 2392 plots dominated by Scots pine, sampled for the National Forest Inventory of Spain. Plots were sampled from 1986 to 1996 (IFN2) and were resampled from 1997 to 2007 (IFN3), allowing for the calculation of growth and mortality rates. We fitted linear models to assess the response of growth and mortality rates to the spatial variability of climate, climatic anomalies, and forest structure. Over the period of approximately 10 years between the IFN2 and IFN3, the amount of standing dead trees increased 11-fold. Higher mortality rates were related to dryness, and growth was reduced with increasing dryness and temperature, but results also suggested that effects of climatic stressors were not restricted to dry sites only. Forest structure was strongly related to demographic rates, suggesting that stand development and competition are the main factors associated with demography. In the case of mortality, forest structure interacted with climate, suggesting that competition for water resources induces tree mortality in dry sites. A slight negative relationship was found between mortality and growth, indicating that both rates are likely to be affected by the same stress factors. Additionally, regeneration tended to be lower in plots with higher mortality. Taken together, our results suggest a large-scale self-thinning related to the recent densification of Scots pine forests. This process appears to be enhanced by dry conditions and may lead to a mismatch in forest turnover. Forest management may be an essential adaptive tool under the drier conditions predicted by most climate models.
Helmisaari, Heljä-Sisko; Derome, John; Nöjd, Pekka; Kukkola, Mikko
2007-10-01
Variations in fine root biomass of trees and understory in 16 stands throughout Finland were examined and relationships to site and stand characteristics determined. Norway spruce fine root biomass varied between 184 and 370 g m(-2), and that of Scots pine ranged between 149 and 386 g m(-2). In northern Finland, understory roots and rhizomes (< 2 mm diameter) accounted for up to 50% of the stand total fine root biomass. Therefore, the fine root biomass of trees plus understory was larger in northern Finland in stands of both tree species, resulting in a negative relationship between fine root biomass and the temperature sum and a positive relationship between fine root biomass and the carbon:nitrogen ratio of the soil organic layer. The foliage:fine root ratio varied between 2.1 and 6.4 for Norway spruce and between 0.8 and 2.2 for Scots pine. The ratio decreased for both Norway spruce and Scots pine from south to north, as well as from fertile to more infertile site types. The foliage:fine root ratio of Norway spruce was related to basal area and stem surface area. The strong positive correlations of these three parameters with fine root nitrogen concentration implies that more fine roots are needed to maintain a certain amount of foliage when nutrient availability is low. No significant relationships were found between stand parameters and fine root biomass at the stand level, but the relationships considerably improved when both fine root biomass and stand parameters were calculated for the mean tree in the stand. When the northern and southern sites were analyzed separately, fine root biomass per tree of both species was significantly correlated with basal area and stem surface area per tree. Basal area, stem surface area and stand density can be estimated accurately and easily. Thus, our results may have value in predicting fine root biomass at the tree and stand level in boreal Norway spruce and Scots pine forests.
Mutlu, Salih; Ilhan, Veli; Turkoglu, Halil Ibrahim
2016-04-01
This study sought to contribute to the understanding of the detrimental effect of the mistletoe (Viscum albumL.), a hemiparasitic plant, on the mortality of the Scots pine (Pinus sylvestrisL.). Fieldwork was conducted in the town of Kelkit (Gumushane province, Turkey) from April to October in 2013. Pine needles of similar ages were removed from the branches of mistletoe-infested and noninfested Scots pine plants, then transported to the laboratory and used as research materials. The effects of the mistletoe on the Scots pine during infestation were evaluated by determining the levels of water, electrolyte leakage (EL), malondialdehyde (MDA, being a product of lipid peroxidation) and reactive oxygen species (ROS) such as superoxide anion (O2 (-•)), hydrogen peroxide (H2O2) and hydroxyl radical ((•)OH). In addition, the activities of antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX) were measured in the same samples. The highest level of drought stress was found in summer (especially in August) as a result of the lowest water content in the soil and the highest average temperature occurring in these months. The drought stress induced by mistletoe infestation caused a regular decrease in water content, while it increased the levels of EL, MDA and ROS (H2O2, O2 (-•)and(•)OH). The infestation also stimulated the activities of CAT and POX, with the exception of SOD. On the other hand, in August, when the drought conditions were the harshest, the levels of EL and MDA, which are two of the most important indicator parameters for oxidative stress, as well as the levels of H2O2and(•)OH, which are two of the ROS leading to oxidative stress, reached the highest values in both infested and noninfested needles, whereas the O2 (-•)level decreased. For the same period and needles, CAT activity increased, while SOD activity decreased. Peroxidase activity, however, did not exhibit a significant change. Our findings indicate that the increased mortality of the Scots pine may result from the mistletoe-induced very severe drought stress, and that the increase in the capacity of antioxidative enzyme system does not protect the plant against oxidative stress in dry summer seasons. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Impact of summer drought on isoprenoid emissions and carbon sink of three Scots pine provenances
Lüpke, M.; Leuchner, M.; Steinbrecher, R.; Menzel, A.
2016-01-01
Scots pine (Pinus sylvestris L.) provenances cover broad ecological amplitudes. In a greenhouse study, we investigated the impact of drought stress and rewetting on gas exchange for three provenances (Italy: Emilia Romagna; Spain: Alto Ebro; Germany: East-German lowlands) of 2-year old Scots pine seedlings. CO2, water vapour and isoprenoid exchange of stressed and control trees were quantified with a four-chamber dynamic-enclosure system in the controlled environment of a climate chamber. The three provenances showed distinct isoprenoid emission patterns and were classified into a non-Δ3-carene, with either high α-/β-pinene or β-myrcene fraction, and a Δ3-carene dominated type. Isoprenoid emission rates, net-photosynthesis and transpiration were reduced during summer drought stress and significantly recovered after rewetting. A seasonal increase of isoprenoid emission rates towards autumn was observed for all control groups. Compared with the German provenance, the Spanish and Italian provenances revealed higher isoprenoid emission rates and more plastic responses to drought stress and seasonal development, which points to a local adaptation to climate. As a result of drought, net carbon uptake and transpiration of trees was reduced, but recovered after rewetting. We conclude from our study that Scots pine isoprenoid emission is more variable than expected and sensitive to drought periods, likely impacting regional air chemistry. Thus, a provenance-specific emission assessment accounting for reduced emission during prolonged (summer) drought is recommend for setting up biogenic volatile organic compound emission inventories used in air quality models. PMID:27591438
Intraspecific variability in functional traits matters: case study of Scots pine.
Laforest-Lapointe, Isabelle; Martínez-Vilalta, Jordi; Retana, Javier
2014-08-01
Although intraspecific trait variability is an important component of species ecological plasticity and niche breadth, its implications for community and functional ecology have not been thoroughly explored. We characterized the intraspecific functional trait variability of Scots pine (Pinus sylvestris) in Catalonia (NE Spain) in order to (1) compare it to the interspecific trait variability of trees in the same region, (2) explore the relationships among functional traits and the relationships between them and stand and climatic variables, and (3) study the role of functional trait variability as a determinant of radial growth. We considered five traits: wood density (WD), maximum tree height (H max), leaf nitrogen content (Nmass), specific leaf area (SLA), and leaf biomass-to-sapwood area ratio (B L:A S). A unique dataset was obtained from the Ecological and Forest Inventory of Catalonia (IEFC), including data from 406 plots. Intraspecific trait variation was substantial for all traits, with coefficients of variation ranging between 8% for WD and 24% for B L:A S. In some cases, correlations among functional traits differed from those reported across species (e.g., H max and WD were positively related, whereas SLA and Nmass were uncorrelated). Overall, our model accounted for 47% of the spatial variability in Scots pine radial growth. Our study emphasizes the hierarchy of factors that determine intraspecific variations in functional traits in Scots pine and their strong association with spatial variability in radial growth. We claim that intraspecific trait variation is an important determinant of responses of plants to changes in climate and other environmental factors, and should be included in predictive models of vegetation dynamics.
Impact of summer drought on isoprenoid emissions and carbon sink of three Scots pine provenances.
Lüpke, M; Leuchner, M; Steinbrecher, R; Menzel, A
2016-11-01
Scots pine (Pinus sylvestris L.) provenances cover broad ecological amplitudes. In a greenhouse study, we investigated the impact of drought stress and rewetting on gas exchange for three provenances (Italy: Emilia Romagna; Spain: Alto Ebro; Germany: East-German lowlands) of 2-year old Scots pine seedlings. CO 2 , water vapour and isoprenoid exchange of stressed and control trees were quantified with a four-chamber dynamic-enclosure system in the controlled environment of a climate chamber. The three provenances showed distinct isoprenoid emission patterns and were classified into a non-Δ 3 -carene, with either high α-/β-pinene or β-myrcene fraction, and a Δ 3 -carene dominated type. Isoprenoid emission rates, net-photosynthesis and transpiration were reduced during summer drought stress and significantly recovered after rewetting. A seasonal increase of isoprenoid emission rates towards autumn was observed for all control groups. Compared with the German provenance, the Spanish and Italian provenances revealed higher isoprenoid emission rates and more plastic responses to drought stress and seasonal development, which points to a local adaptation to climate. As a result of drought, net carbon uptake and transpiration of trees was reduced, but recovered after rewetting. We conclude from our study that Scots pine isoprenoid emission is more variable than expected and sensitive to drought periods, likely impacting regional air chemistry. Thus, a provenance-specific emission assessment accounting for reduced emission during prolonged (summer) drought is recommend for setting up biogenic volatile organic compound emission inventories used in air quality models. © The Author 2016. Published by Oxford University Press.
Augustaitis, Algirdas; Bytnerowicz, Andrzej
2008-10-01
The study aimed to explore if changes in crown defoliation and stem growth of Scots pines (Pinus sylvestris L.) could be related to changes in ambient ozone (O(3)) concentration in central Europe. To meet this objective the study was performed in 3 Lithuanian national parks, close to the ICP integrated monitoring stations from which data on meteorology and pollution were provided. Contribution of peak O(3) concentrations to the integrated impact of acidifying compounds and meteorological parameters on pine stem growth was found to be more significant than its contribution to the integrated impact of acidifying compounds and meteorological parameters on pine defoliation. Findings of the study provide statistical evidence that peak concentrations of ambient O(3) can have a negative impact on pine tree crown defoliation and stem growth reduction under field conditions in central and northeastern Europe where the AOT40 values for forests are commonly below their phytotoxic levels.
NASA Astrophysics Data System (ADS)
Balanzategui, Daniel; Heußner, Karl-Uwe; Wazny, Tomasz; Helle, Gerd; Heinrich, Ingo
2017-04-01
Tree-ring based temperature reconstructions from the temperate lowlands worldwide are largely missing due to diffuse climate signals so far found in tree-ring widths. This motivated us to concentrate our efforts on the wood anatomies of two common European tree species, the European oak (Quercus robur) and Scots pine (Pinus sylvestris). We combined core samples of living trees with archaeological wood from northern Germany and Poland. We measured approx. 46,000 earlywood oak vessels of 34 trees covering the period AD 1500 to 2016 and approx. 7.5 million pine tracheid cells of 41 trees covering the period AD 1300 to 2010. First climate growth analyses indicate that both oak earlywood vessel and pine tracheid parameters contain climate signals which are different and more significant than those found in tree-ring widths. Preliminary results will be presented and discussed at EGU for the first time.
Semiochemical disruption of the pine shoot beetle, Tomicus piniperda (Coleoptera: Scolytidae)
Therese M. Poland; Peter De Groot; Stephen Burke; David Wakarchuk; Robert A. Haack; Reginald Nott
2004-01-01
The pine shoot beetle, Tomicus piniperda (Coleoptera: Scolytidae), is an exotic pest of pine in North America. We evaluated blends of semiochemical disruptants, which included nonhost volatiles and verbenone, for their ability to disrupt attraction of T. piniperda to traps baited with the attractant α-pinene and to Scots...
NASA Astrophysics Data System (ADS)
Calvaruso, Christophe; Turpault, Marie-Pierre; Frey-Klett, Pascale; Uroz, Stéphane; Pierret, Marie-Claire; Tosheva, Zornitza; Kies, Antoine
2013-04-01
The release of nutritive elements through apatite dissolution represents the main source of phosphorus, calcium, and several micronutrients (e.g., Zn, Cu) for organisms in non-fertilized forest ecosystems. The aim of this study was to quantify, for the first time, the dissolution rate of apatite grains by tree roots that were or were not associated with a mineral weathering bacterial strain, and by various acids known to be produced by tree roots and soil bacterial strains in open-system flow microcosms. In addition, we explored whether the mobilization of trace elements (including rare earth elements) upon apatite dissolution was affected by the presence of trees and associated microorganisms. The dissolution rate of apatite by Scots pine plants that were or were not inoculated with the strain Burkholderia glathei PML1(12)Rp, and by inorganic (nitric) and organic (citric, oxalic and gluconic) acids at pH 5.5, 4.8, 3.8, 3.5, 3.0, and 2.0 was monitored in two controlled experiments: "plant-bacteria interaction" and "inorganic and organic acids". Analyses of the outlet solutions in the "plant-bacteria interaction" experiment showed that Scots pine roots and B. glathei PML1(12)Rp produced protons and organic acids such as gluconate, oxalate, acetate, and lactate. The weathering budget calculation revealed that Scots pines (with or without PML1(12)Rp) significantly increased (factor > 10) the release of Ca, P, As, Sr, Zn, U, Y, and rare earth elements such as Ce, La, Nd from apatite, compared to control abiotic treatment. Scanning electron microscopy observation confirmed traces of apatite dissolution in contact of roots. Most dissolved elements were taken up by Scots pine roots, i.e., approximately 50% of Ca, 70% of P, 30% of As, 70% of Sr, 90% of Zn, and 100% of U, Y, and rare earth elements. Interestingly, no significant additional effect due to the bacterial strain PML1(12)Rp on apatite dissolution and Scots pine nutrition and growth was observed. The "inorganic and organic acids" experiment demonstrated that the apatite dissolution efficacy of organic acids was higher than for the inorganic acid and varied in function of the acids: oxalic acid > citric acid > gluconic acid > nitric acid for pH ⩽3.5. In addition, apatite dissolution increased with increasing acidity for each acid. Only oxalic acid generated non-stoichiometric release of calcium and phosphorus from apatite in the solution at pH ⩽3.5, due to the precipitation of Ca-oxalate crystals at apatite surfaces. Comparison of the experiments revealed that the apatite dissolution rate by Scots pines supplied with nutritive solution at pH 5.5 reached 2.0 × 10-13 mol cm-2 s-1 and was equivalent to rates with nitric acid at pH 3.2, gluconic acid at pH 3.5, citric acid at pH 3.7, and oxalic acid at pH 3.8. Altogether our results highlight that, through the production of weathering agents, notably protons and organic acids, tree roots and root-associated microorganisms are able to significantly increase the release of macro- and micro-nutrients from apatite, thus maintaining high-nutrient conditions to support their growth.
NASA Astrophysics Data System (ADS)
Klamerus-Iwan, Anna; Błońska, Ewa
2018-04-01
The canopy storage capacity (S) is a major component of the surface water balance. We analysed the relationship between the tree canopy water storage capacity and leaf wettability under changing simulated rainfall temperature. We estimated the effect of the rain temperature change on the canopy storage capacity and contact angle of leave and needle surfaces based on two scenarios. Six dominant forest trees were analysed: English oak (Quercus roburL.), common beech (Fagus sylvatica L.), small-leaved lime (Tilia cordata Mill), silver fir (Abies alba), Scots pine (Pinus sylvestris L.),and Norway spruce (Picea abies L.). Twigs of these species were collected from Krynica Zdrój, that is, the Experimental Forestry unit of the University of Agriculture in Cracow (southern Poland). Experimental analyses (simulations of precipitation) were performed in a laboratory under controlled conditions. The canopy storage capacity and leaf wettability classification were determined at 12 water temperatures and a practical calculator to compute changes of S and contact angles of droplets was developed. Among all species, an increase of the rainfall temperature by 0.7 °C decreases the contact angle between leave and needle surfaces by 2.41° and increases the canopy storage capacity by 0.74 g g-1; an increase of the rain temperature by 2.7 °C decreases the contact angle by 9.29° and increases the canopy storage capacity by 2.85 g g-1. A decreased contact angle between a water droplet and leaf surface indicates increased wettability. Thus, our results show that an increased temperature increases the leaf wettability in all examined species. The comparison of different species implies that the water temperature has the strongest effect on spruce and the weakest effect on oak. These data indicate that the rainfall temperature influences the canopy storage capacity.
NASA Astrophysics Data System (ADS)
Bernhofer, Ch.; Gay, L. W.; Granier, A.; Joss, U.; Kessler, A.; Köstner, B.; Siegwolf, R.; Tenhunen, J. D.; Vogt, R.
1996-03-01
In May 1992 during the interdisciplinary measurement campaign HartX (Hartheim eXperiment), several independent estimates of stand water vapor flux were compared at a 12-m high Scots pine ( Pinus silvestris) plantation on a flat fluvial terrace of the Rhine close to Freiburg, Germany. Weather during the HartX period was characterized by ten consecutive clear days with exceptionally high input of available energy for this time of year and with a slowly shifting diurnal pattern in atmospheric variables like vapor pressure deficit. Methods utilized to quantify components of stand water flux included porometry measurements on understory graminoid leaves and on pine needles and three different techniques for determining individual tree xylem sap flow. Micrometeorological methods included eddy covariance and eddy covariance energy balance techniques with six independent systems on two towers separated by 40 m. Additionally, Bowen ratio energy balance estimates of water flux were conducted and measurements of the gradients in water vapor, CO2, and trace gases within and above the stand were carried out with an additional, portable 30 m high telescoping mast. Biologically-based estimates of overstory transpiration were obtained by up-scaling tree sap flow rates to stand level via cumulative sapwood area. Tree transpiration contributed between 2.2 and 2.6 mm/day to ET for a tree leaf area index (LAI) of 2.8. The pine stand had an understory dominated by sedge and grass species with overall average LAI of 1.5. Mechanistic canopy gas exchange models that quantify both water vapor and CO2 exchange were applied to both understory and tree needle ecosystem compartments. Thus, the transpiration by graminoid species was estimated at approximately 20% of total stand ET. The modelled estimates for understory contribution to stand water flux compared well with micrometeorologically-based determinations. Maximum carbon gain was estimated from the canopy models at approximately 425 mmol/(m2day) for the tree needles and at 100 mmol/(m2day) for the understory. Carbon gain was suggested by the modelling analysis to remain relatively constant during the HartX period, while water use efficiency in carbon fixation increased with decreasing vapor pressure deficit. Biologically- and micrometeorologically-based estimates of stand water flux showed good general agreement with variation of up to 20% that reflects both errors due to the inherent assumptions associated with different methods as well as natural spatial variability in fluxes. The various methods support a reliable estimate of average ET from this homogeneous canopy during HartX of about 2.6 mm/day (a maximum of about 3.1 mm/day) with an insignificant decreasing trend in correlation with decreasing vapor pressure deficit and possibly soil moisture. Findings during HartX were embedded in local scale heterogeneity with greater roughness over the forest and much higher ET over the surrounding agricultural fields which results in weak but clearly existant circulation patterns. A variety of measurements were continued after the HartX campaign. They allow us to extend our findings for six months with changing environmental conditions, including shortage of soil moisture. Hydrological estimates of soil water extractions and micrometeorological estimates of ET by the one-propeller eddy covariance (OPEC) system were in very good agreement, supporting the use of this robust eddy covariance energy balance technique for long-term monitoring.
NASA Astrophysics Data System (ADS)
Bäck, Jaana; Taipale, Ditte; Aalto, Juho
2017-04-01
In boreal forests, deciduous trees such as birches may in future climate become more abundant due to their large biomass production capacity, relatively good resource use ability and large acclimation potential to elevated CO2 levels and warmer climate. Increase in birch abundance may lead to unpredicted consequences in atmospheric composition. Currently it is acknowledged that conifers such as Scots pine and Norway spruce are important sources for volatile organic compounds (VOCs), especially monoterpenes, throughout the year, although the strong temperature relationships implies that emissions are highest in summertime. However, the dynamics of the deciduous birch foliage VOC emissions and their relationship with environmental drivers during the development, maturation and senescence of foliage has not been well analyzed. Long-term measurements of birch, which are unfortunately very sparse, can provide very useful information for the development of biosphere-atmosphere models that simulate boreal and subarctic forested areas where birch is often a sub-canopy species, occurs as a mixture among conifers or forms even pure stands in the higher latitudes. We measured the branch level VOC emissions from a mature Silver birch with proton transfer reaction mass spectrometer during 2014 and 2015 at the SMEAR II station (Station for Measuring Ecosystem-Atmosphere Relations), southern Finland. Our results showed that the Silver birch foliage is a huge source for both short-chained volatiles such as methanol, acetaldehyde and acetone, as well as for monoterpenes. The mean emission rates from birch leaves were 5 to 10 times higher than the corresponding emissions from Scots pine shoots. We compared several semi-empirical model approaches for determining the birch foliage monoterpene standardized emission potentials, and utilized the continuous emission measurements from the two growing seasons for development of a novel algorithm which accounts for the leaf development and senescence in addition to prevailing temperature and light conditions. With these improvements and inputs to the 1D biosphere-atmosphere model SOSAA (model to Simulate Organic vapours, Sulphuric Acid and Aerosols), we showed that the contribution of Silver birch to stand scale atmospheric reactivity may exceed the ones from conifers, and therefore specific land use and species distribution patterns should be accounted for in biosphere-atmosphere models describing the surface-atmosphere exchange of reactive gases.
Lidia Sukovata; Andrzej Kolk; Jadwiga Jaroszynska; Urszula Krajewska; Agnieszka Purzynska; Valerii Isidorov
2003-01-01
The larvae of Dendrolimus pini L. and Panolis flammea (Den. et Schiff.) usually occur in high numbers on different trees within a stand. Studies that focused on the host tree-preference of these two species were conducted in the Wymiarki Forest District (Poland) in 2001. Sixteen Scots pine trees were selected to estimate the...
Huifeng Hu; G.Geoff Wang; Joan L. Walker; Benjamin O. Knapp
2012-01-01
A field study was installed to test silvicultural treatments for establishing longleaf pine (Pinus palustris Mill) in loblolly pine (P. taeda L.) stands. Harvesting was used to create seven canopy treatments, four with uniformly distributed canopies at different residual basal areas [Control (16.2 m2/ha),...
Eilmann, Britta; Buchmann, Nina; Siegwolf, Rolf; Saurer, Matthias; Cherubini, Paolo; Rigling, Andreas
2010-08-01
Drought-induced forest decline, like the Scots pine mortality in inner-Alpine valleys, will gain in importance as the frequency and severity of drought events are expected to increase. To understand how chronic drought affects tree growth and tree-ring delta(13)C values, we studied mature Scots pine in an irrigation experiment in an inner-Alpine valley. Tree growth and isotope analyses were carried out at the annual and seasonal scale. At the seasonal scale, maximum delta(13)C values were measured after the hottest and driest period of the year, and were associated with decreasing growth rates. Inter-annual delta(13)C values in early- and latewood showed a strong correlation with annual climatic conditions and an immediate decrease as a response to irrigation. This indicates a tight coupling between wood formation and the freshly produced assimilates for trees exposed to chronic drought. This rapid appearance of the isotopic signal is a strong indication for an immediate and direct transfer of newly synthesized assimilates for biomass production. The fast appearance and the distinct isotopic signal suggest a low availability of old stored carbohydrates. If this was a sign for C-storage depletion, an increasing mortality could be expected when stressors increase the need for carbohydrate for defence, repair or regeneration.
Comparison of the pyrolysis behavior of lignins from different tree species.
Wang, Shurong; Wang, Kaige; Liu, Qian; Gu, Yueling; Luo, Zhongyang; Cen, Kefa; Fransson, Torsten
2009-01-01
Despite the increasing importance of biomass pyrolysis, little is known about the pyrolysis behavior of lignin--one of the main components of biomass--due to its structural complexity and the difficulty in its isolation. In the present study, we extracted lignins from Manchurian ash (Fraxinus mandschurica) and Mongolian Scots pine (Pinus sylvestris var. mongolica) using the Bjorkman procedure, which has little effect on the structure of lignin. Fourier transform infrared (FTIR) spectrometry was used to characterize the microstructure of the Bjorkman lignins, i.e., milled wood lignins (MWLs), from the different tree species. The pyrolysis characteristics of MWLs were investigated using a thermogravimetric analyzer, and the release of the main volatile and gaseous products of pyrolysis were detected by FTIR spectroscopy. During the pyrolysis process, MWLs underwent thermo-degradation over a wide temperature range. Manchurian ash MWL showed a much higher thermal degradation rate than Mongolian Scots pine MWL in the temperature range from 290-430 degrees C. High residue yields were achieved at 37 wt.% for Mongolian Scots pine MWL and 26 wt.% for Manchurian ash MWL. In order to further investigate the mechanisms of lignin pyrolysis, we also analyzed the FTIR profiles for the main pyrolysis products (CO(2), CO, methane, methanol, phenols and formaldehyde) and investigated the variation in pyrolysis products between the different MWLs.
Differences in delta13C and diameter growth among remnant Scots pine populations in Scotland.
Brendel, Oliver; Handley, Linda; Griffiths, Howard
2002-10-01
Published data suggest that differences in wood cellulose carbon isotope composition (delta13C) and xylem ring width among natural populations of Scots pine in Scotland (Pinus sylvestris L.) are attributable to the persistence of palaeotypes of various post-glacial migratory origins. We assessed differences in wood cellulose delta13C and ring width among Scottish Scots pine populations grown in a clone bank and in natural stands at various locations in northern and central Scotland. Ring width and wood cellulose delta13C varied significantly among natural stands. Potential water deficit was positively correlated with wood cellulose delta13C and xylem ring width in the natural stands. Neither wood cellulose delta13C nor xylem ring width of clone bank trees correlated with any climate variables at the sites from which the trees originated, indicating little adaptation to climate for these traits. Xylem ring width showed a site x population interaction for the growth sites (i.e., natural stands versus clone bank), but wood cellulose delta13C did not. These results suggest that climate variation in Scotland has not resulted in significant genetic variation in wood cellulose delta13C or xylem ring width in post-glacial populations.
Climate influences the leaf area/sapwood area ratio in Scots pine.
Mencuccini, M; Grace, J
1995-01-01
We tested the hypothesis that the leaf area/sapwood area ratio in Scots pine (Pinus sylvestris L.) is influenced by site differences in water vapor pressure deficit of the air (D). Two stands of the same provenance were selected, one in western Scotland and one in eastern England, so that effects resulting from age, genetic variability, density and fertility were minimized. Compared with the Scots pine trees at the cooler and wetter site in Scotland, the trees at the warmer and drier site in England produced less leaf area per unit of conducting sapwood area both at a stem height of 1.3 m and at the base of the live crown, whereas stem permeability was similar at both sites. Also, trees at the drier site had less leaf area per unit branch cross-sectional area at the branch base than trees at the wetter site. For each site, the average values for leaf area, sapwood area and permeability were used, together with values of transpiration rates at different D, to calculate average stem water potential gradients. Changes in the leaf area/sapwood area ratio acted to maintain a similar water potential gradient in the stems of trees at both sites despite climatic differences between the sites.
Establishing Longleaf Pine Seedlings Under a Loblolly Pine Canopy (User’s Guide)
2017-02-01
converting loblolly pine stands to longleaf pine dominance ..................... 5 3. WHERE DO THE GUIDELINES APPLY? GEOGRAPHIC, EDAPHIC, AND STAND STRUCTURE ...watching, hunting, and off-road vehicle use, and yield valuable products including quality saw- timber and pine needles for landscaping. Longleaf pines...U.S. Fish and Wildlife Service 2003). The foraging habitat guidelines specify characteristics of the pine canopy structure , the abundance of
Seo, Jeong-Wook; Eckstein, Dieter; Jalkanen, Risto; Rickebusch, Sophie; Schmitt, Uwe
2008-01-01
We estimated the date of onset (Date(est)) of cambial activity by the pinning method in Scots pine (Pinus sylvestris L.) trees at Vanttauskoski (Site 1) and Laanila (Site 2) near the latitudinal limit of Scots pine in northern Finland. In each year and at each site, observations were made on a different set of five trees. The estimated dates of onset of cambial activity were compared with the corresponding heat sums, calculated in degree-days according to two models. Within years, Date(est) varied among trees by up to 15 days at Site 1 and up to 13 days at Site 2. Among years, mean Date(est) varied by 15.3 days at Site 1 and 12.0 days at Site 2. The overall mean Date(est) differed between sites by 6 days (June 5 at Site 1 and June 11 at Site 2). Among all trees in all years, the mean number of degree days (d.d.) calculated from mean daily temperature above a threshold of 5 degrees C before Date(est) ranged from 68.7 to 135 d.d. at Site 1 and from 37.4 to 154.7 d.d. at Site 2. Among years, the mean heat sum before Date(est )ranged from 94 to 112.5 d.d. at Site 1 and from 61.4 to 136 d.d. at Site 2. Variation among years in heat sum before Date(est) at Site 2 was highly significant, indicating that one or more factors other than, or in addition to, heat sum determines the onset of cambial activity in Scots pine. Similar results were obtained when heat sum was computed from the area between the sine wave generated by daily maximum and minimum temperature and the threshold temperature.
Modeling of bud break of Scots pine in northern Finland in 1908–2014
Salminen, Hannu; Jalkanen, Risto
2015-01-01
Bud break and height-growth of Scots pine (Pinus sylvestris L.) in the northern boreal zone in Lapland, Finland, was followed through the entire growing seasons in the periods 2001–2003 and 2008–2010 in sapling stands in two different locations in northern Finland set some 250 km apart along a latitudinal transect. Field measurements continued at the southern site also in 2011–2013. Air temperature was recorded hourly at the sites. A simple optimization algorithm (GA) was used to adjust parameters of the models predicting the timing of bud break of Scots pine in order to minimize the difference between observed and predicted dates. The models giving the best performance and century-long daily temperatures were used to reconstruct bud-break time series. The temperature observations were recorded for the period 1908–2014 in Sodankylä, which is located in-between the sapling stands in the north–south direction and for the period 1877–2014 in Karasjok, which is in Norway about 145 km north–west from the northernmost stand of this study. On average buds began to extend in the beginning of May in the southernmost stand and in mid-May in the northernmost stands, and the variation between years was in the range of 3 weeks. A simple day-length-triggered (fixed date) model predicted most accurately the date of bud break; root mean square error (RMSE) was 2 and 4 days in the northern and southern site, respectively. The reconstructed bud-break series indicated that based on temperature observations from Sodankylä, growth onset of Scots pine has clearly advanced since the 1960s, though it currently matches that of the early 1920s and early 1950s. The temperature record from Karasjok indicated a similar variation, though there was a weak linear trend advancing bud break by about 3–4 days over a 100-year period. PMID:25798141
Kosiorek, Milena; Modrzewska, Beata; Wyszkowski, Mirosław
2016-10-01
The aim of the study was to determine the concentrations of selected trace elements in needles and bark of Scots pine (Pinus sylvestris L.), leaves and bark of silver birch (Betula pendula L.), and Norway maple (Acer platanoides L.), as well as in the soil in which the trees grew, depending on their localization and hence the distribution of local pollution sources. The content of trace elements in needles of Scots pine, leaves of silver birch, and Norway maple and in bark of these trees depended on the location, tree species, and analyzed organ. The content of Fe, Mn, and Zn in needles, leaves, and bark of the examined tree species was significantly higher than that of the other elements. The highest average content of Fe and Mn was detected in leaves of Norway maple whereas the highest average content of Zn was found in silver birch leaves. The impact of such locations as the center of Olsztyn or roadside along Road 51 on the content of individual elements tended to be more pronounced than the influence of the other locations. The influence of the sampling sites on the content of trace elements in tree bark was less regular than the analogous effect in needles and leaves. Moreover, the relevant dependences were slightly different for Scots pine than for the other two tree species. The concentrations of heavy metals determined in the soil samples did not exceed the threshold values set in the Regulation of the Minister for the Environment, although the soil along Road 51 and in the center of Olsztyn typically had the highest content of these elements. There were also significant correlations between the content of some trace elements in soil and their accumulation in needles, leaves, and bark of trees.
NASA Astrophysics Data System (ADS)
Koprowski, Marcin; Przybylak, Rajmund; Zielski, Andrzej; Pospieszyńska, Aleksandra
2012-01-01
Scots pine ( Pinus sylvestris) is a very common tree in Polish forests, and therefore was widely used as timber. A relatively large amount of available wood allowed a long-term chronology to be built up and used as a source of information about past climate. The analysis of reconstructed indexed values of mean temperature in 51-year moving intervals allowed the recognition of the coldest periods in the years 1207-1346, 1383-1425, 1455-1482, 1533-1574, 1627-1646, and 1694-1785. The analysis of extreme wide and narrow rings forms a complementary method of examining climatic data within tree rings. The tree ring widths, early wood and late wood widths of 16 samples were assessed during the period 1581-1676. The most apparent effect is noted in the dry summer of 1616. According to previous research and our findings, temperature from February to March seems to be one of the most stable climatic factors which influenced pine growth in Poland. Correlation coefficients in the calibration and validation procedure gave promising results for temperature reconstruction from the pine chronology.
Koprowski, Marcin; Przybylak, Rajmund; Zielski, Andrzej; Pospieszyńska, Aleksandra
2012-01-01
Scots pine (Pinus sylvestris) is a very common tree in Polish forests, and therefore was widely used as timber. A relatively large amount of available wood allowed a long-term chronology to be built up and used as a source of information about past climate. The analysis of reconstructed indexed values of mean temperature in 51-year moving intervals allowed the recognition of the coldest periods in the years 1207-1346, 1383-1425, 1455-1482, 1533-1574, 1627-1646, and 1694-1785. The analysis of extreme wide and narrow rings forms a complementary method of examining climatic data within tree rings. The tree ring widths, early wood and late wood widths of 16 samples were assessed during the period 1581-1676. The most apparent effect is noted in the dry summer of 1616. According to previous research and our findings, temperature from February to March seems to be one of the most stable climatic factors which influenced pine growth in Poland. Correlation coefficients in the calibration and validation procedure gave promising results for temperature reconstruction from the pine chronology.
NASA Astrophysics Data System (ADS)
Wang, L.; Ibrom, A.; Korhonen, J. F. J.; Arnoud Frumau, K. F.; Wu, J.; Pihlatie, M.; Schjoerring, J. K.
2012-07-01
Seasonal and spatial variations in foliar nitrogen (N) parameters were investigated in three European forests with different tree species, viz. beech (Fagus sylvatica L.), Douglas fir (Pseudotsuga menziesii, Mirb., Franco) and Scots pine (Pinus sylvestris L.) in Denmark, The Netherlands and Finland, respectively. This was done in order to obtain information about functional acclimation, tree internal N conservation and its relevance for both ecosystem internal N cycling and foliar N exchange with the atmosphere. Leaf N pools generally showed much higher seasonal variability in beech trees than in the coniferous canopies. The concentrations of N and chlorophyll in the beech leaves were synchronized with the seasonal course of solar radiation implying close physiological acclimation, which was not observed in the coniferous needles. During phases of intensive N metabolism in the beech leaves, the NH4+ concentration rose considerably. This was compensated for by a strong pH decrease resulting in relatively low Γ values (ratio between tissue NH4+ and H+). The Γ values in the coniferous were even smaller than in beech, indicating low probability of NH3 emissions from the foliage to the atmosphere as an N conserving mechanism. The reduction in foliage N content during senescence was interpreted as N re-translocation from the senescing leaves into the rest of the trees. The N re-translocation efficiency (ηr) ranged from 37 to 70% and decreased with the time necessary for full renewal of the canopy foliage. Comparison with literature data from in total 23 tree species showed a general tendency for ηr to on average be reduced by 8% per year the canopy stays longer, i.e. with each additional year it takes for canopy renewal. The boreal pine site returned the lowest amount of N via foliage litter to the soil, while the temperate Douglas fir stand which had the largest peak canopy N content and the lowestηr returned the highest amount of N to the soil. These results support the hypothesis that a high N status, e.g. as a consequence of chronically high atmospheric N inputs, increases ecosystem internal over tree-bulk-tissue internal N cycling in conifer stands. The two evergreen tree species investigated in the present study behaved very differently in all relevant parameters, i.e. needle longevity, Nc and ηr, showing that generalisations on tree internal vs. ecosystem internal N cycling cannot be made on the basis of the leaf habit alone.
Effects of drought and irrigation on ecosystem functioning in a mature Scots pine forest
NASA Astrophysics Data System (ADS)
Dobbertin, Matthias; Brunner, Ivano; Egli, Simon; Eilmann, Britta; Graf Pannatier, Eisabeth; Schleppi, Patrick; Zingg, Andreas; Rigling, Andreas
2010-05-01
Climate change is expected to increase temperature and reduce summer precipitation in Switzerland. To study the expected effects of increased drought in mature forests two different approaches are in general possible: water can be partially or completely removed from the ecosystems via above- or below-canopy roofs or water can be added to already drought-prone ecosystems. Both methods have advantages and disadvantages. In our study water was added to a mature 90-year old Scots pine (Pinus sylvestris L.) forest with a few singe pubescent oaks (Quercus pubescens Willd.), located in the valley bottom of the driest region of Switzerland (Valais). In Valais, Scots pines are declining, usually with increased mortality rates following drought years. It was therefore of special interest to study here how water addition is changing forest ecosystem functioning. The irrigation experiment started in the summer of 2003. Out of eight 0.1 ha experimental plots, four were randomly selected for irrigation, the other four left as a control. Irrigation occurred during rainless nights between April and October, doubling the annual rainfall amount from 650 to 1300 mm. Irrigation water, taken from a near-by irrigation channel, added some nutrients to the plots, but nutrients which were deficient on the site, e.g. nitrogen and phosphorus, were not altered. Tree diameter, tree height and crown width were assessed before the start of the irrigation in winter 2002/2003 and after 7 years of the experiment in 2009/2010. Tree crown transparency (lack of foliage) and leaf area index (LAI) were annually assessed. Additionally, tree mortality was annually evaluated. Mycorrhizal fruit bodies were identified and counted at weekly intervals from 2003 until 2007. Root samples were taken in 2004 and 2005. In 2004 and 2005 wood formation of thirteen trees was analysed in weekly or biweekly intervals using the pinning method. These trees were felled in 2006 for stem, shoot and needle growth analysis. Soil water content was significantly reduced during irrigation periods. Irrigation doubled tree stem growth, increased shoot growth and thus increased volume growth and crown dimensions. Annual tree mortality rates were reduced by 50% in irrigated plots. The growing period for stem growth was extended in pines as a result of irrigation. Altogether, increased growth and reduced mortality significantly increased tree stem basal area at breast height per ha. As irrigation also increased needle length, estimated mean foliage amount per tree and stand leaf area index significantly increased. However, the number of needle generations was not altered or even reduced due to irrigation. Root growth, was less affected by irrigation and only resulted in increased fine root length. Species richness and fruit body numbers of mycorrhizal fungi were several times higher on the irrigated plots. Overall, it can be concluded that water availability was the main ecosystem limiting factor and that any changes in water availability will result in changes in ecosystem functioning. References Brunner I, Graf-Pannatier E, Frey B, Rigling A, Landolt W, Dobbertin M (2009) Morphological and physiological responses of Scots pine fine roots to water supply in a climatic dry area in Switzerland. Tree Physiology 29:541-550. Dobbertin M, Eilmann B, Bleuler P, Giuggiola A, Graf Pannatier E, Landolt W, Schleppi P, Rigling A (2010) Effect of irrigation on needle, shoot and stem growth in natural drought-exposed Pinus sylvestris forests, Tree Physiology, doi:10.1093/treephys/tpp123. Eilmann B, Zweifel R, Buchmann N, Fonti P, Rigling A (2009) Drought induced adaptation of the xylem in Pinus sylvestris and Quercus pubescens. Tree Physiology 29:1011-1020.
NASA Astrophysics Data System (ADS)
Yassaa, N.; Williams, J.; Song, W.; Vanhatalo, A.; Bäck, J.; Lelieveld, J.
2012-04-01
Cuvette based emission rates of monoterpenes and sesquiterpenes from four chemotypes of Scots pine (Pinus sylvestris) and one chemotype of Norway spruce (Picea abies) as well as the ambient mixing ratios of monoterpenes were determined during HUMPPA-COPEC 2010 summer campaign. Differences in chemical composition as well as in emission strength were observed between the different chemotypes. The chemotypes of Scots pine can be classified according to species with high, no and intermediate content of Δ3-carene. The "no- Δ3-carene" chemotype was found to be the strongest emitter of monoterpenes. From this chemotype, β-myrcene, a very reactive organic gas, was the dominant species accounting for more than 35 % of the total emission rates of isoprenoids followed by ß-phellandrene (~34%). Myrcene emission rates ranged from 0.8 up to 24 µg/g (dw)/h. α-farnesene was the dominant sesquiterpene species, with measured average emission rates of 318 ng/g (dw)/h. In the high Δ3-carene chemotype, which is the most studied in Hyytiälä, Δ3-carene was more than 48 % of the total monoterpene emission. The mean Δ3-carene emission rate, circa 609 ng/g (dw)/h reported here is consistent with the previously reported value during the same season. The terpene emission from spruce was dominated by limonene (35%), ß-phellandrene (15%), α-pinene (14 %) and eucalyptol (9%). Total spruce monoterpene emissions ranged from 0.549 up to 12.2 µg/g (dw)/h. Overall the total terpene flux (monoterpenes + sesquiterpenes) from all studied plant species varied from 230 ng/g (dw)/h up to 66 µg/g (dw)/h. The total ambient monoterpenes (including α-pinene, Δ3-carene, ß-pinene and ß-myrcene) measured during the campaign varied in mixing ratio from a few ppt to over one ppb. The most abundant biogenic VOCs measured above the canopy were α-pinene and Δ3-carene and these two compounds together contributed more than 50% of the total monoterpenes. The diel cycles of isoprenoid mixing ratios showed high levels during the night-time which is consistent with continued low nocturnal emission and a low and stable boundary layer. The chirality of α-pinene was dominated by (+)-enantiomers both in the direct emission and in the atmosphere. The effect of herbivore attack on the plant shoot was studied and found to significantly influence the enantiomeric signature of monoterpenes in similar manner as has been observed from mechanical damage. The exceptionally hot temperatures recorded in the summer of 2010 were reflected by strong emission of terpenes and consequently high ambient mixing ratios.
Long-term nitrogen additions and the intrinsic water-use efficiency of boreal Scots pine.
NASA Astrophysics Data System (ADS)
Marshall, John; Wallin, Göran; Linder, Sune; Lundmark, Tomas; Näsholm, Torgny
2015-04-01
Nitrogen fertilization nearly always increases productivity in boreal forests, at least in terms of wood production, but it is unclear how. In a mature (80 yrs. old) Scots pine forest in northern Sweden, we tested the extent to which nitrogen fertilization increased intrinsic photosynthetic water-use efficiency. We measured δ13C both discretely, in biweekly phloem sampling, and continuously, by monitoring of bole respiration. The original experiment was designed as a test of eddy covariance methods and is not therefore strictly replicated. Nonetheless, we compared phloem contents among fifteen trees from each plot and stem respiration from four per plot. The treatments included addition of 100 kg N/ha for eight years and a control. Phloem contents have the advantage of integrating over the whole canopy and undergoing complete and rapid turnover. Their disadvantage is that some have observed isotopic drift with transport down the length of the stem, presumably as a result of preferential export and/or reloading. We also measured the isotopic composition of stem respiration from four trees on each plot using a Picarro G1101-I CRDS attached to the vent flow from a continuous gas-exchange system. We detected consistent differences in δ13C between the treatments in phloem contents. Within each treatment, the phloem δ13C was negatively correlated with antecedent temperature (R2= 0.65) and no other measured climate variable. The isotopic composition of stem CO2 efflux will be compared to that of phloem contents. However, when converted to intrinsic water-use efficiency, the increase amounted to only about 4%. This is a small relative to the near doubling in wood production. Although we were able to detect a clear and consistent increase in water-use efficiency with N-fertilization, it constitutes but a minor cause of the observed increase in wood production.
Do multiple herbivores maintain chemical diversity of Scots pine monoterpenes?
Iason, Glenn R.; O'Reilly-Wapstra, Julianne M.; Brewer, Mark J.; Summers, Ron W.; Moore, Ben D.
2011-01-01
A central issue in our understanding of the evolution of the diversity of plant secondary metabolites (PSMs) is whether or not compounds are functional, conferring an advantage to the plant, or non-functional. We examine the hypothesis that the diversity of monoterpene PSMs within a plant species (Scots pine Pinus sylvestris) may be explained by different compounds acting as defences against high-impact herbivores operating at different life stages. We also hypothesize that pairwise coevolution, with uncorrelated interactions, is more likely to result in greater PSM diversity, than diffuse coevolution. We tested whether up to 13 different monoterpenes in Scots pine were inhibitory to herbivory by slugs (Arion ater), bank voles (Clethrionomys glareolus), red deer (Cervus elaphus) and capercaillie (Tetrao urogallus), each of which attack trees at a different life stage. Plants containing more α-pinene were avoided by both slugs and capercaillie, which may act as reinforcing selective agents for this dominant defensive compound. Herbivory by red deer and capercaillie were, respectively, weakly negatively associated with δ3-carene, and strongly negatively correlated with the minor compound β-ocimene. Three of the four herbivores are probably contributory selective agents on some of the terpenes, and thus maintain some, but by no means all, of the phytochemical diversity in the species. The correlated defensive function of α-pinene against slugs and capercaillie is consistent with diffuse coevolutionary processes. PMID:21444308
Hydraulic adjustment of Scots pine across Europe.
Martínez-Vilalta, J; Cochard, H; Mencuccini, M; Sterck, F; Herrero, A; Korhonen, J F J; Llorens, P; Nikinmaa, E; Nolè, A; Poyatos, R; Ripullone, F; Sass-Klaassen, U; Zweifel, R
2009-10-01
* The variability of branch-level hydraulic properties was assessed across 12 Scots pine populations covering a wide range of environmental conditions, including some of the southernmost populations of the species. The aims were to relate this variability to differences in climate, and to study the potential tradeoffs between traits. * Traits measured included wood density, radial growth, xylem anatomy, sapwood- and leaf-specific hydraulic conductivity (K(S) and K(L)), vulnerability to embolism, leaf-to-sapwood area ratio (A(L) : A(S)), needle carbon isotope discrimination (Delta13C) and nitrogen content, and specific leaf area. * Between-population variability was high for most of the hydraulic traits studied, but it was directly associated with climate dryness (defined as a combination of atmospheric moisture demand and availability) only for A(L) : A(S), K(L) and Delta13C. Shoot radial growth and A(L) : A(S) declined with stand development, which is consistent with a strategy to avoid exceedingly low water potentials as tree size increases. In addition, we did not find evidence at the intraspecific level of some associations between hydraulic traits that have been commonly reported across species. * The adjustment of Scots pine's hydraulic system to local climatic conditions occurred primarily through modifications of A(L) : A(S) and direct stomatal control, whereas intraspecific variation in vulnerability to embolism and leaf physiology appears to be limited.
Sevik, Hakan; Topaçoğlu, Osman
2015-09-01
Scots pine (Pinus sylvestris L.) is one of the most common and important forest tree species in Turkey due to usefulness of its wood to many commercial uses. This species is classified as one of the economically important tree species for Turkish Forestry in the "National Tree Breeding and Seed Production Program". The objective of the present study was to investigate variation and inheritance pattern in cone and seed characteristics of Scots pine and to evaluate variation in cone and seed characters within and among clones and grafts. The results showed that maximum CV among the clones was found for SWe (21.95), FS (16.99) and CWe (16.88). According to the results of SAS, variation between the clones is averaged at 19.2% and variation within the clones is averaged at 24.4 %. Variation between the clones ranged from 3.6% (SW) to 34.5% (TC) and variation within the clones ranged from 12.3% (SW) to 38.1% (WL). For CW, AL, AW, WW and TC, genetic variation among clones was higher than within clones. When the results of study like compared with results obtained from natural populations, it was seen that genetic variability in seed orchard which was subjected to study was quite low. This case may have dangerous results for the future of forests.
Nuopponen, M; Willför, S; Jääskeläinen, A-S; Vuorinen, T
2004-11-01
Hydrophilic extracts of Scots pine (Pinus sylvestris) heartwood and sapwood and a solid Scots pine knotwood sample were studied by UV resonance Raman spectroscopy (UVRRS). In addition, UVRR spectra of two hydrophilic model compounds (pinosylvin and chrysin) were analysed. UV Raman spectra were collected using 244 and 257 nm excitation wavelengths. The chemical composition of the acetone:water (95:5 v/v) extracts were also determined by gas chromatography. The aromatic and oleophilic structures of pinosylvin and chrysin showed three intense resonance enhanced bands in the spectral region of 1649-1548 cm(-1). Pinosylvin showed also a relatively intense band in the aromatic substitution region at 996 cm(-1). The spectra of the heartwood acetone:water extract showed many bands typical of pinosylvin. In addition, the extract included bands distinctive for resin and fatty acids. The sapwood acetone:water extract showed bands due to oleophilic structures at 1655-1650 cm(-1). The extract probably also contained oligomeric lignans because the UVRR spectra were in parts similar to that of guaiacyl lignin. The characteristic band of pinosylvin (996 cm(-1)) was detected in the UVRR spectrum of the resin rich knotwood. In addition, several other bands typical for wood resin were observed, which indicated that the wood resin in the knotwood was resonance enhanced even more than lignin.
NASA Astrophysics Data System (ADS)
Nuopponen, M.; Willför, S.; Jääskeläinen, A.-S.; Vuorinen, T.
2004-11-01
Hydrophilic extracts of Scots pine ( Pinus sylvestris) heartwood and sapwood and a solid Scots pine knotwood sample were studied by UV resonance Raman spectroscopy (UVRRS). In addition, UVRR spectra of two hydrophilic model compounds (pinosylvin and chrysin) were analysed. UV Raman spectra were collected using 244 and 257 nm excitation wavelengths. The chemical composition of the acetone:water (95:5 v/v) extracts were also determined by gas chromatography. The aromatic and oleophilic structures of pinosylvin and chrysin showed three intense resonance enhanced bands in the spectral region of 1649-1548 cm -1. Pinosylvin showed also a relatively intense band in the aromatic substitution region at 996 cm -1. The spectra of the heartwood acetone:water extract showed many bands typical of pinosylvin. In addition, the extract included bands distinctive for resin and fatty acids. The sapwood acetone:water extract showed bands due to oleophilic structures at 1655-1650 cm -1. The extract probably also contained oligomeric lignans because the UVRR spectra were in parts similar to that of guaiacyl lignin. The characteristic band of pinosylvin (996 cm -1) was detected in the UVRR spectrum of the resin rich knotwood. In addition, several other bands typical for wood resin were observed, which indicated that the wood resin in the knotwood was resonance enhanced even more than lignin.
Comparing the VOC emissions between air-dried and heat-treated Scots pine wood
NASA Astrophysics Data System (ADS)
Manninen, Anne-Marja; Pasanen, Pertti; Holopainen, Jarmo K.
The emissions of volatile organic compounds (VOCs) from air-dried Scots pine wood and from heat-treated Scots pine wood were compared with GC-MS analysis. Air-dried wood blocks released about 8 times more total VOCs than heat-treated (24 h at 230°C) ones. Terpenes were clearly the main compound group in the air-dried wood samples, whereas aldehydes and carboxylic acids and their esters dominated in the heat-treated wood samples. Only 14 compounds out of 41 identified individual compounds were found in both wood samples indicating considerable changes in VOC emission profile during heat-treatment process. Of individual compounds α-pinene, 3-carene and hexanal were the most abundant ones in the air-dried wood. By contrast, in the heat-treated wood 2-furancarboxaldehyde, acetic acid and 2-propanone were the major compounds of VOC emission. Current emission results reveal that significant chemical changes have occurred, and volatile monoterpenes and other low-molecular-weight compounds have evaporated from the wood during the heat-treatment process when compared to air-dried wood. Major chemical changes detected in VOC emissions are explained by the thermal degradation and oxidation of main constituents in wood. The results suggest that if heat-treated wood is used in interior carpentry, emissions of monoterpenes are reduced compared to air-dried wood, but some irritating compounds might be released into indoor air.
Frost hardiness of mycorrhizal (Hebeloma sp.) and non-mycorrhizal Scots pine roots.
Korhonen, Anna; Lehto, Tarja; Repo, Tapani
2013-10-01
The frost hardiness (FH) of mycorrhizal [ectomycorrhizal (ECM)] and non-mycorrhizal (NM) Scots pine (Pinus sylvestris) seedlings was studied to assess whether mycorrhizal symbiosis affected the roots' tolerance of below-zero temperatures. ECM (Hebeloma sp.) and NM seedlings were cultivated in a growth chamber for 18 weeks. After 13 weeks' growth in long-day and high-temperature (LDHT) conditions, a half of the ECM and NM seedlings were moved into a chamber with short-day and low-temperature (SDLT) conditions to cold acclimate. After exposures to a range of below-zero temperatures, the FH of the roots was assessed by means of the relative electrolyte leakage test. The FH was determined as the inflection point of the temperature-response curve. No significant difference was found between the FH of mycorrhizal and non-mycorrhizal roots in LDHT (-8.9 and -9.8 °C) or SDLT (-7.5 and -6.8 °C). The mycorrhizal treatment had no significant effect on the total dry mass, the allocation of dry mass among the roots and needles or nutrient accumulation. The mycorrhizal treatment with Hebeloma sp. did not affect the FH of Scots pine in this experimental setup. More information is needed on the extent to which mycorrhizas tolerate low temperatures, especially with different nutrient contents and different mycorrhiza fungi.
Are Scots pine forest edges particularly prone to drought-induced mortality?
NASA Astrophysics Data System (ADS)
Buras, Allan; Schunk, Christian; Zeiträg, Claudia; Herrmann, Corinna; Kaiser, Laura; Lemme, Hannes; Straub, Christoph; Taeger, Steffen; Gößwein, Sebastian; Klemmt, Hans-Joachim; Menzel, Annette
2018-02-01
Climate change is expected to exacerbate the frequency of drought-induced tree mortality world-wide. To better predict the associated change of species composition and forest dynamics on various scales and develop adequate adaptation strategies, more information on the mechanisms driving the often observed patchiness of tree die-back is needed. Although forest-edge effects may play an important role within the given context, only few corresponding studies exist. Here, we investigate the regional die-back of Scots pine in Franconia, Germany, after a hot and dry summer in 2015, thereby emphasizing possible differences in mortality between forest edge and interior. By means of dendroecological investigations and close-range remote sensing, we assess long-term growth performance and current tree vitality along five different forest-edge distance gradients. Our results clearly indicate a differing growth performance between edge and interior trees, associated with a higher vulnerability to drought, increased mortality rates, and lower tree vitality at the forest edge. Prior long-lasting growth decline of dead trees compared to live trees suggests depletion of carbon reserves in course of a long-term drought persisting since the 1990s to be the cause of regional Scots pine die-back. These findings highlight the forest edge as a potential focal point of forest management adaptation strategies in the context of drought-induced mortality.
NASA Astrophysics Data System (ADS)
Deperno, Christopher Shannon
Habitat selection, survival rates, the Black Hills National Forest Habitat Capability Model (HABCAP), and the USDA Forest Service Geographic Information System (GIS) data base were evaluated for a declining white-tailed deer (Odocoileus virginianus dacotensis) herd in the central Black Hills of South Dakota and Wyoming. From July 1993 through July 1996, 73 adult and yearling female and 12 adult and yearling male white-tailed deer were radiocollared and visually monitored. Habitat information was collected at 4,662 white-tailed deer locations and 1,087 random locations. Natural mortality (71%) was the primary cause of female mortality, followed by harvest (22.5%) and accidental causes (6.5%). More females died in spring (53.2%) than in fall (22.6%), winter (14.5%), or summer (9.7%). Male mortality resulted from hunting in fall (66.7%) and natural causes in spring (33.3%). Survival rates for all deer by year were 62.1% in 1993, 51.1% in 1994, 56.4% in 1995, and 53.9% in 1996 and were similar (P = 0.691) across years. During winter, white-tailed deer selected ponderosa pine- (Pinus ponderosa ) deciduous and burned pine cover types. Overstory-understory habitats selected included pine/grass-forb, pine/bearberry (Arctostaphylos uva-ursi), pine/snowberry (Symphoricarpos albus), burned pine/grass-forb, and pine/shrub habitats. Structural stages selected included sapling-pole pine stands with >70% canopy cover, burned pine sapling-pole and saw-timber stands with <40% canopy cover. Bedding locations were represented by saw-timber pine structural stages with >40% canopy cover and all sapling-pole pine structural stages; sapling-pole stands with >70% canopy cover received the greatest use. White-tailed deer primarily fed in pine saw-timber structural stage with less than 40% canopy cover. Overall, selected habitats contained lower amounts of grass/forb, shrubs, and litter than random locations. Male and female deer generally bedded in areas that were characterized by greater horizontal cover than feeding and random sites. When feeding and bedding sites were combined males selected areas that were characterized by greater levels of horizontal cover than females. During summer, white-tailed deer selected pine-deciduous, aspen (Populus tremuloides), aspen-coniferous, spruce (Picea glauca), and spruce-deciduous cover types. Overstory-understory habitats selected included pine/juniper (Juniperus communis), aspen/shrubs, spruce/juniper, and spruce/shrub habitats. Structural stages selected included pine, aspen, and spruce sapling pole stands with all levels (0--40%, 41--70%, 71--100%) of canopy cover. All habitat types (i.e., pine, aspen, and spruce) were used as bedding locations with pine sapling-pole structural stages with >70% canopy cover used most, whereas pine saw-timber structural stage with less than 40% canopy cover was primarily used for feeding. Females bedded in areas that were characterized by greater horizontal cover than feeding and random sites, whereas male feeding sites had greater horizontal cover characteristics than bedding or random locations.
Feichtinger, Linda M; Siegwolf, Rolf T W; Gessler, Arthur; Buchmann, Nina; Lévesque, Mathieu; Rigling, Andreas
2017-09-01
Adjustment mechanisms of trees to changes in soil-water availability over long periods are poorly understood, but crucial to improve estimates of forest development in a changing climate. We compared mature trees of Scots pine (Pinus sylvestris) and European larch (Larix decidua) growing along water-permeable channels (irrigated) and under natural conditions (control) at three sites in inner-Alpine dry valleys. At two sites, the irrigation had been stopped in the 1980s. We combined measurements of basal area increment (BAI), tree height and gas-exchange physiology (Δ 13 C) for the period 1970-2009. At one site, the Δ 13 C of irrigated pine trees was higher than that of the control in all years, while at the other sites, it differed in pine and larch only in years with dry climatic conditions. During the first decade after the sudden change in water availability, the BAI and Δ 13 C of originally irrigated pine and larch trees decreased instantly, but subsequently reached higher levels than those of the control by 2009 (15 years afterwards). We found a high plasticity in the gas-exchange physiology of pine and larch and site-specific responses to changes in water availability. Our study highlights the ability of trees to adjust to new conditions, thus showing high resilience. © 2017 John Wiley & Sons Ltd.
Elemental analyses of pine bark and wood in an environmental study.
Saarela, K-E; Harju, L; Rajander, J; Lill, J-O; Heselius, S-J; Lindroos, A; Mattsson, K
2005-05-01
Bark and wood samples were taken from the same individuals of Scots pine (Pinus sylvestris L.) from a polluted area close to a Cu-Ni smelter in Harjavalta and from some relatively unpolluted areas in western Finland. The samples were analysed by thick-target particle induced X-ray emission (PIXE) after preconcentration by dry ashing at 550 degrees C. The elemental contents of pine bark and wood were compared to study the impact of heavy metal pollution on pine trees. By comparison of the elemental contents in ashes of bark and wood, a normalisation was obtained. For the relatively clean areas, the ratios of the concentration in bark ash to the concentration in wood ash for different elements were close to 1. This means that the ashes of Scots Pine wood and bark have quite similar elemental composition. For the samples from the polluted area the mean concentration ratios for some heavy metals were elevated (13-28), reflecting the effect of direct atmospheric contamination. The metal contents in the ashes of pine bark and wood were also compared to recommendations for ashes to be recycled back to the forest environment. Bark from areas close to emission sources of heavy metal pollution should be considered with caution if aiming at recycling the ash. Burning of bark fuel of pine grown within 6 km of the Cu-Ni smelter is shown to generate ashes with high levels of Cu, Ni as well as Cd, As and Pb.
Benjamin O. Knapp; Joan L. Walker; G. Geoff Wang; Huifeng Hu; Robert N. Addington
2014-01-01
The desirable structure of longleaf pine forests, which generally includes a relatively open canopy of pines, very few woody stems in the mid-story, and a well-developed, herbaceous ground layer, provides critical habitat for flora and fauna and contributes to ecosystem function. Current efforts to restore longleaf pine to upland sites dominated by second-growth...
Naydenov, Krassimir; Senneville, Sauphie; Beaulieu, Jean; Tremblay, Francine; Bousquet, Jean
2007-01-01
Background At the last glacial maximum, Fennoscandia was covered by an ice sheet while the tundra occupied most of the rest of northern Eurasia. More or less disjunct refugial populations of plants were dispersed in southern Europe, often trapped between mountain ranges and seas. Genetic and paleobotanical evidences indicate that these populations have contributed much to Holocene recolonization of more northern latitudes. Less supportive evidence has been found for the existence of glacial populations located closer to the ice margin. Scots pine (Pinus sylvestris L.) is a nordic conifer with a wide natural range covering much of Eurasia. Fractures in its extant genetic structure might be indicative of glacial vicariance and how different refugia contributed to the current distribution at the continental level. The population structure of Scots pine was investigated on much of its Eurasian natural range using maternally inherited mitochondrial DNA polymorphisms. Results A novel polymorphic region of the Scots pine mitochondrial genome has been identified, the intron 1 of nad7, with three variants caused by insertions-deletions. From 986 trees distributed among 54 populations, four distinct multi-locus mitochondrial haplotypes (mitotypes) were detected based on the three nad7 intron 1 haplotypes and two previously reported size variants for nad1 intron B/C. Population differentiation was high (GST = 0.657) and the distribution of the mitotypes was geographically highly structured, suggesting at least four genetically distinct ancestral lineages. A cosmopolitan lineage was widely distributed in much of Europe throughout eastern Asia. A previously reported lineage limited to the Iberian Peninsula was confirmed. A new geographically restricted lineage was found confined to Asia Minor. A new lineage was restricted to more northern latitudes in northeastern Europe and the Baltic region. Conclusion The contribution of the various ancestral lineages to the current distribution of Scots pine was asymmetric and extant endemism reflected the presence of large geographic barriers to migration. The results suggest a complex biogeographical history with glacial refugia shared with temperate plant species in southern European Peninsulas and Asia Minor, and a genetically distinct glacial population located more North. These results confirm recent observations for cold tolerant species about the possible existence of refugial populations at mid-northern latitudes contributing significantly to the recolonization of northern Europe. Thus, Eurasian populations of nordic plant species might not be as genetically homogenous as assumed by simply considering them as offsets of glacial populations located in southern peninsulas. As such, they might have evolved distinctive genetic adaptations during glacial vicariance, worth evaluating and considering for conservation. PMID:18034901
NASA Astrophysics Data System (ADS)
Müller, J.
2009-04-01
Investigations with large-scale forest lysimeter research of the lowlands of Northeast Germany - Results and consequences for the choice of tree species and forest management Introduction At present about 28 % - i.e. 1.9 million hectares - of the Northeast German Lowlands are covered with forests. The Lowlands are among the driest and at the same time the most densely wooded regions in Germany. The low annual precipitation between 500 and 600 mm and the light sandy soils with their low water storage capacity and a high porosity lead to a limited water availability. Therefore the hydrological functions of forests play an important role in the fields of regional water budget, water supply and water distribution. Experimental sites Lysimeters are suitable measuring instruments in the fields of granular soils and loose rocks to investgate evaporation and seepage water. The usage of lysimeter of different construction has a tradition of more than 100 years in this region. To investigate the water consumption of different tree species, lysimeters were installed at Britz near Eberswalde under comparable site conditions. In the early 1970s nine large-scale lysimeters were built with an area of 100 m2 and a depth of 5 m each. In 1974 the lysimeters were planted, together with their environment, with Scots pine (Pinus sylvestris L), common beech (Fagus sylvatica L.), larch (Larix decidua L.) and Douglas-fir (Pseudotsuga menziesii [Mirb.] FRANCO) as experimental stands of 0.5 ha each according to the usual management practices. Therefore the "Large-scale lysimeters of Britz" are unparalleled in Europe. It was the initial aim of the experiment to find out the influence of the species and age of the growing stock growing on identical sandy soil under comparable weather conditions on both natural groundwater recharge and evaporation. Future forests in the north-eastern lowlands of Germany shall be mixed stands with as large a number of different species as possible. And this is also the aim of forest conversion in Land Brandenburg. The programme requires scientific attendance and foundation. In particular it shall be examined how the hydro-ecological conditions - which often are the limiting factor for forest growth in this area - would change with underplanted pine and larch and how these conditions may benefit from stand-structural and forestry measures. This is why several lysimeter stands were changed as follows: Ø Larch underplanted with beech Ø Scots pine underplanted with beech Ø Scots pine underplanted with oak Results Forests with their special hydrological properties have a substantial influence on the water budget, water supply and water distribution of entire landscapes. The tree species is of outstanding importance for deep seepage under forest stands. The sum of transpiration gives a rough overview about the water budget of the forest stand. More important for the detection of interactions between the compartments is the partitioning of the whole evaporation into individual evaporation components. Under the given precipitation and soil conditions, the course of interception and hence, the amount of seepage water depend on the crown structure in the stand. Depending on the amount of interception of the tree canopy and the duration of the leaching phase in spring, the mixed stands range between pure pine and pure beech. Making use of silvicultural methods and adequate stand treatment, forestry is able to control the water budget of landscapes.
