Science.gov

Sample records for screening absolute photosynthetic

  1. A simple apparatus for screening absolute photosynthetic rates of single algal colonies in an anoxic atmosphere.

    PubMed

    Graves, D A; Greenbaum, E

    1989-05-01

    Photosynthetically generated O(2) was measured from single algal colonies in a He atmosphere, using an enhanced Hersch galvanic cell. The enhancement consisted of using ultrapure potassium hydroxide as the electrolyte and ultrapure lead as the anode. The galvanic cell was placed in a regulated helium-flow system containing a reaction cuvette with the colonies and an electrolysis cell for calibration. Colonies were individually irradiated using a He-Ne laser. Data collection and laser positioning for colony irradiation were microcomputer controlled. This assay system was capable of detecting O(2) production rates of 500 femtomoles per second with a signal to noise ratio of 2, a level of sensitivity that permitted the detection of photoevolved O(2) from single algal colonies. This capability provides, for the first time, an approach for quantitatively measuring the absolute rate of photosynthetic O(2) evolution from a single algal colony.

  2. A Simple Apparatus for Screening Absolute Photosynthetic Rates of Single Algal Colonies in an Anoxic Atmosphere 1

    PubMed Central

    Graves, D. A.; Greenbaum, E.

    1989-01-01

    Photosynthetically generated O2 was measured from single algal colonies in a He atmosphere, using an enhanced Hersch galvanic cell. The enhancement consisted of using ultrapure potassium hydroxide as the electrolyte and ultrapure lead as the anode. The galvanic cell was placed in a regulated helium-flow system containing a reaction cuvette with the colonies and an electrolysis cell for calibration. Colonies were individually irradiated using a He-Ne laser. Data collection and laser positioning for colony irradiation were microcomputer controlled. This assay system was capable of detecting O2 production rates of 500 femtomoles per second with a signal to noise ratio of 2, a level of sensitivity that permitted the detection of photoevolved O2 from single algal colonies. This capability provides, for the first time, an approach for quantitatively measuring the absolute rate of photosynthetic O2 evolution from a single algal colony. PMID:16666743

  3. Calibration of the Odyssey Photosynthetic Irradiance Recorder for Absolute Irradiance Measures

    EPA Science Inventory

    Researchers are increasingly interested in measuring hotosynthetically active radiation (PAR) because of its importance in determining the structure and function of lotic ecosystems. The Odyssey Photosynthetic Irradiance Recorder is an affordable PAR meter gaining popularity am...

  4. Calibration of the Odyssey Photosynthetic Irradiance Recorder for Absolute Irradiance Measures

    EPA Science Inventory

    Researchers are increasingly interested in measuring hotosynthetically active radiation (PAR) because of its importance in determining the structure and function of lotic ecosystems. The Odyssey Photosynthetic Irradiance Recorder is an affordable PAR meter gaining popularity am...

  5. Absolute and relative colorimetric evaluation for precise color on screen

    NASA Astrophysics Data System (ADS)

    Herbert, Franz H.; Kirkenaer, Jo S.; Ladson, Jack A.

    2003-01-01

    This paper deals with assessing and controlling the variables required to present accurate and precise color on screen. The objective is to generate a representation of an accurate, precise, soft copy of an object color with little difference in their color and appearance. This opens new vistas in product design and quality control. We obtained duplicate sets of 23 colors including two neutral chips that are distributed and widely spaced at different color centers throughout color space. We used these sets to evaluate color and appearance at different locations remote to one another. We obtained CIE L* a* b* values for the color representations displayed on the screen under multiple illuminants, and compared those colorimetric values to the corresponding object color sample values with a Pearson Correlation coefficient greater than 0.95 for all illuminants. Multiple personnel in different locations performed psychometric evaluations of the color and appearance presented by the display to that of the perceived color and appearance of the object under multiple illuminants. We quantitatively assessed and ranked the quality of the perceived color matches. We judged the precise color on screen to be accurate using our rating system and applying business statistics to evaluate and quantify the results. The evaluation of the data validate that we achieved excellent colorimetric (measured) accuracy and quantifiable perceptual agreement of the soft copy color to the color and appearance of objects.

  6. Direct laser immobilization of photosynthetic material on screen printed electrodes for amperometric biosensor

    NASA Astrophysics Data System (ADS)

    Boutopoulos, Christos; Touloupakis, Eleftherios; Pezzotti, Ittalo; Giardi, Maria Teresa; Zergioti, Ioanna

    2011-02-01

    This letter demonstrates the direct laser printing of photosynthetic material onto low cost nonfunctionalized screen printed electrodes for the fabrication of photosynthesis-based amperometric biosensors. The high kinetic energy of the transferred material induces direct immobilization of the thylakoids onto the electrodes without the use of linkers. This type of immobilization is able to establish efficient electrochemical contact between proteins and electrode, stabilizing the photosynthetic biomolecule and transporting electrons to the solid state device with high efficiency. The functionality of the laser printed biosensors was evaluated by the detection of a common herbicide such as Linuron.

  7. Direct laser immobilization of photosynthetic material on screen printed electrodes for amperometric biosensor

    SciTech Connect

    Boutopoulos, Christos; Zergioti, Ioanna; Touloupakis, Eleftherios; Pezzotti, Ittalo; Giardi, Maria Teresa

    2011-02-28

    This letter demonstrates the direct laser printing of photosynthetic material onto low cost nonfunctionalized screen printed electrodes for the fabrication of photosynthesis-based amperometric biosensors. The high kinetic energy of the transferred material induces direct immobilization of the thylakoids onto the electrodes without the use of linkers. This type of immobilization is able to establish efficient electrochemical contact between proteins and electrode, stabilizing the photosynthetic biomolecule and transporting electrons to the solid state device with high efficiency. The functionality of the laser printed biosensors was evaluated by the detection of a common herbicide such as Linuron.

  8. [Colorectal cancer screening: an absolute necessity and a concrete reality in the French community].

    PubMed

    Polus, M; Montrieux, C; Giet, D; Louis, E; Belaiche, J; Coche, E

    2009-02-01

    Colorectal cancer is a real problem of public health. Screening is an absolute necessity. An ambitious program of screening is launched in the French Community. Faecal occult blood test will be proposed to average risk patients in the general population. A total colonoscopy will be performed if FOBT is positive. First step colonoscopy will be proposed to high or very high risk patients. General practitioners are in the core of the multi-disciplinary program.

  9. [Colorectal cancer screening: an absolute necessity and an imminent reality in the French community].

    PubMed

    Polus, M; Stibbe, G; Van Laethem, J-L; Adler, M; Coche, E

    2009-01-01

    Colorectal cancer is a true problematic of public health. The screening is an absolute necessity. An ambitious program of screening is launched in French Community. Faecal occult blood test (FOBT) will be proposed to average risk patients in general population. A total colonoscopy will be performed if FOBT will be positive. First step colonoscopy will be proposed to high or very high risk patients. General practitioners are in the core of the multidisciplinary program.

  10. Error analysis in newborn screening: can quotients support the absolute values?

    PubMed

    Arneth, Borros; Hintz, Martin

    2017-03-01

    Newborn screening is performed using modern tandem mass spectrometry, which can simultaneously detect a variety of analytes, including several amino acids and fatty acids. Tandem mass spectrometry measures the diagnostic parameters as absolute concentrations and produces fragments which are used as markers of specific substances. Several prominent quotients can also be derived, which are quotients of two absolute measured concentrations. In this study, we determined the precision of both the absolute concentrations and the derived quotients. First, the measurement error of the absolute concentrations and the measurement error of the ratios were practically determined. Then, the Gaussian theory of error calculation was used. Finally, these errors were compared with one another. The practical analytical accuracies of the quotients were significantly higher (e.g., coefficient of variation (CV) = 5.1% for the phenylalanine to tyrosine (Phe/Tyr) quotient and CV = 5.6% for the Fisher quotient) than the accuracies of the absolute measured concentrations (mean CVs = 12%). According to our results, the ratios are analytically correct and, from an analytical point of view, can support the absolute values in finding the correct diagnosis.

  11. Screening of photosynthetic pigments for herbicidal activity with a new computational molecular approach.

    PubMed

    Krishnaraj, R Navanietha; Chandran, Saravanan; Pal, Parimal; Berchmans, Sheela

    2013-12-01

    There is an immense interest among the researchers to identify new herbicides which are effective against the herbs without affecting the environment. In this work, photosynthetic pigments are used as the ligands to predict their herbicidal activity. The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase is a good target for the herbicides. Homology modeling of the target enzyme is done using Modeler 9.11 and the model is validated. Docking studies were performed with AutoDock Vina algorithm to predict the binding of the natural pigments such as β-carotene, chlorophyll a, chlorophyll b, phycoerythrin and phycocyanin to the target. β-carotene, phycoerythrin and phycocyanin have higher binding energies indicating the herbicidal activity of the pigments. This work reports a procedure to screen herbicides with computational molecular approach. These pigments will serve as potential bioherbicides in the future.

  12. Salt responsive physiological, photosynthetic and biochemical attributes at early seedling stage for screening soybean genotypes.

    PubMed

    Shelke, D B; Pandey, M; Nikalje, G C; Zaware, B N; Suprasanna, P; Nikam, T D

    2017-09-01

    Salt stress affects all the stages of plant growth however seed germination and early seedling growth phases are more sensitive and can be used for screening of crop germplasm. In this study, we aimed to find the most effective indicators of salt tolerance for screening ten genotypes of soybean (SL-295, Gujosoya-2, PS-1042, PK-1029, ADT-1, RKS-18, KDS-344, MAUS-47, Bragg and PK-416). The principal component analysis (PCA) resulted in the formation of three different clusters, salt sensitive (SL-295, Gujosoya-2, PS-1042 and ADT-1), salt tolerant (MAUS-47, Bragg and PK-416) and moderately tolerant/sensitive (RKS-18, PK-1029 and KDS-344) suggesting that there was considerable genetic variability for salt tolerance in the soybean genotypes. Subsequently, genotypes contrasting in salt tolerance were analyzed for their physiological traits, photosynthetic efficiency and mitochondrial respiration at seedling and early germination stages under different salt (NaCl) treatments. It was found that salt mediated increase in AOX-respiration, root and shoot K(+)/Na(+) ratio, improved leaf area and water use efficiency were the key determinants of salinity tolerance, which could modulate the net photosynthesis (carbon assimilation) and growth parameters (carbon allocation). The results suggest that these biomarkers could be can be useful for screening soybean genotypes for salt tolerance. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Photosynthetic Gas Exchange in the Closed Ecosystem for Space. Phase II, Part III. Screening for Thermophilic Algae and Mutation Studies

    NASA Technical Reports Server (NTRS)

    Richards, N. L.; Benoit, R. J.

    1961-01-01

    An algal screening and mutation study was undertaken to obtain algae superior to Chlorella 71105 for use in a photosynthetic gas exchanger. Of the forty-four thermophilic algae studied, eighteen appeared to have growth rates as great as Chlorella 71105. Optimization of the physical and chemical environments of these strains is recommended as a way to further improve growth rates and concomitant oxygen production. The mutation study revealed that Chlorella 71105 is relatively resistant to germicidal ultraviolet radiation. No high temperature mutants of Chlorella 71105 were found.

  14. Neither One-Time Negative Screening Tests nor Negative Colposcopy Provides Absolute Reassurance against Cervical Cancer

    PubMed Central

    Castle, Philip E.; Rodríguez, Ana C.; Burk, Robert D.; Herrero, Rolando; Hildesheim, Allan; Solomon, Diane; Sherman, Mark E.; Jeronimo, Jose; Alfaro, Mario; Morales, Jorge; Guillén, Diego; Hutchinson, Martha L.; Wacholder, Sholom; Schiffman, Mark

    2009-01-01

    A population sample of 10,049 women living in Guanacaste, Costa Rica was recruited into a natural history of human papillomavirus (HPV) and cervical neoplasia study in 1993–4. At the enrollment visit, we applied multiple state-of-the-art cervical cancer screening methods to detect prevalent cervical cancer and to prevent subsequent cervical cancers by the timely detection and treatment of precancerous lesions. Women were screened at enrollment with 3 kinds of cytology (often reviewed by more than one pathologist), visual inspection, and Cervicography. Any positive screening test led to colposcopic referral and biopsy and/or excisional treatment of CIN2 or worse. We retrospectively tested stored specimens with an early HPV test (Hybrid Capture Tube Test) and for >40 HPV genotypes using a research PCR assay. We followed women typically 5–7 years and some up to 11 years. Nonetheless, sixteen cases of invasive cervical cancer were diagnosed during follow-up. Six cancer cases were failures at enrollment to detect abnormalities by cytology screening; three of the six were also negative at enrollment by sensitive HPV DNA testing. Seven cancers represent failures of colposcopy to diagnose cancer or a precancerous lesion in screen-positive women. Finally, three cases arose despite attempted excisional treatment of precancerous lesions. Based on this evidence, we suggest that no current secondary cervical cancer prevention technologies applied once in a previously under-screened population is likely to be 100% efficacious in preventing incident diagnoses of invasive cervical cancer. PMID:19569231

  15. [Screening and identification of a photosynthetic bacterium reducing selenite to red elemental selenium].

    PubMed

    Wang, Dong-liang; Xiao, Min; Qian, Wei; Han, Bo

    2007-02-01

    Selenium is essential element for humans and animals but is very toxic at higher concentrations. In four inorganic states of selenate [SeO4 2- ( VI)], selenite [SeO3 2- (IV)], elemental selenium [Se (0)] and selenide [Se2- (- II )], selenite is well known to be more soluble and higher toxic than other three forms. Many microorganisms have the capacity to reduce selenite to red elemental selenium, which provide the potential to cope with the detoxification of pollution and to use the biological availability of red elemental selenium. Strain S3 that was more resistant to sodium selenite was selected from 20 photosynthetic bacteria preserved in laboratory. The red granule produced by S3 was identified as elemental selenium ( Se) by transmission electron microscopy and Electron-Dispersive X-ray (EDX) analysis. The granule diameter of the red elemental selenium was 5nm - 200nm, similar as the Nano-Se that has bioavailability. Morphology, physiology and photosynthetic pigments analysis results showed that strain S3 was essentially consistent with Rhodobacter azotoformans . The 16S rDNA sequence analysis (GenBank accession number DQ402051) suggested that strain S3 was clustered together with R. azotoformans in phylogenetic tree, with the sequence identity of 99% . Based on all the results of taxonomy, strain S3 was identified as R. azotoformans S3. The effects of selenite on growth kinetics and the ability to resistant selenite of strain S3 were investigated. In contrast to Rhodospirillum rubrum which was reported not to reduce selenite until the end of exponential growth, strain S3 transformed selenite (1.25mmol/L) at the beginning of the growth, suggesting that strain S3 and Rs. rubrum may employ different strategies to reduce selenite. Strain S3 can grow in the presence of up to 125mmol/L sodium selenite, which is much higher than those which could be resisted to by other bacteria such as Escherichia coli ( < 20mmol/L) and Ralstonia metallidurans CH34 ( < 6mmol/L) . It

  16. Screening of novel chemical compounds as possible inhibitors of carbonic anhydrase and photosynthetic activity of photosystem II.

    PubMed

    Karacan, Mehmet Sayım; Zharmukhamedov, Sergei K; Mamaş, Serhat; Kupriyanova, Elena V; Shitov, Alexandr V; Klimov, Vyacheslav V; Özbek, Neslihan; Özmen, Ümmühan; Gündüzalp, Ayla; Schmitt, Franz-Josef; Karacan, Nurcan; Friedrich, Thomas; Los, Dmitry A; Carpentier, Robert; Allakhverdiev, Suleyman I

    2014-08-01

    Thirty novel chemical compounds were designed and synthesized expecting that they would be possible inhibitors. From this number eleven were organic bases, twenty-four were their organic derivatives and fourteen were metal complexes. Screening of these chemicals by their action on photosynthetic electron transfer (PET) and carbonic anhydrase (CA) activity (CAA) of photosystem II (PSII), α-CA, as well as β-CA was done. Several groups were revealed among them. Some of them are capable to suppress either one, two, three, or even all of the measured activities. As example, one of the Cu(II)-phenyl sulfonylhydrazone complexes (compound 25) suppresses CAA of α-CA by 88%, CAA of β-CA by 100% inhibition; CAA of PSII by 100% and the PSII photosynthetic activity by 66.2%. The Schiff base compounds (12, 15) and Cu(II)-phenyl sulfonylhydrazone complexes (25, 26) inhibited the CAA and PET of PSII significantly. The obtained data indicate that the PSII donor side is a target of the inhibitory action of these agents. Some physico- or electrochemical properties such as diffusion coefficient, number of transferred electrons, peak potential and heterogeneous standard rate constants of the compounds were determined in nonaqueous media. pKa values were also determined in nonaqueous and aqueous media. Availability in the studied group of novel chemical agents possessing different inhibitory activity allow in future to isolate the "active part" in the structure of the inhibitors responsible for different inhibitory mechanisms, as well as to determine the influence of side substituters on its inhibitory efficiency.

  17. SCREENING OF PHOTOSYNTHETIC O2 -EVOLVING PROKARYOTES FOR AN INSULIN-LIKE ANTIGEN(1).

    PubMed

    Khursheed, Saima; Anwer, Razique; Zutshi, Sunaina; Fatma, Tasneem

    2012-02-01

    Diabetes mellitus (DM), a metabolic disorder, is becoming a major health problem worldwide. Insulin is the single hope for management of type 1 diabetes, but it is not always available or suitable. For finding additional bioresources, the present study was performed. ELISA-based preliminary screening of cyanobacterial biomass using antihuman insulin antibody have detected an insulin-like antigen in Spirulina platensis S-5, Spirulina NCCU-482, and Spirulina NCCU-483. Their similarity with insulin-like antigen was further confirmed by electrophoretic mobility using bovine insulin as marker. © 2011 Phycological Society of America.

  18. A Screening Method for the Isolation of Polyhydroxyalkanoate-Producing Purple Non-sulfur Photosynthetic Bacteria from Natural Seawater

    PubMed Central

    Higuchi-Takeuchi, Mieko; Morisaki, Kumiko; Numata, Keiji

    2016-01-01

    Polyhydroxyalkanoates (PHAs) are a family of biopolyesters accumulated by a variety of microorganisms as carbon and energy storage under starvation conditions. We focused on marine purple non-sulfur photosynthetic bacteria as host microorganisms for PHA production and developed a method for their isolation from natural seawater. To identify novel PHA-producing marine purple non-sulfur photosynthetic bacteria, natural seawaters were cultured in nutrient-rich medium for purple non-sulfur photosynthetic bacteria, and twelve pink- or red-pigmented colonies were picked up. Gas chromatography mass spectrometry analysis revealed that four isolates synthesized PHA at levels ranging from 0.5 to 24.4 wt% of cell dry weight. The 16S ribosomal RNA sequence analysis revealed that one isolate (HM2) showed 100% identity to marine purple non-sulfur photosynthetic bacteria. In conclusion, we have demonstrated in this study that PHA-producing marine purple non-sulfur photosynthetic bacteria can be isolated from natural seawater under nutrient-rich conditions. PMID:27708640

  19. A Screening Method for the Isolation of Polyhydroxyalkanoate-Producing Purple Non-sulfur Photosynthetic Bacteria from Natural Seawater.

    PubMed

    Higuchi-Takeuchi, Mieko; Morisaki, Kumiko; Numata, Keiji

    2016-01-01

    Polyhydroxyalkanoates (PHAs) are a family of biopolyesters accumulated by a variety of microorganisms as carbon and energy storage under starvation conditions. We focused on marine purple non-sulfur photosynthetic bacteria as host microorganisms for PHA production and developed a method for their isolation from natural seawater. To identify novel PHA-producing marine purple non-sulfur photosynthetic bacteria, natural seawaters were cultured in nutrient-rich medium for purple non-sulfur photosynthetic bacteria, and twelve pink- or red-pigmented colonies were picked up. Gas chromatography mass spectrometry analysis revealed that four isolates synthesized PHA at levels ranging from 0.5 to 24.4 wt% of cell dry weight. The 16S ribosomal RNA sequence analysis revealed that one isolate (HM2) showed 100% identity to marine purple non-sulfur photosynthetic bacteria. In conclusion, we have demonstrated in this study that PHA-producing marine purple non-sulfur photosynthetic bacteria can be isolated from natural seawater under nutrient-rich conditions.

  20. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  1. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  2. The role of membrane surface charge in the control of photosynthetic processes and the involvement of electrostatic screening.

    PubMed

    Rubin, B T; Barber, J

    1980-08-05

    Calculations of changes of the integrated space charge density within the diffuse layer adjacent to a negatively charged membrane surface have been made using analytical expressions derived from the full non-linear Poisson-Boltzmann equation of the Gouy-Chapman theory. This electrostatic screening parameter has been examined for mixed electrolytes of valency type Z1+/Z1- and Z2+/Z1- and concentration ranges were chosen so as to compare with experimental data obtained with thylakoid membranes. The results of the analysis are consistent with previous arguments (Barber, J., Mills, J.D. and Love, A. (1977) FEBS Letts. 74, 174-181) that this screening parameter is involved in the control of salt induced chlorophyll fluorescence and thylakoid stacking changes. Phenomenological equations suggesting the origin of the variations in the integrated space charge density for various salt conditions are presented. Overall the integrated space charge density (sigma chi) is shown to be a more satisfactory measure of both short and long range effects associated with electrostatic screening and double layer repulsion of charged surfaces than the planar space charge density (rho chi).