Overstory mortality and canopy disturbances in longleaf pine ecosystems
Brian J. Palik; Neil Pederson
1996-01-01
We studied longleaf pine (Pinus palustris Mill.) ecosystems to determine causes and rates of overstory mortality, size of canopy disturbances, and the effects of disturbance on canopy structure. Further, we used redundancy analysis to relate variation in characteristics of mortality across a landscape to site and stand variables. We analyzed...
Diplodia Tip Blight and Canker of Pines (Pest Alert)
USDA Forest Service
The fungus Diplodia pinea can cause serious damage to Austrian, ponderosa, red, Scots, mugo, jack, and white pine. Although it is considered a weak pathogen, it may successfully attack and kill trees. It may be more serious on trees growing out of their natural range or stressed by adverse climatic conditions or air pollution. Infection can occur as a result of hail...
Influence of tree provenance on biogenic VOC emissions of Scots pine (Pinus sylvestris) stumps
NASA Astrophysics Data System (ADS)
Kivimäenpää, Minna; Magsarjav, Narantsetseg; Ghimire, Rajendra; Markkanen, Juha-Matti; Heijari, Juha; Vuorinen, Martti; Holopainen, Jarmo K.
2012-12-01
Resin-storing plant species such as conifer trees can release substantial amounts of volatile organic compounds (VOCs) into the atmosphere under stress circumstances that cause resin flow. Wounding can be induced by animals, pathogens, wind or direct mechanical damage e.g. during harvesting. In atmospheric modelling of biogenic VOCs, actively growing vegetation has been mostly considered as the source of emissions. Root systems and stumps of resin-storing conifer trees could constitute a significant store of resin after tree cutting. Therefore, we assessed the VOC emission rates from the cut surface of Scots pine stumps and estimated the average emission rates for an area with a density of 2000 stumps per ha. The experiment was conducted with trees of one Estonian and three Finnish Scots pine provenances covering a 1200 km gradient at a common garden established in central Finland in 1991. VOC emissions were dominated by monoterpenes and less than 0.1% of the total emission was sesquiterpenes. α-Pinene (7-92% of the total emissions) and 3-carene (0-76% of the total emissions) were the dominant monoterpenes. Proportions of α-pinene and camphene were significantly lower and proportions of 3-carene, sabinene, γ-terpinene and terpinolene higher in the southernmost Saaremaa provenance compared to the other provenances. Total terpene emission rates (standardised to +20 °C) from stumps varied from 27 to 1582 mg h-1 m-2 when measured within 2-3 h after tree cutting. Emission rates decreased rapidly to between 2 and 79 mg h-1 m-2 at 50 days after cutting. The estimated daily terpene emission rates on a hectare basis from freshly cut stumps at a cut tree density of 2000 per ha varied depending on provenance. Estimated emission ranges were 100-710 g ha-1 d-1 and 137-970 g ha-1 d-1 in 40 and in 60 year-old forest stands, respectively. Our result suggests that emission directly from stump surfaces could be a significant source of monoterpene emissions for a few weeks after logging in a Scots pine stand, but provenance properties strongly affect resin flow from root to stump surface.
Plasticity in hydraulic architecture of Scots pine across Eurasia.
Poyatos, R; Martínez-Vilalta, J; Cermák, J; Ceulemans, R; Granier, A; Irvine, J; Köstner, B; Lagergren, F; Meiresonne, L; Nadezhdina, N; Zimmermann, R; Llorens, P; Mencuccini, M
2007-08-01
Widespread tree species must show physiological and structural plasticity to deal with contrasting water balance conditions. To investigate these plasticity mechanisms, a meta-analysis of Pinus sylvestris L. sap flow and its response to environmental variables was conducted using datasets from across its whole geographical range. For each site, a Jarvis-type, multiplicative model was used to fit the relationship between sap flow and photosynthetically active radiation, vapour pressure deficit (D) and soil moisture deficit (SMD); and a logarithmic function was used to characterize the response of stomatal conductance (G(s)) to D. The fitted parameters of those models were regressed against climatic variables to study the acclimation of Scots pine to dry/warm conditions. The absolute value of sap flow and its sensitivity to D and SMD increased with the average summer evaporative demand. However, relative sensitivity of G(s) to D (m/G (s,ref), where m is the slope and G(s,ref) is reference G(s) at D = 1 kPa) did not increase with evaporative demand across populations, and transpiration per unit leaf area at a given D increased accordingly in drier/warmer climates. This physiological plasticity was linked to the previously reported climate- and size-related structural acclimation of leaf to sapwood area ratios. G (s,ref), and its absolute sensitivity to D(m), tended to decrease with age/height of the trees as previously reported for other pine species. It is unclear why Scots pines have higher transpiration rates at drier/warmer sites, at the expense of lower water-use efficiency. In any case, our results suggest that these structural adjustments may not be enough to prevent lower xylem tensions at the driest sites.
NASA Astrophysics Data System (ADS)
Smigaj, M.; Gaulton, R.; Barr, S. L.; Suárez, J. C.
2015-08-01
Climate change has a major influence on forest health and growth, by indirectly affecting the distribution and abundance of forest pathogens, as well as the severity of tree diseases. Temperature rise and changes in precipitation may also allow the ranges of some species to expand, resulting in the introduction of non-native invasive species, which pose a significant risk to forests worldwide. The detection and robust monitoring of affected forest stands is therefore crucial for allowing management interventions to reduce the spread of infections. This paper investigates the use of a low-cost fixed-wing UAV-borne thermal system for monitoring disease-induced canopy temperature rise. Initially, camera calibration was performed revealing a significant overestimation (by over 1 K) of the temperature readings and a non-uniformity (exceeding 1 K) across the imagery. These effects have been minimised with a two-point calibration technique ensuring the offsets of mean image temperature readings from blackbody temperature did not exceed ± 0.23 K, whilst 95.4% of all the image pixels fell within ± 0.14 K (average) of mean temperature reading. The derived calibration parameters were applied to a test data set of UAV-borne imagery acquired over a Scots pine stand, representing a range of Red Band Needle Blight infection levels. At canopy level, the comparison of tree crown temperature recorded by a UAV-borne infrared camera suggests a small temperature increase related to disease progression (R = 0.527, p = 0.001); indicating that UAV-borne cameras might be able to detect sub-degree temperature differences induced by disease onset.
Scott R. Abella
2009-01-01
Trees in many forests affect the soils and plants below their canopies. In current high-density southwestern ponderosa pine (Pinus ponderosa) forests, managers have opportunities to enhance multiple ecosystem values by manipulating tree density, distribution, and canopy cover through tree thinning. I performed a study in northern Arizona ponderosa...
Torimaru, T; Wennström, U; Lindgren, D; Wang, X-R
2012-01-01
Quantifying the effect of pollen dispersal and flowering traits on mating success is essential for understanding evolutionary responses to changing environments and establishing strategies for forest tree breeding. This study examined, quantitatively, the effects of male fecundity, interindividual distance and anisotropic pollen dispersal on the mating success of Scots pine (Pinus sylvestris), utilizing a well-mapped Scots pine seed orchard. Paternity analysis of 1021 seeds sampled from 87 trees representing 28 clones showed that 53% of the seeds had at least one potential pollen parent within the orchard. Pronounced variation in paternal contribution was observed among clones. Variations in pollen production explained up to 78% of the variation in mating success, which was 11.2 times greater for clones producing the largest amount of pollen than for clones producing the least pollen. Mating success also varied with intertree distance and direction, which explained up to 28% of the variance. Fertilization between neighboring trees 2.3 m apart was 2.4 times more frequent than between trees 4.6 m apart, and up to 12.4 times higher for trees downwind of the presumed prevailing wind direction than for upwind trees. The effective number of pollen donors recorded in the seed orchard (12.2) was smaller than the theoretical expectation (19.7). Based on the empirical observations, a mating model that best describes the gene dispersal pattern in clonal seed orchards was constructed. PMID:21897440
Avia, Komlan; Kärkkäinen, Katri; Lagercrantz, Ulf; Savolainen, Outi
2014-10-01
Understanding the genetic basis of the timing of bud set, an important trait in conifers, is relevant for adaptation and forestry practice. In common garden experiments, both Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) show a latitudinal cline in the trait. We compared the regulation of their bud set biology by examining the expression of PsFTL2, a Pinus sylvestris homolog to PaFTL2, a FLOWERING LOCUS T/TERMINAL FLOWER 1 (FT/TFL1)-like gene, the expression levels of which have been found previously to be associated with the timing of bud set in Norway spruce. In a common garden study, we analyzed the relationship of bud phenology under natural and artificial photoperiods and the expression of PsFTL2 in a set of Scots pine populations from different latitudes. The expression of PsFTL2 increased in the needles preceding bud set and decreased during bud burst. In the northernmost population, even short night periods were efficient to trigger this expression, which also increased earlier under all photoperiodic regimes compared with the southern populations. Despite the different biology, with few limitations, the two conifers that diverged 140 million yr ago probably share an association of FTL2 with bud set, pointing to a common mechanism for the timing of growth cessation in conifers. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Gruber, A.; Pirkebner, D.; Florian, C.; Oberhuber, W.
2012-01-01
The physiological mechanisms leading to Scots pine (Pinus sylvestris L.) decline in the dry inner Alpine valleys are still unknown. Testing the carbon starvation hypothesis, we analysed the seasonal course of mobile carbohydrate pools (NSC) of Scots pine growing at a xeric and a dry-mesic site within an inner Alpine dry valley (750 m a.s.l., Tyrol, Austria) during the year 2009, which was characterized by exceptional soil dryness. Although, soil moisture content dropped to c. 10% at both sites during the growing season, NSC concentrations were rising in all tissues (branch, stem, root) till end of July, except in needles where maxima were reached around bud break. NSC concentrations were not significantly different in the analysed tissues at the xeric and the dry-mesic site. At the dry-mesic site NSC concentrations in the above ground tree biomass were significantly higher during the period of radial growth. An accumulation of NSC in roots at the end of July indicates a change in carbon allocation after an early cessation in above ground growth, possibly due to elevated below ground carbon demand. In conclusion our results revealed that extensive soil dryness during the growing season did not lead to carbon depletion. However, even though C-reserves were not exhausted, a sequestration of carbohydrate pools during drought periods might lead to deficits in carbon supply that weaken tree vigour and drive tree mortality. PMID:21974742
Mandre, Malle; Kask, Regino; Pikk, Jaak; Ots, Katri
2008-03-01
Long-term influence of alkaline dust (pH 12.3-12.7) pollution emitted over 40 years from a cement plant in Estonia was the reason of alkalisation (pH 6.7-7.9) and high concentrations of K, Ca and Mg in the soil of affected territories. Although dust emission has diminished during the last 10 years, the imbalances in nutrition substrate and their influence on the growth of trees are notable up to now. The study of morphological and physical properties of 70-80-year-old Scots pine (Pinus sylvestris L.) crown, stems and stemwood from three different air pollution zones showed serious deviations in comparison with a relatively healthy forest in an unpolluted area. The specimens from polluted trees, if compared to reference site, showed significantly smaller height growth, radial increment and width of annual rings of sapwood. In heartwood wider annual rings were found in polluted areas. In the period of heartwood formation the dust pollution level emitted from the plant was relatively modest and cement dust, which contains elements necessary for mineral nutrition of trees, may have acted as fertiliser. The moisture content in sapwood and heartwood, especially in the upper layers of stems, was lower in the polluted area than in reference site trees. Regression analysis revealed a strong dependence between latewood percentage and sapwood or heartwood in stems of Scots pine in all sample plots.
Gruber, A; Pirkebner, D; Florian, C; Oberhuber, W
2012-01-01
The physiological mechanisms leading to Scots pine (Pinus sylvestris L.) decline in the dry inner alpine valleys are still unknown. Testing the carbon starvation hypothesis, we analysed the seasonal course of mobile carbohydrate pools (NSC) of Scots pine growing at a xeric and a dry-mesic site within an inner alpine dry valley (750 m a.s.l., Tyrol, Austria) during 2009, which was characterised by exceptional soil dryness. Although, soil moisture content dropped to ca. 10% at both sites during the growing season, NSC concentrations rose in all tissues (branch, stem, root) until the end of July, except in needles, where maxima were reached around bud break. NSC concentrations were not significantly different in the analysed tissues at the xeric and the dry-mesic site. At the dry-mesic site, NSC concentrations in the aboveground tree biomass were significantly higher during the period of radial growth. An accumulation of NSC in roots at the end of July indicates a change in carbon allocation after an early cessation in aboveground growth, possibly due to elevated belowground carbon demand. In conclusion, our results revealed that extensive soil dryness during the growing season did not lead to carbon depletion. However, even though carbon reserves were not exhausted, sequestration of carbohydrate pools during drought periods might lead to deficits in carbon supply that weaken tree vigour and drive tree mortality. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.
Tarvainen, Lasse; Lutz, Martina; Räntfors, Mats; Näsholm, Torgny; Wallin, Göran
2016-01-01
Numerous studies have shown that temperate and boreal forests are limited by nitrogen (N) availability. However, few studies have provided a detailed account of how carbon (C) acquisition of such forests reacts to increasing N supply. We combined measurements of needle-scale biochemical photosynthetic capacities and continuous observations of shoot-scale photosynthetic performance from several canopy positions with simple mechanistic modeling to evaluate the photosynthetic responses of mature N-poor boreal Pinus sylvestris to N fertilization. The measurements were carried out in August 2013 on 90-year-old pine trees growing at Rosinedalsheden research site in northern Sweden. In spite of a nearly doubling of needle N content in response to the fertilization, no effect on the long-term shoot-scale C uptake was recorded. This lack of N-effect was due to strong light limitation of photosynthesis in all investigated canopy positions. The effect of greater N availability on needle photosynthetic capacities was also constrained by development of foliar phosphorus (P) deficiency following N addition. Thus, P deficiency and accumulation of N in arginine appeared to contribute toward lower shoot-scale nitrogen-use efficiency in the fertilized trees, thereby additionally constraining tree-scale responses to increasing N availability. On the whole our study suggests that the C uptake response of the studied N-poor boreal P. sylvestris stand to enhanced N availability is constrained by the efficiency with which the additional N is utilized. This efficiency, in turn, depends on the ability of the trees to use the greater N availability for additional light capture. For stands that have not reached canopy closure, increase in leaf area following N fertilization would be the most effective way for improving light capture and C uptake while for mature stands an increased leaf area may have a rather limited effect on light capture owing to increased self-shading. This raises the question if N limitation in boreal forests acts primarily by constraining growth of young stands while the commonly recorded increase in stem growth of mature stands following N addition is primarily the result of altered allocation and only to a limited extent the result of increased stand C-capture.
Michael J Aspinwall; John S King; Jean-Christophe Domec; Steven E McKeand; Isik Fikret
2011-01-01
Physiological uniformity and genetic effects on canopy-level gas-exchange and hydraulic function could impact loblolly pine (Pinus taeda L.) plantation sustainability and ecosystem dynamics under projected changes in climate. Over a 1-year period, we examined genetic effects on mean and maximum mid-day canopy conductance (Gs, Gsmax...
Effects of soil copper and nickel on survival and growth of Scots pine.
Nieminen, Tiina Maileena
2004-11-01
The contribution of soil Cu and Ni pollution to the poor vitality and growth rate of Scots pine growing in the vicinity of a Cu-Ni smelter was investigated in two manipulation experiments. In the first manipulation, Cu-Ni smelter-polluted soil cores were transported from a smelter-pollution gradient to unpolluted greenhouse conditions. A 4-year-old pine seedling was planted in each core and cultivated for a 17-month period. In the second manipulation, pine seedlings from the same lot were cultivated for the same 17-month period in a quartz sand medium containing increasing doses of copper sulfate, nickel sulfate, and a combination of both. The variation in the biomass growth of the seedlings grown in the smelter-polluted soil cores was very similar to that of mature pine stands growing along the same smelter-pollution gradient in the field. In addition, the rate of Cu and Ni exposure explained a high proportion of the biomass growth variation, and had an effect on the Ca, K, and Mg status of the seedlings. According to the lethal threshold values determined on the basis of the metal sulfate exposure experiments, both the Cu and Ni content of the 0.5 km smelter-polluted soil cores were high enough to cause the death of most of the seedlings. The presence of Cu seemed to increase Ni toxicity.
Gap-phase regeneration inlongleaf pine wiregrass ecosystems
D.G. Brockway; K.W. Outcalt
1998-01-01
Naturally regenerated seedlings of longleaf pine are typically observed to cluster in the center of tree fall canopy gaps and be encircled by a wide zone from which they are generally excluded. Twelve representative canopy gaps distributed across 600 ha of a naturally regenerated uneven-agedlongleaf pine forest in the sandhills of north central Florida were examined to...
Wenchi Jin; Hong S. He; Stephen R. Shifley; Wen J. Wang; John M. Kabrick; Brian K. Davidson
2018-01-01
Historical fire regimes in the central United States maintained open-canopy shortleaf pine-oak woodlands on xeric sites. Following large-scale harvest and fire suppression, those woodlands grew denser with more continuous canopy cover, and they gained mesic species at the expense of shortleaf pine. There is high interest in restoring shortleaf pine-oak woodlands; most...
Lundborg, Lina; Nordlander, Göran; Björklund, Niklas; Nordenhem, Henrik; Borg-Karlson, Anna-Karin
2016-12-01
In large parts of Europe, insecticide-free measures for protecting conifer plants are desired to suppress damage by the pine weevil Hylobius abietis (L.). Treatment with methyl jasmonate (MeJA), a chemical elicitor already used in crop production, may enhance expression of chemical defenses in seedlings in conifer regenerations. However, in a previous experiment, MeJA treatment resulted in substantially better field protection for Scots pine (Pinus sylvestris L.) than for Norway spruce (Picea abies (L.) Karst.). Hypothesizing that the variations may be at least due partly to volatiles released by MeJA-treated seedlings and their effects on pine weevil orientation, we examined tissue extracts of seedlings (from the same batches as previously used) by two-dimensional GC-MS. We found that the MeJA treatment increased contents of the monoterpene (-)-β-pinene in phloem (the weevil's main target tissue) of both tree species, however, the (-)-β-pinene/(-)-α-pinene ratio increased more in the phloem of P. sylvestris. We also tested the attractiveness of individual monoterpenes found in conifer tissues (needles and phloem) for pine weevils using an arena with traps baited with single-substance dispensers and pine twigs. Trap catches were reduced when the pine material was combined with a dispenser releasing (-)-β-pinene, (+)-3-carene, (-)-bornyl acetate or 1,8-cineole. However, (-)-α-pinene did not have this effect. Thus, the greater field protection of MeJA-treated P. sylvestris seedlings may be due to the selective induction of increases in contents of the deterrent (-)-β-pinene, in contrast to strong increases in both non-deterrent (-)-α-pinene and the deterrent (-)-β-pinene in P. abies seedlings.
NASA Astrophysics Data System (ADS)
Li, Q.; Kelly, R. E. J.; Lemmetyinen, J.; Kontu, A.
2017-12-01
Spaceborne passive microwave (PM) systems are an important tool for estimating snow water equivalent (SWE) or snow depth (SD) in winter landscapes. However, because spaceborne radiometer footprints have a coarse spatial resolution, the measured upwelling brightness temperature (Tb) typically is a mixed signal propagated from multiple sources. Tree canopies can effectively attenuate microwave emission from the sub-canopy terrain beneath and can also have a strong emission signal. Therefore, these two combined observed processes decrease the sensitivity of the observed signal to SWE or SD. To evaluate the detailed behavior of the microwave emission from a forest landscape, the experiment focused on snow and vegetation radiative transfer processes was conducted at an established field site operated by the Finnish Meteorological Institute's Arctic Research Station in Sodankylä, Finland. In this experiment, downwelling Tbs from a target tree (Scots pine) was measured by an multi-frequency, dual polarization radiometer from Septermber 2016 to March 2017. A dendrometer and thermistor installed on the tree trunk at the height of 2 meters and 4 meters measured the sap flow and skin temperature of the tree. An adjacent weather station measured the air temperature. Snow cover conditions of the canopy was determined by an assessment web camera image time series. The three main findings are that first, the emissivity was positively correlated with tree skin temperatures below 0°C, but not when temperatures were at or greater than than 0°C. Furthermore, lower frequency channel observations were more sensitive to these physical temperatures than higher frequencies. Second, the Tb difference between horizontal and vertical polarizations were also negatively correlated with physical temperatures less than 0°C, but not when the physical temperatures were greater than 0°C. In addition, the Tb polarization differences of the lower frequency channels are more sensitive to temperature than for the higher frequency channels. Third, although the snow on the canopy can influence the microwave Tb response, this influence was found to be relatively small compared with other factors, suggesting that the difference of the canopy Tbs during the snow-covered and no-snow-covered periods were not statistically significant.
Canopy accession patterns of table mountain and pitch pines during the 19th and 20th centuries
Patrick H. Brose; Thomas A. Waldrop
2012-01-01
A dendrochronology study was conducted in three upland yellow pine stands in Georgia to determine whether the individual Table Mountain (Pinus pungens) and pitch (P. rigida) pines originated in sunny gaps or shaded understories, whether they grew uninterrupted into the canopy or were assisted by one or more releases, and whether...
Wesley G. Page; Martin E. Alexander; Michael J. Jenkins
2015-01-01
Large wildland fires in conifer forests typically involve some degree of crowning, with their initiation and propagation dependent upon several characteristics of the canopy fuels. Recent outbreaks of mountain pine beetle (Dendroctonus ponderosae Hopkins) in lodgepole pine (Pinus contorta Dougl. var. latifolia E ngelm.) forests and spruce beetle (Dendroctonus...
Tulik, M
2001-08-01
Studies were carried out on wood samples collected in October 1997 from breast height of Scots pine trees (Pinus sylvestris) from site located 5 km south from the Chernobyl nuclear power plant. The radioactive contamination at the site was 3.7x10(5) kBq m(-2). These samples of secondary wood were used as an archive of information about the dynamics of a meristematic tissue cambium affected by ionising radiation from the Chernobyl reactor accident. The results show that frequency of the cambial cells events like anticlinal divisions, intrusive growth and cells elimination, was after the Chernobyl accident, about three times higher in comparison to preceding years. The most interesting finding was that after irradiation the length of tracheids increased. This increase is interpreted as an effect of intracambial competition among cells in the initial layer.
Ekeberg, Dag; Flaete, Per-Otto; Eikenes, Morten; Fongen, Monica; Naess-Andresen, Carl Fredrik
2006-03-24
A method for quantitative determination of extractives from heartwood of Scots pine (Pinus sylvestris L.) using gas chromatography (GC) with flame ionization detection (FID) was developed. The limit of detection (LOD) was 0.03 mg/g wood and the linear range (r = 0.9994) was up to 10 mg/g with accuracy within +/- 10% and precision of 18% relative standard deviation. The identification of the extractives was performed using gas chromatography combined with mass spectrometry (GC-MS). The yields of extraction by Soxhlet were tested for solid wood, small particles and fine powder. Small particles were chosen for further analysis. This treatment gave good yields of the most important extractives: pinosylvin, pinosylvin monomethyl ether, resin acids and free fatty acids. The method is used to demonstrate the variation of these extractives across stems and differences in north-south direction.
Induction of discolored wood in Scots pine (Pinus sylvestris).
Nilsson, Mikael; Wikman, Susanne; Eklund, Leif
2002-04-01
Induction of discolored wood in Scots pine (Pinus sylvestris L.) trees by treatment with ethylene, carbon dioxide, nitrogen (hypoxia) or wounding from early April to late September was investigated. All treatments induced formation of discolored wood upward and downward from the drill hole. The amount of discolored wood formed above the drill hole depended on the treatment in the following order: ethylene > carbon dioxide = nitrogen > wounding; and below the drill hole in the order: ethylene > carbon dioxide = nitrogen = wounding. Based on chemical analyses (HPLC/UV, GS/MS, LC/MS and 1H-NMR), discolored wood induced by wounding or treatment with ethylene or carbon dioxide showed compositional similarities to natural heartwood, whereas discolored wood induced by nitrogen treatment showed fewer similarities to natural heartwood. The results suggest that ethylene is an important factor controlling heartwood formation, although wounding and internal concentrations of carbon dioxide may also play a role.
Rodney E. Will; Greg Barron-Gafford; Robert O. Teskey; Barry D. Shiver
2004-01-01
Mid-summer foliar nitrogen concentrations (N) were measured at three canopy positions (upper, middle, lower), two foliage ages per canopy position (current-year and 1-year-old), and two flushes per age class (first flush and second flush) in 4-year-old loblolly (Pinus taeda L.) and slash pine (Pinus elliottii Engelm.) stands...
Fungal Infection Increases the Rate of Somatic Mutation in Scots Pine (Pinus sylvestris L.).
Ranade, Sonali Sachin; Ganea, Laura-Stefana; Razzak, Abdur M; García Gil, M R
2015-01-01
Somatic mutations are transmitted during mitosis in developing somatic tissue. Somatic cells bearing the mutations can develop into reproductive (germ) cells and the somatic mutations are then passed on to the next generation of plants. Somatic mutations are a source of variation essential to evolve new defense strategies and adapt to the environment. Stem rust disease in Scots pine has a negative effect on wood quality, and thus adversely affects the economy. It is caused by the 2 most destructive fungal species in Scandinavia: Peridermium pini and Cronartium flaccidum. We studied nuclear genome stability in Scots pine under biotic stress (fungus-infected, 22 trees) compared to a control population (plantation, 20 trees). Stability was assessed as accumulation of new somatic mutations in 10 microsatellite loci selected for genotyping. Microsatellites are widely used as molecular markers in population genetics studies of plants, and are particularly used for detection of somatic mutations as their rate of mutation is of a much higher magnitude when compared with other DNA markers. We report double the rate of somatic mutation per locus in the fungus-infected trees (4.8×10(-3) mutations per locus), as compared to the controls (2.0×10(-3) mutations per locus) when individual samples were analyzed at 10 different microsatellite markers. Pearson's chi-squared test indicated a significant effect of the fungal infection which increased the number of mutations in the fungus-infected trees (χ(2) = 12.9883, df = 1, P = 0.0003134). © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Defoliating Insect Mass Outbreak Affects Soil N Fluxes and Tree N Nutrition in Scots Pine Forests.
Grüning, Maren M; Simon, Judy; Rennenberg, Heinz; L-M-Arnold, Anne
2017-01-01
Biotic stress by mass outbreaks of defoliating pest insects does not only affect tree performance by reducing its photosynthetic capacity, but also changes N cycling in the soil of forest ecosystems. However, how insect induced defoliation affects soil N fluxes and, in turn, tree N nutrition is not well-studied. In the present study, we quantified N input and output fluxes via dry matter input, throughfall, and soil leachates. Furthermore, we investigated the effects of mass insect herbivory on tree N acquisition (i.e., organic and inorganic 15 N net uptake capacity of fine roots) as well as N pools in fine roots and needles in a Scots pine ( Pinus sylvestris L.) forest over an entire vegetation period. Plots were either infested by the nun moth ( Lymantria monacha L.) or served as controls. Our results show an increased N input by insect feces, litter, and throughfall at the infested plots compared to controls, as well as increased leaching of nitrate. However, the additional N input into the soil did not increase, but reduce inorganic and organic net N uptake capacity of Scots pine roots. N pools in the fine roots and needles of infested trees showed an accumulation of total N, amino acid-N, protein-N, and structural N in the roots and the remaining needles as a compensatory response triggered by defoliation. Thus, although soil N availability was increased via surplus N input, trees did not respond with an increased N acquisition, but rather invested resources into defense by accumulation of amino acid-N and protein-N as a survival strategy.
Huifeng Hu; Benjamin O. Knapp; G. Geoff Wang; Joan L. Walker
2013-01-01
We installed a field experiment to support the development of protocols to restore longleaf pine (Pinus palustris Mill.) to existing mature loblolly pine (P. taeda L.) stands at Camp Lejeune, NC. Seven canopy treatments included four uniform and three gap treatments. The four uniform treatments were defined by target residual basal...
Schulz, Horst; Schäfer, Tina; Storbeck, Veronika; Härtling, Sigrid; Rudloff, Renate; Köck, Margret; Buscot, François
2012-01-01
Ectomycorrhiza (EM) formation improves tree growth and nutrient acquisition, particularly that of nitrogen (N). Few studies have coupled the effects of naturally occurring EM morphotypes to the nutrition of host trees. To investigate this, pine seedlings were grown on raw humus substrates collected at two forest sites, R2 and R3. Ectomycorrhiza morphotypes were identified, and their respective N uptake rates from organic (2-(13)C, (15)N-glycine) and inorganic ((15)NH(4)Cl, Na(15)NO(3), (15)NH(4)NO(3), NH(4)(15)NO(3)) sources as well as their phosphate uptake rates were determined. Subsequently, the growth and nutritional status of the seedlings were analyzed. Two dominant EM morphotypes displayed significantly different mycorrhization rates in the two substrates. Rhizopogon luteolus Fr. (RL) was dominant in R2 and Suillus bovinus (Pers.) Kuntze (SB) was dominant in R3. (15)N uptake of RL EM was at all times higher than that of SB EM. Phosphate uptake rates by the EM morphotypes did not differ significantly. The number of RL EM correlated negatively and the number of SB EM correlated positively with pine growth rate. Increased arginine concentrations and critical P/N ratios in needles indicated nutrient imbalances of pine seedlings from humus R2, predominantly mycorrhizal with RL. We conclude that different N supply in raw humus under Scots pine stands can induce shifts in the EM frequency of pine seedlings, and this may lead to EM formation by fungal strains with different ability to support tree growth.
Kashparova, Elena; Levchuk, Sviatoslav; Morozova, Valeriia; Kashparov, Valery
2018-06-04
The assessment of the fluctuating asymmetry based on measurement of the parameters of left and right parts of silver birch (Betula pendula (L.) Roth.) leaves and relative sizes of pairs of Scots pine (Pinus sylvestris L.) needles from the Chernobyl Exclusion Zone (ChEZ) was carried out. Twelve samples of both birch leaves and pairs of needles were collected from 10 trees at 5 sites in the Chernobyl Exclusion Zone and also at one control site located outside the ChEZ. Values of gamma dose rate in the air varied between the sites from 0.1 to 40 μGy h -1 . Activity concentrations of 90 Sr and 137 Cs in the birch leaves varied over the range of 0.9÷2460 kBq kg -1 and 0.1÷339 kBq·kg -1 (DW), respectively. In addition to the above, in the Scots pine needles, these ranges were 0.7 ÷1970 kBq kg -1 f for 90 Sr and 0.1÷78 kBq kg -1 (DW) for 137 Cs. From the values of the radionuclides activity concentrations in the plants, the internal dose rate is estimated to be in the range of 0.1 ÷ 274 μGy h -1 . The main sources of the internal dose rate were radiation of 90 Sr and 90 Y. Indices of fluctuating asymmetry of silver birch leaves and Scots pine needles varied over the range of 0.048 ± 0.007 ÷ 0.060 ± 0.009 and 0.014 ± 0.002 ÷ 0.018 ± 0.002, respectively, and did not statistically differ for all experimental sites. The indices also did not depend on the external or internal dose rate of ionizing radiation for plants. The above findings seem to be consistent with other research effort in terms of understanding the response of organisms to chronic pollutant exposure and the long-term effects of large scale nuclear accidents. Copyright © 2018 Elsevier Ltd. All rights reserved.
Watmough, Shaun A; Hutchinson, Thomas C
2002-07-03
Lead concentrations in tree rings of sycamore (Acer pseudoplatanus L.), oak (Quercus robur L.) and Scots pine (Pinus sylvestris L.) sampled at a parkland in north-west England were measured in wood formed since the mid-1800s. Concentrations of Pb in Scots pine and oak peaked in wood formed between 1900 and 1940, most likely because of Pb accumulation in heartwood, indicating that oak and Scots pine are unsuitable for monitoring temporal changes in Pb deposition at the study site. In contrast, Pb concentrations in sycamore, a species that has similar heartwood and sapwood chemistry, were relatively constant in wood formed between the mid-1800s and 1950. Lead concentrations decreased steadily in sycamore tree rings formed after the 1950s, and decreased more abruptly in wood formed after 1985. This sharp decrease in wood Pb cannot be due to decreases in soil Pb concentration. Stable Pb isotope analysis was used to further investigate Pb patterns in sycamore wood. Excess 206Pb/207Pb ratios in tree-rings of sycamore were relatively constant, approximately 1.17, in wood formed prior to the 1930s, but decreased steadily thereafter reaching a minimum value of approximately 1.16 in wood formed between 1975 and 1985 after which time 206Pb/207Pb ratios increased. This pattern is consistent with changes in Pb isotope ratios measured in peat, sediment and aerosol samples in the UK. However, the magnitude of the decrease in 206Pb/207Pb (largely due to gasoline Pb) is considerably lower than in other studies and our estimates indicate that less than 20% of the total Pb in sycamore wood measured since the mid-1800s is derived from gasoline emissions. A more likely explanation for the pattern of Pb observed in sycamore tree rings is that soil Pb accumulates within rings of the diffuse porous wood over a number of years. Such uptake patterns would result in lower Pb concentrations in the outer (more recently formed) tree rings, which coincide with recent reductions in Pb deposition in the UK. Overall, this study indicates that tree ring chemistry is unsuitable for monitoring historical changes in Pb deposition at the study site.
Surface Fire Influence on Carbon Balance Components in Scots Pine Forest of Siberia, Russia
NASA Astrophysics Data System (ADS)
Kukavskaya, E.; Ivanova, G. A.; Conard, S. G.; Soja, A. J.
2008-12-01
Wildfire is one of the most important disturbances in boreal forests, and it can have a profound effect on forest-atmosphere carbon exchange. Pinus sylvestris (Scots pine) stands of Siberia are strongly impacted by fires of low to high severity. Biomass distribution in mature lichen/feathermoss Scots pine stands indicates that they are carbon sinks before fire. Fires contribute significantly to the carbon budget resulting in a considerable carbon efflux, initially through direct consumption of forest fuels and later as a result of tree mortality and decomposition of dead material accumulated on the forest floor. In initial postfire years these processes dominate over photosynthetic carbon assimilation, and the ecosystems become a carbon source. Over several postfire years, above-ground carbon in dead biomass tends to increase, with the increase depending significantly on fire severity. High-severity fire enhances dead biomass carbon, while moderate- and low-severity fires have minimal effect on above-ground carbon distribution in Scots pine ecosystems. Dead stand biomass carbon increases, primarily during the first two years following fires, due to tree mortality. This increase can account for up to 12.4% of the total stand biomass after low- and moderate- intensity fires. We found tree dieback following a high-intensity fire is an order of magnitude higher, and thus the dead biomass increases up to 88.1% of total above-ground biomass. Photosynthetic CO2 uptake decreases with increasing tree mortality, and needle foliage and bark are incorporated into the upper layer of the forest floor in the course of years. Ground vegetation and duff carbon were >90, 71-83, and 82% of prefire levels after fires of low, moderate, and high severity, respectively for the first 4 to 5 years after fire. Fires of low and moderate severity caused down woody fuel carbon to increase by 2.1 and 3.6 t ha-1 respectively by four years after burning as compared to the pre-fire values. Climate change and increasing drought length observed in recent decades have increased the probability of high-intensity fire occurrence. Areas burned have increased in extent and severity across Siberia, resulting in increased carbon emissions to the atmosphere from fuel combustion and post fire decomposition.
Chad M. Hoffman; Rodman Linn; Russell Parsons; Carolyn Sieg; Judith Winterkamp
2015-01-01
Patches of live, dead, and dying trees resulting from bark beetle-caused mortality alter spatial and temporal variability in the canopy and surface fuel complex through changes in the foliar moisture content of attacked trees and through the redistribution of canopy fuels. The resulting heterogeneous fuels complexes alter within-canopy wind flow, wind fluctuations, and...
Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests.
Rigling, Andreas; Bigler, Christof; Eilmann, Britta; Feldmeyer-Christe, Elisabeth; Gimmi, Urs; Ginzler, Christian; Graf, Ulrich; Mayer, Philipp; Vacchiano, Giorgio; Weber, Pascale; Wohlgemuth, Thomas; Zweifel, Roman; Dobbertin, Matthias
2013-01-01
An increasing number of studies have reported on forest declines and vegetation shifts triggered by drought. In the Swiss Rhone valley (Valais), one of the driest inner-Alpine regions, the species composition in low elevation forests is changing: The sub-boreal Scots pine (Pinus sylvestris L.) dominating the dry forests is showing high mortality rates. Concurrently the sub-Mediterranean pubescent oak (Quercus pubescens Willd.) has locally increased in abundance. However, it remains unclear whether this local change in species composition is part of a larger-scale vegetation shift. To study variability in mortality and regeneration in these dry forests we analysed data from the Swiss national forest inventory (NFI) on a regular grid between 1983 and 2003, and combined it with annual mortality data from a monitoring site. Pine mortality was found to be highest at low elevation (below 1000 m a.s.l.). Annual variation in pine mortality was correlated with a drought index computed for the summer months prior to observed tree death. A generalized linear mixed-effects model indicated for the NFI data increased pine mortality on dryer sites with high stand competition, particularly for small-diameter trees. Pine regeneration was low in comparison to its occurrence in the overstorey, whereas oak regeneration was comparably abundant. Although both species regenerated well at dry sites, pine regeneration was favoured at cooler sites at higher altitude and oak regeneration was more frequent at warmer sites, indicating a higher adaptation potential of oaks under future warming. Our results thus suggest that an extended shift in species composition is actually occurring in the pine forests in the Valais. The main driving factors are found to be climatic variability, particularly drought, and variability in stand structure and topography. Thus, pine forests at low elevations are developing into oak forests with unknown consequences for these ecosystems and their goods and services. © 2012 Blackwell Publishing Ltd.
Benjamin O. Knapp; G. Geoff Wang; Joan L. Walker
2013-01-01
Longleaf pine restoration is a common management objective in the southeastern United States and requires artificial regeneration of longleaf pines on sites currently dominated by loblolly pine. In many cases, retention of canopy trees during stand conversion may be desirable to promote ecological function and meet conservation objectives. We tested the effects of...
NASA Astrophysics Data System (ADS)
Gielen, Bert; De Vos, Bruno; Papale, Dario; Janssens, Ivan
2013-04-01
In recent years, the status of forests as sources or sinks of carbon has received much attention. Nonetheless, evidence-based long-term estimates of the magnitude of the carbon sequestration in forests are still scarce. In this study we present two independent estimates of net carbon sequestration in a temperate Scots pine dominated forest ecosystem over a 9 year period (2002-2010) and in addition, to determine the full greenhouse gas balance, the first results of automated chamber measurements of N2O and CH4. First, the net ecosystem carbon balance (NECB) was estimated from net ecosystem CO2 exchange as measured by the eddy covariance technique (NECBEC). To this end, the eddy covariance estimates were combined with non-CO2 carbon fluxes such as DOC leaching and VOC emissions. The second approach to determine the carbon sequestration was based on the changes in the ecosystem carbon stocks over time (NECBSC). For this NECBSC estimate, two assessments of the ecosystem carbon stocks (2002 and 2010) were compared. Results showed that the eddy covariance approach estimated a net uptake of 2.4 ± 1.25 tC ha-1 yr-1, while the stock based approach suggested a carbon sink of 1.8 ± 1.20 tC ha-1 yr-1. No significant change was observed in the mineral soil carbon, while the carbon stock of the litter layer slightly decreased. Phytomass was thus the main carbon sink (2.1 tC ha-1 yr-1) in the pine forest, predominantly in the stems (1.3 tC ha-1 yr-1). The fact that stem wood is the main carbon sink within the ecosystem implies that the future harvesting has the potential to fully offset the CO2 uptake by this Scots pine forest. Estimates of the impact of N2O and CH4 emissions from the soil on the total greenhouse gas budget will be presented.
NASA Astrophysics Data System (ADS)
Markiet, Vincent; Perheentupa, Viljami; Mõttus, Matti; Hernández-Clemente, Rocío
2016-04-01
Imaging spectroscopy is a remote sensing technology which records continuous spectral data at a very high (better than 10 nm) resolution. Such spectral images can be used to monitor, for example, the photosynthetic activity of vegetation. Photosynthetic activity is dependent on varying light conditions and varies within the canopy. To measure this variation we need very high spatial resolution data with resolution better than the dominating canopy element size (e.g., tree crown in a forest canopy). This is useful, e.g., for detecting photosynthetic downregulation and thus plant stress. Canopy illumination conditions are often quantified using the shadow fraction: the fraction of visible foliage which is not sunlit. Shadow fraction is known to depend on view angle (e.g., hot spot images have very low shadow fraction). Hence, multiple observation angles potentially increase the range of shadow fraction in the imagery in high spatial resolution imaging spectroscopy data. To investigate the potential of multi-angle imaging spectroscopy in investigating canopy processes which vary with shadow fraction, we obtained a unique multiangular airborne imaging spectroscopy data for the Hyytiälä forest research station located in Finland (61° 50'N, 24° 17'E) in July 2015. The main tree species are Norway spruce (Picea abies L. karst), Scots pine (Pinus sylvestris L.) and birch (Betula pubescens Ehrh., Betula pendula Roth). We used an airborne hyperspectral sensor AISA Eagle II (Specim - Spectral Imaging Ltd., Finland) mounted on a tilting platform. The tilting platform allowed us to measure at nadir and approximately 35 degrees off-nadir. The hyperspectral sensor has a 37.5 degrees field of view (FOV), 0.6m pixel size, 128 spectral bands with an average spectral bandwidth of 4.6nm and is sensitive in the 400-1000 nm spectral region. The airborne data was radiometrically, atmospherically and geometrically processed using the Parge and Atcor software (Re Se applications Schläpfer, Switzerland). However, even after meticulous geolocation, the canopy elements (needles) seen from the three view angles were different: at each overpass, different parts of the same crowns were observed. To overcome this, we used a 200m x 200m test site covered with pure pine stands. We assumed that for sunlit, shaded and understory spectral signatures are independent of viewing direction to the accuracy of a constant BRDF factor. Thus, we compared the spectral signatures for sunlit and shaded canopy and understory obtained for each view direction. We selected visually six hundred of the brightest and darkest canopy pixels. Next, we performed a minimum noise fraction (MNF) transformation, created a pixel purity index (PPI) and used Envi's n-D scatterplot to determine pure spectral signatures for the two classes. The pure endmembers for different view angles were compared to determine the BRDF factor and to analyze its spectral invariance. We demonstrate the compatibility of multi-angle data with high spatial resolution data. In principle, both carry similar information on structured (non-flat) targets thus as a vegetation canopy. Nevertheless, multiple view angles helped us to extend the range of shadow fraction in the images. Also, correct separation of shaded crown and shaded understory pixels remains a challenge.
Tulik, Mirela; Rusin, Aleksandra
2005-03-01
The secondary cell wall structure of tracheids of Scots pine (Pinus sylvestris L.), especially the angle of microfibrils in the S(2) layer, was examined in wood deposited prior to and after the Chernobyl accident in 1986. Microscopic analysis was carried out on wood samples collected in October 1997 from breast height of three pine trees 16, 30 and 42 years old. The polluted site was located in a distance of 5 km south from the Chernobyl nuclear power plant where radioactive contamination in 1997 was 3.7 x 10(5) kBq m(-2). Anatomical analysis showed that the structure of the secondary cell wall in tracheids formed after the Chernobyl accident was changed. Changes occurred both in S(2) and S(3) layers. The angle of microfibrils in S(2) layer in wood deposited after the Chernobyl accident was different in comparison to this measured in wood formed prior to the disaster. The intensity of the changes, i.e. alteration of the microfibrils angle in S(2) layer and unusual pattern of the S(3) layer, depended on the age of the tree and was most intensive in a young tree.
The inflow of Cs-137 in soil with root litter and root exudates of Scots pine
NASA Astrophysics Data System (ADS)
Shcheglov, Alexey; Tsvetnova, Olga; Popova, Evgenia
2017-04-01
In the model experiment on evaluation of Cs-137 inflow in the soil with litter of roots and woody plants root exudates on the example of soil and water cultures of Scots pine (Pinus sylvestris L.) was shown, that through 45 days after the deposit Cs-137 solution on pine needles (specific activity of solution was 3.718*106 Bk) of the radionuclide in all components of model systems has increased significantly: needles, small branches and trunk by Cs-137 surface contamination during the experiment; roots as a result of the internal distribution of the radionuclide in the plant; soil and soil solution due to the of receipt Cs-137 in the composition of root exudates and root litter. Over 99% of the total reserve of Cs-137 accumulated in the components of the soil and water systems, accounted for bodies subjected to external pollution (needles and small branches) and <0.5% - on the soil / soil solution, haven't been subjected to surface contamination. At the same contamination of soil and soil solution by Cs-137 in the model experiment more than a> 99.9% was due to root exudates
Rapid changes in the range limits of Scots pine 4000 years ago
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gear, A.J.; Huntley, B.
Paleoecological data provide estimates of response rates to past climate changes. Fossil Pinus sylvestris stumps in far northern Scotland demonstrate former presence of pine trees where conventional pollen evidence of pine forests is lacking. Radiocarbon, dendrochronological, and fine temporal-resolution palynological data show that pine forest were present for about four centuries some 4,000 years ago; the forests expanded and then retreated rapidly some 70 to 80 kilometers. Despite the rapidity of this response to climate change, it occurred at rates slower by an order of magnitude than those necessary to maintain equilibrium with forecast climate changes attributed to the greenhousemore » effect.« less
Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index
NASA Astrophysics Data System (ADS)
Chen, Jing M.; Cihlar, Josef
1995-09-01
Optical instruments currently available for measuring the leaf-area index (LAI) of a plant canopy all utilize only the canopy gap-fraction information. These instruments include the Li-Cor LAI-2000 Plant Canopy Analyzer, Decagon, and Demon. The advantages of utilizing both the canopy gap-fraction and gap-size information are shown. For the purpose of measuring the canopy gap size, a prototype sunfleck-LAI instrument named Tracing Radiation and Architecture of Canopies (TRAC), has been developed and tested in two pure conifer plantations, red pine (Pinus resinosa Ait.) and jack pine (Pinus banksiana Lamb). A new gap-size-analysis theory is presented to quantify the effect of canopy architecture on optical measurements of LAI based on the gap-fraction principle. The theory is an improvement on that of Lang and Xiang [Agric. For. Meteorol. 37, 229 (1986)]. In principle, this theory can be used for any heterogeneous canopies.
Effect of Stability on Mixing in Open Canopies. Chapter 4
NASA Technical Reports Server (NTRS)
Lee, Young-Hee; Mahrt, L.
2005-01-01
In open canopies, the within-canopy flux from the ground surface and understory can account for a significant fraction of the total flux above the canopy. This study incorporates the important influence of within-canopy stability on turbulent mixing and subcanopy fluxes into a first-order closure scheme. Toward this goal, we analyze within-canopy eddy-correlation data from the old aspen site in the Boreal Ecosystem - Atmosphere Study (BOREAS) and a mature ponderosa pine site in Central Oregon, USA. A formulation of within-canopy transport is framed in terms of a stability- dependent mixing length, which approaches Monin-Obukhov similarity theory above the canopy roughness sublayer. The new simple formulation is an improvement upon the usual neglect of the influence of within-canopy stability in simple models. However, frequent well-defined cold air drainage within the pine subcanopy inversion reduces the utility of simple models for nocturnal transport. Other shortcomings of the formulation are discussed.
Harju, Anni M; Venäläinen, Martti; Laakso, Tapio; Saranpää, Pekka
2009-01-01
In this greenhouse experiment, 3-year-old Scots pine (Pinus sylvestris L.) seedlings were wounded by drilling holes through the stem. In the xylem next to the wound, the concentration of resin acids (RAC) increased, and the production of extractives typical for heartwood (stilbenes) and knotwood (stilbenes and lignans) of mature trees was induced. The induced stilbenes were pinosylvin (PS) and pinosylvin monomethyl ether (PSM), and the lignans nortrachelogenin (NTG) and matairesinol (MR). There was positive phenotypic correlation between concentrations of the different extractives. Except for the RAC, the extractive concentrations showed no correlation with the size of the seedlings. The treated seedlings belonged to half-sib families, which enabled the estimation of the genetic parameters for the response variables. The proportion of heritable variation (heritability, h(2)) in the concentration of PS, NTG and MR varied between 0.71 and 1.03, whereas for PSM and RAC the heritability was lower (0.35 and 0.31). Genetic correlation was significant between PS and PSM (r = 0.55, P = 0.018), and between NTG and MR (r = 0.50, P = 0.033). Heritabilities were also estimated on the basis of the regression of the offspring on their mothers h(2)(0P). These estimates were assessed for the concentration of PS, PSM and RAC in the wound response area of the seedlings and correspondingly in the heartwood of their mothers. The heritability was highest for the concentration of PS h(2)(0P). The findings of this study support the suggestion that the wounding of Scots pine seedlings may facilitate the development of an early testing method for breeding heartwood durability.
Perämäki, M; Nikinmaa, E; Sevanto, S; Ilvesniemi, H; Siivola, E; Hari, P; Vesala, T
2001-08-01
A dynamic model for simulating water flow in a Scots pine (Pinus sylvestris L.) tree was developed. The model is based on the cohesion theory and the assumption that fluctuating water tension driven by transpiration, together with the elasticity of wood tissue, causes variations in the diameter of a tree stem and branches. The change in xylem diameter can be linked to water tension in accordance with Hookeâ s law. The model was tested against field measurements of the diurnal xylem diameter change at different heights in a 37-year-old Scots pine at Hyytiälä, southern Finland (61 degrees 51' N, 24 degrees 17' E, 181 m a.s.l.). Shoot transpiration and soil water potential were input data for the model. The biomechanical and hydraulic properties of wood and fine root hydraulic conductance were estimated from simulated and measured stem diameter changes during the course of 1 day. The estimated parameters attained values similar to literature values. The ratios of estimated parameters to literature values ranged from 0.5 to 0.9. The model predictions (stem diameters at several heights) were in close agreement with the measurements for a period of 6 days. The time lag between changes in transpiration rate and in sap flow rate at the base of the tree was about half an hour. The analysis showed that 40% of the resistance between the soil and the top of the tree was located in the rhizosphere. Modeling the water tension gradient and consequent woody diameter changes offer a convenient means of studying the link between wood hydraulic conductivity and control of transpiration.
Defoliating Insect Mass Outbreak Affects Soil N Fluxes and Tree N Nutrition in Scots Pine Forests
Grüning, Maren M.; Simon, Judy; Rennenberg, Heinz; l-M-Arnold, Anne
2017-01-01
Biotic stress by mass outbreaks of defoliating pest insects does not only affect tree performance by reducing its photosynthetic capacity, but also changes N cycling in the soil of forest ecosystems. However, how insect induced defoliation affects soil N fluxes and, in turn, tree N nutrition is not well-studied. In the present study, we quantified N input and output fluxes via dry matter input, throughfall, and soil leachates. Furthermore, we investigated the effects of mass insect herbivory on tree N acquisition (i.e., organic and inorganic 15N net uptake capacity of fine roots) as well as N pools in fine roots and needles in a Scots pine (Pinus sylvestris L.) forest over an entire vegetation period. Plots were either infested by the nun moth (Lymantria monacha L.) or served as controls. Our results show an increased N input by insect feces, litter, and throughfall at the infested plots compared to controls, as well as increased leaching of nitrate. However, the additional N input into the soil did not increase, but reduce inorganic and organic net N uptake capacity of Scots pine roots. N pools in the fine roots and needles of infested trees showed an accumulation of total N, amino acid-N, protein-N, and structural N in the roots and the remaining needles as a compensatory response triggered by defoliation. Thus, although soil N availability was increased via surplus N input, trees did not respond with an increased N acquisition, but rather invested resources into defense by accumulation of amino acid-N and protein-N as a survival strategy. PMID:28638396
Turtola, S; Manninen, A M; Holopainen, J K; Levula, T; Raitio, H; Kainulainen, P
2002-01-01
Secondary compounds are known to be associated with the resistance of conifer xylem against insects and fungi. The effects of long-term forest fertilization with nitrogen (N) or with N, calcium (Ca), and phosphorus (P) on secondary compounds in the xylem of 50-yr-old Scots pine (Pinus sylvestris L.) trees were examined. Xylem samples were collected from trees growing in three locations in southern Finland: Vilppula, Padasjoki, and Punkaharju. Forests were fertilized every fifth (Vilppula and Padasjoki) or tenth (Punkaharju) year since the 1950s. We compared concentrations of individual and total monoterpenes and resin acids in the heartwood and sapwood of Scots pine. Terpene emissions were analyzed from the sapwood and total phenolics from the heartwood. Fertilization did not have any significant effect on the concentrations and emissions of xylem monoterpenes. Concentrations of several individual terpenes in sapwood were positively correlated with the corresponding terpene emission. The concentrations of individual resin acids (i.e., abietic and dehydroabietic) decreased significantly in Punkaharju, but increased in the sapwood of N-fertilized trees compared with control ones at Padasjoki and Vilppula. The concentrations of resin acids in the heartwood were not significantly affected by fertilization. Both fertilization treatments decreased the total phenolic concentrations in the heartwood of trees growing in Padasjoki. There was a significant positive correlation between the total phenolics and total resin acid concentration. Overall, resin acids and phenolics seemed be more responsive than monoterpenes to N treatment. These results suggest that forest fertilization might cause slight changes in secondary compound concentrations of xylem, and thus might have significance in the decay resistance of wood.
NASA Astrophysics Data System (ADS)
Llorens, Pilar; Cayuela, Carles; Sánchez-Costa, Elisenda; Gallart, Francesc; Latron, Jérôme
2017-04-01
This work uses a dual isotope-based approach (18O, 2H) to examine the mixing of water in the soil and the linkages between tree water fluxes and soil water pools in a Mediterranean mountain catchment (Vallcebre Research Catchments, NE Spain, 42° 12'N, 1° 49'E). Since May 2015, water-isotopes have been monitored in rainfall, throughfall and stemflow below a Scots pine stand and in stream water at the Can Vila (0.56 km2) catchment outlet. Moreover, fortnightly (From May to December 2015) soil samples (10, 20, 30, 50 and 100 cm), xylem samples (3 Scots pines) and mobile soil water samples in low-suction lysimeters (20, 50 and 100 cm) and in a piezometer (150-300 cm deep) were collected at the same stand. Water from soil and xylem samples was extracted by cryogenic vacuum distillation and isotope analyses were obtained by infrared spectroscopy. All this information has been combined with continuous measurement of meteorological, soil moisture and water potential, piezometric levels and hydrological variables at the stand and catchment scales. Stable isotopes ratios of bound soil water fell below the local meteoric water line (LMWL), with more evaporative enrichment in the shallow horizons. On the contrary, mobile soil water (low suction lysimeters) and groundwater fell along the LMWL, well mixed with stream water. The differences observed between these two water pools remained similar during the whole study period. Stable isotopes ratios indicate that Scots pine trees use shallow bound soil water during the whole study period. No marked changes in depth of water uptake were observed, presumably due to the availability of water in the shallow horizons, even during the summer months.
Villari, Caterina; Faccoli, Massimo; Battisti, Andrea; Bonello, Pierluigi; Marini, Lorenzo
2014-09-01
Plants protect themselves from pathogens and herbivores through fine-tuned resource allocation, including trade-offs among resource investments to support constitutive and inducible defences. However, empirical research, especially concerning conifers growing under natural conditions, is still scarce. We investigated the complexity of constitutive and induced defences in a natural Scots pine (Pinus sylvestris L.) stand under growth-limiting conditions typical of alpine environments. Phenotypic trade-offs at three hierarchical levels were tested by investigating the behaviour of phenolic compounds and terpenoids of outer bark and phloem. We tested resource-derived phenotypic correlations between (i) constitutive and inducible defences vs tree ring growth, (ii) different constitutive defence metabolites and (iii) constitutive concentration and inducible variation of individual metabolites. Tree ring growth was positively correlated only with constitutive concentration of total terpenoids, and no overall phenotypic trade-offs between different constitutive defensive metabolites were found. At the lowest hierarchical level tested, i.e., at the level of relationship between constitutive and inducible variation of individual metabolites, we found that different compounds displayed different behaviours; we identified five different defensive metabolite response types, based on direction and strength of the response, regardless of tree age and growth rate. Therefore, under growth-limiting field conditions, Scots pine appears to utilize varied and complex outer bark and phloem defence chemistry, in which only part of the constitutive specialized metabolism is influenced by tree growth, and individual components do not appear to be expressed in a mutually exclusive manner in either constitutive or inducible metabolism. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Oberhuber, Walter
2017-04-01
Size-mediated climate sensitivity of trees will affect forest structure, composition and productivity under a warmer and drier climate. Therefore, the influence of tree size (saplings vs. mature trees) and site conditions on radial stem growth and stem water deficit of Picea abies (dry-mesic site; canopy cover [CC]: 70 %) and Pinus sylvestris (xeric site; CC: 30 %) were evaluated in a drought-prone inner Alpine environment (c. 750 m a.s.l.). Stem radius variations (SRVs) of saplings (mean stem diameter [SDM]: 2.3 cm) and co-occurring mature trees (SDM: 24 cm) were continuously recorded by dendrometers during two years (n = 6 - 8 individuals per species and size class). Growth-detrended SRVs (SSRV), which represent reversible shrinkage and swelling of tissues outside the cambium and contribute most to stem water storage capacity, were calculated by removing the Gompertz-modeled daily growth from SRVs. Dendrometer records revealed that irrespective of tree size, radial growth in Pinus sylvestris occurred in April-May, whereas the main growing period of Picea abies was April-June and May-June in saplings and mature trees, respectively. Growth-detrended SRVs were approximately twice as large in Pinus sylvestris compared to Picea abies indicating more intense exploitation of stem water reserves at the xeric site. Linear relationships between SSRVs of mature trees vs. saplings and climate-SSRV relationships revealed greater use of stem water reserves by mature Picea abies compared to saplings. This suggests that the strikingly depressed radial growth of Picea abies saplings was primarily caused by reduced carbon availability beneath the dense canopy. In contrast, a tree size effect on the seasonal dynamics of radial growth, stem water deficit and climate-SSRV relationships was mostly lacking in Pinus sylvestris, indicating comparable water status in mature trees and saplings under an open canopy. Results of this study provide evidence that development of a buffered microclimate under dense canopy mitigates water stress experienced by saplings and favors tree recruitment at drought-prone sites. This study was funded by the Austrian Science Fund (FWF): P25643-B16 "Carbon allocation and growth of Scots pine".
Grulke, N E; Johnson, R; Monschein, S; Nikolova, P; Tausz, M
2003-09-01
Crown morphology and leaf tissue chemical and biochemical attributes associated with ozone (O3) injury were assessed in the lower, mid- and upper canopy of Jeffrey pine (Pinus jeffreyi Grev. & Balf.) growing in mesic and xeric microsites in Sequoia National Park, California. Microsites were designated mesic or xeric based on topography and bole growth in response to years of above-average precipitation. In mesic microsites, canopy response to O3 was characterized by thinner branches, earlier needle fall, less chlorotic leaf mottling, and lower foliar antioxidant capacity, especially of the aqueous fraction. In xeric microsites, canopy response to O3 was characterized by higher chlorotic leaf mottling, shorter needles, lower needle chlorophyll concentration, and greater foliar antioxidant capacity. Increased leaf chlorotic mottle in xeric microsites was related to drought stress and increased concurrent internal production of highly reactive oxygen species, and not necessarily to stomatal O3 uptake. Within-canopy position also influenced the expression of O3 injury in Jeffrey pine.
NASA Astrophysics Data System (ADS)
Tyszka, Jan; Stolarek, Andrzej; Fronczak, Ewa
2014-01-01
The influence of water conditions on the condition and growth of tree stands has been analysed in the context of the climatic and hydrological functions forest plays. Long observational series obtained for precipitation, outflow and depths below the surface of the water table have been put together with measured increases in the breast-height diameters of Scots pines and the severity of crown defoliation observable in selected tree species growing on the Polish Lowland, in order to determine the overall scope to the reaction stand condition manifests in the face of ongoing variability of water conditions within forest. An overall improvement in the condition of stands over the last 20 years does not disguise several-year cyclicity to changes capable of shaping the situation, i.a. departures from long-term mean values for precipitation totals and groundwater levels. The condition of stands is seen to worsen in both dry and wet years. Analysis of the degree to which pine, spruce and broadleaved stands experience defoliation points to spruce stands responding most to extreme hydro-climatic conditions. Extreme situations as regards water resources were seen to involve a response over two-year time intervals in the case of coniferous stands. Unsurprisingly, optimal growing-season (June-September) precipitation totals correspond with long-term average figures, while being slightly higher for spruce (at 384 mm), than for Scots pine or broadleaved species (375 mm). The relationships reported gain confirmation in analysis of periodic change in breast-height diameter increments characterising Scots pines, whose growth is seen to depend closely, not only on precipitation, but also above all on the depth of the water table in the summer half-year. Optimal depths of the water table proved to be different, being around 20 cm below ground in the case of marshy coniferous forest, 80 cm in wet habitats, and 135 cm in fresh habitats. Depending on the possibilities for water to soak into the rooting zone of trees there were even twofold differences in measured growth increments in Scots pine (as the dominant species in Poland's lowland habitats). The maintenance of stable water conditions (as the most variable environmental factor in forest) should be an overriding aim of management activity in this habitat. When account is taken of the influence of the state of water resources on biomass production, and then on the intensity of evapotranspiration and the absorption of carbon dioxide from the atmosphere, it is seen how important it is to achieve improvements in water conditions in forests, as such an important factor in combating climate change.
Luiro, Jukka; Kukkola, Mikko; Saarsalmi, Anna; Tamminen, Pekka; Helmisaari, Heljä-Sisko
2010-01-01
The aim of this study was to compare how conventional stem harvesting (CH) and whole-tree harvesting (WTH) in the first, and in some cases also in the second, thinning affect the needle nutrient status of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) stands in Finland. A series of 12 long-term field experiments was studied. The experiments were established during 1978-86. The effects of logging residue removal after thinnings on the needle nutrient concentrations were generally minor and without any overall trends, but there were differences between experiments. Trees tend to maintain their current needle nutrient concentrations at the same level by re-utilizing the nutrients stored in the older tissues and by changing C allocation in the whole tree. Thus, needle analysis should be combined with stem growth data in order to achieve a more comprehensive understanding of the effects of WTH on the nutrient status of trees.
Characterization of Scots pine stump-root biomass as feed-stock for gasification.
Eriksson, Daniel; Weiland, Fredrik; Hedman, Henry; Stenberg, Martin; Öhrman, Olov; Lestander, Torbjörn A; Bergsten, Urban; Öhman, Marcus
2012-01-01
The main objective was to explore the potential for gasifying Scots pine stump-root biomass (SRB). Washed thin roots, coarse roots, stump heartwood and stump sapwood were characterized (solid wood, milling and powder characteristics) before and during industrial processing. Non-slagging gasification of the SRB fuels and a reference stem wood was successful, and the gasification parameters (synthesis gas and bottom ash characteristics) were similar. However, the heartwood fuel had high levels of extractives (≈19%) compared to the other fuels (2-8%) and thereby ≈16% higher energy contents but caused disturbances during milling, storage, feeding and gasification. SRB fuels could be sorted automatically according to their extractives and moisture contents using near-infrared spectroscopy, and their amounts and quality in forests can be predicted using routinely collected stand data, biomass functions and drill core analyses. Thus, SRB gasification has great potential and the proposed characterizations exploit it. Copyright © 2011 Elsevier Ltd. All rights reserved.
Effect of long-term forest fertilization on Scots pine xylem quality and wood borer performance.