  3. Absolute Zero

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell J.; Sheibley, D.; Belloni, M.; Stamper-Kurn, D.; Vinen, W. F.

    2006-12-01

    Absolute Zero is a two hour PBS special attempting to bring to the general public some of the advances made in 400 years of thermodynamics. It is based on the book “Absolute Zero and the Conquest of Cold” by Tom Shachtman. Absolute Zero will call long-overdue attention to the remarkable strides that have been made in low-temperature physics, a field that has produced 27 Nobel Prizes. It will explore the ongoing interplay between science and technology through historical examples including refrigerators, ice machines, frozen foods, liquid oxygen and nitrogen as well as much colder fluids such as liquid hydrogen and liquid helium. A website has been established to promote the series: www.absolutezerocampaign.org. It contains information on the series, aimed primarily at students at the middle school level. There is a wealth of material here and we hope interested teachers will draw their student’s attention to this website and its substantial contents, which have been carefully vetted for accuracy.

  4. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  5. Absolute Photometry

    NASA Astrophysics Data System (ADS)

    Hartig, George

    1990-12-01

    The absolute sensitivity of the FOS will be determined in SV by observing 2 stars at 3 epochs, first in 3 apertures (1.0", 0.5", and 0.3" circular) and then in 1 aperture (1.0" circular). In cycle 1, one star, BD+28D4211 will be observed in the 1.0" aperture to establish the stability of the sensitivity and flat field characteristics and improve the accuracy obtained in SV. This star will also be observed through the paired apertures since these are not calibrated in SV. The stars will be observed in most detector/grating combinations. The data will be averaged to form the inverse sensitivity functions required by RSDP.

  6. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  7. Photosynthetic water splitting

    SciTech Connect

    Greenbaum, E.

    1981-01-01

    The photosynthetic unit of hydrogen evolution, the turnover time of photosynthetic hydrogen production, and hydrogenic photosynthesis are discussed in the section on previous work. Recent results are given on simultaneous photoproduction of hydrogen and oxygen, kinetic studies, microscopic marine algae-seaweeds, and oxygen profiles.

  8. Absolutely classical spin states

    NASA Astrophysics Data System (ADS)

    Bohnet-Waldraff, F.; Giraud, O.; Braun, D.

    2017-01-01

    We introduce the concept of "absolutely classical" spin states, in analogy to absolutely separable states of bipartite quantum systems. Absolutely classical states are states that remain classical (i.e., a convex sum of projectors on coherent states of a spin j ) under any unitary transformation applied to them. We investigate the maximal size of the ball of absolutely classical states centered on the maximally mixed state and derive a lower bound for its radius as a function of the total spin quantum number. We also obtain a numerical estimate of this maximal radius and compare it to the case of absolutely separable states.

  9. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  10. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  11. Photosynthetic Light-Harvesting

    NASA Astrophysics Data System (ADS)

    Pullerits, T.; Polivka, T.; Sundström, V.

    Photosynthetic organisms utilize (bacterio) chlorophylls and carotenoids as main light-harvesting pigments. In this chapter, we review bacteriochlorophyll light-harvesting in photosynthetic purple bacteria; we discuss intra- and intercomplex energy transfer processes as well as energy trapping by reaction centers. From the viewpoint of light-harvesting, in most organisms carotenoids are accessory pigments absorbing in the blue-green region of the solar spectrum, where chlorophylls and bacteriochlorophylls have weak absorption. Here, we discuss carotenoid light-harvesting in a pigment-protein complex having carotenoids as main lightharvesting pigment, the peridinin chlorophyll protein (PCP).

  12. Environmental influence on photosynthetic efficiency

    NASA Astrophysics Data System (ADS)

    Zilinskas, Barbara A.

    Photosynthesis is arguably the single most important metabolic process on earth. Through a series of reactions, ranging from 10-15 sec for absorption of light to 106 sec for primary productivity of a field crop, atmospheric CO2 is assimilated into carbohydrate necessary for the sustenance of all life forms. The process involves movement of electrons from water to CO2 through a series of charge transfer reactions. The ultimate source of energy to drive these reactions is solar energy absorbed by a collection of light-harvesting pigment-proteins and specialized reaction centers. Approximately half of the solar irradiance is useful in photosynthesis, but of this only 2-3% is converted into organic matter. Usually, light does not limit photosynthesis, but other environmental factors do, most often CO2 and water availability. Three different biochemical pathways for CO2 assimilation have independently evolved. These provide C3, C4 and CAM plants (names designating the different means of assimilating CO2) with adaptive advantages under the various environmental conditions encountered by plants in nature. Our current understanding of the photosynthetic light and carbon-fixing reactions now permits a closer look at responses of photosynthesis to changes in the environment, particularly with regard to making predictive models for absolute efficiencies of light, CO2 and water utilization.

  13. Absolute and relative blindsight.

    PubMed

    Balsdon, Tarryn; Azzopardi, Paul

    2015-03-01

    The concept of relative blindsight, referring to a difference in conscious awareness between conditions otherwise matched for performance, was introduced by Lau and Passingham (2006) as a way of identifying the neural correlates of consciousness (NCC) in fMRI experiments. By analogy, absolute blindsight refers to a difference between performance and awareness regardless of whether it is possible to match performance across conditions. Here, we address the question of whether relative and absolute blindsight in normal observers can be accounted for by response bias. In our replication of Lau and Passingham's experiment, the relative blindsight effect was abolished when performance was assessed by means of a bias-free 2AFC task or when the criterion for awareness was varied. Furthermore, there was no evidence of either relative or absolute blindsight when both performance and awareness were assessed with bias-free measures derived from confidence ratings using signal detection theory. This suggests that both relative and absolute blindsight in normal observers amount to no more than variations in response bias in the assessment of performance and awareness. Consideration of the properties of psychometric functions reveals a number of ways in which relative and absolute blindsight could arise trivially and elucidates a basis for the distinction between Type 1 and Type 2 blindsight.

  14. Evolving a photosynthetic organelle.

    PubMed

    Nakayama, Takuro; Archibald, John M

    2012-04-24

    The evolution of plastids from cyanobacteria is believed to represent a singularity in the history of life. The enigmatic amoeba Paulinella and its 'recently' acquired photosynthetic inclusions provide a fascinating system through which to gain fresh insight into how endosymbionts become organelles.The plastids, or chloroplasts, of algae and plants evolved from cyanobacteria by endosymbiosis. This landmark event conferred on eukaryotes the benefits of photosynthesis--the conversion of solar energy into chemical energy--and in so doing had a huge impact on the course of evolution and the climate of Earth 1. From the present state of plastids, however, it is difficult to trace the evolutionary steps involved in this momentous development, because all modern-day plastids have fully integrated into their hosts. Paulinella chromatophora is a unicellular eukaryote that bears photosynthetic entities called chromatophores that are derived from cyanobacteria and has thus received much attention as a possible example of an organism in the early stages of organellogenesis. Recent studies have unlocked the genomic secrets of its chromatophore 23 and provided concrete evidence that the Paulinella chromatophore is a bona fide photosynthetic organelle 4. The question is how Paulinella can help us to understand the process by which an endosymbiont is converted into an organelle.

  15. Absolute neutrino mass scale

    NASA Astrophysics Data System (ADS)

    Capelli, Silvia; Di Bari, Pasquale

    2013-04-01

    Neutrino oscillation experiments firmly established non-vanishing neutrino masses, a result that can be regarded as a strong motivation to extend the Standard Model. In spite of being the lightest massive particles, neutrinos likely represent an important bridge to new physics at very high energies and offer new opportunities to address some of the current cosmological puzzles, such as the matter-antimatter asymmetry of the Universe and Dark Matter. In this context, the determination of the absolute neutrino mass scale is a key issue within modern High Energy Physics. The talks in this parallel session well describe the current exciting experimental activity aiming to determining the absolute neutrino mass scale and offer an overview of a few models beyond the Standard Model that have been proposed in order to explain the neutrino masses giving a prediction for the absolute neutrino mass scale and solving the cosmological puzzles.

  16. Absolute radiation detector

    NASA Astrophysics Data System (ADS)

    Martin, John E.

    1996-11-01

    An absolute radiation detector (a cryogenic radiometer) is being developed to replace the existing UK primary national standard cryogenic radiometer with an improved uncertainty. The cryogenic radiometer will be capable of measuring black body radiation and laser radiation with an uncertainty approaching 10 ppm. From these measurements it will be possible to determine the fundamental constant, the Stefan Boltzmann constant, confirming the radiometer as an absolute detector, and link this determination to the SI unit of luminous intensity, the candela. Thus detector and source based scales/standards will be tied to an invariant physical quantity ensuring their long-term stability.

  17. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  18. Photosynthetic Photovoltaic Cells

    DTIC Science & Technology

    2007-06-21

    PHOTOSYNTHETIC PHOTOVOLTAIC CELLS 5b. GRANT NUMBER F49620-02-1-0399 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER MARC A. BALDO 5e. TASK...building an ’antenna’ on top of a conventional solar cell. Biomimetic organic solar cells operate as follows: The antenna absorbs the light, and acts to...no longer must absorb all the light. Thus, its quantum efficiency can approach 100% potentially doubling the performance of organic solar cells. 15

  19. Photosynthetic Pigments in Diatoms.

    PubMed

    Kuczynska, Paulina; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2015-09-16

    Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries.

  20. The Photosynthetic Cycle

    DOE R&D Accomplishments Database

    Calvin, Melvin

    1955-03-21

    A cyclic sequence of transformations, including the carboxylation of RuDP (ribulose diphosphate) and its re-formation, has been deduced as the route for the creation of reduced carbon compounds in photosynthetic organisms. With the demonstration of RuDP as substrate for the carboxylation in a cell-free system, each of the reactions has now been carried out independently in vitro. Further purification of this last enzyme system has confirmed the deduction that the carboxylation of RuDP leads directly to the two molecules of PGA (phosphoglyceric acid) involving an internal dismutation and suggesting the name "carboxydismutase" for the enzyme. As a consequence of this knowledge of each of the steps in the photosynthetic CO{sub 2} reduction cycle, it is possible to define the reagent requirements to maintain it. The net requirement for the reduction of one molecule of CO{sub 2} is four equivalents of [H]and three molecules of ATP (adenine triphosphate). These must ultimately be supplied by the photochemical reaction. Some possible ways in which this may be accomplished are discussed.

  1. Photosynthetic Pigments in Diatoms

    PubMed Central

    Kuczynska, Paulina; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2015-01-01

    Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries. PMID:26389924

  2. Photosynthetic water splitting: 1987 annual report

    SciTech Connect

    Greenbaum, E.

    1988-01-01

    This document is an annual report of photosynthetic water splitting for the production of hydrogen and oxygen. Unicellular green algae are capable of evolving molecular hydrogen in the presence of carbon dioxide. Controlling factors that determine hydrogen evolution are either temperature or light intensity. Also, mutants of the green alga Chlamydomonas are capable of evolving hydrogen in the presence of carbon dioxide. The significance of these discoveries is that the presence of carbon dioxide (or bicarbonate) is a key factor in determining the activity of the Photosystem II water splitting complex. Second, a new advance in oxygen sensor technology has been made that, for the first time, allows the absolute measurement of photosynthetically evolved oxygen from a single colony of microalgae growing on a solidified agar medium. The key aspect of this electrochemical sensor is the utilization of ultra-pure potassium hydroxide as the electrolyte and a recognition of the role that electrolyte impurities play in contributing to base line noise. 9 refs., 8 figs., 2 tabs.

  3. Absolute airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Baumann, Henri

    This work consists of a feasibility study of a first stage prototype airborne absolute gravimeter system. In contrast to relative systems, which are using spring gravimeters, the measurements acquired by absolute systems are uncorrelated and the instrument is not suffering from problems like instrumental drift, frequency response of the spring and possible variation of the calibration factor. The major problem we had to resolve were to reduce the influence of the non-gravitational accelerations included in the measurements. We studied two different approaches to resolve it: direct mechanical filtering, and post-processing digital compensation. The first part of the work describes in detail the different mechanical passive filters of vibrations, which were studied and tested in the laboratory and later in a small truck in movement. For these tests as well as for the airborne measurements an absolute gravimeter FG5-L from Micro-G Ltd was used together with an Inertial navigation system Litton-200, a vertical accelerometer EpiSensor, and GPS receivers for positioning. These tests showed that only the use of an optical table gives acceptable results. However, it is unable to compensate for the effects of the accelerations of the drag free chamber. The second part describes the strategy of the data processing. It is based on modeling the perturbing accelerations by means of GPS, EpiSensor and INS data. In the third part the airborne experiment is described in detail, from the mounting in the aircraft and data processing to the different problems encountered during the evaluation of the quality and accuracy of the results. In the part of data processing the different steps conducted from the raw apparent gravity data and the trajectories to the estimation of the true gravity are explained. A comparison between the estimated airborne data and those obtained by ground upward continuation at flight altitude allows to state that airborne absolute gravimetry is feasible and

  4. Electronic Absolute Cartesian Autocollimator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2006-01-01

    An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the

  5. Absolute-structure reports.

    PubMed

    Flack, Howard D

    2013-08-01

    All the 139 noncentrosymmetric crystal structures published in Acta Crystallographica Section C between January 2011 and November 2012 inclusive have been used as the basis of a detailed study of the reporting of absolute structure. These structure determinations cover a wide range of space groups, chemical composition and resonant-scattering contribution. Defining A and D as the average and difference of the intensities of Friedel opposites, their level of fit has been examined using 2AD and selected-D plots. It was found, regardless of the expected resonant-scattering contribution to Friedel opposites, that the Friedel-difference intensities are often dominated by random uncertainty and systematic error. An analysis of data collection strategy is provided. It is found that crystal-structure determinations resulting in a Flack parameter close to 0.5 may not necessarily be from crystals twinned by inversion. Friedifstat is shown to be a robust estimator of the resonant-scattering contribution to Friedel opposites, very little affected by the particular space group of a structure nor by the occupation of special positions. There is considerable confusion in the text of papers presenting achiral noncentrosymmetric crystal structures. Recommendations are provided for the optimal way of treating noncentrosymmetric crystal structures for which the experimenter has no interest in determining the absolute structure.

  6. Photosynthetic approaches to chemical biotechnology.

    PubMed

    Desai, Shuchi H; Atsumi, Shota

    2013-12-01

    National interest and environmental advocates encourage alternatives to petroleum-based products. Besides biofuels, many other valuable chemicals used in every-day life are petroleum derivatives or require petroleum for their production. A plausible alternative to production using petroleum for chemical production is to harvest the abundant carbon dioxide resources in the environment to produce valuable hydrocarbons. Currently, efforts are being made to utilize a natural biological system, photosynthetic microorganisms, to perform this task. Photosynthetic microorganisms are attractive to use for biochemical production because they utilize economical resources for survival: sunlight and carbon dioxide. This review examines the various compounds produced by photosynthetic microorganisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  8. Absolute Bioavailability of Tasimelteon.

    PubMed

    Torres, Rosarelis; Dressman, Marlene A; Kramer, William G; Baroldi, Paolo

    2015-01-01

    Tasimelteon is a novel dual melatonin receptor agonist and is the first treatment approved by the US Food and Drug Administration for Non-24-Hour Sleep-Wake Disorder. This study was conducted to assess the absolute bioavailability of tasimelteon and to further assess the single-dose pharmacokinetics, safety, and tolerability of oral and intravenous (IV) routes of administration of the drug. This study was an open-label, single-dose, randomized, 2-period, 2-treatment, 2-sequence, crossover study in which 14 healthy volunteers were randomly administered tasimelteon as either a 20-mg capsule or IV administration of 2 mg infused over 30 minutes. Each subject received both treatments in a random order, separated by a washout period of 5 ± 2 days. The total clearance and volume of distribution of tasimelteon, from the IV treatment, were 505 mL per minute and 42.7 L, respectively. Based on the statistical comparison of dose-corrected area under the curve to infinity, the absolute bioavailability was 38%, with a 90% confidence interval of 27%-54%. The mean elimination half-life was the same for the oral and IV routes. The exposure ratios, oral-to-IV, for metabolites M9, M11, M12, and M13, were 133.27%, 118.28%, 138.76%, and 112.36%, respectively, suggesting presystemic or first-pass metabolism. Three (21.4%) subjects experienced a treatment-emergent adverse event (TEAE) during the study. All TEAEs were mild, considered related to study medication, and consistent with what has been seen in other studies. There were no deaths, serious adverse events, or discontinuations due to TEAEs. Both tasimelteon treatments were well tolerated during the study.

  9. Absolute multilateration between spheres

    NASA Astrophysics Data System (ADS)

    Muelaner, Jody; Wadsworth, William; Azini, Maria; Mullineux, Glen; Hughes, Ben; Reichold, Armin

    2017-04-01

    Environmental effects typically limit the accuracy of large scale coordinate measurements in applications such as aircraft production and particle accelerator alignment. This paper presents an initial design for a novel measurement technique with analysis and simulation showing that that it could overcome the environmental limitations to provide a step change in large scale coordinate measurement accuracy. Referred to as absolute multilateration between spheres (AMS), it involves using absolute distance interferometry to directly measure the distances between pairs of plain steel spheres. A large portion of each sphere remains accessible as a reference datum, while the laser path can be shielded from environmental disturbances. As a single scale bar this can provide accurate scale information to be used for instrument verification or network measurement scaling. Since spheres can be simultaneously measured from multiple directions, it also allows highly accurate multilateration-based coordinate measurements to act as a large scale datum structure for localized measurements, or to be integrated within assembly tooling, coordinate measurement machines or robotic machinery. Analysis and simulation show that AMS can be self-aligned to achieve a theoretical combined standard uncertainty for the independent uncertainties of an individual 1 m scale bar of approximately 0.49 µm. It is also shown that combined with a 1 µm m-1 standard uncertainty in the central reference system this could result in coordinate standard uncertainty magnitudes of 42 µm over a slender 1 m by 20 m network. This would be a sufficient step change in accuracy to enable next generation aerospace structures with natural laminar flow and part-to-part interchangeability.

  10. Estimating Absolute Site Effects

    SciTech Connect

    Malagnini, L; Mayeda, K M; Akinci, A; Bragato, P L

    2004-07-15

    The authors use previously determined direct-wave attenuation functions as well as stable, coda-derived source excitation spectra to isolate the absolute S-wave site effect for the horizontal and vertical components of weak ground motion. They used selected stations in the seismic network of the eastern Alps, and find the following: (1) all ''hard rock'' sites exhibited deamplification phenomena due to absorption at frequencies ranging between 0.5 and 12 Hz (the available bandwidth), on both the horizontal and vertical components; (2) ''hard rock'' site transfer functions showed large variability at high-frequency; (3) vertical-motion site transfer functions show strong frequency-dependence, and (4) H/V spectral ratios do not reproduce the characteristics of the true horizontal site transfer functions; (5) traditional, relative site terms obtained by using reference ''rock sites'' can be misleading in inferring the behaviors of true site transfer functions, since most rock sites have non-flat responses due to shallow heterogeneities resulting from varying degrees of weathering. They also use their stable source spectra to estimate total radiated seismic energy and compare against previous results. they find that the earthquakes in this region exhibit non-constant dynamic stress drop scaling which gives further support for a fundamental difference in rupture dynamics between small and large earthquakes. To correct the vertical and horizontal S-wave spectra for attenuation, they used detailed regional attenuation functions derived by Malagnini et al. (2002) who determined frequency-dependent geometrical spreading and Q for the region. These corrections account for the gross path effects (i.e., all distance-dependent effects), although the source and site effects are still present in the distance-corrected spectra. The main goal of this study is to isolate the absolute site effect (as a function of frequency) by removing the source spectrum (moment-rate spectrum) from

  11. Absolute Identification by Relative Judgment

    ERIC Educational Resources Information Center

    Stewart, Neil; Brown, Gordon D. A.; Chater, Nick

    2005-01-01

    In unidimensional absolute identification tasks, participants identify stimuli that vary along a single dimension. Performance is surprisingly poor compared with discrimination of the same stimuli. Existing models assume that identification is achieved using long-term representations of absolute magnitudes. The authors propose an alternative…

  12. Perception of absolute and relative distances in stereoscopic image

    NASA Astrophysics Data System (ADS)

    Shidoji, Kazunori; Funakoshi, Masakazu; Ogawa, Masahiko

    2010-02-01

    In 3-D movies and virtual reality and augmented reality systems, stereoscopic images are used to improve perceptions of realism and depth. The distance (depth) that we perceive can be classified into absolute distance, which is the distance between the observer and the objects, and relative distance, which is the distance between the objects. It is known that in the real environment these two distances are independent. Previous studies have reported that we underestimate or overestimate the absolute distance in stereoscopic images under some circumstances. We examined perceptions of both absolute and relative distances in stereoscopic images to investigate the depth perception of virtual objects. The results of the experiments showed that (1) the perceived absolute distance from the observer to images in front of the screen was nearly accurate and that to images farther behind the screen was underestimated; (2) this underestimation tendency increased in short viewing distances; and (3) the relative distance from the screen to images in front of the screen was overestimated, whereas that to images farther behind the screen was underestimated.

  13. Spectral measurements of photosynthetic efficiency

    USDA-ARS?s Scientific Manuscript database

    The photosynthetic efficiency of plants was examined for plants in two very different canopies, a USDA cornfield having an instrumented flux tower in Beltsville, MD, USA and a coniferous forest in British Columbia, Canada, included in the tower network of the Canadian Carbon Program. Basic field st...

  14. Environmental control of photosynthetic enhancement.

    PubMed

    Punnett, T

    1971-01-22

    The transition from granular to homogeneous chloroplasts in vivo in Egeria densa caused by environmental conditions was paralleled by a decrease in photosynthetic enhancement from 30 percent to nearly zero. The drop in enhancement can be explained either by a change in the partitioning of light energy between the two photosystems or a change to a single photosystem.

  15. Towards improved quantification of vegetation photosynthetic activity at global scale: the FLuorescence EXplorer (FLEX) mission

    NASA Astrophysics Data System (ADS)

    Moreno, Jose

    2014-05-01

    /B1 assessment. The FLEX mission concept consist in a single platform that carries a Fluorescence Imaging Spectrometer (FLORIS), which has been designed and optimised for discrimination of the fluorescence signal in terrestrial vegetation, providing images with a 150 km swath and 300 m pixel size. FLORIS will measure the radiance between 500 and 780 nm with a bandwidth between 0.1 nm and 2 nm, with high spectral resolution of 0.3 nm in particular at the Oxygen-A (755-780 nm) and -B bands (677-697 nm). It will also cover the photochemical reflectance features between 500 and 600 nm, the chlorophyll absorption region and the red-edge, which allow a highly accurate measurement of the spectral distribution of vegetation fluorescence in absolute terms as needed by physically-based retrieval methods. FLEX will fly in formation with Sentinel-3 in order to further enhance the spectral coverage from measurements made by the Sentinel-3 instruments OLCI and SLSTR, exploiting the synergy between their data and helping in the proper characterization of the atmospheric state and cloud screening, essential for a reliable retrieval of fluorescence emission. In this paper, we provide the relevant scientific background and an overview of the FLEX mission concept, measurement methods and scientific challenges, describing current status and perspectives in assimilation of the fluorescence information in Dynamical Vegetation Models.

  16. Cryogenic, Absolute, High Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  17. Absolute measurement of optical attenuation

    NASA Astrophysics Data System (ADS)

    Wetsel, Grover C., Jr.; Stotts, Steven A.

    1983-06-01

    We have discovered that laser beam deflection spectroscopy can be used for the absolute measurement of wave or particle beam attenuation in condensed matter. The concept has been experimentally evaluated by successfully measuring the absolute optical attenuation in a crystal of U3+:CaF2 at 514 nm. A theoretical model that explains the experiment and characterizes the range of applicability of the method has been developed.

  18. Photosynthetic gene expression in higher plants.

    PubMed

    Berry, James O; Yerramsetty, Pradeep; Zielinski, Amy M; Mure, Christopher M

    2013-11-01

    Within the chloroplasts of higher plants and algae, photosynthesis converts light into biological energy, fueling the assimilation of atmospheric carbon dioxide into biologically useful molecules. Two major steps, photosynthetic electron transport and the Calvin-Benson cycle, require many gene products encoded from chloroplast as well as nuclear genomes. The expression of genes in both cellular compartments is highly dynamic and influenced by a diverse range of factors. Light is the primary environmental determinant of photosynthetic gene expression. Working through photoreceptors such as phytochrome, light regulates photosynthetic genes at transcriptional and posttranscriptional levels. Other processes that affect photosynthetic gene expression include photosynthetic activity, development, and biotic and abiotic stress. Anterograde (from nucleus to chloroplast) and retrograde (from chloroplast to nucleus) signaling insures the highly coordinated expression of the many photosynthetic genes between these different compartments. Anterograde signaling incorporates nuclear-encoded transcriptional and posttranscriptional regulators, such as sigma factors and RNA-binding proteins, respectively. Retrograde signaling utilizes photosynthetic processes such as photosynthetic electron transport and redox signaling to influence the expression of photosynthetic genes in the nucleus. The basic C3 photosynthetic pathway serves as the default form used by most of the plant species on earth. High temperature and water stress associated with arid environments have led to the development of specialized C4 and CAM photosynthesis, which evolved as modifications of the basic default expression program. The goal of this article is to explain and summarize the many gene expression and regulatory processes that work together to support photosynthetic function in plants.

  19. Phytochromes in photosynthetically competent plants

    SciTech Connect

    Pratt, L.H.

    1990-07-01

    Plants utilize light as a source of information in photomorphogenesis and of free energy in photosynthesis, two processes that are interrelated in that the former serves to increase the efficiency with which plants can perform the latter. Only one pigment involved in photomorphogenesis has been identified unequivocally, namely phytochrome. The thrust of this proposal is to investigate this pigment and its mode(s) of action in photosynthetically competent plants. Our long term objective is to characterize phytochrome and its functions in photosynthetically competent plants from molecular, biochemical and cellular perspectives. It is anticipated that others will continue to contribute indirectly to these efforts at the physiological level. The ultimate goal will be to develop this information from a comparative perspective in order to learn whether the different phytochromes have significantly different physicochemical properties, whether they fulfill independent functions and if so what these different functions are, and how each of the different phytochromes acts at primary molecular and cellular levels.

  20. Mimicking photosynthetic solar energy transduction.

    PubMed

    Gust, D; Moore, T A; Moore, A L

    2001-01-01

    Increased understanding of photosynthetic energy conversion and advances in chemical synthesis and instrumentation have made it possible to create artificial nanoscale devices and semibiological hybrids that carry out many of the functions of the natural process. Artificial light-harvesting antennas can be synthesized and linked to artificial reaction centers that convert excitation energy to chemical potential in the form of long-lived charge separation. Artificial reaction centers can form the basis for molecular-level optoelectronic devices. In addition, they may be incorporated into the lipid bilayer membranes of artificial vesicles, where they function as components of light-driven proton pumps that generate transmembrane proton motive force. The proton gradient may be used to synthesize adenosine triphosphate via an ATP synthase enzyme. The overall energy transduction process in the liposomal system mimics the solar energy conversion system of a photosynthetic bacterium. The results of this research illustrate the advantages of designing functional nanoscale devices based on biological paradigms.

  1. Carbon, Hydrogen, and Oxygen Isotope Ratios of Cellulose from Plants Having Intermediary Photosynthetic Modes 1

    PubMed Central

    Sternberg, Leonel O'Reilly; Deniro, Michael J.; Ting, Irwin P.

    1984-01-01

    Carbon and hydrogen isotope ratios of cellulose nitrate and oxygen isotope ratios of cellulose from species of greenhouse plants having different photosynthetic modes were determined. When hydrogen isotope ratios are plotted against carbon isotope ratios, four clusters of points are discernible, each representing different photosynthetic modes: C3 plants, C4 plants, CAM plants, and C3 plants that can shift to CAM or show the phenomenon referred to as CAM-cycling. The combination of oxygen and carbon isotope ratios does not distinguish among the different photosynthetic modes. Analysis of the carbon and hydrogen isotope ratios of cellulose nitrate should prove useful for screening different photosynthetic modes in field specimens that grew near one another. This method will be particularly useful for detection of plants which show CAM-cycling. PMID:16663360

  2. Database applicaton for absolute spectrophotometry

    NASA Astrophysics Data System (ADS)

    Bochkov, Valery V.; Shumko, Sergiy

    2002-12-01

    32-bit database application with multidocument interface for Windows has been developed to calculate absolute energy distributions of observed spectra. The original database contains wavelength calibrated observed spectra which had been already passed through apparatus reductions such as flatfielding, background and apparatus noise subtracting. Absolute energy distributions of observed spectra are defined in unique scale by means of registering them simultaneously with artificial intensity standard. Observations of sequence of spectrophotometric standards are used to define absolute energy of the artificial standard. Observations of spectrophotometric standards are used to define optical extinction in selected moments. FFT algorithm implemented in the application allows performing convolution (deconvolution) spectra with user-defined PSF. The object-oriented interface has been created using facilities of C++ libraries. Client/server model with Windows Socket functionality based on TCP/IP protocol is used to develop the application. It supports Dynamic Data Exchange conversation in server mode and uses Microsoft Exchange communication facilities.

  3. Microfluidic high-throughput selection of microalgal strains with superior photosynthetic productivity using competitive phototaxis.

    PubMed

    Kim, Jaoon Young Hwan; Kwak, Ho Seok; Sung, Young Joon; Choi, Hong Il; Hong, Min Eui; Lim, Hyun Seok; Lee, Jae-Hyeok; Lee, Sang Yup; Sim, Sang Jun

    2016-02-08

    Microalgae possess great potential as a source of sustainable energy, but the intrinsic inefficiency of photosynthesis is a major challenge to realize this potential. Photosynthetic organisms evolved phototaxis to find optimal light condition for photosynthesis. Here we report a microfluidic screening using competitive phototaxis of the model alga, Chlamydomonas reinhardtii, for rapid isolation of strains with improved photosynthetic efficiencies. We demonstrated strong relationship between phototaxis and photosynthetic efficiency by quantitative analysis of phototactic response at the single-cell level using a microfluidic system. Based on this positive relationship, we enriched the strains with improved photosynthetic efficiency by isolating cells showing fast phototactic responses from a mixture of 10,000 mutants, thereby greatly improving selection efficiency over 8 fold. Among 147 strains isolated after screening, 94.6% showed improved photoautotrophic growth over the parental strain. Two mutants showed much improved performances with up to 1.9- and 8.1-fold increases in photoautotrophic cell growth and lipid production, respectively, a substantial improvement over previous approaches. We identified candidate genes that might be responsible for fast phototactic response and improved photosynthesis, which can be useful target for further strain engineering. Our approach provides a powerful screening tool for rapid improvement of microalgal strains to enhance photosynthetic productivity.

  4. Microfluidic high-throughput selection of microalgal strains with superior photosynthetic productivity using competitive phototaxis

    PubMed Central

    Kim, Jaoon Young Hwan; Kwak, Ho Seok; Sung, Young Joon; Choi, Hong Il; Hong, Min Eui; Lim, Hyun Seok; Lee, Jae-Hyeok; Lee, Sang Yup; Sim, Sang Jun

    2016-01-01

    Microalgae possess great potential as a source of sustainable energy, but the intrinsic inefficiency of photosynthesis is a major challenge to realize this potential. Photosynthetic organisms evolved phototaxis to find optimal light condition for photosynthesis. Here we report a microfluidic screening using competitive phototaxis of the model alga, Chlamydomonas reinhardtii, for rapid isolation of strains with improved photosynthetic efficiencies. We demonstrated strong relationship between phototaxis and photosynthetic efficiency by quantitative analysis of phototactic response at the single-cell level using a microfluidic system. Based on this positive relationship, we enriched the strains with improved photosynthetic efficiency by isolating cells showing fast phototactic responses from a mixture of 10,000 mutants, thereby greatly improving selection efficiency over 8 fold. Among 147 strains isolated after screening, 94.6% showed improved photoautotrophic growth over the parental strain. Two mutants showed much improved performances with up to 1.9- and 8.1-fold increases in photoautotrophic cell growth and lipid production, respectively, a substantial improvement over previous approaches. We identified candidate genes that might be responsible for fast phototactic response and improved photosynthesis, which can be useful target for further strain engineering. Our approach provides a powerful screening tool for rapid improvement of microalgal strains to enhance photosynthetic productivity. PMID:26852806

  5. Absolute classification with unsupervised clustering

    NASA Technical Reports Server (NTRS)

    Jeon, Byeungwoo; Landgrebe, D. A.

    1992-01-01

    An absolute classification algorithm is proposed in which the class definition through training samples or otherwise is required only for a particular class of interest. The absolute classification is considered as a problem of unsupervised clustering when one cluster is known initially. The definitions and statistics of the other classes are automatically developed through the weighted unsupervised clustering procedure, which is developed to keep the cluster corresponding to the class of interest from losing its identity as the class of interest. Once all the classes are developed, a conventional relative classifier such as the maximum-likelihood classifier is used in the classification.

  6. Absolute brightness of fluorescent microspheres.

    PubMed

    Finger, Isaac; Phillips, Scott; Mobley, Elizabeth; Tucker, Robert; Hess, Henry

    2009-02-07

    The absolute brightness of fluorescent particles, such as dye-containing nano- and microspheres or quantum dots, is a critical design parameter for many applications relying on fluorescence detection. The absolute brightness, defined as the ratio of radiant intensity of emission to illumination intensity of excitation, of nile-red fluorescent microspheres with a 1 micrometre diameter is measured to be 4.2 +/- 1 x 10(-16) m(2)/sr, and the implications for the design of kinesin motor protein-powered "smart dust" devices and the remote detection of fluorescence are discussed.

  7. Absolute classification with unsupervised clustering

    NASA Technical Reports Server (NTRS)

    Jeon, Byeungwoo; Landgrebe, D. A.

    1992-01-01

    An absolute classification algorithm is proposed in which the class definition through training samples or otherwise is required only for a particular class of interest. The absolute classification is considered as a problem of unsupervised clustering when one cluster is known initially. The definitions and statistics of the other classes are automatically developed through the weighted unsupervised clustering procedure, which is developed to keep the cluster corresponding to the class of interest from losing its identity as the class of interest. Once all the classes are developed, a conventional relative classifier such as the maximum-likelihood classifier is used in the classification.

  8. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2002-10-15

    This report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 10/2/2001 through 10/01/2002. This report marks the end of year 2 of a three-year project as well as the milestone date for completion of Phase I activities. This report includes our current status and defines the steps being taken to ensure that we meet the project goals by the end of year 3. As indicated in the list of accomplishments below our current efforts are focused on evaluating candidate organisms and growth surfaces, preparing to conduct long-term tests in the bench-scale bioreactor test systems, and scaling-up the test facilities from bench scale to pilot scale. Specific results and accomplishments for the third quarter of 2002 include: Organisms and Growth Surfaces: (1) Test results continue to indicate that thermophilic cyanobacteria have significant advantages as agents for practical photosynthetic CO{sub 2} mitigation before mesophilic forms. (2) Additional thermal features with developed cyanobacterial mats, which might be calcium resistant, were found in YNP. (3) Back to back tests show that there is no detectable difference in the growth of isolate 1.2 s.c. (2) in standard and Ca-modified BG-11 medium. The doubling time for both cases was about 12 hours. (4) The cultivation of cyanobacteria in Ca-BG medium should proceed in the pH range between 7 and 7.4, but this suggestion requires additional experiments. (5) Cyanobacteria can be grown in media where sodium is present at trace levels. (6) Ca{sup 2+} enriched medium can be used as a sink for CO{sub 2} under alkaline conditions. (7) Cyanobacteria are able to generate cones of filaments on travertine surfaces. [Travertine is a mixture of CaCO{sub 3} and CaSO{sub 4}]. We hypothesize that SO{sub 4}{sup 2-} stimulates the generation of such cones, because they are not almost generated on CaCO3 surface. On the other hand, we know that plant gas contains elevated

  9. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  10. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  11. Absolute Standards for Climate Measurements

    NASA Astrophysics Data System (ADS)

    Leckey, J.

    2016-10-01

    In a world of changing climate, political uncertainty, and ever-changing budgets, the benefit of measurements traceable to SI standards increases by the day. To truly resolve climate change trends on a decadal time scale, on-orbit measurements need to be referenced to something that is both absolute and unchanging. One such mission is the Climate Absolute Radiance and Refractivity Observatory (CLARREO) that will measure a variety of climate variables with an unprecedented accuracy to definitively quantify climate change. In the CLARREO mission, we will utilize phase change cells in which a material is melted to calibrate the temperature of a blackbody that can then be observed by a spectrometer. A material's melting point is an unchanging physical constant that, through a series of transfers, can ultimately calibrate a spectrometer on an absolute scale. CLARREO consists of two primary instruments: an infrared (IR) spectrometer and a reflected solar (RS) spectrometer. The mission will contain orbiting radiometers with sufficient accuracy to calibrate other space-based instrumentation and thus transferring the absolute traceability. The status of various mission options will be presented.

  12. Relativistic Absolutism in Moral Education.

    ERIC Educational Resources Information Center

    Vogt, W. Paul

    1982-01-01

    Discusses Emile Durkheim's "Moral Education: A Study in the Theory and Application of the Sociology of Education," which holds that morally healthy societies may vary in culture and organization but must possess absolute rules of moral behavior. Compares this moral theory with current theory and practice of American educators. (MJL)

  13. Relativistic Absolutism in Moral Education.

    ERIC Educational Resources Information Center

    Vogt, W. Paul

    1982-01-01

    Discusses Emile Durkheim's "Moral Education: A Study in the Theory and Application of the Sociology of Education," which holds that morally healthy societies may vary in culture and organization but must possess absolute rules of moral behavior. Compares this moral theory with current theory and practice of American educators. (MJL)

  14. Chromatic adaptation of photosynthetic membranes.

    PubMed

    Scheuring, Simon; Sturgis, James N

    2005-07-15

    Many biological membranes adapt in response to environmental conditions. We investigated how the composition and architecture of photosynthetic membranes of a bacterium change in response to light, using atomic force microscopy. Despite large modifications in the membrane composition, the local environment of core complexes remained unaltered, whereas specialized paracrystalline light-harvesting antenna domains grew under low-light conditions. Thus, the protein mixture in the membrane shows eutectic behavior and can be mimicked by a simple model. Such structural adaptation ensures efficient photon capture under low-light conditions and prevents photodamage under high-light conditions.

  15. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-07-25

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 4/03/2001 through 7/02/2001. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. Note that this version of the quarterly technical report is a revision to add the reports from subcontractors Montana State and Oak Ridge National Laboratories The significant accomplishments for this quarter include: Development of an experimental plan and initiation of experiments to create a calibration curve that correlates algal chlorophyll levels with carbon levels (to simplify future experimental procedures); Completion of debugging of the slug flow reactor system, and development of a plan for testing the pressure drop of the slug flow reactor; Design and development of a new bioreactor screen design which integrates the nutrient delivery drip system and the harvesting system; Development of an experimental setup for testing the new integrated drip system/harvesting system; Completion of model-scale bioreactor tests examining the effects of CO{sub 2} concentration levels and lighting levels on Nostoc 86-3 growth rates; Completion of the construction of a larger model-scale bioreactor to improve and expand testing capabilities and initiation of tests; Substantial progress on construction of a pilot-scale bioreactor; and Preliminary economic analysis of photobioreactor deployment. Plans for next quarter's work are included in the conclusions. A preliminary economic analysis is included as an appendix.

  16. Structure-function studies of the photosynthetic reaction center using herbicides that compete for the quinone binding site

    SciTech Connect

    Bylina, E.J.

    1995-12-31

    Certain classes of herbicides act as competitive inhibitors of the photosynthetic reaction center. Genetic engineering techniques can be used to generate photosynthetic reaction centers which contain altered quinone binding sites. A genetic system for rapidly screening herbicides developed in the photosynthetic bacterium Rhodobacter capsulatus has been used to examine the effect of different s-triazine herbicides on the growth of bacteria containing reaction centers with altered quinone binding sites. Structural insights into herbicide binding have been obtained by determining the level of resistance or sensitivity to structurally related herbicides in these modified reaction centers.

  17. Absolute calibration of optical flats

    SciTech Connect

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  18. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  19. Physics of negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Abraham, Eitan; Penrose, Oliver

    2017-01-01

    Negative absolute temperatures were introduced into experimental physics by Purcell and Pound, who successfully applied this concept to nuclear spins; nevertheless, the concept has proved controversial: a recent article aroused considerable interest by its claim, based on a classical entropy formula (the "volume entropy") due to Gibbs, that negative temperatures violated basic principles of statistical thermodynamics. Here we give a thermodynamic analysis that confirms the negative-temperature interpretation of the Purcell-Pound experiments. We also examine the principal arguments that have been advanced against the negative temperature concept; we find that these arguments are not logically compelling, and moreover that the underlying "volume" entropy formula leads to predictions inconsistent with existing experimental results on nuclear spins. We conclude that, despite the counterarguments, negative absolute temperatures make good theoretical sense and did occur in the experiments designed to produce them.

  20. Optomechanics for absolute rotation detection

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  1. Irradiance heterogeneity within crown affects photosynthetic capacity and nitrogen distribution of leaves in Cedrela sinensis.