Heijari, Juha; Nerg, Anne-Marja; Kainulainen, Pirjo; Noldt, Uwe; Levula, Teuvo; Raitio, Hannu; Holopainen, Jarmo K
2008-01-01
We tested whether changes in long-term nutrient availability would affect the xylem quality and characteristics of Scots pine trees as a food source for the larvae of the xylophagous wood borer Hylotrupes bajulus L. (Cerambycidae). We looked for an effect of host plant growth and xylem structural traits on H. bajulus larval performance, and looked for delayed effects of long-term forest fertilization on xylem chemical quality. In general, larval performance was dependent on larval developmental stage. However, the growth of larvae also varied with host plant quality (increases in the concentration of nitrogen and carbon-based secondary compounds of xylem were correlated with a decrease in the larval growth rate). The greater annual growth of trees reduced tracheid length and correlated positively with second-instar H. bajulus growth rate. This is consistent with the hypothesis that intrinsic growth patterns of host plants influence the development of the xylophagous wood borer H. bajulus.
Vanninen, Petteri; Mäkelä, Annikki
2000-04-01
We studied effects of tree age, size and competitive status on foliage and stem production of 43 Scots pine (Pinus sylvestris L.) trees in southern Finland. The tree attributes related to competition included foliage density, crown ratio and height/diameter ratio. Needle mass was considered to be the primary cause of growth through photosynthesis. Both stem growth and foliage growth were strongly correlated with foliage mass. Consequently, differences in growth allocation between needles and stem wood in trees of different age, size, or position were small. However, increasing relative height increased the sum of stem growth and foliage growth per unit foliage mass, indicating an effect of available light. Suppressed trees seemed to allocate more growth to stem wood than dominant trees, and their stem growth per unit foliage mass was larger. Similarly, trees in dense stands allocated more growth to stem wood than trees in sparse stands. The results conformed to the pipe model theory but seemed to contradict the priority principle of allocation.
Boxman, Andries W; Peters, Roy C J H; Roelofs, Jan G M
2008-12-01
In a Scots pine forest the throughfall deposition and the chemical composition of the soil solution was monitored since 1984. (Inter)national legislation measures led to a reduction of the deposition of nitrogen and sulphur. The deposition of sulphur has decreased by approximately 65%. The total mineral-nitrogen deposition has decreased by ca. 25%, which is mainly due to a reduction in ammonium-N deposition (-40%), since nitrate-N deposition has increased (+50%). The nitrogen concentration in the upper mineral soil solution at 10 cm depth has decreased, leading to an improved nutritional balance, which may result in improved tree vitality. In the drainage water at 90 cm depth the fluxes of NO3(-) and SO4(2-) have decreased, resulting in a reduced leeching of accompanying base cations, thus preserving nutrients in the ecosystem. It may take still several years, however, before this will meet the prerequisite of a sustainable ecosystem.
González-Ferreiro, Eduardo; Arellano-Pérez, Stéfano; Castedo-Dorado, Fernando; Hevia, Andrea; Vega, José Antonio; Vega-Nieva, Daniel; Álvarez-González, Juan Gabriel; Ruiz-González, Ana Daría
2017-01-01
The fuel complex variables canopy bulk density and canopy base height are often used to predict crown fire initiation and spread. Direct measurement of these variables is impractical, and they are usually estimated indirectly by modelling. Recent advances in predicting crown fire behaviour require accurate estimates of the complete vertical distribution of canopy fuels. The objectives of the present study were to model the vertical profile of available canopy fuel in pine stands by using data from the Spanish national forest inventory plus low-density airborne laser scanning (ALS) metrics. In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, two different systems of models were fitted to estimate the canopy variables defining the vertical distributions; the first system related these variables to stand variables obtained in a field inventory, and the second system related the canopy variables to airborne laser scanning metrics. The models of each system were fitted simultaneously to compensate the effects of the inherent cross-model correlation between the canopy variables. Heteroscedasticity was also analyzed, but no correction in the fitting process was necessary. The estimated canopy fuel load profiles from field variables explained 84% and 86% of the variation in canopy fuel load for maritime pine and radiata pine respectively; whereas the estimated canopy fuel load profiles from ALS metrics explained 52% and 49% of the variation for the same species. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazard.
Canopy disturbance and tree recruitment over two centuries in a managed longleaf pine landscape
Neil Pederson; J. Morgan Varner; Brian J. Palik
2008-01-01
Disturbance history was reconstructed across an 11300 ha managed longleaf pine (Pinus palustris Mill.) landscape in southwestern Georgia, USA. Our specific objectives were to: (i) determine forest age structure; (ii) reconstruct disturbance history through the relationship between canopy disturbance, tree recruitment and growth; and (iii) explore the...
Tarvainen, Lasse; Lutz, Martina; Räntfors, Mats; Näsholm, Torgny; Wallin, Göran
2016-01-01
Numerous studies have shown that temperate and boreal forests are limited by nitrogen (N) availability. However, few studies have provided a detailed account of how carbon (C) acquisition of such forests reacts to increasing N supply. We combined measurements of needle-scale biochemical photosynthetic capacities and continuous observations of shoot-scale photosynthetic performance from several canopy positions with simple mechanistic modeling to evaluate the photosynthetic responses of mature N-poor boreal Pinus sylvestris to N fertilization. The measurements were carried out in August 2013 on 90-year-old pine trees growing at Rosinedalsheden research site in northern Sweden. In spite of a nearly doubling of needle N content in response to the fertilization, no effect on the long-term shoot-scale C uptake was recorded. This lack of N-effect was due to strong light limitation of photosynthesis in all investigated canopy positions. The effect of greater N availability on needle photosynthetic capacities was also constrained by development of foliar phosphorus (P) deficiency following N addition. Thus, P deficiency and accumulation of N in arginine appeared to contribute toward lower shoot-scale nitrogen-use efficiency in the fertilized trees, thereby additionally constraining tree-scale responses to increasing N availability. On the whole our study suggests that the C uptake response of the studied N-poor boreal P. sylvestris stand to enhanced N availability is constrained by the efficiency with which the additional N is utilized. This efficiency, in turn, depends on the ability of the trees to use the greater N availability for additional light capture. For stands that have not reached canopy closure, increase in leaf area following N fertilization would be the most effective way for improving light capture and C uptake while for mature stands an increased leaf area may have a rather limited effect on light capture owing to increased self-shading. This raises the question if N limitation in boreal forests acts primarily by constraining growth of young stands while the commonly recorded increase in stem growth of mature stands following N addition is primarily the result of altered allocation and only to a limited extent the result of increased stand C-capture. PMID:27489553
Role of nurse shrubs for restoration planting of two conifers in southeast of Mu Us Sandland, China.
Tian, Li; Wang, Xiaoan
2015-01-01
Two-year-old pine seedlings, Pinus tabulaeformis and Pinus sylvestris were planted under the canopies of three shrub species and in open areas to test for facilitation during seedling establishment in southeast of Mu Us Sandland in northern part of Shaanxi, China. Pine seedlings establishment were assessed three times within three consecutive growing seasons. Height, area and volume of shrubs were measured. Microclimate conditions (light intensity, air temperature and soil temperature and moisture) were recorded in four microhabitats. Near surface light intensity, air temperature and soil temperature were lower under shrubs, which led to higher soil moisture and pine seedlings under the canopy of shrub species. Pine seedlings survival was remarkably higher when planted under the canopy of shrub species (65.7% for P. tabulaeformis and 60.6% for P. sylvestris) as compared with open areas (22.4% for P. tabulaeformis and 38% for P. sylvestris). P. tabulaeformis with shade-tolerance trait expressed high survival of seedlings as compared to that of P. sylvestris seedlings under the canopy of shrub species (Tukey test, P < 0.05). Leguminous shrub (Caragana korshinskii and Amorpha fruticosa) showed continuously facilitation during moderate drought stress (summer 2012, 2013 and 2014), but dense and small shrub (Caragana korshinskii) reduced the establishment of seedlings possibly for light competition. Salix cheilophila showed a facilitation effect in growing seasons, but the effect of allelopathy led to high mortality of seedlings under their canopy. in addition, two pine growths were not inhibited when planted under three shrubs. In conclusions, nurse-shrub facilitation can be used as an effective restoration strategy in this sandland. However, use of shrubs as nurse plants depends on their canopy structure and ecological impacts; the selection of target species depends on their shade tolerance traits.
Seed release in serotinous lodgepole pine forests after mountain pine beetle outbreak.
Teste, François P; Lieffers, Victor J; Landhausser, Simon M
2011-01-01
There are concerns that large-scale stand mortality due to mountain pine beetle (MPB) could greatly reduce natural regeneration of serotinous Rocky Mountain (RM) lodgepole pine (Pinus contorta var. latifolia) because the closed cones are held in place without the fire cue for cone opening. We selected 20 stands (five stands each of live [control], 3 years since MPB [3-yr-MPB], 6 years since MPB [6-yr-MPB], and 9 years since MPB [9-yr-MPB] mortality) in north central British Columbia, Canada. The goal was to determine partial loss of serotiny due to fall of crown-stored cones via breakage of branches and in situ opening of canopy cones throughout the 2008 and 2009 growing seasons. We also quantified seed release by the opening of forest-floor cones, loss of seed from rodent predation, and cone burial. Trees killed by MPB three years earlier dropped approximately 3.5 times more cones via branch breakage compared to live stands. After six years, MPB-killed stands had released 45% of their canopy seed bank through cone opening, cone fall due to breakage, and squirrel predation. Further losses of canopy seed banks are expected with time since we found 9-yr-MPB stands had 38% more open canopy cones. This was countered by the development of a modest forest-floor seed bank (6% of the original canopy seed bank) from burial of cones; this seed bank may be ecologically important if a fire or anthropogenic disturbance reexposes these cones. If adequate levels of regeneration are to occur, disturbances to create seedbeds must occur shortly after tree mortality, before the seed banks are lost. Our findings also suggest that the sustained seed rain (over at least nine years) after MPB outbreak may be beneficial for population growth of ground-foraging vertebrates. Our study adds insight to the seed ecology of serotinous pines under a potentially continental-wide insect outbreak, threatening vast forests adapted to regeneration after fire. Key words: biotic disturbance; cone burial; cone opening; Dendroctonus ponderosae; ground-foraging vertebrates; mountain pine beetle; natural regeneration; Pinus contorta var. latifolia; Rocky Mountain lodgepole pine; seed banks; serotiny (canopy seed storage); Tamiasciurus hudsonicus.
Response of water use efficiency to summer drought in a boreal Scots pine forest in Finland
NASA Astrophysics Data System (ADS)
Gao, Yao; Markkanen, Tiina; Aurela, Mika; Mammarella, Ivan; Thum, Tea; Tsuruta, Aki; Yang, Huiyi; Aalto, Tuula
2017-09-01
The influence of drought on plant functioning has received considerable attention in recent years, however our understanding of the response of carbon and water coupling to drought in terrestrial ecosystems still needs to be improved. A severe soil moisture drought occurred in southern Finland in the late summer of 2006. In this study, we investigated the response of water use efficiency to summer drought in a boreal Scots pine forest (Pinus sylvestris) on the daily time scale mainly using eddy covariance flux data from the Hyytiälä (southern Finland) flux site. In addition, simulation results from the JSBACH land surface model were evaluated against the observed results. Based on observed data, the ecosystem level water use efficiency (EWUE; the ratio of gross primary production, GPP, to evapotranspiration, ET) showed a decrease during the severe soil moisture drought, while the inherent water use efficiency (IWUE; a quantity defined as EWUE multiplied with mean daytime vapour pressure deficit, VPD) increased and the underlying water use efficiency (uWUE, a metric based on IWUE and a simple stomatal model, is the ratio of GPP multiplied with a square root of VPD to ET) was unchanged during the drought. The decrease in EWUE was due to the stronger decline in GPP than in ET. The increase in IWUE was because of the decreased stomatal conductance under increased VPD. The unchanged uWUE indicates that the trade-off between carbon assimilation and transpiration of the boreal Scots pine forest was not disturbed by this drought event at the site. The JSBACH simulation showed declines of both GPP and ET under the severe soil moisture drought, but to a smaller extent compared to the observed GPP and ET. Simulated GPP and ET led to a smaller decrease in EWUE but a larger increase in IWUE because of the severe soil moisture drought in comparison to observations. As in the observations, the simulated uWUE showed no changes in the drought event. The model deficiencies exist mainly due to the lack of the limiting effect of increased VPD on stomatal conductance during the low soil moisture condition. Our study provides a deeper understanding of the coupling of carbon and water cycles in the boreal Scots pine forest ecosystem and suggests possible improvements to land surface models, which play an important role in the prediction of biosphere-atmosphere feedbacks in the climate system.
Nancy Grulke; R. Johnson; S. Monschein; P. Nikolova; M. Tausz
2003-01-01
Crown morphology and leaf tissue chemical and biochemical attributes associated with ozone (O3) injury were assessed in the lower, mid- and upper canopy of Jeffrey pine (Pinus jeffreyi Grev. & Balf.) growing in mesic and xeric microsites in Sequoia National Park, California. Microsites were designated mesic or xeric...
Remote estimation of a managed pine forest evapotranspiration with geospatial technology
S. Panda; D.M. Amatya; G Sun; A. Bowman
2016-01-01
Remote sensing has increasingly been used to estimate evapotranspiration (ET) and its supporting parameters in a rapid, accurate, and cost-effective manner. The goal of this study was to develop remote sensing-based models for estimating ET and the biophysical parameters canopy conductance (gc), upper-canopy temperature, and soil moisture for a mature loblolly pine...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farfan, E.; Jannik, T.
To identify effects of chronic internal and external radiation exposure for components of terrestrial ecosystems, a comprehensive study of Scots pine trees in the Chernobyl Exclusion Zone was performed. The experimental plan included over 1,100 young trees (up to 20 years old) selected from areas with varying levels of radioactive contamination. These pine trees were planted after the 1986 Chernobyl Nuclear Power Plant accident mainly to prevent radionuclide resuspension and soil erosion. For each tree, the major morphological parameters and radioactive contamination values were identified. Cytological analyses were performed for selected trees representing all dose rate ranges. A specially developedmore » dosimetric model capable of taking into account radiation from the incorporated radionuclides in the trees was developed for the apical meristem. The calculated dose rates for the trees in the study varied within three orders of magnitude, from close to background values in the control area (about 5 mGy y{sup -1}) to approximately 7 Gy y{sup -1} in the Red Forest area located in the immediate vicinity of the Chernobyl Nuclear Power Plant site. Dose rate/effect relationships for morphological changes and cytogenetic defects were identified and correlations for radiation effects occurring on the morphological and cellular level were established.« less
NASA Astrophysics Data System (ADS)
Martin, J.; Laughlin, M. M.; Olson, E.
2017-12-01
Canopy processes can be viewed at many scales and through many lenses. Fundamentally, we may wish to start by treating each canopy as a unique surface, an ecosystem unto itself. By doing so, we can may make some important observations that greatly influence our ability to scale canopies to landscape, regional and global scales. This work summarizes an ongoing endeavor to quantify various canopy level processes on individual old and large Eastern white pine trees (Pinus strobus). Our work shows that these canopies contain complex structures that vary with height and as the tree ages. This phenomenon complicates the allometric scaling of these large trees using standard methods, but detailed measurements from within the canopy provided a method to constrain scaling equations. We also quantified how these canopies change and respond to canopy disturbance, and documented disproportionate variation of growth compared to the lower stem as the trees develop. Additionally, the complex shape and surface area allow these canopies to act like ecosystems themselves; despite being relatively young and more commonplace when compared to the more notable canopies of the tropics and the Pacific Northwestern US. The white pines of these relatively simple, near boreal forests appear to house various species including many lichens. The lichen species can cover significant portions of the canopy surface area (which may be only 25 to 50 years old) and are a sizable source of potential nitrogen additions to the soils below, as well as a modulator to hydrologic cycles by holding significant amounts of precipitation. Lastly, the combined complex surface area and focused verticality offers important habitat to numerous animal species, some of which are quite surprising.
Castedo-Dorado, Fernando; Hevia, Andrea; Vega, José Antonio; Vega-Nieva, Daniel; Ruiz-González, Ana Daría
2017-01-01
The fuel complex variables canopy bulk density and canopy base height are often used to predict crown fire initiation and spread. Direct measurement of these variables is impractical, and they are usually estimated indirectly by modelling. Recent advances in predicting crown fire behaviour require accurate estimates of the complete vertical distribution of canopy fuels. The objectives of the present study were to model the vertical profile of available canopy fuel in pine stands by using data from the Spanish national forest inventory plus low-density airborne laser scanning (ALS) metrics. In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, two different systems of models were fitted to estimate the canopy variables defining the vertical distributions; the first system related these variables to stand variables obtained in a field inventory, and the second system related the canopy variables to airborne laser scanning metrics. The models of each system were fitted simultaneously to compensate the effects of the inherent cross-model correlation between the canopy variables. Heteroscedasticity was also analyzed, but no correction in the fitting process was necessary. The estimated canopy fuel load profiles from field variables explained 84% and 86% of the variation in canopy fuel load for maritime pine and radiata pine respectively; whereas the estimated canopy fuel load profiles from ALS metrics explained 52% and 49% of the variation for the same species. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazard. PMID:28448524
NASA Technical Reports Server (NTRS)
Sader, Steven A.
1987-01-01
The effect of forest biomass, canopy structure, and species composition on L-band synthetic aperature radar data at 44 southern Mississippi bottomland hardwood and pine-hardwood forest sites was investigated. Cross-polarization mean digital values for pine forests were significantly correlated with green weight biomass and stand structure. Multiple linear regression with five forest structure variables provided a better integrated measure of canopy roughness and produced highly significant correlation coefficients for hardwood forests using HV/VV ratio only. Differences in biomass levels and canopy structure, including branching patterns and vertical canopy stratification, were important sources of volume scatter affecting multipolarization radar data. Standardized correction techniques and calibration of aircraft data, in addition to development of canopy models, are recommended for future investigations of forest biomass and structure using synthetic aperture radar.
NASA Astrophysics Data System (ADS)
Jurasinski, Gerald; Scharnweber, Tobias; Schröder, Christian; Lennartz, Bernd; Bauwe, Andreas
2017-04-01
Tree growth depends, among other factors, largely on the prevailing climatic conditions. Therefore, tree growth patterns are to be expected under climate change. Here, we analyze the tree-ring growth response of three major European tree species to projected future climate across a climatic (mostly precipitation) gradient in northeastern Germany. We used monthly data for temperature, precipitation, and the standardized precipitation evapotranspiration index (SPEI) over multiple time scales (1, 3, 6, 12, and 24 months) to construct models of tree-ring growth for Scots pine (Pinus syl- vestris L.) at three pure stands, and for Common beech (Fagus sylvatica L.) and Pedunculate oak (Quercus robur L.) at three mature mixed stands. The regression models were derived using a two-step approach based on partial least squares regression (PLSR) to extract potentially well explaining variables followed by ordinary least squares regression (OLSR) to consolidate the models to the least number of variables while retaining high explanatory power. The stability of the models was tested with a comprehensive calibration-verification scheme. All models were successfully verified with R2s ranging from 0.21 for the western pine stand to 0.62 for the beech stand in the east. For growth prediction, climate data forecasted until 2100 by the regional climate model WETTREG2010 based on the A1B Intergovernmental Panel on Climate Change (IPCC) emission scenario was used. For beech and oak, growth rates will likely decrease until the end of the 21st century. For pine, modeled growth trends vary and range from a slight growth increase to a weak decrease in growth rates depending on the position along the climatic gradient. The climatic gradient across the study area will possibly affect the future growth of oak with larger growth reductions towards the drier east. For beech, site-specific adaptations seem to override the influence of the climatic gradient. We conclude that in Northeastern Germany Scots pine has great potential to remain resilient to projected climate change without any greater impairment, whereas Common beech and Pedunculate oak will likely face lesser growth under the expected warmer and dryer climate conditions. The results call for an adaptation of forest management to mitigate the negative effects of climate change for beech and oak in the region.
Zhenmin Tang; Jim L. Chambers; Mary A. Sword Sayer; James P. Barnett
2003-01-01
To assess the effects of stand density and canopy environment on tree physiology, we measured gas exchange responses of the same needle age class of 16-year-old loblolly pines (Pinus taeda L.) in thinned (512 trees ha-1) and non-thinned treatment plots (2,863 trees ha-1) in central Louisiana....
The influence of canopy, sky condition, and solar angle on light quality in a longleaf pine woodland
Stephen D. Pecot; Stephen B. Horsley; Michael A. Battaglia; Robert J. Mitchell
2005-01-01
Light transmittance estimates under open, heterogeneous woodland canopies such as those of longleaf pine (Pinus palustris Mill.) forests report high spatial and temporal variation in the quantity of the light environment. In addition, light quality, that is, the ratio of red to far-red light (R:FR), regulates important aspects of plant...
Guidelines for regenerating southern pine beetle spots
J.C.G. Goelz; B.L. Strom; J.P. Barnett; M.A. Sword Sayer
2012-01-01
Southern pine forests are of exceptional commercial and ecological importance to the United States, and the southern pine beetle is their most serious insect pest. The southern pine beetle generally kills overstory pines, causing spots of tree mortality that are unpredictable in time and space and frequently disruptive to management activities and goals. The canopy...
Soil concentrations and soil-atmosphere exchange of alkylamines in a boreal Scots pine forest
NASA Astrophysics Data System (ADS)
Kieloaho, Antti-Jussi; Pihlatie, Mari; Launiainen, Samuli; Kulmala, Markku; Riekkola, Marja-Liisa; Parshintsev, Jevgeni; Mammarella, Ivan; Vesala, Timo; Heinonsalo, Jussi
2017-03-01
Alkylamines are important precursors in secondary aerosol formation in the boreal forest atmosphere. To better understand the behavior and sources of two alkylamines, dimethylamine (DMA) and diethylamine (DEA), we estimated the magnitudes of soil-atmosphere fluxes of DMA and DEA using a gradient-diffusion approximation based on measured concentrations in soil solution and in the canopy air space. The ambient air concentration of DMA used in this study was a sum of DMA and ethylamine. To compute the amine fluxes, we first estimated the soil air space concentration from the measured soil solution amine concentration using soil physical (temperature, soil water content) and chemical (pH) state variables. Then, we used the resistance analogy to account for gas transport mechanisms in the soil, soil boundary layer, and canopy air space. The resulting flux estimates revealed that the boreal forest soil with a typical long-term mean pH 5.3 is a possible source of DMA (170 ± 51 nmol m-2 day-1) and a sink of DEA (-1.2 ± 1.2 nmol m-2 day-1). We also investigated the potential role of fungi as a reservoir for alkylamines in boreal forest soil. We found high DMA and DEA concentrations both in fungal hyphae collected from field humus samples and in fungal pure cultures. The highest DMA and DEA concentrations were found in fungal strains belonging to decay and ectomycorrhizal fungal groups, indicating that boreal forest soil and, in particular, fungal biomass may be important reservoirs for these alkylamines.
NASA Technical Reports Server (NTRS)
Wu, S. T.
1985-01-01
This paper presents preliminary results of C-band radar scatterometer measurements of forest canopies of southeastern forests in the vicinity of NASA/NSTL. The results are as follows: (1) the radar backscattering coefficients (BSC) of deciduous forests such as oak, maple, blackgum, and cypress are higher than those of coniferous forests such as slash pine plantation and natural pine; (2) at a large incidence angle, where polarization effect is significant, and by ranging measurement, the VV polarization BSC obtain peak value at the first few meters from the canopy top and decrease rather quickly, while the HH polarization BSC obtain peak value at longer distances from the canopy top and decrease rather slowly through the canopy; and (3) using the active radar calibrator for tree canopy attenuation measurement of a dense and a sparse live oak, it is found that the tree canopies with higher attenuations have higher BSC for all three polarizations, with VV polarization containing the largest differential (2.2 dB).
Chelcy R. Ford; Robert M. Hubbard; James M. Vose
2010-01-01
Recent studies have shown that planted pine stands exhibit higher evapotranspiration (ET) and are more sensitive to climatic conditions compared with hardwood stands. Whether this is due to management and stand effects, biological effects or their interaction is poorly understood. We estimated growing season canopy- and sap flux-scaled leaf-level transpiration (Ec and...
J. P. Roccaforte; P. Z. Fule
2008-01-01
(Please note, this is an abstract only) We modeled crown fire behavior and assessed changes in canopy fuels before and after the implementation of restoration treatments in a ponderosa pine landscape at Mt. Trumbull, Arizona. We measured 117 permanent plots before (1996/1997) and after (2003) thinning and burning treatments. The plots are evenly distributed across the...
Stilbenes as constitutive and induced protection compounds in Scots pine (Pinus sylvestris L.)
Anni Harju; Martti Venalainen
2012-01-01
The goals of our studies are to describe the natural variation in the concentration of constitutive heartwood extractives; estimate the genetic parameters related to heartwood characteristics; determine whether there is a genetic connection between constitutive and inducible production of stilbenes; and, together with technical experts, to develop fast and...
Genetic basis of climatic adaptation in scots pine by bayesian quantitative trait locus analysis.
Hurme, P; Sillanpää, M J; Arjas, E; Repo, T; Savolainen, O
2000-01-01
We examined the genetic basis of large adaptive differences in timing of bud set and frost hardiness between natural populations of Scots pine. As a mapping population, we considered an "open-pollinated backcross" progeny by collecting seeds of a single F(1) tree (cross between trees from southern and northern Finland) growing in southern Finland. Due to the special features of the design (no marker information available on grandparents or the father), we applied a Bayesian quantitative trait locus (QTL) mapping method developed previously for outcrossed offspring. We found four potential QTL for timing of bud set and seven for frost hardiness. Bayesian analyses detected more QTL than ANOVA for frost hardiness, but the opposite was true for bud set. These QTL included alleles with rather large effects, and additionally smaller QTL were supported. The largest QTL for bud set date accounted for about a fourth of the mean difference between populations. Thus, natural selection during adaptation has resulted in selection of at least some alleles of rather large effect. PMID:11063704
Vetikko, Virve; Rantavaara, Aino; Moilanen, Mikko
2010-12-01
Increasing use of wood fuels for energy production in Finland since the 1990s implies that large quantities of the generated ashes will be available for forest fertilization. The aim of this study was to analyse the effect of wood ash application on ¹³⁷Cs activity concentrations in Scots pine (Pinus sylvestris L.) needles and certain berries and mushrooms on drained peatlands. The study was based on field experiments carried out on two mires in Finland in 1997-1998. Two different types of wood ash were applied at dosages of 3500, 3700, 10 500 and 11 100 kg ha⁻¹. Wood ash did not increase ¹³⁷Cs activity concentration in plants in the second growing season following application. On the contrary, a decrease in ¹³⁷Cs activity concentration was seen in the plants of the ecosystem on drained peatlands. This result is of importance, for instance, when recycling of ash is being planned. Copyright © 2010 Elsevier Ltd. All rights reserved.
Kellomäki, Seppo; Peltola, Heli; Nuutinen, Tuula; Korhonen, Kari T; Strandman, Harri
2008-07-12
This study investigated the sensitivity of managed boreal forests to climate change, with consequent needs to adapt the management to climate change. Model simulations representing the Finnish territory between 60 and 70 degrees N showed that climate change may substantially change the dynamics of managed boreal forests in northern Europe. This is especially probable at the northern and southern edges of this forest zone. In the north, forest growth may increase, but the special features of northern forests may be diminished. In the south, climate change may create a suboptimal environment for Norway spruce. Dominance of Scots pine may increase on less fertile sites currently occupied by Norway spruce. Birches may compete with Scots pine even in these sites and the dominance of birches may increase. These changes may reduce the total forest growth locally but, over the whole of Finland, total forest growth may increase by 44%, with an increase of 82% in the potential cutting drain. The choice of appropriate species and reduced rotation length may sustain the productivity of forest land under climate change.
Axenov-Gribanov, Denis V; Voytsekhovskaya, Irina V; Rebets, Yuriy V; Tokovenko, Bogdan T; Penzina, Tatyana A; Gornostay, Tatyana G; Adelshin, Renat V; Protasov, Eugenii S; Luzhetskyy, Andriy N; Timofeyev, Maxim A
2016-10-01
Isolated ecosystems existing under specific environmental conditions have been shown to be promising sources of new strains of actinobacteria. The taiga forest of Baikal Siberia has not been well studied, and its actinobacterial population remains uncharacterized. The proximity between the huge water mass of Lake Baikal and high mountain ranges influences the structure and diversity of the plant world in Siberia. Here, we report the isolation of eighteen actinobacterial strains from male cones of Scots pine trees (Pinus sylvestris) growing on the shore of the ancient Lake Baikal in Siberia. In addition to more common representative strains of Streptomyces, several species belonging to the genera Rhodococcus, Amycolatopsis, and Micromonospora were isolated. All isolated strains exhibited antibacterial and antifungal activities. We identified several strains that inhibited the growth of the pathogen Candida albicans but did not hinder the growth of Saccharomyces cerevisiae. Several isolates were active against Gram-positive and Gram-negative bacteria. The high proportion of biologically active strains producing antibacterial and specific antifungal compounds may reflect their role in protecting pollen against phytopathogens.
Forest development and carbon dynamics after mountain pine beetle outbreaks
E. Matthew Hansen
2014-01-01
Mountain pine beetles periodically infest pine forests in western North America, killing many or most overstory pine stems. The surviving secondary stand structure, along with recruited seedlings, will form the future canopy. Thus, even-aged pine stands become multiaged and multistoried. The species composition of affected stands will depend on the presence of nonpines...
Nelson, Kellen N; Turner, Monica G; Romme, William H; Tinker, Daniel B
2016-12-01
Escalating wildfire in subalpine forests with stand-replacing fire regimes is increasing the extent of early-seral forests throughout the western USA. Post-fire succession generates the fuel for future fires, but little is known about fuel loads and their variability in young post-fire stands. We sampled fuel profiles in 24-year-old post-fire lodgepole pine (Pinus contorta var. latifolia) stands (n = 82) that regenerated from the 1988 Yellowstone Fires to answer three questions. (1) How do canopy and surface fuel loads vary within and among young lodgepole pine stands? (2) How do canopy and surface fuels vary with pre- and post-fire lodgepole pine stand structure and environmental conditions? (3) How have surface fuels changed between eight and 24 years post-fire? Fuel complexes varied tremendously across the landscape despite having regenerated from the same fires. Available canopy fuel loads and canopy bulk density averaged 8.5 Mg/ha (range 0.0-46.6) and 0.24 kg/m 3 (range: 0.0-2.3), respectively, meeting or exceeding levels in mature lodgepole pine forests. Total surface-fuel loads averaged 123 Mg/ha (range: 43-207), and 88% was in the 1,000-h fuel class. Litter, 1-h, and 10-h surface fuel loads were lower than reported for mature lodgepole pine forests, and 1,000-h fuel loads were similar or greater. Among-plot variation was greater in canopy fuels than surface fuels, and within-plot variation was greater than among-plot variation for nearly all fuels. Post-fire lodgepole pine density was the strongest positive predictor of canopy and fine surface fuel loads. Pre-fire successional stage was the best predictor of 100-h and 1,000-h fuel loads in the post-fire stands and strongly influenced the size and proportion of sound logs (greater when late successional stands had burned) and rotten logs (greater when early successional stands had burned). Our data suggest that 76% of the young post-fire lodgepole pine forests have 1,000-h fuel loads that exceed levels associated with high-severity surface fire potential, and 63% exceed levels associated with active crown fire potential. Fire rotations in Yellowstone National Park are predicted to shorten to a few decades and this prediction cannot be ruled out by a lack of fuels to carry repeated fires. © 2016 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Cayuela, C.; Llorens, P.; Sánchez-Costa, E.; Levia, D. F.; Latron, J.
2018-05-01
Stemflow, despite being a small proportion of gross rainfall, is an important and understudied flux of water in forested areas. Recent studies have highlighted its complexity and relative importance for understanding soil and groundwater recharge. Stemflow dynamics offer an insight into how rain water is stored and released from the stems of trees to the soil. Past attempts have been made to understand the variability of stemflow under different types of vegetation, but rather few studies have focused on the combined influence of biotic and abiotic factors on inter and intra-storm stemflow variability, and none in Mediterranean climates. This study presents stemflow data collected at high temporal resolution for two species with contrasting canopies and bark characteristics: Quercus pubescens Willd. (downy oak) and Pinus sylvestris L. (Scots pine) in the Vallcebre research catchments (NE of Spain, 42° 12‧N, 1° 49‧E). The main objective was to understand how the interaction of biotic and abiotic factors affected stemflow dynamics. Mean stemflow production was low for both species (∼1% of incident rainfall) and increased with rainfall amount. However, the magnitude of the response depended on the combination of multiple biotic and abiotic factors. Both species produced similar stemflow volumes and the largest differences were found among trees of the same species. The combined analysis of biotic and abiotic factors showed that funneling ratios and stemflow dynamics were highly influenced by the interaction of rainfall intensity and tree size.
Teste, François P; Lieffers, Victor J; Landhäusser, Simon M
2011-04-01
Seed banks are important for the natural regeneration of many forest species. Most of the seed bank of serotinous lodgepole pine is found in the canopy, but after an outbreak of mountain pine beetle (MPB), a considerable forest-floor seed bank develops through the falling of canopy cones. After large-scale mortality of pine stands from MPB, however, the viability of seeds in both the canopy and the forest-floor cone bank is uncertain. We sampled cones in five stands 3 yr after MPB (3y-MPB); five stands 6 yr after MPB (6y-MPB); and 10 stands 9 yr after MPB (9y-MPB), in central British Columbia, Canada. Seeds were extracted and viability tested using germination techniques. Forest-floor cones had seed with high germination capacity (GC): 82% for embedded (partly buried) closed cones vs. 45% for buried partly open cones. For canopy cones, GC steeply declined about 15 yr after cone maturation and by 25 yr, GC was 50%, compared with 98% in the first year. In the 3y- and 6y-MPB stands, seeds from cones that were 7 to 9 yr old had similar GC on dead and living trees; however, seeds from the dead trees had lower vigor than seeds from living trees. We demonstrate for the first time that a serotinous pine can form a viable soil seed bank by cone burial, which may facilitate natural regeneration if a secondary disturbance occurs. Seeds contained in 15-yr-old cones showed a steep decline in viability, which could limit regeneration if there is a long delay before a secondary disturbance.
Plamboeck, A H; Grip, H; Nygren, U
1999-05-01
Little is known about the vertical distribution of water uptake by trees under different water supply regimes, the subject of this study, conducted in a Scots pine stand on sandy loam in northern Sweden. The objective was to determine the water uptake distribution in pines under two different water regimes, desiccation (no precipitation) and irrigation (2 mm day -1 in July and 1 mm day -1 in August), and to relate the uptake to water content, root and soil texture distributions. The natural 18 O gradient in soil water was exploited, in combination with two added tracers, 2 H at 10 cm and 3 H at 20 cm depth. Extraction of xylem sap and water from the soil profile then enabled evaluation of relative water uptake from four different soil depths (humus layer, 0-10, 10-25 and 25-55 cm) in each of two 50-m 2 plots per treatment. In addition, water content, root biomass and soil texture were determined. There were differences in vertical water uptake distribution between treatments. In July, the pines at the irrigated and desiccated plots took up 50% and 30%, respectively, of their water from the upper layers, down to 25 cm depth. In August, the pines on the irrigated plots took up a greater proportion of their water from layers below 25 cm deep than they did in July. In a linear regression, the mean hydraulic conductivity for each mineral soil horizon explained a large part of the variation in relative water uptake. No systematic variation in the residual water uptake correlated to the root distribution. It was therefore concluded that the distribution of water uptake by the pines at Åheden was not a function of root density in the mineral soil, but was largely determined by the unsaturated hydraulic conductivity.
Aguadé, D; Poyatos, R; Gómez, M; Oliva, J; Martínez-Vilalta, J
2015-03-01
Drought-related tree die-off episodes have been observed in all vegetated continents. Despite much research effort, however, the multiple interactions between carbon starvation, hydraulic failure and biotic agents in driving tree mortality under field conditions are still not well understood. We analysed the seasonal variability of non-structural carbohydrates (NSCs) in four organs (leaves, branches, trunk and roots), the vulnerability to embolism in roots and branches, native embolism (percentage loss of hydraulic conductivity (PLC)) in branches and the presence of root rot pathogens in defoliated and non-defoliated individuals in a declining Scots pine (Pinus sylvestris L.) population in the NE Iberian Peninsula in 2012, which included a particularly dry and warm summer. No differences were observed between defoliated and non-defoliated pines in hydraulic parameters, except for a higher vulnerability to embolism at pressures below -2 MPa in roots of defoliated pines. No differences were found between defoliation classes in branch PLC. Total NSC (TNSC, soluble sugars plus starch) values decreased during drought, particularly in leaves. Defoliation reduced TNSC levels across tree organs, especially just before (June) and during (August) drought. Root rot infection by the fungal pathogen Onnia P. Karst spp. was detected but it did not appear to be associated to tree defoliation. However, Onnia infection was associated with reduced leaf-specific hydraulic conductivity and sapwood depth, and thus contributed to hydraulic impairment, especially in defoliated pines. Infection was also associated with virtually depleted root starch reserves during and after drought in defoliated pines. Moreover, defoliated and infected trees tended to show lower basal area increment. Overall, our results show the intertwined nature of physiological mechanisms leading to drought-induced mortality and the inherent difficulty of isolating their contribution under field conditions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Deposition pattern and throughfall fluxes in secondary cool temperate forest, South Korea
NASA Astrophysics Data System (ADS)
Kumar Gautam, Mukesh; Lee, Kwang-Sik; Song, Byeong-Yeol
2017-07-01
Chemistry and deposition fluxes in the rainfall and throughfall of red pine (Pinus densiflora), black locust (Robinia pseudoacacia), and chestnut (Castanea crenata) monocultures, and mixed red pine-black locust-chestnut stands were examined in a nutrient-limited cool temperate forest of central South Korea. Throughfall was enriched in both basic and acidic constituents relative to rainfall, suggesting that both dry deposition and canopy leaching are important sources of throughfall constituents. Net throughfall fluxes (NTFs) of cations and anions significantly differed among four different stands as well as seasonally. Red pine exhibited highest fluxes (TF and NTF) for Ca2+, black locust for K+, mixed stands for Mg2+, and chestnut for Na+. In contrast, NTF of SO42-, NO3-, and NH4+was highest in the red pine, intermediate in the chestnut and mixed stands, and lowest in the black locust. In general, canopy uptake of H+ and NH4+ for all stands was higher in summer than in winter. Dry deposition appears to play a major role in atmospheric deposition to this cool temperate forest, especially in summer. Dry deposition for both cations and anions displayed high spatial variability, even though stands were adjacent to one another and experienced identical atmospheric deposition loads. Canopy leaching of K+ (95-78% of NTF), Mg2+ (92-23% of NTF), and Ca2+ (91-12% of NTF) was highest for the black locust, lowest for chestnut, and intermediate for the red pine and mixed stands. The present study documented significant changes in throughfall chemistry and NTF among different forest stands, which presumably be related with the differences in the canopy characteristics and differences in their scavenging capacity for dry deposition and canopy exchange. Difference in the canopy retention of H+ and base cation leaching suggests that canopy exchange was mainly driven by weak acid excretion and lesser by H+ exchange reaction. Our results indicate that despite a high base cation deposition, a combination of higher input of acidifying constituents, low soil pH, and total acidic deposition approaching South Korean critical loads make regional forest vulnerable to acidification.
Effects of prolonged drought stress on Scots pine seedling carbon allocation.
Aaltonen, Heidi; Lindén, Aki; Heinonsalo, Jussi; Biasi, Christina; Pumpanen, Jukka
2017-04-01
As the number of drought occurrences has been predicted to increase with increasing temperatures, it is believed that boreal forests will become particularly vulnerable to decreased growth and increased tree mortality caused by the hydraulic failure, carbon starvation and vulnerability to pests following these. Although drought-affected trees are known to have stunted growth, as well as increased allocation of carbon to roots, still not enough is known about the ways in which trees can acclimate to drought. We studied how drought stress affects belowground and aboveground carbon dynamics, as well as nitrogen uptake, in Scots pine (Pinus sylvestris L.) seedlings exposed to prolonged drought. Overall 40 Scots pine seedlings were divided into control and drought treatments over two growing seasons. Seedlings were pulse-labelled with 13CO2 and litter bags containing 15N-labelled root biomass, and these were used to follow nutrient uptake of trees. We determined photosynthesis, biomass distribution, root and rhizosphere respiration, water potential, leaf osmolalities and carbon and nitrogen assimilation patterns in both treatments. The photosynthetic rate of the drought-induced seedlings did not decrease compared to the control group, the maximum leaf specific photosynthetic rate being 0.058 and 0.045 µmol g-1 s-1 for the drought and control treatments, respectively. The effects of drought were, however, observed as lower water potentials, increased osmolalities as well as decreased growth and greater fine root-to-shoot ratio in the drought-treated seedlings. We also observed improved uptake of labelled nitrogen from soil to needles in the drought-treated seedlings. The results indicate acclimation of seedlings to long-term drought by aiming to retain sufficient water uptake with adequate allocation to roots and root-associated mycorrhizal fungi. The plants seem to control water potential with osmolysis, for which sufficient photosynthetic capability is needed. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Matías, Luis; Linares, Juan C; Sánchez-Miranda, Ángela; Jump, Alistair S
2017-10-01
Ongoing changes in global climate are altering ecological conditions for many species. The consequences of such changes are typically most evident at the edge of a species' geographical distribution, where differences in growth or population dynamics may result in range expansions or contractions. Understanding population responses to different climatic drivers along wide latitudinal and altitudinal gradients is necessary in order to gain a better understanding of plant responses to ongoing increases in global temperature and drought severity. We selected Scots pine (Pinus sylvestris L.) as a model species to explore growth responses to climatic variability (seasonal temperature and precipitation) over the last century through dendrochronological methods. We developed linear models based on age, climate and previous growth to forecast growth trends up to year 2100 using climatic predictions. Populations were located at the treeline across a latitudinal gradient covering the northern, central and southernmost populations and across an altitudinal gradient at the southern edge of the distribution (treeline, medium and lower elevations). Radial growth was maximal at medium altitude and treeline of the southernmost populations. Temperature was the main factor controlling growth variability along the gradients, although the timing and strength of climatic variables affecting growth shifted with latitude and altitude. Predictive models forecast a general increase in Scots pine growth at treeline across the latitudinal distribution, with southern populations increasing growth up to year 2050, when it stabilizes. The highest responsiveness appeared at central latitude, and moderate growth increase is projected at the northern limit. Contrastingly, the model forecasted growth declines at lowland-southern populations, suggesting an upslope range displacement over the coming decades. Our results give insight into the geographical responses of tree species to climate change and demonstrate the importance of incorporating biogeographical variability into predictive models for an accurate prediction of species dynamics as climate changes. © 2017 John Wiley & Sons Ltd.
Duration of shoot elongation in Scots pine varies within the crown and between years.
Schiestl-Aalto, Pauliina; Nikinmaa, Eero; Mäkelä, Annikki
2013-10-01
Shoot elongation in boreal and temperate trees typically follows a sigmoid pattern where the onset and cessation of growth are related to accumulated effective temperature (thermal time). Previous studies on leader shoots suggest that while the maximum daily growth rate depends on the availability of resources to the shoot, the duration of the growth period may be an adaptation to long-term temperature conditions. However, other results indicate that the growth period may be longer in faster growing lateral shoots with higher availability of resources. This study investigates the interactions between the rate of elongation and the duration of the growth period in units of thermal time in lateral shoots of Scots pine (Pinus sylvestris). Length development of 202 lateral shoots were measured approximately three times per week during seven growing seasons in 2-5 trees per year in a mature stand and in three trees during one growing season in a sapling stand. A dynamic shoot growth model was adapted for the analysis to determine (1) the maximum growth rate and (2) the thermal time reached at growth completion. The relationship between those two parameters and its variation between trees and years was analysed using linear mixed models. The shoots with higher maximum growth rate within a crown continued to grow for a longer period in any one year. Higher July-August temperature of the previous summer implied a higher requirement of thermal time for growth completion. The results provide evidence that the requirement of thermal time for completion of lateral shoot extension in Scots pine may interact with resource availability to the shoot both from year to year and among shoots in a crown each year. If growing season temperatures rise in the future, this will affect not only the rate of shoot growth but its duration also.
Castro, Jorge
2006-12-01
The date of emergence may have far-reaching implications for seedling performance. Seedlings emerging early in the growing season often have a greater rate of survival or grow better if early emergence provides advantages with respect to an environmental cue. As a result, the benefits of early emergence may be lost if the environmental stress creating the differences among cohorts disappears. The experimental manipulation under field conditions of the factors that constitute the main sources of stress for seedling establishment is thus a straightforward method to evaluate the impact of date of emergence on seedling establishment under realistic conditions. Two field experiments were performed to analyse the effect of emergence date on survival and first-year growth of Scots pine seedlings in natural mountain forests in south-east Spain. Two main environmental factors that determine seedling success in these mountains were considered: (1) microhabitat type (monitoring the effect of date of emergence in the three most common microhabitats where seedlings recruit); (2) summer drought (monitored by an irrigation treatment with control and watered sampling points). Overall, early emergence resulted in a higher probability of survival and better growth in the two experiments and across microhabitats. However, the reduction in summer drought did not diminish the differences observed among cohorts: all cohorts increased their survival and growth, but early cohorts still had a clear advantage. Date of emergence determines establishment success of Pinus sylvestris seedlings, even if cohorts are separated by only a few days, irrespective of the intensity of summer drought. The experimental design, covering a gradient of light intensity and soil moisture that simulates conditions of the regeneration niche of Scots pine across its geographical range, allows the results to be extrapolated to other areas of the species. Date of emergence is thus likely to have a large impact on the demography of Scots pine across its geographical range.
Kapusta, Paweł; Sobczyk, Łukasz
2015-12-01
We studied enchytraeid communities in several habitats polluted by heavy metals from Zn-Pb mining and smelting activities. We sampled 41 sites that differed in the type of substratum (carbonate rock, metal-rich carbonate mining waste, siliceous sand) and land management (planting Scots pine, topsoiling, leaving to natural succession), and the distance from the smelter. Our main aims were to determine which pollution variables and natural factors most influenced enchytraeid species composition, richness and density, and examine what was the effect of planting Scots pine (reclamation) on enchytraeid communities. The soils harboured on average 1 to 5 enchytraeid species and 700 to 18,300 individuals per square metre, depending on the habitat. These figures were generally lower than those reported from unpolluted regions. Redundancy and multiple regression analyses confirmed the negative impact of heavy metal pollution on both enchytraeid community structure and abundance. Among pollution variables, the distance from the smelter best explained the variation in enchytraeid communities. The concentrations of heavy metals in the soil had less (e.g. total Pb and exchangeable Zn) or negligible (water-soluble forms) explanatory power. Natural soil properties were nearly irrelevant for enchytraeids, except for soil pH, which determined the species composition. Plant species richness was an important explanatory variable, as it positively affected most parameters of enchytraeid community. The results of two-by-two factorial comparisons (planting Scots pine vs. natural succession; carbonate mining waste vs. siliceous sand) suggest that reclamation can improve soil quality for biota, since it increased the diversity and abundance of enchytraeids; this effect was not dependent on the type of substratum. In conclusion, enchytraeids responded negatively to heavy metal pollution and their response was consistent and clear. These animals can be used as indicators of metal toxicity even in the presence of high natural variability, but it is recommended to study their species composition. Copyright © 2015 Elsevier B.V. All rights reserved.
Blanchet, Guillaume; Guillet, Sébastien; Calliari, Baptiste; Corona, Christophe; Edvardsson, Johannes; Stoffel, Markus; Bragazza, Luca
2017-01-01
Ring width (TRW) chronologies from Siberian (Pinus sibirica) and Scots (Pinus sylvestris) pine trees were sampled at Mukhrino - a large mire complex in central-western Siberia - to evaluate the impacts of hydroclimatic variability on tree growth over the last three centuries. For this purpose, we compared climate-growth correlation profiles from trees growing on peat soils with those growing on adjacent mineral soils. Tree growth at both peat and mineral soils was positively correlated to air temperature during the vegetation period. This finding can be explained by (i) the positive influence of temperature on plant physiological processes (i.e. growth control) during the growing season and (ii) the indirect impact of air temperatures on water table fluctuations. We observe also a strong link between TRW and the winter Palmer Drought Severity Index (PDSI), especially in Siberian pine, reflecting the isolating effect of snow and limited freezing damage in roots. Significant negative relations were, by contrast, observed between bog TRW chronologies and hydroclimatic indices during spring and summer; they are considered an expression of the negative impacts of high water levels and moist peat soils on root development. Some unusually old bog pines - exhibiting >500 growth rings - apparently colonized the site at the beginning of the Little Ice Age, and therefore seem to confirm that (i) peat conditions may have been drier in Siberia than in most other regions of western Europe during this period. At the same time, the bog trees also point to (ii) their strong dependence on surface conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Chmura, Daniel J; Tjoelker, Mark G
2008-05-01
Crown architecture and size influence leaf area distribution within tree crowns and have large effects on the light environment in forest canopies. The use of selected genotypes in combination with silvicultural treatments that optimize site conditions in forest plantations provide both a challenge and an opportunity to study the biological and environmental determinants of forest growth. We investigated tree growth, crown development and leaf traits of two elite families of loblolly pine (Pinus taeda L.) and one family of slash pine (P. elliottii Mill.) at canopy closure. Two contrasting silvicultural treatments -- repeated fertilization and control of competing vegetation (MI treatment), and a single fertilization and control of competing vegetation treatment (C treatment) -- were applied at two experimental sites in the West Gulf Coastal Plain in Texas and Louisiana. At a common tree size (diameter at breast height), loblolly pine trees had longer and wider crowns, and at the plot-level, intercepted a greater fraction of photosynthetic photon flux than slash pine trees. Leaf-level, light-saturated assimilation rates (A(max)) and both mass- and area-based leaf nitrogen (N) decreased, and specific leaf area (SLA) increased with increasing canopy depth. Leaf-trait gradients were steeper in crowns of loblolly pine trees than of slash pine trees for SLA and leaf N, but not for A(max). There were no species differences in A(max), except in mass-based photosynthesis in upper crowns, but the effect of silvicultural treatment on A(max) differed between sites. Across all crown positions, A(max) was correlated with leaf N, but the relationship differed between sites and treatments. Observed patterns of variation in leaf properties within crowns reflected acclimation to developing light gradients in stands with closing canopies. Tree growth was not directly related to A(max), but there was a strong correlation between tree growth and plot-level light interception in both species. Growth efficiency was unaffected by silvicultural treatment. Thus, when coupled with leaf area and light interception at the crown and canopy levels, A(max) provides insight into family and silvicultural effects on tree growth.
David G. Ray
2013-01-01
Restoring natural fire regimes and diverse ground cover to planted or old-field origin southern pine stands typically requires a substantial reduction in overstory density. While maintaining full canopy cover (CC) is consistent with maximizing fiber production, this approach does not allow sufficient light to reach the forest floor to accomplish a broader set of...
Karina V.R. Schafer; Ram Oren; David S. Ellsworth; Chun-Ta Lai; Jeffrey D. Herricks; Adrien C. Finzi; Daniel D. Richter; Gabriel G. Katul
2003-01-01
We linked a leaf-level C02 assimilation model with a model that accounts for light attenuation in the canopy and measurements of sap-flux-based canopy conductance into a new canopy conductance-constrained carbon assimilation (4C-A) model. We estimated canopy C02 uptake (AnC) at...
Geoecology of a forest watershed underlain by serpentine in Central Europe
Pavel Krám; Filip Oulehle; Veronika Štedrá; Jakub Hruška; James B. Shanley; Rakesh Minocha; Elena Traister
2009-01-01
The geoecology of a serpentinite-dominated site in the Czech Republic was investigated by rock, soil, water, and plant analyses. The 22-ha Pluhuv Bor watershed is almost entirely forested by a nearly 110-year old plantation of Picea abies (Norway Spruce) mixed with native Pinus sylvestris (Scots Pine) in the highest elevations...
Forest health status in Hungary
Andras Szepesi
1998-01-01
Because Hungary has about 18 percent forest area, it is not as densely forested as most of the countries in Europe. Forests are dominated by native species such as oaks, beech, hornbeam, and other broadleaves. As a result of an intensive afforestation in the last 50 years, introduced species, such as black locust, Scots pine, and improved poplars were widely planted...
Plume dispersion in four pine thinning scenarios: development of a simple pheromone dispersion model
Holly Peterson; Harold Thistle; Brian Lamb; Gene Allwine; Steve Edburg; Brian Strom
2010-01-01
A unique field campaign was conducted in 2004 to examine how changes in stand density may affect dispersion of insect pheromones in forest canopies. Over a l4-day period, 126 tracer tests were performed, and conditions ranged from an unthinned loblolly pine (Pinus taeda) canopy through a series of thinning scenarios with basal areas of32.l, 23.0, and 16.1 m2ha-l.ln...
B.E. Borders; R.E. Will; D. Marewitz; Alexander Clark; R. Hendrick; R.O. Teskey; Y. Zhang
2004-01-01
Stem growth, developmental patterns and canopy relations were measured in a chronosequence of intensively managed loblolly pine stands. The study was located on two distinct sites in the lower coastal plain of Georgia, USA and contained a factorial arrangement of complete control of interspecific competition (W) and annual nitrogen fertilization (F). The W treatment...
Ben Knapp; Wang Geoff; Huifeng Hu; Joan Walker; Carsyn Tennant
2011-01-01
Historical land use and management practices in the southeastern United States have resulted in the dominance of loblolly pine on many upland sites that historically were occupied by longleaf pine. There is currently much interest in restoring high quality longleaf pine habitats to such areas, but managers may also desire the retention of some existing canopy trees to...
Staszak, J; Grulke, N E; Marrett, M J; Prus-Glowacki, W
2007-10-01
Effects of canopy ozone (O(3)) exposure and signatures of genetic structure using isozyme markers associated with O(3) tolerance were analyzed in approximately 20-, approximately 80-, and >200-yr-old ponderosa (Pinus ponderosa Dougl. ex Laws.) and Jeffrey pine (Pinus jeffreyi Grev. & Balf.) in Sequoia National Park, California. For both species, the number of alleles and genotypes per loci was higher in parental trees relative to saplings. In ponderosa pine, the heterozygosity value increased, and the fixation index indicated reduction of homozygosity with increasing tree age class. The opposite tendencies were observed for Jeffrey pine. Utilizing canopy attributes known to be responsive to O(3) exposure, ponderosa pine was more symptomatic than Jeffrey pine, and saplings were more symptomatic than old growth trees. We suggest that these trends are related to differing sensitivity of the two species to O(3) exposure, and to higher O(3) exposures and drought stress that younger trees may have experienced during germination and establishment.
James D. Haywood; Tessa A. Bauman; Richard A. Goyer; Finis L. Harris
2004-01-01
Without fire in the Southeastern United States, loblolly pine (Pinus taeda L.) often becomes the overstory dominant on sites historically dominated by longleaf pine (P. palustris Mill.). Beneath the loblolly pine canopy a mature midstory and understory develops of woody vegetation supporting draped fuels. The resulting deep shade...
Michael A. Battaglia; Pu Mou; Brian Palik; Robert J. Mitchell
2002-01-01
Spatial aggregation of forest structure strongly regulates understory light and its spatial variation in longleaf pine (Pinus palustris Mill.) forest ecosystems. Previous studies have demonstrated that light availability strongly influences longleaf pine seedling growth. In this study, the relationship between spatial structure of a longleaf pine...
Potential effects of forest management on surface albedo
NASA Astrophysics Data System (ADS)
Otto, J.; Bréon, F.-M.; Schelhaas, M.-J.; Pinty, B.; Luyssaert, S.
2012-04-01
Currently 70% of the world's forests are managed and this figure is likely to rise due to population growth and increasing demand for wood based products. Forest management has been put forward by the Kyoto-Protocol as one of the key instruments in mitigating climate change. For temperate and boreal forests, the effects of forest management on the stand-level carbon balance are reasonably well understood, but the biophysical effects, for example through changes in the albedo, remain elusive. Following a modeling approach, we aim to quantify the variability in albedo that can be attributed to forest management through changes in canopy structure and density. The modelling approach chains three separate models: (1) a forest gap model to describe stand dynamics, (2) a Monte-Carlo model to estimate the probability density function of the optical path length of photons through the canopy and (3) a physically-based canopy transfer model to estimate the interaction between photons and leaves. The forest gap model provides, on a monthly time step the position, height, diameter, crown size and leaf area index of individual trees. The Monte-Carlo model computes from this the probability density function of the distance a photon travels through crown volumes to determine the direct light reaching the forest floor. This information is needed by the canopy transfer model to calculate the effective leaf area index - a quantity that allows it to correctly represent a 3D process with a 1D model. Outgoing radiation is calculated as the result of multiple processes involving the scattering due to the canopy layer and the forest floor. Finally, surface albedo is computed as the ratio between incident solar radiation and calculated outgoing radiation. The study used two time series representing thinning from below of a beech and a Scots pine forest. The results show a strong temporal evolution in albedo during stand establishment followed by a relatively stable albedo once the canopy is closed. During this period, albedo is affected for a short time by forest operations. The modelling approach allowed us to estimate the importance of ground vegetation in the stand albedo. Given that ground vegetation depends on the light reaching the forest floor, ground vegetation could act as a natural buffer to dampen changes in albedo, allowing the stand to maintain optimal leaf temperature. Consequently, accounting for only the carbon balance component of forest management ignores albedo impacts and is thus likely to yield biased estimates of the climate benefits of forest ecosystems.
NASA Astrophysics Data System (ADS)
Čermák, J.; Cienciala, E.; Kučera, J.; Lindroth, A.; Bednářová, E.
1995-06-01
Transpiration in a mixed old stand of sub-boreal forest in the Norunda region (central Sweden) was estimated on the basis of direct measurement of sap flow rate in 24 large Scots pine and Norway spruce trees in July and August 1993. Sap flow rate was measured using the trunk tissue heat balance method based on internal (electric) heating and sensing of temperature. Transpiration was only 0.7 mm day -1 in a relatively dry period in July (i.e. about 20% of potential evaporation) and substantially higher after a rainy period in August. The error of the estimates of transpiration was higher during a dry period (about 13% and 22% in pine and spruce, respectively) and significantly lower (about 9% in both species) during a period of sufficient water supply. Shallow-rooted spruce trees responded much faster to precipitation than deeply rooted pines.
D. Marks; M. Reba; J. Pomeroy; T. Link; A. Winstral; G. Flerchinger; K. Elder
2008-01-01
During the second year of the NASA Cold Land Processes Experiment (CLPX), an eddy covariance (EC) system was deployed at the Local Scale Observation Site (LSOS) from mid-February to June 2003. The EC system was located beneath a uniform pine canopy, where the trees are regularly spaced and are of similar age and height. In an effort to evaluate the turbulent flux...
Benjamin O. Knapp; G. Geoff Wang; Joan L. Walker; Robert N. Addington
2016-01-01
Over the past few decades, reports of forest health problems have concerned scientists and forest managers in loblolly pine forests of the southeastern United States. Several interacting factors likely contribute to observed reductions in loblolly pine health, including low resource availability on many upland sites that were once dominated by longleaf pine. Currently...
Cuny, Henri E; Rathgeber, Cyrille B K; Lebourgeois, François; Fortin, Mathieu; Fournier, Meriem
2012-05-01
We investigated whether timing and rate of growth are related to the life strategies and fitness of three conifer species. Intra-annual dynamics of wood formation, shoot elongation and needle phenology were monitored over 3 years in five Norway spruces (Picea abies (L.) Karst.), five Scots pines (Pinus sylvestris L.) and five silver firs (Abies alba Mill.) grown intermixed. For the three species, the growing season (delimited by cambial activity onset and cessation) lasted about 4 months, while the whole process of wood formation lasted 5-6 months. Needle unfolding and shoot elongation followed the onset of cambial activity and lasted only one-third of the season. Pines exhibited an 'extensive strategy' of cambial activity, with long durations but low growth rates, while firs and spruces adopted an 'intensive strategy' with shorter durations but higher growth rates. We estimated that about 75% of the annual radial increment variability was attributable to the rate of cell production, and only 25% to its duration. Cambial activity rates culminated at the same time for the three species, whereas shoot elongation reached its maximal rate earlier in pines. Results show that species-specific life strategies are recognizable through functional traits of intra-annual growth dynamics. The opposition between Scots pine extensive strategy and silver fir and Norway spruce intensive strategy supports the theory that pioneer species are greater resource expenders and develop riskier life strategies to capture resources, while shade-tolerant species utilize resources more efficiently and develop safer life strategies. Despite different strategies, synchronicity of the maximal rates of cambial activity suggests a strong functional convergence between co-existing conifer species, resulting in head-on competition for resources.
Nöjd, Pekka; Lindroos, Antti-Jussi; Smolander, Aino; Derome, John; Lumme, Ilari; Helmisaari, Heljä-Sisko
2009-05-01
We studied the chemical changes in forest soil and the effects on Scots pine trees caused by continuous sprinkling infiltration over a period of two years, followed by a recovery period of two years. Infiltration increased the water input onto the forest soil by a factor of approximately 1000. After one year of infiltration, the pH of the organic layer had risen from about 4.0 to 6.7. The NH(4)-N concentration in the organic layer increased, most probably due to the NH(4) ions in the infiltration water, as the net N mineralization rate did not increase. Sprinkling infiltration initiated nitrification in the mineral soil. Macronutrient concentrations generally increased in the organic layer and mineral soil. An exception, however, was the concentration of extractable phosphorus, which decreased strongly during the infiltration period and did not show a recovery within two years. The NO(3)-N and K concentrations had reverted back to their initial level during the two-year recovery period, while the concentrations of Ca, Mg and NH(4)-N were still elevated. Nutrient concentrations in the pine needles increased on the infiltrated plots. However, the needle P concentration increased, despite the decrease in plant-available P in the soil. Despite the increase in the nutrient status, there were some visible signs of chlorosis in the current-year needles after two years of infiltration. The radial growth of the pines more than doubled on the infiltrated plots, which suggests that the very large increase in the water input onto the forest floor had no adverse effect on the functioning of the trees. However, a monitoring period of four years is not sufficient for detecting potential long term detrimental effects on forest trees.
NASA Astrophysics Data System (ADS)
Campioli, M.; Gielen, B.; Granier, A.; Verstraeten, A.; Neirynck, J.; Janssens, I. A.
2010-10-01
Carbon taken up by the forest canopy is allocated to tree organs for biomass production and respiration. Because tree organs have different life span and decomposition rate, the tree C allocation determines the residence time of C in the ecosystem and its C cycling rate. The study of the carbon-use efficiency, or ratio between net primary production (NPP) and gross primary production (GPP), represents a convenient way to analyse the C allocation at the stand level. Previous studies mostly focused on comparison of the annual NPP-GPP ratio among forests of different functional types, biomes and age. In this study, we extend the current knowledge by assessing (i) the annual NPP-GPP ratio and its interannual variability (for five years) for five tree organs (leaves, fruits, branches, stem and coarse roots), and (ii) the seasonal dynamic of NPP-GPP ratio of leaves and stems, for two stands dominated by European beech and Scots pine. The average NPP-GPP ratio for the beech stand (38%) was similar to previous estimates for temperate deciduous forests, whereas the NPP-GPP ratio for the pine stand (17%) is the lowest recorded till now in the literature. The proportion of GPP allocated to leaf NPP was similar for both species, whereas beech allocated a remarkable larger proportion of GPP to wood NPP than pine (29% vs. 6%, respectively). The interannual variability of the NPP-GPP ratio for wood was substantially larger than the interannual variability of the NPP-GPP ratio for leaves, fruits and overall stand and it is likely to be controlled by previous year air temperature (both species), previous year drought intensity (beech) and thinning (pine). Seasonal pattern of NPP-GPP ratio greatly differed between beech and pine, with beech presenting the largest ratio in early season, and pine a more uniform ratio along the season. For beech, NPP-GPP ratio of leaves and stems peaked during the same period in the early season, whereas they peaked in opposite periods of the growing season for pine. Seasonal differences in C allocation are likely due to functional differences between deciduous and evergreen species and temporal variability of the sink strength. The similar GPP and autotrophic respiration between stands and the remarkable larger C allocation to wood at the beech stand indicate that at the beech ecosystem C has a longer residence time than at the pine ecosystem. Further research on belowground production and particularly on fine roots and ectomycorrhizal fungi likely represents the most important step to progress our knowledge on C allocation dynamics.
Robert M. Hubbard; Charles C. Rhoades; Kelly Elder; Jose Negron
2013-01-01
The recent mountain pine beetle outbreak in North American lodgepole pine forests demonstrates the importance of insect related disturbances in changing forest structure and ecosystem processes. Phloem feeding by beetles disrupts transport of photosynthate from tree canopies and fungi introduced to the tree's vascular system by the bark beetles inhibit water...