    PubMed

    Yoshimura, Kenichi

    2010-05-01

    Because light conditions in the forest understory are highly heterogeneous, photosynthetic acclimation to spatially variable irradiance within a crown is important for crown-level carbon assimilation. The effect of variation in irradiance within the crown on leaf nitrogen content and photosynthetic rate was examined for pinnate compound leaves in saplings of Cedrela sinensis, a pioneer deciduous tree. Five shading treatments, in which 0, 25, 50, 75 and 100% of leaves were shaded, were established by artificial heavy shading using shade screen umbrellas with 25% transmittance. Although the nitrogen content of leaves was constant regardless of shading treatment, ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco) content and light-saturated photosynthetic capacity were lower in shade leaves within partially shaded crowns than within fully shaded crowns. Shade leaves within partially shaded crowns contained higher amount of amino acids. Most shade leaves died in partially shaded crowns, whereas more than half of shade leaves survived in totally shaded crowns. Assumptions on photosynthetic acclimation to local light conditions cannot explain why shade leaves have different photosynthetic capacities and survival rates in between partially and totally shaded crowns. Irradiance heterogeneity within the crown causes a distinct variation in photosynthetic activity between sun and shaded leaves within the crown.

  2. Monitoring Photosynthetic Activity in Microalgal Cells by Raman Spectroscopy with Deuterium Oxide as a Tracking Probe.

    PubMed

    Yonamine, Yusuke; Suzuki, Yuta; Ito, Takuro; Miura, Yoshiko; Goda, Keisuke; Ozeki, Yasuyuki; Hoshino, Yu

    2017-08-14

    Microalgae offer great potential for the production of biofuel, but high photosynthetic activity is demanded for the practical realisation of microalgal biofuels. To this end, it is essential to evaluate the photosynthetic activity of single microalgal cells in a heterogeneous population. In this study, we present a method to monitor the photosynthetic activity of microalgae (in particular Euglena gracilis, a microalgal species of unicellular, photosynthetic, flagellate protists as our model organism) at single-cell resolution by Raman spectroscopy with deuterium from deuterium oxide (D2 O) as a tracking probe. Specifically, we replaced H2 O in culture media with D2 O up to a concentration of 20 % without disturbing the growth rate of E. gracilis cells and evaluated C-D bond formation as a consequence of photosynthetic reactions by Raman spectroscopy. We used the probe to monitor the kinetics of the C-D bond formation in E. gracilis cells by incubating them in D2 O media under light irradiation. Furthermore, we demonstrated Raman microscopy imaging of each single E. gracilis cell to discriminate deuterated cells from normal cells. Our results hold great promise for Raman-based screening of E. gracilis and potentially other microalgae with high photosynthetic activity by using D2 O as a tracking probe. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Least Absolute Relative Error Estimation.

    PubMed

    Chen, Kani; Guo, Shaojun; Lin, Yuanyuan; Ying, Zhiliang

    2010-01-01

    Multiplicative regression model or accelerated failure time model, which becomes linear regression model after logarithmic transformation, is useful in analyzing data with positive responses, such as stock prices or life times, that are particularly common in economic/financial or biomedical studies. Least squares or least absolute deviation are among the most widely used criterions in statistical estimation for linear regression model. However, in many practical applications, especially in treating, for example, stock price data, the size of relative error, rather than that of error itself, is the central concern of the practitioners. This paper offers an alternative to the traditional estimation methods by considering minimizing the least absolute relative errors for multiplicative regression models. We prove consistency and asymptotic normality and provide an inference approach via random weighting. We also specify the error distribution, with which the proposed least absolute relative errors estimation is efficient. Supportive evidence is shown in simulation studies. Application is illustrated in an analysis of stock returns in Hong Kong Stock Exchange.

  4. Enantiomers of a nonylphenol isomer: absolute configurations and estrogenic potencies.

    PubMed

    Zhang, Haifeng; Oppel, Iris M; Spiteller, Michael; Guenther, Klaus; Boehmler, Gabriele; Zuehlke, Sebastian

    2009-02-01

    Enantiomers of 4-(1,1,2-trimethylhexyl)phenol, a chiral isomer of the endocrine disrupting chemical nonylphenol, have been resolved and isolated by preparative chiral HPLC. The absolute configurations of the enantiomers were then determined by an X-ray crystallographic study of the (-)-camphanoyl derivative of the first eluted enantiomer NP(35)E1. The first enantiomer (NP(35)E1) and the second enantiomer (NP(35)E2) eluted were found to have the S and R absolute configurations, respectively. The estrogenic potencies of the S and R enantiomers were tested by the E-screen assay. A slight difference was observed in the relative proliferative effect between the S enantiomer and R enantiomer in the E-screen assay.

  5. Photosynthetic capacity of tropical montane tree species in relation to leaf nutrients, successional strategy and growth temperature.

    PubMed

    Dusenge, Mirindi Eric; Wallin, Göran; Gårdesten, Johanna; Niyonzima, Felix; Adolfsson, Lisa; Nsabimana, Donat; Uddling, Johan

    2015-04-01

    Photosynthetic capacity of tree leaves is typically positively related to nutrient content and little affected by changes in growth temperature. These relationships are, however, often poorly supported for tropical trees, for which interspecific differences may be more strongly controlled by within-leaf nutrient allocation than by absolute leaf nutrient content, and little is known regarding photosynthetic acclimation to temperature. To explore the influence of leaf nutrient status, successional strategy and growth temperature on the photosynthetic capacity of tropical trees, we collected data on photosynthetic, chemical and morphological leaf traits of ten tree species in Rwanda. Seven species were studied in a forest plantation at mid-altitude (~1,700 m), whereas six species were studied in a cooler montane rainforest at higher altitude (~2,500 m). Three species were common to both sites, and, in the montane rainforest, three pioneer species and three climax species were investigated. Across species, interspecific variation in photosynthetic capacity was not related to leaf nutrient content. Instead, this variation was related to differences in within-leaf nitrogen allocation, with a tradeoff between investments into compounds related to photosynthetic capacity (higher in pioneer species) versus light-harvesting compounds (higher in climax species). Photosynthetic capacity was significantly lower at the warmer site at 1,700 m altitude. We conclude that (1) within-leaf nutrient allocation is more important than leaf nutrient content per se in controlling interspecific variation in photosynthetic capacity among tree species in tropical Rwanda, and that (2) tropical montane rainforest species exhibit decreased photosynthetic capacity when grown in a warmer environment.

  6. Tocopherol functions in photosynthetic organisms.

    PubMed

    Maeda, Hiroshi; DellaPenna, Dean

    2007-06-01

    During the past decade, the genes required for tocopherol (vitamin E) synthesis in plants and cyanobacteria have been identified. A series of mutants in which specific pathway steps are disrupted have been generated, providing new insights into tocopherol functions in photosynthetic organisms. Tocopherols are essential for controlling non-enzymatic lipid peroxidation during seed dormancy and seedling germination. Their absence results in elevated levels of malondialdehyde and phytoprostanes, and in inappropriate activation of plant defense responses. Surprisingly, tocopherol deficiency in mature leaves has limited consequences under most abiotic stresses, including high intensity light stress. The cell wall development of phloem transfer cells under cold conditions is, however, severely impaired in mature leaves of tocopherol-deficient mutants, indicating that tocopherols are required for proper adaptation of phloem loading at low temperatures.

  7. Absolute calibration of optical tweezers

    SciTech Connect

    Viana, N.B.; Mazolli, A.; Maia Neto, P.A.; Nussenzveig, H.M.; Rocha, M.S.; Mesquita, O.N.

    2006-03-27

    As a step toward absolute calibration of optical tweezers, a first-principles theory of trapping forces with no adjustable parameters, corrected for spherical aberration, is experimentally tested. Employing two very different setups, we find generally very good agreement for the transverse trap stiffness as a function of microsphere radius for a broad range of radii, including the values employed in practice, and at different sample chamber depths. The domain of validity of the WKB ('geometrical optics') approximation to the theory is verified. Theoretical predictions for the trapping threshold, peak position, depth variation, multiple equilibria, and 'jump' effects are also confirmed.

  8. Absolute configuration of a chiral CHD group via neutron diffraction: confirmation of the absolute stereochemistry of the enzymatic formation of malic acid

    SciTech Connect

    Bau, R.; Brewer, I.; Chiang, M.Y.; Fujita, S.; Hoffman, J.; Watkins, M.I.; Koetzle, T.F.

    1983-09-30

    Neutron diffraction has been used to monitor the absolute stereochemistry of an enzymatic reaction. (-)(2S)malic-3-d acid was prepared by the action of fumarase on fumaric acid in D/sub 2/O. After a large number of cations were screened, it was found that (+)(R)..cap alpha..-phenylethylamine forms the large crystals necessary for a neutron diffraction analysis. The subsequent structure determination showed that (+)(R)..cap alpha..-phenylethylammonium (-)(2S)malate-3-d has an absolute configuration of R at the CHD site. This result confirms the absolute stereochemistry of fumarate-to-malate transformation as catalyzed by the enzyme fumarase.

  9. [Effects of light quality on photosynthetic pigment contents and photosynthetic characteristics of peanut seedling leaves].

    PubMed

    Yan, Meng-Meng; Wang, Ming-Lun; Wang, Hong-Bo; Wang, Yue-Fu; Zhao, Chang-Xing

    2014-02-01

    This study explored the effects of different light quality on photosynthetic pigment contents and photosynthetic characteristics of peanut (Qinhua 6) seedling leaves. The results showed that, compared with natural light, blue light (445-470 nm) could significantly improve the specific leaf area (SLA), chlorophyll a/b value and carotenoid content of peanut seedlings. Meanwhile, the net photosynthetic rate, stomatal conductance, and transpiration rate were higher, the intercellular CO2 content was lower, and the photosynthetic efficiency was improved significantly under blue light. Red light (610-660 nm) could improve the chlorophyll content significantly, and reduce SLA, chlorophyll a/b value and carotenoid content, with a lower photosynthetic efficiency than natural light. Green light (515-520 nm) and yellow light (590-595 nm) were not conducive to photosynthetic pigment accumulation of leaves, and significantly inhibited leaf photosynthesis of peanut seedlings.

  10. Vertical deformation and absolute gravity

    NASA Astrophysics Data System (ADS)

    Fang, Ming; Hager, Bradford H.

    2001-08-01

    Crustal deformation in the Greenland and Antarctic areas is strongly influenced by both postglacial rebound and contemporary mass redistribution. We explore the relationship between the displacement field and the gravitational disturbance for a viscoelastic Maxwell Earth with an arbitrary radial viscosity profile. We seek to determine whether the effects of viscous relaxation in the memory of surface mass change can be separated from the effects of present day mass variation by combined measurements of vertical displacement and absolute gravity when the viscosity profile in the Earth's interior is unknown. Our conclusion is positive. Specifically, the non-elastic effects can be reduced substantially by combined measurements of displacement and gravity change for a Maxwell viscoelastic Earth regardless of its radial viscosity profile. The underlying physics has nothing to do with the mathematical structure of viscous relaxation modes. Rather, it is due to the fact that the non-elastic response of a Maxwell Earth is nearly incompressible.

  11. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < -1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  12. Design principles of photosynthetic light-harvesting.

    PubMed

    Fleming, Graham R; Schlau-Cohen, Gabriela S; Amarnath, Kapil; Zaks, Julia

    2012-01-01

    Photosynthetic organisms are capable of harvesting solar energy with near unity quantum efficiency. Even more impressively, this efficiency can be regulated in response to the demands of photosynthetic reactions and the fluctuating light-levels of natural environments. We discuss the distinctive design principles through which photosynthetic light-harvesting functions. These emergent properties of photosynthesis appear both within individual pigment-protein complexes and in how these complexes integrate to produce a functional, regulated apparatus that drives downstream photochemistry. One important property is how the strong interactions and resultant quantum coherence, produced by the dense packing of photosynthetic pigments, provide a tool to optimize for ultrafast, directed energy transfer. We also describe how excess energy is quenched to prevent photodamage under high-light conditions, which we investigate through theory and experiment. We conclude with comments on the potential of using these features to improve solar energy devices.

  13. Hybrid system of semiconductor and photosynthetic protein

    NASA Astrophysics Data System (ADS)

    Kim, Younghye; Shin, Seon Ae; Lee, Jaehun; Yang, Ki Dong; Nam, Ki Tae

    2014-08-01

    Photosynthetic protein has the potential to be a new attractive material for solar energy absorption and conversion. The development of semiconductor/photosynthetic protein hybrids is an example of recent progress toward efficient, clean and nanostructured photoelectric systems. In the review, two biohybrid systems interacting through different communicating methods are addressed: (1) a photosynthetic protein immobilized semiconductor electrode operating via electron transfer and (2) a hybrid of semiconductor quantum dots and photosynthetic protein operating via energy transfer. The proper selection of materials and functional and structural modification of the components and optimal conjugation between them are the main issues discussed in the review. In conclusion, we propose the direction of future biohybrid systems for solar energy conversion systems, optical biosensors and photoelectric devices.

  14. Hybrid system of semiconductor and photosynthetic protein.

    PubMed

    Kim, Younghye; Shin, Seon Ae; Lee, Jaehun; Yang, Ki Dong; Nam, Ki Tae

    2014-08-29

    Photosynthetic protein has the potential to be a new attractive material for solar energy absorption and conversion. The development of semiconductor/photosynthetic protein hybrids is an example of recent progress toward efficient, clean and nanostructured photoelectric systems. In the review, two biohybrid systems interacting through different communicating methods are addressed: (1) a photosynthetic protein immobilized semiconductor electrode operating via electron transfer and (2) a hybrid of semiconductor quantum dots and photosynthetic protein operating via energy transfer. The proper selection of materials and functional and structural modification of the components and optimal conjugation between them are the main issues discussed in the review. In conclusion, we propose the direction of future biohybrid systems for solar energy conversion systems, optical biosensors and photoelectric devices.

  15. Method and apparatus for making absolute range measurements

    DOEpatents

    Earl, Dennis D [Knoxville, TN; Allison, Stephen W [Knoxville, TN; Cates, Michael R [Oak Ridge, TN; Sanders, Alvin J [Knoxville, TN

    2002-09-24

    This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through a screen at least partially opaque at the wavelength. The screen has an aperture sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector spaced some distance from the screen. The detector detects the central intensity of the beam as well as a set of intensities displaced from a center of the aperture. The distance from the source to the target can then be calculated based upon the known wavelength, aperture radius, and beam intensity.

  16. Machine Learning Techniques for Predicting Crop Photosynthetic Capacity from Leaf Reflectance Spectra.

    PubMed

    Heckmann, David; Schlüter, Urte; Weber, Andreas P M

    2017-06-05

    Harnessing natural variation in photosynthetic capacity is a promising route toward yield increases, but physiological phenotyping is still too laborious for large-scale genetic screens. Here, we evaluate the potential of leaf reflectance spectroscopy to predict parameters of photosynthetic capacity in Brassica oleracea and Zea mays, a C3 and a C4 crop, respectively. To this end, we systematically evaluated properties of reflectance spectra and found that they are surprisingly similar over a wide range of species. We assessed the performance of a wide range of machine learning methods and selected recursive feature elimination on untransformed spectra followed by partial least squares regression as the preferred algorithm that yielded the highest predictive power. Learning curves of this algorithm suggest optimal species-specific sample sizes. Using the Brassica relative Moricandia, we evaluated the model transferability between species and found that cross-species performance cannot be predicted from phylogenetic proximity. The final intra-species models predict crop photosynthetic capacity with high accuracy. Based on the estimated model accuracy, we simulated the use of the models in selective breeding experiments, and showed that high-throughput photosynthetic phenotyping using our method has the potential to greatly improve breeding success. Our results indicate that leaf reflectance phenotyping is an efficient method for improving crop photosynthetic capacity. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  17. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2002-04-15

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 1/3/2001 through 4/02/2002. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives, and we are currently on schedule to complete Phase I activities by 10/2002, the milestone date from the original project timeline. As indicated in the list of accomplishments below, we are continuing to evaluate candidate organisms and growth surfaces, and we are expanding the test facilities in preparation for scaled up system-level testing. Specific results and accomplishments for the first quarter of 2002 include: Organisms and Growth Surfaces: (1) Isolate 1.2 s.c. (2) has been selected for further investigations because of its favorable growth properties. (2) Research on optimal conditions for the growth of cyanobacterial isolates from YNP should be carried out using distilled water which has more stable chemical parameters, although tap water use may be permissible during full scale operations (at the cost of longer organism doubling times). (3) Tr. 9.4 WF is able to generate a biofilm on an Omnisil surface. Over the long term Omnisil does not inhibit the growth of TR 9.4 isolate, though it does elongate the lag phase of growth of this isolate. (4) Initial survivability tests for the TR 9.4 organism on Omnisil screens in the CRF2 modelscale bioreactor are underway. We have experienced problems keeping the organisms alive for more than three days, but we are currently investigating several possible causes for this unexpected result. (5) Accelerated materials testing have shown that Omnisil fabric has acceptable strength properties for use in a practical bioreactor system. Bioreactor support systems and test facilities: (1) Several CO{sub 2} scrubbing experiments have been completed in the translating slug flow test system, however the error introduced by the

  18. Photosynthetic reaction center complexes from heliobacteria

    NASA Technical Reports Server (NTRS)

    Trost, J. T.; Vermaas, W. F. J.; Blankenship, R. E.

    1991-01-01

    Photosynthetic reaction centers are pigment-protein complexes that are responsible for the transduction of light energy into chemical energy. Considerable evidence indicates that photosynthetic organisms were present very early in the evolution of life on Earth. The goal of this project is to understand the early evolutionary development of photosynthesis by examining the properties of reaction centers isolated from certain contemporary organisms that appear to contain the simplest photosynthetic reaction centers. The major focus is on the family of newly discovered strictly anaerobic photosynthetic organisms that are grouped with the gram-positive phylum of bacteria. The properties of these reactions centers suggest that they may be the descendants of an ancestor that also gave rise to Photosystem 1 found in oxygen-evolving photosynthetic organisms. Photoactive reaction center-core antenna complexes were isolated from the photosynthetic bacteria, Heliobacillus mobilis and Heliobacterium gestii, by extraction of membranes with Deriphat 160C followed by differential centrifugation and sucrose density gradient centrifugation. Other aspects of this investigation are briefly discussed.

  19. Absolutely separating quantum maps and channels

    NASA Astrophysics Data System (ADS)

    Filippov, S. N.; Magadov, K. Yu; Jivulescu, M. A.

    2017-08-01

    Absolutely separable states ϱ remain separable under arbitrary unitary transformations U\\varrho {U}\\dagger . By example of a three qubit system we show that in a multipartite scenario neither full separability implies bipartite absolute separability nor the reverse statement holds. The main goal of the paper is to analyze quantum maps resulting in absolutely separable output states. Such absolutely separating maps affect the states in a way, when no Hamiltonian dynamics can make them entangled afterwards. We study the general properties of absolutely separating maps and channels with respect to bipartitions and multipartitions and show that absolutely separating maps are not necessarily entanglement breaking. We examine the stability of absolutely separating maps under a tensor product and show that {{{Φ }}}\\otimes N is absolutely separating for any N if and only if Φ is the tracing map. Particular results are obtained for families of local unital multiqubit channels, global generalized Pauli channels, and combination of identity, transposition, and tracing maps acting on states of arbitrary dimension. We also study the interplay between local and global noise components in absolutely separating bipartite depolarizing maps and discuss the input states with high resistance to absolute separability.

  20. Measurement of Absolute Magnetic Moment

    NASA Astrophysics Data System (ADS)

    Shull, R. D.; Swartzendruber, L. J.

    1998-03-01

    In the past NIST has issued a number of magnetic moment and magnetic susceptibility standards. One of the most popular has been the Ni magnetic moment standard in the form a 2.38 mm diameter sphere of annealed, high-purity nickel, issued in 1978. However, the supply of all the magnetic standards has been exhausted for several years now and the equipment used for their certification no longer exists. Currently, NIST is assembling a precision absolute magnetometer closely resembling the force-based system used earlier by Candela and Mundy (G.A. Candela and R.E. Mundy, Rev. Sci. Instr. 32, 1056 (1959).), but which will have improved accuracy. This magnetometer will be used to certify a new series of magnetic standards, the first of which will be a replacement nickel sphere. A sphere has the advantage that it has uniform magnetization and a known demagnetizing factor, and approximates a point dipole. Nickel has the advantage of saturation at low field, a small temperature dependence at room temperature, and a relatively small field dependence. Other standards with smaller moments and other geometries are also being considered. These, and the current state of the equipment development will be described.

  1. Acceleration of absolute negative mobility.

    PubMed

    Regtmeier, Jan; Grauwin, Sebastian; Eichhorn, Ralf; Reimann, Peter; Anselmetti, Dario; Ros, Alexandra

    2007-07-01

    Recently, the counter intuitive migration phenomenon of absolute negative mobility (ANM) has been demonstrated to occur for colloidal particles in a suitably arranged post array within a microfluidic device [1]. This effect is based on the interplay of Brownian motion, nonlinear dynamics induced through microstructuring, and nonequilibrium driving, and results in a particle movement opposite to an applied static force. Simultaneously, the migration of a different particle species along the direction of the static force is possible [19], thus providing a new tool for particle sorting in microfluidic device format. The so far demonstrated maximum velocities for micrometer-sized spheres are slow, i. e., in the order of 10 nm per second. Here, we investigate numerically, how maximum ANM velocities can be significantly accelerated by a careful adjustment of the post size and shape. Based on this numerical analysis, a post design is developed and tested in a microfluidic device made of PDMS. The experiment reveals an order of magnitude increase in velocity.

  2. Chlorophyll Fluorescence Imaging Uncovers Photosynthetic Fingerprint of Citrus Huanglongbing.

    PubMed

    Cen, Haiyan; Weng, Haiyong; Yao, Jieni; He, Mubin; Lv, Jingwen; Hua, Shijia; Li, Hongye; He, Yong

    2017-01-01

    Huanglongbing (HLB) is one of the most destructive diseases of citrus, which has posed a serious threat to the global citrus production. This research was aimed to explore the use of chlorophyll fluorescence imaging combined with feature selection to characterize and detect the HLB disease. Chlorophyll fluorescence images of citrus leaf samples were measured by an in-house chlorophyll fluorescence imaging system. The commonly used chlorophyll fluorescence parameters provided the first screening of HLB disease. To further explore the photosynthetic fingerprint of HLB infected leaves, three feature selection methods combined with the supervised classifiers were employed to identify the unique fluorescence signature of HLB and perform the three-class classification (i.e., healthy, HLB infected, and nutrient deficient leaves). Unlike the commonly used fluorescence parameters, this novel data-driven approach by using the combination of the mean fluorescence parameters and image features gave the best classification performance with the accuracy of 97%, and presented a better interpretation for the spatial heterogeneity of photochemical and non-photochemical components in HLB infected citrus leaves. These results imply the potential of the proposed approach for the citrus HLB disease diagnosis, and also provide a valuable insight for the photosynthetic response to the HLB disease.

  3. Chlorophyll Fluorescence Imaging Uncovers Photosynthetic Fingerprint of Citrus Huanglongbing

    PubMed Central

    Cen, Haiyan; Weng, Haiyong; Yao, Jieni; He, Mubin; Lv, Jingwen; Hua, Shijia; Li, Hongye; He, Yong

    2017-01-01

    Huanglongbing (HLB) is one of the most destructive diseases of citrus, which has posed a serious threat to the global citrus production. This research was aimed to explore the use of chlorophyll fluorescence imaging combined with feature selection to characterize and detect the HLB disease. Chlorophyll fluorescence images of citrus leaf samples were measured by an in-house chlorophyll fluorescence imaging system. The commonly used chlorophyll fluorescence parameters provided the first screening of HLB disease. To further explore the photosynthetic fingerprint of HLB infected leaves, three feature selection methods combined with the supervised classifiers were employed to identify the unique fluorescence signature of HLB and perform the three-class classification (i.e., healthy, HLB infected, and nutrient deficient leaves). Unlike the commonly used fluorescence parameters, this novel data-driven approach by using the combination of the mean fluorescence parameters and image features gave the best classification performance with the accuracy of 97%, and presented a better interpretation for the spatial heterogeneity of photochemical and non-photochemical components in HLB infected citrus leaves. These results imply the potential of the proposed approach for the citrus HLB disease diagnosis, and also provide a valuable insight for the photosynthetic response to the HLB disease. PMID:28900440

  4. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2002-07-15

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 4/2/2001 through 7/01/2002. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives, and we are currently on schedule to complete Phase I activities by 10/2002, the milestone date from the original project timeline. As indicated in the list of accomplishments below, our efforts are focused on improving the design of the bioreactor test system, evaluating candidate organisms and growth surfaces, and scaling-up the test facilities from bench scale to pilot scale. Specific results and accomplishments for the second quarter of 2002 include: Organisms and Growth Surfaces: (1) Our collection of cyanobacteria, isolated in YNP was increased to 15 unialgal cultures. (2) Illumination rate about 50 {micro}E/m{sup 2}/sec is not saturated for the growth of 1.2 s.c. (2) isolate. The decrease of illumination rate led to the decrease of doubling time of this isolate. (3) The positive effect of Ca{sup 2+} on the growth of isolate 1.2 s.c. (2) without Omnisil was revealed, though Ca{sup 2+} addition was indifferent for the growth of this isolate at the presence of Omnisil. (4) Calcium addition had a positive effect on the generation of cyanobacterial biofilm on Omnisil surface. (5) The survivability problems with the Tr9.4 organism on Omnisil screens in the CRF2 model-scale bioreactor have been solved. The problems were related to the method used to populate the growth surfaces. When pre-populated screens were placed in the bioreactor the microalgae died within 72 hours, but when the microalgae were cultured while in place in the bioreactor using a continuous-population method they grew well inside of the CRF2 test system and survived for the full 7-day test duration. CRF2 tests will continue as soon as the new combined drip system/harvesting system header pipe

  5. Photosynthetic reaction center complexes from heliobacteria

    NASA Technical Reports Server (NTRS)

    Trost, J. T.; Vermaas, W. F. J.; Blankenship, R. E.

    1991-01-01

    The goal of this project is to understand the early evolutionary development of photosynthesis by examining the properties of reaction centers isolated from certain contemporary organisms that appear to contain the simplest photosynthetic reaction centers. The major focus of this project is the family of newly discovered strictly anaerobic photosynthetic organisms known as Heliobacteria. These organisms are the only known photosynthetic organisms that are grouped with the gram-positive phylum of bacteria. The properties of these reaction centers suggest that they might be the decendants of an ancestor that also gave rise to Photosystem 1 found in oxygen-evolving photosynthetic organisms. Photoactive reaction center-core antenna complexes have been isolated from the photosynthetic bacteria Heliobacillus mobilis and Heliobacterium gestii. The absorption and fluorescence properties of membranes and reaction centers are almost identical, suggesting that a single pigment-protein complex serves as both antenna and reaction center. Experiments in progress include sequence determination of the 48,000 Mr reaction center protein, and evolutionary comparisons with other reaction center proteins.

  6. Oxygen concentration inside a functioning photosynthetic cell.

    PubMed

    Kihara, Shigeharu; Hartzler, Daniel A; Savikhin, Sergei

    2014-05-06

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic photosynthetic bacteria in solitary form could have evolved ∼2.8 billion years ago without special mechanisms to protect them against reactive oxygen species. These mechanisms instead could have been developed during the following ∼500 million years while the oxygen level in the Earth's atmosphere was slowly rising. Excess oxygen concentrations within individual cells of the apomorphic cyanobacteria Synechocystis and Synechococcus are 0.064 and 0.25 μM, respectively. These numbers suggest that intramembrane and intracellular proteins in isolated oxygenic photosynthetic cells are not subjected to excessively high oxygen levels. The situation is different for closely packed colonies of photosynthetic cells. Calculations show that the excess concentration within colonies that are ∼40 μm or larger in diameter can be comparable to the oxygen concentration in air-saturated water, suggesting that species forming colonies require protection against reactive oxygen species even in the absence of oxygen in the surrounding atmosphere. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Oxygen Concentration Inside a Functioning Photosynthetic Cell

    PubMed Central

    Kihara, Shigeharu; Hartzler, Daniel A.; Savikhin, Sergei

    2014-01-01

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic photosynthetic bacteria in solitary form could have evolved ∼2.8 billion years ago without special mechanisms to protect them against reactive oxygen species. These mechanisms instead could have been developed during the following ∼500 million years while the oxygen level in the Earth’s atmosphere was slowly rising. Excess oxygen concentrations within individual cells of the apomorphic cyanobacteria Synechocystis and Synechococcus are 0.064 and 0.25 μM, respectively. These numbers suggest that intramembrane and intracellular proteins in isolated oxygenic photosynthetic cells are not subjected to excessively high oxygen levels. The situation is different for closely packed colonies of photosynthetic cells. Calculations show that the excess concentration within colonies that are ∼40 μm or larger in diameter can be comparable to the oxygen concentration in air-saturated water, suggesting that species forming colonies require protection against reactive oxygen species even in the absence of oxygen in the surrounding atmosphere. PMID:24806920

  8. Regulation of Photosynthetic Electron Transport and Photoinhibition

    PubMed Central

    Roach, Thomas; Krieger-Liszkay, Anja Krieger

    2014-01-01

    Photosynthetic organisms and isolated photosystems are of interest for technical applications. In nature, photosynthetic electron transport has to work efficiently in contrasting environments such as shade and full sunlight at noon. Photosynthetic electron transport is regulated on many levels, starting with the energy transfer processes in antenna and ending with how reducing power is ultimately partitioned. This review starts by explaining how light energy can be dissipated or distributed by the various mechanisms of non-photochemical quenching, including thermal dissipation and state transitions, and how these processes influence photoinhibition of photosystem II (PSII). Furthermore, we will highlight the importance of the various alternative electron transport pathways, including the use of oxygen as the terminal electron acceptor and cyclic flow around photosystem I (PSI), the latter which seem particularly relevant to preventing photoinhibition of photosystem I. The control of excitation pressure in combination with the partitioning of reducing power influences the light-dependent formation of reactive oxygen species in PSII and in PSI, which may be a very important consideration to any artificial photosynthetic system or technical device using photosynthetic organisms. PMID:24678670

  9. Complete fluorescent fingerprints of extremophilic and photosynthetic microbes

    NASA Astrophysics Data System (ADS)

    Dartnell, Lewis R.; Storrie-Lombardi, Michael C.; Ward, John M.

    2010-10-01

    The work reported here represents a study into the total fluorescence exhibited by a broad selection of model, extremophilic and photosynthetic bacterial strains, over a great range of excitation and emission wavelengths from ultraviolet (UV) through visible to near infrared. The aim is to identify distinctive fluorescent features that may serve as detectable biosignatures of remnant microbial life on the Martian surface. A lab-bench fluorescence spectrometer was used to generate an excitation-emission matrix (EEM) for the unpigmented Escherichia coli, radiation-resistant Deinococcus radiodurans, Antarctic Dry Valley isolates Brevundimonas sp. MV.7 and Rhodococcus sp. MV.10, and the cyanobacterium Synechocystis sp. PCC 6803. Detailed EEMs, representing the fluorescence signature of each organism, are presented, and the most significant features suitable for biosignature surveys are identified, including small-molecule cellular metabolites, light-harvesting photosynthetic pigments and extracellular UV-screening compounds. E. coli exhibits the most intense emission from tryptophan, presumably due to the absence of UV-screening pigments that would shield the organism from short-wavelength light-exciting intracellular fluorescence. The efficacy of commonly available laser diodes for exciting cellular fluorescence is treated, along with the most appropriate filter wavelengths for imaging systems. The best combination of available laser diodes and PanCam filters aboard the ExoMars probe is proposed. The possibility of detecting fluorescence excited by solar UV radiation in freshly exposed surface samples by imaging when both sunlit and shadowed, perhaps by the body of the rover itself, is discussed. We also study how these biological fluorophore molecules may be degraded, and thus the potential biosignatures erased, by the high flux of far-ultraviolet light on Mars.

  10. Depression Screening

    MedlinePlus

    ... Depression Screening Substance Abuse Screening Alcohol Use Screening Depression Screening (PHQ-9) - Instructions The following questions are ... this tool, there is also text-only version . Depression Screening - Manual Instructions The following questions are a ...

  11. iTRAQ-based analysis of developmental dynamics in the soybean leaf proteome reveals pathways associated with leaf photosynthetic rate.

    PubMed

    Qin, Jun; Zhang, Jianan; Liu, Duan; Yin, Changcheng; Wang, Fengmin; Chen, Pengyin; Chen, Hao; Ma, Jinbing; Zhang, Bo; Xu, Jin; Zhang, Mengchen

    2016-08-01

    Photosynthetic rate which acts as a vital limiting factor largely affects the potential of soybean production, especially during the senescence phase. However, the physiological and molecular mechanisms that underlying the change of photosynthetic rate during the developmental process of soybean leaves remain unclear. In this study, we compared the protein dynamics during the developmental process of leaves between the soybean cultivar Hobbit and the high-photosynthetic rate cultivar JD 17 using the iTRAQ (isobaric tags for relative and absolute quantification) method. A total number of 1269 proteins were detected in the leaves of these two cultivars at three different developmental stages. These proteins were classified into nine expression patterns depending on the expression levels at different developmental stages, and the proteins in each pattern were also further classified into three large groups and 20 small groups depending on the protein functions. Only 3.05-6.53 % of the detected proteins presented a differential expression pattern between these two cultivars. Enrichment factor analysis indicated that proteins involved in photosynthesis composed an important category. The expressions of photosynthesis-related proteins were also further confirmed by western blotting. Together, our results suggested that the reduction in photosynthetic rate as well as chloroplast activity and composition during the developmental process was a highly regulated and complex process which involved a serial of proteins that function as potential candidates to be targeted by biotechnological approaches for the improvement of photosynthetic rate and production.

  12. BOREAS TE-10 Photosynthetic Response Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Middleton, Elizabeth; Sullivan, Joseph

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-10 (Terrestrial Ecology) team collected several data sets in support of its efforts to characterize and interpret information on the gas exchange, reflectance, transmittance, chlorophyll content, carbon content, hydrogen content, nitrogen content, and photosynthetic response of boreal vegetation. This data set contains measurements of quantitative parameters and leaf photosynthetic response to increases in light conducted in the SSA during the growing seasons of 1994 and 1996 using an oxygen electrode system. Leaf photosynthetic responses were not collected in 1996. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  13. Monolithically integrated absolute frequency comb laser system

    SciTech Connect

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  14. Estimating the absolute wealth of households.

    PubMed

    Hruschka, Daniel J; Gerkey, Drew; Hadley, Craig

    2015-07-01

    To estimate the absolute wealth of households using data from demographic and health surveys. We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using data from 156 demographic and health surveys in 66 countries, we calculated absolute wealth estimates for households. We validated the method by comparing the proportion of households defined as poor using our estimates with published World Bank poverty headcounts. We also compared the accuracy of absolute versus relative wealth estimates for the prediction of anthropometric measures. The median absolute wealth estimates of 1,403,186 households were 2056 international dollars per capita (interquartile range: 723-6103). The proportion of poor households based on absolute wealth estimates were strongly correlated with World Bank estimates of populations living on less than 2.00 United States dollars per capita per day (R(2)  = 0.84). Absolute wealth estimates were better predictors of anthropometric measures than relative wealth indexes. Absolute wealth estimates provide new opportunities for comparative research to assess the effects of economic resources on health and human capital, as well as the long-term health consequences of economic change and inequality.

  15. Estimating the absolute wealth of households

    PubMed Central

    Gerkey, Drew; Hadley, Craig

    2015-01-01

    Abstract Objective To estimate the absolute wealth of households using data from demographic and health surveys. Methods We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using data from 156 demographic and health surveys in 66 countries, we calculated absolute wealth estimates for households. We validated the method by comparing the proportion of households defined as poor using our estimates with published World Bank poverty headcounts. We also compared the accuracy of absolute versus relative wealth estimates for the prediction of anthropometric measures. Findings The median absolute wealth estimates of 1 403 186 households were 2056 international dollars per capita (interquartile range: 723–6103). The proportion of poor households based on absolute wealth estimates were strongly correlated with World Bank estimates of populations living on less than 2.00 United States dollars per capita per day (R2 = 0.84). Absolute wealth estimates were better predictors of anthropometric measures than relative wealth indexes. Conclusion Absolute wealth estimates provide new opportunities for comparative research to assess the effects of economic resources on health and human capital, as well as the long-term health consequences of economic change and inequality. PMID:26170506

  16. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  17. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  18. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  19. Investigating Absolute Value: A Real World Application

    ERIC Educational Resources Information Center

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  20. ON A SUFFICIENT CONDITION FOR ABSOLUTE CONTINUITY.

    DTIC Science & Technology

    The formulation of a condition which yields absolute continuity when combined with continuity and bounded variation is the problem considered in the...Briefly, the formulation is achieved through a discussion which develops a proof by contradiction of a sufficiently theorem for absolute continuity which uses in its hypothesis the condition of continuity and bounded variation .

  1. Photosynthetic complex stoichiometry dynamics in higher plants: environmental acclimation and photosynthetic flux control

    PubMed Central

    Schöttler, Mark A.; Tóth, Szilvia Z.

    2014-01-01

    The composition of the photosynthetic apparatus of higher plants is dynamically adjusted to long-term changes in environmental conditions such as growth light intensity and light quality, and to changing metabolic demands for ATP and NADPH imposed by stresses and leaf aging. By changing photosynthetic complex stoichiometry, a long-term imbalance between the photosynthetic production of ATP and NADPH and their metabolic consumption is avoided, and cytotoxic side reactions are minimized. Otherwise, an excess capacity of the light reactions, relative to the demands of primary metabolism, could result in a disturbance of cellular redox homeostasis and an increased production of reactive oxygen species, leading to the destruction of the photosynthetic apparatus and the initiation of cell death programs. In this review, changes of the abundances of the different constituents of the photosynthetic apparatus in response to environmental conditions and during leaf ontogenesis are summarized. The contributions of the different photosynthetic complexes to photosynthetic flux control and the regulation of electron transport are discussed. PMID:24860580

  2. Enhanced practical photosynthetic CO2 mitigation

    DOEpatents

    Bayless, David J.; Vis-Chiasson, Morgan L.; Kremer, Gregory G.

    2003-12-23

    This process is unique in photosynthetic carbon sequestration. An on-site biological sequestration system directly decreases the concentration of carbon-containing compounds in the emissions of fossil generation units. In this process, photosynthetic microbes are attached to a growth surface arranged in a containment chamber that is lit by solar photons. A harvesting system ensures maximum organism growth and rate of CO.sub.2 uptake. Soluble carbon and nitrogen concentrations delivered to the cyanobacteria are enhanced, further increasing growth rate and carbon utilization.

  3. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  4. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-10-15

    This report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 10/03/2000 through 10/02/2001. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. This is the fourth quarterly report for this project, so it also serves as a year-1 project review. We have made significant progress on our Phase I objectives, and our current efforts are focused on fulfilling these research objectives ''on time'' relative to the project timeline. Overall, we believe that we are on schedule to complete Phase I activities by 10/2002, which is the milestone date from the original project timeline. Our results to date concerning the individual factors which have the most significant effect on CO{sub 2} uptake are inconclusive, but we have gathered useful information about the effects of lighting, temperature and CO{sub 2} concentration on one particular organism (Nostoc) and significant progress has been made in identifying other organisms that are more suitable for use in the bioreactor due to their better tolerance for the high temperatures likely to be encountered in the flue gas stream. Our current tests are focused on one such thermophilic organism (Cyanidium), and an enlarged bioreactor system (CRF-2) has been prepared for testing this organism. Tests on the enhanced mass transfer CO{sub 2} absorption technique are underway and useful information is currently being collected concerning pressure drop. The solar collectors for the deep-penetration hybrid solar lighting system have been designed and a single solar collector tracking unit is being prepared for installation in the pilot scale bioreactor system currently under construction. Much progress has been made in designing the fiber optic light delivery system, but final selection of the ''optimum'' delivery system design depends on many factors, most significantly the

  5. Absolute quantitation of protein posttranslational modification isoform.

    PubMed

    Yang, Zhu; Li, Ning

    2015-01-01

    Mass spectrometry has been widely applied in characterization and quantification of proteins from complex biological samples. Because the numbers of absolute amounts of proteins are needed in construction of mathematical models for molecular systems of various biological phenotypes and phenomena, a number of quantitative proteomic methods have been adopted to measure absolute quantities of proteins using mass spectrometry. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) coupled with internal peptide standards, i.e., the stable isotope-coded peptide dilution series, which was originated from the field of analytical chemistry, becomes a widely applied method in absolute quantitative proteomics research. This approach provides more and more absolute protein quantitation results of high confidence. As quantitative study of posttranslational modification (PTM) that modulates the biological activity of proteins is crucial for biological science and each isoform may contribute a unique biological function, degradation, and/or subcellular location, the absolute quantitation of protein PTM isoforms has become more relevant to its biological significance. In order to obtain the absolute cellular amount of a PTM isoform of a protein accurately, impacts of protein fractionation, protein enrichment, and proteolytic digestion yield should be taken into consideration and those effects before differentially stable isotope-coded PTM peptide standards are spiked into sample peptides have to be corrected. Assisted with stable isotope-labeled peptide standards, the absolute quantitation of isoforms of posttranslationally modified protein (AQUIP) method takes all these factors into account and determines the absolute amount of a protein PTM isoform from the absolute amount of the protein of interest and the PTM occupancy at the site of the protein. The absolute amount of the protein of interest is inferred by quantifying both the absolute amounts of a few PTM

  6. Absolute realization of low BRDF value

    NASA Astrophysics Data System (ADS)

    Liu, Zilong; Liao, Ningfang; Li, Ping; Wang, Yu

    2010-10-01

    Low BRDF value is widespread used in many critical domains such as space and military fairs. These values below 0.1 Sr-1 . So the Absolute realization of these value is the most critical issue in the absolute measurement of BRDF. To develop the Absolute value realization theory of BRDF , defining an arithmetic operators of BRDF , achieving an absolute measurement Eq. of BRDF based on radiance. This is a new theory method to solve the realization problem of low BRDF value. This theory method is realized on a self-designed common double orientation structure in space. By designing an adding structure to extend the range of the measurement system and a control and processing software, Absolute realization of low BRDF value is achieved. A material of low BRDF value is measured in this measurement system and the spectral BRDF value are showed within different angles allover the space. All these values are below 0.4 Sr-1 . This process is a representative procedure about the measurement of low BRDF value. A corresponding uncertainty analysis of this measurement data is given depend on the new theory of absolute realization and the performance of the measurement system. The relative expand uncertainty of the measurement data is 0.078. This uncertainty analysis is suitable for all measurements using the new theory of absolute realization and the corresponding measurement system.