Formosan subterranean termite resistance to heat treatment of Scots pine and Norway spruce
W. Ramsay Smith; Andreas O. Rapp; Christian Welzbacher; Jerrold E. Winandy
2003-01-01
New challenges to the durability of wood building materials have arisen in the U.S. The Formosan subterranean termite (Coptotermes formosanus Shiraki) now infests sizable portions of the U.S. south (Figure 1) and their range is extending. Heat treatments offer a unique opportunity for wood-based composites because many of the process techniques already employ various...
Acidity of tree bark as a bioindicator of forest pollution in southern Poland
Dr. K. Grodzinska
1976-01-01
PH values and buffering capacity were determined for bark samples of 5 deciduous trees (oak, alder, hornbeam, ash, linden), one shrub (hazel) and one coniferous tree (Scots pine) in the Cracow Industrial Region (Southern Poland) and for comparison in the Bialowieza Forest (North-Eastern Poland). The correlation was found between acidification of tree bark and air...
Dmuchowski, W; Bytnerowicz, A
1995-01-01
Maps of the distribution of environmental pollution by sulfur (S), zinc (Zn), cadmium (Cd), lead (Pb), copper (Cu), and arsenic (As) for the territory of Poland and the Warsaw (Warszawa) district were developed on the basis of chemical analysis of Scots pine (Pinus sylvestris L.) needles collected from randomly selected sampling points during 1983-1985. The maps show deposition zones for the studied elements and can help in identification of sources and directions of air pollution dispersion. This study indicated that vegetation in Poland is greatly endangered by sulfur dioxide (SO(2)) and other sulfurous air pollutants, whereas Zn, Cd, Pb, and As do not pose an immediate threat to vegetation in most of the country's territory. However, in the urban-industrial agglomeration of Katowice-Cracow, very high pollution with Z, Cd, Pb and As could limit growth and development of some sensitive plant species. Higher than normal levels of As in some areas of Poland (Upper Silesia, Glogow-Lubin Copper Region, and areas close to the Russian border near Braniewo) might affect the health of humans and animals. Results of this study indicated that Poland's environment was not contaminated with Cu.
Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge
Placek, Agnieszka; Grobelak, Anna; Kacprzak, Malgorzata
2016-01-01
ABSTRACT Sewage sludge, in particular from the food industry, is characterized by fertilizing properties, due to the high content of organic matter and nutrients. The application of sewage sludge causes an improvement of soil parameters as well as increase in cation exchange capacity, and thus stronger binding of cations in the soil environment, which involves the immobilization of nutrients and greater resistance to contamination. In a field experiment sewage sludge has been used as an additive to the soil supporting the phytoremediation process of land contaminated with heavy metals (Cd, Zn, and Pb) using trees species: Scots pine (Pinus silvestris L.), Norway spruce (Picea abies L.), and oak (Quercus robur L.). The aim of the research was to determine how the application of sewage sludge into the soil surface improves the phytoremediation process. The conducted field experiment demonstrated that selected trees like Scots pine and Norway spruce, because of its excellent adaptability, can be used in the remediation of soil. Oak should not be used in the phytoremediation process of soils contaminated with high concentrations of trace elements in the soil, because a significant amount of heavy metals was accumulated in the leaves of oak causing a risk of recontamination. PMID:26368503
Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge.
Placek, Agnieszka; Grobelak, Anna; Kacprzak, Malgorzata
2016-01-01
Sewage sludge, in particular from the food industry, is characterized by fertilizing properties, due to the high content of organic matter and nutrients. The application of sewage sludge causes an improvement of soil parameters as well as increase in cation exchange capacity, and thus stronger binding of cations in the soil environment, which involves the immobilization of nutrients and greater resistance to contamination. In a field experiment sewage sludge has been used as an additive to the soil supporting the phytoremediation process of land contaminated with heavy metals (Cd, Zn, and Pb) using trees species: Scots pine (Pinus silvestris L.), Norway spruce (Picea abies L.), and oak (Quercus robur L.). The aim of the research was to determine how the application of sewage sludge into the soil surface improves the phytoremediation process. The conducted field experiment demonstrated that selected trees like Scots pine and Norway spruce, because of its excellent adaptability, can be used in the remediation of soil. Oak should not be used in the phytoremediation process of soils contaminated with high concentrations of trace elements in the soil, because a significant amount of heavy metals was accumulated in the leaves of oak causing a risk of recontamination.
Single tree biomass modelling using airborne laser scanning
NASA Astrophysics Data System (ADS)
Kankare, Ville; Räty, Minna; Yu, Xiaowei; Holopainen, Markus; Vastaranta, Mikko; Kantola, Tuula; Hyyppä, Juha; Hyyppä, Hannu; Alho, Petteri; Viitala, Risto
2013-11-01
Accurate forest biomass mapping methods would provide the means for e.g. detecting bioenergy potential, biofuel and forest-bound carbon. The demand for practical biomass mapping methods at all forest levels is growing worldwide, and viable options are being developed. Airborne laser scanning (ALS) is a promising forest biomass mapping technique, due to its capability of measuring the three-dimensional forest vegetation structure. The objective of the study was to develop new methods for tree-level biomass estimation using metrics derived from ALS point clouds and to compare the results with field references collected using destructive sampling and with existing biomass models. The study area was located in Evo, southern Finland. ALS data was collected in 2009 with pulse density equalling approximately 10 pulses/m2. Linear models were developed for the following tree biomass components: total, stem wood, living branch and total canopy biomass. ALS-derived geometric and statistical point metrics were used as explanatory variables when creating the models. The total and stem biomass root mean square error per cents equalled 26.3% and 28.4% for Scots pine (Pinus sylvestris L.), and 36.8% and 27.6% for Norway spruce (Picea abies (L.) H. Karst.), respectively. The results showed that higher estimation accuracy for all biomass components can be achieved with models created in this study compared to existing allometric biomass models when ALS-derived height and diameter were used as input parameters. Best results were achieved when adding field-measured diameter and height as inputs in the existing biomass models. The only exceptions to this were the canopy and living branch biomass estimations for spruce. The achieved results are encouraging for the use of ALS-derived metrics in biomass mapping and for further development of the models.
Modeling a historical mountain pine beetle outbreak using Landsat MSS and multiple lines of evidence
Assal, Timothy J.; Sibold, Jason; Reich, Robin M.
2014-01-01
Mountain pine beetles are significant forest disturbance agents, capable of inducing widespread mortality in coniferous forests in western North America. Various remote sensing approaches have assessed the impacts of beetle outbreaks over the last two decades. However, few studies have addressed the impacts of historical mountain pine beetle outbreaks, including the 1970s event that impacted Glacier National Park. The lack of spatially explicit data on this disturbance represents both a major data gap and a critical research challenge in that wildfire has removed some of the evidence from the landscape. We utilized multiple lines of evidence to model forest canopy mortality as a proxy for outbreak severity. We incorporate historical aerial and landscape photos, aerial detection survey data, a nine-year collection of satellite imagery and abiotic data. This study presents a remote sensing based framework to (1) relate measurements of canopy mortality from fine-scale aerial photography to coarse-scale multispectral imagery and (2) classify the severity of mountain pine beetle affected areas using a temporal sequence of Landsat data and other landscape variables. We sampled canopy mortality in 261 plots from aerial photos and found that insect effects on mortality were evident in changes to the Normalized Difference Vegetation Index (NDVI) over time. We tested multiple spectral indices and found that a combination of NDVI and the green band resulted in the strongest model. We report a two-step process where we utilize a generalized least squares model to account for the large-scale variability in the data and a binary regression tree to describe the small-scale variability. The final model had a root mean square error estimate of 9.8% canopy mortality, a mean absolute error of 7.6% and an R2 of 0.82. The results demonstrate that a model of percent canopy mortality as a continuous variable can be developed to identify a gradient of mountain pine beetle severity on the landscape.
The O-methyltransferase PMT2 mediates methylation of pinosylvin in Scots pine.
Paasela, Tanja; Lim, Kean-Jin; Pietiäinen, Milla; Teeri, Teemu H
2017-06-01
Heartwood extractives are important determinants of the natural durability of pine heartwood. The most important phenolic compounds affecting durability are the stilbenes pinosylvin and its monomethylether, which in addition have important functions as phytoalexins in active defense. A substantial portion of the synthesized pinosylvin is 3-methoxylated but the O-methyltransferase responsible for this modification has not been correctly identified. We studied the expression of the stilbene pathway during heartwood development as well as in response to wounding of xylem and UV-C treatment of needles. We isolated and enzymatically characterized a novel O-methyltransferase, PMT2. The methylated product was verified as pinosylvin monomethylether using ultra performance liquid chromatography-tandem mass spectrometry and high performance liquid chromatography analyses. The PMT2 enzyme was highly specific for stilbenes as substrate, in contrast to caffeoyl-CoA O-methyltransferase (CCoAOMT) and PMT1 that were multifunctional. Expression profile and multifunctional activity of CCoAOMT suggest that it might have additional roles outside lignin biosynthesis. PMT1 is not involved in the stilbene pathway and its biological function remains an open question. We isolated a new specific O-methyltransferase responsible for 3-methoxylation of pinosylvin. Expression of PMT2 closely follows stilbene biosynthesis during developmental and stress induction. We propose that PMT2 is responsible for pinosylvin methylation in Scots pine (Pinus sylvestris), instead of the previously characterized methyltransferase, PMT1. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Uav-Based Automatic Tree Growth Measurement for Biomass Estimation
NASA Astrophysics Data System (ADS)
Karpina, M.; Jarząbek-Rychard, M.; Tymków, P.; Borkowski, A.
2016-06-01
Manual in-situ measurements of geometric tree parameters for the biomass volume estimation are time-consuming and economically non-effective. Photogrammetric techniques can be deployed in order to automate the measurement procedure. The purpose of the presented work is an automatic tree growth estimation based on Unmanned Aircraft Vehicle (UAV) imagery. The experiment was conducted in an agriculture test field with scots pine canopies. The data was collected using a Leica Aibotix X6V2 platform equipped with a Nikon D800 camera. Reference geometric parameters of selected sample plants were measured manually each week. In situ measurements were correlated with the UAV data acquisition. The correlation aimed at the investigation of optimal conditions for a flight and parameter settings for image acquisition. The collected images are processed in a state of the art tool resulting in a generation of dense 3D point clouds. The algorithm is developed in order to estimate geometric tree parameters from 3D points. Stem positions and tree tops are identified automatically in a cross section, followed by the calculation of tree heights. The automatically derived height values are compared to the reference measurements performed manually. The comparison allows for the evaluation of automatic growth estimation process. The accuracy achieved using UAV photogrammetry for tree heights estimation is about 5cm.
Light transmittance estimates in a longleaf pine woodland
Michael A. Battaglia; Robert J. Mitchell; Paul P. Mou; Stephen D. Pecot
2003-01-01
While the importance of canopy structure in open woodlands and savannas on regulating the flow of energy and matter is well known, few studies have investigated how variation in overstory abundance influences canopy light transmission and the extent that estimates vary in their ability to characterize the light environment in these ecosystems. Canopy light...
Estimating Chemical Exchange between Atmospheric Deposition and Forest Canopy in Guizhou, China.
Li, Wei; Gao, Fang; Liao, Xueqin
2013-01-01
To evaluate the effects of atmospheric deposition on forest ecosystems, wet-only precipitation and throughfall samples were collected in two forest types (Masson pine [ Lamb.] forests and mixed conifer and broadleaf forests) in the Longli forest in the Guizhou province of southwestern China for a period of 21 successive months from April 2007 to December 2008. The pH and chemical components of precipitation and throughfall were analyzed. In addition, the canopy budget model was applied to distinguish between in-canopy and atmospheric sources of chemical compounds. Canopy leaching and total potentially acidifying deposition fluxes were calculated. The results showed that the average pH and the concentration of ions in throughfall were higher than those in precipitation, with the exception of the NH concentration. Dry deposition of S and N accumulated more in Masson pine forests than in mixed conifer and broadleaf forests. Canopy leaching was the most significant source of base cations in forest throughfall, which was higher in the mixed forests than in the coniferous forests. Anions in throughfall deposition in Masson pine forests exceeded those in the mixed forests. Higher total potentially acidifying deposition fluxes reflected the more effective amounts of acid delivered to Masson pine forests compared with mixed conifer and broadleaf forests. In addition, acid deposition induced the leaching and loss of nutrient ions such as Mg, K, and Ca. Although the trees of the studied areas have not shown any symptoms of cation loss, a potentially harmful influence was engendered by atmospheric deposition in the two forest types in the Longli area. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Lee, Jana C; Flint, Mary Louise; Seybold, Steven J
2008-06-01
The invasive Mediterranean pine engraver, Orthotomicus erosus (Wollaston) (Coleoptera: Scolytidae), was detected in North America in 2004, and it is currently distributed in the southern Central Valley of California. It originates from the Mediterranean region, the Middle East, and Asia, and it reproduces on pines (Pinus spp.). To identify potentially vulnerable native and adventive hosts in North America, no-choice host range tests were conducted in the laboratory on 22 conifer species. The beetle reproduced on four pines from its native Eurasian range--Aleppo, Canary Island, Italian stone, and Scots pines; 11 native North American pines--eastern white, grey, jack, Jeffrey, loblolly, Monterey, ponderosa, red, Sierra lodgepole, singleleaf pinyon, and sugar pines; and four native nonpines--Douglas-fir, black and white spruce, and tamarack. Among nonpines, fewer progeny developed and they were of smaller size on Douglas-fir and tamarack, but sex ratios of progeny were nearly 1:1 on all hosts. Last, beetles did not develop on white fir, incense cedar, and coast redwood. With loblolly pine, the first new adults emerged 42 d after parental females were introduced into host logs at temperatures of 20-33 degrees C and 523.5 or 334.7 accumulated degree-days based on lower development thresholds of 13.6 or 18 degrees C, respectively.
Timber rattlesnakes and Louisiana pine snakes of the West Gulf Coastal Plain: hypotheses of decline
D. Craig Rudolph; Shirley J. Burgdorf
1997-01-01
Timber rattlesnakes (Croatlus horridus) and Louisiana pine snakes (Pituophis melanoleucus ruthveni) are large-bodies snakes occurring on the West Gulf Coastal Plain. Both species are thoguht to be declining due to increasing habitat alteration. Timber rattlesnakes occur in closed canopy hardwood and pine-hardwood forests, and...
Influence of light and moisture on longleaf pine seedling growth in selection silviculture
David S. Dyson; Edward F. Loewenstein; Steven B. Jack; Dale G. Brockway
2012-01-01
Selection silviculture has become increasingly common for longleaf pine management, yet questions remain regarding residual canopy effects on seedling survival and growth. To determine what levels of residual overstory promote adequate seedling recruitment, 600 containerized longleaf pine seedlings were planted on two sites during the 2007-2008 dormant season. To...
Giorgio Vacchiano; Renzo Motta; James N. Long; John D. Shaw
2008-01-01
Density management diagrams (DMD) are graphical tools used in the design of silvicultural regimes in even-aged forests. They depict the relationship between stand density, average tree size, stand yield and dominant height, based upon relevant ecological and allometric relationships such as the self-thinning rule, the yield-density effect, and site index curves. DMD...
The ratio of NPP to GPP: evidence of change over the course of stand development
Annikki Makela; Harry T. Valentine
2001-01-01
Using Scots pine (Pinus sylvestris L.) in Fenno-Scandia as a case study, we investigate whether net primary production (NPP) and maintenance respiration are constant fractions of gross primary production (GPP) as even-aged mono-specific stands progress from initiation to old age. A model of the ratio of NPP to GPP is developed based on (1) the...
Kupsinskiene, E
2001-12-04
The aim of the research was to evaluate the content of amino acids in the needles of Pinus sylvestris growing in the area affected by a nitrogen fertilizer factory and to compare them with other parameters of needles, trees, and sites. Three young-age stands of Scots pine were selected at a distance of 0.5 km, 5 km, and 17 km from the factory. Examination of the current-year needles in winter of the year 2000 revealed significant (p < 0.05) differences between the site at a 0.5-km distance from the factory and the site at a 17-km distance from the factory--with the site closest to the factory showing the highest concentrations of protein (119%), total arginine (166%), total other amino acids (depending on amino acid, the effect ranged between 119 and 149%), free arginine (771%), other free amino acids (glutamic acid, threonine, serine, lysine--depending on amino acid, the effect ranged between 162 and 234%), also the longest needles, widest diameter, largest surface area, and heaviest dry weight (respectively, 133, 110, 136, and 169%). The gradient of nitrogen concentration in the needles was assessed on the selected plots over the period of 1995-2000, with the highest concentration (depending on year, 119 to 153%) documented in the site located 0.5 km from the factory. Significant correlations were determined between the total amino acid contents (r = 0.448 -0.939, p < 0.05), some free amino acid (arginine, aspartic acid, glutamic acid, lysine, threonine, and serine) contents (r = 0.418 - 0.975, p < 0.05), and air pollutant concentration at the sites, the distance between the sites and the factory, and characteristics of the needles. No correlation was found between free or total arginine content and defoliation or retention of the needles. In conclusion, it was revealed that elevated mean monthly concentration of ammonia (26 microg m(-3)) near the nitrogen fertilizer factory caused changes in nitrogen metabolism, especially increasing (nearly eight times) concentration of free arginine in the needles of Scots pine.
NASA Astrophysics Data System (ADS)
Sprenger, Matthias; Tetzlaff, Doerthe; Soulsby, Chris
2017-07-01
Understanding the influence of vegetation on water storage and flux in the upper soil is crucial in assessing the consequences of climate and land use change. We sampled the upper 20 cm of podzolic soils at 5 cm intervals in four sites differing in their vegetation (Scots Pine (Pinus sylvestris) and heather (Calluna sp. and Erica Sp)) and aspect. The sites were located within the Bruntland Burn long-term experimental catchment in the Scottish Highlands, a low energy, wet environment. Sampling took place on 11 occasions between September 2015 and September 2016 to capture seasonal variability in isotope dynamics. The pore waters of soil samples were analyzed for their isotopic composition (δ2H and δ18O) with the direct-equilibration method. Our results show that the soil waters in the top soil are, despite the low potential evaporation rates in such northern latitudes, kinetically fractionated compared to the precipitation input throughout the year. This fractionation signal decreases within the upper 15 cm resulting in the top 5 cm being isotopically differentiated to the soil at 15-20 cm soil depth. There are significant differences in the fractionation signal between soils beneath heather and soils beneath Scots pine, with the latter being more pronounced. But again, this difference diminishes within the upper 15 cm of soil. The enrichment in heavy isotopes in the topsoil follows a seasonal hysteresis pattern, indicating a lag time between the fractionation signal in the soil and the increase/decrease of soil evaporation in spring/autumn. Based on the kinetic enrichment of the soil water isotopes, we estimated the soil evaporation losses to be about 5 and 10 % of the infiltrating water for soils beneath heather and Scots pine, respectively. The high sampling frequency in time (monthly) and depth (5 cm intervals) revealed high temporal and spatial variability of the isotopic composition of soil waters, which can be critical, when using stable isotopes as tracers to assess plant water uptake patterns within the critical zone or applying them to calibrate tracer-aided hydrological models either at the plot to the catchment scale.
Wirth, C; Schulze, E-D; Schulze, W; von Stünzner-Karbe, D; Ziegler, W; Miljukova, I M; Sogatchev, A; Varlagin, A B; Panvyorov, M; Grigoriev, S; Kusnetzova, W; Siry, M; Hardes, G; Zimmermann, R; Vygodskaya, N N
1999-10-01
The study presents a data set of above-ground biomass (AGB), structure, spacing and fire regime, for 24 stands of pristine Siberian Scots pine (Pinus sylvestris) forests with lichens (n = 20) or Vaccinium/mosses (n = 4) as ground cover, along four chronosequences. The stands of the "lichen" site type (LT) were stratified into three chronosequences according to stand density and fire history. Allometric equations were established from 90 sample trees for stem, coarse branch, fine branch, twig and needle biomass. The LT stands exhibited a low but sustained biomass accumulation until a stand age of 383 years. AGB reached only 6-10 kg dw m -2 after 200 years depending on stand density and fire history compared to 20 kg dw m -2 in the "Vaccinium" type (VT) stands. Leaf area index (LAI) in the LT stands remained at 0.5-1.5 and crown cover was 30-60%, whereas LAI reached 2.5 and crown cover was >100% in the VT stands. Although nearest-neighbour analyses suggested the existence of density-dependent mortality, fire impact turned out to have a much stronger effect on density dynamics. Fire scar dating and calculation of mean and initial fire return intervals revealed that within the LT stands differences in structure and biomass were related to the severity of fire regimes, which in turn was related to the degree of landscape fragmentation by wetlands. Self-thinning analysis was used to define the local carrying capacity for biomass. A series of undisturbed LT stands was used to characterise the upper self-thinning boundary. Stands that had experienced a moderate fire regime were positioned well below the self-thinning boundary in a distinct fire-thinning band of reduced major axis regression slope -0.26. We discuss how this downward shift resulted from alternating phases of density reduction by fire and subsequent regrowth. We conclude that biomass in Siberian Scots pine forests is strongly influenced by fire and that climate change will affect ecosystem functions predominantly via changes in fire regimes.
NASA Astrophysics Data System (ADS)
Seidel, Hannes; Schunk, Christian; Matiu, Michael; Menzel, Annette
2016-04-01
Climate warming and more frequent and severe drought events will alter the adaptedness and fitness of tree species. Especially, Scots pine forests have been affected above average by die-off events during the last decades. Assisted migration of adapted provenances might help alleviating impacts by recent climate change and successfully regenerating forests. However, the identification of suitable provenances based on established ecophysiological methods is time consuming, sometimes invasive, and data on provenance-specific mortality are lacking. We studied the performance, stress and survival of potted Scots pine seedlings from 12 European provenances grown in a greenhouse experiment with multiple drought and warming treatments. In this paper, we will present results of drought stress impacts monitored with four different thermal indices derived from infrared thermography imaging as well as an ample mortality study. Percent soil water deficit (PSWD) was shown to be the main driver of drought stress response in all thermal indices. In spite of wet and dry reference surfaces, however, fluctuating environmental conditions, mainly in terms of air temperature and humidity, altered the measured stress response. In linear mixed-effects models, besides PSWD and meteorological covariates, the factors provenance and provenance - PSWD interactions were included. The explanatory power of the models (R2) ranged between 0.51 to 0.83 and thus, provenance-specific responses to strong and moderate drought and subsequent recovery were revealed. However, obvious differences in the response magnitude of provenances to drought were difficult to explicitly link to general features such Mediterranean - continental type or climate at the provenances' origin. We conclude that seedlings' drought resistance may be linked to summer precipitation and their experienced stress levels are a.o. dependent on their above ground dimensions under given water supply. In respect to mortality, previous drought stress experience lowered the current risk and obvious provenance effects were largely related to different growth traits (dimensions). Our experimental results suggest besides evidence for abiotic stress hardening provenance-specific variation in drought resilience. Thus, there is room for provenance-based assisted migration as tool for climate change adaptation in forestry.
Trocha, Lidia K; Bulaj, Bartosz; Kutczynska, Paulina; Mucha, Joanna; Rutkowski, Pawel; Zadworny, Marcin
2017-08-01
In general, respiration (RS) is highly correlated with nitrogen concentration (N) in plant organs, including roots, which exhibit a positive N-RS relationship. Less is known, however, about the relationship between N and RS in roots of different branch orders within an individual tree along a vertical soil profile; this is especially true in trees with contrasting life strategies, such as pioneer Scots pine (Pinus sylvestris L.) vs mid-successional sessile oak (Quercus petraea Liebl.). In the present research, the impact of root branch order, as represented by those with absorptive vs transporting ability, and soil genetic horizon on root N, RS and the N-RS relationship was examined. Mean RS and total N concentration differed significantly among root branch orders and was significantly higher in absorptive roots than in transporting roots. The soil genetic horizon differentially affected root RS in Scots pine vs sessile oak. The genetic horizon mostly affected RS in absorptive roots of Scots pine and transporting roots in sessile oak. Root N was the highest in absorptive roots and most affected by soil genetic horizon in both tree species. Root N was not correlated with soil N, although N levels were higher in roots growing in fertile soil genetic horizons. Overall, RS in different root branch orders was positively correlated with N in both species. The N-RS relationship in roots, pooled by soil genetic horizon, was significant in both species, but was only significant in sessile oak when roots were pooled by root branch order. In both tree species, a significant interaction was found between the soil genetic horizon and root branch order with root function; however, species-specific responses were found. Both root N, which was unaffected by soil N, and the positive N-RS relationship consistently observed in different genetic horizons suggest that root function prevails over environmental factors, such as soil genetic horizon. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Archaeal communities in boreal forest tree rhizospheres respond to changing soil temperatures.
Bomberg, Malin; Münster, Uwe; Pumpanen, Jukka; Ilvesniemi, Hannu; Heinonsalo, Jussi
2011-07-01
Temperature has generally great effects on both the activity and composition of microbial communities in different soils. We tested the impact of soil temperature and three different boreal forest tree species on the archaeal populations in the bulk soil, rhizosphere, and mycorrhizosphere. Scots pine, silver birch, and Norway spruce seedlings were grown in forest humus microcosms at three different temperatures, 7-11.5°C (night-day temperature), 12-16°C, and 16-22°C, of which 12-16°C represents the typical mid-summer soil temperature in Finnish forests. RNA and DNA were extracted from indigenous ectomycorrhiza, non-mycorrhizal long roots, and boreal forest humus and tested for the presence of archaea by nested PCR of the archaeal 16S rRNA gene followed by denaturing gradient gel electrophoresis (DGGE) profiling and sequencing. Methanogenic Euryarchaeota belonging to Methanolobus sp. and Methanosaeta sp. were detected on the roots and mycorrhiza. The most commonly detected archaeal 16S rRNA gene sequences belonged to group I.1c Crenarchaeota, which are typically found in boreal and alpine forest soils. Interestingly, also one sequence belonging to group I.1b Crenarchaeota was detected from Scots pine mycorrhiza although sequences of this group are usually found in agricultural and forest soils in temperate areas. Tree- and temperature-related shifts in the archaeal population structure were observed. A clear decrease in crenarchaeotal DGGE band number was seen with increasing temperature, and correspondingly, the number of euryarchaeotal DGGE bands, mostly methanogens, increased. The greatest diversity of archaeal DGGE bands was detected in Scots pine roots and mycorrhizas. No archaea were detected from humus samples from microcosms without tree seedling, indicating that the archaea found in the mycorrhizosphere and root systems were dependent on the plant host. The detection of archaeal 16S rRNA gene sequences from both RNA and DNA extractions show that the archaeal populations were living and that they may have significant contribution to the methane cycle in boreal forest soil, especially when soil temperatures rise.
Winter drought impairs xylem phenology, anatomy and growth in Mediterranean Scots pine forests.
Camarero, J J; Guada, G; Sánchez-Salguero, R; Cervantes, E
2016-12-01
Continental Mediterranean forests face drought but also cold spells and both climate extremes can impair the resilience capacity of these forests. Climate warming could amplify the negative effects of cold spells by inducing premature dehardening. Here we capitalize on a winter drought-induced dieback triggered by a cold spell which occurred in December 2001 affecting Scots pine forests in eastern Spain. We assessed post-dieback recovery by quantifying and comparing radial growth and xylem anatomy of non-declining (ND, crown cover >50%) and declining (D, crown cover ≤50%) trees in two sites (VP, Villarroya de los Pinares; TO, Torrijas). We also characterized xylogenesis in both sites and aboveground productivity in site VP. Dieback caused legacy effects since needle loss, a 60% reduction in litter fall and radial-growth decline characterized D-trees 3 years after dieback symptoms started appearing in spring 2002. D-trees formed collapsed tracheids in the 2002-ring, particularly in the most affected VP site where xylogenesis differences between ND and D trees were most noticeable. The lower growth rates of D-trees were caused by a shorter duration of their major xylogenesis phases. In site VP the radial-enlargement and wall-thickening of tracheids were significantly reduced in D-trees as compared to ND-trees because these xylogenesis phases tended to start earlier and end later in ND-trees. Gompertz models fitted to tracheid production predicted that maximum growth rates occurred 11-12 days earlier in ND than in D-trees. The formation of radially-enlarging tracheids was enhanced by longer days in both study sites and also by wetter conditions in the driest TO site, but xylogenesis sensitivity to climate was reduced in D-trees. Winter-drought dieback impairs xylem anatomy and phenology, aboveground productivity, xylogenesis and growth in Mediterranean Scots pine populations. Affected stands show a costly post-dieback recovery challenging their resilience ability. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
AmeriFlux US-Dk3 Duke Forest - loblolly pine
Novick, Kim [Indiana University; Oishi, Chris [USDA Forest Service; Stoy, Paul [Montana State University
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site US-Dk3 Duke Forest - loblolly pine. Site Description - The site was established in 1983 following a clear cut and a burn. Pinus taeda L. (loblolly pine) seedlings were planted at 2.4m by 2.4m spacing and ecosystem development has not been managed after planting. Canopy height increased from 16m in 2001 to 18m in 2004. The canopy is comprised primarily of P. taeda with some emergent Liquidambar styraciflua L. and a diverse and growing understory with 26 different woody species of diameter breast height 42.5 cm. The flux tower lies upwind of the CO2-enriched components of the free atmosphere carbon enrichment (FACE) facility located in the same pine forest. EC instrumentation is at 20.2m on a 22m tower.
Longleaf pine adaptation to fire: is early height growth pattern critical to fire survival?
G. Geoff Wang; Lauren S. Pile; Benjamin O. Knapp; Huifeng Hu
2016-01-01
Longleaf pine (Pinus palustris Mill.) forests are fire-dependent ecosystems because frequent surface fires prevent other species from being recruited into the canopy. The successful recruitment of longleaf pine has been attributed mainly to its unique fire adaptation â the grass stage. It is commonly believed that, while in the grass stage, longleaf pine seedlings...
Koskimäki, Janne J; Pirttilä, Anna Maria; Ihantola, Emmi-Leena; Halonen, Outi; Frank, A Carolin
2015-03-24
Endophytes are microbes that inhabit plant tissues without any apparent signs of infection, often fundamentally altering plant phenotypes. While endophytes are typically studied in plant roots, where they colonize the apoplast or dead cells, Methylobacterium extorquens strain DSM13060 is a facultatively intracellular symbiont of the meristematic cells of Scots pine (Pinus sylvestris L.) shoot tips. The bacterium promotes host growth and development without the production of known plant growth-stimulating factors. Our objective was to examine intracellular colonization by M. extorquens DSM13060 of Scots pine and sequence its genome to identify novel molecular mechanisms potentially involved in intracellular colonization and plant growth promotion. Reporter construct analysis of known growth promotion genes demonstrated that these were only weakly active inside the plant or not expressed at all. We found that bacterial cells accumulate near the nucleus in intact, living pine cells, pointing to host nuclear processes as the target of the symbiont's activity. Genome analysis identified a set of eukaryote-like functions that are common as effectors in intracellular bacterial pathogens, supporting the notion of intracellular bacterial activity. These include ankyrin repeats, transcription factors, and host-defense silencing functions and may be secreted by a recently imported type IV secretion system. Potential factors involved in host growth include three copies of phospholipase A2, an enzyme that is rare in bacteria but implicated in a range of plant cellular processes, and proteins putatively involved in gibberellin biosynthesis. Our results describe a novel endophytic niche and create a foundation for postgenomic studies of a symbiosis with potential applications in forestry and agriculture. All multicellular eukaryotes host communities of essential microbes, but most of these interactions are still poorly understood. In plants, bacterial endophytes are found inside all tissues. M. extorquens DSM13060 occupies an unusual niche inside cells of the dividing shoot tissues of a pine and stimulates seedling growth without producing cytokinin, auxin, or other plant hormones commonly synthesized by plant-associated bacteria. Here, we tracked the bacteria using a fluorescent tag and confocal laser scanning microscopy and found that they localize near the nucleus of the plant cell. This prompted us to sequence the genome and identify proteins that may affect host growth by targeting processes in the host cytoplasm and nucleus. We found many novel genes whose products may modulate plant processes from within the plant cell. Our results open up new avenues to better understand how bacteria assist in plant growth, with broad implications for plant science, forestry, and agriculture. Copyright © 2015 Koskimäki et al.
NASA Astrophysics Data System (ADS)
Kala, L. D.; Subbarao, P. M. V.
2017-11-01
The amount of pine needles (pinus roxburgii) potentially available for use as energy feedstock in the Central Himalayan state of Uttarakhand in India has been estimated. It involves estimating the gross annual amount of pine needle yield followed by a comprehensive identification and quantification of the factors that affect the net annual pine needle yield available as energy feedstock. These factors include considerations such as accessibility, alternative uses, forest fires, other losses, etc., that are influenced by aspects ranging from physical constraints to traditional societal traits. Tree canopy cover method has been used for estimating the gross annual pine needle yield. The information on canopy density is obtained from remote sensing data, that forms the basis for forest classification. The annual gross pine needle yield has been estimated at 1.9 million tonnes while the annual net pine needle yield at 1.33 million tonnes. The annual primary energy potential of pine needles available as energy feedstock has also been estimated. For annual net energy potential estimation, thermal and electrical routes are considered. Electrical energy generation from pine needles using thermochemical conversion has been examined and the corresponding potential for electricity generation been estimated. An installed capacity of 789 MW can be supported with pine needles feedstock for supplying electricity in rural areas for five hours a day. For round the clock generation, an installed capacity of 165 MW can be supported by the pine needle energy feedstock.
Fuel accumulations in Piedmont loblolly pine plantations
Ernst V. Brender; W. Henry McNab; Shelton Williams
1976-01-01
Weight of minor vegetation under unthinned loblolly pine (Pinus taeda L.) plantations was closely related to stand age and basal area stocking. Weight of this vegetation peaked 3 years after clearcutting and planting, then diminished as the pine canopy became denser. Forest floor weight increased steadily through age 23, when it began to level off. Equilibrium forest...
Guide to understory burning in ponderosa pine-larch-fir forests in the Intermountain West
Bruce M. Kilgore; George A. Curtis
1987-01-01
Summarizes the objectives, prescriptions, and techniques used in prescribed burning beneath the canopy of ponderosa pine stands, and stands of ponderosa pine mixed with western larch, Douglas-fir, and grand fir. Information was derived from 12 districts in two USDA Forest Service Regions and seven National Forests in Montana and Oregon.
James D. Haywood; William D. Boyer; Finis L. Harris
1998-01-01
In Grant Parish, Louisiana, increases in overstory basal area, canopy cover, and development of understory woody plants reduced productivity of herbaceous plants in longleaf pine (Pinus palustris Mill.) stands that were managed with fire. Still, the herbaceous plant community can reestablish itself on properly managed upland longleaf pine sites in...
Regenerating the last strips in strip-cuttings in Virginia pine
Edward I. Sucoff
1961-01-01
When Virginia pine (Pinus virginiana Mill.) is logged, even in pure stands, its natural regeneration is not readily achieved. This is because the species is intolerant and commonly functions in nature as a transitory pioneer; hardwoods become established under its canopy and tend to dominate the reproduction after the pine is cut. Experience indicates that the most...
Thomas L. Powell; Gregory Starr; Kenneth L. Clark; Timothy A. Martin; Henry L. Gholz
2005-01-01
Eddy covariance was used to measure energy fluxes from July 2000 - June 2002 above the tree canopy and above the understory in a mature, naturally regenerated slash pine (Pinus elliottii Engelm. var. elliottii) - longleaf pine (Pinus palustris Mill.) flatwoods forest. Understory latent energy (eE) and sensible...
Western white pine growth relative to forest openings
Theresa B. Jain; Russell T. Graham; Penelope Morgan
2004-01-01
In northern Rocky Mountains moist forests, timber harvesting, fire exclusion, and an introduced stem disease have contributed to the decline in western white pine (Pinus monticola Dougl. ex D. Don) abundance (from 90% to 10% of the area). Relations between canopy openings (0.1-15 ha) and western white pine growth within different physical settings are identified....
NASA Astrophysics Data System (ADS)
Drolet, G.; Nichol, C. J.; Wade, T. J.; Porcar-Castell, A.; Nikinmaa, E.; Middleton, E.; Ong, L.; Vesala, T.; Levula, J.; Moncrieff, J. B.
2010-12-01
Remote sensing of the solar-induced chlorophyll fluorescence (F) by vegetation has the potential to provide important information about carbon uptake dynamics in terrestrial ecosystems. Because of the strong physiological link between F and the photosynthetic status, accurate and timely estimates of F over large areas could significantly improve the understanding and predictions of how terrestrial ecosystems respond to climate change. In the past few decades, a number of different techniques and models aimed at retrieving F from remotely sensed measurements of vegetation reflectance were developed and in this study, we took advantage of these new developments to look at the spatial and temporal patterns of F in boreal coniferous forests. The results we present here are part of a larger research project aimed at improving reflectance-based estimates of photosynthesis efficiency and carbon uptake using space-based observations of boreal vegetation. During the summer of 2010, we continuously measured Scots pine (Pinus sylvestris) canopy reflectance using a tower-based spectrometer system (USB-2000+, Ocean Optics, USA) and leaf-level fluorescence using an automated multi channel chlorophyll fluorescence system (MONI-PAM, Heinz Walz GmbH, Germany). These measurements allowed studying the temporal dynamics of canopy-level F and testing methods for extracting F from canopy reflectance. During an intensive airborne campaign in July 2010, we used the University of Edinburgh’s research aircraft equipped with a dual field-of-view spectrometer system (FieldSpec Pro, Analytical Spectral Devices, USA) to repeatedly measure vegetation hyperspectral reflectance over a large area of boreal forest which encompassed the forest canopy sampled by the tower-based system. Airborne- and tower-based estimates of F where correlated to enable studying the spatial and temporal patterns of chlorophyll fluorescence and photosynthetic status over a larger extent of this boreal landscape in Finland. During the airborne campaign, EO-1 Hyperion satellites images encompassing the study region were acquired near-concomitantly with the airborne transects. These satellite images were used, along with the airborne measurements, to study the effect of increasing spatial scale on retrieving F. We further used the airborne- and satellite-based retrievals of F to look at the impact of a 76-year old record heat wave which occurred during the airborne campaign, on the photosynthetic status of boreal coniferous ecosystems over that region.
Multiscale simulation of a prescribed fire event in the New Jersey Pine Barrens using ARPS-CANOPY
Michael T. Kiefer; Warren E. Heilman; Shiyuan Zhong; Joseph J. Charney; Xindi Bian; Nicholas S. Skowronski; John L. Hom; Kenneth L. Clark; Matthew Patterson; Michael R. Gallagher
2014-01-01
Smoke prediction products are one of the tools used by land management personnel for decision making regarding prescribed fires. This study documents the application to a prescribed fire of a smoke prediction system that employs ARPS-CANOPY, a modified version of the Advanced Regional Prediction System (ARPS) model containing a canopy submodel, as the meteorological...
Kane, Van R.; Lutz, James A.; Roberts, Susan L.; Smith, Douglas F.; McGaughey, Robert J.; Povak, Nicholas A.; Brooks, Matthew L.
2013-01-01
While fire shapes the structure of forests and acts as a keystone process, the details of how fire modifies forest structure have been difficult to evaluate because of the complexity of interactions between fires and forests. We studied this relationship across 69.2 km2 of Yosemite National Park, USA, that was subject to 32 fires ⩾40 ha between 1984 and 2010. Forests types included ponderosa pine (Pinus ponderosa), white fir-sugar pine (Abies concolor/Pinus lambertiana), and red fir (Abies magnifica). We estimated and stratified burned area by fire severity using the Landsat-derived Relativized differenced Normalized Burn Ratio (RdNBR). Airborne LiDAR data, acquired in July 2010, measured the vertical and horizontal structure of canopy material and landscape patterning of canopy patches and gaps. Increasing fire severity changed structure at the scale of fire severity patches, the arrangement of canopy patches and gaps within fire severity patches, and vertically within tree clumps. Each forest type showed an individual trajectory of structural change with increasing fire severity. As a result, the relationship between estimates of fire severity such as RdNBR and actual changes appears to vary among forest types. We found three arrangements of canopy patches and gaps associated with different fire severities: canopy-gap arrangements in which gaps were enclosed in otherwise continuous canopy (typically unburned and low fire severities); patch-gap arrangements in which tree clumps and gaps alternated and neither dominated (typically moderate fire severity); and open-patch arrangements in which trees were scattered across open areas (typically high fire severity). Compared to stands outside fire perimeters, increasing fire severity generally resulted first in loss of canopy cover in lower height strata and increased number and size of gaps, then in loss of canopy cover in higher height strata, and eventually the transition to open areas with few or no trees. However, the estimated fire severities at which these transitions occurred differed for each forest type. Our work suggests that low severity fire in red fir forests and moderate severity fire in ponderosa pine and white fir-sugar pine forests would restore vertical and horizontal canopy structures believed to have been common prior to the start of widespread fire suppression in the early 1900s. The fusion of LiDAR and Landsat data identified post-fire structural conditions that would not be identified by Landsat alone, suggesting a broad applicability of combining Landsat and LiDAR data for landscape-scale structural analysis for fire management.
Journeying into the Anthropocene - Scots pine and eastern hemlock over the next 400 years
Duncan Stone
2014-01-01
Our native trees are much loved and valued components of our forests and fields, towns and cities. For a host of reasons - conservation, landscape, shade, and their sheer visual glory, we want our trees to grow big and old. But it takes time - often several centuries - from planting a tree to the desired outcome. This means that we need to choose trees today, which can...
Vertical and seasonal dynamics of fungal communities in boreal Scots pine forest soil.
Santalahti, Minna; Sun, Hui; Jumpponen, Ari; Pennanen, Taina; Heinonsalo, Jussi
2016-11-01
Fungal communities are important for carbon (C) transformations in boreal forests that are one of the largest C pools in terrestrial ecosystems, warranting thus further investigation of fungal community dynamics in time and space. We investigated fungal diversity and community composition seasonally and across defined soil horizons in boreal Scots pine forest in Finland using 454 pyrosequencing. We collected a total of 120 samples from five vertical soil horizons monthly from March to October; in March, under snow. Boreal forest soil generally harbored diverse fungal communities across soil horizons. The communities shifted drastically and rapidly over time. In late winter, saprotrophs dominated the community and were replaced by ectomycorrhizal fungi during the growing season. Our studies are among the first to dissect the spatial and temporal dynamics in boreal forest ecosystems and highlights the ecological importance of vertically distinct communities and their rapid seasonal dynamics. As climate change is predicted to result in warmer and longer snow-free winter seasons, as well as increase the rooting depth of trees in boreal forest, the seasonal and vertical distribution of fungal communities may change. These changes are likely to affect the organic matter decomposition by the soil-inhabiting fungi and thus alter organic C pools. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Klink, Agnieszka; Polechońska, Ludmiła; Dambiec, Małgorzata; Białas, Kamila
2018-01-01
Trees are widely used for biomonitoring and filtering air in industrial, urban, and rural areas. This research was undertaken to examine accumulation capacities of macroelements (Ca, K, Mg, Na) and trace metals (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn) in needles and bark of Pinus sylvestris and leaves and bark of Quercus petraea growing in the vicinity of the chlor-alkali plant PCC Rokita in Brzeg Dolny (Lower Silesia, SW Poland). Because Scots pine is well studied and considered a useful bioindicator, we have used this species as a base for comparison of the accumulation ability of sessile oak that shows some features of good bioindicator, but whose biogeochemistry was scarcely studied. Results showed that for both species leaves contained more macroelements (Ca, K, Mg), whereas the bark was richer in most trace metals (Cd, Cr, Cu, Fe, and Pb). However, trees studied differed with respect to element content. Oak bark and leaves were more effective in accumulating macro- and trace elements (bark Cd, Co, Cr, Cu, K, Mg, Mn, Na, Ni, Pb and leaves Ca, Cr, Cu, Fe, K, Mg, Na, Ni) than Scots pine tissues. Nevertheless, foliar metal accumulation index of these species was similar, suggesting that their overall ability to accumulate trace metals was similar.
NASA Astrophysics Data System (ADS)
Nuopponen, M.; Willför, S.; Jääskeläinen, A.-S.; Sundberg, A.; Vuorinen, T.
2004-11-01
The wood resin in Scots pine ( Pinus sylvestris) stemwood and branch wood were studied using UV resonance Raman (UVRR) spectroscopy. UVRR spectra of the sapwood and heartwood hexane extracts, solid wood samples and model compounds (six resin acids, three fatty acids, a fatty acid ester, sitosterol and sitosterol acetate) were collected using excitation wavelengths of 229, 244 and 257 nm. In addition, visible Raman spectra of the fatty and resin acids were recorded. Resin compositions of heartwood and sapwood hexane extracts were determined using gas chromatography. Raman signals of both conjugated and isolated double bonds of all the model compounds were resonance enhanced by UV excitation. The oleophilic structures showed strong bands in the region of 1660-1630 cm -1. Distinct structures were enhanced depending on the excitation wavelength. The UVRR spectra of the hexane extracts showed characteristic bands for resin and fatty acids. It was possible to identify certain resin acids from the spectra. UV Raman spectra collected from the solid wood samples containing wood resin showed a band at ˜1650 cm -1 due to unsaturated resin components. The Raman signals from extractives in the resin rich branch wood sample gave even more strongly enhanced signals than the aromatic lignin.
Nuopponen, M; Willför, S; Jääskeläinen, A-S; Sundberg, A; Vuorinen, T
2004-11-01
The wood resin in Scots pine (Pinus sylvestris) stemwood and branch wood were studied using UV resonance Raman (UVRR) spectroscopy. UVRR spectra of the sapwood and heartwood hexane extracts, solid wood samples and model compounds (six resin acids, three fatty acids, a fatty acid ester, sitosterol and sitosterol acetate) were collected using excitation wavelengths of 229, 244 and 257 nm. In addition, visible Raman spectra of the fatty and resin acids were recorded. Resin compositions of heartwood and sapwood hexane extracts were determined using gas chromatography. Raman signals of both conjugated and isolated double bonds of all the model compounds were resonance enhanced by UV excitation. The oleophilic structures showed strong bands in the region of 1660-1630 cm(-1). Distinct structures were enhanced depending on the excitation wavelength. The UVRR spectra of the hexane extracts showed characteristic bands for resin and fatty acids. It was possible to identify certain resin acids from the spectra. UV Raman spectra collected from the solid wood samples containing wood resin showed a band at approximately 1650 cm(-1) due to unsaturated resin components. The Raman signals from extractives in the resin rich branch wood sample gave even more strongly enhanced signals than the aromatic lignin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vetter, L. de; Cnudde, V.; Masschaele, B.
This article explores the potential of a scanning electron microscope with an energy dispersive X-ray spectrometer in combination with a new non-destructive 3D visualization technique, X-ray micro-computed tomography, as detection methods for siloxanes/silanes mixtures applied as wood preservatives. In order to have a higher contrast, bromine functional silane was added to the mixture. Scots pine and beech samples were dipped or impregnated with the mixture and subsequently scanned. Both silicon and bromine were easily detectable with both techniques. Dipped siloxanes/silanes covered the cell walls partly in beech and the lumen partly or completely in Scots pine. Impregnated siloxanes/silanes could bemore » found in the cell walls of both wood species. From the results, it can be concluded that, under the circumstances as described in the article, impregnation with a siloxane is necessary to have cell wall penetration. The combination of scanning electron microscopy, energy dispersive X-ray spectroscopy and micro-computed tomography can offer important information concerning the localization of certain products inside wood. While the last of these can monitor changes in 3D, the other two techniques can provide detailed 2D information. Both techniques are complementary and provide important extra information.« less
Laavola, Mirka; Nieminen, Riina; Leppänen, Tiina; Eckerman, Christer; Holmbom, Bjarne; Moilanen, Eeva
2015-04-08
Scots pine (Pinus sylvestris) is known to be rich in phenolic compounds, which may have anti-inflammatory properties. The present study investigated the anti-inflammatory effects of a knot extract from P. sylvestris and two stilbenes, pinosylvin and monomethylpinosylvin, isolated from the extract. Inflammation is characterized by increased release of pro-inflammatory and regulatory mediators including nitric oxide (NO) produced by the inducible nitric oxide synthase (iNOS) pathway. The knot extract (EC50 values of 3 and 3 μg/mL) as well as two of its constituents, pinosylvin (EC50 values of 13 and 15 μM) and monomethylpinosylvin (EC50 values of 8 and 12 μM), reduced NO production and iNOS expression in activated macrophages. They also inhibited the production of inflammatory cytokines IL-6 and MCP-1. More importantly, pinosylvin and monomethylpinosylvin exerted a clear anti-inflammatory effect (80% inhibition at the dose of 100 mg/kg) in the standard in vivo model, carrageenan-induced paw inflammation in the mouse, with the effect being comparable to that of a known iNOS inhibitor L-NIL. The results reveal that the Scots pine stilbenes pinosylvin and monomethylpinosylvin are potential anti-inflammatory compounds.
Torres‐Ruiz, José M.; Poyatos, Rafael; Martinez‐Vilalta, Jordi; Meir, Patrick; Cochard, Hervé; Mencuccini, Maurizio
2015-01-01
Abstract Understanding physiological processes involved in drought‐induced mortality is important for predicting the future of forests and for modelling the carbon and water cycles. Recent research has highlighted the variable risks of carbon starvation and hydraulic failure in drought‐exposed trees. However, little is known about the specific responses of leaves and supporting twigs, despite their critical role in balancing carbon acquisition and water loss. Comparing healthy (non‐defoliated) and unhealthy (defoliated) Scots pine at the same site, we measured the physiological variables involved in regulating carbon and water resources. Defoliated trees showed different responses to summer drought compared with non‐defoliated trees. Defoliated trees maintained gas exchange while non‐defoliated trees reduced photosynthesis and transpiration during the drought period. At the branch scale, very few differences were observed in non‐structural carbohydrate concentrations between health classes. However, defoliated trees tended to have lower water potentials and smaller hydraulic safety margins. While non‐defoliated trees showed a typical response to drought for an isohydric species, the physiology appears to be driven in defoliated trees by the need to maintain carbon resources in twigs. These responses put defoliated trees at higher risk of branch hydraulic failure and help explain the interaction between carbon starvation and hydraulic failure in dying trees. PMID:25997464
Schreiner, Linda; Bauer, Patrick; Buettner, Andrea
2018-05-29
Being one of the most common trees in forests, Pinus sylvestris L. is a frequently used raw material for wood products. Its specific odour is, however, mostly unresolved to date. Accordingly, we investigated Scots pine wood samples grown in Germany for their main odorant composition. We employed dedicated odorant analysis techniques such as gas chromatography-olfactometry (GC-O) and aroma extract dilution analysis (AEDA) and successfully detected 44 odour-active compounds; of these, 39 substances were successfully identified by gas chromatography-mass spectrometry/olfactometry (GC-MS/O) and two-dimensional gas chromatography-mass spectrometry/olfactometry (2D-GC-MS/O). Among the main odorants found were (E,E)-nona-2,4-dienal, vanillin, phenylacetic acid, 3-phenylpropanoic acid, δ-octalactone and α-pinene, all of them having been detected with high flavour dilution factors during GC-O analyses. The majority of the identified odorants were fatty acid degradation products, plus some terpenoic substances and odorous substances resulting from the degradation of lignin. Although some of the detected substances have previously been reported as constituents of wood, 11 substances are reported here for the first time as odour-active compounds in wood, amongst them heptanoic acid, γ-octalactone, δ-nonalactone and (E,Z,Z)-trideca-2,4,7-trienal.
Susceptibility of ectomycorrhizal fungi to soil heating.
Kipfer, Tabea; Egli, Simon; Ghazoul, Jaboury; Moser, Barbara; Wohlgemuth, Thomas
2010-01-01
Ectomycorrhizal (EcM) fungi are an important biotic factor for successful tree recruitment because they enhance plant growth and alleviate drought stress of their hosts. Thus, EcM propagules are expected to be a key factor for forest regeneration after major disturbance events such as stand-replacing forest fires. Yet the susceptibility of soil-borne EcM fungi to heat is unclear. In this study, we investigated the heat tolerance of EcM fungi of Scots pine (Pinus sylvestris L., Pinaceae). Soil samples of three soil depths were heated to the temperature of 45, 60 and 70 °C, respectively, and surviving EcM fungi were assessed by a bioassay using Scots pine as an experimental host plant. EcM species were identified by a combination of morphotyping and sequencing of the ITS region. We found that mean number of species per sample was reduced by the 60 and 70 °C treatment, but not by the 45 °C treatment. Species composition changed due to heat. While some EcM fungi species did not survive heating, the majority of species was also found in the heated samples. The most frequent species in the heat treatment were Rhizopogon roseolus, Cenococcum geophilum and several unidentified species. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Annual cycle of Scots pine photosynthesis
NASA Astrophysics Data System (ADS)
Hari, Pertti; Kerminen, Veli-Matti; Kulmala, Liisa; Kulmala, Markku; Noe, Steffen; Petäjä, Tuukka; Vanhatalo, Anni; Bäck, Jaana
2017-12-01
Photosynthesis, i.e. the assimilation of atmospheric carbon to organic molecules with the help of solar energy, is a fundamental and well-understood process. Here, we connect theoretically the fundamental concepts affecting C3 photosynthesis with the main environmental drivers (ambient temperature and solar light intensity), using six axioms based on physiological and physical knowledge, and yield straightforward and simple mathematical equations. The light and carbon reactions in photosynthesis are based on the coherent operation of the photosynthetic machinery, which is formed of a complicated chain of enzymes, membrane pumps and pigments. A powerful biochemical regulation system has emerged through evolution to match photosynthesis with the annual cycle of solar light and temperature. The action of the biochemical regulation system generates the annual cycle of photosynthesis and emergent properties, the state of the photosynthetic machinery and the efficiency of photosynthesis. The state and the efficiency of the photosynthetic machinery is dynamically changing due to biosynthesis and decomposition of the molecules. The mathematical analysis of the system, defined by the very fundamental concepts and axioms, resulted in exact predictions of the behaviour of daily and annual patterns in photosynthesis. We tested the predictions with extensive field measurements of Scots pine (Pinus sylvestris L.) photosynthesis on a branch scale in northern Finland. Our theory gained strong support through rigorous testing.
NASA Astrophysics Data System (ADS)
Dick, Jonathan; Tetzlaff, Doerthe; Bradford, John; Soulsby, Chris
2018-04-01
As the relationship between vegetation and soil moisture is complex and reciprocal, there is a need to understand how spatial patterns in soil moisture influence the distribution of vegetation, and how the structure of vegetation canopies and root networks regulates the partitioning of precipitation. Spatial patterns of soil moisture are often difficult to visualise as usually, soil moisture is measured at point scales, and often difficult to extrapolate. Here, we address the difficulties in collecting large amounts of spatial soil moisture data through a study combining plot- and transect-scale electrical resistivity tomography (ERT) surveys to estimate soil moisture in a 3.2 km2 upland catchment in the Scottish Highlands. The aim was to assess the spatio-temporal variability in soil moisture under Scots pine forest (Pinus sylvestris) and heather moorland shrubs (Calluna vulgaris); the two dominant vegetation types in the Scottish Highlands. The study focussed on one year of fortnightly ERT surveys. The surveyed resistivity data was inverted and Archie's law was used to calculate volumetric soil moisture by estimating parameters and comparing against field measured data. Results showed that spatial soil moisture patterns were more heterogeneous in the forest site, as were patterns of wetting and drying, which can be linked to vegetation distribution and canopy structure. The heather site showed a less heterogeneous response to wetting and drying, reflecting the more uniform vegetation cover of the shrubs. Comparing soil moisture temporal variability during growing and non-growing seasons revealed further contrasts: under the heather there was little change in soil moisture during the growing season. Greatest changes in the forest were in areas where the trees were concentrated reflecting water uptake and canopy partitioning. Such differences have implications for climate and land use changes; increased forest cover can lead to greater spatial variability, greater growing season temporal variability, and reduced levels of soil moisture, whilst projected decreasing summer precipitation may alter the feedbacks between soil moisture and vegetation water use and increase growing season soil moisture deficits.
NASA Astrophysics Data System (ADS)
Soulsby, C.; Dick, J.; Tetzlaff, D.; Bradford, J.
2016-12-01
The role of vegetation on the partitioning of precipitation, and the subsequent storage and release of water within the landscape is poorly understood. In particular, the relationship between vegetation and soil moisture is complex and reciprocal. The role of soil moisture as the primary source of water to plants may affect vegetation distribution. In turn, the structure of vegetation canopies may regulate water partitioning into interception, throughfall and steam flow. Such spatial differences in the inputs, together with complex patterns of water uptake from highly distributed root networks can create marked heterogeneity in soil moisture dynamics at small scales. Here, we present a study combining 3D and 2D ERT surveys with soil moisture measurements in a 3.2km upland catchment in the Scottish Highlands to understand influences of different vegetation types on spatio-temporal dynamics in soil moisture. The study focussed on one year of fortnightly ERT surveys to investigate plant-soil-water interactions within the root zone in podzolic soils. Locations were selected in both forest stands of 15m high Scots pine (Pinus sylvestris) and non-forest locations dominated by heather (Calluna vulgaris) shrubs (<0.5m high). These dominant species are typical of forest and non-forest vegetation communities in the Scottish Highlands. Results showed differences in the soil moisture dynamics under the different vegetation types, with heterogeneous patterns in the forested site mainly correlated with canopy cover and mirroring interception losses, with pronounced wetting cycles of the soil surrounding the bole of trees as a consequence of stem flow. Temporal variability in the forested site was greater, probably due to the interception, and increased evapotranspiration losses relative to the heather site, with drying typically being focussed on the areas around the trees, and reflecting the amount of water uptake. Moisture changes in the heather site were fairly heterogeneous are related to micro-topographic affects, lower interception ( 30% compared with 45%) and a smaller microclimatic effect of the canopy which serves to create greater fluctuations in soil moisture. Our results confirm the value in using geophysics to spatially elucidate subsurface plant-soil-water interactions.
NASA Astrophysics Data System (ADS)
Huang, C.; Launianen, S.; Gronholm, T.; Katul, G. G.
2013-12-01
Biological aerosol particles are now receiving significant attention given their role in air quality, climate change, and spreading of allergens and other communicable diseases. A major uncertainty in their quantification is associated with complex transport processes governing their generation and removal inside canopies. It has been known for some time now that the commonly used first-order closure to link mean concentration gradients with turbulent fluxes is problematic. The presence of a mean counter-gradient momentum transport in an open trunk space exemplifies such failure. Here, instead of employing K-theory, a size-resolved second-order multilayer model for dry particle deposition is proposed. The starting point of the proposed model is a particle flux budget in which the production, transport, and dissipation terms are modeled. Because these terms require higher-order velocity statistics, this flux budget is coupled with a conventional second-order closure scheme for the flow field within the canopy sub-layer. The failure of conventional K-theory for particle fluxes are explicitly linked to the onset of a mean counter or zero - gradient flow attributed to a significant particle flux transport term. The relative importance of these terms in the particle flux budget and their effects on the foliage particle collection terms for also discussed for each particle size. The proposed model is evaluated against published multi-level measurements of sized-resolved particle fluxes and mean concentration profiles collected within and above a tall Scots pine forest in Hyytiala, Southern Finland. The main findings are that (1) first-order closure schemes may be still plausible for modeling particle deposition velocity, especially in the particle size range smaller than 1 μm when the turbulent particle diffusivity is estimated from higher order flow statistics; (2) the mechanisms leading to the increased trend of particle deposition velocity with increasing friction velocity differ for different particle sizes and different levels (i.e. above and below the canopy); (3) the partitioning of particle deposition onto foliage and forest floor appears insensitive to friction velocity for particles smaller than 100 nm, but decreases with increasing friction velocity for particles large than 100 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClennan, G.E.; Anno, G.H.; Whicker, F.W.
1994-09-01
This volume of the report Chernobyl Doses presents details of a new, quantitative method for remotely sensing ionizing radiation dose to vegetation. Analysis of Landsat imagery of the area within a few kilometers of the Chernobyl nuclear reactor station provides maps of radiation dose to pine forest canopy resulting from the accident of April 26, 1986. Detection of the first date of significant, persistent deviation from normal of the spectral reflectance signature of pine foliage produces contours of radiation dose in the 20 to 80 Gy range extending up to 4 km from the site of the reactor explosion. Themore » effective duration of exposure for the pine foliage is about 3 weeks. For this exposure time, the LD50 of Pinus sylvestris (Scotch pine) is about 23 Gy. The practical lower dose limit for the remote detection of radiation dose to pine foliage with the Landsat Thematic Mapper is about 5 Gy or 1/4 of the LD50.« less
Concentrations and deposition of nitrogenous air pollutants in a ponderosa/Jeffrey pine canopy
Andrzej Bytnerowicz; Mark E. Fenn; Michael J. Arbaugh
1998-01-01
Nitrogenous (N) air pollutant concentrations and surface deposition of nitrate (NO3-) and ammonium (NH4+) to branches of ponderosa pine (Pinus ponderosa Dougl. ex. Laws.) seedlings were measured on a vertical transect in a mature ponderosa/Jeffrey (...
Zhu, Jiaojun; Gonda, Yutaka; Yu, Lizhong; Li, Fengqin; Yan, Qiaoling; Sun, Yirong
2012-01-01
To examine the effects of thinning intensity on wind vulnerability and regeneration in a coastal pine (Pinus thunbergii) forest, thinning with intensities of 20%, 30% and 50% was conducted in December 1997; there was an unthinned treatment as the control (total 8 stands). We re-measured the permanent sites to assess the regeneration characteristics 11 years after thinning. In the 50% thinned stand, seedlings aged from 2 to 10 years exhibited the highest pine seedling density and growth. The age composition ranged from 1-3 years with densities of 9.9 and 5.1 seedlings m(-2) in 30% and 20% thinned stands; only 1-year-old seedlings with a density of 6.1 seedlings m(-2) in the unthinned stand. Similar trends were found for the regeneration of broadleaved species such as Robinia pseudoacacia and Prunus serrulata. We speculate that the canopy openness and moss coverage contributed to the regeneration success in the 50% thinned stand, while the higher litter depth and lack of soil moisture induced the regeneration failure in the unthinned stand. The stands thinned at 20% or 30% were less favourable for pine regeneration than the stands thinned at 50%. Therefore, thinning with less than 30% canopy openness (20% and 30% thinned stands) should be avoided, and thinning at higher than 30% canopy openness (50% thinned stand, approximately 1500 stems ha(-1) at ages 40-50 years) is suggested for increasing regeneration in the coastal pine forest. The implications of thinning-based silviculture in the coastal pine forest management are also discussed. The ongoing development of the broadleaved seedlings calls for further observations.
Partitioning of water flux in a Sierra Nevada ponderosa pine plantation
Kurpius, M.R.; Panek, J.A.; Nikolov, N.T.; McKay, M.; Goldstein, Allen H.
2003-01-01
The weather patterns of the west side of the Sierra Nevada Mountains (cold, wet winters and hot, dry summers) strongly influence how water is partitioned between transpiration and evaporation and result in a specific strategy of water use by ponderosa pine trees (Pinus ponderosa) in this region. To investigate how year-round water fluxes were partitioned in a young ponderosa pine ecosystem in the Sierra Nevada Mountains, water fluxes were continually measured from June 2000 to May 2001 using a combination of sap flow and eddy covariance techniques (above- and below-canopy). Water fluxes were modeled at our study site using a biophysical model, FORFLUX. During summer and fall water fluxes were equally partitioned between transpiration and soil evaporation while transpiration dominated the water fluxes in winter and spring. The trees had high rates of canopy conductance and transpiration in the early morning and mid-late afternoon and a mid-day depression during the dry season. We used a diurnal centroid analysis to show that the timing of high canopy conductance and transpiration relative to high vapor pressure deficit (D) shifted with soil moisture: during periods of low soil moisture canopy conductance and transpiration peaked early in the day when D was low. Conversely, during periods of high soil moisture canopy conductance and transpiration peaked at the same time or later in the day than D. Our observations suggest a general strategy by the pine trees in which they maximize stomatal conductance, and therefore carbon fixation, throughout the day on warm sunny days with high soil moisture (i.e. warm periods in winter and late spring) and maximize stomatal conductance and carbon fixation in the morning through the dry periods. FORFLUX model estimates of evaporation and transpiration were close to measured/calculated values during the dry period, including the drought, but underestimated transpiration and overestimated evaporation during the wet period. ?? 2003 Elsevier Science B.V. All rights reserved.
Linkosalo, Tapio; Heikkinen, Juha; Pulkkinen, Pertti; Mäkipää, Raisa
2014-01-01
We studied the photosynthetic activity of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst) in relation to air temperature changes from March 2013 to February 2014. We measured the chlorophyll fluorescence of approximately 50 trees of each species growing in southern Finland. Fluorescence was measured 1-3 times per week. We began by measuring shoots present in late winter (i.e., March 2013) before including new shoots once they started to elongate in spring. By July, when the spring shoots had achieved similar fluorescence levels to the older ones, we proceeded to measure the new shoots only. We analyzed the data by fitting a sigmoidal model containing four parameters to link sliding averages of temperature and fluorescence. A parameter defining the temperature range over which predicted fluorescence increased most rapidly was the most informative with in describing temperature dependence of fluorescence. The model generated similar fluorescence patterns for both species, but differences were observed for critical temperature and needle age. Down regulation of the light reaction was stronger in spring than in autumn. Pine showed more conservative control of the photosynthetic light reactions, which were activated later in spring and more readily attenuated in autumn. Under the assumption of a close correlation of fluorescence and photosynthesis, spruce should therefore benefit more than pine from the increased photosynthetic potential during warmer springs, but be more likely to suffer frost damage with a sudden cooling following a warm period. The winter of 2013-2014 was unusually mild and similar to future conditions predicted by global climate models. During the mild winter, the activity of photosynthetic light reactions of both conifers, especially spruce, remained high. Because light levels during winter are too low for photosynthesis, this activity may translate to a net carbon loss due to respiration.
Ashley N. Schulz; Angela M. Mech; Christopher Asaro; David R. Coyle; Michelle M. Cram; Rima D. Lucardi; Kamal J.K. Gandhi
2018-01-01
A novel and emerging eastern white pine (Pinus strobus L.) dieback phenomenon is occurring in the Southern Appalachian Mountains in the eastern United States. Symptomatic eastern white pine trees exhibit canopy thinning, branch dieback, and cankers on the branches and bole. These symptoms are often associated with the presence of a scale insect, Matsucoccus...
NASA Astrophysics Data System (ADS)
Barba, Josep; Curiel Yuste, Jorge; Poyatos, Rafael; Janssens, Ivan A.; Lloret, Francisco
2014-05-01
There is more and more evidences that the current global warming trend and the increase of frequency and intensity of drought events during the last decades in the Northern hemisphere are currently producing an increment of drought-induced forest die-off events, being the Mediterranean region one of the most affected areas. This drought-induced mortality could lead in a vegetation shift with unpredicted consequences in carbon pools, where soils are the most determinant factor in this carbon balance as they contain over two-thirds of carbon on forest ecosystems. There are several uncertainties related on the interaction between soil, environmental conditions and vegetation shifts that could modify their capability to be net carbon sinks or sources in a warming context. We studied soil respiration and its heterotrophic (RH) and autotrophic (Ra) (split in fine roots [Rr] and mycorrhizal respiration [Rs]) components in a mixed Mediterranean forest where Scots pine (Pinus sylvestris L.) are suffering from drought-induced die-off and replaced by Holm oak (Quercus ilex L.) as the dominant tree species. Soil respiration fluxes and its fractions were measured every two weeks during one year at four stages of the substitution process (non defoliated pines [NDP], defoliated pines [DFP], dead pines [DP] and Holm oak [HO]), using the mesh exclusion method. The aims were (i) to describe soil respiration fluxes in a drought-induced secondary successional process, (ii) to test whether the changes in vegetation affected soil respiration fluxes and (iii) to determine the influence of environmental and abiotic variables on the different soil respiration fractions. Total soil respiration was 10.10±6.17 TC ha-1 y-1, RH represented the 67% of the total, Ra represented the 34% of the total, and Rr and Rs were the 22 and 12%, respectively. Significant differences were found in total soil respiration and RH between NDP and HO, being lower in HO than in NDP (34% in total and 48% in RH). No differences were found in the annual Ra, Rr neither Rs between the different stages of the successional process. Season and the interaction between soil temperature, soil moisture and type of tree were able to explain two thirds of the variability in total soil respiration and RH, whereas no significant relation seemed to show with Ra and its components. RH was more sensitive at environmental variables and changes in vegetation than Ra. Additionally, RH was influenced by season independently of temperature and moisture changes, which could imply a control of phenology on RH and not on Ra. Our results suggested that soil respiration had a degree of resilience under climate-change induced die-off and subsequent secondary succession process, since no differences were found between NDP, DFP and DP. The observed vegetation shift is also implying a reduction of the CO2 emissions from soil to the atmosphere, which could have strong consequences in the carbon balance as drought-induced substitution from Scots pines to Quercus species has been observed in different places in Mediterranean region.
NASA Astrophysics Data System (ADS)
Sid'ko, A. F.; Botvich, I. Yu.; Pisman, T. I.; Shevyrnogov, A. P.
2014-09-01
The paper presents results and analysis of a study on polarized characteristics of the reflectance factor of different plant canopies under field conditions, using optical remote sensing techniques. Polarization characteristics were recorded from the elevated work platform at heights of 10-18 m in June and July. Measurements were performed using a double-beam spectrophotometer with a polarized light filter attachment, within the spectral range from 400 to 820 nm. The viewing zenith angle was below 20 degree. Birch (Betila pubescens), pine (Pinus sylvestris L.), wheat (Triticum acstivum) [L.] crops, corn (Zea mays L. ssp. mays) crops, and various grass canopies were used in this study. The following polarization characteristics were studied: the reflectance factor of the canopy with the polarizer adjusted to transmit the maximum and minimum amounts of light (Rmax and Rmin), polarized component of the reflectance factor (Rq), and the degree of polarization (Р). Wheat, corn, and grass canopies have higher Rmax and Rmin values than forest plants. The Rq and P values are higher for the birch than for the pine within the wavelength range between 430 and 740 nm. The study shows that polarization characteristics of plant canopies may be used as an effective means of decoding remote sensing data.
NASA Astrophysics Data System (ADS)
Kirchner, P. B.; Bales, R. C.; Musselman, K. N.; Molotch, N. P.
2012-12-01
We investigated the influence of canopy on snow accumulation and melt in a mountain forest using paired snow on and snow off scanning LiDAR altimetry, synoptic measurement campaigns and in-situ time series data of snow depth, SWE, and radiation collected from the Kaweah River watershed, Sierra Nevada, California. Our analysis of forest cover classified by dominant species and 1 m2 grided mean under canopy snow accumulation calculated from airborne scanning LiDAR, demonstrate distinct relationships between forest class and under-canopy snow depth. The five forest types were selected from carefully prepared 1 m vegetation classifications and named for their dominant tree species, Giant Sequoia, Jeffrey Pine, White Fir, Red Fir, Sierra Lodgepole, Western White Pine, and Foxtail Pine. Sufficient LiDAR returns for calculating mean snow depth per m2 were available for 31 - 44% of the canopy covered area and demonstrate a reduction in snow depth of 12 - 24% from adjacent open areas. The coefficient of variation in snow depth under canopies ranged from 0.2 - 0.42 and generally decreased as elevation increased. Our analysis of snow density snows no statistical significance between snow under canopies and in the open at higher elevations with a weak significance for snow under canopies at lower elevations. Incident radiation measurements made at 15 minute intervals under forest canopies show an input of up to 150 w/m2 of thermal radiation from vegetation to the snow surface on forest plots. Snow accumulated on the mid to high elevation forested slopes of the Sierra Nevada represents the majority of winter snow storage. However snow estimates in forested environments demonstrate a high level of uncertainty due to the limited number of in-situ observations and the inability of most remote sensing platforms to retrieve reflectance under dense vegetation. Snow under forest canopies is strongly mediated by forest cover and decoupled from the processes that dictate accumulation and ablation of snow in open locations, where almost all precipitation and meteorlogic measurements concerning snow are made. Snow accumulation is intercepted by vegetation until it accumulates to a depth equal to or greater than the height of the vegetation, is reduced by the amount of sublimation or evaporation occurring while on the canopy and is redistributed beneath the canopy at a different density or as liquid water. Ablation processes are dictated by the energy environment surrounding vegetation where sensible heat is mediated by shading of short wave radiation.
Zha, T S; Kellomaki, S; Wang, K Y
2003-07-01
Sixteen 20-year-old Scots pine (Pinus sylvestris L.) trees growing in the field were enclosed for 4 years in environment-controlled chambers that maintained: (1) ambient conditions (CON); (2) elevated atmospheric CO2 concentration (ambient + 350 micro mol mol-1; EC); (3) elevated temperature (ambient +2-6 degrees C; ET); or (4) elevated CO2 and elevated temperature (ECT). The dark respiration rates of 1-year-old shoots, from which needles had been partly removed, were measured over the growing season in the fourth year. In all treatments, the temperature coefficient of respiration, Q10, changed with season, being smaller during the growing season than at other times. Respiration rate varied diurnally and seasonally with temperature, being highest around mid-summer and declining gradually thereafter. When measurements were made at the temperature of the chamber, respiration rates were reduced by the EC treatment relative to CON, but were increased by ET and ECT treatments. However, respiration rates at a reference temperature of 15 degrees C were reduced by ET and ECT treatments, reflecting a decreased capacity for respiration at warmer temperatures (negative acclimation). The interaction between season and treatment was not significant. Growth respiration did not differ between treatments, but maintenance respiration did, and the differences in mean daily respiration rate between the treatments were attributable to the maintenance component. We conclude that maintenance respiration should be considered when modelling respiratory responses to elevated CO2 and elevated temperature, and that increased atmospheric temperature is more important than increasing CO2 when assessing the carbon budget of pine forests under conditions of climate change.
John M. Kabrick; Benjamin O. Knapp; Daniel C. Dey; David R. Larsen
2015-01-01
There is interest in restoring shortleaf pine (Pinus echinata) in pineâoak woodlands where it once was abundant. Because of its shade intolerance and slow initial growth rate, shortleaf pine restoration has remained a challenge because competition from hardwoods exhibits greater initial growth following canopy removal but greater shade tolerance with...
A forest transect of pine mountain, Kentucky: changes since E. Lucy Braun and chestnut blight
Tracy S. Hawkins
2006-01-01
In 1997, forest composition and structure were determined for Hi Lewis Pine Barrens State Nature Preserve, a 68-ha tract on the south slope of Pine Mountain, Harlan County, Kentucky. Data collected from 28 0.04-ha plots were used to delineate forest types. Percent canopy compositions were compared with those reported by Dr. E. Lucy Braun prior to the peak of chestnut...
NASA Astrophysics Data System (ADS)
Storck, Pascal; Lettenmaier, Dennis P.; Bolton, Susan M.
2002-11-01
The results of a 3 year field study to observe the processes controlling snow interception by forest canopies and under canopy snow accumulation and ablation in mountain maritime climates are reported. The field study was further intended to provide data to develop and test models of forest canopy effects on beneath-canopy snowpack accumulation and melt and the plot and stand scales. Weighing lysimeters, cut-tree experiments, and manual snow surveys were deployed at a site in the Umpqua National Forest, Oregon (elevation 1200 m). A unique design for a weighing lysimeter was employed that allowed continuous measurements of snowpack evolution beneath a forest canopy to be taken at a scale unaffected by variability in canopy throughfall. Continuous observations of snowpack evolution in large clearings were made coincidentally with the canopy measurements. Large differences in snow accumulation and ablation were observed at sites beneath the forest canopy and in large clearings. These differences were not well described by simple relationships between the sites. Over the study period, approximately 60% of snowfall was intercepted by the canopy (up to a maximum of about 40 mm water equivalent). Instantaneous sublimation rates exceeded 0.5 mm per hour for short periods. However, apparent average sublimation from the intercepted snow was less than 1 mm per day and totaled approximately 100 mm per winter season. Approximately 72 and 28% of the remaining intercepted snow was removed as meltwater drip and large snow masses, respectively. Observed differences in snow interception rate and maximum snow interception capacity between Douglas fir (Pseudotsuga menziesii), white fir (Abies concolor), ponderosa pine (Pinus ponderosa), and lodgepole pine (Pinus contorta) were minimal.
Multicycle Wilhelmy plate method for wetting properties, swelling and liquid sorption of wood.
Moghaddam, Maziar Sedighi; Wålinder, Magnus E P; Claesson, Per M; Swerin, Agne
2013-10-01
A multicycle Wilhelmy plate method has been developed to investigate wetting properties, liquid sorption, and swelling of porous substrates such as wood. The use of the method is exemplified by studies of wood veneers of Scots pine sapwood and heartwood, which were subjected to repeated immersion and withdrawal in a swelling liquid (water) and in a nonswelling liquid (octane). The swelling liquid changes the sample dimensions during measurements, in particular its perimeter. This, in turn, influences the force registered. A model based on a linear combination of the measured force and final change in sample perimeter is suggested, and validated to elucidate the dynamic perimeter change of wood veneer samples. We show that pine heartwood and pine sapwood differ in several respects in their interaction with water. Pine heartwood showed (i) lower liquid uptake, (ii) lower swelling, (iii) higher contact angle, and (iv) lower level of dissolution of surface active components (extractives) than pine sapwood. We conclude that the method is also suitable for studying wetting properties of other porous and swellable materials. The wettability results were supported by surface chemical analysis using X-ray photoelectron spectroscopy, showing higher extractives and lignin content on heartwood than on sapwood surfaces.
Frost hardiness of mycorrhizal and non-mycorrhizal Scots pine under two fertilization treatments.
Korhonen, Anna; Lehto, Tarja; Repo, Tapani
2015-07-01
Survival and functioning of mycorrhizal associations at low temperatures are not known well. In an earlier study, ectomycorrhizas did not affect the frost hardiness of Scots pine (Pinus sylvestris L.) roots, but here we studied whether differential nutrient availability would change the result and additionally, alter frost hardiness aboveground. The aim in this experiment was to compare the frost hardiness of roots and needles of mycorrhizal (Hebeloma sp.) and non-mycorrhizal Scots pine seedlings raised using two fertilization treatments and two cold-hardening regimes. The fertilization treatments were low (LF) and high (HF) application of a complete nutrient solution. Three hundred mycorrhizal and non-mycorrhizal seedlings were cultivated in growth chambers in four blocks for 16 weeks. For the first 9 weeks, the seedlings grew in long-day and high-temperature (LDHT) with low fertilization and then they were raised for 3 weeks in LDHT with either low or high fertilization. After this, half of the plants in each treatment combination remained in LDHT, and half were transferred to short-day and low-temperature (SDLT) conditions to cold acclimatize. The frost hardiness of the roots and needles was assessed using controlled freezing tests followed by electrolyte leakage tests (REL). Mycorrhizal roots were slightly more frost hardy than non-mycorrhizal roots, but only in the growing-season conditions (LDHT) in low-nutrient treatment. In LDHT and LF, the frost hardiness of the non-mycorrhizal roots was about -9 °C, and that of the non-mycorrhizal HF roots and the mycorrhizal roots in both fertilization levels was about -11 °C. However, no difference was found in the roots within the SDLT regime, and in needles, there was no difference between mycorrhizal and fertilization treatments. The frost hardiness of needles increased by SDLT treatment, being -8.5 and -14.1 °C in LDHT and SDLT, respectively. The dry mass of roots, stems, and needles was lower in LF than in HF and lower in SDLT than in LDHT. Mycorrhizal treatment did not affect the dry mass or its allocation. Although the mycorrhizal roots were slightly more frost hardy in the growing-season conditions, this is not likely to have significance in the field.
Tara Keyser; Frederick Smith
2009-01-01
Two determinants of crown fire hazard are canopy bulk density (CBD) and canopy base height (CBH). The Fire and Fuels Extension to the Forest Vegetation Simulator (FFE-FVS) is a model that predicts CBD and CBH. Currently, FFE-FVS accounts for neither geographic variation in tree allometries nor the nonuniform distribution of crown mass when one is estimating CBH and CBD...
Forest response and recovery following disturbance in upland forests of the Atlantic Coastal Plain.
Schäfer, Karina V R; Renninger, Heidi J; Carlo, Nicholas J; Vanderklein, Dirk W
2014-01-01
Carbon and water cycling of forests contribute significantly to the Earth's overall biogeochemical cycling and may be affected by disturbance and climate change. As a larger body of research becomes available about leaf-level, ecosystem and regional scale effects of disturbances on forest ecosystems, a more mechanistic understanding is developing which can improve modeling efforts. Here, we summarize some of the major effects of physical and biogenic disturbances, such as drought, prescribed fire, and insect defoliation, on leaf and ecosystem-scale physiological responses as well as impacts on carbon and water cycling in an Atlantic Coastal Plain upland oak/pine and upland pine forest. During drought, stomatal conductance and canopy stomatal conductance were reduced, however, defoliation increased conductance on both leaf-level and canopy scale. Furthermore, after prescribed fire, leaf-level stomatal conductance was unchanged for pines but decreased for oaks, while canopy stomatal conductance decreased temporarily, but then rebounded the following growing season, thus exhibiting transient responses. This study suggests that forest response to disturbance varies from the leaf to ecosystem level as well as species level and thus, these differential responses interplay to determine the fate of forest structure and functioning post disturbance.
Raija Laiho; Jukka Laine; Carl C. Trettin; Leena Finér
2004-01-01
Peatlands form a large carbon (C) pool but their C sink is labile and susceptible to changes in climate and land-use. Some pristine peatlands are forested, and others have the potential: the amount of arboreal vegetation is likely to increase if soil water levels are lowered as a consequence of climate change. On those sites tree litter dynamics may be crucial for the...
Varenius, Kerstin; Lindahl, Björn D; Dahlberg, Anders
2017-09-01
Fennoscandian forestry has in the past decades changed from natural regeneration of forests towards replantation of clear-cuts, which negatively impacts ectomycorrhizal fungal (EMF) diversity. Retention of trees during harvesting enables EMF survival, and we therefore expected EMF communities to be more similar to those in old natural stands after forest regeneration using seed trees compared to full clear-cutting and replanting. We sequenced fungal internal transcribed spacer 2 (ITS2) amplicons to assess EMF communities in 10- to 60-year-old Scots pine stands regenerated either using seed trees or through replanting of clear-cuts with old natural stands as reference. We also investigated local EMF communities around retained old trees. We found that retention of seed trees failed to mitigate the impact of harvesting on EMF community composition and diversity. With increasing stand age, EMF communities became increasingly similar to those in old natural stands and permanently retained trees maintained EMF locally. From our observations, we conclude that EMF communities, at least common species, post-harvest are more influenced by environmental filtering, resulting from environmental changes induced by harvest, than by the continuity of trees. These results suggest that retention of intact forest patches is a more efficient way to conserve EMF diversity than retaining dispersed single trees. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Modelling the effect of low soil temperatures on transpiration by Scots pine
NASA Astrophysics Data System (ADS)
Mellander, Per-Erik; Stähli, Manfred; Gustafsson, David; Bishop, Kevin
2006-06-01
For ecosystem modelling of the Boreal forest it is important to include processes associated with low soil temperature during spring-early summer, as these affect the tree water uptake. The COUP model, a physically based SVAT model, was tested with 2 years of soil and snow physical measurements and sap flow measurements in a 70-year-old Scots pine stand in the boreal zone of northern Sweden. During the first year the extent and duration of soil frost was manipulated in the field. The model was successful in reproducing the timing of the soil warming after the snowmelt and frost thaw. A delayed soil warming, into the growing season, severely reduced the transpiration. We demonstrated the potential for considerable overestimation of transpiration by the model if the reduction of the trees' capacity to transpire due to low soil temperatures is not taken into account. We also demonstrated that the accumulated effect of aboveground conditions could be included when simulating the relationship between soil temperature and tree water uptake. This improved the estimated transpiration for the control plot and when soil warming was delayed into the growing season. The study illustrates the need of including antecedent conditions on root growth in the model in order to catch these effects on transpiration. The COUP model is a promising tool for predicting transpiration in high-latitude stands.
Savolainen, Outi; Kujala, Sonja T; Sokol, Catherina; Pyhäjärvi, Tanja; Avia, Komlan; Knürr, Timo; Kärkkäinen, Katri; Hicks, Sheila
2011-01-01
The adaptive potential of the northernmost Pinus sylvestris L. (and other northern tree) populations is considered by examining first the current patterns of quantitative genetic adaptive traits, which show high population differentiation and clines. We then consider the postglacial history of the populations using both paleobiological and genetic data. The current patterns of diversity at nuclear genes suggest that the traces of admixture are mostly visible in mitochondrial DNA variation patterns. There is little evidence of increased diversity due to admixture between an eastern and western colonization lineage, but no signal of reduced diversity (due to sequential bottlenecks) either. Quantitative trait variation in the north is not associated with the colonizing lineages. The current clines arose rapidly and may be based on standing genetic variation. The initial phenotypic response of Scots pine in the north is predicted to be increased survival and growth. The genetic responses are examined based on quantitative genetic predictions of sustained selection response and compared with earlier simulation results that have aimed at more ecological realism. The phenotypic responses of increased growth and survival reduce the opportunity for selection and delay the evolutionary responses. The lengthening of the thermal growing period also causes selection on the critical photoperiod in the different populations. Future studies should aim at including multiple ecological and genetic factors in evaluating potential responses.
Hawes, C; Stewart, A; Evans, H
2002-05-01
The importance of wood ants (Formica rufa) in determining the community structure (defined as the relative abundance of component species) and small-scale distribution of carabids was examined in a mature Scots pine stand in the New Forest, southern England. Carabids and wood ants were sampled by pitfall trapping throughout the forest stand from March to September 1998. The abundance of individual carabid species were modelled using vegetation type (grass or bracken), litter depth and wood ant density as independent explanatory variables. Models were fitted using a maximum-likelihood method (GLIM v.3.77; Baker 1985) with the assumption of a Poisson distribution, using a log-link function. Areas of high wood ant density were characterised by low abundance and species richness of carabids and high percentage dominance by the most commonly sampled species, Abax parallelepipedus. The extent and type of vegetation cover was found to influence the distribution and abundance of certain carabid species but only in areas where the density of wood ants was low. Large-bodied species occurred more frequently in bracken-dominated patches where the litter layer was deeper and the density of potential prey items was higher. Wood ant density was found to be the most important determinant of carabid species abundance in the study site.
NIR spectroscopic measurement of moisture content in Scots pine seeds.
Lestander, Torbjörn A; Geladi, Paul
2003-04-01
When tree seeds are used for seedling production it is important that they are of high quality in order to be viable. One of the factors influencing viability is moisture content and an ideal quality control system should be able to measure this factor quickly for each seed. Seed moisture content within the range 3-34% was determined by near-infrared (NIR) spectroscopy on Scots pine (Pinus sylvestris L.) single seeds and on bulk seed samples consisting of 40-50 seeds. The models for predicting water content from the spectra were made by partial least squares (PLS) and ordinary least squares (OLS) regression. Different conditions were simulated involving both using less wavelengths and going from samples to single seeds. Reflectance and transmission measurements were used. Different spectral pretreatment methods were tested on the spectra. Including bias, the lowest prediction errors for PLS models based on reflectance within 780-2280 nm from bulk samples and single seeds were 0.8% and 1.9%, respectively. Reduction of the single seed reflectance spectrum to 850-1048 nm gave higher biases and prediction errors in the test set. In transmission (850-1048 nm) the prediction error was 2.7% for single seeds. OLS models based on simulated 4-sensor single seed system consisting of optical filters with Gaussian transmission indicated more than 3.4% error in prediction. A practical F-test based on test sets to differentiate models is introduced.
[CO2 turbulent exchange in a broadleaved Korean pine forest in Changbai Mountains].
Wu, Jia-bing; Guan, De-xin; Sun, Xiao-min; Shi, Ting-ting; Han, Shi-jie; Jin, Chang-jie
2007-05-01
The measurement of CO2 turbulent exchange in a broadleaved Korean pine forest in Changbai Mountains by an open-path eddy covariance system showed that with near neutral atmospheric stratification, the CO2 and vertical wind components over canopy in inertial subrange followed the expected -2/3 power law, and the dominant vertical eddy scale was about 40 m. The frequency ranges of eddy contributions to CO2 fluxes were mostly within 0.01-2.0 Hz, and the eddy translated by low frequency over canopy contributed more of CO2 fluxes. The open-path eddy covariance system could satisfy the estimation of turbulent fluxes over canopy, but the CO2 fluxes between forest and atmosphere were generally underestimated at night because the increment of non turbulent processes, suggesting that the CO2 fluxes estimated under weak turbulence needed to revise correspondingly.
NASA Astrophysics Data System (ADS)
Martínez-Sancho, Elisabet; Dorado-Liñán, Isabel; Gutiérrez-Merino, Emilia; Matiu, Michael; Heinrich, Ingo; Helle, Gerhard; Menzel, Annette
2017-04-01
Drought is one of the main drivers of species distribution in the Mediterranean Basin, which will be exacerbated by climate change. The increase of atmospheric CO2 concentrations (Ca) has been related to enhanced tree growth and intrinsic water use efficiency (iWUE). However, in the Mediterranean Basin this 'fertilizing' effect should compensate the potential drought-induced growth reduction to maintain forest productivity at a comparable level. This is particularly relevant for temperate species reaching their southern distribution limits and/or the limits of their climatic niche in this region. We investigated tree growth and physiological responses of Scots pine (Pinus sylvestris L.) and sessile oak (Quercus petraea (Matt.) Liebl.) stands located at their southern distribution limits using annually resolved tree-ring width and δ13C chronologies for the period 1960-2012. The selected stands were sampled in Spain, France, Italy, Slovenia, Bulgaria, and Romania. Wood cores were extracted at each site and tree-ring width and δ13C were measured. Basal area increment (BAI) was calculated as a surrogate of secondary growth and 13C discrimination (Δ), leaf intercellular CO2 concentration (Ci) and iWUE were estimated from δ13C values. The temporal trends of BAI, Δ, Ci and iWUE, as well as in climatic variables (i.e. temperature, precipitation and potential evapotranspiration derived from CRU TS3.23 dataset) were calculated per site for the study period. Our specific objectives were (i) to test if rising atmospheric CO2 concentrations and changes in climate may have induced shifts in tree growth and ecophysiological proxies; (ii) to determine whether and how changes in iWUE are related to radial growth rates; and (iii) to assess site-specific physiological adjustments to increased atmospheric CO2 concentrations over the studied period. Preliminary results showed a generalized increase in Ci, and consequently in iWUE, at all study sites. Scots pine stands displayed a significant decreased in BAI likely induced by summer droughts, leading to a negative relationship between iWUE and BAI. In addition, most of the pine stands kept a constant Ci/Ca over the study period. Sessile oak stands displayed positive growth trends over the study period and correlations of BAI with summer drought were lower and scarcer. Oak stands located in the eastern part of the Mediterranean Basin displayed a positive relationship between iWUE and BAI whereas this relationship was negative for the western stands. The Ci from most of the oak sites followed the Ca trends over time. However, oak sites with higher water availability displayed positive trends in the Ci/Ca ratio indicating a weak stomatal response.
Venette, Robert C.; Maddox, Mitchell P.; Aukema, Brian H.
2017-01-01
As climates change, thermal limits may no longer constrain some native herbivores within their historical ranges. The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a tree-killing bark beetle native to western North America that is currently expanding its range. Continued eastward expansion through the newly invaded and novel jack pine (Pinus banksiana Lamb.) trees of the Canadian boreal forest could result in exposure of several species of novel potential host pines common in northeastern North America to this oligophagous herbivore. Due to the tightly co-evolved relationship between mountain pine beetle and western pine hosts, in which the insect utilizes the defensive chemistry of the host to stimulate mass attacks, we hypothesized that lack of co-evolutionary association would affect the host attraction and acceptance behaviors of this insect among novel hosts, particularly those with little known historical association with an aggressive stem-infesting insect. We studied how beetle behavior differed among the various stages of colonization on newly cut logs of four novel potential pine host species; jack, red (P. resinosa Ait.), eastern white (P. strobus L.) and Scots (P. sylvestris L.) pines, as well as two historical hosts, ponderosa (P. ponderosa Dougl. ex. Laws. var. scopulorum Engelm.) and lodgepole (P. contorta Dougl. var. latifolia Engelm.) pines. Overall, we found that beetle colonization behaviors at each stage in the colonization process differ between pine hosts, likely due to differing chemical and physical bark traits. Pines without co-evolved constitutive defenses against mountain pine beetle exhibited reduced amounts of defensive monoterpenoid chemicals; however, such patterns also reduced beetle attraction and colonization. Neither chemical nor physical defenses fully defended trees against the various stages of host procurement that can result in tree colonization and death. PMID:28472047
Rosenberger, Derek W; Venette, Robert C; Maddox, Mitchell P; Aukema, Brian H
2017-01-01
As climates change, thermal limits may no longer constrain some native herbivores within their historical ranges. The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a tree-killing bark beetle native to western North America that is currently expanding its range. Continued eastward expansion through the newly invaded and novel jack pine (Pinus banksiana Lamb.) trees of the Canadian boreal forest could result in exposure of several species of novel potential host pines common in northeastern North America to this oligophagous herbivore. Due to the tightly co-evolved relationship between mountain pine beetle and western pine hosts, in which the insect utilizes the defensive chemistry of the host to stimulate mass attacks, we hypothesized that lack of co-evolutionary association would affect the host attraction and acceptance behaviors of this insect among novel hosts, particularly those with little known historical association with an aggressive stem-infesting insect. We studied how beetle behavior differed among the various stages of colonization on newly cut logs of four novel potential pine host species; jack, red (P. resinosa Ait.), eastern white (P. strobus L.) and Scots (P. sylvestris L.) pines, as well as two historical hosts, ponderosa (P. ponderosa Dougl. ex. Laws. var. scopulorum Engelm.) and lodgepole (P. contorta Dougl. var. latifolia Engelm.) pines. Overall, we found that beetle colonization behaviors at each stage in the colonization process differ between pine hosts, likely due to differing chemical and physical bark traits. Pines without co-evolved constitutive defenses against mountain pine beetle exhibited reduced amounts of defensive monoterpenoid chemicals; however, such patterns also reduced beetle attraction and colonization. Neither chemical nor physical defenses fully defended trees against the various stages of host procurement that can result in tree colonization and death.
Jeffrey M. Kane; J. Morgan Varner; Eric E. Knapp
2010-01-01
Questions: What influence does mechanical mastication and other fuel treatments have on: (1) canopy and forest floor response variables that influence understory plant development; (2) initial understory vegetation cover, diversity, and composition; and (3) shrub and non-native species density in a secondgrowth ponderosa pine forest....
Cassandra L. Swett; Thomas R. Gordon
2012-01-01
Pitch canker, caused by Fusarium circinatum, is a serious disease affecting Pinus radiata D. Don (Monterey pine) in nurseries, landscapes, and native forests. A typical symptom of pitch canker is canopy dieback resulting from girdling lesions on terminal branches (Gordon et al. 2001). More extensive dieback can result from...
Fuel loading and fire intensity-effects on longleaf pine seedling survival
Steven B. Jack; J. Kevin Hiers; Robert J. Mitchell; Jennifer L. Gagnon
2010-01-01
Modeling silvicultural practices after natural disturbance, with a particular focus on the use of fire and small canopy openings, may be particularly appropriate in longleaf pine (Pinus palustris Mill.) woodlands managed for multiple age classes and over long time scales. However, information about the effects of litter accumulation and fire...
SEASONAL PATTERNS OF FINE ROOT PRODUCTION AND TURNOVER IN PONDEROSA PINE STANDS OF DIFFERENT AGES
Root minirhizotron tubes were installed in two ponderosa pine (Pinus ponderosa Laws.) stands around three different tree age classes (16, 45, and > 250 yr old) to examine root spatial distribution in relation to canopy size and tree distribution, and to determine if rates of fine...
Structure and composition of historical longleaf pine ccosystems in Mississippi, USA
Brice B. Hanberry; Keith Coursey; John S. Kush
2018-01-01
Longleaf pine (Pinus palustris) historically was a widespread ecosystem composed of a simple tree canopy and grasslands ground layer. After widespread loss of this ecosystem due to logging and fire exclusion, little quantitative information exists about historical structure for restoration goals. We identified composition in De Soto National Forest and Pearl River...
Protection forest resilience after a fire event: a case study in Vallis, Switzerland
NASA Astrophysics Data System (ADS)
Vergani, Chiara; Werlen, Mario; Schwarz, Massimiliano
2016-04-01
Forests are well known to protect against natural hazards such as landslides, rockfall and floods. Nevertheless, they are dynamic ecosystems which are exposed to a variety of disturbances such as windstorms, fires, bark beetle and pathogen outbreaks. Catastrophic disturbances like windstorms and fires usually remove large portions of the canopy, starting a succession process which lead to a complete stand regeneration. Disturbances belong to the natural dynamic of forests, however they are highly undesirable in the case where forest protect infrastructure or settlements. Quantifying the decay and recovery of the protection effect of forests after disturbances is therefore important to evaluate risks and implement appropriate management techniques, when needed. This work analyzes the dynamic of a Scots Pine (Pinus silvestris) protection forests near Visp (Vallis) after a fire event, focusing on root reinforcement, which is the key factor in preventing shallow landslides. Forest cover, root distribution and root mechanical properties were analyzed 4 years after the fire event, and the root reinforcement has been quantified. Furthermore, the contribution of natural regeneration has been evaluated. Results show that the root reinforcement of Scots pine has declined massively in the forest fire area. At a distance of 1.5 m from the tree stem there is a reduction of 60% compared with the live stand. With increasing distance from the stem, the reduction in the reinforcement is even bigger. At a distance of 2.5 meters it is 12% and at 3.5 meters, only 5% of the original root reinforcement. This decrease is due to the decomposition of roots and associated change in the mechanical properties of the wood. The reinforcement of the dead roots in the forest area is estimated between 0.36 kPa and 2.64 kPa. The contribution of the emerging regeneration is estimated on average 0.01 kPa. Overall the stand provides a reinforcement between 0.37 kPa and 2.65 kPa. From the results it can be concluded that the dying roots can still provide a certain root reinforcement; however, the contribution of rejuvenation is too little to compensate the continuously decreasing protective effect in the future time. The time in which a forest can return in the initial state plays therefore a decisive role for contrasting the formation of landslides, which after a forest fire can be triggered at lower precipitation events. The results obtained need now to be implemented in slope stability analysis to compare the protection effect of vegetation before and after the disturbance. This work contributes to provide a first framework to evaluate the efficiency of protection forests before and after a catastrophic event, in order to support risk evaluation and plan possible management actions.
2009-01-01
are smaller and more leathery, and the leaf canopy is less dense. The trees commonly found in the southeastern United States are pines ( Pinus spp...during periods of extreme drought . These periodic fires maintained the pine subclimax forest by controlling hardwood competition, encouraged the growth...cinnamomea), chain fern (Woodwardia virginica), and greenbrier (Smilax spp). In the transition areas from wetlands to uplands, pond pine ( Pinus serotina
Determination of wood grain direction from laser light scattering pattern
NASA Astrophysics Data System (ADS)
Simonaho, Simo-Pekka; Palviainen, Jari; Tolonen, Yrjö; Silvennoinen, Raimo
2004-01-01
Laser light scattering patterns from the grains of wood are investigated in detail to gain information about the characteristics of scattering patterns related to the direction of the grains. For this purpose, wood samples of Scots pine ( Pinus sylvestris L.) and silver birch ( Betula pubescens) were investigated. The orientation and shape of the scattering pattern of laser light in wood was found to correlate well with the direction of grain angles in a three-dimensional domain. The proposed method was also experimentally verified.
Burkhardt, Juergen; Pariyar, Shyam
2014-01-01
Air pollution causes the amorphous appearance of epicuticular waxes in conifers, usually called wax 'degradation' or 'erosion', which is often correlated with tree damage symptoms, e.g., winter desiccation. Previous investigations concentrated on wax chemistry, with little success. Here, we address the hypothesis that both 'wax degradation' and decreasing drought tolerance of trees may result from physical factors following the deposition of salt particles onto the needles. Pine seedlings were sprayed with dry aerosols or 50 mM solutions of different salts. The needles underwent humidity changes within an environmental scanning electron microscope, causing salt expansion on the surface and into the epistomatal chambers. The development of amorphous wax appearance by deliquescent salts covering tubular wax fibrils was demonstrated. The minimum epidermal conductance of the sprayed pine seedlings increased. Aerosol deposition potentially 'degrades' waxes and decreases tree drought tolerance. These effects have not been adequately considered thus far in air pollution research. Copyright © 2013 Elsevier Ltd. All rights reserved.
Forest canopy temperatures: dynamics, controls, and relationships with ecosystem fluxes
NASA Astrophysics Data System (ADS)
Still, C. J.; Griffith, D.; Kim, Y.; Law, B. E.; Hanson, C. V.; Kwon, H.; Schulze, M.; Detto, M.; Pau, S.
2017-12-01
Temperature strongly affects enzymatic reactions, ecosystem biogeochemistry, and species distributions. Although most focus is on air temperature, the radiative or skin temperature of plants is more relevant. Canopy skin temperature dynamics reflect biophysical, physiological, and anatomical characteristics and interactions with the environment, and can be used to examine forest responses to stresses like droughts and heat waves. Thermal infrared (TIR) imaging allows for extensive temporal and spatial sampling of canopy temperatures, particularly compared to spot measurements using thermocouples. We present results of TIR imaging of forest canopies at eddy covariance flux tower sites in the US Pacific Northwest and in Panama. These forests range from an old-growth temperate rainforest to a second growth semi-arid pine forest to a semi-deciduous tropical forest. Canopy temperature regimes at these sites are highly variable. Canopy temperatures at all forest sites displayed frequent departures from air temperature, particularly during clear sky conditions, with elevated canopy temperatures during the day and depressed canopy temperatures at night compared to air temperature. Comparison of canopy temperatures to fluxes of carbon dioxide, water vapor, and energy reveals stronger relationships than those found with air temperature. Daytime growing season net ecosystem exchange at the pine forest site is better explained by canopy temperature (r2 = 0.61) than air temperature (r2 = 0.52). At the semi-deciduous tropical forest, canopy photosynthesis is highly correlated with canopy temperature (r2 = 0.51), with a distinct optimum temperature for photosynthesis ( 31 °C) that agrees with leaf-level measurements. During the peak of one heat wave at an old-growth temperate rainforest, hourly averaged air temperature exceeded 35 °C, 10 °C above average. Peak hourly canopy temperature approached 40 °C, and leaf-to-air vapor pressure deficit exceeded 6 kPa. These extreme conditions had a dramatic effect on forest carbon and energy exchanges: the canopy switched from daytime net carbon uptake prior to the heatwave to net carbon release during and immediately after the heat wave. The latent heat flux from evapotranspiration increased during the heat wave, while sensible heat fluxes were lower.
Light Attenuation in a 14-year-old Loblolly Pine Stand as Influenced by Fertilization and Irrigation
D.A. Sampson; H. Lee Allen
1998-01-01
We examined empirical and simulated estimates of canopy light attenuation at SETRES (Southeast Tree Research and Education Site) a 2x2 factorial study of water and nutrients. Fertilized plots had signiticantly lower under-canopy PAR transmittance (Tc) when compared to non-fertilized plots. Light interception efftciency as measured by the...
Leaf area and its spatial distribution are key parameters in describing canopy characteristics. They determine radiation regimes and influence mass and energy exchange with the atmosphere. The evaluation of leaf area in conifer stands is particularly challengi...
Interpreting vegetation reflectance measurements as a function of solar zenith angle
NASA Technical Reports Server (NTRS)
Kimes, D. S.; Smith, J. A.; Ranson, K. J.
1979-01-01
Spectral hemispherical-conical reflectances of a nadir looking sensor were taken throughout the day for a lodgepole pine and two grass canopies. Mathematical simulations of both spectral hemispherical-conical and bi-hemispherical reflectances were performed for two theoretical canopies of contrasting geometric structure. These results and comparisons with literature studies showed a great amount of variability of vegetation canopy reflectances as a function of solar zenith angle. Explanations for this variability are discussed and recommendations for further measurements are proposed.
Thomas C. Hennessey; Rodney E. Will; Thomas B. Lynch; Robert Heinemann; Randal Holeman; Dennis Wilson; Keith Anderson; Gregory Campbell
2013-01-01
Leaf biomass and its display within the canopy are important driving variables of stand growth because they reflect a tree or standâs capacity to intercept radiation, reduce carbon dioxide, and transpire water. We determined the effects of planting density (4- by 4-, 6- by 6-, 8- by 8-, and 10- by 10-foot spacing) on annual needle fall biomass, intercepted radiation,...
[Turbulent characteristics in forest canopy under atmospheric neutral condition].
Diao, Yi-Wei; Guan, De-Xin; Jin, Chang-Jie; Wang, An-Zhi; Pei, Tie-Fan
2010-02-01
Based on the micrometeorological data of broad-leaved Korean pine forest in Changbai Mountain in 2003, a second-order closure model was employed to calculate and analyze the turbulent characteristics within and above the canopy of the forest. The calculated mean wind profile was coincident with the measured one. The Reynolds stress within the forest was significantly attenuated. The turbulent strength, velocity flux, and skew were the largest at forest-atmosphere interface, as well the wind shear. With the increase of velocity skew, the turbulent intermittence became more significant, and the downward turbulent eddy within the canopy was limited. Most of the turbulent deeply within the forest canopy was produced by the non-local contributions above the canopy.
Zhenmin Tang; Mary A. Sword Sayer; Jim L. Chambers; James P. Barnett
2004-01-01
Few studies have examined the combined effects of nutrition and water exclusion on the canopy physiology of mature loblolly pine (Pinus taeda L.). Understanding the impacts of forest management on plantation productivity requires extensive research on the relationship between silvicultural treatments and environmental constraints to growth. We...
J. Staszak; Nancy Grulke; M.J. Marrett; W. Prus-Glowacki
2007-01-01
Effects of canopy ozone (O3) exposure and signatures of genetic structure using isozyme markers associated with O3 tolerance were analyzed in ~20-, ~80-, and >200-yr-old ponderosa (Pinus ponderosa Dougl. ex Laws.) and Jeffrey pine (Pinus jeffreyi Grev. & Balf.) in...
Wildlife diversity of restored shortleaf pine-oak woodlands in the northern Ozarks
Corinne S. Mann; Andrew R. Forbes
2007-01-01
Historic changes in land use have altered the plant composition and structure of shortleaf pine-oak woodlands in the northern Ozarks. As a result, the composition of wildlife communities in these landscapes has shifted to species that are more associated with closed canopy oak forests. For example, the red-cockaded woodpecker (Picoides borealis) has...
A test of 3 models of Kirtland's warbler habitat suitability
Mark D. Nelson; Richard R. Buech
1996-01-01
We tested 3 models of Kirtland's warbler (Dendroica kirtlandii) habitat suitability during a period when we believe there was a surplus of good quality breeding habitat. A jack pine canopy-cover model was superior to 2 jack pine stem-density models in predicting Kirtland's warbler habitat use and non-use. Estimated density of birds in high...
Bradley S. Osbon; Michael A. Blazier; Michael C. Tyree; Mary Anne Sword-Sayer
2012-01-01
Planting of artificially selected, improved seedlings has led to large increases in productivity of intensively managed loblolly pine (Pinus taeda L.) forests in the southeastern United States. However, more data are needed to give a deeper understanding of how physiology and crown architecture affect productivity of diverse genotypes. The objective...
Restoring a disappearing ecosystem: the longleaf pine savanna
Tim Harrington; Karl Miller; Noreen Parks
2013-01-01
Longleaf pine (Pinus palustris) savannas of the southeastern United States contain some of the worldâs most diverse plant communities, along with a unique complement of wildlife. Their traditionally open canopy structure and rich understory of grasses and herbs were critical to their vigor. However, a long history of land-use practices such as...
Wet and dry deposition in the AOSR collected by ion exchange resin samplers
Mark Fenn
2015-01-01
Atmospheric deposition of nitrogen (N), sulfur (S), and base cations was measured across the network of jack pine sites in the Athabasca Oil Sands Region using ion exchange resin (IER) collectors. Deposition was measured in forest clearings (bulk deposition) and under jack pine canopies (throughfall). As noted previously for other pollutants, throughfall deposition of...
NASA Technical Reports Server (NTRS)
Middleton, Elizabeth M.; Rascher, Uwe; Corp, Lawrence A.; Huemmrich, K. Fred; Cook, Bruce D.; Noormets, Asko; Schickling, Anke; Pinto, Francisco; Alonso, Luis; Damm, Alexander;
2017-01-01
The first European Space Agency (ESA) and NASA collaboration in an airborne campaign to support ESA's FLuorescence EXplorer (FLEX) mission was conducted in North Carolina, USA during September-October 2013 (FLEX-US 2013) at the Parker Tract Loblolly Pine (LP) Plantation (Plymouth, NC, USA). This campaign combined two unique airborne instrument packages to obtain simultaneous observations of solar-induced fluorescence (SIF), LiDAR-based canopy structural information, visible through shortwave infrared (VSWIR) reflectance spectra, and surface temperature, to advance vegetation studies of carbon cycle dynamics and ecosystem health. We obtained statistically significant results for fluorescence, canopy temperature, and tower fluxes from data collected at four times of day over two consecutive autumn days across an age class chronosequence. Both the red fluorescence (F685) and far-red fluorescence (F740) radiances had highest values at mid-day, but their fluorescence yields exhibited different diurnal responses across LP age classes. The diurnal trends for F685 varied with forest canopy temperature difference (canopy minus air), having a stronger daily amplitude change for young vs. old canopies. The Photochemical Reflectance Index (PRI) was positively correlated with this temperature variable over the diurnal cycle. Tower measurements from mature loblolly stand showed the red/far-red fluorescence ratio was linearly related to canopy light use efficiency (LUE) over the diurnal cycle, but performed even better for the combined morning/afternoon (without midday) observations. This study demonstrates the importance of diurnal observations for interpretation of fluorescence dynamics, the need for red fluorescence to understand canopy physiological processes, and the benefits of combining fluorescence, reflectance, and structure information to clarify canopy function versus structure characteristics for a coniferous forest.
Exploring the Relationship Between Reflectance Red Edge and Chlorophyll Content in Slash Pine
NASA Technical Reports Server (NTRS)
Curran, Paul J.; Dungan, Jennifer L.; Gholz, Henry L.
1990-01-01
Chlorophyll is a key indicator of the physiological status of a forest canopy. However, its distribution may vary greatly in time and space, so that the estimation of chlorophyll content of canopies or branches by extrapolation from leaf values obtained by destructive sampling is labor intensive and potentially inaccurate. Chlorophy11 content is related positively to the point of maximum slope in vegetation reflectance spectra which occurs at wavelengths between 690-740 nm and is known as the "red edge." The red edge of needles on individual slash pine (Piniis elliottii Engelm.) branches and in whole forest canopies was measured with a spectroradiometer. Branches were measured on the ground against a spectrally flat reflectance target and canopies were measured from observation towers against a spectrally variable understory and forest floor. There was a linear relationship between red edge and chlorophyll content of branches (R(exp 2) = 0.91). Measurements of the red edge and this relationship were used to estimate the chlorophyll content of other branches with an error that was lower than that associated with the colorimetric (laboratory) method. There was no relationship between the red edge and the chlorophyll content of whole canopies. This can be explained by the overriding influence of the understory and forest floor, an influence that was illustrated by spectral mixture modeling. The results suggest that the red edge could be used to estimate the chlorophyll content in branches but it is unlikely to be of value for the estimation of chlorophyll content in canopies unless the canopy cover is high.
Turbulent Structures in a Pine Forest with a Deep and Sparse Trunk Space: Stand and Edge Regions
NASA Astrophysics Data System (ADS)
Dupont, Sylvain; Irvine, Mark R.; Bonnefond, Jean-Marc; Lamaud, Eric; Brunet, Yves
2012-05-01
Forested landscapes often exhibit large spatial variability in vertical and horizontal foliage distributions. This variability may affect canopy-atmosphere exchanges through its action on the development of turbulent structures. Here we investigate in neutral stratification the turbulent structures encountered in a maritime pine forest characterized by a high, dense foliated layer associated with a deep and sparse trunk space. Both stand and edge regions are considered. In situ measurements and the results of large-eddy simulations are used and analyzed together. In stand conditions, far from the edge, canopy-top structures appear strongly damped by the dense crown layer. Turbulent wind fluctuations within the trunk space, where the momentum flux vanishes, are closely related to these canopy-top structures through pressure diffusion. Consequently, autocorrelation and spectral analyses are not quite appropriate to characterize the vertical scale of coherent structures in this type of canopy, as pressure diffusion enhances the actual scale of structures. At frequencies higher than those associated with canopy-top structures, wind fluctuations related to wake structures developing behind tree stems are observed within the trunk space. They manifest themselves in wind velocity spectra as secondary peaks in the inertial subrange region, confirming the hypothesis of spectral short-cuts in vegetation canopies. In the edge region specific turbulent structures develop just below the crown layer, in addition to canopy-top structures. They are generated by the wind shear induced by the sub-canopy wind jet that forms at the edge. These structures provide a momentum exchange mechanism similar to that observed at the canopy top but in the opposite direction and with a lower magnitude. They may develop as in plane mixing-layer flows, with some perturbations induced by canopy-top structures. Wake structures are also observed within the trunk space in the edge region.
Thomas J. Dean; D. Andrew Scott; Ray A. Newbold
2010-01-01
Three models are compared for their ability to account for differences in diameter growth associated with different stages of stand development. Data for the comparisons were collected in young loblolly pine plantations treated variously at time of planting for the first 10 years since establishment. Neither the growth-growing stock model nor the accelerated...
Practical field methods of estimating canopy cover, PAR, and LAI in Michigan Oak and pine stands
David S. Buckley; J.G. Isebrands; Terry L. Sharik
1999-01-01
With the increased use of variables such as canopy cover photosynthetically active radiation (PAR) and overstory leaf area index (LAI) in forestry research, relationships between these variables and traditional forestry variables must be defined before recommended levels of these research variables can be achieved by forestry practitioners on the ground. We measured...
BOREAS TF-4 SSA-YJP Tower Flux, Meteorological, and Canopy Condition Data
NASA Technical Reports Server (NTRS)
Striegl, Robert; Wickland, Kimberly; Hall, Forrest G. (Editor); Huemmrich, Karl (Editor)
2000-01-01
The BOReal Ecosystem-Atmosphere Study Tower Flux (BOREAS TF-4) team collected energy, carbon dioxide, and water vapor flux data at the BOREAS Southern Study Area-Young Jack Pine (SSA-YJP) site during the growing season of 1994. In addition, meteorological data were collected both above and within the canopy. The data are available in tabular ASCII files.
A Regional Simulation to Explore Impacts of Resource Use and Constraints
2007-03-01
mountaintops. (10) Deciduous Forest - This class is composed of forests, which contain at least 75% deciduous trees in the canopy, deciduous ... trees , pine plantations, and evergreen woodlands. (12) Mixed Forest - This class includes forests with mixed deciduous /coniferous canopies, natural...reflective surfaces. Classification of forested wetlands dominated by deciduous trees is probably more accurate than that in areas with 104
Michael J. Arbaugh; Andrzej Bytnerowicz; Mark E. Fenn
1998-01-01
A 3-year study of nitrogenous (N) air pollution deposition to ponderosa pine (Pinus ponderosa Dougl. ex. Laws.) seedlings along a mature tree vertical canopy gradient was conducted in the mixed conifer forest of the San Bernardino Mountains of southern California. Concentrations of nitric acid vapor (HNO3), particulate nitrate...
NASA Astrophysics Data System (ADS)
Launiainen, Samuli; Vesala, Timo; Mölder, Meelis; Mammarella, Ivan; Smolander, Sampo; Rannik, Üllar; Kolari, Pasi; Hari, Pertti; Lindroth, Anders; Katul, Gabriel G.
2007-11-01
Among the fundamental problems in canopy turbulence, particularly near the forest floor, remain the local diabatic effects and linkages between turbulent length scales and the canopy morphology. To progress on these problems, mean and higher order turbulence statistics are collected in a uniform pine forest across a wide range of atmospheric stability conditions using five 3-D anemometers in the subcanopy. The main novelties from this experiment are: (1) the agreement between second-order closure model results and measurements suggest that diabatic states in the layer above the canopy explain much of the modulations of the key velocity statistics inside the canopy except in the immediate vicinity of the trunk space and for very stable conditions. (2) The dimensionless turbulent kinetic energy in the trunk space is large due to a large longitudinal velocity variance but it is inactive and contributes little to momentum fluxes. (3) Near the floor layer, a logarithmic mean velocity profile is formed and vertical eddies are strongly suppressed modifying all power spectra. (4) A spectral peak in the vertical velocity near the ground commensurate with the trunk diameter emerged at a moderate element Reynolds number consistent with Strouhal instabilities describing wake production.
NASA Astrophysics Data System (ADS)
Gochis, D. J.; Brooks, P. D.; Harpold, A. A.; Ewers, B. E.; Pendall, E.; Barnard, H. R.; Reed, D.; Harley, P. C.; Hu, J.; Biederman, J.
2010-12-01
Given the magnitude and spatial extent of recent forest mortality in the western U.S. there is a pressing need to improve representation of such influences on the exchange of energy, water, biogeochemical and momentum fluxes in land-atmosphere parameterizations coupled to weather and climate models. In this talk we present observational data and model results from a new study aimed at improving understanding the impacts of mountain pine beetle-induced forest mortality in the central Rocky Mountains. Baseline observations and model runs from undisturbed lodgepole pine forest conditions are developed as references against which new observations and model runs from infested stands are compared. We will specifically look at the structure and evolution of sub-canopy energy exchange variables such as shortwave and longwave radiation and sub-canopy turbulence as well as sub-canopy precipitation, sapflow fluxes, canopy-scale fluxes and soil moisture and temperature. In this manner we seek to lay the ground work for evaluating the recent generation of land surface model changes aimed at representing insect-related forest dynamics in the CLM-C/N and Noah land surface models.
NASA Astrophysics Data System (ADS)
Hegrová, Jitka; Steiner, Oliver; Goessler, Walter; Tanda, Stefan; Anděl, Petr
2017-09-01
A comprehensive overview of the influence of transport on the environment is presented in this study. The complex analysis of soil and needle samples provides an extensive set of data, which presents elemental contamination of the environment near roads. Traffic pollution (including winter road treatment) has a significant negative influence on our environment. Besides sodium and chlorine from winter maintenance many other elements are emitted into the environment. Three possible sources of contamination are assumed for environmental contamination evaluation: car emission, winter maintenance and abrasion from breaks and clutches. The chemical analysis focused on the description of samples from inorganic point of view. The influence of the contamination potential on the sodium and chlorine content in the samples of 1st year-old and 2nd year-old needles of Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) is discussed. Additional soil samples were taken from each sampling site and analyzed to get insight in the sodium and chlorine distribution. Statistical evaluation was used for interpretation of complex interaction patterns between element concentrations in different aged needles based on localities character including distance from the road and element concentration in soils. This species of needles were chosen because of its heightened sensitivity towards salinization. The study was conducted in different parts of the Czech Republic. The resulting database is a source of valuable information about the influence of transport on the environment.
Maternal heterozygosity and progeny fitness association in an inbred Scots pine population.
Abrahamsson, S; Ahlinder, J; Waldmann, P; García-Gil, M R
2013-03-01
Associations between heterozygosity and fitness traits have typically been investigated in populations characterized by low levels of inbreeding. We investigated the associations between standardized multilocus heterozygosity (stMLH) in mother trees (obtained from12 nuclear microsatellite markers) and five fitness traits measured in progenies from an inbred Scots pine population. The traits studied were proportion of sound seed, mean seed weight, germination rate, mean family height of one-year old seedlings under greenhouse conditions (GH) and mean family height of three-year old seedlings under field conditions (FH). The relatively high average inbreeding coefficient (F) in the population under study corresponds to a mixture of trees with different levels of co-ancestry, potentially resulting from a recent bottleneck. We used both frequentist and Bayesian methods of polynomial regression to investigate the presence of linear and non-linear relations between stMLH and each of the fitness traits. No significant associations were found for any of the traits except for GH, which displayed negative linear effect with stMLH. Negative HFC for GH could potentially be explained by the effect of heterosis caused by mating of two inbred mother trees (Lippman and Zamir 2006), or outbreeding depression at the most heterozygote trees and its negative impact on the fitness of the progeny, while their simultaneous action is also possible (Lynch. 1991). However,since this effect wasn't detected for FH, we cannot either rule out that the greenhouse conditions introduce artificial effects that disappear under more realistic field conditions.
Beck, Erwin H; Heim, Richard; Hansen, Jens
2004-12-01
This introductory overview shows that cold, in particular frost, stresses a plant in manifold ways and that the plant's response, being injurious or adaptive, must be considered a syndrome rather than a single reaction. In the course of the year perennial plants of the temperate climate zones undergo frost hardening in autumn and dehardening in spring. Using Scots pine (Pinus sylvestris L.) as a model plant the environmental signals inducing frost hardening and dehardening, respectively, were investigated. Over 2 years the changes in frost resistance of Scots pine needles were recorded together with the annual courses of day-length and ambient temperature. Both act as environmental signals for frost hardening and dehardening. Climate chamber experiments showed that short day-length as a signal triggering frost hardening could be replaced by irradiation with far red light, while red light inhibited hardening. The involvement of phytochrome as a signal receptor could be corroborated by respective night-break experiments. More rapid frost hardening than by short day or far red treatment was achieved by applying a short period (6 h) of mild frost which did not exceed the plant's cold resistance. Both types of signals were independently effective but the rates of frost hardening were not additive. The maximal rate of hardening was - 0.93 degrees C per day and frost tolerance of less than < - 72 degrees C was achieved. For dehardening, temperature was an even more effective signal than day-length.
[Seasonal development of phloem in Scots pine stems].
Antonova, G F; Stasova, V V
2006-01-01
The formation of phloem was studied for two years in stems of 50 to 60 year old trees of Scots pine (Pinus sylvestris L.) growing in nature. The development of phloem of the current year begins 10 to 20 days before the xylem formation and is completed with the termination of shoot growth in the end of June. Observations over the seasonal activity of cambium producing sieve-like cells of phloem and duration of their differentiation as compared to the xylem derivatives of cambium have shown that the maxima of formation of phloem and xylem cells could coincide or not coincide by season, while the activities of their differentiation were always at antiphase. The sieve-like cells of early phloem were separated from those of late phloem by a layer of tannin-containing cells, which are formed simultaneously with the formation of late xylem cells by the cambium. Seasonal dynamics of accumulation of starch grain in structural elements of the phloem is related to the xylem development. The content of metabolites in differentiating and mature phloem elements, in the cambium zone, and in the xylem cells growing in the radial direction depended on cell specificity, stage of their development, and type of forming wood, early or late, which differ in the cell wall parameters and, hence, requirement of assimilates. Significant differences were described between the content of low molecular weigh carbohydrates, amino acids, organic acids, and phenol compounds using two methods of calculation: per dry weight and per cell.
Voltas, Jordi; Camarero, Jesús Julio; Carulla, David; Aguilera, Mònica; Ortiz, Araceli; Ferrio, Juan Pedro
2013-08-01
Winter-drought induced forest diebacks in the low-latitude margins of species' distribution ranges can provide new insights into the mechanisms (carbon starvation, hydraulic failure) underlying contrasting tree reactions. We analysed a winter-drought induced dieback at the Scots pine's southern edge through a dual-isotope approach (Δ(13) C and δ(18) O in tree-ring cellulose). We hypothesized that a differential long-term performance, mediated by the interaction between CO(2) and climate, determined the fates of individuals during dieback. Declining trees showed a stronger coupling between climate, growth and intrinsic water-use efficiency (WUEi) than non-declining individuals that was noticeable for 25 years prior to dieback. The rising stomatal control of water losses with time in declining trees, indicated by negative Δ(13) C-δ(18) O relationships, was likely associated with their native aptitude to grow more and take up more water (suggested by larger tracheid lumen widths) than non-declining trees and, therefore, to exhibit a greater cavitation risk. Freeze-thaw episodes occurring in winter 2001 unveiled such physiological differences by triggering dieback in those trees more vulnerable to hydraulic failure. Thus, WUEi tightly modulated growth responses to long-term warming in declining trees, indicating that co-occurring individuals were differentially predisposed to winter-drought mortality. These different performances were unconnected to the depletion of stored carbohydrates. © 2013 John Wiley & Sons Ltd.
Kilpeläinen, Antti; Peltola, Heli; Ryyppö, Aija; Sauvala, Kari; Laitinen, Kaisa; Kellomäki, Seppo
2003-09-01
Impacts of elevated temperature and carbon dioxide concentration ([CO2]) on wood properties of 15-year-old Scots pines (Pinus sylvestris L.) grown under conditions of low nitrogen supply were investigated in open-top chambers. The treatments consisted of (i) ambient temperature and ambient [CO2] (AT+AC), (ii) ambient temperature and elevated [CO2] (AT+EC), (iii) elevated temperature and ambient [CO2] (ET+AC) and (iv) elevated temperature and elevated [CO2] (ET+EC). Wood properties analyzed for the years 1992-1994 included ring width, early- and latewood width and their proportions, intra-ring wood density (minimum, maximum and mean, as well as early- and latewood densities), mean fiber length and chemical composition of the wood (cellulose, hemicellulose, lignin and acetone extractive concentration). Absolute radial growth over the 3-year period was 54% greater in AT+EC trees and 30 and 25% greater in ET+AC and ET+EC trees, respectively, than in AT+AC trees. Neither elevated temperature nor elevated [CO2] had a statistically significant effect on ring width, early- and latewood widths or their proportions. Both latewood density and maximum intra-ring density were increased by elevated [CO2], whereas fiber length was increased by elevated temperature. Hemicellulose concentration decreased and lignin concentration increased significantly in response to elevated temperature. There were no statistically significant interaction effects of elevated temperature and elevated [CO2] on the wood properties, except on earlywood density.
Pellizzari, Elena; Camarero, J Julio; Gazol, Antonio; Sangüesa-Barreda, Gabriel; Carrer, Marco
2016-06-01
Hydraulic impairment due to xylem embolism and carbon starvation are the two proposed mechanisms explaining drought-induced forest dieback and tree death. Here, we evaluate the relative role played by these two mechanisms in the long-term by quantifying wood-anatomical traits (tracheid size and area of parenchyma rays) and estimating the intrinsic water-use efficiency (iWUE) from carbon isotopic discrimination. We selected silver fir and Scots pine stands in NE Spain with ongoing dieback processes and compared trees showing contrasting vigour (declining vs nondeclining trees). In both species earlywood tracheids in declining trees showed smaller lumen area with thicker cell wall, inducing a lower theoretical hydraulic conductivity. Parenchyma ray area was similar between the two vigour classes. Wet spring and summer conditions promoted the formation of larger lumen areas, particularly in the case of nondeclining trees. Declining silver firs presented a lower iWUE than conspecific nondeclining trees, but the reverse pattern was observed in Scots pine. The described patterns in wood anatomical traits and iWUE are coherent with a long-lasting deterioration of the hydraulic system in declining trees prior to their dieback. Retrospective quantifications of lumen area permit to forecast dieback in declining trees 2-5 decades before growth decline started. Wood anatomical traits provide a robust tool to reconstruct the long-term capacity of trees to withstand drought-induced dieback. © 2016 John Wiley & Sons Ltd.
Nitrogen balance of a boreal Scots pine forest
NASA Astrophysics Data System (ADS)
Korhonen, J. F. J.; Pihlatie, M.; Pumpanen, J.; Aaltonen, H.; Hari, P.; Levula, J.; Kieloaho, A.-J.; Nikinmaa, E.; Vesala, T.; Ilvesniemi, H.
2013-02-01
The productivity of boreal forests is considered to be limited by low nitrogen (N) availability. Increased atmospheric N deposition has altered the functioning and N cycling of these N-sensitive ecosystems by increasing the availability of reactive nitrogen. The most important components of N pools and fluxes were measured in a boreal Scots pine stand in Hyytiälä, Southern Finland. The measurements at the site allowed direct estimations of nutrient pools in the soil and biomass, inputs from the atmosphere and outputs as drainage flow and gaseous losses from two micro-catchments. N was accumulating in the system, mainly in woody biomass, at a rate of 7 kg N ha-1 yr-1. Nitrogen input as atmospheric deposition was 7.4 kg N ha-1 yr-1. Dry deposition and organic N in wet deposition contributed over half of the inputs in deposition. Total outputs were 0.4 kg N ha-1 yr-1, the most important outputs being N2O emission to the atmosphere and organic N flux in drainage flow. Nitrogen uptake and retranslocation were equally important sources of N for plant growth. Most of the assimilated N originated from decomposition of organic matter, and the fraction of N that could originate directly from deposition was about 30%. In conclusion, atmospheric N deposition fertilizes the site considerably, but there are no signs of N saturation. Further research is needed to estimate soil N2 fluxes (emission and fixation), which may amount up to several kg N ha-1 yr-1.
Neutral lipids and phospholipids in Scots pine (Pinus sylvestris) sapwood and heartwood.