  7. Photosynthetic responses to the environment. Volume 8

    SciTech Connect

    Yamamoto, H.Y.; Smith, C.M.

    1993-11-01

    This volume contains the proceedings of Photosynthetic Responses to the Environment, a meeting held August 24--27, 1992. The volume contains 10 full papers and 15 mini papers. Separate entries were prepared for the database for each of these presentations.

  8. Photosynthetic carbon metabolism in freshwater phytoplankton

    SciTech Connect

    Groeger, A.W.

    1986-01-01

    Photosynthetic carbon metabolism of natural assemblages of freshwater phytoplankton was measured by following the flow of inorganic /sup 14/C into the photosynthetic end products polysaccharide protein, lipid, and soluble metabolites. Data were collected from a wide range of physical, chemical, and trophic conditions in six southern United States reservoirs, with the primary environmental variables of interest being light intensity and nutrient supply. Polysaccharide and protein were consistently the primary products of photosynthetic carbon metabolism, comprising an average of 70% of the total carbon fixation over a wide range of light intensities. Polysaccharide was quantitatively more important at higher light intensities, and protein at lower light intensities, as light intensity varied both with depth within the water column and over diurnal cycles. Polysaccharide synthesis was more variable over the diurnal period than was protein synthesis. Phytoplankton in the downlake epilimnion of Normandy Lake, a central Tennessee reservoir, responded to summer nitrogen (N) deficiency by increasing relative rates of lipid synthesis from 10-15% to 20-25% of the total photosynthetic carbon fixation. Phytoplankton in more nitrogen-sufficient areas of the reservoir maintained lower rates of lipid synthesis throughout the summer. These results document the occurrence in nature of a relationship between N-deficiency and increased lipid synthesis previously observed only in laboratory algal culture studies.

  9. Photosynthetic antenna engineering to improve crop yields.

    PubMed

    Kirst, Henning; Gabilly, Stéphane T; Niyogi, Krishna K; Lemaux, Peggy G; Melis, Anastasios

    2017-05-01

    Evidence shows that decreasing the light-harvesting antenna size of the photosystems in tobacco helps to increase the photosynthetic productivity and plant canopy biomass accumulation under high-density cultivation conditions. Decreasing, or truncating, the chlorophyll antenna size of the photosystems can theoretically improve photosynthetic solar energy conversion efficiency and productivity in mass cultures of algae or plants by up to threefold. A Truncated Light-harvesting chlorophyll Antenna size (TLA), in all classes of photosynthetic organisms, would help to alleviate excess absorption of sunlight and the ensuing wasteful non-photochemical dissipation of excitation energy. Thus, solar-to-biomass energy conversion efficiency and photosynthetic productivity in high-density cultures can be increased. Applicability of the TLA concept was previously shown in green microalgae and cyanobacteria, but it has not yet been demonstrated in crop plants. In this work, the TLA concept was applied in high-density tobacco canopies. The work showed a 25% improvement in stem and leaf biomass accumulation for the TLA tobacco canopies over that measured with their wild-type counterparts grown under the same ambient conditions. Distinct canopy appearance differences are described between the TLA and wild type tobacco plants. Findings are discussed in terms of concept application to crop plants, leading to significant improvements in agronomy, agricultural productivity, and application of photosynthesis for the generation of commodity products in crop leaves.

  10. Photon echo studies of photosynthetic light harvesting.

    PubMed

    Read, Elizabeth L; Lee, Hohjai; Fleming, Graham R

    2009-01-01

    The broad linewidths in absorption spectra of photosynthetic complexes obscure information related to their structure and function. Photon echo techniques represent a powerful class of time-resolved electronic spectroscopy that allow researchers to probe the interactions normally hidden under broad linewidths with sufficient time resolution to follow the fastest energy transfer events in light harvesting. Here, we outline the technical approach and applications of two types of photon echo experiments: the photon echo peak shift and two-dimensional (2D) Fourier transform photon echo spectroscopy. We review several extensions of these techniques to photosynthetic complexes. Photon echo peak shift spectroscopy can be used to determine the strength of coupling between a pigment and its surrounding environment including neighboring pigments and to quantify timescales of energy transfer. Two-dimensional spectroscopy yields a frequency-resolved map of absorption and emission processes, allowing coupling interactions and energy transfer pathways to be viewed directly. Furthermore, 2D spectroscopy reveals structural information such as the relative orientations of coupled transitions. Both classes of experiments can be used to probe the quantum mechanical nature of photosynthetic light-harvesting: peak shift experiments allow quantification of correlated energetic fluctuations between pigments, while 2D techniques measure quantum beating directly, both of which indicate the extent of quantum coherence over multiple pigment sites in the protein complex. The mechanistic and structural information obtained by these techniques reveals valuable insights into the design principles of photosynthetic light-harvesting complexes, and a multitude of variations on the methods outlined here.

  11. Longitudinal photosynthetic gradient in crust lichens' thalli.

    PubMed

    Wu, Li; Zhang, Gaoke; Lan, Shubin; Zhang, Delu; Hu, Chunxiang

    2014-05-01

    In order to evaluate the self-shading protection for inner photobionts, the photosynthetic activities of three crust lichens were detected using Microscope-Imaging-PAM. The false color images showed that longitudinal photosynthetic gradient was found in both the green algal lichen Placidium sp. and the cyanolichen Peltula sp. In longitudinal direction, all the four chlorophyll fluorescence parameters Fv/Fm, Yield, qP, and rETR gradually decreased with depth in the thalli of both of these two lichens. In Placidium sp., qN values decreased with depth, whereas an opposite trend was found in Peltula sp. However, no such photosynthetic heterogeneity was found in the thalli of Collema sp. in longitudinal direction. Microscope observation showed that photobiont cells are compactly arranged in Placidium sp. and Peltula sp. while loosely distributed in Collema sp. It was considered that the longitudinal photosynthetic heterogeneity was ascribed to the result of gradual decrease of incidence caused by the compact arrangement of photobiont cells in the thalli. The results indicate a good protection from the self-shading for the inner photobionts against high radiation in crust lichens.

  12. Photosynthetic capacity of red spruce during winter

    Treesearch

    P.G. Schaberg; J.B. Shane; P.F. Cali; J.R. Donnelly; G.R. Strimbeck

    1998-01-01

    We measured the photosynthetic capacity (Pmax) of plantation-grown red spruce (Picea rubens Sarg.) during two winter seasons (1993-94 and 1994-95) and monitored field photosynthesis of these trees during one winter (1993-94). We also measured Pmax for mature montane trees from January through May 1995....

  13. Mitochondrial Genome Structure of Photosynthetic Eukaryotes.

    PubMed

    Yurina, N P; Odintsova, M S

    2016-02-01

    Current ideas of plant mitochondrial genome organization are presented. Data on the size and structural organization of mtDNA, gene content, and peculiarities are summarized. Special emphasis is given to characteristic features of the mitochondrial genomes of land plants and photosynthetic algae that distinguish them from the mitochondrial genomes of other eukaryotes. The data published before the end of 2014 are reviewed.

  14. Solar PAR and UVR modify the community composition and photosynthetic activity of sea ice algae.

    PubMed

    Enberg, Sara; Piiparinen, Jonna; Majaneva, Markus; Vähätalo, Anssi V; Autio, Riitta; Rintala, Janne-Markus

    2015-10-01

    The effects of increased photosynthetically active radiation (PAR) and ultraviolet radiation (UVR) on species diversity, biomass and photosynthetic activity were studied in fast ice algal communities. The experimental set-up consisted of nine 1.44 m(2) squares with three treatments: untreated with natural snow cover (UNT), snow-free (PAR + UVR) and snow-free ice covered with a UV screen (PAR). The total algal biomass, dominated by diatoms and dinoflagellates, increased in all treatments during the experiment. However, the smaller biomass growth in the top 10-cm layer of the PAR + UVR treatment compared with the PAR treatment indicated the negative effect of UVR. Scrippsiella complex (mainly Scrippsiella hangoei, Biecheleria baltica and Gymnodinium corollarium) showed UV sensitivity in the top 5-cm layer, whereas Heterocapsa arctica ssp. frigida and green algae showed sensitivity to both PAR and UVR. The photosynthetic activity was highest in the top 5-cm layer of the PAR treatment, where the biomass of the pennate diatom Nitzschia frigida increased, indicating the UV sensitivity of this species. This study shows that UVR is one of the controlling factors of algal communities in Baltic Sea ice, and that increased availability of PAR together with UVR exclusion can cause changes in algal biomass, photosynthetic activity and community composition. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. What is the point: will screening mammography save my life?

    PubMed Central

    2009-01-01

    Background We analyzed the claim "mammography saves lives" by calculating the life-saving absolute benefit of screening mammography in reducing breast cancer mortality in women ages 40 to 65. Methods To calculate the absolute benefit, we first estimated the screen-free absolute death risk from breast cancer by adjusting the Surveillance, Epidemiology and End Results Program 15-year cumulative breast cancer mortality to account for the separate effects of screening mammography and improved therapy. We calculated the absolute risk reduction (reduction in absolute death risk), the number needed to screen assuming repeated screening, and the survival percentages without and with screening. We varied the relative risk reduction from 10%–30% based on the randomized trials of screening mammography. We developed additional variations of the absolute risk reduction for a screening intervention, including the average benefit of a single screen, as well as the life-saving proportion among patients with earlier cancer detection. Results Because the screen-free absolute death risk is approximately 1% overall but rises with age, the relative risk reduction from repeated screening mammography is about 100 times the absolute risk reduction between the starting ages of 50 and 60. Assuming a base case 20% relative risk reduction, repeated screening starting at age 50 saves about 1.8 (overall range, 0.9–2.7) lives over 15 years for every 1000 women screened. The number needed to screen repeatedly is 1000/1.8, or 570. The survival percentage is 99.12% without and 99.29% with screening. The average benefit of a single screening mammogram is 0.034%, or 2970 women must be screened once to save one life. Mammography saves 4.3% of screen-detectable cancer patients' lives starting at age 50. This means 23 cancers must be found starting at age 50, or 27 cancers at age 40 and 21 cancers at age 65, to save one life. Conclusion The life-saving absolute benefit of screening mammography

  16. Comparative analysis of plastid genomes of non-photosynthetic Ericaceae and their photosynthetic relatives

    PubMed Central

    Logacheva, Maria D.; Schelkunov, Mikhail I.; Shtratnikova, Victoria Y.; Matveeva, Maria V.; Penin, Aleksey A.

    2016-01-01

    Although plastid genomes of flowering plants are typically highly conserved regarding their size, gene content and order, there are some exceptions. Ericaceae, a large and diverse family of flowering plants, warrants special attention within the context of plastid genome evolution because it includes both non-photosynthetic and photosynthetic species with rearranged plastomes and putative losses of “essential” genes. We characterized plastid genomes of three species of Ericaceae, non-photosynthetic Monotropa uniflora and Hypopitys monotropa and photosynthetic Pyrola rotundifolia, using high-throughput sequencing. As expected for non-photosynthetic plants, M. uniflora and H. monotropa have small plastid genomes (46 kb and 35 kb, respectively) lacking genes related to photosynthesis, whereas P. rotundifolia has a larger genome (169 kb) with a gene set similar to other photosynthetic plants. The examined genomes contain an unusually high number of repeats and translocations. Comparative analysis of the expanded set of Ericaceae plastomes suggests that the genes clpP and accD that are present in the plastid genomes of almost all plants have not been lost in this family (as was previously thought) but rather persist in these genomes in unusual forms. Also we found a new gene in P. rotundifolia that emerged as a result of duplication of rps4 gene. PMID:27452401

  17. Comparative analysis of plastid genomes of non-photosynthetic Ericaceae and their photosynthetic relatives.

    PubMed

    Logacheva, Maria D; Schelkunov, Mikhail I; Shtratnikova, Victoria Y; Matveeva, Maria V; Penin, Aleksey A

    2016-07-25

    Although plastid genomes of flowering plants are typically highly conserved regarding their size, gene content and order, there are some exceptions. Ericaceae, a large and diverse family of flowering plants, warrants special attention within the context of plastid genome evolution because it includes both non-photosynthetic and photosynthetic species with rearranged plastomes and putative losses of "essential" genes. We characterized plastid genomes of three species of Ericaceae, non-photosynthetic Monotropa uniflora and Hypopitys monotropa and photosynthetic Pyrola rotundifolia, using high-throughput sequencing. As expected for non-photosynthetic plants, M. uniflora and H. monotropa have small plastid genomes (46 kb and 35 kb, respectively) lacking genes related to photosynthesis, whereas P. rotundifolia has a larger genome (169 kb) with a gene set similar to other photosynthetic plants. The examined genomes contain an unusually high number of repeats and translocations. Comparative analysis of the expanded set of Ericaceae plastomes suggests that the genes clpP and accD that are present in the plastid genomes of almost all plants have not been lost in this family (as was previously thought) but rather persist in these genomes in unusual forms. Also we found a new gene in P. rotundifolia that emerged as a result of duplication of rps4 gene.

  18. Speed versus endurance tradeoff in plants: Leaves with higher photosynthetic rates show stronger seasonal declines.

    PubMed

    Zhang, Yong-Jiang; Sack, Lawren; Cao, Kun-Fang; Wei, Xue-Mei; Li, Nan

    2017-02-10

    We tested for a tradeoff across species between plant maximum photosynthetic rate and the ability to maintain photosynthesis under adverse conditions in the unfavorable season. Such a trade-off would be consistent with the observed trade-off between maximum speed and endurance in athletes and some animals that has been explained by cost-benefit theory. This trend would have importance for the general understanding of leaf design, and would simplify models of annual leaf carbon relations. We tested for such a trade-off using a database analysis across vascular plants and using an experimental approach for 29 cycad species, representing an ancient plant lineage with diversified evergreen leaves. In both tests, a higher photosynthetic rate per mass or per area in the favorable season was associated with a stronger absolute or percent decline in the unfavorable season. We resolved a possible mechanism based on biomechanics and nitrogen allocation; cycads with high leaf toughness (leaf mass per area) and higher investment in leaf construction than in physiological function (C/N ratio) tended to have lower warm season photosynthesis but less depression in the cool season. We propose that this trade-off, consistent with cost-benefit theory, represents a significant physio-phenological constraint on the diversity and seasonal dynamics of photosynthetic rate.

  19. Speed versus endurance tradeoff in plants: Leaves with higher photosynthetic rates show stronger seasonal declines

    PubMed Central

    Zhang, Yong-Jiang; Sack, Lawren; Cao, Kun-Fang; Wei, Xue-Mei; Li, Nan

    2017-01-01

    We tested for a tradeoff across species between plant maximum photosynthetic rate and the ability to maintain photosynthesis under adverse conditions in the unfavorable season. Such a trade-off would be consistent with the observed trade-off between maximum speed and endurance in athletes and some animals that has been explained by cost-benefit theory. This trend would have importance for the general understanding of leaf design, and would simplify models of annual leaf carbon relations. We tested for such a trade-off using a database analysis across vascular plants and using an experimental approach for 29 cycad species, representing an ancient plant lineage with diversified evergreen leaves. In both tests, a higher photosynthetic rate per mass or per area in the favorable season was associated with a stronger absolute or percent decline in the unfavorable season. We resolved a possible mechanism based on biomechanics and nitrogen allocation; cycads with high leaf toughness (leaf mass per area) and higher investment in leaf construction than in physiological function (C/N ratio) tended to have lower warm season photosynthesis but less depression in the cool season. We propose that this trade-off, consistent with cost-benefit theory, represents a significant physio-phenological constraint on the diversity and seasonal dynamics of photosynthetic rate. PMID:28186201

  20. Magnifying absolute instruments for optically homogeneous regions

    SciTech Connect

    Tyc, Tomas

    2011-09-15

    We propose a class of magnifying absolute optical instruments with a positive isotropic refractive index. They create magnified stigmatic images, either virtual or real, of optically homogeneous three-dimensional spatial regions within geometrical optics.

  1. A New Gimmick for Assigning Absolute Configuration.

    ERIC Educational Resources Information Center

    Ayorinde, F. O.

    1983-01-01

    A five-step procedure is provided to help students in making the assignment absolute configuration less bothersome. Examples for both single (2-butanol) and multi-chiral carbon (3-chloro-2-butanol) molecules are included. (JN)

  2. The Simplicity Argument and Absolute Morality

    ERIC Educational Resources Information Center

    Mijuskovic, Ben

    1975-01-01

    In this paper the author has maintained that there is a similarity of thought to be found in the writings of Cudworth, Emerson, and Husserl in his investigation of an absolute system of morality. (Author/RK)

  3. The Simplicity Argument and Absolute Morality

    ERIC Educational Resources Information Center

    Mijuskovic, Ben

    1975-01-01

    In this paper the author has maintained that there is a similarity of thought to be found in the writings of Cudworth, Emerson, and Husserl in his investigation of an absolute system of morality. (Author/RK)

  4. Newborn Screening

    MedlinePlus

    ... Laboratory Sciences Office of Public Health Genomics Publications & Articles Newborn Screening Lab Bulletin Laboratory Partners Multimedia Tools Newborn Screening Program – Role of Laboratories Meet the Scientist Newborn Screening: Family Stories Newborn Screening: Public Health ...

  5. Kelvin and the absolute temperature scale

    NASA Astrophysics Data System (ADS)

    Erlichson, Herman

    2001-07-01

    This paper describes the absolute temperature scale of Kelvin (William Thomson). Kelvin found that Carnot's axiom about heat being a conserved quantity had to be abandoned. Nevertheless, he found that Carnot's fundamental work on heat engines was correct. Using the concept of a Carnot engine Kelvin found that Q1/Q2 = T1/T2. Thermometers are not used to obtain absolute temperatures since they are calculated temperatures.

  6. Absolute cross sections of compound nucleus reactions

    NASA Astrophysics Data System (ADS)

    Capurro, O. A.

    1993-11-01

    The program SEEF is a Fortran IV computer code for the extraction of absolute cross sections of compound nucleus reactions. When the evaporation residue is fed by its parents, only cumulative cross sections will be obtained from off-line gamma ray measurements. But, if one has the parent excitation function (experimental or calculated), this code will make it possible to determine absolute cross sections of any exit channel.

  7. The risks of absolute medical confidentiality.

    PubMed

    Crook, M A

    2013-03-01

    Some ethicists argue that patient confidentiality is absolute and thus should never be broken. I examine these arguments that when critically scrutinised, become porous. I will explore the concept of patient confidentiality and argue that although, this is a very important medical and bioethical issue, this needs to be wisely delivered to reduce third party harm or even detriment to the patient. The argument for absolute confidentiality is particularly weak when it comes to genetic information and inherited disease.

  8. Photosynthetic efficiency predicts toxic effects of metal nanomaterials in phytoplankton.

    PubMed

    Miller, Robert J; Muller, Erik B; Cole, Bryan; Martin, Tyronne; Nisbet, Roger; Bielmyer-Fraser, Gretchen K; Jarvis, Tayler A; Keller, Arturo A; Cherr, Gary; Lenihan, Hunter S

    2017-02-01

    High Throughput Screening (HTS) using in vitro assessments at the subcellular level has great promise for screening new chemicals and emerging contaminants to identify high-risk candidates, but their linkage to ecological impacts has seldom been evaluated. We tested whether a battery of subcellular HTS tests could be used to accurately predict population-level effects of engineered metal nanoparticles (ENPs) on marine phytoplankton, important primary producers that support oceanic food webs. To overcome well-known difficulties of estimating ecologically meaningful toxicity parameters, we used novel Dynamic Energy Budget and Toxicodynamic (DEBtox) modeling techniques to evaluate impacts of ENPs on population growth rates. Our results show that population growth was negatively impacted by all four ENPs tested, but the HTS tests assessing many cell/physiological functions lacked predictive power at the population level. However, declining photosynthetic efficiency, a traditional physiological endpoint for photoautotrophs, was a good predictor of population level effects in phytoplankton. DEBtox techniques provided robust estimates of EC10 for population growth rates in exponentially growing batch cultures of phytoplankton, and should be widely useful for ecotoxicological testing. Adoption of HTS approaches for ecotoxicological assessment should carefully evaluate the predictive power of specific assays to minimize the risk that effects at higher levels of biological organization may go undetected.