Piispanen, R; Saranpää, P
2002-06-01
Variations in the concentration and composition of triacylglycerols, free fatty acids and phospholipids were analyzed in Scots pine (Pinus sylvestris L.) trees at five sites. Disks were taken at breast height or at a height of 4 m from the stems of 81 trees differing in diameter and growth rate. The mean concentration of triacylglycerols in sapwood was 26 mg g(-1) dry mass; however, variation among trees was large (16-51 mg g(dm)(-1)). The concentration of triacylglycerols was slightly larger at 4 m height in the stem than at breast height. Concentrations of triacylglycerols did not differ between the sapwood of young and small-diameter stems (DBH < 12 cm) and the sapwood of old stems (DBH > 36 cm). Concentrations of free fatty acids were negligible in the outer sapwood, but ranged between 5 and 18 mg g(dm)(-1) in the heartwood. The most abundant fatty acids of triacylglycerols were oleic (18:1), linoleic (18:2omega6, 18:2Delta5,9), linolenic (pinolenic, 18:3Delta5,9,12 and 18:3omega3) and eicosatrienoic acid (20:3Delta5,11,14 and 20:3omega6). The concentration of linoleic acid comprised 39-46% of the triacylglycerol fatty acids and the concentration was higher in the slow-growing stem from northern Finland than in the stems from southern Finland. Major phospholipids were detected only in sapwood, and only traces of lipid phosphorus were detected in heartwood.
Management of Maritime Communities for Threatened and Endangered Species.
1998-05-01
S) mulletbush (B. halimifolia) (S) American barberry (Berchemia scandens) (L) Virginia creeper (Parthenocissus quinquefolia) (L) winged sumac...include coastal red cedar {Juniperus silicicola), red bay ( Persea borbonia), live oak (Quercus virginiana) and cabbage palm (Sabal palmetto; Stalter...scattered pines. The canopy is composed of live oak, slash pine, myrtle oak (Quercus myrtifolia), American olive (Osmanthus americanus), Chapman’s oak
Timothy A. Martin; Eric J. Jokela
2002-01-01
While nutrient availability is a dominant factor controlling leaf area development and pine productivity in the southeastern USA, few studies have explored the long-term interactions among nutrient inputs, canopy foliage production, and aboveground biomass production. In order to address these questions, the Intensive Management Practices Assessment Center (IMPAC)...
Stephen Brewer; Corey Rogers
2006-01-01
Using Geographic Information Systems and US Forest Service data, we examined relationships between prescribed burning (from 1979 to 2000) and the incidence, size, and intensity of wildfires (from 1995 to 2000) in a landscape containing formerly fire-suppressed, closed-canopy hardwood and pine-hardwood forests. Results of hazard (failure) analyses did not show an...
Chris A. Maier; R.O. Teskey
1992-01-01
Leaf gas exchange and water relations were monitored in the upper canopy of two 25 m tall eastern white pine (Pinus strobus L.) trees over two consecutive growing seasons (1986 and 1987). Examination of the seasonal and diurnal patterns of net photosynthesis and leaf conductance showed that both internal and external (environmental) factors were...
Growth in relation to canopy light interception in a red pine (Pinus resinosa) thinning study
Beverly E. Law; Kurt H. Riitters; Lewis F. Ohmann
1992-01-01
Growth data from the most recent 5 years of a 40-year thinning study in an even-aged red pine (Pinus resinosa) forest in cutfoot sioux experimental forest, Minnesota, were used with intercepted photosynthetically active radiation (IPAR) data to determine the relationship between light interception and growth for a range ofstand densities. Stand basal...
Fuel loadings 5 years after a bark beetle outbreak in south-western USA ponderosa pine forests
Chad M. Hoffman; Carolyn Hull Sieg; Joel D. McMillin; Peter Z. Fule
2012-01-01
Landscape-level bark beetle (Coleoptera: Curculionidae, Scolytinae) outbreaks occurred in Arizona ponderosa pine (Pinus ponderosa Dougl. ex Law.) forests from 2001 to 2003 in response to severe drought and suitable forest conditions.We quantified surface fuel loadings and depths, and calculated canopy fuels based on forest structure attributes in 60 plots established 5...
T. Luke George; Steve Zack; William F. Jr. Laudenslayer
2005-01-01
We compared the relative abundance of bird species between two ponderosa pine (Pinus ponderosa) forests in northeastern California: one with a canopy of large old-growth trees present (Blacks Mountain Experimental Forest, BMEF) and the other with large trees essentially absent (Goosenest Adaptive Management Area, GAMA). We surveyed 24 units at BMEF...
Shufang Yu; Jim L. Chambers; Zhenmin Tang; James P. Barnett
2003-01-01
Total foliage dry mass and leaf area at the canopy hierarchical level of needle, shoot, branch and crown were measured in 48 trees harvested from a 14-year-old loblolly pine (Pinus taeda L.) plantation, six growing seasons after thinning and fertilization treatments. In the unthinned treatment, upper crown needles were heavier and had more leaf area...
2011-03-26
forest patches extracted from GAP landcover for Fort Bragg study area...7 7 Individual pine forest patches extracted from GAP landcover for Fort Bragg...University for their assis- tance in acquiring Gap Analysis Program (GAP) landcover maps for the study regions. Natalie Myers and James Westervelt of U.S
Light intensity related to stand density in mature stands of the western white pine type
C. A. Wellner
1948-01-01
Where tolerance of forest trees or subordinate vegetation is a factor in management, the forester needs a simple field method of Estimating or forecasting light intensities in forest stands. The following article describes a method developed for estimating light intensity beneath the canopy in western white pine forests which may have application in other types.
Tree STEM and Canopy Biomass Estimates from Terrestrial Laser Scanning Data
NASA Astrophysics Data System (ADS)
Olofsson, K.; Holmgren, J.
2017-10-01
In this study an automatic method for estimating both the tree stem and the tree canopy biomass is presented. The point cloud tree extraction techniques operate on TLS data and models the biomass using the estimated stem and canopy volume as independent variables. The regression model fit error is of the order of less than 5 kg, which gives a relative model error of about 5 % for the stem estimate and 10-15 % for the spruce and pine canopy biomass estimates. The canopy biomass estimate was improved by separating the models by tree species which indicates that the method is allometry dependent and that the regression models need to be recomputed for different areas with different climate and different vegetation.
NASA Astrophysics Data System (ADS)
Schuster, R.; Zeisler, B.; Oberhuber, W.
2012-04-01
Climate sensitivity of tree growth will effect the development of forest ecosystems under a warmer and drier climate by changing species composition and inducing shifts in forest distribution. We applied dendroclimatological techniques to determine impact of climate warming on radial stem growth of three native and widespread coniferous tree species of the central Austrian Alps (Norway spruce, Picea abies; European larch, Larix decidua; Scots pine, Pinus sylvestris), which grow intermixed at dry-mesic sites within a dry inner Alpine environment (750 m a.s.l., Tyrol, Austria). Time series of annual increments were developed from > 250 saplings and mature trees. Radial growth response to recent climate warming was explored by means of moving response functions (MRF) and evaluation of trends in basal area increment (BAI) for the period 1911 - 2009. Climate-growth relationships revealed significant differences among species in response to water availability. While precipitation in May - June favoured radial growth of spruce and larch, Scots pine growth mainly depended on April - May precipitation. Spruce growth was most sensitive to May - June temperature (inverse relationship). Although MRF coefficients indicated increasing drought sensitivity of all species, which is most likely related to intensified belowground competition for scarce water with increasing stand density and higher evapotranspiration rates due to climate warming, recent BAI trends strikingly differed among species. While BAI of larch was distinctly declining, spruce showed steadily increasing BAI and quite constant BAI was maintained in drought adapted Scots pine, although at lowest level of all species. Furthermore, more favourable growing conditions of spruce in recent decades are indicated by scattered natural regeneration and higher growth rates of younger trees during first decades of their lifespan. Because human interference and wildlife stock is negligible within the study area, results suggest a competitive advantage of shade-tolerant and shallow-rooted late successional spruce over early successional species, whereby the spruce`s competitive strength is most likely related to synergistic effects of shade-tolerance and efficient uptake of small rainfall events by fine roots distributed primarily in upper soil layers. On the other hand, strikingly decreasing trend in BAI of larch is suggested to be due to negative influence of climate warming on tree water status. We conclude that climate warming-induced increase in drought sensitivity changed competitive strength of co-occurring conifers due to differences in inherent adaptive capacity at a drought-prone inner Alpine site.
Agne, Michelle C.; Shaw, David C.; Woolley, Travis J.; Queijeiro-Bolaños, Mónica E.
2014-01-01
Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes. Dwarf mistletoe (Arceuthobium americanum) also influences stand structure and occurs frequently in post-mountain pine beetle epidemic lodgepole pine forests. Few studies have incorporated both disturbances simultaneously although they co-occur frequently on the landscape. The aim of this study is to investigate the stand structure of lodgepole pine forests 21–28 years after a mountain pine beetle epidemic with varying levels of dwarf mistletoe infection in the Deschutes National Forest in central Oregon. We compared stand density, stand basal area, canopy volume, proportion of the stand in dominant/codominant, intermediate, and suppressed cohorts, average height and average diameter of each cohort, across the range of dwarf mistletoe ratings to address differences in stand structure. We found strong evidence of a decrease in canopy volume, suppressed cohort height, and dominant/codominant cohort diameter with increasing stand-level dwarf mistletoe rating. There was strong evidence that as dwarf mistletoe rating increases, proportion of the stand in the dominant/codominant cohort decreases while proportion of the stand in the suppressed cohort increases. Structural differences associated with variable dwarf mistletoe severity create heterogeneity in this forest type and may have a significant influence on stand productivity and the resistance and resilience of these stands to future biotic and abiotic disturbances. Our findings show that it is imperative to incorporate dwarf mistletoe when studying stand productivity and ecosystem recovery processes in lodgepole pine forests because of its potential to influence stand structure. PMID:25221963
NASA Astrophysics Data System (ADS)
Richter, Sarah; Moser, Barbara; Ghazoul, Jaboury; Wohlgemuth, Thomas
2010-05-01
Low elevation Scots pine forests of European inner-alpine dry valleys may potentially disappear under continued climate warming, largely in response to increased warming and drought effects. In the upper Rhone valley, the driest region in Switzerland, increased Scots pine mortality in mature forest stands and sparse tree establishment after a large-scale forest fire already give evidence for ongoing climate change. Furthermore, vegetation models predict a decline of Scots pine (Pinus sylvestris) and Pubescent oak (Quercus pubescens) even under a moderate temperature increase of 2-3°C. A decline of tree species in the region may lead to a transition from forest to a steppe-like vegetation. Such a change is of considerable concern for both biodiversity and natural hazard protection. Although changing climate conditions affect all life stages of a tree, its most vulnerable stage is recruitment. We tested P. sylvestris and P. nigra seedlings to simulated temperature increase and water stress, using seeds from the upper Rhone valley, Switzerland (CH), and from Peñyagolosa, Spain (ES). The experiment was located outdoors at the bottom of the Rhone Valley. Treatments consisted of factorial combinations of 3 precipitation regimes (‘wet spring-wet summer', ‘dry spring-dry summer' and ‘wet spring-dry summer') and 3 soil heating levels (+0 °C, +2.5 °C, +5 °C). Automatically operated shelters intercepted natural rainfall and different precipitation regimes were simulated by manual irrigation. We found significantly lower germination rates under dry conditions compared to wet conditions, whereas soil temperature affected germination rates only for P. nigra and when elevated by 5°C. Contrastingly, an increase of soil temperatures by 2.5 °C already caused a substantial decrease of survival rates under both ‘dry spring-dry summer' and ‘wet spring-dry summer' conditions. Precipitation regime was more important for survival than temperature increase. Seasonality of precipitation had distinct effects on the number of seedlings present after the first growing season. In the ‘wet spring-dry summer' treatment, a high germination rate overcompensated for low summer survival rates, resulting in higher seedling numbers at the end of the growing season in comparison to the ‘dry spring-dry summer' treatment. Biomass strongly depended on precipitation regime (‘wet spring-wet summer' > ‘dry spring-dry summer' > ‘wet spring-dry summer'), as well as having a strong provenance component with higher biomass recorded for Spanish P. sylvestris provenance than for the Swiss provenance under dry conditions. Our results imply that impacts of climate warming on tree recruitment will strongly depend on the way precipitation quantity and patterns change in the future, and early recruitment stages of provenances clearly differ in their ability to cope with drought.
T. Ryan McCarley; Crystal A. Kolden; Nicole M. Vaillant; Andrew T. Hudak; Alistair M. S. Smith; Jason Kreitler
2017-01-01
Across the western United States, the three primary drivers of tree mortality and carbon balance are bark beetles, timber harvest, and wildfire. While these agents of forest change frequently overlap, uncertainty remains regarding their interactions and influence on specific subsequent fire effects such as change in canopy cover. Acquisition of pre- and post-fire Light...
Climatic effects on decomposing litter and substrate chemistry along climatological gradients.
NASA Astrophysics Data System (ADS)
Berg, B.
2009-04-01
Climatic effects on decomposing litter and substrate chemistry along climatological gradients. B. Berg, Dipartimento Biologia Strutturale e Funzionale, Complesso Universitario, Monte San Angelo, via Cintia, I-80126 Napoli, Italy and Department of Forest Ecology, P.O. Box 27, University of Helsinki, FIN-00014, Helsinki, Finland. Studies of several processes, using climatic gradients do provide new information as compared with studies at e.g. a single site. Decomposition of plant litter in such gradients give response in decomposition rates to natural climate conditions. Thus Scots pine needle litter incubated in a climate gradient with annual average temperature (AVGT) ranging from -0.5 to 6.8oC had a highly significant increase in initial mass-loss rate with R2 = 0.591 (p<0.001) and a 5o increase in temperature doubled the mass-loss rate. As a contrast - needle litter of Norway spruce incubated in the same transect had no significant response to climate and for initial litter a 5o increase increased mass-loss rate c. 6%. For more decomposed Scots pine litter we could see that the effect of temperature on mass-loss rate gradually decreased until it disappeared. Long-term decomposition studies revealed differences in litter decomposition patterns along a gradient, even for the same type of litter. This could be followed by using an asymptotic function that gave, (i) a measure a maximum level of decomposition, (ii) the initial decomposition rate. Over a gradient the calculated maximum level of decomposition decreased with increasing AVGT. Other gradient studies revealed an effect of AVGT on litter chemical composition. Pine needle litter from stands under different climate conditions had nutrient concentrations related to AVGT. Thus N, P, K, and S were positively related to AVGT and Mn negatively, all of them significantly. This information may be used to explain the changing pattern in decomposition over the gradient.
Čepl, Jaroslav; Holá, Dana; Stejskal, Jan; Korecký, Jiří; Kočová, Marie; Lhotáková, Zuzana; Tomášková, Ivana; Palovská, Markéta; Rothová, Olga; Whetten, Ross W; Kaňák, Jan; Albrechtová, Jana; Lstibůrek, Milan
2016-07-01
Current knowledge of the genetic mechanisms underlying the inheritance of photosynthetic activity in forest trees is generally limited, yet it is essential both for various practical forestry purposes and for better understanding of broader evolutionary mechanisms. In this study, we investigated genetic variation underlying selected chlorophyll a fluorescence (ChlF) parameters in structured populations of Scots pine (Pinus sylvestris L.) grown on two sites under non-stress conditions. These parameters were derived from the OJIP part of the ChlF kinetics curve and characterize individual parts of primary photosynthetic processes associated, for example, with the exciton trapping by light-harvesting antennae, energy utilization in photosystem II (PSII) reaction centers (RCs) and its transfer further down the photosynthetic electron-transport chain. An additive relationship matrix was estimated based on pedigree reconstruction, utilizing a set of highly polymorphic single sequence repeat markers. Variance decomposition was conducted using the animal genetic evaluation mixed-linear model. The majority of ChlF parameters in the analyzed pine populations showed significant additive genetic variation. Statistically significant heritability estimates were obtained for most ChlF indices, with the exception of DI0/RC, φD0 and φP0 (Fv/Fm) parameters. Estimated heritabilities varied around the value of 0.15 with the maximal value of 0.23 in the ET0/RC parameter, which indicates electron-transport flux from QA to QB per PSII RC. No significant correlation was found between these indices and selected growth traits. Moreover, no genotype × environment interaction (G × E) was detected, i.e., no differences in genotypes' performance between sites. The absence of significant G × E in our study is interesting, given the relatively low heritability found for the majority of parameters analyzed. Therefore, we infer that polygenic variability of these indices is selectively neutral. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Thiry, Yves; Colle, Claude; Yoschenko, Vasyl; Levchuk, Svjatoslav; Van Hees, May; Hurtevent, Pierre; Kashparov, Valery
2009-12-01
Plantings of Scots pine (Pinus sylvestris L.) on a waste burial site in the Chernobyl Red Forest was shown to greatly influence the long term redistribution of radioactivity contained in sub-surfaces trenches. After 15 years of growth, aboveground biomass of the average tree growing on waste trench no.22 had accumulated 1.7 times more (137)Cs than that of trees growing off the trench, and 5.4 times more (90)Sr. At the scale of the trench and according to an average tree density of 3300 trees/ha for the study zone, tree contamination would correspond to 0.024% of the (137)Cs and 2.52% of the (90)Sr contained in the buried waste material. A quantitative description of the radionuclide cycling showed a potential for trees to annually extract up to 0.82% of the (90)Sr pool in the trench and 0.0038% of the (137)Cs. A preferential (90)Sr uptake from the deep soil is envisioned while pine roots would take up (137)Cs mostly from less contaminated shallow soil layers. The current upward flux of (90)Sr through vegetation appeared at least equal to downward loss in waste material leaching as reported by Dewiere et al. (2004, Journal of Environmental Radioactivity 74, 139-150). Using a prospective calculation model, we estimated that maximum (90)Sr cycling can be expected to occur at 40 years post-planting, resulting in 12% of the current (90)Sr content in the trench transferred to surface soils through biomass turnover and 7% stored in tree biomass. These results are preliminary, although based on accurate methodology. A more integrated ecosystem study leading to the coupling between biological and geochemical models of radionuclide cycling within the Red Forest seems opportune. Such a study would help in the adequate management of that new forest and the waste trenches upon which they reside.
210Po and 210Pb in Forest Soil and in Wild Berries in Finland
NASA Astrophysics Data System (ADS)
Vaaramaa, Kaisa; Solatie, Dina; Aro, Lasse; Lehto, Jukka
2008-08-01
The behaviour of 210Po and 210Pb was investigated in forests in the Southern Finland site and in the Northern Finland site. Sampling sites were in Scots pine (Pinus sylvestris) forests. Maximum activities of 210Po and 210Pb in soil columns were found in organic layers. According to preliminary results of wild berry samples, the lowest 210Po concentrations were found in berries. The highest concentration of 210Po was found in stems of the blueberry (Vaccinium myrtillus) and the lingonberry (Vaccinium vitis-idaea) samples.
Dale Brockway; Kenneth W. Outcalt; Becky L. Estes
2003-01-01
Developed during periods of fire exclusion, dense midstory vegetation, that reduces understory plant diversity (competitive shading) and increases the risk of damaging Wildfire (fuel ladder from ground to canopy), has impeded restoration efforts to safely reintroduce prescribed burning in southern pine ecosystems. Our study evaluated the effects of midstory reduction...
Stephen D. Pecot; Robert J. Mitchell; Brian J. Palik; Barry Moser; J. Kevin Hiers
2007-01-01
A trenching study was used to investigate above- and below-ground competition in a longleaf pine (Pinus palustris P. Mill.) woodland. Trenched and nontrenched plots were replicated in the woodland matrix, at gap edges, and in gap centers representing a range of overstory stocking. One-half of each plot received a herbicide treatment to remove the...
W. Cao; Ge Sun; Steve G. McNulty; J. Chen; A. Noormets; R. W. Skaggs; Devendra M. Amatya
2006-01-01
Evapotranspiration (ET) is the primary component of the forest hydrologic cycle, which includes plant transpiration, canopy rainfall interception, and soil evaporation. Quantifying ET processes and potential biophysical regulations is needed for assessing forest water management options. Loblolly pines are widely planted in the coastal plain of the Southeastern US, but...
Revised white pine stocking guide for managed stands
William B. Leak; Neil I. Lamson
1999-01-01
Stocking guides are basic tools for forest managers. They provide estimates of the range in acceptable stocking for full occupancy of the site. The first stocking guide for white pine was developed by Philbrook et al (1973). It was of conventional format: showing trees and basal area per acre (in the main crown canopy) by mean stand dbh (the tree of average basal area...
Effects of stand and site variables on the lumber value of uneven-aged loblolly pine stands
David W. Patterson; Paul A. Murphy; Michael G. Shelton
2000-01-01
Uneven-aged silviculture using single-tree selection provides the landowner with periodic income from a continuous forest which has a varied canopy. Data were collected from 24 plots of a larger study to determine if site index, basal area, and maximum dbh affected volume and value of lumber from loblolly pine (Pinus taeda L.) trees in uneven-aged...
Diameter Growth of Loblolly Pine Trees as Affected by Soil-Moisture Availibility
John R. Bassett
1964-01-01
In a 30-year-old even-aged stand of loblolly pine on a site 90 loessial soil in southeast Arkansas during foul growing seasons, most trees on plots thinned to 125 square feet of basal area per acre increased in basal area continuously when, under the crown canopy, available water in the surface foot remained above 65 percent. Measurable diameter growth ceased when...
Longleaf pine cone collection on the Sabine National Forest during October 2014
George F. Weick; Earlene Bracy Jackson; Robert Smith; James Crooks; Barbara Crane; James M. Guldin
2017-01-01
Longleaf pine is known as an unpredictable seed producer, with adequate or better seed crops occurring once every 5 years or longer. However, in the spring before seed fall, good cone crops can be predicted by visually counting green cones in the canopy, which by then are large enough to be seen, especially when binoculars of suitable power are used. During the spring...
Benjamin O. Knapp; G. Geoff Wang; Joan L. Walker; Huifeng Hu
2016-01-01
In the southeastern United States, many forest managers are interested in restoring longleaf pine (Pinus palustris Mill.) to upland sites that currently support loblolly pine (Pinus taeda L.). We quantified the effects of four canopy treatments (uncut Control; MedBA, harvest to 9 m2·haâ1...
McCarley, T. Ryan; Kolden, Crystal A.; Vaillant, Nicole M.; Hudak, Andrew T.; Smith, Alistair M.S.; Kreitler, Jason R.
2017-01-01
Across the western United States, the three primary drivers of tree mortality and carbon balance are bark beetles, timber harvest, and wildfire. While these agents of forest change frequently overlap, uncertainty remains regarding their interactions and influence on specific subsequent fire effects such as change in canopy cover. Acquisition of pre- and post-fire Light Detection and Ranging (LiDAR) data on the 2012 Pole Creek Fire in central Oregon provided an opportunity to isolate and quantify fire effects coincident with specific agents of change. This study characterizes the influence of pre-fire mountain pine beetle (MPB; Dendroctonus ponderosae) and timber harvest disturbances on LiDAR-estimated change in canopy cover. Observed canopy loss from fire was greater (higher severity) in areas experiencing pre-fire MPB (Δ 18.8%CC) than fire-only (Δ 11.1%CC). Additionally, increasing MPB intensity was directly related to greater canopy loss. Canopy loss was lower for all areas of pre-fire timber harvest (Δ 3.9%CC) than for fire-only, but among harvested areas, the greatest change was observed in the oldest treatments and the most intensive treatments [i.e., stand clearcut (Δ 5.0%CC) and combination of shelterwood establishment cuts and shelterwood removal cuts (Δ 7.7%CC)]. These results highlight the importance of accounting for and understanding the impact of pre-fire agents of change such as MPB and timber harvest on subsequent fire effects in land management planning. This work also demonstrates the utility of multi-temporal LiDAR as a tool for quantifying these landscape-scale interactions.
Koepke, Dan F; Kolb, Thomas E; Adams, Henry D
2010-08-01
Vegetation change from drought-induced mortality can alter ecosystem community structure, biodiversity, and services. Although drought-induced mortality of woody plants has increased globally with recent warming, influences of soil type, tree and shrub groups, and species are poorly understood. Following the severe 2002 drought in northern Arizona, we surveyed woody plant mortality and canopy dieback of live trees and shrubs at the forest-woodland ecotone on soils derived from three soil parent materials (cinder, flow basalt, sedimentary) that differed in texture and rockiness. Our first of three major findings was that soil parent material had little effect on mortality of both trees and shrubs, yet canopy dieback of trees was influenced by parent material; dieback was highest on the cinder for pinyon pine (Pinus edulis) and one-seed juniper (Juniperus monosperma). Ponderosa pine (Pinus ponderosa) dieback was not sensitive to parent material. Second, shrubs had similar mortality, but greater canopy dieback, than trees. Third, pinyon and ponderosa pines had greater mortality than juniper, yet juniper had greater dieback, reflecting different hydraulic characteristics among these tree species. Our results show that impacts of severe drought on woody plants differed among tree species and tree and shrub groups, and such impacts were widespread over different soils in the southwestern U.S. Increasing frequency of severe drought with climate warming will likely cause similar mortality to trees and shrubs over major soil types at the forest-woodland ecotone in this region, but due to greater mortality of other tree species, tree cover will shift from a mixture of species to dominance by junipers and shrubs. Surviving junipers and shrubs will also likely have diminished leaf area due to canopy dieback.
Aucina, Algis; Rudawska, Maria; Leski, Tomasz; Skridaila, Audrius; Riepsas, Edvardas; Iwanski, Michal
2007-08-01
We report the effects of pine and oak litter on species composition and diversity of mycorrhizal fungi colonizing 2-year-old Pinus sylvestris L. seedlings grown in a bare-root nursery in Lithuania. A layer of pine or oak litter was placed on the surface of the nursery bed soil to mimic natural litter cover. Oak litter amendment appeared to be most favorable for seedling survival, with a 73% survival rate, in contrast to the untreated mineral bed soil (44%). The concentrations of total N, P, K, Ca, and Mg were higher in oak growth medium than in pine growth medium. Relative to the control (pH 6.1), the pH was lower in pine growth medium (5.8) and higher in oak growth medium (6.3). There were also twofold and threefold increases in the C content of growth medium with the addition of pine and oak litter, respectively. Among seven mycorrhizal morphotypes, eight different mycorrhizal taxa were identified: Suillus luteus, Suillus variegatus, Wilcoxina mikolae, a Tuber sp., a Tomentella sp., Cenococcum geophilum, Amphinema byssoides, and one unidentified ectomycorrhizal symbiont. Forest litter addition affected the relative abundance of mycorrhizal symbionts more than their overall representation. This was more pronounced for pine litter than for oak litter, with 40% and 25% increases in the abundance of suilloid mycorrhizae, respectively. Our findings provide preliminary evidence that changes in the supply of organic matter through litter manipulation may have far-reaching effects on the chemistry of soil, thus influencing the growth and survival of Scots pine seedlings and their mycorrhizal communities.
Effects of Disturbance on Carbon Sequestration in the New Jersey Pine Barrens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schafer, Karina; Bohrer, Gil
While carbon and water cycling of forests contribute significantly to the Earth's overall biogeochemical cycling, it may be affected by disturbance and climate change. In this research, we contributed to the body of research on leaf-level, ecosystem and regional scale effects of disturbances on forest ecosystems, in an effort to foster more mechanistic understanding, which in turn can improve modeling efforts. Here, we summarize some of the major findings in this research of physical and biogenic disturbances, such as drought, prescribed fire, and insect defoliation, on leaf and ecosystem-scale physiological responses as well as impacts on carbon and water cyclingmore » in an Atlantic Coastal Plain upland oak/pine and upland pine forest. Following we have incorporated some of our findings into a new version of the Finite-element Tree-Crown Hydrodynamics (model version 2) model, which improved timing and hysteresis of transpiration modeling for trees. Furthermore, incorporation of hydrodynamics into modeling transpiration improved latent heat flux estimates. In our study on the physiology of the trees, we showed that during drought, stomatal conductance and canopy stomatal conductance were reduced, however, defoliation increased conductance on both leaf-level and canopy scale. Furthermore, after prescribed fire, leaf-level stomatal conductance was unchanged for pines but decreased for oaks, while canopy stomatal conductance decreased temporarily, but then rebounded the following growing season, thus exhibiting transient responses. This study suggests that forest response to disturbance varies from the leaf to ecosystem level as well as species level and thus, these differential responses interplay to determine the fate of forest structure and functioning post disturbance. Incorporating this responses improves model outcome.« less
Genome hypermethylation in Pinus silvestris of Chernobyl--a mechanism for radiation adaptation?
Kovalchuk, Olga; Burke, Paula; Arkhipov, Andrey; Kuchma, Nikolaj; James, S Jill; Kovalchuk, Igor; Pogribny, Igor
2003-08-28
Adaptation is a complex process by which populations of organisms respond to long-term environmental stresses by permanent genetic change. Here we present data from the natural "open-field" radiation adaptation experiment after the Chernobyl accident and provide the first evidence of the involvement of epigenetic changes in adaptation of a eukaryote-Scots pine (Pinus silvestris), to chronic radiation exposure. We have evaluated global genome methylation of control and radiation-exposed pine trees using a method based on cleavage by a methylation-sensitive HpaII restriction endonuclease that leaves a 5' guanine overhang and subsequent single nucleotide extension with labeled [3H] dCTP. We have found that genomic DNA of exposed pine trees was considerably hypermethylated. Moreover, hypermethylation appeared to be dependent upon the radiation dose absorbed by the trees. Such hypermethylation may be viewed as a defense strategy of plants that prevents genome instability and reshuffling of the hereditary material, allowing survival in an extreme environment. Further studies are clearly needed to analyze in detail the involvement of DNA methylation and other epigenetic mechanisms in the complex process of radiation stress and adaptive response.
Thermal IR exitance model of a plant canopy
NASA Technical Reports Server (NTRS)
Kimes, D. S.; Smith, J. A.; Link, L. E.
1981-01-01
A thermal IR exitance model of a plant canopy based on a mathematical abstraction of three horizontal layers of vegetation was developed. Canopy geometry within each layer is quantitatively described by the foliage and branch orientation distributions and number density. Given this geometric information for each layer and the driving meteorological variables, a system of energy budget equations was determined and solved for average layer temperatures. These estimated layer temperatures, together with the angular distributions of radiating elements, were used to calculate the emitted thermal IR radiation as a function of view angle above the canopy. The model was applied to a lodgepole pine (Pinus contorta) canopy over a diurnal cycle. Simulated vs measured radiometric average temperatures of the midcanopy layer corresponded with 2 C. Simulation results suggested that canopy geometry can significantly influence the effective radiant temperature recorded at varying sensor view angles.
The effect of soil water deficit on the reflectance of conifer seedling canopies
NASA Technical Reports Server (NTRS)
Fox, L.
1977-01-01
The effects of soil water deficit on spruce and pine seedling canopy reflectance, needle reflectance and transmittance, and canopy density were measured in a greenhouse with a diffuse source of radiant flux. A potential for early or pre-visual detection of plant water stress was not supported by these measurements made at visible, and reflected infrared wavelengths to 1950 nm. Needles were found to transmit approximately thirty percent of the radiant flux incident on them at 780 nm, ten percent at 700 nm, and were found to be opaque at 450, 550, 600 and 650 nm.
NASA Astrophysics Data System (ADS)
Loustau, D.; Berbigier, P.; Granier, A.
1992-10-01
Interception, throughfall and stemflow were determined in an 18-year-old maritime pine stand for a period of 30 months. This involved 71 rainfall events, each corresponding either to a single storm or to several storms. Gash's analytical model of interception was used to estimate the sensitivity of interception to canopy structure and climatic parameters. The seasonal cumulative interception loss corresponded to 12.6-21.0% of the amount of rainfall, whereas throughfall and stemflow accounted for 77-83% and 1-6%, respectively. On a seasonal basis, simulated data fitted the measured data satisfactorily ( r2 = 0.75). The rainfall partitioning between interception, throughfall and stemflow was shown to be sensitive to (1) the rainfall regime, i.e. the relative importance of light storms to total rainfall, (2) the climatic parameters, rainfall rate and average evaporation rate during storms, and (3) the canopy structure parameters of the model. The low interception rate of the canopy was attributed primarily to the low leaf area index of the stand.
Chris A. Maier; Sari Palmroth; Eric Ward
2008-01-01
We examined effects of a first nitrogen (N) fertilizer application on upper-canopy needle morphology and gas exchange in ~20-m-tall loblolly pine (Pinus taeda L.) exposed to elevated carbon dioxide concentration ([CO2]) for 9 years. Duke Forest free-air CO2 enrichment (FACE) plots were split and half of...
Michael Gavazzi; Ge Sun; Steve McNulty; E.A Treasure; M.G Wightman
2016-01-01
The area of planted pine in the southern U.S. is predicted to increase by over 70% by 2060, potentially altering the natural hydrologic cycle and water balance at multiple scales. To better account for potential shifts in water yield, land managers and resource planners must accurately quantify water budgets from the stand to the regional scale. The amount of...
NASA Astrophysics Data System (ADS)
Emmel, C.; Bowler, R.; Black, T. A.; Christen, A.
2012-12-01
Disturbance of forests caused by insect attacks, such as the mountain pine beetle (Dendroctonus ponderosae, MPB) outbreak in Western North America may lead to a conversion of affected forests from a net carbon dioxide (CO2) sink to a net source. Informed management of forests can help reduce the associated CO2 emissions. The objective of this study is to determine the vertical distribution of sources and sinks of CO2 in an open MPB attacked lodgepole pine (Pinus contorta var. latifolia) canopy (stand height h = 17 m, leaf areas index LAI = 0.55 m2 m-2) in the Interior of British Columbia. The stand has a considerable living secondary structure with a maximum height of 12 m while 99% of the mature pine trees composing the upper canopy are dead. We compared two different methods to accomplish the goal of determining the vertical divergence of the CO2 flux and relate it to the different vegetation layers. Data from a field campaign in July / August 2010 were used. The first method employs eddy-covariance (EC) measurements to determine the vertical source/sink distribution within and above the canopy. The instrumentation included open-path infrared gas analyzers and 3D ultrasonic anemometers. With simultaneous EC measurements at seven heights (z/h = 0.05, 0.15, 0.40, 0.60, 0.85, 1.05 and 1.30) we determined the CO2 uptake or release of the layers between the measurement levels by calculating the flux density divergence and the CO2 storage change in the air of each layer. The second method uses an ecophysiological approach developing a canopy CO2 exchange model. CO2 exchange was directly measured on tree boles and the soil using a portable non-steady-state CO2 chamber system and on leaves using a LI-COR LI-6400 photosynthesis system. Measurements were made during different times of the day and under varying temperature and moisture conditions over the course of the campaign. Airborne light detection and ranging (LIDAR) measurements, and vertical, horizontal and species-specific LAI measurements provided necessary information about the stand structure. We combined this information with measurements of photosynthetically active radiation (PAR) at 6 levels, soil moisture and temperature measurements to model the vertical CO2 source/sink distribution over the course of the campaign. In earlier research, it was found that this stand made the transition from a carbon source to a sink faster than expected (Brown et al., 2010, Agric For Meteorol 150, 254-264). The flux profile showed substantial daytime CO2 uptake below z/h = 0.5, while in the upper canopy there was respiratory CO2 loss. PAR penetrates deep into the canopy with on average almost 60% reaching the ground level (z/h = 0.05). Our study demonstrates that the secondary structure is responsible for significant CO2 uptake, while the understory together with the soil and the dead lodgepole pine trees in the upper canopy are weak CO2 sources, resulting in the stand being a carbon sink. We will discuss the strengths and weaknesses of the two proposed methods with regard to technical challenges and uncertainties, and how the two methods compared overall.
Impacts of seasonal air and soil temperatures on photosynthesis in Scots pine trees.
Strand, Martin; Lundmark, Tomas; Söderbergh, Ingrid; Mellander, Per-Erik
2002-08-01
Seasonal courses of light-saturated rate of net photosynthesis (A360) and stomatal conductance (gs) were examined in detached 1-year-old needles of Scots pine (Pinus sylvestris L.) from early April to mid-November. To evaluate the effects of soil frost and low soil temperatures on gas exchange, the extent and duration of soil frost, as well as the onset of soil warming, were manipulated in the field. During spring, early summer and autumn, the patterns of A360 and gs in needles from the control and warm-soil plots were generally strongly related to daily mean air temperatures and the frequency of severe frost. The warm-soil treatment had little effect on gas exchange, although mean soil temperature in the warm-soil plot was 3.8 degrees C higher than in the control plot during spring and summer, indicating that A360 and gs in needles from control trees were not limited by low soil temperature alone. In contrast, prolonged exposure to soil temperatures slightly above 0 degrees C severely restricted recovery of A360 and especially gs in needles from the cold-soil treatment during spring and early summer; however, full recovery of both A360 and gs occurred in late summer. We conclude that inhibition of A360 by low soil temperatures is related to both stomatal closure and effects on the biochemistry of photosynthesis, the relative importance of which appeared to vary during spring and early summer. During the autumn, soil temperatures as low as 8 degrees C did not affect either A360 or gs.
Effects of copper-plasma deposition on weathering properties of wood surfaces
NASA Astrophysics Data System (ADS)
Gascón-Garrido, P.; Mainusch, N.; Militz, H.; Viöl, W.; Mai, C.
2016-03-01
Thin layers of copper micro-particles were deposited on the surfaces of Scots pine (Pinus sylvestris L.) micro-veneers using atmospheric pressure plasma to improve the resistance of the surfaces to weathering. Three different loadings of copper were established. Micro-veneers were exposed to artificial weathering in a QUV weathering tester for 0, 24, 48, 96 and 144 h following the standard EN 927-6 [1]. Mass losses after each exposure showed significant differences between copper coated and untreated micro-veneers. Tensile strength was assessed at zero span (z-strength) and finite span (f-strength) under dry conditions (20 °C, 65% RH). During 48 h, micro-veneers lost their z-strength progressively. In contrast, copper coating at highest loading imparts a photo-protective effect to wood micro-veneers during 144 h exhibiting z-strength retention of 95%. F-strength losses were similar in all copper treated and untreated micro-veneers up to 96 h. However, after 144 h, copper coated micro-veneers at highest loading showed significantly greater strength retention of 56%, while untreated micro-veneers exhibited only 38%. Infrared spectroscopy suggested that copper coating does not stabilize lignin. Inductively Coupled Plasma revealed that micro-veneers coated with the highest loading exhibited the lowest percentage of copper loss. Blue stain resistance of copper coated Scots pine following the guidelines of EN 152 [2] was performed. Additional test with different position of the coated surface was also assessed. Copper coating reduced fungal growth when coated surface is exposed in contact with vermiculite. Spores of Aureobasidium pullulans were not able to germinate on the copper coated surface positioned uppermost.
Nerg, A M; Heijari, J; Noldt, U; Viitanen, H; Vuorinen, M; Kainulainen, P; Holopainen, J K
2004-01-01
We tested how terpenoid (i.e., monoterpenes and resin acids) composition and concentration in wood affects resistance against wood-borers and decaying fungi. Scots pine (Pinus sylvestris) wood from nine provenances having variable terpenoid profiles was studied against the old house borer, Hylotrupes bajulus, and the decay fungus, Coniophora puteana. Provenances represented a 1200-km N-S transect from Estonia to northern Finland, but they were all cultivated for 7 years in the same nursery field, in central Finland. Mean relative growth rate (MRGR) of small H. hajulus larvae positively correlated with the total monoterpene concentration of wood, and feeding was associated with high proportion of levopimaric+palustric acid in wood. Provenance did not affect the MRGR of small or big larvae, but big larvae consumed more wood and produced more frass on the northern Ylitornio trees than on the southern Rakvere and Ruokolahti trees. Low beta-pinene and total monoterpene concentration and low beta: alpha-pinene ratio in wood were all associated with a high number of eggs. The most northern Muonio provenance was the most favored as an oviposition site, differing significantly from Saaremaa, Tenhola, and Suomussalmi. Wood from Saaremaa, Tenhola, Ruokolahti, and Suomussalmi provenance was most resistant against decay fungus, differing significantly from that of Kinnula provenance. However, decay resistance was not clearly associated with the concentrations of wood terpenoids. These results suggest that monoterpene composition of wood affects resistance against wood-boring Cerambycid beetles, but resistance against wood-decaying fungi is not as clearly associated with wood terpenoids.
Functional Multi-Locus QTL Mapping of Temporal Trends in Scots Pine Wood Traits
Li, Zitong; Hallingbäck, Henrik R.; Abrahamsson, Sara; Fries, Anders; Gull, Bengt Andersson; Sillanpää, Mikko J.; García-Gil, M. Rosario
2014-01-01
Quantitative trait loci (QTL) mapping of wood properties in conifer species has focused on single time point measurements or on trait means based on heterogeneous wood samples (e.g., increment cores), thus ignoring systematic within-tree trends. In this study, functional QTL mapping was performed for a set of important wood properties in increment cores from a 17-yr-old Scots pine (Pinus sylvestris L.) full-sib family with the aim of detecting wood trait QTL for general intercepts (means) and for linear slopes by increasing cambial age. Two multi-locus functional QTL analysis approaches were proposed and their performances were compared on trait datasets comprising 2 to 9 time points, 91 to 455 individual tree measurements and genotype datasets of amplified length polymorphisms (AFLP), and single nucleotide polymorphism (SNP) markers. The first method was a multilevel LASSO analysis whereby trend parameter estimation and QTL mapping were conducted consecutively; the second method was our Bayesian linear mixed model whereby trends and underlying genetic effects were estimated simultaneously. We also compared several different hypothesis testing methods under either the LASSO or the Bayesian framework to perform QTL inference. In total, five and four significant QTL were observed for the intercepts and slopes, respectively, across wood traits such as earlywood percentage, wood density, radial fiberwidth, and spiral grain angle. Four of these QTL were represented by candidate gene SNPs, thus providing promising targets for future research in QTL mapping and molecular function. Bayesian and LASSO methods both detected similar sets of QTL given datasets that comprised large numbers of individuals. PMID:25305041
Functional multi-locus QTL mapping of temporal trends in Scots pine wood traits.
Li, Zitong; Hallingbäck, Henrik R; Abrahamsson, Sara; Fries, Anders; Gull, Bengt Andersson; Sillanpää, Mikko J; García-Gil, M Rosario
2014-10-09
Quantitative trait loci (QTL) mapping of wood properties in conifer species has focused on single time point measurements or on trait means based on heterogeneous wood samples (e.g., increment cores), thus ignoring systematic within-tree trends. In this study, functional QTL mapping was performed for a set of important wood properties in increment cores from a 17-yr-old Scots pine (Pinus sylvestris L.) full-sib family with the aim of detecting wood trait QTL for general intercepts (means) and for linear slopes by increasing cambial age. Two multi-locus functional QTL analysis approaches were proposed and their performances were compared on trait datasets comprising 2 to 9 time points, 91 to 455 individual tree measurements and genotype datasets of amplified length polymorphisms (AFLP), and single nucleotide polymorphism (SNP) markers. The first method was a multilevel LASSO analysis whereby trend parameter estimation and QTL mapping were conducted consecutively; the second method was our Bayesian linear mixed model whereby trends and underlying genetic effects were estimated simultaneously. We also compared several different hypothesis testing methods under either the LASSO or the Bayesian framework to perform QTL inference. In total, five and four significant QTL were observed for the intercepts and slopes, respectively, across wood traits such as earlywood percentage, wood density, radial fiberwidth, and spiral grain angle. Four of these QTL were represented by candidate gene SNPs, thus providing promising targets for future research in QTL mapping and molecular function. Bayesian and LASSO methods both detected similar sets of QTL given datasets that comprised large numbers of individuals. Copyright © 2014 Li et al.
Irbe, Ilze; Andersone, Ingeborga; Andersons, Bruno; Noldt, Guna; Dizhbite, Tatiana; Kurnosova, Nina; Nuopponen, Mari; Stewart, Derek
2011-07-01
In our study, early period degradation (10 days) of Scots pine (Pinus sylvestris L.) sapwood by the brown-rot fungus Coniophora puteana (Schum.: Fr.) Karst. (BAM Ebw.15) was followed at the wood chemical composition and ultrastructure-level, and highlighted the generation of reactive oxygen species (ROS). An advanced decay period of 50 days was chosen for comparison of the degradation dynamics. Scanning UV microspectrophotometry (UMSP) analyses of lignin distribution in wood cells revealed that the linkages of lignin and polysaccharides were already disrupted in the early period of fungal attack. An increase in the lignin absorption A(280) value from 0.24 (control) to 0.44 in decayed wood was attributed to its oxidative modification which has been proposed to be generated by Fenton reaction derived ROS. The wood weight loss in the initial degradation period was 2%, whilst cellulose and lignin content decreased by 6.7% and 1%, respectively. Lignin methoxyl (-OCH3) content decreased from 15.1% (control) to 14.2% in decayed wood. Diffuse reflectance Fourier-transform infrared (DRIFT) spectroscopy corroborated the moderate loss in the hemicellulose and lignin degradation accompanying degradation. Electron paramagnetic resonance spectra and spin trapping confirmed the generation of ROS, such as hydroxyl radicals (HO∙), in the early wood degradation period. Our results showed that irreversible changes in wood structure started immediately after wood colonisation by fungal hyphae and the results generated here will assist in the understanding of the biochemical mechanisms of wood biodegradation by brown-rot fungi with the ultimate aim of developing novel wood protection methods.
NASA Astrophysics Data System (ADS)
Horemans, Joanna; Roland, Marilyn; Janssens, Ivan; Ceulemans, Reinhart
2017-04-01
Because of their ecological and recreational value, the health of forest ecosystems and their response to global change and pollution are of high importance. At a number of EuroFlux and ICOS ecosystem sites in Europe - as the Brasschaat forest site - the measurements of ecosystem fluxes of carbon and other gases are combined with vertical profiles of air pollution within the framework of the ICP-Forest monitoring program. The Brasschaat forest is dominated by 80-year old Scots pines (Pinus sylvestris L.), and has a total area of about 150 ha. It is situated near an urban area in the Campine region of Flanders, Belgium and is characterized by a mean annual temperature of 9.8 °C and an annual rainfall of 830 mm. In this contribution we report on a long-term analysis (1996-2016) of the ecosystem carbon and water fluxes, the energy exchanges and the pollutant concentrations (ozone, NOx, NH3, SO2). Particular interest goes to the inter-annual variation of the carbon fluxes and the carbon allocation patterns. The impact of the long-term (aggregated) and the short-term variability in both the meteorological drivers and in the main tropospheric pollutants on the carbon fluxes is examined, as well as their mutual interactive effects and their potential memory effect. The effect of variability in the drivers during the phenological phases (seasonality) on the inter-annual variability of the fluxes is also examined. Basic statistical techniques as well as spectral analyses and data mining techniques are being used.
Luyssaert, Sebastiaan; Sulkava, Mika; Raitio, Hannu; Hollmén, Jaakko
2004-02-01
This paper introduces the use of nutrition profiles as a first step in the development of a concept that is suitable for evaluating forest nutrition on the basis of large-scale foliar surveys. Nutrition profiles of a tree or stand were defined as the nutrient status, which accounts for all element concentrations, contents and interactions between two or more elements. Therefore a nutrition profile overcomes the shortcomings associated with the commonly used concepts for evaluating forest nutrition. Nutrition profiles can be calculated by means of a neural network, i.e. a self-organizing map, and an agglomerative clustering algorithm with pruning. As an example, nutrition profiles were calculated to describe the temporal variation in the mineral composition of Scots pine and Norway spruce needles in Finland between 1987 and 2000. The temporal trends in the frequency distribution of the nutrition profiles of Scots pine indicated that, between 1987 and 2000, the N, S, P, K, Ca, Mg and Al decreased, whereas the needle mass (NM) increased or remained unchanged. As there were no temporal trends in the frequency distribution of the nutrition profiles of Norway spruce, the mineral composition of the needles of Norway spruce needles subsequently did not change. Interpretation of the (lack of) temporal trends was outside the scope of this example. However, nutrition profiles prove to be a new and better concept for the evaluation of the mineral composition of large-scale surveys only when a biological interpretation of the nutrition profiles can be provided.
Grönlund, Leila; Hölttä, Teemu; Mäkelä, Annikki
2016-08-01
Shoot size and other shoot properties more or less follow the availability of light, but there is also evidence that the topological position in a tree crown has an influence on shoot development. Whether the hydraulic properties of new shoots are more regulated by the light or the position affects the shoot acclimation to changing light conditions and thereby to changing evaporative demand. We investigated the leaf-area-specific conductivity (and its components sapwood-specific conductivity and Huber value) of the current-year shoots of Scots pine (Pinus sylvestris L.) in relation to light environment and topological position in three different tree classes. The light environment was quantified in terms of simulated transpiration and the topological position was quantified by parent branch age. Sample shoot measurements included length, basal and tip diameter, hydraulic conductivity of the shoot, tracheid area and density, and specific leaf area. In our results, the leaf-area-specific conductivity of new shoots declined with parent branch age and increased with simulated transpiration rate of the shoot. The relation to transpiration demand seemed more decisive, since it gave higher R(2) values than branch age and explained the differences between the tree classes. The trend of leaf-area-specific conductivity with simulated transpiration was closely related to Huber value, whereas the trend of leaf-area-specific conductivity with parent branch age was related to a similar trend in sapwood-specific conductivity. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Long-term retention of (137)Cs in three forest soil types with different soil properties.
Suchara, Ivan; Sucharová, Julie; Holá, Marie; Pilátová, Helena; Rulík, Petr
2016-07-01
Current (137)Cs activity concentrations were studied at three localities in individual soil horizons of Stagnosol, Arenic Podzol and Haplic Cambisol soil units in soil blocks with dimensions of 20 × 20 × 40 cm situated below pine canopies (n = 3) and spruce canopies (n = 3), and below small canopy gaps, at least 15 × 15 m in area (n = 3 + 3), which have probably endured since 1986. The main zone of (137)Cs accumulation in all the localities was found to be in the organic horizons (H and F). No significant transport and accumulation of (137)Cs into illuvial soil horizons (Bm, Bs or Bhs, Bv and Bv/IIC) was found. The estimated current total (137)Cs activity concentrations in the soil blocks 40 cm in depth were only slightly higher below the coniferous canopy than they were below nearby canopy gaps. The inventory of (137)Cs in the soils was found to be in accordance with the estimated (137)Cs inputs from the Chernobyl fallout and from global fallout. The low amounts of (137)Cs found accumulated in the aboveground biomass (mosses, grasses, needles) did not substantially bias the studied radiocaesium balance in the soils. The vertical migration rate of (137)Cs in soils (cm/year) had a tendency to be higher below canopies than below canopy gaps and below pine canopies than below spruce canopies. We expected the current (137)Cs activity concentrations in the individual soil horizons to be related to the studied soil parameters: pH (H2O), pH (CaCl2), content of organic matter and mineral portion and portion of humic and fulvic acid contents (Q4/6). However, this was not confirmed. Similarly, we observed a weak tendency toward higher (137)Cs activity in soils below the canopy than in soils below canopy gaps. The available gaps used in our study may have been too small, and they may have been affected by an accumulation of litter and humus containing (137)Cs from the surrounding plots situated below neighbouring canopies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pinus sylvestris as a missing source of nitrous oxide and methane in boreal forest.
Machacova, Katerina; Bäck, Jaana; Vanhatalo, Anni; Halmeenmäki, Elisa; Kolari, Pasi; Mammarella, Ivan; Pumpanen, Jukka; Acosta, Manuel; Urban, Otmar; Pihlatie, Mari
2016-03-21
Boreal forests comprise 73% of the world's coniferous forests. Based on forest floor measurements, they have been considered a significant natural sink of methane (CH4) and a natural source of nitrous oxide (N2O), both of which are important greenhouse gases. However, the role of trees, especially conifers, in ecosystem N2O and CH4 exchange is only poorly understood. We show for the first time that mature Scots pine (Pinus sylvestris L.) trees consistently emit N2O and CH4 from both stems and shoots. The shoot fluxes of N2O and CH4 exceeded the stem flux rates by 16 and 41 times, respectively. Moreover, higher stem N2O and CH4 fluxes were observed from wet than from dry areas of the forest. The N2O release from boreal pine forests may thus be underestimated and the uptake of CH4 may be overestimated when ecosystem flux calculations are based solely on forest floor measurements. The contribution of pine trees to the N2O and CH4 exchange of the boreal pine forest seems to increase considerably under high soil water content, thus highlighting the urgent need to include tree-emissions in greenhouse gas emission inventories.
Zlobin, Ilya E; Ivanov, Yury V; Kartashov, Alexander V; Sarvin, Boris A; Stavrianidi, Andrey N; Kreslavski, Vladimir D; Kuznetsov, Vladimir V
2018-05-19
We investigated the influence of 40 days of drought on growth, storage processes and primary photosynthetic processes in 3-month-old Scots pine and Norway spruce seedlings growing in perlite culture. Water stress significantly affected seedling water status, whereas absolute dry biomass growth was not substantially influenced. Water stress induced an increase in non-structural carbohydrate content (sugars, sugar alcohols, starch) in the aboveground part of pine seedlings in contrast to spruce seedlings. Due to the relatively low content of sugars and sugar alcohols in seedling organs, their expected contribution to osmotic potential changes was quite low. In contrast to biomass accumulation and storage, photosynthetic primary processes were substantially influenced by water shortage. In spruce seedlings, PSII was more sensitive to water stress than PSI. In particular, electron transport in PSI was stable under water stress despite the substantial decrease of electron transport in PSII. The increase in thermal energy dissipation due to enhancement of non-photochemical quenching (NPQ) was evident in both species under water stress. Simultaneously, the yields of non-regulated energy dissipation in PSII were decreased in pine seedlings under drought. A relationship between growth, photosynthetic activities and storage processes is analysed under weak water deficit.
Reduction of stand density as a management tool to mitigate the effect of drought
NASA Astrophysics Data System (ADS)
Giuggiola, A.; Rigling, A.; Dobbertin, M.
2012-04-01
An increasing frequency and severity of drought combined with increased competition due to reduced forest management practices are putting many Scots pine forest (Pinus sylvestris) under increased drought pressure. Declining pines are already been observed in many drought exposed regions as in southern Europe or in the dry inner Alpine valleys. Thus, forest management practices oriented at reducing competition for water should increase pines tolerance to climate change and thus enhancing their long-term mitigation potential. In this study, we are testing the beneficial effect of thinning and understory removal as possible management practices. As a first study object we selected a trial with 3 thinning intensities (basal area reduction of 15%, 46% and 70%) and one control (unmanaged forest). The second experiment consisted in removing the understory layer in a radius of 5 meter from 6 mature pine trees. Water-related indicators, such as soil water content, sapflow, point dendrometer and ring width measurements over the growing season were then compared with control trees. Both objects belongs to the pine forests from the dry Rhone valley. Our results indicates that over the 10 years following the thinning performed in 1965 (when the stand was 45 years old) doubled and quadrupled the basal area increment in the medium and heavy treatments compared to the control. The annual mortality rates for the period 1978-1990 ranged between 2.9% for the control and 0.8% for the heavy thinned stand. An increasing mortality rates during the period 1991-2009 (up to 3.3%), with consequent decline in basal area and carbon sequestration, has been observed in relation to high remaining stand density. The removal of understory performed in April 2010 increased soil water content at 30 cm and 65 cm depth reducing trees drought stress. The transpiration and the predawn leaf water potential of overstory trees were higher in the trees with removal of the understory vegetation. The same trees also showed delayed stomata closure during drought periods. This advantage eventually resulted in a significant increase in tree growth, which was observed in the second year after removal. This combining approach highlight the positive effect of competition removal of growth and vitality of Scots pine trees. Our results suggest that in dry forests of the inner-Alps or the Mediterranean region, a strong reduction of basal area (15-25 m2/ha) is suitable to preserve enough water availability to maintain and healthy state. If thinning lead to a major increase of the understory layer, understory removal would prolong the initial positive effect of thinning. Thinning and understory removal enhance tree vitality and increase tree resistance against drought, insects and pathogens. These results simultaneously suggests that pine decline is not driven only by the increase of temperature, but is also a consequence of a change of forest use, specifically for the Valais, to a reduction of goat grazing pressure and wood harvesting.
Acute and long-term effects of irradiation on pine (Pinus silvestris) strands post-Chernobyl.
Arkhipov, N P; Kuchma, N D; Askbrant, S; Pasternak, P S; Musica, V V
1994-12-11
The effect of ionizing irradiation on the viability of pine stands after the fallout from the damaged nuclear energy plant at Chernobyl (ChNPP) was shown within the territory of the 10-km zone. During the period 1986-1991, irradiated and damaged forest stands, so-called 'red forest', located in this area were systematically classified by observation. Mortality rate, re-establishment, development of tree canopies, reproduction anomalies and stand viability were shown to be dependent on absorbed irradiation dose, on the age of the stand and on forest composition. For pine stands in the acutely affected zone, doses of more than 60 Gy resulted in a massive mortality and no regeneration of pine trees since 1987. The injured trees had burned or had dried-up. The drying process was accelerated by a massive production of pathogenic insects invading the dying trees. Specifically, irradiation doses of 10-60 Gy, 1-10 Gy and 0.1-1 Gy caused high, medium and low injury to the forest stands, respectively. Doses of less than 0.1 Gy did not cause any visible damage to the trees. In 1987, repair processes were displayed by the tree canopies and practically the entire viability of the forest stands had recovered except for trees in the acute and highly affected zones. The young forest was reestablished in the same place as the perished trees and new pine saplings were planted on the reclaimed areas.
Shanahan, Erin; Irvine, Kathryn M.; Roberts, Dave; Litt, Andrea R.; Legg, Kristin; Daley, Rob; Chambers, Nina
2014-01-01
Whitebark pine (Pinus albicaulis) is a foundation and keystone species in upper subalpine environments of the northern Rocky Mountains that strongly influences the biodiversity and productivity of high-elevation ecosystems (Tomback et al. 2001, Ellison et al. 2005). Throughout its historic range, whitebark pine has decreased significantly as a major component of high-elevation forests. As a result, it is critical to understand the challenges to whitebark pine—not only at the tree and stand level, but also as these factors influence the distribution of whitebark pine across the Greater Yellowstone Ecosystem (GYE). In 2003, the National Park Service (NPS) Greater Yellowstone Inventory & Monitoring Network identified whitebark pine as one of twelve significant natural resource indicators or vital signs to monitor (Jean et al. 2005, Fancy et al. 2009) and initiated a long-term, collaborative monitoring program. Partners in this effort include the U.S. Geological Survey, U.S. Forest Service, and Montana State University with representatives from each comprising the Greater Yellowstone Whitebark Pine Monitoring Working Group. The objectives of the monitoring program are to assess trends in (1) the proportion of live, whitebark pine trees (>1.4-m tall) infected with white pine blister rust (blister rust); (2) to document blister rust infection severity by the occurrence and location of persisting and new infections; (3) to determine mortality of whitebark pine trees and describe potential factors contributing to the death of trees; and (4) to assess the multiple components of the recruitment of understory whitebark pine into the reproductive population. In this report we summarize the past eight years (2004-2011) of whitebark pine status and trend monitoring in the GYE. Our study area encompasses six national forests (NF), two national parks (NP), as well as state and private lands in portions of Wyoming, Montana, and Idaho; this area is collectively described as the GYE here and in other studies. The sampling design is a probabilistic, twostage cluster design with stands of whitebark pine as the primary units and 10x50 m belt transects as the secondary units. Primary sampling units (stands) were selected randomly from a sample frame of approximately 10,770 mapped pure and mixed whitebark pine stands ≥2.0 hectares in the GYE (Dixon 1997, Landenburger 2012). From 2004 through 2007 (monitoring transect establishment or initial time-step), we established 176 permanent belt transects (secondary sampling units=176) in 150 whitebark pine stands and permanently marked approximately 4,740 individual trees >1.4 m tall to monitor long-term changes in blister rust infection and survival rates. Between 2008 and 2011 (revisit time-step), these same 176 transects were surveyed and again all previously tagged trees were observed for changes in blister rust infection and survival status. Objective 1. Using a combined ratio estimator, we estimated the proportion of live trees infected in the GYE in the initial time-step (2004-2007) to be 0.22 (0.031 SE). Following the completion of all surveys in the revisit time-step (2008-2011), we estimated the proportion of live trees infected with white pine blister rust as 0.23 (0.028 SE; Table 2). We detected no significant change in the proportion of trees infected in the GYE between the two time-steps. Objective 2. We documented blister rust canker locations as occurring in the canopy or bole. We compared changes in canker position between the initial time-step (2004-2007) and the revisit time-step (2008-2011) in order to assess changes in infection severity. This analysis included the 3,795 trees tagged during the initial time-step that were located and documented as alive at the end of the revisit time-step. At the end of the revisit time-step, we found 1,217 trees infected with blister rust. This includes the 287 newly tagged trees in the revisit time step of which 14 had documented infections. Of these 1,217 trees, 780 trees were infected with blister rust in both time steps. Trees with only canopy cankers made up approximately 43% (519 trees) of the total number of trees infected with blister rust at the end of the revisit time-step, while trees with only bole cankers comprised 20% (252 trees), and those with both canopy and bole cankers included 37% (446 trees) of the infected sample. A bole infection is considered to be more consequential than a canopy canker, as it compromises not only the overall longevity of the tree, but its functional capacity for reproductive output as well (Kendall and Arno 1990, Campbell and Antos 2000, McDonald and Hoff 2001, Schwandt and Kegley 2004). In addition to infection location, we also documented infection transition between the canopy and bole. Of the 780 live trees that were infected with blister rust in both time-steps, approximately 31% (242) maintained canopy cankers and 36% (281) retained bole infections at the end of the revisit time-step. Infection transition from canopy to bole occurred in 30% (234) of the revisit time-step trees while 3% (23) transitioned from bole to canopy infections during this period. Objective 3. To determine whitebark pine mortality, we resurveyed all belt transects to reassess the life status of permanently tagged trees >1.4 m tall. We compared the total number of live tagged trees recorded during monitoring transect establishment to the total number of resurveyed dead tagged trees recorded during the revisit time-step and identified all potential mortality-influencing conditions (blister rust, mountain pine beetle, fire and other). By the end of the revisit time-step, we observed a total of 975 dead tagged whitebark pine trees; using a ratio estimator, this represents a loss of approximately 20% (SE=4.35%) of the original live tagged tree population (GYWPMWG 2012). Objective 4. To investigate the proportion of live, reproducing tagged trees, we divided the total number of positively identified cone-bearing trees by the total number of live trees in the tagged tree sample at the end of the revisit time-step. To approximate the average density of recruitment trees per stand, trees ≤1.4 m tall were summed by stand (within the 500 m² transect area) and divided by the total number of stands. Reproducing trees made up approximately 24% (996 trees) of the total live tagged population at the end of the revisit time-step. Differentiating between whitebark pine and limber pine seedlings or saplings is problematic given the absence of cones or cone scars. Therefore, understory summaries as presented in this report may include individuals of both species when they are sympatric in a stand. The average density of small trees ≤1.4 m tall was 53 understory trees per 500 m². Raw counts of these understory individuals ranged from 0-635 small trees per belt transect. In addition, a total of 287 trees were added to the tagged tree population by the end of 2011. These newly tagged trees were individuals that upon subsequent revisits had reached a height of >1.4 m tall and subsequently added to the sample. Throughout the past decade in the GYE, monitoring has helped document shifts in whitebark pine forests; whitebark pine stands have been impacted by insect, pathogen, wildland fire, and other disturbance events. Blister rust infection is ubiquitous throughout the ecosystem and infection proportions are variable across the region. And while we have documented mortality of whitebark pine, we have also recorded considerable recruitment. We provide this first step-trend report as a quantifiable baseline for understanding the state of whitebark pine in the GYE. Many aspects of whitebark pine health are highly variable across the range of its distribution in the GYE. Through sustained implementation of the monitoring program, we will continue efforts to document and quantify whitebark pine forest dynamics as they arise under periodic upsurges in insect, pathogen, fire episodes, and climatic events in the GYE. Since its inception, this monitoring program perseveres as one of the only sustained longterm efforts conducted in the GYE with a singular purpose to track the health and status of this prominent keystone species.
E. David Dickens
2002-01-01
A forest land application of biosolids study was initiated in 1991 in the lower Coastal Plain of South Carolina (SC). A major objective of this project was to quantify the magnitude and duration of old-field loblolly pine (Pinus taeda L.) growth response to a one-time biosolids application after canopy closure. The study area is located on Alcoa...
NASA Astrophysics Data System (ADS)
Bacour, C.; Maignan, F.; Porcar-Castell, A.; MacBean, N.; Goulas, Y.; Flexas, J.; Guanter, L.; Joiner, J.; Peylin, P.