  9. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2002-01-15

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 10/3/2001 through 1/02/2002. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. Our research team has made significant progress towards completion of our Phase I objectives, and our current efforts remain focused on fulfilling these research objectives in accordance with the project timeline. Overall, we believe that we are on schedule to complete Phase I activities by 10/2002, which is the milestone date from the original project timeline. Specific results and accomplishments for the fourth quarter of 2001 include: (1) New procedures and protocols have been developed to increase the chances of successful implementation in the bioreactor of organisms that perform well in the lab. The new procedures include pre-screening of organisms for adhesion characteristics and a focus on identifying the organisms with maximum growth rate potential. (2) Preliminary results show an increase in adhesion to glass and a decrease in overall growth rates when using growth media prepared with tap water rather than distilled water. (3) Several of the organisms collected from Yellowstone National Park using the new procedures are currently being cultured in preparation for bioreactor tests. (4) One important result from a test of growth surface temperature distribution as a function of gas stream and drip-fluid temperatures showed a high dependence of membrane temperature on fluid temperature, with gas stream temperature having minimal effect. This result indicates that bioreactor growth surface temperatures can be controlled using fluid delivery temperature. The possible implications for implementation of the bioreactor concept are encouraging, since it may be possible to use the bioreactor with very high gas stream temperatures by controlling the temperature

  10. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2003-01-15

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 10/2/2001 through 1/01/2003. As indicated in the list of accomplishments below our current efforts are focused on evaluating candidate organisms and growth surfaces, preparing to conduct long-term tests in the bench-scale bioreactor test systems, and scaling-up the test facilities from bench scale to pilot scale. Specific results and accomplishments for the first quarter of 2003 include: Organisms and Growth Surfaces: (1) Additional thermal features with developed cyanobacterial mats, which might be calcium resistant, were found in the West Thumb area of YNP. New samples were isolated and are being cultured in glass tubes. (2) We checked the motile ability of 8.2.1 Synechococcus s.c. (10) and 3.2.2 Synechococcus s.c. 6. It was found that unicellular isolates 8.2.1 Synechococcus s.c. (10) and 3.2.2 Synechococcus s.c. 1 are phototaxic. Isolate 3.2.2 Synechococcus s.c. 1 currently consists of two populations: one population appears to be positive phototaxic, and second population appears negative phototaxis to the same level of light. This means that the character of screen illumination should be uniform and reasonable for cyanobacterial cells. (3) The aeration of growth media with 5% CO{sub 2} in air stimulates cyanobacterial growth 10-20 times over that with air alone. It is possible the rate of the stimulation of cyanobacterial growth in CRF will be higher because cyanobacteria will be grown as a biofilm. We plan to increase the concentration to 15% CO{sub 2} in air. (4) We are continuing the organizing of our collection of the thermophilic cyanobacteria isolated from Yellowstone National Park. During this reporting period we transferred about 160 samples and discarded about 80 samples with weak growth in standard media as BG-11, D or DH. As result of this work we currently have 13 unialgal cultures of thermophilic

  11. Quantum physics of photosynthetic light-harvesting

    NASA Astrophysics Data System (ADS)

    Damjanovic, Ana

    2001-12-01

    Absorption of light by light harvesting complexes and transfer of electronic excitation to the photosynthetic reaction center (RC) constitutes the primary step of photosynthesis, i.e., the light harvesting process. A model for an atomic level structure of a so-called photosynthetic unit of the photosynthetic bacterium Rhodobacter sphaeroides has been established recently. The photosynthetic unit (PSU) of purple bacterium combines a nanometric assembly of three protein complexes: (i)the photosynthetic reaction center, (ii)a ring-shaped light harvesting complex LH-I, and (iii)multiple copies of a similar complex, LH-II. The model describes in detail the organization of pigments involved in primary light absorption and excitation transfer: a hierarchy of ring- shaped chlorophyll-carotenoid aggregates which surround four centrally located chlorophylls of the photosynthetic reaction center. This thesis presents a quantum- mechanical description of the light harvesting process in the PSU, based on the atomic level model. Excitation transfer rates for various excitation transfer steps have been determined through Fermi's golden rule. To describe electronic excitations of the strongly coupled chlorophyll aggregate in LH-II, an effective Hamiltonian has been established. This Hamiltonian has further been extended to describe also the LH-II --> LH-II --> LH-I --> RC cascade of excitation transfer. The results suggest that, in the absence of disorder, the electronic excitations in LH-II are coherently delocalizaed over the ring, and that such excitonic states speed up the light-harvesting process. Influence of thermal disorder on exciton coherence has been studied by means of a combined molecular dynamics/quantum chemistry approach. The results indicate a significant loss of coherence due to thermal effects. Excitation transfer between carotenoids and chlorophylls has been investigated in two light-harvesting complexes; LH-II of the purple bacterium Rhodospirillum

  12. BOREAS TE-9 NSA Photosynthetic Response Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G.; Curd, Shelaine (Editor); Dang, Qinglai; Margolis, Hank; Coyea, Marie

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-9 (Terrestrial Ecology) team collected several data sets related to chemical and photosynthetic properties of leaves. This data set describes: (1) the response of leaf and shoot-level photosynthesis to ambient and intercellular CO2 concentration, temperature, and incident photosynthetically active radiation (PAR) for black spruce, jack pine, and aspen during the three intensive field campaigns (IFCs) in 1994 in the Northern Study Area (NSA); (2) the response of stomatal conductance to vapor pressure difference throughout the growing season of 1994; and (3) a range of shoot water potentials (controlled in the laboratory) for black spruce and jack pine. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  13. Hydrogen production by photosynthetic green algae.

    PubMed

    Ghirardi, Maria L

    2006-08-01

    Oxygenic photosynthetic organisms such as cyanobacteria, green algae and diatoms are capable of absorbing light and storing up to 10-13% of its energy into the H-H bond of hydrogen gas. This process, which takes advantage of the photosynthetic apparatus of these organisms to convert sunlight into chemical energy, could conceivably be harnessed for production of significant amounts of energy from a renewable resource, water. The harnessed energy could then be coupled to a fuel cell for electricity generation and recycling of water molecules. In this review, current biochemical understanding of this reaction in green algae, and some of the major challenges facing the development of future commercial algal photobiological systems for H2 production have been discussed.

  14. Enhanced Practical Photosynthetic CO2 Mitigation

    SciTech Connect

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2004-10-13

    This report highlights significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation Project for the period ending 09/30/2004. The primary effort of this quarter was focused on mass transfer of carbon dioxide into the water film to study the potential effects on the photosynthetic organisms that depend on the carbon. Testing of the carbon dioxide scrubbing capability (mass transfer capability) of flowing water film appears to be relatively high and largely unaffected by transport of the gas through the bioreactor. The implications are that the transfer of carbon dioxide into the film is nearly at maximum and that it is sufficient to sustain photosynthesis at whatever rate the organisms can sustain. This finding is key to assuming that the process is an energy (photon) limited reaction and not a nutrient limited reaction.

  15. Photosynthetic rates of citronella and lemongrass.

    PubMed

    Herath, H M; Ormrod, D P

    1979-02-01

    Ten selections of citronella (Cymbopogon nardus [L.] Rendle) were grown at 32/27, 27/21, or 15/10 C day/night temperatures, and plants from three populations of lemongrass (Cymbopogon citratus [D.C.] Stapf from Japan or Sri Lanka and Cymbopogon flexuosus [D.C.] Stapf from India) were grown at 8- or 15-hour photoperiods. Net photosynthetic rates of mature leaves were measured in a controlled environment at 25 C and 260 microeinsteins per meter(2) per second. Rates declined with increasing leaf age, and from the tip to the base of the leaf blade. Rates for citronella leaves grown at 15/10 C were extremely low for all selections. Highest rates of net photosynthesis were recorded for four selections grown at 27/21 C and for two selections grown at 32/27 C. Lemongrass grown at 8-hour photoperiod had higher photosynthetic rates than that grown at 15-hour photoperiod.

  16. Photosynthetic Rates of Citronella and Lemongrass 1

    PubMed Central

    Herath, H. M. Walter; Ormrod, Douglas P.

    1979-01-01

    Ten selections of citronella (Cymbopogon nardus [L.] Rendle) were grown at 32/27, 27/21, or 15/10 C day/night temperatures, and plants from three populations of lemongrass (Cymbopogon citratus [D.C.] Stapf from Japan or Sri Lanka and Cymbopogon flexuosus [D.C.] Stapf from India) were grown at 8- or 15-hour photoperiods. Net photosynthetic rates of mature leaves were measured in a controlled environment at 25 C and 260 microeinsteins per meter2 per second. Rates declined with increasing leaf age, and from the tip to the base of the leaf blade. Rates for citronella leaves grown at 15/10 C were extremely low for all selections. Highest rates of net photosynthesis were recorded for four selections grown at 27/21 C and for two selections grown at 32/27 C. Lemongrass grown at 8-hour photoperiod had higher photosynthetic rates than that grown at 15-hour photoperiod. PMID:16660737

  17. Nitric oxide in marine photosynthetic organisms.

    PubMed

    Kumar, Amit; Castellano, Immacolata; Patti, Francesco Paolo; Palumbo, Anna; Buia, Maria Cristina

    2015-05-01

    Nitric oxide is a versatile and powerful signaling molecule in plants. However, most of our understanding stems from studies on terrestrial plants and very little is known about marine autotrophs. This review summarizes current knowledge about the source of nitric oxide synthesis in marine photosynthetic organisms and its role in various physiological processes under normal and stress conditions. The interactions of nitric oxide with other stress signals and cross talk among secondary messengers are also highlighted.

  18. Enhanced Practical Photosynthetic CO2 Mitigation

    SciTech Connect

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2005-01-13

    This report highlights significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation Project during the ending 12/31/2004. Specific results and accomplishments for the program include review of pilot scale testing and design of a new bioreactor. Testing confirmed that algae can be grown in a sustainable fashion in the pilot bioreactor, even with intermittent availability of sunlight. The pilot-scale tests indicated that algal growth rate followed photon delivery during productivity testing.

  19. Organ preservation using a photosynthetic solution

    PubMed Central

    2012-01-01

    Background Organs harvested from a body lapsing into circulatory deficit are exposed to low O2/high CO2, and reach a critical point where original functionality after transplantation is unlikely. The present study evaluates the effect of respiratory assistance using Chlorella photosynthesis on preservation of the rat pancreas from the viewpoint of donation after cardiac death (DCD). Methods Gas was exchanged through the peritoneum of rats under controlled ventilation with or without Chlorella photosynthetic respiratory assistance. A gas permeable pouch containing Chlorella in solution was placed in the peritoneum and then the space between the pouch and the peritoneum was filled with an emulsified perfluorocarbon gas carrier. Rat DCD pancreases procured 3 h after cardiac arrest were preserved for 30 min in a cold or mildly hypothermic environment or in a mildly hypothermic environment with photosynthetic respiratory support. The pancreases were then heterotopically transplanted into rats with STZ-induced diabetes. Results Levels of blood oxygen (PaO2) and carbon dioxide (PaCO2) increased and significantly decreased, respectively, in rats with mechanically reduced ventilation and rats given intraperitoneal photosynthetic respiratory support when compared with those without such support. Transplantation with DCD pancreases that had been stored under photosynthetic respiratory support resulted in the survival of all rats, which is impossible to achieve using pancreases that have been maintained statically in cold storage. Conclusion Respiratory assistance using photosynthesis helps to improve not only blood gas status in the event of respiratory insufficiency, but also graft recovery after pancreas transplantation with a DCD pancreas that has been damaged by prolonged warm ischemia. PMID:23369195

  20. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2003-04-15

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 1/2/2003 through 4/01/2003. As indicated in the list of accomplishments below we are progressing with long-term model scale bioreactor tests and are completing final preparations for pilot scale bioreactor testing. Specific results and accomplishments for the first quarter of 2003 are included.

  1. Coral bleaching independent of photosynthetic activity.

    PubMed

    Tolleter, Dimitri; Seneca, François O; DeNofrio, Jan C; Krediet, Cory J; Palumbi, Stephen R; Pringle, John R; Grossman, Arthur R

    2013-09-23

    The global decline of reef-building corals is due in part to the loss of algal symbionts, or "bleaching," during the increasingly frequent periods of high seawater temperatures. During bleaching, endosymbiotic dinoflagellate algae (Symbiodinium spp.) either are lost from the animal tissue or lose their photosynthetic pigments, resulting in host mortality if the Symbiodinium populations fail to recover. The >1,000 studies of the causes of heat-induced bleaching have focused overwhelmingly on the consequences of damage to algal photosynthetic processes, and the prevailing model for bleaching invokes a light-dependent generation of toxic reactive oxygen species (ROS) by heat-damaged chloroplasts as the primary trigger. However, the precise mechanisms of bleaching remain unknown, and there is evidence for involvement of multiple cellular processes. In this study, we asked the simple question of whether bleaching can be triggered by heat in the dark, in the absence of photosynthetically derived ROS. We used both the sea anemone model system Aiptasia and several species of reef-building corals to demonstrate that symbiont loss can occur rapidly during heat stress in complete darkness. Furthermore, we observed damage to the photosynthetic apparatus under these conditions in both Aiptasia endosymbionts and cultured Symbiodinium. These results do not directly contradict the view that light-stimulated ROS production is important in bleaching, but they do show that there must be another pathway leading to bleaching. Elucidation of this pathway should help to clarify bleaching mechanisms under the more usual conditions of heat stress in the light. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Direct and selective small-molecule inhibition of photosynthetic PEP carboxylase: New approach to combat C4 weeds in arable crops.

    PubMed

    Paulus, Judith Katharina; Förster, Kerstin; Groth, Georg

    2014-06-05

    Phosphoenolpyruvate carboxylase (PEPC) is a key enzyme of C4 photosynthesis. Besides, non-photosynthetic isoforms of PEPC are found in bacteria and all types of plants, although not in animals or fungi. A single residue in the allosteric feedback inhibitor site of PEPC was shown to adjust the affinity of the photosynthetic and non-photosynthetic isoforms for feedback inhibition by metabolites of the C4 pathway. Here, we applied computational screening and biochemical analyses to identify molecules that selectively inhibit C4 PEPC, but have no effect on the activity of non-photosynthetic PEPCs. We found two types of selective inhibitors, catechins and quinoxalines. Binding constants in the lower μM range and a strong preference for C4 PEPC qualify the quinoxaline compounds as potential selective herbicides to combat C4 weeds.

  3. Jasminum flexile flower absolute from India--a detailed comparison with three other jasmine absolutes.

    PubMed

    Braun, Norbert A; Kohlenberg, Birgit; Sim, Sherina; Meier, Manfred; Hammerschmidt, Franz-Josef

    2009-09-01

    Jasminum flexile flower absolute from the south of India and the corresponding vacuum headspace (VHS) sample of the absolute were analyzed using GC and GC-MS. Three other commercially available Indian jasmine absolutes from the species: J. sambac, J. officinale subsp. grandiflorum, and J. auriculatum and the respective VHS samples were used for comparison purposes. One hundred and twenty-one compounds were characterized in J. flexile flower absolute, with methyl linolate, benzyl salicylate, benzyl benzoate, (2E,6E)-farnesol, and benzyl acetate as the main constituents. A detailed olfactory evaluation was also performed.

  4. Photosynthetic carbon metabolism in Enteromorpha compressa (Chlorophyta)

    SciTech Connect

    Beer, S.; Shragge, B.

    1987-12-01

    The intertidal macroalga Enteromorpha compressa showed the ability to use HCO/sub 3//sup -/, as an exogenous inorganic carbon (Ci) source for photosynthesis. However, although the natural sea water concentration of this carbon form was saturating, additional CO/sub 2/ above ambient Ci levels doubled net photosynthetic rates. Therefore, the productivity of this alga, when submerged, is likely to be limited by Ci. When plants were exposed to air, photosynthetic rates saturated at air-levels of CO/sub 2/ during mild desiccation. Based on carbon fixing enzyme activities and Ci pulse-chase incorporation patterns, it was found that Enteromorpha is a C/sub 3/ plant. However, this alga did not show O/sub 2/ inhibited photosynthetic rates at natural sea water Ci conditions. It is suggested that such a C/sub 4/-like gas exchange response is due to the HCO/sub 3//sup -/ utilization system concentrating CO/sub 2/ intracellularly, thus alleviating apparent photorespiration.

  5. Photosynthetic system in Blastochloris viridis revisited.

    PubMed

    Konorty, Marina; Brumfeld, Vlad; Vermeglio, Andre; Kahana, Nava; Medalia, Ohad; Minsky, Abraham

    2009-06-09

    The bacterium Blastochloris viridis carries one of the simplest photosynthetic systems, which includes a single light-harvesting complex that surrounds the reaction center, membrane soluble quinones, and a soluble periplasmic protein cytochrome c(2) that shuttle between the reaction center and the bc(1) complex and act as electron carriers, as well as the ATP synthase. The close arrangement of the photosynthetic membranes in Bl. viridis, along with the extremely tight arrangement of the photosystems within these membranes, raises a fundamental question about the diffusion of the electron carriers. To address this issue, we analyzed the structure and response of the Bl. viridis photosynthetic system to various light conditions, by using a combination of electron microscopy, whole-cell cryotomography, and spectroscopic methods. We demonstrate that in response to high light intensities, the ratio of both cytochrome c(2) and bc(1) complexes to the reaction centers is increased. The shorter membrane stacks, along with the notion that the bc(1) complex is located at the highly curved edges of these stacks, result in a smaller average distance between the reaction centers and the bc(1) complexes, leading to shorter pathways of cytochrome c(2) between the two complexes. Under anaerobic conditions, the slow diffusion rate is further mitigated by keeping most of the quinone pool reduced, resulting in a concentration gradient of quinols that allows for a constant supply of theses electron carriers to the bc(1) complex.

  6. Universal Cosmic Absolute and Modern Science

    NASA Astrophysics Data System (ADS)

    Kostro, Ludwik

    The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.

  7. Absolute Humidity and Pandemic Versus Epidemic Influenza

    PubMed Central

    Shaman, Jeffrey; Goldstein, Edward; Lipsitch, Marc

    2011-01-01

    Experimental and epidemiologic evidence indicates that variations of absolute humidity account for the onset and seasonal cycle of epidemic influenza in temperate regions. A role for absolute humidity in the transmission of pandemic influenza, such as 2009 A/H1N1, has yet to be demonstrated and, indeed, outbreaks of pandemic influenza during more humid spring, summer, and autumn months might appear to constitute evidence against an effect of humidity. However, here the authors show that variations of the basic and effective reproductive numbers for influenza, caused by seasonal changes in absolute humidity, are consistent with the general timing of pandemic influenza outbreaks observed for 2009 A/H1N1 in temperate regions, as well as wintertime transmission of epidemic influenza. Indeed, absolute humidity conditions correctly identify the region of the United States vulnerable to a third, wintertime wave of pandemic influenza. These findings suggest that the timing of pandemic influenza outbreaks is controlled by a combination of absolute humidity conditions, levels of susceptibility, and changes in population-mixing and contact rates. PMID:21081646

  8. Method and apparatus for making absolute range measurements

    DOEpatents

    Allison, S.W.; Cates, M.R.; Key, W.S.; Sanders, A.J.; Earl, D.D.

    1999-06-22

    This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through an object which causes it to be split (hereinafter referred to as a beam splitter''), and then to a target. The beam is reflected from the target onto a screen containing an aperture spaced a known distance from the beam splitter. The aperture is sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector, spaced a known distance from the screen. The detector detects the central intensity of the beam. The distance from the object which causes the beam to be split to the target can then be calculated based upon the known wavelength, aperture radius, beam intensity, and distance from the detector to the screen. Several apparatus embodiments are disclosed for practicing the method embodiments of the present invention. 9 figs.

  9. Method and apparatus for making absolute range measurements

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Key, William S.; Sanders, Alvin J.; Earl, Dennis D.

    1999-01-01

    This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through an object which causes it to be split (hereinafter referred to as a "beamsplitter"), and then to a target. The beam is reflected from the target onto a screen containing an aperture spaced a known distance from the beamsplitter. The aperture is sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector, spaced a known distance from the screen. The detector detects the central intensity of the beam. The distance from the object which causes the beam to be split to the target can then be calculated based upon the known wavelength, aperture radius, beam intensity, and distance from the detector to the screen. Several apparatus embodiments are disclosed for practicing the method embodiments of the present invention.

  10. Enhanced Practical Photosynthetic CO2 Mitigation

    SciTech Connect

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2006-01-15

    This final report highlights significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation Project during the period from 10/1/2001 through 01/02/2006. As indicated in the list of accomplishments below, our efforts during this project were focused on the selection of candidate organisms and growth surfaces and initiating long-term tests in the bench-scale and pilot-scale bioreactor test systems. Specific results and accomplishments for the program include: (1) CRF-2 test system: (a) Sampling test results have shown that the initial mass of algae loaded into the Carbon Recycling Facility Version 2 (CRF-2) system can be estimated with about 3% uncertainty using a statistical sampling procedure. (b) The pressure shim header pipe insert design was shown to have better flow for harvesting than the drilled-hole design. (c) The CRF-2 test system has undergone major improvements to produce the high flow rates needed for harvesting (as determined by previous experiments). The main changes to the system are new stainless steel header/frame units, with increased flow capacity and a modified pipe-end-sealing method to improve flow uniformity, and installation and plumbing for a new high flow harvesting pump. Qualitative system tests showed that the harvesting system performed wonderfully, cleaning the growth surfaces within a matter of seconds. (d) Qualitative tests have shown that organisms can be repopulated on a harvested section of a bioreactor screen, demonstrating that continuous bioreactor operation is feasible, with continuous cycles of harvesting and repopulating screens. (e) Final preparations are underway for quantitative, long-term tests in the CRF-2 with weekly harvesting. (2) Pilot-scale test system: (a) The construction of the pilot-scale bioreactor was completed, including the solar collector and light distribution system. Over the course of the project, the solar collector used in the light delivery system showed some degradation, but

  11. Tectonics and the photosynthetic habitable zone (Invited)

    NASA Astrophysics Data System (ADS)

    Sleep, N. H.