2016-12-01
A new era for improving our knowledge of the terrestrial carbon cycle at the global scale has begun with recent studies on the relationships between remotely sensed Sun Induce Fluorescence (SIF) and plant photosynthetic activity (GPP), and the availability of such satellite-derived products now "routinely" produced from GOSAT, GOME-2, or OCO-2 observations. Assimilating SIF data into terrestrial ecosystem models (TEMs) represents a novel opportunity to reduce the uncertainty of their prediction with respect to carbon-climate feedbacks, in particular the uncertainties resulting from inaccurate parameter values. A prerequisite is a correct representation in TEMs of the several drivers of plant fluorescence from the leaf to the canopy scale, and in particular the competing processes of photochemistry and non photochemical quenching (NPQ).In this study, we present the first results of a global scale assimilation of GOME-2 SIF products within a new version of the ORCHIDEE land surface model including a physical module of plant fluorescence. At the leaf level, the regulation of fluorescence yield is simulated both by the photosynthesis module of ORCHIDEE to calculate the photochemical yield and by a parametric model to estimate NPQ. The latter has been calibrated on leaf fluorescence measurements performed for boreal coniferous and Mediterranean vegetation species. A parametric representation of the SCOPE radiative transfer model is used to model the plant fluorescence fluxes for PSI and PSII and the scaling up to the canopy level. The ORCHIDEE-FluOR model is firstly evaluated with respect to in situ measurements of plant fluorescence flux and photochemical yield for scots pine and wheat. The potentials of SIF data to constrain the modelled GPP are evaluated by assimilating one year of GOME-2-SIF products within ORCHIDEE-FluOR. We investigate in particular the changes in the spatial patterns of GPP following the optimization of the photosynthesis and phenology parameters. We analyze the differences obtained using a simpler fluorescence model in ORCHIDEE hypothesizing a linear relationship between SIF and GPP, and an independent simultaneous assimilation of three data-streams (in situ flux measurements, satellite derived NDVI and atmospheric CO2 concentrations).
{sup 210}Po and {sup 210}Pb in Forest Soil and in Wild Berries in Finland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaaramaa, Kaisa; Lehto, Jukka; Solatie, Dina
2008-08-07
The behaviour of {sup 210}Po and {sup 210}Pb was investigated in forests in the Southern Finland site and in the Northern Finland site. Sampling sites were in Scots pine (Pinus sylvestris) forests. Maximum activities of {sup 210}Po and {sup 210}Pb in soil columns were found in organic layers. According to preliminary results of wild berry samples, the lowest {sup 210}Po concentrations were found in berries. The highest concentration of {sup 210}Po was found in stems of the blueberry (Vaccinium myrtillus) and the lingonberry (Vaccinium vitis-idaea) samples.
Pyrene degradation in forest humus microcosms with or without pine and its mycorrhizal fungus.
Koivula, Teija T; Salkinoja-Salonen, Mirja; Peltola, Rainer; Romantschuk, Martin
2004-01-01
The mineralization potential of forest humus and the self-cleaning potential of a boreal coniferous forest environment for polycyclic aromatic hydrocarbon (PAH) compounds was studied using a model ecosystem of acid forest humus (pH = 3.6) and pyrene as the model compound. The matrix was natural humus or humus mixed with oil-polluted soil in the presence and absence of Scots pine (Pinus sylvestris L.) and its mycorrhizal fungus (Paxillus involutus). The rates of pyrene mineralization in the microcosms with humus implants (without pine) were initially insignificant but increased from Day 64 onward to 47 microg kg(-1) d(-1) and further to 144 microg kg(-1) d(-1) after Day 105. In the pine-planted humus microcosms the rate of mineralization also increased, reaching 28 microg kg(-1) d(-1) after Day 105. The 14CO2 emission was already considerable in nonplanted microcosms containing oily soil at Day 21 and the pyrene mineralization continued throughout the study. The pyrene was converted to CO2 at rates of 0.07 and 0.6 microg kg(-1) d(-1) in the oily-soil implanted microcosms with and without pine, respectively. When the probable assimilation of 14CO2 by the pine and ground vegetation was taken into account the most efficient microcosm mineralized 20% of the 91.2 mg kg(-1) pyrene in 180 d. The presence of pine and its mycorrhizal fungus had no statistically significant effect on mineralization yields. The rates of pyrene mineralization observed in this study for forest humus exceeded the total annual deposition rate of PAHs in southern Finland. This indicates that accumulation in forest soil is not to be expected.
NASA Astrophysics Data System (ADS)
Canaval, Eva; Jud, Werner; Hansel, Armin
2015-04-01
Norway Spruce (Picea abies) and Scots Pine (Pinus sylvestris) represent dominating tree species in the northern hemisphere. Thus, the understanding of their ozone sensitivity in the light of the expected increasing ozone levels in the future is of great importance. In our experiments we investigated the emissions of volatile organic compounds (VOCs) of 3-4 year old Norway Spruce and Scots Pine seedlings under ozone fumigation (50-150 ppbv) and dark/light conditions. For the experiments the plants were placed in a setup with inert materials including a glass cuvette equipped with a turbulent air inlet and sensors for monitoring a large range of meteorological parameters. Typical conditions were 20-25°C and a relative humidity of 70-90 % for both plant species. A fast gas exchange rate was used to minimize reactions of ozone in the gas phase. A Switchable-Reagent-Ion-Time-of-Flight-MS (SRI-ToF-MS) was used to analyze the VOCs at the cuvette outlet in real-time during changing ozone and light levels. The use of H3O+ and NO+ as reagent ions allows the separation of certain isomers (e.g. aldehydes and ketones) due to different reaction pathways depending on the functional groups of the molecules. Within the Picea abies experiments the ozone loss, defined as the difference of the ozone concentration between cuvette inlet and outlet, remained nearly constant at the transition from dark to light. This indicates that a major part of the supplied ozone is depleted non-stomatally. In contrast the ozone loss increased by 50 % at the transition from dark to light conditions within Pinus sylvestris experiments. In this case the stomata represent the dominant loss channel. Since maximally 0.1% of the ozone loss could be explained by gas phase reactions with monoterpenes and sesquiterpenes, we suggest that ozone reactions on the surface of Picea abies represent the major sink in this case and lead to an light-independent ozone loss. This is supported by the fact that we detected a broad range of unidentified oxygenated ozonolysis products and their fragments, whose amount exceed by far the detected loss of BVOCs under ozone exposure. However, the observed products are not attributable to neither green leaf volatiles nor to other known volatile precursors. Furthermore Picea abies emits a smaller amount of ozone induced green leaf volatiles than Pinus sylvestris. Based on this results we can explain the higher ozone tolerance of Picea abies, which has been observed before. A likely reason for the differences in stomatal and surface ozone loss on the investigated plants are differences in the amount and kind of unsaturated semi-volatile compounds on the needle surface.
NASA Astrophysics Data System (ADS)
Eliades, Marinos; Bruggeman, Adriana; Lubczynski, Maciek W.; Christou, Andreas; Camera, Corrado; Djuma, Hakan
2018-07-01
Pines in semi-arid mountain environments manage to survive and thrive despite the limited soil water, due to shallow soil depths, and overall water scarcity. This study aims to develop a method for computing soil evaporation, bedrock water uptake and transpiration from a natural, open forest, based on sap flow (Heat Ratio Method), soil moisture and meteorological observations. The water balance of individual trees was conceptualized with a geometric approach, using canopy projected areas and Voronoi (Thiesen) polygons. The canopy approach assumes that the tree's root area extent is equal to its canopy projected area, while the Voronoi approach assumes that the tree roots exploit the open area that is closer to the tree than to any other tree. The methodology was applied in an open Pinus brutia forest (68% canopy cover) in Cyprus, characterized by steep slopes and fractured bedrock, during two hydrologically contrasting years (2015 wet, 2016 dry). Sap flow sensors, soil moisture sensors, throughfall and stemflow gauges were installed on and around eight trees. Rainfall was 507 mm in 2015 and 359 mm in 2016. According to the canopy approach, the sum of tree transpiration and soil evaporation exceeded the throughfall in both years, which implies that the trees' bedrock water uptake exceeds the surface runoff and drainage losses. This indicated that trees extend their roots beyond the canopy-projected areas and the use of the Voronoi polygons captures this effect. According to the stand scale water balance, average throughfall during the two years was 81% of the rainfall. Transpiration was 61% of the rainfall in 2015, but only 32% in 2016. On the contrary, the soil evaporation fraction increased from 26% in 2015 to 35% in the dry year of 2016. The contribution of bedrock water to tree transpiration was 77% of rainfall in 2015 and 66% in 2016. During the summer months, trees relied 100% on the uptake of water from the fractured bedrock to cover their transpiration needs. Average monthly transpiration areas ranged between 0.1 mm d-1 in October 2016 and 1.7 mm d-1 in April 2015. This study shows that bedrock uptake could be an essential water balance component of semi-arid, mountainous pine forests and should be accounted for in hydrologic models.
Stem compression reversibly reduces phloem transport in Pinus sylvestris trees.
Henriksson, Nils; Tarvainen, Lasse; Lim, Hyungwoo; Tor-Ngern, Pantana; Palmroth, Sari; Oren, Ram; Marshall, John; Näsholm, Torgny
2015-10-01
Manipulating tree belowground carbon (C) transport enables investigation of the ecological and physiological roles of tree roots and their associated mycorrhizal fungi, as well as a range of other soil organisms and processes. Girdling remains the most reliable method for manipulating this flux and it has been used in numerous studies. However, girdling is destructive and irreversible. Belowground C transport is mediated by phloem tissue, pressurized through the high osmotic potential resulting from its high content of soluble sugars. We speculated that phloem transport may be reversibly blocked through the application of an external pressure on tree stems. Thus, we here introduce a technique based on compression of the phloem, which interrupts belowground flow of assimilates, but allows trees to recover when the external pressure is removed. Metal clamps were wrapped around the stems and tightened to achieve a pressure theoretically sufficient to collapse the phloem tissue, thereby aiming to block transport. The compression's performance was tested in two field experiments: a (13)C canopy labelling study conducted on small Scots pine (Pinus sylvestris L.) trees [2-3 m tall, 3-7 cm diameter at breast height (DBH)] and a larger study involving mature pines (∼15 m tall, 15-25 cm DBH) where stem respiration, phloem and root carbohydrate contents, and soil CO2 efflux were measured. The compression's effectiveness was demonstrated by the successful blockage of (13)C transport. Stem compression doubled stem respiration above treatment, reduced soil CO2 efflux by 34% and reduced phloem sucrose content by 50% compared with control trees. Stem respiration and soil CO2 efflux returned to normal within 3 weeks after pressure release, and (13)C labelling revealed recovery of phloem function the following year. Thus, we show that belowground phloem C transport can be reduced by compression, and we also demonstrate that trees recover after treatment, resuming C transport in the phloem. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
AmeriFlux US-CZ2 Sierra Critical Zone, Sierra Transect, Ponderosa Pine Forest, Soaproot Saddle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goulden, Michael
This is the AmeriFlux version of the carbon flux data for the site US-CZ2 Sierra Critical Zone, Sierra Transect, Ponderosa Pine Forest, Soaproot Saddle. Site Description - Half hourly data are available at https://www.ess.uci.edu/~california/. This site is one of four Southern Sierra Critical Zone Observatory flux towers operated along an elevation gradient (sites are USCZ1, USCZ2, USCZ3 and USCZ4). This site is an oak/pine forest, with occasional thinning and wildfire, a prescribed understory burn ~2012, and severe drought and ~80% canopy mortality in 2011-15
BOREAS TE-23 Canopy Architecture and Spectral Data from Hemispherical Photographs
NASA Technical Reports Server (NTRS)
Rich, Paul M.; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)
2000-01-01
The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-23 (Terrestrial Ecology) team collected hemispherical photographs in support of its efforts to characterize and interpret information on estimates of canopy architecture and radiative transfer properties for most BOREAS study sites. Various Old Aspen (OA), Old Black Spruce (OBS), Old Jack Pine (OJP), Young Jack Pine (YJP), and Young Aspen (YA) sites in the boreal forest were measured from May to August 1994. The hemispherical photographs were used to derive values of leaf area index (LAI), leaf angle, gap fraction, and clumping index. This documentation describes these derived values. The derived data are stored in tabular ASCII files. The hemispherical photographs are stored in the original set of 42 CD-ROMs that were supplied by TE-23. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
Degradability of dissolved soil organic carbon and nitrogen in relation to tree species.
Kiikkilä, Oili; Kitunen, Veikko; Smolander, Aino
2005-06-01
The degradability and chemical characteristics of water-extractable dissolved organic carbon (DOC) and nitrogen (DON) from the humus layer of silver birch (Betula pendula Roth), Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) stands were compared in short-term incubation of soil solutions. For all extracts the degradation of DOC and DON was low (12-17% loss) and increased in the order: birch, spruce and pine. In the humus layer under pine a relatively larger pool of rapidly degrading dissolved soil organic matter (DOM) was indicated by the [3H]thymidine incorporation technique, which measures the availability of DOM to bacteria. The degradation of DOC was explained by a decrease in the hydrophilic fraction. For DON, however, both the hydrophilic and hydrophobic fractions tended to decrease during incubation. No major differences in concentrations of hydrophilic and hydrophobic fractions were detected between tree species. Molecular size distribution of DOC and DON, however, revealed slight initial differences between birch and conifers as well as a change in birch extract during incubation. The depletion of very rapidly degrading fractions (e.g., root exudates and compounds from the litter) may explain the low degradability of DOM in the humus layer under birch.
Yuan, Feng-Hui; Guan, De-Xin; Wu, Jia-Bing; Wang, An-Zhi; Shi, Ting-Ting; Zhang, Xiao-Jing
2008-02-01
Based on the data of three years successive automatic measurement with five horizontal quantum PAR sensors, this paper studied the spatiotemporal characteristics of photosynthetically active radiation (PAR) in the understory of Korean pine and broadleaved mixed forest in Changbai Mountains, in contrast with above-canopy PAR. It was found that the annual dynamics of above-canopy PAR showed two or more peaks, which was mainly affected by the weather conditions such as cloudy, foggy and rainy events. The annual dynamics of understory PAR followed the same trend of above-canopy PAR in non-growth season, but was steady and lower in numerical value in growth season. On clear days, larger differences were observed in the diurnal variation and frequency distribution of the understory PAR. As for the spatial variation of the understory PAR, the coefficient of variation (CV) was smaller in non-growth season (about 0.15) than in growth season (> 0.22), with the greatest in August. On the clear days in growth season, the understory PAR had a greater spatial variation when the solar elevation angle was between 38 degrees and 48 degrees (at 9:00-10:00 or 13:00-14:00).
AmeriFlux US-KS1 Kennedy Space Center (slash pine)
Drake, Bert [Smithsonian Environmental Research Center; Hinkle, Ross [University of Central Florida
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site US-KS1 Kennedy Space Center (slash pine). Site Description - The Kennedy Space Center Slash Pine Flatwoods site is located in the Merritt Island National Wildlife Refuge at the Kennedy Space Center (KSC) on the east coast of central Florida. Occupying 310 ha of local forest, the slash pine flatwoods ecosystem is managed as an uneven-aged stand with a sparsely populated overstory and a dense oak-dominated understory. Disturbances tend to occur on a 7 to 10 year cycle, mostly related to fire or hurricane activity. Prescribed fires have been conducted since 1969 to control understory fuel. The most recent burn was conducted in February of 1995. Following the burn, the stand was allowed to naturally regenerate into a open canopy of slash pines, less than 15% of canopy coverage ( on the order of 15-30 trees per ha), with a understory mostly composed of saw palmetto and scrub oak. There was a seasonally wet swale to the southeast that was on the margin of the flux tower footprint. A severe drought gripped most of Florida beginning in 1998 until the later half of 2001 resulting in four years of relatively low annual precipitation totals. Exceptionally high annual rainfall amounts in 2004 were the result of a pair of hurricanes that hit the area in August and September of 2004. Wind directions for the site are as follows: W and NW in the winter, afternoon E sea breeze in the summer.
Analysis of laser altimeter waveforms for forested ecosystems of Central Florida
NASA Astrophysics Data System (ADS)
Weishampel, John F.; Harding, David J.; Boutet, Jeffry C., Jr.; Drake, Jason B.
1997-07-01
An experimental profiling airborne laser altimeter system developed at NASA's Goddard Space Flight Center was used to acquire vertical canopy data from several ecosystem types from The Nature Conservancy's Disney Wilderness Preserve, near Kissimmee, Florida. This laser altimeter, besides providing submeter accuracy of tree height, captures a profile of data which relates to the magnitude of reflectivity of the laser pulse as it penetrates different elevations of the forest canopy. This complete time varying amplitude of the return signal of the laser pulse, between the first (i.e., the canopy top) and last (i.e., the ground) returns, yields a waveform which is related to canopy architecture, specifically the nadir-projected vertical distribution of the surface of canopy components (i.e., foliage, twigs, and branches). Selected profile returns from representative covertypes (e.g., pine flatwoods, bayhead, and cypress wetland) were compared with ground truthed forest composition (i.e., species and size class distribution) and structural (i.e., canopy height, canopy closure, crown depth) measures to help understand how these properties contribute to variation in the altimeter waveform.
New foliage growth is a significant, unaccounted source for volatiles in boreal evergreen forests
NASA Astrophysics Data System (ADS)
Aalto, J.; Kolari, P.; Hari, P.; Kerminen, V.-M.; Schiestl-Aalto, P.; Aaltonen, H.; Levula, J.; Siivola, E.; Kulmala, M.; Bäck, J.
2013-11-01
Estimates of volatile organic compound (VOC) emissions from forests are based on the assumption that foliage has a steady emission potential over its lifetime, and that emissions are mainly modified by short term variations in light and temperature. However, in many field studies this has been challenged, and high emissions and atmospheric concentrations have been measured during periods of low biological activity such as in springtime. We conducted measurements during three years, using an online gas-exchange monitoring system to observe volatile organic emissions from a mature (1 yr old) and a growing Scots pine shoot. The emission rates of organic vapours (monoterpenes, methyl butenol (MBO), acetone and methanol) from vegetative buds of Scots pine during the dehardening and rapid shoot growth stages were one to two orders of magnitude higher than those from mature foliage. The normally assumed temperature dependency was not sufficient to explain the variations in emission rates during spring. The diurnal emission pattern of growing shoots differed from the diurnal cycle in temperature as well as from the diurnal emission pattern of mature shoots, which may be related to processes involved in shoot or needle elongation. Our findings imply that global estimations of monoterpene emission rates from forests are in need of revision, and that the physiological state of the plants should be taken into account when emissions of the reactive gases such as monoterpenes are estimated. The significant interannual variation in emission rates, related to changes in plant metabolic activity, has important implications to the aerosol precursor concentrations and chemical reactions in atmosphere, and potentially offers an explanation for the frequent aerosol formation events in spring.
Nuopponen, Mari H; Birch, Gillian M; Sykes, Rob J; Lee, Steve J; Stewart, Derek
2006-01-11
Sitka spruce (Picea sitchensis) samples (491) from 50 different clones as well as 24 different tropical hardwoods and 20 Scots pine (Pinus sylvestris) samples were used to construct diffuse reflectance mid-infrared Fourier transform (DRIFT-MIR) based partial least squares (PLS) calibrations on lignin, cellulose, and wood resin contents and densities. Calibrations for density, lignin, and cellulose were established for all wood species combined into one data set as well as for the separate Sitka spruce data set. Relationships between wood resin and MIR data were constructed for the Sitka spruce data set as well as the combined Scots pine and Sitka spruce data sets. Calibrations containing only five wavenumbers instead of spectral ranges 4000-2800 and 1800-700 cm(-1) were also established. In addition, chemical factors contributing to wood density were studied. Chemical composition and density assessed from DRIFT-MIR calibrations had R2 and Q2 values in the ranges of 0.6-0.9 and 0.6-0.8, respectively. The PLS models gave residual mean squares error of prediction (RMSEP) values of 1.6-1.9, 2.8-3.7, and 0.4 for lignin, cellulose, and wood resin contents, respectively. Density test sets had RMSEP values ranging from 50 to 56. Reduced amount of wavenumbers can be utilized to predict the chemical composition and density of a wood, which should allow measurements of these properties using a hand-held device. MIR spectral data indicated that low-density samples had somewhat higher lignin contents than high-density samples. Correspondingly, high-density samples contained slightly more polysaccharides than low-density samples. This observation was consistent with the wet chemical data.
Comparing the variation of needle and wood terpenoids in Scots pine provenances.
Manninen, A M; Tarhanen, S; Vuorinen, M; Kainulaine, P
2002-01-01
We determined variation in both the concentration and composition of terpenoids in needles and wood within nine Scots pine (Pinus sylvestris) provenances. Seedlings of different provenances representing a 1200-km N-S transect from Estonia to northern Finland were cultivated in Suonenjoki nursery field, central Finland, for seven years. Growth of seedlings and the number of vertical resin ducts in wood were also determined. alpha-Pinene and 3-carene were the major monoterpenes both in the needles and wood. The total monoterpene concentration was about five times higher in the needles than in the wood. A strong positive correlation was found between proportional quantities of several terpenes of the needles and wood, particularly for 3-carene, sabinene, and terpinolene. The needles contained both labdane-type and tricyclic resin acids, whereas the wood contained only tricyclic ones. The wood had a four times higher tricyclic resin acid concentration than the needles. The highest total monoterpene concentration in the needles and in the wood occurred in the most northern Muonio provenance and in the most southern Saaremaa provenance plants, respectively. The amount of high 3-carene genotype trees decreased among the northern provenances. The wood of the most northern Muonio provenance showed the lowest total resin acid concentration, but provenance did not affect total tricyclic resin acids in the needles. Korpilahti provenance trees from central Finland had the best growth in height. In addition, Korpilahti and Ruokolahti provenance trees showed largest radial growth of stem and smallest number of vertical resin ducts. The results suggest that especially the proportional quantity of 3-carene in the needles could be used in estimating the amount of this compound in the wood and vice versa.
Kilpeläinen, Antti; Peltola, Heli; Ryyppö, Aija; Kellomäki, Seppo
2005-01-01
Growth and wood properties of 20-year-old Scots pine (Pinus sylvestris L.) trees were studied for 6 years in 16 closed chambers providing a factorial combination of two temperature regimes (ambient and elevated) and two carbon dioxide concentrations ([CO2]) (ambient and twice ambient). The elevation of temperature corresponded to the predicted effect at the site of a doubling in atmospheric [CO2]. Annual height and radial growth and wood properties were analyzed during 1997-2002. Physical wood properties analyzed included early- and latewood widths and their proportions, intra-ring wood densities, early- and latewood density and mean fiber length. Chemical wood properties analyzed included concentrations of acetone-soluble extractives, lignin, cellulose and hemicellulose. There were no significant treatment effects on height growth during the 6-year study. Elevated [CO2] increased ring width by 66 and 47% at ambient and elevated temperatures, respectively. At ambient [CO2], elevated temperature increased ring width by 19%. Increased ring width in response to elevated [CO2] resulted from increases in both early- and latewood width; however, there was no effect of the treatments on early- and latewood proportions. Mean wood density, earlywood density and fiber length increased in response to elevated temperature. The chemical composition of wood was affected by elevated [CO2], which reduced the cellulose concentration, and by elevated temperature, which reduced the concentration of acetone-soluble extractives. Thus, over the 6-year period, radial growth was significantly increased by elevated [CO2], and some wood properties were significantly affected by elevated temperature or elevated [CO2], or both, indicating that climate change may affect the material properties of wood.
Function and Dynamics of Auxin and Carbohydrates during Earlywood/Latewood Transition in Scots Pine1
Uggla, Claes; Magel, Elisabeth; Moritz, Thomas; Sundberg, Björn
2001-01-01
In temperate regions the annual pattern of wood development is characterized by the formation of radially narrow and thick walled latewood cells. This takes place at the later part of the growing season when cambial cell division declines. To gain new insight into the regulation of this process, micro-analytical techniques were used to visualize the distribution of indole-3-acetic acid (IAA), soluble carbohydrates, and activities of sucrose (Suc)-metabolizing enzymes across the cambial region tissues in Scots pine (Pinus sylvestris). The total amount of IAA in the cambial region did not change with latewood initiation. But its radial distribution pattern was altered, resulting in an increased concentration in the cambial meristem and its recent derivatives. Thus, initiation of latewood formation and cessation of cambial cell division is not a consequence of decreased IAA concentrations in dividing and expanding cells. Rather, IAA most likely has a role in defining the altered developmental pattern associated with latewood formation. Carbohydrates and enzyme activities showed distinctive radial distribution patterns. Suc peaked in the phloem and decreased sharply to low levels across the cambial zone, whereas fructose and glucose reached their highest levels in the maturing tracheids. Suc synthase was the dominating Suc cleaving enzyme with a peak in the secondary wall-forming tracheids and in the phloem. Soluble acid invertase peaked in dividing and expanding cells. Suc-phosphate synthase had its highest activities in the phloem. Activities of cell wall bound invertase were low. The absence of major seasonal variations indicates that carbohydrate availability is not a trigger for latewood initiation. However, steep concentration gradients of the sugars suggest a role for sugar signaling in vascular development. PMID:11299382
Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in scots pine.
Uggla, C; Magel, E; Moritz, T; Sundberg, B
2001-04-01
In temperate regions the annual pattern of wood development is characterized by the formation of radially narrow and thick walled latewood cells. This takes place at the later part of the growing season when cambial cell division declines. To gain new insight into the regulation of this process, micro-analytical techniques were used to visualize the distribution of indole-3-acetic acid (IAA), soluble carbohydrates, and activities of sucrose (Suc)-metabolizing enzymes across the cambial region tissues in Scots pine (Pinus sylvestris). The total amount of IAA in the cambial region did not change with latewood initiation. But its radial distribution pattern was altered, resulting in an increased concentration in the cambial meristem and its recent derivatives. Thus, initiation of latewood formation and cessation of cambial cell division is not a consequence of decreased IAA concentrations in dividing and expanding cells. Rather, IAA most likely has a role in defining the altered developmental pattern associated with latewood formation. Carbohydrates and enzyme activities showed distinctive radial distribution patterns. Suc peaked in the phloem and decreased sharply to low levels across the cambial zone, whereas fructose and glucose reached their highest levels in the maturing tracheids. Suc synthase was the dominating Suc cleaving enzyme with a peak in the secondary wall-forming tracheids and in the phloem. Soluble acid invertase peaked in dividing and expanding cells. Suc-phosphate synthase had its highest activities in the phloem. Activities of cell wall bound invertase were low. The absence of major seasonal variations indicates that carbohydrate availability is not a trigger for latewood initiation. However, steep concentration gradients of the sugars suggest a role for sugar signaling in vascular development.
Temperature dependence of needle and shoot elongation before bud break in Scots pine.
Schiestl-Aalto, Pauliina; Mäkelä, Annikki
2017-03-01
Knowledge about the early part of needle growth is deficient compared with what is known about shoot growth. It is however important to understand growth of different organs to be able to estimate the changes in whole tree growth in a changing environment. The onset of growth in spring has been observed to occur over some certain threshold value of momentary temperature or temperature accumulation. We measured the length growth of Scots pine (Pinus sylvestris L.) needles and shoots from March until bud break over 3 years. We first compared needle growth with concurrent shoot growth. Then, we quantified threshold temperature of growth (i) with a logistic regression based on momentary temperatures and (ii) with the temperature sum accumulation method. Temperature sum was calculated with combinations of various time steps, starting dates and threshold temperature values. Needle elongation began almost concurrently with shoot elongation and proceeded linearly in relation to shoot growth until bud break. When studying the threshold temperature for growth, the method with momentary temperature effect on growth onset yielded ambiguous results in our conditions. The best fit of an exponential regression between needle growth or length and temperature sum was obtained with threshold temperatures -1 to +2 °C, with several combinations of starting date and time step. We conclude that although growth onset is a momentary event the process leading to it is a long-term continuum where past time temperatures have to be accounted for, rather than a sudden switch from quiescence to active growth. Further, our results indicate that lower temperatures than the commonly used +5 °C are sufficient for actuating the growth process. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Benavides, Raquel; Rabasa, Sonia G; Granda, Elena; Escudero, Adrián; Hódar, José A; Martínez-Vilalta, Jordi; Rincón, Ana M; Zamora, Regino; Valladares, Fernando
2013-01-01
Global change triggers shifts in forest composition, with warming and aridification being particularly threatening for the populations located at the rear edge of the species distributions. This is the case of Scots pine (Pinus sylvestris) in the Mediterranean Basin where uncertainties in relation to its dynamics under these changing scenarios are still high. We analysed the relative effect of climate on the recruitment patterns of Scots pine and its interactions with local biotic and abiotic variables at different spatial scales. Number of seedlings and saplings was surveyed, and their annual shoot growth measured in 96 plots located across altitudinal gradients in three different regions in the Iberian Peninsula. We found a significant influence of climate on demography and performance of recruits, with a non-linear effect of temperature on the presence of juveniles, and a positive effect of precipitation on their survival. Abundance of juveniles of P. sylvestris that underwent their first summer drought was skewed towards higher altitudes than the altitudinal mean range of the conspecific adults and the optimum elevation for seedlings' emergence. At local level, light availability did not influence juveniles' density, but it enhanced their growth. Biotic interactions were found between juveniles and the herb cover (competition) and between the number of newly emerged seedlings and shrubs (facilitation). Results also highlighted the indirect effect that climate exerts over the local factors, modulating the interactions with the pre-existing vegetation that were more evident at more stressful sites. This multiscale approach improves our understanding of the dynamics of these marginal populations and some management criteria can be inferred to boost their conservation under the current global warming.
Forest floor leachate fluxes under six different tree species on a metal contaminated site.
Van Nevel, Lotte; Mertens, Jan; De Schrijver, An; Baeten, Lander; De Neve, Stefaan; Tack, Filip M G; Meers, Erik; Verheyen, Kris
2013-03-01
Trees play an important role in the biogeochemical cycling of metals, although the influence of different tree species on the mobilization of metals is not yet clear. This study examined effects of six tree species on fluxes of Cd, Zn, DOC, H(+) and base cations in forest floor leachates on a metal polluted site in Belgium. Forest floor leachates were sampled with zero-tension lysimeters in a 12-year-old post-agricultural forest on a sandy soil. The tree species included were silver birch (Betula pendula), oak (Quercus robur and Q. petraea), black locust (Robinia pseudoacacia), aspen (Populus tremula), Scots pine (Pinus sylvestris) and Douglas fir (Pseudotsuga menziesii). We show that total Cd fluxes in forest floor leachate under aspen were slightly higher than those in the other species' leachates, yet the relative differences between the species were considerably smaller when looking at dissolved Cd fluxes. The latter was probably caused by extremely low H(+) amounts leaching from aspen's forest floor. No tree species effect was found for Zn leachate fluxes. We expected higher metal leachate fluxes under aspen as its leaf litter was significantly contaminated with Cd and Zn. We propose that the low amounts of Cd and Zn leaching under aspen's forest floor were possibly caused by high activity of soil biota, for example burrowing earthworms. Furthermore, our results reveal that Scots pine and oak were characterized by high H(+) and DOC fluxes as well as low base cation fluxes in their forest floor leachates, implying that those species might enhance metal mobilization in the soil profile and thus bear a potential risk for belowground metal dispersion. Copyright © 2013 Elsevier B.V. All rights reserved.
Schützendübel, Andres; Schwanz, Peter; Teichmann, Thomas; Gross, Kristina; Langenfeld-Heyser, Rosemarie; Godbold, Douglas L.; Polle, Andrea
2001-01-01
To investigate whether Cd induces common plant defense pathways or unspecific necrosis, the temporal sequence of physiological reactions, including hydrogen peroxide (H2O2) production, changes in ascorbate-glutathione-related antioxidant systems, secondary metabolism (peroxidases, phenolics, and lignification), and developmental changes, was characterized in roots of hydroponically grown Scots pine (Pinus sylvestris) seedlings. Cd (50 μm, 6 h) initially increased superoxide dismutase, inhibited the systems involved in H2O2 removal (glutathione/glutathione reductase, catalase [CAT], and ascorbate peroxidase [APX]), and caused H2O2 accumulation. Elongation of the roots was completely inhibited within 12 h. After 24 h, glutathione reductase activities recovered to control levels; APX and CAT were stimulated by factors of 5.5 and 1.5. Cell death was increased. After 48 h, nonspecific peroxidases and lignification were increased, and APX and CAT activities were decreased. Histochemical analysis showed that soluble phenolics accumulated in the cytosol of Cd-treated roots but lignification was confined to newly formed protoxylem elements, which were found in the region of the root tip that normally constitutes the elongation zone. Roots exposed to 5 μm Cd showed less pronounced responses and only a small decrease in the elongation rate. These results suggest that in cells challenged by Cd at concentrations exceeding the detoxification capacity, H2O2 accumulated because of an imbalance of redox systems. This, in turn, may have triggered the developmental program leading to xylogenesis. In conclusion, Cd did not cause necrotic injury in root tips but appeared to expedite differentiation, thus leading to accelerated aging. PMID:11706171
Sterck, Frank J; Zweifel, Roman; Sass-Klaassen, Ute; Chowdhury, Qumruzzaman
2008-04-01
Leaf specific conductivity (LSC; the ratio of stem conductivity (K(P)) to leaf area (A(L))), a measure of the hydraulic capacity of the stem to supply leaves with water, varies with soil water content. Empirical evidence for LSC responses to drought is ambiguous, because previously published results were subject to many confounding factors. We tested how LSC of similar-sized trees of the same population, under similar climatic conditions, responds to persistently wet or dry soil. Scots pine (Pinus sylvestris L.) and pubescent oak (Quercus pubescens Willd.) trees were compared between a dry site and a wet site in the Valais, an inner alpine valley in Switzerland. Soil water strongly influenced A(L) and K(P) and the plant components affecting K(P), such as conduit radius, conduit density and functional sapwood area. Trees at the dry site had lower LSC than trees with the same stem diameter at the wet site. Low LSC in trees at the dry site was associated with a smaller functional sapwood area and narrower conduits, resulting in a stronger reduction in K(P) than in A(L). These observations support the hypothesis that trees maintain a homeostatic water pressure gradient. An alternative hypothesis is that relatively high investments in leaves compared with sapwood contribute to carbon gain over an entire season by enabling rapid whole-plant photosynthesis during periods of high water availability (e.g., in spring, after rain events and during morning hours when leaf-to-air vapor pressure deficit is small). Dynamic data and a hydraulic plant growth model are needed to test how investments in leaves versus sapwood and roots contribute to transpiration and to maximizing carbon gain throughout entire growth seasons.
Modelling short-term variability in carbon and water exchange in a temperate Scots pine forest
NASA Astrophysics Data System (ADS)
Vermeulen, M. H.; Kruijt, B. J.; Hickler, T.; Kabat, P.
2015-02-01
Vegetation - atmosphere carbon and water exchange at one particular site can strongly vary from year to year, and understanding this interannual variability in carbon and water exchange (IAVcw) is a critical factor in projecting future ecosystem changes. However, the mechanisms driving this IAVcw are not well understood. We used data on carbon and water fluxes from a multi-year Eddy Covariance study (1997-2009) in a Dutch Scots pine forest and forced a process-based ecosystem model (LPJ-GUESS) with local data to, firstly, test whether the model can explain IAVcw and seasonal carbon and water exchange from direct environmental factors only. Initial model runs showed low correlations with estimated annual gross primary productivity (GPP) and annual actual evapotranspiration (AET), while monthly and daily fluxes showed high correlations. The model underestimated GPP and AET during winter and drought events. Secondly, we adapted the temperature inhibition function of photosynthesis to account for the observation that at this particular site, trees continue to assimilate at very low atmospheric temperatures (up to daily averages of -10 °C), resulting in a net carbon sink in winter. While we were able to improve daily and monthly simulations during winter by lowering the modelled minimum temperature threshold for photosynthesis, this did not increase explained IAVcw at the site. Thirdly, we implemented three alternative hypotheses concerning water uptake by plants in order to test which one best corresponds with the data. In particular, we analyse the effects during the 2003 heatwave. These simulations revealed a strong sensitivity of the modelled fluxes during dry and warm conditions, but no single formulation was consistently superior in reproducing the data for all time scales and the overall model-data match for IAVcw could not be improved. Most probably access to deep soil water leads to higher AET and GPP simulated during the heat wave of 2003. We conclude that photosynthesis at lower temperatures than assumed in most models can be important for winter carbon and water fluxes in pine forests. Furthermore, details of the model representations of water uptake, which are often overlooked, need further attention, and deep water access should be treated explicitly.
Modelling short-term variability in carbon and water exchange in a temperate Scots pine forest
NASA Astrophysics Data System (ADS)
Vermeulen, M. H.; Kruijt, B. J.; Hickler, T.; Kabat, P.
2015-07-01
The vegetation-atmosphere carbon and water exchange at one particular site can strongly vary from year to year, and understanding this interannual variability in carbon and water exchange (IAVcw) is a critical factor in projecting future ecosystem changes. However, the mechanisms driving this IAVcw are not well understood. We used data on carbon and water fluxes from a multi-year eddy covariance study (1997-2009) in a Dutch Scots pine forest and forced a process-based ecosystem model (Lund-Potsdam-Jena General Ecosystem Simulator; LPJ-GUESS) with local data to, firstly, test whether the model can explain IAVcw and seasonal carbon and water exchange from direct environmental factors only. Initial model runs showed low correlations with estimated annual gross primary productivity (GPP) and annual actual evapotranspiration (AET), while monthly and daily fluxes showed high correlations. The model underestimated GPP and AET during winter and drought events. Secondly, we adapted the temperature inhibition function of photosynthesis to account for the observation that at this particular site, trees continue to assimilate at very low atmospheric temperatures (up to daily averages of -10 °C), resulting in a net carbon sink in winter. While we were able to improve daily and monthly simulations during winter by lowering the modelled minimum temperature threshold for photosynthesis, this did not increase explained IAVcw at the site. Thirdly, we implemented three alternative hypotheses concerning water uptake by plants in order to test which one best corresponds with the data. In particular, we analyse the effects during the 2003 heatwave. These simulations revealed a strong sensitivity of the modelled fluxes during dry and warm conditions, but no single formulation was consistently superior in reproducing the data for all timescales and the overall model-data match for IAVcw could not be improved. Most probably access to deep soil water leads to higher AET and GPP simulated during the heatwave of 2003. We conclude that photosynthesis at lower temperatures than assumed in most models can be important for winter carbon and water fluxes in pine forests. Furthermore, details of the model representations of water uptake, which are often overlooked, need further attention, and deep water access should be treated explicitly.
Heavy and frequent thinning promotes drought adaptation in Pinus sylvestris forests.
Sohn, Julia A; Hartig, Florian; Kohler, Martin; Huss, Jürgen; Bauhus, Jürgen
2016-10-01
Droughts and their negative effects on forest ecosystems are projected to increase under climate change for many regions. It has been suggested that intensive thinning could reduce drought impacts on established forests in the short-term. Most previous studies on the effect of thinning on drought impacts, however, have been confined to single forest sites. It is therefore still unclear how general and persisting the benefits of thinning are. This study assesses the potential of thinning to increase drought tolerance of the wide spread Scots pine (Pinus sylvestris) in Central Europe. We hypothesized (1) that increasing thinning intensity benefits the maintenance of radial growth of crop trees during drought (resistance) and its recovery following drought, (2) that those benefits to growth decrease with time elapsed since the last thinning and with stand age, and (3) that they may depend on drought severity as well as water limitations in pre- and post-drought periods. To test these hypotheses, we assessed the effects of thinning regime, stand age, and drought severity on radial growth of 129 Scots pine trees during and after drought events in four long-term thinning experiments in Germany. We found that thinning improved the recovery of radial growth following drought and to a lesser extent the growth resistance during a drought event. Growth recovery following drought was highest after the first thinning intervention and in recently and heavily thinned stands. With time since the last thinning, however, this effect decreased and could even become negative when compared to unthinned stands. Further, thinning helped to avoid an age-related decline in growth resistance (and recovery) following drought. The recovery following drought, but not the resistance during drought, was related to water limitations in the drought period. This is the first study that analyzed drought-related radial growth in trees of one species across several stands of different age. The interaction between thinning intensity and time since the last thinning underline the importance to distinguish between short- and long-term effects of thinning. According to our analysis, only thinning regimes, with relatively heavy and frequent thinning interventions would increase drought tolerance in pine stands. © 2016 by the Ecological Society of America.
[The changes in contents and composition of phenolic acids during cell xylem growth in scots pine].
Antonova, G F; Zheliznichenko, T V; Stasova, V V
2011-01-01
The contents and composition of alcohol soluble phenolic acids were studied during cell xylem growth in the course of wood annual increment formation in the stems of Scots pine. The cells of cambium zone, of two stages of expansion growth and the outset of secondary thickening zone (before lignification) were successively gathered from the stem segments of 25-old pine trees in the period of earlywood xylem formation with constant anatomical and histochemical control. The contents of free and bound forms of phenolic acids, isolated by 80% ethanol from tissues, as well as of their ethers and esters were calculated both per dry weight and per cell. The content and relation of the fractions and the composition of phenolic acid have been found to change significantly from cambium zone to the outset of tracheid secondary thickening. The character of the variations depends on a calculation method. According to the calculation per cell the amount of free and bound phenolic acids and in their composition of esters and especially ethers increased at the first step of expansion growth zone, decreased at the second one and rose again in the outset of secondary wall deposition. In dependence on the stage of cell development the pool of bound phenolic acids exceeded of free acid pool in 2-5 times. Sinapic and ferulic acids dominated in the composition of free hydroxycinnamic acids. The content and composition of hydroxycinnamic acids in ethers and esters depended on cell development phase. In cambium p-coumaric and sinapic acids were principal aglycons in ethers, at other stages these were sinapic and caffeic acids. The esters in cambium zone included essentially p-coumaric acid and at the other stages - sinapic and ferulic acids. At the first phase of growth benzoic acid was connected principally by ester bonds. The pool of these esters decreased from the first phase of growth to the outset of cell wall thickening and in proportion to this the level of free benzoic acid rose.
NASA Astrophysics Data System (ADS)
Kukavskaya, Elena; Conard, Susan; Buryak, Ludmila; Ivanova, Galina; Soja, Amber; Kalenskaya, Olga; Zhila, Sergey; Zarubin, Denis; Groisman, Pavel
2016-04-01
Wildfires show great variability in the amount of fuel consumed and carbon emitted to the atmosphere. Various types of models are used to calculate global or large scale regional fire emissions. However, in the databases used to estimate fuel consumptions, data for Russia are typically under-represented. Meanwhile, the differences in vegetation and fire regimes in the boreal forests in North America and Eurasia argue strongly for the need of regional ecosystem-specific data. For about 15 years we have been collecting field data on fuel loads and consumption in different ecosystem types of Siberia. We conducted a series of experimental burnings of varying fireline intensity in Scots pine and larch forests of central Siberia to obtain quantitative and qualitative data on fire behavior and carbon emissions. In addition, we examined wildfire behavior and effects in different vegetation types including Scots pine, Siberian pine, fir, birch, poplar, and larch-dominated forests; evergreen coniferous shrubs; grasslands, and peats. We investigated various ecosystem zones of Siberia (central and southern taiga, forest-steppe, steppe, mountains) in the different subjects of the Russian Federation (Krasnoyarsk Kray, Republic of Khakassia, Republic of Buryatia, Tuva Republic, Zabaikalsky Kray). To evaluate the impact of forest practices on fire emissions, burned and unburned logged sites and forest plantations were examined. We found large variations of fuel consumption and fire emission rates among different vegetation types depending on growing conditions, fire behavior characteristics and anthropogenic factors. Changes in the climate system result in an increase in fire frequency, area burned, the number of extreme fires, fire season length, fire season severity, and the number of ignitions from lightning. This leads to an increase of fire-related emissions of carbon to the atmosphere. The field measurement database we compiled is required for improving accuracy of existing biomass burning models and for use by air quality agencies in developing regional strategies to mitigate negative smoke impacts on human health and environment. The research was supported by the Grant of the President of the Russian Federation MK-4646.2015.5, RFBR grant # 15-04-06567, and the NASA LCLUC Program.
NASA Astrophysics Data System (ADS)
Tamkevičiūtė, Marija; Edvardsson, Johannes; Pukienė, Rūtilė; Taminskas, Julius; Stoffel, Markus; Corona, Christophe; Kibirkštis, Gintautas
2018-03-01
Continuous water-table (WT) measurements from peatlands are scarce and - if existing at all -very short. Consequently, proxy indicators are critically needed to simulate hydrological changes in peatlands over longer time periods. In this study, we demonstrate that tree-ring width (TRW) records of Scots pine (Pinus sylvestris L.) growing in the Čepkeliai peatland (southern Lithuania) can be used as a proxy to reconstruct hydrological variability in a raised bog environment. A two-step modelling procedure was applied to extend existing measurements and to develop a new and longer peatland WT time series. To this end, we used instrumental WT measurements extending back to 2002, meteorological records, a P-PET (difference between precipitation and potential evapotranspiration) series covering the period 1935-2014, so as to construct a tree-ring based time series of WT fluctuations at the site for the period 1870-2014. Strongest correlations were obtained between average annual WT measured at the bog margin and total P-PET over 7 years (r = 0.923, p < 0.00001), as well as between modelled WT and standardized TRW data with a two years lag (r = -0.602, p < 0.001) for those periods where WT fluctuated at the level of pine roots which is typically at <50 cm depth below the peat surface. Our results suggest that moisture is a limiting factor for tree growth at peatlands, but below a certain WT level (<50 cm under the soil surface), drought becomes a limiting factor instead. To validate the WT reconstruction from the Čepkeliai bog, results were compared to Nemunas river runoff since CE 1812 (r = 0.39, p < 0.00001, 1870-2014). We conclude that peatlands can act both as sinks and sources of greenhouse gases in case that hydrological conditions change, but that hydrological lags and complex feedbacks still hamper our understanding of several processes affecting the hydrology and carbon budget in peatlands. We therefore call for the development of further proxy records of water-table variability in peatlands to improve our understanding of peatland responses to climatic changes.
Wood digestion in Pselactus spadix Herbst--a weevil attacking marine timber structures.
Oevering, Pascal; Pitman, Andrew J; Pandey, Krishna K
2003-04-01
Pselactus spadix tunnels timber structures in the marine environment. Recent studies reported a cosmopolitan distribution for this weevil, which is frequently found in harbour and port areas. P. spadix feeds on timber (hardwood and softwood) in immature and adult life stages, but its digestion of wood components had not been investigated. Using dry weight analyses of tunnel walls and frass produced, P. spadix adults consumed Scots pine with soft rot decay at a rate of 1.59 +/- 0.37 mg d-1 and the digestibility of this substrate was 57.96 +/- 5.89 (i.e. for 100 mg consumed SR-pine, 58 mg was digested). Using gravimetric analysis to quantify structural wood components in tunnel walls and frass, P. spadix adults were found to digest cellulose, lignin and hemicellulose with digestibility coefficients of 82.2, 41.2 and 14.5 respectively. Fourier Transform Infrared (FTIR) spectroscopy analyses of tunnel walls and frass of adults and larvae from soft rotted pine also indicated digestion of all structural components, with larvae digesting cellulose and lignin more efficiently than adults. When FTIR was employed to analyse adult tunnel walls and frass from undecayed pine, cellulose and hemicellulose were digested, but no evidence of lignin digestion was found. This study shows that adults digest lignin when soft rot is present and suggests a symbiotic function of wood degrading microorganisms.
Wood species affect the degradation of crude oil in beach sand.
Jandl, Gerald; Rodríguez Arranz, Alberto; Baum, Christel; Leinweber, Peter
2015-01-01
The addition of wood chips as a co-substrate can promote the degradation of oil in soil. Therefore, in the present study, the tree species-specific impact of wood chips of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.) and Western balsam poplar (Populus trichocarpa L.) on the degradation of crude oil was tested in beach sand in a 4-week incubation experiment. The CO2-C release increased in the order of control without wood chips < +spruce < +pine < +poplar. Initial and final hydrocarbon concentrations (C10 to C40), as indicators for the oil degradation, were determined with gas chromatography-flame ionization detection (GC-FID). The degradation increased for the light fraction (C10 to C22), the heavy fraction (C23 to C40) as well as the whole range (C10 to C40) in the order of control without wood chips (f(degrad.) = 23% vs. 0% vs. 12%) < +poplar (f(degrad.) = 49% vs. 19% vs. 36%) < +spruce (f(degrad.) = 55% vs. 34% vs. 46%) < +pine (f(degrad.) = 60% vs. 44% vs. 53%), whereas the heavy fraction was less degraded in comparison to the light fraction. It can be concluded, that the tree species-specific wood quality is a significant control of the impact on the degradation of hydrocarbons, and pine wood chips might be promising, possibly caused by their lower decomposability and lower substrate replacement than the other wood species.
Canopy Transpiration in a Chronosequence of Central Siberian Pine Forests
NASA Technical Reports Server (NTRS)
Reiner, Z.; Ernst-Detler, S.; Christian, W.; Ernst-Eckart, S.; Waldemar, Z.
1998-01-01
Tree transpiration was measured in 28, 67, 204 and 383 - year old uniform stands and in a multi-cohort stand (140 t0 430) of Pinus sylvestris ssp. sibirica Lebed. in Central Siberia during August of 1995.
Judzentiene, Asta; Stikliene, Aida; Kupcinskiene, Eugenija
2007-03-21
Unfavorable anthropogenic factors, such as air pollution, lead to biochemical responses in trees. Changes in the amounts of secondary metabolites may be early indicators of invisible injuries. The aim of this study was to evaluate composition of the essential oils in the needles of Scots pine (Pinus sylvestris L.) growing in the areas affected by pollutant emissions of main factories in Lithuania: a nitrogen fertilizer factory (NFF), a cement factory (CF), and an oil refinery (OR). Totally, 14 pine stands were examined along transects from the factories (July 2005). Volatile components of the needles were extracted and analyzed by GC and GC/MS. Over 70 components of the essential oils were identified in current-year and 1-year-old needles. Along the CF transect for current-year needles, the percentage of diterpenes was decreasing with the increasing pH of the pine bark (r = -0.582; p < 0.05) or with the increasing concentration of SO2 (r = -0.573; p < 0.05); for 1-year-old needles, the percentage of diterpenes was decreasing with the increasing pH of the bark (r = -0.534; p < 0.05). Along the OR transect, in both the current-year and 1-year-old needles, the percentage of diterpenes was decreasing with the increasing SO2 (respectively, r = -0.773; p < 0.01; r = -0.486; p < 0.05); an opposite relation was true for sesquiterpenes (respectively, r = -0.751; p < 0.01; r = 0.785; p < 0.01). The view was different along the NFF transect. For current-year needles, the percentage of monoterpenes was decreasing with the increasing NH3 (r = -0.669; p < 0.01); while the percentage of sesquiterpenes or oxysesquiterpenes was increasing with the increasing NH3 (respectively, r = 0.540; p < 0.05 and r = 0.688; p < 0.01). For each transect, cluster analysis of the percentages of components of essential oils in the needles allowed us to distinguish the most contrasting stands according to the concentration of air pollutants. Current-year needles were more effective as indicators of the effects of pollution than 1-year-old needles in the case of the NFF and the OR transects, and both-aged needles were equally valuable in the case of the CF transect. The changes detected in the proportions of components of the essential oils in the needles of the trees affected by the industrial emissions may play a significant role in modifying the susceptibility of the pine stands to the biotic factors, and also may alter emissions of terpenes from the stands to the atmosphere.
Investigation of growth responses in saprophytic fungi to charred biomass.
Ascough, Philippa L; Sturrock, Craig J; Bird, Michael I
2010-03-01
We present the results of a study testing the response of two saprophytic white-rot fungi species, Pleurotus pulmonarius and Coriolus versicolor, to charred biomass (charcoal) as a growth substrate. We used a combination of optical microscopy, scanning electron microscopy, elemental abundance measurements, and isotope ratio mass spectrometry ((13)C and (15)N) to investigate fungal colonisation of control and incubated samples of Scots Pine (Pinus sylvestris) wood, and charcoal from the same species produced at 300 degrees C and 400 degrees C. Both species of fungi colonise the surface and interior of wood and charcoals over time periods of less than 70 days; however, distinctly different growth forms are evident between the exterior and interior of the charcoal substrate, with hyphal penetration concentrated along lines of structural weakness. Although the fungi were able to degrade and metabolise the pine wood, charcoal does not form a readily available source of fungal nutrients at least for these species under the conditions used in this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rupšys, P.
A system of stochastic differential equations (SDE) with mixed-effects parameters and multivariate normal copula density function were used to develop tree height model for Scots pine trees in Lithuania. A two-step maximum likelihood parameter estimation method is used and computational guidelines are given. After fitting the conditional probability density functions to outside bark diameter at breast height, and total tree height, a bivariate normal copula distribution model was constructed. Predictions from the mixed-effects parameters SDE tree height model calculated during this research were compared to the regression tree height equations. The results are implemented in the symbolic computational language MAPLE.
Laser light scattering from wood samples soaked in water or in benzyl benzoate
NASA Astrophysics Data System (ADS)
Simonaho, S.-P.; Tolonen, Y.; Rouvinen, J.; Silvennoinen, R.
Laser light scattering from Scots pine (Pinus Sylvesteris L.) wood samples soaked in two different liquids, which were tap water and benzyl benzoate, has been experimentally investigated. Differences in the characteristics of the scattering pattern as function of the soaking time as well as the moisture effect in the orientation of scattering pattern has been experimentally investigated. The wood samples soaked in the test liquids altered the laser light scattering in along and across the grain directions. No correlation between the content of the water in the wood sample and the orientation of laser light scattering pattern was observed.
Ecophysiological variation of transpiration of pine forests: synthesis of new and published results
Pantana Tor-ngern; Ram Oren; Andrew C. Oishi; Joshua M. Uebelherr; Sari Palmroth; Lasse Tarvainen; Mikaell Ottosson-Löfvenius; Sune Linder; Jean-Christophe Domec; Torgny Näsholm
2017-01-01
Canopy transpiration (EC) is a large fraction of evapotranspiration, integrating physical and biological processes within the energy, water, and carbon cycles of forests. Quantifying EC is of both scientific and practical importance, providing information relevant to...
Gruba, Piotr; Mulder, Jan
2015-04-01
Soil organic matter (SOM) in forest soil is of major importance for cation binding and acid buffering, but its characteristics may differ among soils under different tree species. We investigated acidity, cation exchange properties and Al bonding to SOM in stands of Scots pine, pedunculate oak, Norway spruce, European beech and common hornbeam in southern Poland. The content of total carbon (Ct) was by far the major contributor to total cation exchange capacity (CECt) even in loamy soils and a strong relationship between Ct and CECt was found. The slope of the regression of CECt to Ct increased in the order hornbeam≈oak
NASA Astrophysics Data System (ADS)
Loustau, D.; Berbigier, P.; Granier, A.; Moussa, F. El Hadj
1992-10-01
Patterns of spatial variability of throughfall and stemflow were determined in a maritime pine ( Pinus pinaster Ait.) stand for two consecutive years. Data were obtained from 52 fixed rain gauges and 12 stemflow measuring devices located in a 50m × 50m plot at the centre of an 18-year-old stand. The pine trees had been sown in rows 4m apart and had reached an average height of 12.6m. The spatial distribution of stems had a negligible effect on the throughfall partitioning beneath the canopy. Variograms of throughfall computed for a sample of storms did not reveal any spatial autocorrelation of throughfall for the sampling design used. Differences in throughfall, in relation to the distance from the rows, were not consistently significant. In addition, the distance from the tree stem did not influence the amount of throughfall. The confidence interval on the amount of throughfall per storm was between 3 and 8%. The stemflow was highly variable between trees. The effect of individual trees on stemflow was significant but the amount of stemflow per tree was not related to tree size (i.e. height, trunk diameter, etc.). The cumulative sampling errors on stemflow and throughfall for a single storm created a confidence interval of between ±7 and ±51% on interception. This resulted mainly from the low interception rate and sampling error on throughfall.
NASA Technical Reports Server (NTRS)
Butera, M. K.
1983-01-01
The correlation of canopy closure with the signal response of individual thematic mapper simulator (TMS) bands for selected forest sites in the San Juan National Forest, Colorado was investigated. Ground truth consisted of a photointerpreted determination of percent canopy closure of 0 to 100 percent for 32 sites. The sites selected were situated on plateaus at an elevation of approximately 3 km with slope or = 10 percent. The predominant tree species were ponderosa pine and aspen. The mean TMS response per band per site was calculated from data acquired by aircraft during mid-September, 1981. A correlation analysis of TMS response vs. canopy closure resulted in the following correlation coefficients for bands 1 through 7, respectively: -0.757, -0.663, -0.666, -0.088, -0.797, -0.763. Two model regressions were applied to the TMS data set to create a map of predicted percent forest canopy closure for the study area. Results indicated percent predictive accuracies of 71, 74, and 57 for percent canopy closure classes of 0-25, 25-75, and 75-100, respectively.
NASA Astrophysics Data System (ADS)
Halmeenmäki, Elisa; Peltola, Olli; Haikarainen, Iikka; Ryhti, Kira; Rannik, Üllar; Pihlatie, Mari
2017-04-01
Methane (CH4) is an important and strong greenhouse gas of which atmospheric concentration is rising. While boreal forests are considered as an important sink of CH4 due to soil CH4 oxidation, the soils have also a capacity to emit CH4. Moreover, vegetation is shown to contribute to the ecosystem-atmosphere CH4 flux, and it has been estimated to be the least well known natural sources of CH4. In addition to well-known CH4 emissions from wetland plants, even boreal trees have been discovered to emit CH4. At the SMEAR (Station for Measuring Ecosystem-Atmosphere Relations) II station in Hyytiälä, southern Finland (61° 51' N, 24°17' E; 181 m asl), we have detected small CH4 emissions from above the canopy of a Scots pine (Pinus sylvestris) dominated forest. To assess the origin of the observed emissions, we conducted forest floor CH4 flux measurements with 54 soil chambers at the footprint area of the above canopy flux measurements during two growing seasons. In addition, we measured the soil volumetric water content (VWC) every time next to the forest floor chamber measurements, and estimated vegetation coverages inside the chambers. In order to model the forest floor CH4 flux at the whole footprint area, we combined lidar (light detection and ranging) data with the field measurements. To predict the soil water content and thus the potential CH4 flux, we used local elevation, slope, and ground return intensity (GRI), calculated from the lidar data (National Land Survey of Finland). We categorized the soil chambers into four classes based on the VWC so that the class with the highest VWC values includes all the soil chambers with a potential to emit CH4. Based on a statistically significant correlation between the VWC and the forest floor CH4 flux (r = 0.30, p < 0.001), we modelled the potential forest floor CH4 flux of the whole area. The results of the soil chamber measurements show a few areas of the forest floor with significant CH4 emissions. The modelled map of the potential CH4 flux is consistent with the measurements of the flux and the VWC, indicating that the wetter areas have potential for CH4 emissions, while the drier areas have potential for CH4 uptake. Preliminary results of the vegetation coverage show a positive correlation between the first year forest floor CH4 flux and the coverage of Sphagnum spp. mosses (r = 0.55, p < 0.001). Furthermore, we will include the vegetation coverage to the analysis, and compare the modelled forest floor CH4 flux with the measured above canopy flux. This ongoing research will give valuable information about the CH4 sources and dynamics in boreal forests.
The May October energy budget of a Scots pine plantation at Hartheim, Germany
NASA Astrophysics Data System (ADS)
Gay, L. W.; Vogt, R.; Kessler, A.
1996-03-01
This paper describes measurements of the Hartheim forest energy budget for the 157-day period of May 11 Oct. 14, 1992. Data were collected as 30-min means. Energy available to the forest was measured with net radiometers and soil heat flux discs; sensible heat exchange between the canopy and atmosphere was measured with two “One-Propeller Eddy Correlation” (OPEC) systems, and latent energy (evapotranspiration or ET) was determined as a residual in the surface energy balance equation. Net rediation, change in thermal storage, and sensible heat flux were verified by independent measurements during the Hartheim Experiment (HartX, May 11 12), and again during the “HartX2” experiment over 20 days late in the summer (Sep. 10 29). Specifically, sensible heat estimates from the two adjacent OPEC sensor sets were in close agreement throughout the summer, and in excellent agreement with measurements of sonic eddy correlation systems in May and September. The eddy correlation/energy balance technique was observed to overestimate occurrence of dew, leading to an underestimate of daily ET of about 5%. After taking dew into account, estimates of OPEC ET totaled 358 mm over the 5.1-month period, which is in quite good agreement with an ET estimate of 328 mm from a hydrologic water balance. An observed decrease in forest ET in July and August was clearly associated with low rainfall and increased soil water deficit. The OPEC system required only modest technical supervision, and generated a data yield of 99.5% over the period DOY 144 288. The documented verification and precision of this energy budget appears to be unmatched by any other long-term forest study reported to date.
NASA Astrophysics Data System (ADS)
Girona García, Antonio; Badía-Villas, David; Tomás Jiménez-Morillo, Nicasio; Martí-Dalmau, Clara; González-Pérez, José Antonio
2015-04-01
The replacement of native beech forests (Fagus sylvatica) by Scots pine (Pinus sylvestris) afforestation may exert changes in soil properties, particularly in soil organic matter (SOM) [1]. It is known that the products generated by Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) pyrolysis of organic matter are related to their origin [2 and references therein]. Therefore this technique can be used to investigate said changes. In this work, Py-GC/MS is used to study changes in SOM quality surrogated to the effect of the centennial replacement of beech by Scots pine. The soils studied were two acid soil profiles developed on quartzites under a humid climate at an altitude of 1400-1500 masl from Moncayo (Iberian range, NE-Spain). For each soil profile three organic layers (litter: OL, fragmented litter OF and humified litter OH) and the mineral soil horizons (Ah, E, Bhs and C) were sampled. After 100 years since the pine afforestation, differences in the relative abundance of lipids released by pyrolysis were observed in the O-layers ranging from 3.82-7.20% in pine soils and 0.98-1.25% in beech soils. No differences were observed in mineral horizons with depth except for the C horizons where beech lipid content was much higher (21.25%) than in that under pine (1.07%). Both pine and beech soils show similar nitrogen compounds relative contents along the soil profile, increasing from OL to Ah (3.49-9.11% and 2.75-11.73% in beech and pine respectively) with a conspicuous reduction in the E horizon. It is remarkable the absence of nitrogen compounds in beech Bhs and C horizons. The relative content of aromatic compounds in O-layers show opposite trends for beech and pine; an enrichment in aromatic compounds is observed in beech OL layer (12.39%) decreasing to 4.11% in OH layer in contrast, whereas for pine O-layers the aromatic compounds relative abundance was higher in the OH (5.83%) than in the OL layer (2.8%). Mineral Ah and E horizons show similar values in both beech (18.30-10.09%) and pine (15.81-10.01%) soils; nevertheless the relative abundance of aromatic compounds content is higher in beech mineral horizons Bhs (41.96%) and C (30.91%) than in those under pine (11.43% and 13.04% for Bhs and C respectively). Polycyclic aromatic hydrocarbons (PAHs) were only observed in the mineral soil horizons showing similar relative abundances ranging from 0.61-6.63% in beech and 0.96-3.05% in pine soils. The highest PAHs relative abundance was found in the Bhs horizon under beech. This may indicate the occurrence of fire events in the area and its translocation and accumulation by leaching from top soil in the spodic horizon. Differences in the relative abundances of lignin derived pyrolysis products (Methoxyphenols) were mainly observed in the O-layers whereas the relative abundances were similar for the mineral horizons that ranged from 1.49-4.31% in beech and 1.42-4.67% in pine. Lignin relative abundance is much higher in OH beech layer (31.88%) than in pine OH layer (14.99%) whereas similar relative contents were found in OL and OF layers ranging from 26.21-27-12% and 20.22-25.92% in beech and pine respectively. In the soil developed under beech the polysaccharide derived moieties show a relative content increase along the profile from a 9.86% in OL layer to a 29.86% in E horizon followed by a remarkable decrease in the Bhs (4.86%) and C (11.22%). Besides, the polysaccharide relative abundance in the soil under pine show a similar trend ranging from 12-23% to 30.65% but the decrease in Bhs and C horizons was found less marked (26.83% and 24.12% respectively). (1) Carceller F, Vallejo VR (1996). Influencia de la vegetación en los procesos de podsolización en los suelos de la Sierra del Moncayo (Zaragoza). Geogaceta 20: 1127-1130. (2) De la Rosa JM, Faria SR, Varela ME, Knicker H, González-Vila FJ, González-Pérez JA, Keizer J (2012). Characterization of wildfire effects on soil organic matter using analytical pyrolysis. Geoderma 191: 24-30. Acknowledgements This study is part of the results of the FUEGOSOL (CGL2013-43440-R) and GEOFIRE Projects (CGL2012-38655-C04-01) funded by the Spanish Ministry for Economy and Competitiveness. N.T Jiménez-Morillo is funded by a FPI research grant (BES-2013-062573).
NASA Astrophysics Data System (ADS)
Biederman, J. A.; Harpold, A. A.; Gochis, D. J.; Reed, D.; Brooks, P. D.
2010-12-01
Seasonal snowcover is a primary source of water to urban and agricultural regions in the western United States, where Mountain Pine Beetle (MPB) has caused rapid and extensive changes to vegetation in montane forests. Levels of MPB infestation in these seasonally snow-covered systems are unprecedented, and it is unknown how this will affect water yield, especially in changing climate conditions. To address this unknown we ask: How does snow accumulation and ablation vary across forest with differing levels of impact? Our study areas in the Rocky Mountains of CO and WY are similar in latitude, elevation and forest structure before infestation, but they vary in the intensity and timing of beetle infestation and tree mortality. We present a record for winter 2010 that includes continuous snow depth as well as stand-scale snow surveys at maximum accumulation. Additional measurements include snowfall, net radiation, temperature and wind speed as well as characterization of forest structure by leaf area index. In a stand uninfested by MPB, maximum snow depth was fairly uniform under canopy (mean = 86 cm, coefficient of variation = 0.021), while canopy gaps showed greater and more variable depth (mean = 117 cm, CV = 0.111). This is consistent with several studies demonstrating that snowfall into canopy gaps depends upon gap size, orientation, wind speed and storm size. In a stand impacted in 2007, snow depth under canopy was less uniform, and there were smaller differences in both mean depth and variability between canopy (mean = 93 cm, CV = 0.072) and gaps (mean = 97 cm, CV = 0.070), consistent with decreased canopy density. In a more recently infested (2009) stand with an intermediate level of MPB impact, mean snow depths were similar between canopy (96 cm, CV = 0.016) and gaps (95 cm, CV = 0.185) but gaps showed much greater variability, suggesting controls similar to those in effect in the uninfested stand. We further use these data to model snow accumulation and ablation as a function of vegetation, topography and fine-scale climate variability, with preliminary results presented at the meeting.
Ruffed grouse (Bonasa umbellus) drumming log and habitat use in Grand Teton National Park, Wyoming
Buhler, M.L.; Anderson, S.H.
2001-01-01
We described 15 Ruffed Grouse (Bonasa umbellus) drumming logs and adjacent habitat within Grand Teton National Park, Wyoming. Drumming logs and adjacent habitat differed from 30 random non-drumming sites. Drumming logs had fewer limbs (8; P = 0.003) and a smaller percentage of bark remaining (12%; P = 0.0001). These logs were in advanced stages of decay but were still firm to the touch. Additionally, drumming logs were found close to clearings but in areas with increased amounts of undergrowth and mature trees. Adjacent habitat analysis (0.04-ha circular plot centered on logs) indicated drumming locations had significantly greater average canopy height, more vegetative cover consisting of conifer and total canopy cover, and more vertical foliage between 0.3 m and 3.0 m in height. Adjacent habitat was in advanced stages of maturity as indicated by significant numbers of both large-diameter logs and large-diameter lodgepole pine (Pinus contorta) and quaking aspen (Populus tremuloides) snags. Tree species dominating the canopy and subcanopy were large-diameter Engelmann spruce (Picea engelmannii), lodgepole pine, and quaking aspen. Subalpine fir (Abies lasiocarpa) and quaking aspen saplings were more numerous at used sites. Ruffed Grouse drummed in coniferous areas within close proximity of quaking aspen.
Infrasonic wind noise under a deciduous tree canopy.
Webster, Jeremy; Raspet, Richard
2015-05-01
In a recent paper, the infrasonic wind noise measured at the floor of a pine forest was predicted from the measured wind velocity spectrum and profile within and above the trees [Raspet and Webster, J. Acoust. Soc. Am. 137, 651-659 (2015)]. This research studies the measured and predicted wind noise under a deciduous forest with and without leaves. A calculation of the turbulence-shear interaction pressures above the canopy predicts the low frequency peak in the wind noise spectrum. The calculated turbulence-turbulence interaction pressure due to the turbulence field near the ground predicts the measured wind noise spectrum in the higher frequency region. The low frequency peak displays little dependence on whether the trees have leaves or not. The high frequency contribution with leaves is approximately an order of magnitude smaller than the contribution without leaves. Wind noise levels with leaves are very similar to the wind noise levels in the pine forest. The calculated turbulence-shear contribution from the wind within the canopy is shown to be negligible in comparison to the turbulence-turbulence contribution in both cases. In addition, the effect of taller forests and smaller roughness lengths than those of the test forest on the turbulence-shear interaction is simulated based on measured meteorological parameters.
NASA Astrophysics Data System (ADS)
Mackay, D. S.; Ewers, B. E.; Kruger, E. L.
2006-12-01
Phenological variations impact water and carbon fluxes, as evidenced by the large interannual variability of net ecosystem exchange of carbon dioxide and evapotranspiration (ET). In northern Wisconsin we observed daily variations of canopy transpiration from hardwoods from 1.0 to 1.7 mm/day during the leaf unfolding period and 1.7 to 2.6 mm/day with leaves fully out. Correlations between such flux rates and phenology have not been extensively tested and mechanistic connections are in their infancy. Some data suggest that stomatal conductance and photosynthesis increases up to full expansion. Moreover, in conifers, the interaction of phenology and physiology is more complicated than in deciduous trees because needles are retained for several years. Using inverse modeling with a coupled photosynthesis-transpiration model we estimated reference canopy stomatal conductance, Gsref, for red pine (Pinus resinosa), and Gsref and leaf area index, L, for trembling aspen (Populus tremuloides), using 30-min continuous sap flux data spanning a period from just prior to the start of leaf expansion to just after leaf senescence. The red pine showed Gsref ramp up from 105 to 179 mmol m-2 leaf s-1, which represented a 37 to 50 percent increase in Gsref after accounting for maximum possible changes in L. After full leaf out, the trembling aspen were almost immediately defoliated, and then reflushed after three weeks. Model estimates of L reflected this pattern and were consistent with measurements. However, Gsref never exceeded 45 mmol m-2 s-1 prior to defoliation, but peaked at 112 mmol m-2 s-1 after reflushing. These results support the need for further work that aims to separate phenology and physiology.
Polarimetric signatures of a coniferous forest canopy based on vector radiative transfer theory
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.; Amar, F.; Mougin, E.; Lopes, A.; Beaudoin, A.
1992-01-01
Complete polarization signatures of a coniferous forest canopy are studied by the iterative solution of the vector radiative transfer equations up to the second order. The forest canopy constituents (leaves, branches, stems, and trunk) are embedded in a multi-layered medium over a rough interface. The branches, stems and trunk scatterers are modeled as finite randomly oriented cylinders. The leaves are modeled as randomly oriented needles. For a plane wave exciting the canopy, the average Mueller matrix is formulated in terms of the iterative solution of the radiative transfer solution and used to determine the linearly polarized backscattering coefficients, the co-polarized and cross-polarized power returns, and the phase difference statistics. Numerical results are presented to investigate the effect of transmitting and receiving antenna configurations on the polarimetric signature of a pine forest. Comparison is made with measurements.
[Simulation of CO2 exchange between forest canopy and atmosphere].
Diao, Yiwei; Wang, Anzhi; Jin, Changjie; Guan, Dexin; Pei, Tiefan
2006-12-01
Estimating the scalar source/sink distribution of CO2 and its vertical fluxes within and above forest canopy continues to be a critical research problem in biosphere-atmosphere exchange processes and plant ecology. With broad-leaved Korean pine forest in Changbai Mountains as test object, and based on Raupach's localized near field theory, the source/sink and vertical flux distribution of CO2 within and above forest canopy were modeled through an inverse Lagrangian dispersion analysis. This model correctly predicted a strong positive CO2 source strength in the deeper layers of the canopy due to soil-plant respiration, and a strong CO2 sink in the upper layers of the canopy due to the assimilation by sunlit foliage. The foliage in the top layer of canopy changed from a CO2 source in the morning to a CO2 sink in the afternoon, while the soil constituted a strong CO2 source all the day. The simulation results accorded well with the eddy covariance CO2 flux measurements within and above the canopy, and the average precision was 89%. The CO2 exchange predicted by the analysis was averagely 15% higher than that of the eddy correlation, but exhibited identical temporal trend. Atmospheric stability remarkably affected the CO2 exchange between forest canopy and atmosphere.
Retrieval of pine forest biomass using JPL AIRSAR data
NASA Technical Reports Server (NTRS)
Beaudoin, A.; Letoan, T.; Zagolski, F.; Hsu, C. C.; Han, H. C.; Kong, J. A.
1992-01-01
The analysis of Jet Propulsion Laboratory (JPL) Airborne Synthetic Aperture Radar (AIRSAR) data over the Landes forest in South-West France revealed strong correlation between L- and especially P-band sigma degrees and the pine forest biomass. To explain the physical link of radar backscatter to biomass, a polarimetric backscattering model was developed and validated. Then the model was used in a simulation study to predict sigma degree sensitivity to undesired canopy and environmental parameters. Main results concerning the data analysis, modeling, and simulation at P-band are reported.
Results from the Mayson Lake Hydrological Processes Study 2008 Summer Field Season
NASA Astrophysics Data System (ADS)
Carlyle-Moses, D. E.; McKee, A. J.; Lishman, C. E.; Giesbrecht, W. J.; Kinniburgh, S. M.
2009-05-01
The Mayson Lake Hydrological Processes Study area is located in the southern interior of British Columbia ˜ 60 km NNW of the City of Kamloops, British Columbia on the Thompson-Bonaparte Plateau (51.2° N, 120.4° W; 1260 m a.m.s.l.). During the summer of 2008 a series of projects were carried out in preparation for a larger, more detailed study of the impact forest disturbance and subsequent re-growth has on hydrological processes. Results from the 2008 field season suggest that canopy interception loss of rainfall in a mixed lodgepole pine (Pinus contorta var. latifolia Dougl.) - hybrid spruce (Picea glauca (Moench) Voss. x engelmanni Perry x Engelm.) - subalpine fir (Abies lasiocarpa (Hook.) Nutt.) stand, where pines were at the grey - attack stage of mountain pine beetle (Dendroctonus ponderosae Scolytidae) infestation, is comparable to healthy mature stands, but significantly greater (α = 0.05) than that from the burned stand. Canopy interception loss, throughfall and stemflow for 14 events totalling 50.1 mm were found to be 41.2, 58.7, and 0.1 % of rainfall, respectively. Near-surface (surface to 20 cm depth) soil moisture depletion was determined using weekly TDR measurements at 32 points in each plot during a two-month dry- down period (June 16 -August 18) in which only 30.8 mm of rain fell. Soil depletion was found to be ˜ 2.6 times greater from juvenile stands than from a clear-cut, while in the beetle infested stands soil depletion averaged ˜ 1.6 times greater than in the clear-cut. Assuming no deep drainage past a depth of 20 cm or lateral throughflow out of the study plots, actual evapotranspiration (AET) was estimated at 53.2 ± 4.0 mm from the clear-cut during the dry-down period, while from two healthy juvenile stands AET was estimated at 87.1 ± 7.0 and 87.8 ± 4.0 mm. In two beetle infested forests AET during the dry-down period was estimated at 63.4 ± 5.0 and 69.8 ± 3.2 mm. The larger AET losses from the juvenile stands compared to the clear-cut is probably a consequence of transpiration from fast growing stocked pines, and, to a lesser extent canopy interception losses, while the greater AET from dead/declining forests compared to the clear cut is probably a result of relatively high interception losses from the forest canopy as well as transpiration from the understory. Stemflow, although negligible in the mature forest, was found to be an important point source of water from juvenile pine stands, especially for trees with basal diameters < 8 cm. These small trees had an average seasonal funneling ratio of 19.6 ± 6.6 (α = 0.05), while larger, put still healthy pines (ranging from 8.2 to 16.3 cm in diameter) had an average funneling ratio of 3.3 ± 2.2 (α = 0.05). The maximum funneling ratio observed during the study period was 79.7 (rainfall = 8.6 mm, tree basal diameter = 4.6 cm).
Hubbard, Robert M; Bond, Barbara J; Senock, Randy S; Ryan, Michael G
2002-06-01
Recent studies have shown that stomata respond to changes in hydraulic conductance of the flow path from soil to leaf. In open-grown tall trees, branches of different heights may have different hydraulic conductances because of differences in path length and growth. We determined if leaf gas exchange, branch sap flux, leaf specific hydraulic conductance, foliar carbon isotope composition (delta13C) and ratios of leaf area to sapwood area within branches were dependent on branch height (10 and 25 m) within the crowns of four open-grown ponderosa pine (Pinus ponderosa Laws.) trees. We found no difference in leaf gas exchange or leaf specific hydraulic conductance from soil to leaf between the upper and lower canopy of our study trees. Branch sap flux per unit leaf area and per unit sapwood area did not differ between the 10- and 25-m canopy positions; however, branch sap flux per unit sapwood area at the 25-m position had consistently lower values. Branches at the 25-m canopy position had lower leaf to sapwood area ratios (0.17 m2 cm-2) compared with branches at the 10-m position (0.27 m2 cm-2) (P = 0.03). Leaf specific conductance of branches in the upper crown did not differ from that in the lower crown. Other studies at our site indicate lower hydraulic conductance, sap flux, whole-tree canopy conductance and photosynthesis in old trees compared with young trees. This study suggests that height alone may not explain these differences.
ACTIVE TURBULENCE AND SCALAR TRANSPORT NEAR THE FOREST-ATMOSPHERE INTERFACE
Turbulent velocity, temperature, water vapor concentration, and other scalars were measured at the canopy-atmosphere interface of a 13–14-m-tall uniform pine forest and a 33-m-tall nonuniform hardwood forest. These measurements were used to investigate whether the mixing la...
2003-08-18
Sarracenis purpurea Green Anole Anolis carolinensis Red Titi Cyrilla racemiflora Garter Snake Thamnophis sirtalis Tulip Poplar Liriodendrom...Tephrosia mohrii) Eglin’s open canopy Sandhills and upland pine forest Sweet Pitcher Plant ( Sarracenia rubra) Wet flatwoods, wet prairies, and baygalls
NASA Astrophysics Data System (ADS)
Dolgikh, A. V.; Matskovsky, V. V.; Voronin, K. V.; Solomina, O. N.
2017-06-01
The results of dendrochronological and radiocarbon dating by means of accelerator mass spectrometry (AMS) of six medieval icons, originating from northern European Russia and painted on wooden panels made from Scots pine, dated to the 15th to 17th centuries are presented. The panels of each icon were studied using dendrochronology. Five to six AMS dates were obtained for four icons. Although five icons were dendro-dated successfully, one failed to be reliably cross-dated with the existing master tree-ring chronologies and it was dated by radiocarbon wiggle-matching. Dendrochronological dating and wiggle-matching of radiocarbon dates allowed us to determine the narrow chronological intervals of icon creation.
Inspection of wood density by spectrophotometry and a diffractive optical element based sensor
NASA Astrophysics Data System (ADS)
Palviainen, Jari; Silvennoinen, Raimo
2001-03-01
Correlation among gravimetric, spectrophotometric and radiographic data from dried wood samples of Scots pine (Pinus sylvestris L) was observed. A diffractive optical element (DOE) based sensor was applied to investigate density variations as well as optical anisotropy inside year rings of the wood samples. The correlation between bulk density of wood and spectrophotometric data (reflectance and transmittance) was investigated for the wavelength range 200-850 nm and the highest correlation was found at wavelengths from 800 to 850 nm. The correlation at this wavelength was smaller than the correlation between bulk density and radiography data. The DOE sensor was found to be capable of sensing anisotropy of the wood samples inside the year ring.
NASA Astrophysics Data System (ADS)
Sidko, Aleksandr; Pisman, Tamara; Botvich, Irina; Shevyrnogov, Anatoly
In order to develop satellite technology for monitoring of terrestrial plant canopies and land-based optical remote sensing techniques, one should employ new approaches to identifying farmlands and determining the plant species composition. The results present a study on polarized characteristics of spectral reflection factor of plant canopies (forests and farm crop canopies) under field conditions, using optical remote sensing techniques. The polarized components of the reflectance factor and the degree of polarization were calculated. Measurements were performed using a spectrophotometer with a polarized light filter attachment. Measurements were done within the spectral range from 400 to 840 nm. The viewing angle was no greater than 200 with respect to the nadir. Measurements of the polarization characteristics of the vegetation on the test ranges were conducted during June-July month when the height of the sun was at its zenith. Different wavelength dependences of the spectral reflection factor polarized component (Rq) and degree of polarization (P) were found both for the coniferous and broadleaf forests (pine and birch) and for farm crops (wheat and corn) and grass canopies. These differences can be used to determine species composition of plant canopies.
Carbonaceous particles smaller than 2.5 um aerodynamic diameter (PM2.5) were collected in July, 2003 over a Loblolly Pine plantation at Duke Forest, NC during the Chemical Emission, Loss, Transformation and Interactions within Canopies (CELTIC) field study. Organic (OC) and eleme...
Roost characteristics of hoary bats in Arkansas
Roger W. Perry; Ronald E. Thill
2007-01-01
We radiotracked nine hoary bats (Lasiurus cinereus) and characterized 12 roosts during late spring and early summer in the Ouachita Mountains of central Arkansas. Hoary bats generally roosted on the easterly sides of tree canopies in the foliage of white oaks (Quercus alba), post oaks (Q. stellata) and shortleaf pines (Pinus...
Song, X Q; Fukao, T; Watanabe, H; Shintaku, H; Hirayama, K; Kassovska-Bratinova, S; Kondo, N; Mitchell, G A
1998-01-01
Succinyl-CoA:3-ketoacid CoA transferase (SCOT; EC 2.8.3.5; locus symbol OXCT) is the key enzyme of ketone body utilization. Hereditary SCOT deficiency (MIM 245050) causes episodes of severe ketoacidosis. We developed a transient expression system for mutant SCOT cDNAs, using immortalized SCOT-deficient fibroblasts. This paper describes and characterizes three missense mutations in two SCOT-deficient siblings from Japan. They are genetic compounds who inherited the mutation C456F (c1367 G-->T) from their mother. Their paternal allele contains two mutations in cis, T58M (c173 C-->T) and V133E (c398T-->A). Expression of SCOT cDNAs containing either V133E or C456F produces no detectable SCOT activity, whereas T58M is functionally neutral. T58M is a rare sequence variant not detected in 100 control Japanese alleles. In fibroblasts from the proband (GS02), in whom immunoblot demonstrated no detectable SCOT peptide, we measured an apparent residual SCOT activity of 20-35%. We hypothesize that the high residual SCOT activity in homogenates may be an artifact caused by use of the substrate, acetoacetyl-CoA by other enzymes. Expression of mutant SCOT cDNAs more accurately reflects the residual activity of SCOT than do currently available assays in cell or tissue homogenates.
NASA Astrophysics Data System (ADS)
Heiden, A. C.; Kobel, K.; Komenda, M.; Koppmann, R.; Shao, M.; Wildt, J.
The emission of toluene from different plants was observed in continuously stirred tank reactors and in field measurements. For plants growing without stress, emission rates were low and ranged from the detection limit up to 2·10-16 mol·cm-2·s-1. Under conditions of stress, the emission rates exceeded 10-14 mol·cm-2·s-1. Exposure of sunflower (Helianthus annuus L. cv. Gigantheus) to 13CO2 resulted in 13C-labeling of the emitted toluene on a time scale of hours. Although no biochemical pathway for the production of toluene is known, these results indicate that toluene is synthesized by the plants. The emission rates of toluene from sunflower are dependent on nutrient supply and wounding. Since α-pinene emission rates are also influenced by these factors, toluene and α-pinene emissions show a high correlation. During pathogen attack on Scots pines (Pinus sylvestris L.) significant toluene emissions were observed. In this case emissions of toluene and α-pinene also show a good correlation. Toluene emissions were also found in field experiments with pines using branch enclosures.
Estimating forest biomass and volume using airborne laser data
NASA Technical Reports Server (NTRS)
Nelson, Ross; Krabill, William; Tonelli, John
1988-01-01
An airborne pulsed laser system was used to obtain canopy height data over a southern pine forest in Georgia in order to predict ground-measured forest biomass and timber volume. Although biomass and volume estimates obtained from the laser data were variable when compared with the corresponding ground measurements site by site, the present models are found to predict mean total tree volume within 2.6 percent of the ground value, and mean biomass within 2.0 percent. The results indicate that species stratification did not consistently improve regression relationships for four southern pine species.
Hall, S. A.; Burke, I.C.; Box, D. O.; Kaufmann, M. R.; Stoker, Jason M.
2005-01-01
The ponderosa pine forests of the Colorado Front Range, USA, have historically been subjected to wildfires. Recent large burns have increased public interest in fire behavior and effects, and scientific interest in the carbon consequences of wildfires. Remote sensing techniques can provide spatially explicit estimates of stand structural characteristics. Some of these characteristics can be used as inputs to fire behavior models, increasing our understanding of the effect of fuels on fire behavior. Others provide estimates of carbon stocks, allowing us to quantify the carbon consequences of fire. Our objective was to use discrete-return lidar to estimate such variables, including stand height, total aboveground biomass, foliage biomass, basal area, tree density, canopy base height and canopy bulk density. We developed 39 metrics from the lidar data, and used them in limited combinations in regression models, which we fit to field estimates of the stand structural variables. We used an information–theoretic approach to select the best model for each variable, and to select the subset of lidar metrics with most predictive potential. Observed versus predicted values of stand structure variables were highly correlated, with r2 ranging from 57% to 87%. The most parsimonious linear models for the biomass structure variables, based on a restricted dataset, explained between 35% and 58% of the observed variability. Our results provide us with useful estimates of stand height, total aboveground biomass, foliage biomass and basal area. There is promise for using this sensor to estimate tree density, canopy base height and canopy bulk density, though more research is needed to generate robust relationships. We selected 14 lidar metrics that showed the most potential as predictors of stand structure. We suggest that the focus of future lidar studies should broaden to include low density forests, particularly systems where the vertical structure of the canopy is important, such as fire prone forests.
Pangle, Robert E; Limousin, Jean-Marc; Plaut, Jennifer A; Yepez, Enrico A; Hudson, Patrick J; Boutz, Amanda L; Gehres, Nathan; Pockman, William T; McDowell, Nate G
2015-04-01
Plant hydraulic conductance (k s) is a critical control on whole-plant water use and carbon uptake and, during drought, influences whether plants survive or die. To assess long-term physiological and hydraulic responses of mature trees to water availability, we manipulated ecosystem-scale water availability from 2007 to 2013 in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) woodland. We examined the relationship between k s and subsequent mortality using more than 5 years of physiological observations, and the subsequent impact of reduced hydraulic function and mortality on total woody canopy transpiration (E C) and conductance (G C). For both species, we observed significant reductions in plant transpiration (E) and k s under experimentally imposed drought. Conversely, supplemental water additions increased E and k s in both species. Interestingly, both species exhibited similar declines in k s under the imposed drought conditions, despite their differing stomatal responses and mortality patterns during drought. Reduced whole-plant k s also reduced carbon assimilation in both species, as leaf-level stomatal conductance (g s) and net photosynthesis (A n) declined strongly with decreasing k s. Finally, we observed that chronically low whole-plant k s was associated with greater canopy dieback and mortality for both piñon and juniper and that subsequent reductions in woody canopy biomass due to mortality had a significant impact on both daily and annual canopy E C and G C. Our data indicate that significant reductions in k s precede drought-related tree mortality events in this system, and the consequence is a significant reduction in canopy gas exchange and carbon fixation. Our results suggest that reductions in productivity and woody plant cover in piñon-juniper woodlands can be expected due to reduced plant hydraulic conductance and increased mortality of both piñon pine and juniper under anticipated future conditions of more frequent and persistent regional drought in the southwestern United States.
Pangle, Robert E; Limousin, Jean-Marc; Plaut, Jennifer A; Yepez, Enrico A; Hudson, Patrick J; Boutz, Amanda L; Gehres, Nathan; Pockman, William T; McDowell, Nate G
2015-01-01
Plant hydraulic conductance (ks) is a critical control on whole-plant water use and carbon uptake and, during drought, influences whether plants survive or die. To assess long-term physiological and hydraulic responses of mature trees to water availability, we manipulated ecosystem-scale water availability from 2007 to 2013 in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) woodland. We examined the relationship between ks and subsequent mortality using more than 5 years of physiological observations, and the subsequent impact of reduced hydraulic function and mortality on total woody canopy transpiration (EC) and conductance (GC). For both species, we observed significant reductions in plant transpiration (E) and ks under experimentally imposed drought. Conversely, supplemental water additions increased E and ks in both species. Interestingly, both species exhibited similar declines in ks under the imposed drought conditions, despite their differing stomatal responses and mortality patterns during drought. Reduced whole-plant ks also reduced carbon assimilation in both species, as leaf-level stomatal conductance (gs) and net photosynthesis (An) declined strongly with decreasing ks. Finally, we observed that chronically low whole-plant ks was associated with greater canopy dieback and mortality for both piñon and juniper and that subsequent reductions in woody canopy biomass due to mortality had a significant impact on both daily and annual canopy EC and GC. Our data indicate that significant reductions in ks precede drought-related tree mortality events in this system, and the consequence is a significant reduction in canopy gas exchange and carbon fixation. Our results suggest that reductions in productivity and woody plant cover in piñon–juniper woodlands can be expected due to reduced plant hydraulic conductance and increased mortality of both piñon pine and juniper under anticipated future conditions of more frequent and persistent regional drought in the southwestern United States. PMID:25937906
Oleksyn, J.; Zytkowiak, R.; Karolewski, P.; Reich, P. B.; Tjoelker, M. G.
2000-06-01
We explored environmental and genetic factors affecting seasonal dynamics of starch and soluble nonstructural carbohydrates in needle and twig cohorts and roots of Scots pine (Pinus sylvestris L.) trees of six populations originating between 49 degrees and 60 degrees N, and grown under common garden conditions in western Poland. Trees of each population were sampled once or twice per month over a 3-year period from age 15 to 17 years. Based on similarity in starch concentration patterns in needles, two distinct groups of populations were identified; one comprised northern populations from Sweden and Russia (59-60 degrees N), and another comprised central European populations from Latvia, Poland, Germany and France (49-56 degrees N). Needle starch concentrations of northern populations started to decline in late spring and reached minimum values earlier than those of central populations. For all populations, starch accumulation in spring started when minimum air temperature permanently exceeded 0 degrees C. Starch accumulation peaked before bud break and was highest in 1-year-old needles, averaging 9-13% of dry mass. Soluble carbohydrate concentrations were lowest in spring and summer and highest in autumn and winter. There were no differences among populations in seasonal pattern of soluble carbohydrate concentrations. Averaged across all populations, needle soluble carbohydrate concentrations increased from about 4% of needle dry mass in developing current-year needles, to about 9% in 1- and 2-year-old needles. Root carbohydrate concentration exhibited a bimodal pattern with peaks in spring and autumn. Northern populations had higher concentrations of fine-root starch in spring and autumn than central populations. Late-summer carbohydrate accumulation in roots started only after depletion of starch in needles and woody shoots. We conclude that Scots pine carbohydrate dynamics depend partially on inherited properties that are probably related to phenology of root and shoot growth.
Näsholm, T; Ericsson, A
1990-09-01
Seasonal changes in amino acids, protein and total nitrogen in needles of 30-year-old, fertilized Scots pine (Pinus sylvestris L.) trees growing in Northern Sweden were investigated over two years in field experiments. The studied plots had been fertilized annually for 17 years with (i) a high level of N, (ii) a medium level of N, or (iii) a medium level of N, P and K. Trees growing on unfertilized plots served as controls. In control trees, glutamine, glutamic acid, gamma-aminobutyric acid, aspartic acid and proline represented 50-70% of the total free amino acids determined. Arginine was present only in low concentrations in control trees throughout the year, but it was usually the most abundant amino acid in fertilized trees. Glutamine concentrations were high during the spring and summer in both years of study, whereas proline concentrations were high in the spring but otherwise low throughout the year. In the first year of study, glutamic acid concentrations were high during the spring and summer, whereas gamma-aminobutyric acid was present in high concentrations during the winter months. This pattern was less pronounced in the second year of investigation. The concentrations of most amino acids, except glutamic acid, increased in response to fertilization. Nitrogen fertilization increased the foliar concentration of arginine from < 1 micromol g(dw) (-1) in control trees to a maximum of 110 micromol g(dw) (-1). Trees fertilized with nitrogen, phosphorus and potassium had significantly lower arginine concentrations than trees fertilized with the same amount of nitrogen only. Protein concentrations were similar in all fertilized trees but higher than those in control trees. For all treatments, protein concentrations were high in winter and at a minimum in early spring. In summer, the protein concentration remained almost constant except for a temporary decrease which coincided with the expansion of new shoots. Apart from arginine, the amino acid composition of proteins was similar in all treatments.
Schulze, Brigit; Wirth, Christian; Linke, Petra; Brand, Willi A; Kuhlmann, Iris; Horna, Viviana; Schulze, Ernst-Detlef
2004-11-01
We present a new, rapid method for high-resolution online determination of delta13C in tree rings, combining laser ablation (LA), combustion (C), gas chromatography (GC) and isotope ratio mass spectrometry (IRMS) (LA-C-GC-IRMS). Sample material was extracted every 6 min with a UV-laser from a tree core, leaving 40-microm-wide holes. Ablated wood dust was combusted to CO2 at 700 degrees C, separated from other gases on a GC column and injected into an isotope ratio mass spectrometer after removal of water vapor. The measurements were calibrated against an internal and an external standard. The tree core remained intact and could be used for subsequent dendrochronological and dendrochemical analyses. Cores from two Scots pine trees (Pinus sylvestris spp. sibirica Lebed.) from central Siberia were sampled. Inter- and intra-annual patterns of delta13C in whole-wood and lignin-extracted cores were indistinguishable apart from a constant offset, suggesting that lignin extraction is unnecessary for our method. Comparison with the conventional method (microtome slicing, elemental analysis and IRMS) indicated high accuracy of the LA-C-GC-IRMS measurements. Patterns of delta13C along three parallel ablation lines on the same core showed high congruence. A conservative estimate of the precision was +/- 0.24 per thousand. Isotopic patterns of the two Scots pine trees were broadly similar, indicating a signal related to the forest stand's climate history. The maximum variation in delta13C over 22 years was about 5 per thousand, ranging from -27 to -22.3 per thousand. The most obvious pattern was a sharp decline in delta13C during latewood formation and a rapid increase with spring early growth. We conclude that the LA-C-GC-IRMS method will be useful in elucidating short-term climate effects on the delta13C signal in tree rings.
Electron-beam-initiated polymerization of poly(ethylene glycol)-based wood impregnants.
Trey, Stacy M; Netrval, Julia; Berglund, Lars; Johansson, Mats
2010-11-01
The current study demonstrates that methacrylate and acrylate poly(ethylene glycol) (PEG) functional oligomers can be effectively impregnated into wood blocks, and cured efficiently to high conversions without catalyst by e-beam radiation, allowing for less susceptibility to leaching, and favorable properties including higher Brinell hardness values. PEG based monomers were chosen because there is a long history of this water-soluble monomer being able to penetrate the cell wall, thus bulking it and decreasing the uptake of water which further protects the wood from fungal attack. Diacrylate, dimethacrylate, and dihydroxyl functional PEG of M(w) 550-575, of concentrations 0, 30, 60, and 100 wt % in water, were vacuum pressure impregnated into Scots Pine blocks of 15 × 25 × 50 mm in an effort to bulk the cell wall. The samples were then irradiated and compared with nonirradiated samples. It was shown by IR, DSC that the acrylate polymers were fully cured to much higher conversions than can be reached with conventional methods. Leaching studies indicated a much lower amount of oligomer loss from the cured vinyl functional PEG chains in comparison to hydroxyl functional PEG indicating a high degree of fastening of the polymer in the wood. The Brinell hardness indicated a significant increase in hardness to hardwood levels in the modified samples compared to the samples of hydroxyl functional PEG and uncured vinyl PEG samples, which actually became softer than the untreated Scots Pine. By monitoring the dimensions of the sample it was found by weight percent gain calculations (WPG %) that water helps to swell the wood structure and allow better access of the oligomers into the cell wall. Further, the cure shrinkage of the wood samples demonstrated infiltration of the oligomers into the cell wall as this was not observed for methyl methacrylate which is well-documented to remain in the lumen. However, dimensional stability of the vinyl polymer modified blocks when placed in water was not observed to the same extent as PEG.
The true distribution and accumulation of radiocaesium in stem of Scots pine (Pinus sylvestris L.).
Thiry, Yves; Goor, Francois; Riesen, Thomas
2002-01-01
The radial and vertical distributions of radiocaesium, potassium and calcium were determined in two Scots pine stands (17 and 58 yr old) similarly affected by the Chernobyl fallout. For both age classes, concentrations are always the lowest in the stemwood, highest in the inner bark and intermediary levels were observed for the outer bark. Due to the cumulative character of its biomass. however. stemwood is a long-term major reservoir of 137Cs. With tree development, changes in the 137Cs radial distribution are well described by variations in the sap ascent pattern and reveal an important transfer between tree rings. It is shown that. both the biomass evolution and knowledge of the evolution of the 137Cs radial gradient are important to predicting 137Cs accumulation in wood with time. According to the common transfer factor (TF) approach, one would expect a decrease in radiocaesium accumulation with time (from 0.0047 +/- 0.0013 to 0.0035 +/- 0.0008 m2kg(-1) for the 17 and 58 yr old trees, respectively). With the wood immobilisation potential (WIP) approach, it was, however, clearly shown that additional annual uptake was highest for the older stand (3.12 +/- 0.23 Bq cm(-3) yr(-1) for the 58-year-old stand compared to 1.99 +/- 0.30 Bq cm(-3) yr(-1) for the younger stand). Following the WIP approach, it was moreover possible to distinguish between the 137Cs incorporated via the root uptake process and a possible lasting effect of interception. It is shown that, whereas for the younger stand (5 yr old at the time of the accident) root uptake contributed exclusively to the wood contamination, the former process explained only 48% of the measured total 137Cs content in the wood of the older tree.
Lintunen, A; Lindfors, L; Kolari, P; Juurola, E; Nikinmaa, E; Hölttä, T
2014-12-01
Woody plants can suffer from winter embolism as gas bubbles are formed in the water-conducting conduits when freezing occurs: gases are not soluble in ice, and the bubbles may expand and fill the conduits with air during thawing. A major assumption usually made in studies of winter embolism formation is that all of the gas dissolved in the xylem sap is trapped within the conduits and forms bubbles during freezing. The current study tested whether this assumption is actually valid, or whether efflux of gases from the stem during freezing reduces the occurrence of embolism. CO2 efflux measurements were conducted during freezing experiments for saplings of three Scots pine (Pinus sylvestris) and three Norway spruce (Picea abies) trees under laboratory conditions, and the magnitudes of the freezing-related bursts of CO2 released from the stems were analysed using a previously published mechanistic model of CO2 production, storage, diffusion and efflux from a tree stem. The freezing-related bursts of CO2 released from a mature Scots pine tree growing in field conditions were also measured and analysed. Substantial freezing-related bursts of CO2 released from the stem were found to occur during both the laboratory experiments and under field conditions. In the laboratory, the fraction of CO2 released from the stem ranged between 27 and 96 % of the total CO2 content within the stem. All gases dissolved in the xylem sap are not trapped within the ice in the stem during freezing, as has previously been assumed, thus adding a new dimension to the understanding of winter embolism formation. The conduit water volume not only determines the volume of bubbles formed during freezing, but also the efficiency of gas efflux out of the conduit during the freezing process. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company.
Zha, Tianshan; Li, Chunyi; Kellomäki, Seppo; Peltola, Heli; Wang, Kai-Yun; Zhang, Yuqing
2013-01-01
Evapotranspiration (E) and CO2 flux (Fc) in the growing season of an unusual dry year were measured continuously over a Scots pine forest in eastern Finland, by eddy covariance techniques. The aims were to gain an understanding of their biological and environmental control processes. As a result, there were obvious diurnal and seasonal changes in E, Fc, surface conductance (gc), and decoupling coefficient (Ω), showing similar trends to those in radiation (PAR) and vapour pressure deficit (δ). The maximum mean daily values (24-h average) for E, Fc, gc, and Ω were 1.78 mmol m−2 s−1, −11.18 µmol m−2 s−1, 6.27 mm s−1, and 0.31, respectively, with seasonal averages of 0.71 mmol m−2 s−1, −4.61 µmol m−2 s−1, 3.3 mm s−1, and 0.16. E and Fc were controlled by combined biological and environmental variables. There was curvilinear dependence of E on gc and Fc on gc. Among the environmental variables, PAR was the most important factor having a positive linear relationship to E and curvilinear relationship to Fc, while vapour pressure deficit was the most important environmental factor affecting gc. Water use efficiency was slightly higher in the dry season, with mean monthly values ranging from 6.67 to 7.48 μmol CO2 (mmol H2O)−1 and a seasonal average of 7.06 μmol CO2 (μmol H2O)−1. Low Ω and its close positive relationship with gc indicate that evapotranspiration was sensitive to surface conductance. Mid summer drought reduced surface conductance and decoupling coefficient, suggesting a more biotic control of evapotranspiration and a physiological acclimation to dry air. Surface conductance remained low and constant under dry condition, supporting that a constant value of surface constant can be used for modelling transpiration under drought condition. PMID:23894401
Zha, Tianshan; Li, Chunyi; Kellomäki, Seppo; Peltola, Heli; Wang, Kai-Yun; Zhang, Yuqing
2013-01-01
Evapotranspiration (E) and CO2 flux (Fc ) in the growing season of an unusual dry year were measured continuously over a Scots pine forest in eastern Finland, by eddy covariance techniques. The aims were to gain an understanding of their biological and environmental control processes. As a result, there were obvious diurnal and seasonal changes in E, Fc , surface conductance (gc ), and decoupling coefficient (Ω), showing similar trends to those in radiation (PAR) and vapour pressure deficit (δ). The maximum mean daily values (24-h average) for E, Fc , gc , and Ω were 1.78 mmol m(-2) s(-1), -11.18 µmol m(-2) s(-1), 6.27 mm s(-1), and 0.31, respectively, with seasonal averages of 0.71 mmol m(-2) s(-1), -4.61 µmol m(-2) s(-1), 3.3 mm s(-1), and 0.16. E and Fc were controlled by combined biological and environmental variables. There was curvilinear dependence of E on gc and Fc on gc . Among the environmental variables, PAR was the most important factor having a positive linear relationship to E and curvilinear relationship to Fc , while vapour pressure deficit was the most important environmental factor affecting gc . Water use efficiency was slightly higher in the dry season, with mean monthly values ranging from 6.67 to 7.48 μmol CO2 (mmol H2O)(-1) and a seasonal average of 7.06 μmol CO2 (μmol H2O)(-1). Low Ω and its close positive relationship with gc indicate that evapotranspiration was sensitive to surface conductance. Mid summer drought reduced surface conductance and decoupling coefficient, suggesting a more biotic control of evapotranspiration and a physiological acclimation to dry air. Surface conductance remained low and constant under dry condition, supporting that a constant value of surface constant can be used for modelling transpiration under drought condition.
Autumn temperature and carbon balance of a boreal Scots pine forest in Southern Finland
NASA Astrophysics Data System (ADS)
Vesala, T.; Launiainen, S.; Kolari, P.; Pumpanen, J.; Sevanto, S.; Hari, P.; Nikinmaa, E.; Kaski, P.; Mannila, H.; Ukkonen, E.; Piao, S. L.; Ciais, P.
2010-01-01
We analyzed the dynamics of carbon balance components: gross primary production (GPP) and total ecosystem respiration (TER), of a boreal Scots pine forest in Southern Finland. The main focus is on investigations of environmental drivers of GPP and TER and how they affect the inter-annual variation in the carbon balance in autumn (September-December). We used standard climate data and CO2 exchange measurements collected by the eddy covariance (EC) technique over 11 years. EC data revealed that increasing autumn temperature significantly enhances TER: the temperature sensitivity was 9.5 gC m-2 °C-1 for the period September-October (early autumn when high radiation levels still occur) and 3.8 gC m-2 °C-1 for November-December (late autumn with suppressed radiation level). The cumulative GPP was practically independent of the temperature in early autumn. In late autumn, air temperature could explain part of the variation in GPP but the temperature sensitivity was very weak, less than 1 gC m-2 °C-1. Two models, a stand photosynthesis model (COCA) and a global vegetation model (ORCHIDEE), were used for estimating stand GPP and its sensitivity to the temperature. The ORCHIDEE model was tested against the observations of GPP derived from EC data. The stand photosynthesis model COCA predicted that under a predescribed 3-6 °C temperature increase, the temperature sensitivity of 4-5 gC m-2 °C-1 in GPP may appear in early autumn. The analysis by the ORCHIDEE model revealed the model sensitivity to the temporal treatment of meteorological forcing. The model predictions were similar to observed ones when the site level 1/2-hourly time step was applied, but the results calculated by using daily meteorological forcing, interpolated to 1/2-hourly time step, were biased. This is due to the nonlinear relationship between the processes and the environmental factors.
Augustaitis, Algirdas; Augustaitienė, Ingrida; Baugarten, Manuela; Bičenkienė, Steigvilė; Girgždienė, Raselė; Kulbokas, Gintaras; Linkevičius, Edgaras; Marozas, Vitas; Mikalajūnas, Marius; Mordas, Genrik; Mozgeris, Gintautas; Petrauskas, Edmundas; Pivoras, Ainis; Šidlauskas, Giedrius; Ulevičius, Vidmantas; Vitas, Adomas; Matyssek, Rainer
2018-02-15
Global changes occurring under different environmental conditions have changed stand competition, as well as nutrient and light availability, which has resulted in changes in productivity. Therefore, in the present study, the characteristics of tree-ring width formation of the prevailing Lithuanian tree species, Norway spruce, Scots pine and silver and downy birch, and key factors resulting in their differences during the last 36-year period were investigated at forest sites located on poor mineral oligotrophic and on nutrient-rich organic mesoeutrophic soils. The aim of the study was as follows: first, to separately detect the maximum possible seasonal effect of three groups of variables - meteorology, acidifying pollutants and surface ozone on the stem basal area increment (BAI) of the evaluated tree species; second, to assess the significance of each group of variables affecting the BAI of these tree species integrally with the remaining groups of variables. Norway spruce was found to be well adapted to recent environmental changes, which makes it one of the most favourable tree species for silviculture in the northeastern part of Europe. The rapid increases recorded in growth intensity since 1980 were attributed to the increase in air temperature, precipitation amount, nitrogen deposition during the vegetative stage and reductions in SO 2 concentrations and S deposition. Scots pine demonstrated the highest level of resilience and capacity to adapt to recent global changes because its reaction to both negative and favourable environmental factors was best expressed. Silver and downy birch tree reactions to the effects of air concentrations of acidifying compounds, their deposition and surface ozone concentrations were the least expressed; however, a significant decline in growth intensity indicated that these tree species experienced a reduced resistance to recent changes in environmental conditions in the mature and over-mature age groups. Copyright © 2017 Elsevier B.V. All rights reserved.
Response of a reptile guild to forest harvesting.
Todd, Brian D; Andrews, Kimberly M
2008-06-01
Despite the growing concern over reptile population declines, the effects of modern industrial silviculture on reptiles have been understudied, particularly for diminutive and often overlooked species such as small-bodied snakes. We created 4 replicated forest-management landscapes to determine the response of small snakes to forest harvesting in the Coastal Plain of the southeastern United States. We divided the replicated landscapes into 4 treatments that represented a range of disturbed habitats: clearcut with coarse woody debris removed; clearcut with coarse woody debris retained; thinned pine stand; and control (unharvested second-growth planted pines). Canopy cover and ground litter were significantly reduced in clearcuts, intermediate in thinned forests, and highest in unharvested controls. Bare soil, maximum air temperatures, and understory vegetation all increased with increasing habitat disturbance. Concomitantly, we observed significantly reduced relative abundance of all 6 study species (scarletsnake[Cemophora coccinea], ring-neck snake[Diadophis punctatus], scarlet kingsnake[Lampropeltis triangulum], red-bellied snake[Storeria occipitomaculata], southeastern crowned snake[Tantilla coronata], and smooth earthsnake[Virginia valeriae]) in clearcuts compared with unharvested or thinned pine stands. In contrast, the greatest relative snake abundance occurred in thinned forest stands. Our results demonstrate that at least one form of forest harvesting is compatible with maintaining snake populations. Our results also highlight the importance of open-canopy structure and ground litter to small snakes in southeastern forests and the negative consequences of forest clearcutting for small snakes.
Bradford, John B.; Schlaepfer, Daniel R.; Lauenroth, William K.
2014-01-01
Sagebrush steppe and lodgepole pine forests are two of the most widespread vegetation types in the western United States and they play crucial roles in the hydrologic cycle of these water-limited regions. We used a process-based ecosystem water model to characterize the potential impact of climate change and disturbance (wildfire and beetle mortality) on water cycling in adjacent sagebrush and lodgepole pine ecosystems. Despite similar climatic and topographic conditions between these ecosystems at the sites examined, lodgepole pine, and sagebrush exhibited consistent differences in water balance, notably more evaporation and drier summer soils in the sagebrush and greater transpiration and less water yield in lodgepole pine. Canopy disturbances (either fire or beetle) have dramatic impacts on water balance and availability: reducing transpiration while increasing evaporation and water yield. Results suggest that climate change may reduce snowpack, increase evaporation and transpiration, and lengthen the duration of dry soil conditions in the summer, but may have uncertain effects on drainage. Changes in the distribution of sagebrush and lodgepole pine ecosystems as a consequence of climate change and/or altered disturbance regimes will likely alter ecosystem water balance.
Cumulative effects of wildfires on forest dynamics in the eastern Cascade Mountains, USA.
Reilly, Matthew J; Elia, Mario; Spies, Thomas A; Gregory, Matthew J; Sanesi, Giovanni; Lafortezza, Raffaele
2018-03-01
Wildfires pose a unique challenge to conservation in fire-prone regions, yet few studies quantify the cumulative effects of wildfires on forest dynamics (i.e., changes in structural conditions) across landscape and regional scales. We assessed the contribution of wildfire to forest dynamics in the eastern Cascade Mountains, USA from 1985 to 2010 using imputed maps of forest structure (i.e., tree size and canopy cover) and remotely sensed burn severity maps. We addressed three questions: (1) How do dynamics differ between the region as a whole and the unburned portion of the region? (2) How do dynamics vary among vegetation zones differing in biophysical setting and historical fire frequency? (3) How have forest structural conditions changed in a network of late successional reserves (LSRs)? Wildfires affected 10% of forests in the region, but the cumulative effects at this scale were primarily slight losses of closed-canopy conditions and slight gains in open-canopy conditions. In the unburned portion of the region (the remaining 90%), closed-canopy conditions primarily increased despite other concurrent disturbances (e.g., harvest, insects). Although the effects of fire were largely dampened at the regional scale, landscape scale dynamics were far more variable. The warm ponderosa pine and cool mixed conifer zones experienced less fire than the region as a whole despite experiencing the most frequent fire historically. Open-canopy conditions increased slightly in the mixed conifer zone, but declined across the ponderosa pine zone even with wildfires. Wildfires burned 30% of the cold subalpine zone, which experienced the greatest increase in open-canopy conditions and losses of closed-canopy conditions. LSRs were more prone to wildfire than the region as a whole, and experienced slight declines in late seral conditions. Despite losses of late seral conditions, wildfires contributed to some conservation objectives by creating open habitats (e.g., sparse early seral and woodland conditions) that otherwise generally decreased in unburned landscapes despite management efforts to increase landscape diversity. This study demonstrates the potential for wildfires to contribute to regional scale conservation objectives, but implications for management and biodiversity at landscape scales vary geographically among biophysical settings, and are contingent upon historical dynamics and individual species habitat preferences. © 2017 by the Ecological Society of America.
Constraining Night Time Ecosystem Respiration by Inverse Approaches
NASA Astrophysics Data System (ADS)
Juang, J.; Stoy, P. C.; Siqueira, M. B.; Katul, G. G.
2004-12-01
Estimating nighttime ecosystem respiration remains a key challenge in quantifying ecosystem carbon budgets. Currently, nighttime eddy-covariance (EC) flux measurements are plagued by uncertainties often attributed to poor mixing within the canopy volume, non-turbulent transport of CO2 into and out of the canopy, and non-stationarity and intermittency. Here, we explore the use of second-order closure models to estimate nighttime ecosystem respiration by mathematically linking sources of CO2 to mean concentration profiles via the continuity and the CO2 flux budget equation modified to include thermal stratification. By forcing this model to match, in a root-mean squared sense, the nighttime measured mean CO2 concentration profiles within the canopy the above ground CO2 production and forest floor respiration can be estimated via multi-dimensional optimization techniques. We show that in a maturing pine and a mature hardwood forest, these optimized CO2 sources are (1) consistently larger than the eddy covariance flux measurements above the canopy, and (2) agree well with chamber-based measurements. We also show that by linking the optimized nighttime ecosystem respiration to temperature measurements, the estimated annual ecosystem respiration from this approach agrees well with biometric estimates, at least when compared to eddy-covariance methods conditioned on a friction velocity threshold. The difference between the annual ecosystem respiration obtained by this optimization method and the friction-velocity thresholded night-time EC fluxes can be as large as 700 g C m-2 (in 2003) for the maturing pine forest, which is about 40% of the ecosystem respiration. For 2001 and 2002, the annual ecosystem respiration differences between the EC-based and the proposed approach were on the order of 300 to 400 g C m-2.
Schoennagel, Tania; Veblen, Thomas T.; Negron, José F.; Smith, Jeremy M.
2012-01-01
In Colorado and southern Wyoming, mountain pine beetle (MPB) has affected over 1.6 million ha of predominantly lodgepole pine forests, raising concerns about effects of MPB-caused mortality on subsequent wildfire risk and behavior. Using empirical data we modeled potential fire behavior across a gradient of wind speeds and moisture scenarios in Green stands compared three stages since MPB attack (Red [1–3 yrs], Grey [4–10 yrs], and Old-MPB [∼30 yrs]). MPB killed 50% of the trees and 70% of the basal area in Red and Grey stages. Across moisture scenarios, canopy fuel moisture was one-third lower in Red and Grey stages compared to the Green stage, making active crown fire possible at lower wind speeds and less extreme moisture conditions. More-open canopies and high loads of large surface fuels due to treefall in Grey and Old-MPB stages significantly increased surface fireline intensities, facilitating active crown fire at lower wind speeds (>30–55 km/hr) across all moisture scenarios. Not accounting for low foliar moistures in Red and Grey stages, and large surface fuels in Grey and Old-MPB stages, underestimates the occurrence of active crown fire. Under extreme burning conditions, minimum wind speeds for active crown fire were 25–35 km/hr lower for Red, Grey and Old-MPB stands compared to Green. However, if transition to crown fire occurs (outside the stand, or within the stand via ladder fuels or wind gusts >65 km/hr), active crown fire would be sustained at similar wind speeds, suggesting observed fire behavior may not be qualitatively different among MPB stages under extreme burning conditions. Overall, the risk (probability) of active crown fire appears elevated in MPB-affected stands, but the predominant fire hazard (crown fire) is similar across MPB stages and is characteristic of lodgepole pine forests where extremely dry, gusty weather conditions are key factors in determining fire behavior. PMID:22272268
PATTERNS OF ROOT GROWTH, TURNOVER, AND DISTRIBUTION IN DIFFERENT AGED PONDEROSA PINE STANDS
The objectives of this study are to examine the spatial distribution of roots in relation to canopy size and tree distribution, and to determine if rates of fine root production and turnover are similar in the different aged stands. During the fall of 1998, 54 clear plexiglass t...
Two ground-based canopy closure estimation techniques, the Spherical Densitometer (SD) and the Vertical Tube (VT), were compared for the effect of deciduous understory on dominantlco-dominant crown closure estimates in even-aged loblolly (Pinus taeda) pine stands located in the N...
Two ground-based canopy closure estimation techniques, the Spherical Densitometer (SD) and the Vertical Tube (VT), were compared for the effect of deciduous understory on dominant/co-dominant crown closure estimates in even-aged loblolly (Pinus taeda) pine stands located in the N...
Impact of insect defoliation on forest carbon balance as assessed with a canopy assimilation model
USDA-ARS?s Scientific Manuscript database
As carbon sinks, forests are increasingly becoming important trading commodities in carbon trading markets. However, disturbances such as fire, hurricanes and herbivory can lead to forests being sources rather than sinks of carbon. Here, we investigate the carbon balance of an oak/pine forest in the...
Predicting altered connectivity of patchy forests under group selection silviculture
Seth W. Bigelow; Sean A. Parks
2010-01-01
Group selection silviculture creates canopy openings that can alter connectivity in patchy forests, thereby affecting wildlife movement and fire behavior. We examined effects of group selection silviculture on percolation (presence of continuously forested routes across a landscape) in Sierra Nevada East-side pine forest in northern California, USA. Four ~ 250 ha...
Influence of repeated canopy scorching on soil CO2 efflux
DP Aubrey; B Martazavi; Joseph O' Brien; JD McGee; JJ Hendricks; KA Kuehn; RJ Mitchell
2012-01-01
Forest ecosystems experience various disturbances that can affect belowground carbon cycling to different degrees. Here, we investigate if successive annual foliar scorching events will result in a large and rapid decline in soil CO2 efflux, similar to that observed in girdling studies. Using the fire-adapted longleaf pine (Pinus...
Seasonal LAI in slash pine estimated with LANDSAT TM
NASA Technical Reports Server (NTRS)
Curran, Paul J.; Dungan, Jennifer L.; Gholz, Henry L.
1990-01-01
The leaf area index (LAI, total area of leaves per unit area of ground) of most forest canopies varies throughout the year, yet for logistical reasons it is difficult to estimate anything more detailed than a seasonal maximum LAI. To determine if remotely sensed data can be used to estimate LAI seasonally, field measurements of LAI were compared to normalized difference vegetation index (NDVI) values derived using LANDSAT Thematic Mapper (TM) data, for 16 fertilized and control slash pine plots on 3 dates. Linear relationships existed between NDVI and LAI with R(sup 2) values of 0.35, 0.75, and 0.86 for February 1988, September 1988, and March, 1989, respectively. This is the first reported study in which NDVI is related to forest LAI recorded during the month of sensor overpass. Predictive relationships based on data from eight of the plots were used to estimate the LAI of the other eight plots with a root-mean-square error of 0.74 LAI, which is 15.6 percent of the mean LAI. This demonstrates the potential use of LANDSAT TM data for studying seasonal dynamics in forest canopies.
Bi-directional exchange of ammonia in a pine forest ecosystem - a model sensitivity analysis
NASA Astrophysics Data System (ADS)
Moravek, Alexander; Hrdina, Amy; Murphy, Jennifer
2016-04-01
Ammonia (NH3) is a key component in the global nitrogen cycle and of great importance for atmospheric chemistry, neutralizing atmospheric acids and leading to the formation of aerosol particles. For understanding the role of NH3 in both natural and anthropogenically influenced environments, the knowledge of processes regulating its exchange between ecosystems and the atmosphere is essential. A two-layer canopy compensation point model is used to evaluate the NH3 exchange in a pine forest in the Colorado Rocky Mountains. The net flux comprises the NH3 exchange of leaf stomata, its deposition to leaf cuticles and exchange with the forest ground. As key parameters the model uses in-canopy NH3 mixing ratios as well as leaf and soil emission potentials measured at the site in summer 2015. A sensitivity analysis is performed to evaluate the major exchange pathways as well as the model's constraints. In addition, the NH3 exchange is examined for an extended range of environmental conditions, such as droughts or varying concentrations of atmospheric pollutants, in order to investigate their influence on the overall net exchange.
The timing of bud burst and its effect on tree growth.
Rötzer, T; Grote, R; Pretzsch, H
2004-02-01
A phenology model for estimating the timings of bud burst--one of the most influential phenological phases for the simulation of tree growth--is presented in this study. The model calculates the timings of the leafing of beech (Fagus sylvatica L.) and oak (Quercus robur L.) and the May shoot of Norway spruce (Picea abies L.) and Scots pine (Pinus sylvestris L.) on the basis of the daily maximum temperature. The data for parameterisation and validation of the model have been taken from 40 climate and 120 phenological stations in southern Germany with time series for temperature and bud burst of up to 30 years. The validation of the phenology module by means of an independent data set showed correlation coefficients for comparisons between observed and simulated values of 54% (beech), 55% (oak), 59% (spruce) and 56% (pine) with mean absolute errors varying from 4.4 days (spruce) to 5.0 days (pine). These results correspond well with the results of other--often more complex--phenology models. After the phenology module had been implemented in the tree-growth model BALANCE, the growth of a mixed forest stand with the former static and the new dynamic timings for the bud burst was simulated. The results of the two simulation runs showed that phenology has to be taken into account when simulating forest growth, particularly in mixed stands.
NASA Astrophysics Data System (ADS)
Edvardsson, Johannes; Corona, Christophe; Mažeika, Jonas; Pukienė, Rutile; Stoffel, Markus
2016-01-01
This study presents the first results from an ongoing initiative to develop a multi-millennial Baltic tree-ring width (TRW) chronology consisting of 12 floating records from subfossil Scots pines (Pinus sylvestris L.) extracted from three Lithuanian peat-mining areas. The floating series have been complemented with absolutely dated TRW chronologies which were obtained from living trees growing in unmanaged and unexploited peatland areas adjacent to each of the above study sites. The subfossil material has been dated by radiocarbon and shows a temporal spread over the last 6000 years, with assemblages of trees during the Holocene Thermal Maximum (HTM; 8000-4000 BP) and the onset of the Medieval Warm Period (MWP, AD 900-1350). Annual tree growth and sample replication of peatland pines reflect moisture variations and long-term climate variability. The importance of extending the TRW chronologies should not therefore be underestimated as (1) climate records of comparable length and resolution do not exist for the Baltic region, but also as (2) a result of a widespread lack of detailed moisture proxies spanning several millennia. Our data clearly show that a 6000-yr, continuous pine chronology from the Baltic region is a realistic objective, and would doubtlessly fill a major geographic gap in an ecologically sensitive region located at the interface between the temperate and boreal vegetation zones.
Wikberg, Hanne; Grönqvist, Stina; Niemi, Piritta; Mikkelson, Atte; Siika-Aho, Matti; Kanerva, Heimo; Käsper, Andres; Tamminen, Tarja
2017-07-01
The suitability of several abundant but underutilized agro and forest based biomass residues for hydrothermal treatment followed by enzymatic hydrolysis as well as for hydrothermal carbonization was studied. The selected approaches represent simple biotechnical and thermochemical treatment routes suitable for wet biomass. Based on the results, the hydrothermal pre-treatment followed by enzymatic hydrolysis seemed to be most suitable for processing of carbohydrate rich corn leaves, corn stover, wheat straw and willow. High content of thermally stable components (i.e. lignin) and low content of ash in the biomass were advantageous for hydrothermal carbonization of grape pomace, coffee cake, Scots pine bark and willow. Copyright © 2017 Elsevier Ltd. All rights reserved.
Carbonyl sulfide exchange in a temperate loblolly pine forest grown under ambient and elevated CO2
NASA Astrophysics Data System (ADS)
White, M. L.; Zhou, Y.; Russo, R. S.; Mao, H.; Talbot, R.; Varner, R. K.; Sive, B. C.
2009-08-01
Vegetation, soil and ecosystem level carbonyl sulfide (COS) exchange was observed at Duke Forest, a temperate loblolly pine forest, grown under ambient (Ring 1, R1) and elevated (Ring 2, R2) carbon dioxide (CO2). During calm meteorological conditions, ambient COS mixing ratios at the top of the forest canopy followed a distinct diurnal pattern in both CO2 growth regimes, with maximum COS mixing ratios during the day (R1=380±4 pptv and R2=373±3 pptv, daytime mean ±standard error) and minimums at night (R1=340±6 pptv and R2=346±5 pptv, nighttime mean ±standard error) reflecting a significant nighttime sink. Nocturnal vegetative uptake (-11 to -21 pmol m-2 s-1, negative values indicate uptake from the atmosphere) dominated nighttime net ecosystem COS flux estimates (-10 to -30 pmol m-2 s-1) in both CO2 regimes. In comparison, soil uptake (-0.8 to -1.7 pmol m-2 s-1) was a minor component of net ecosystem COS flux. In both CO2 regimes, loblolly pine trees exhibited substantial COS consumption overnight (50% of daytime rates) that was independent of CO2 assimilation. This suggests current estimates of the global vegetative COS sink, which assume that COS and CO2 are consumed simultaneously, may need to be reevaluated. Ambient COS mixing ratios, species specific diurnal patterns of stomatal conductance, temperature and canopy position were the major factors influencing the vegetative COS flux at the branch level. While variability in branch level vegetative COS consumption measurements in ambient and enhanced CO2 environments could not be attributed to CO2 enrichment effects, estimates of net ecosystem COS flux based on ambient canopy mixing ratio measurements suggest less nighttime uptake of COS in R2, the CO2 enriched environment.
Carbonyl sulfide exchange in a temperate loblolly pine forest grown under ambient and elevated CO2
NASA Astrophysics Data System (ADS)
White, M. L.; Zhou, Y.; Russo, R. S.; Mao, H.; Talbot, R.; Varner, R. K.; Sive, B. C.
2010-01-01
Vegetation, soil and ecosystem level carbonyl sulfide (COS) exchange was observed at Duke Forest, a temperate loblolly pine forest, grown under ambient (Ring 1, R1) and elevated (Ring 2, R2) CO2. During calm meteorological conditions, ambient COS mixing ratios at the top of the forest canopy followed a distinct diurnal pattern in both CO2 growth regimes, with maximum COS mixing ratios during the day (R1=380±4 pptv and R2=373±3 pptv, daytime mean ± standard error) and minimums at night (R1=340±6 pptv and R2=346±5 pptv, nighttime mean ± standard error) reflecting a significant nighttime sink. Nocturnal vegetative uptake (-11 to -21 pmol m-2s-1, negative values indicate uptake from the atmosphere) dominated nighttime net ecosystem COS flux estimates (-10 to -30 pmol m-2s-1) in both CO2 regimes. In comparison, soil uptake (-0.8 to -1.7 pmol m-2 s-1) was a minor component of net ecosystem COS flux. In both CO2 regimes, loblolly pine trees exhibited substantial COS consumption overnight (50% of daytime rates) that was independent of CO2 assimilation. This suggests current estimates of the global vegetative COS sink, which assume that COS and CO2 are consumed simultaneously, may need to be reevaluated. Ambient COS mixing ratios, species specific diurnal patterns of stomatal conductance, temperature and canopy position were the major factors influencing the vegetative COS flux at the branch level. While variability in branch level vegetative COS consumption measurements in ambient and enhanced CO2 environments could not be attributed to CO2 enrichment effects, estimates of net ecosystem COS flux based on ambient canopy mixing ratio measurements suggest less nighttime uptake of COS in R2, the CO2 enriched environment.
Fotis, Alexander T; Curtis, Peter S
2017-10-01
Canopy structure influences forest productivity through its effects on the distribution of radiation and the light-induced changes in leaf physiological traits. Due to the difficulty of accessing and measuring forest canopies, few field-based studies have quantitatively linked these divergent scales of canopy functioning. The objective of our study was to investigate how canopy structure affects light profiles within a forest canopy and whether leaves of mature trees adjust morphologically and biochemically to the light environments characteristic of canopies with different structural complexity. We used a combination of light detection and ranging (LiDAR) data and hemispherical photographs to quantify canopy structure and light environments, respectively, and a telescoping pole to sample leaves. Leaf mass per area (LMA), nitrogen on an area basis (Narea) and chlorophyll on a mass basis (Chlmass) were measured in red maple (Acer rubrum), american beech (Fagus grandifolia), white pine (Pinus strobus), and northern red oak (Quercus rubra) at different heights in plots with similar leaf area index but contrasting canopy complexity (rugosity). We found that more complex canopies had greater porosity and reduced light variability in the midcanopy while total light interception was unchanged relative to less complex canopies. Leaf phenotypes of F. grandifolia, Q. rubra and P. strobus were more sun-acclimated in the midstory of structurally complex canopies while leaf phenotypes of A. rubrum were more shade-acclimated (lower LMA) in the upper canopy of more complex stands, despite no differences in total light interception. Broadleaf species showed further differences in acclimation with increased Narea and reduced Chlmass in leaves with higher LMA, while P. strobus showed no change in Narea and Chlmass with higher LMA. Our results provide new insight on how light distribution and leaf acclimation in mature trees might be altered when natural and anthropogenic disturbances cause structural changes in the canopy. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Measuring near infrared spectral reflectance changes from water stressed conifer stands with AIS-2
NASA Technical Reports Server (NTRS)
Riggs, George; Running, Steven W.
1987-01-01
Airborne Imaging Spectrometer-2 (AIS-2) data was acquired over two paired conifer stands for the purpose of detecting differences in spectral reflectance between stressed and natural canopies. Water stress was induced in a stand of Norway spruce and white pine by severing the sapwood near the ground. Water stress during the AIS flights was evaluated through shoot water potential and relative water content measurements. Preliminary analysis with raw AIS-2 data using SPAM indicates that there were small, inconsistent differences in absolute spectral reflectance in the near infrared 0.97 to 1.3 micron between the stressed and natural canopies.