    2009-12-01

    The traditional habitable zone lies between an inner stellar radius where the surface of the planet becomes too hot for liquid water carbon-based life and on outer radius, where the surface freezes. It is effectively the zone where photosynthesis is feasible. The concept extends to putative life on objects with liquid methane at the surface, like Titan. As a practical matter, photosynthesis leaves detectable biosignatures in the geological record; black shale on the Earth indicates that sulfide and probably FeO based photosynthesis existed by 3.8 Ga. The hard crustal rocks and the mantle sequester numerous photosynthetic biosignatures. Photosynthesis can produce detectable free oxygen with ozone in the atmosphere of extrasolar planets. In contrast, there is no outer limit for subsurface life in large silicate objects. Pre-photosynthetic niches are dependable but meager and not very detectable at great antiquity or great distance, with global productivity less than 1e-3 of the photosynthetic ones. Photosynthetic organisms have bountiful energy that modifies their surface environment and even tectonics. For example, metamorphic rocks formed at the expense of thick black shale are highly radioactive and hence self-fluxing. Active tectonics with volcanism and metamorphism prevents volatiles from being sequestered in the subsurface as on Mars. A heat-pipe object, like a larger Io, differs from the Earth in that the volatiles return to the deep interior distributed within massive volcanic deposits rather than concentrated in the shallow oceanic crust. One the Earth, the return of water to the surface by arc volcanoes controls its mantle abundance at the transition between behaving as a trace element and behaving as a major element that affects melting. The ocean accumulates the water that the mantle and crust do not take. The Earth has the “right” amount of water that erosion/deposition and tectonics both tend to maintain near sea level surfaces. The mantle contains

  12. Renal arterial embolization with absolute ethanol.

    PubMed Central

    Park, J. H.; Kim, W. S.; Han, M. C.; Lee, C. W.

    1987-01-01

    Twenty separate infarction procedures with absolute ethanol were performed on eighteen renal tumors in seventeen patients at Department of Radiology, Seoul National University Hospital since 1982. Fifteen were hypernephroma cases and two were angiomyolipoma cases. The indications for renal infarction were the preoperative interruption of renal arterial flow in eight cases of hypernephroma, and primary therapy or palliation of symptoms in seven cases of hypernephroma and two cases of angiomyolipoma. Average 15ml of absolute ethanol was injected for renal arterial embolization at a rate of 1-2 ml/sec via balloon occlusion catheter or superselective administration technique. Though the long-term beneficial effect on survival was not confirmed, transcatheter embolization with absolute ethanol was suggested to be used as indispensible treatment in preoperative and inoperable or symptomatic cases of renal tumor. PMID:3269241

  13. Quantitative standards for absolute linguistic universals.

    PubMed

    Piantadosi, Steven T; Gibson, Edward

    2014-01-01

    Absolute linguistic universals are often justified by cross-linguistic analysis: If all observed languages exhibit a property, the property is taken to be a likely universal, perhaps specified in the cognitive or linguistic systems of language learners and users. In many cases, these patterns are then taken to motivate linguistic theory. Here, we show that cross-linguistic analysis will very rarely be able to statistically justify absolute, inviolable patterns in language. We formalize two statistical methods--frequentist and Bayesian--and show that in both it is possible to find strict linguistic universals, but that the numbers of independent languages necessary to do so is generally unachievable. This suggests that methods other than typological statistics are necessary to establish absolute properties of human language, and thus that many of the purported universals in linguistics have not received sufficient empirical justification.

  14. Absolute Distance Measurement with the MSTAR Sensor

    NASA Technical Reports Server (NTRS)

    Lay, Oliver P.; Dubovitsky, Serge; Peters, Robert; Burger, Johan; Ahn, Seh-Won; Steier, William H.; Fetterman, Harrold R.; Chang, Yian

    2003-01-01

    The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. The sensor uses a single laser in conjunction with fast phase modulators and low frequency detectors. We describe the design of the system - the principle of operation, the metrology source, beamlaunching optics, and signal processing - and show results for target distances up to 1 meter. We then demonstrate how the system can be scaled to kilometer-scale distances.

  15. Absolute measurement of hyperspectral and angular reflection.

    PubMed

    Hwang, Jisoo

    2014-09-20

    A new instrument for absolute measurement of hyperspectral and angular reflection is presented. The instrument determines absolute values of angular reflection quantities in a wavelength range from 380 to 780 nm with a 3 nm spectral resolution by using a white source and a CCD-based spectroradiometer. Through uncertainty evaluation, the measurement uncertainty is determined as 1.4%-2.9% (k=2) for white diffuse material of Spectralon. The gonioreflectometric determination and an integrating-sphere-based reflection measurement traceable to KRISS spectral reflectance scale are compared by determining hemispherical reflectance, which results in agreement in their uncertainties.

  16. Absolute proper motions of distant Galactic satellites

    NASA Technical Reports Server (NTRS)

    Majewski, S. R.; Cudworth, K. M.

    1993-01-01

    We describe the motivation for a new program to determine the absolute proper motions (transverse velocities) for distant Galactic globular clusters and satellite dwarf spheroidal galaxies. The topic of globular-cluster proper motions is reviewed with emphasis on the correction from relative to absolute proper motions. Our project relies on astrometry from deep 2-5 m prime focus plates which contain images of numerous faint galaxies which are used to set a precise extragalactic reference frame. We discuss first results from the survey, determinations of the space motions for the clusters Palomar 5 and Palomar 3, at distances of 21 and 88 kpc, respectively.

  17. Absolutely relative or relatively absolute: violations of value invariance in human decision making.

    PubMed

    Teodorescu, Andrei R; Moran, Rani; Usher, Marius

    2016-02-01

    Making decisions based on relative rather than absolute information processing is tied to choice optimality via the accumulation of evidence differences and to canonical neural processing via accumulation of evidence ratios. These theoretical frameworks predict invariance of decision latencies to absolute intensities that maintain differences and ratios, respectively. While information about the absolute values of the choice alternatives is not necessary for choosing the best alternative, it may nevertheless hold valuable information about the context of the decision. To test the sensitivity of human decision making to absolute values, we manipulated the intensities of brightness stimuli pairs while preserving either their differences or their ratios. Although asked to choose the brighter alternative relative to the other, participants responded faster to higher absolute values. Thus, our results provide empirical evidence for human sensitivity to task irrelevant absolute values indicating a hard-wired mechanism that precedes executive control. Computational investigations of several modelling architectures reveal two alternative accounts for this phenomenon, which combine absolute and relative processing. One account involves accumulation of differences with activation dependent processing noise and the other emerges from accumulation of absolute values subject to the temporal dynamics of lateral inhibition. The potential adaptive role of such choice mechanisms is discussed.

  18. [Photosynthetic characteristics of five arbor species in Shenyang urban area].

    PubMed

    Li, Hai-Me; He, Xing-Yuan; Wang, Kui-Ling; Chen, Wei

    2007-08-01

    By using LI-6400 infrared gas analyzer, this paper studied the diurnal and seasonal variations of the photosynthetic rate of main arbor species (Populus alba x P. berolinensis, Salix matsudana, Ulmus pumila, Robinia pseudoacacia and Prunus davidiana) in Shenyang urban area. The correlations between net photosynthetic rate and environmental factors (photosynthetic active radiation, temperature, and stomatal conductance) were assessed by multivariate regression analysis, and related equations were constructed. The results showed that for test arbor species, the diurnal variation of photosynthetic rate mainly presented a single peak curve, and the seasonal variation was in the order of summer > autumn > spring. The major factors affecting the photosynthetic rate were photosynthetic active radiation, stomatal conductance, and intercellular CO2 concentration.

  19. An Absolute Electrometer for the Physics Laboratory

    ERIC Educational Resources Information Center

    Straulino, S.; Cartacci, A.

    2009-01-01

    A low-cost, easy-to-use absolute electrometer is presented: two thin metallic plates and an electronic balance, usually available in a laboratory, are used. We report on the very good performance of the device that allows precise measurements of the force acting between two charged plates. (Contains 5 footnotes, 2 tables, and 6 figures.)

  20. Stimulus Probability Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  1. An Absolute Electrometer for the Physics Laboratory

    ERIC Educational Resources Information Center

    Straulino, S.; Cartacci, A.

    2009-01-01

    A low-cost, easy-to-use absolute electrometer is presented: two thin metallic plates and an electronic balance, usually available in a laboratory, are used. We report on the very good performance of the device that allows precise measurements of the force acting between two charged plates. (Contains 5 footnotes, 2 tables, and 6 figures.)

  2. Unified Absolute Spectrophotometry for Star Clusters

    NASA Astrophysics Data System (ADS)

    Dodd, R. J.

    2007-04-01

    Uniform, dereddened, absolute, flux density versus frequency, low-resolution spectra were constructed for stars in star clusters. Photometric and spectrophotometric observations were extracted from printed papers, catalogues, and on-line databases, for ten stars selected, on the basis of their positions, proper motion components and photometry, as members of the young open cluster IC2391. The units of measurement used in the original publication were converted, where necessary, to apparent flux densities in Janskys and frequencies in Hertz. Given measured values for interstellar extinction and distances to the stars, absolute flux densities at the standard 10pc distance were readily computed from the apparent values. Plots were prepared for each of the member stars showing the mean frequency, the bandwidth, the absolute monochromatic flux density and a total error estimation, where possible, for each observed passband. Absolute spectrophotometry for Vega from Hubble Space Telescope observations is also shown on each plot to serve as a reference. The difficulties experienced in producing the plots are discussed and ways in which these may be ameliorated are suggested.

  3. Comparative vs. Absolute Judgments of Trait Desirability

    ERIC Educational Resources Information Center

    Hofstee, Willem K. B.

    1970-01-01

    Reversals of trait desirability are studied. Terms indicating conservativw behavior appeared to be judged relatively desirable in comparative judgement, while traits indicating dynamic and expansive behavior benefited from absolute judgement. The reversal effect was shown to be a general one, i.e. reversals were not dependent upon the specific…

  4. New Techniques for Absolute Gravity Measurements.

    DTIC Science & Technology

    1983-01-07

    Hammond, J.A. (1978) Bollettino Di Geofisica Teorica ed Applicata Vol. XX. 8. Hammond, J. A., and Iliff, R. L. (1979) The AFGL absolute gravity system...International Gravimetric Bureau, No. L:I-43. 7. Hammond. J.A. (1978) Bollettino Di Geofisica Teorica ed Applicata Vol. XX. 8. Hammond, J.A., and

  5. Absolute distance interferometry using diode lasers

    NASA Astrophysics Data System (ADS)

    Meiners-Hagen, K.; Abou-Zeid, A.; Hartmann, L.

    2008-10-01

    An approach to a homodyne absolute distance interferometer (ADI) was previously presented which makes use of two extended cavity diode lasers (ECDL). The length measurement is performed by combining variable synthetic wavelength interferometry and two wavelength interferometry in one setup. In this contribution the ADI was compared to a counting HeNe laser interferometer up to a length of 10 m.

  6. Absolute partial photoionization cross sections of ozone.

    SciTech Connect

    Berkowitz, J.; Chemistry

    2008-04-01

    Despite the current concerns about ozone, absolute partial photoionization cross sections for this molecule in the vacuum ultraviolet (valence) region have been unavailable. By eclectic re-evaluation of old/new data and plausible assumptions, such cross sections have been assembled to fill this void.

  7. Stimulus Probability Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  8. Absolute Positioning Using the Global Positioning System

    DTIC Science & Technology

    1994-04-01

    Global Positioning System ( GPS ) has becom a useful tool In providing relativ survey...Includes the development of a low cost navigator for wheeled vehicles. ABSTRACT The Global Positioning System ( GPS ) has become a useful tool In providing...technique of absolute or point positioning involves the use of a single Global Positioning System ( GPS ) receiver to determine the three-dimenslonal

  9. Genotypic variation in transpiration efficiency due to differences in photosynthetic capacity among sugarcane-related clones.

    PubMed

    Li, Chunjia; Jackson, Phillip; Lu, Xin; Xu, Chaohua; Cai, Qing; Basnayake, Jayapathi; Lakshmanan, Prakash; Ghannoum, Oula; Fan, Yuanhong

    2017-04-01

    Sugarcane, derived from the hybridization of Saccharum officinarum×Saccharum spontaneum, is a vegetative crop in which the final yield is highly driven by culm biomass production. Cane yield under irrigated or rain-fed conditions could be improved by developing genotypes with leaves that have high intrinsic transpiration efficiency, TEi (CO2 assimilation/stomatal conductance), provided this is not offset by negative impacts from reduced conductance and growth rates. This study was conducted to partition genotypic variation in TEi among a sample of diverse clones from the Chinese collection of sugarcane-related germplasm into that due to variation in stomatal conductance versus that due to variation in photosynthetic capacity. A secondary goal was to define protocols for optimized larger-scale screening of germplasm collections. Genotypic variation in TEi was attributed to significant variation in both stomatal and photosynthetic components. A number of genotypes were found to possess high TEi as a result of high photosynthetic capacity. This trait combination is expected to be of significant breeding value. It was determined that a small number of observations (16) is sufficient for efficiently screening TEi in larger populations of sugarcane genotypes The research methodology and results reported are encouraging in supporting a larger-scale screening and introgression of high transpiration efficiency in sugarcane breeding. However, further research is required to quantify narrow sense heritability as well as the leaf-to-field translational potential of genotypic variation in transpiration efficiency-related traits observed in this study. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Absolute Radiation Thermometry in the NIR

    NASA Astrophysics Data System (ADS)

    Bünger, L.; Taubert, R. D.; Gutschwager, B.; Anhalt, K.; Briaudeau, S.; Sadli, M.

    2017-04-01

    A near infrared (NIR) radiation thermometer (RT) for temperature measurements in the range from 773 K up to 1235 K was characterized and calibrated in terms of the "Mise en Pratique for the definition of the Kelvin" (MeP-K) by measuring its absolute spectral radiance responsivity. Using Planck's law of thermal radiation allows the direct measurement of the thermodynamic temperature independently of any ITS-90 fixed-point. To determine the absolute spectral radiance responsivity of the radiation thermometer in the NIR spectral region, an existing PTB monochromator-based calibration setup was upgraded with a supercontinuum laser system (0.45 μm to 2.4 μm) resulting in a significantly improved signal-to-noise ratio. The RT was characterized with respect to its nonlinearity, size-of-source effect, distance effect, and the consistency of its individual temperature measuring ranges. To further improve the calibration setup, a new tool for the aperture alignment and distance measurement was developed. Furthermore, the diffraction correction as well as the impedance correction of the current-to-voltage converter is considered. The calibration scheme and the corresponding uncertainty budget of the absolute spectral responsivity are presented. A relative standard uncertainty of 0.1 % (k=1) for the absolute spectral radiance responsivity was achieved. The absolute radiometric calibration was validated at four temperature values with respect to the ITS-90 via a variable temperature heatpipe blackbody (773 K ...1235 K) and at a gold fixed-point blackbody radiator (1337.33 K).

  11. Engineering cyanobacteria as photosynthetic feedstock factories.

    PubMed

    Hays, Stephanie G; Ducat, Daniel C

    2015-03-01

    Carbohydrate feedstocks are at the root of bioindustrial production and are needed in greater quantities than ever due to increased prioritization of renewable fuels with reduced carbon footprints. Cyanobacteria possess a number of features that make them well suited as an alternative feedstock crop in comparison to traditional terrestrial plant species. Recent advances in genetic engineering, as well as promising preliminary investigations of cyanobacteria in a number of distinct production regimes have illustrated the potential of these aquatic phototrophs as biosynthetic chassis. Further improvements in strain productivities and design, along with enhanced understanding of photosynthetic metabolism in cyanobacteria may pave the way to translate cyanobacterial theoretical potential into realized application.

  12. How Quantum Coherence Assists Photosynthetic Light Harvesting

    PubMed Central

    Strümpfer, J; Şener, M; Schulten, K

    2012-01-01

    This perspective examines how hundreds of pigment molecules in purple bacteria cooperate through quantum coherence to achieve remarkable light harvesting efficiency. Quantum coherent sharing of excitation, which modifies excited state energy levels and combines transition dipole moments, enables rapid transfer of excitation over large distances. Purple bacteria exploit the resulting excitation transfer to engage many antenna proteins in light harvesting, thereby increasing the rate of photon absorption and energy conversion. We highlight here how quantum coherence comes about and plays a key role in the photosynthetic apparatus of purple bacteria. PMID:22844553

  13. Microspectroscopy of the photosynthetic compartment of algae.

    PubMed

    Evangelista, Valtere; Frassanito, Anna Maria; Passarelli, Vincenzo; Barsanti, Laura; Gualtieri, Paolo

    2006-01-01

    We performed microspectroscopic evaluation of the pigment composition of the photosynthetic compartments of algae belonging to different taxonomic divisions and higher plants. The feasibility of microspectroscopy for discriminating among species and/or phylogenetic groups was tested on laboratory cultures. Gaussian bands decompositions and a fitting algorithm, together with fourth-derivative transformation of absorbance spectra, provided a reliable discrimination among chlorophylls a, b and c, phycobiliproteins and carotenoids. Comparative analysis of absorption spectra highlighted the evolutionary grouping of the algae into three main lineages in accordance with the most recent endosymbiotic theories.

  14. Temperature response of Antarctic cryptoendolithic photosynthetic microorganisms

    NASA Technical Reports Server (NTRS)

    Ocampo-Friedmann, R.; Meyer, M. A.; Chen, M.; Friedmann, E. I.

    1988-01-01

    Growth responses to temperatures between 12.5 [degrees] C and 25 degrees C were determined for five photosynthetic microorganisms isolated from the Ross Desert cryptoendolithic community. Among eukaryotic algae, two strains of Trebouxia sp. have an upper temperature limit of 20 degrees C, and two strains of Hemichloris antarctica of 25 degrees C. The cyanobacterium Chroococcidiopsis sp., in contrast, grows at temperatures above 25 degrees C. These and earlier studies suggest that the eukaryotic algae of the Antarctic cryptoendolithic community have an upper temperature limit near 25 degrees C.

  15. Temperature response of Antarctic cryptoendolithic photosynthetic microorganisms

    NASA Technical Reports Server (NTRS)

    Ocampo-Friedmann, R.; Meyer, M. A.; Chen, M.; Friedmann, E. I.

    1988-01-01

    Growth responses to temperatures between 12.5 [degrees] C and 25 degrees C were determined for five photosynthetic microorganisms isolated from the Ross Desert cryptoendolithic community. Among eukaryotic algae, two strains of Trebouxia sp. have an upper temperature limit of 20 degrees C, and two strains of Hemichloris antarctica of 25 degrees C. The cyanobacterium Chroococcidiopsis sp., in contrast, grows at temperatures above 25 degrees C. These and earlier studies suggest that the eukaryotic algae of the Antarctic cryptoendolithic community have an upper temperature limit near 25 degrees C.

  16. Culturing photosynthetic bacteria through surface plasmon resonance

    SciTech Connect

    Ooms, Matthew D.; Bajin, Lauren; Sinton, David

    2012-12-17

    In this work, cultivation of photosynthetic microbes in surface plasmon enhanced evanescent fields is demonstrated. Proliferation of Synechococcus elongatus was obtained on gold surfaces excited with surface plasmons. Excitation over three days resulted in 10 {mu}m thick biofilms with maximum cell volume density of 20% vol/vol (2% more total accumulation than control experiments with direct light). Collectively, these results indicate the ability to (1) excite surface-bound cells using plasmonic light fields, and (2) subsequently grow thick biofilms by coupling light from the surface. Plasmonic light delivery presents opportunities for high-density optofluidic photobioreactors for microalgal analysis and solar fuel production.

  17. Culturing photosynthetic bacteria through surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Ooms, Matthew D.; Bajin, Lauren; Sinton, David

    2012-12-01

    In this work, cultivation of photosynthetic microbes in surface plasmon enhanced evanescent fields is demonstrated. Proliferation of Synechococcus elongatus was obtained on gold surfaces excited with surface plasmons. Excitation over three days resulted in 10 μm thick biofilms with maximum cell volume density of 20% vol/vol (2% more total accumulation than control experiments with direct light). Collectively, these results indicate the ability to (1) excite surface-bound cells using plasmonic light fields, and (2) subsequently grow thick biofilms by coupling light from the surface. Plasmonic light delivery presents opportunities for high-density optofluidic photobioreactors for microalgal analysis and solar fuel production.

  18. Simulation of photosynthetic production using neural network

    NASA Astrophysics Data System (ADS)

    Kmet, Tibor; Kmetova, Maria

    2013-10-01

    This paper deals with neural network based optimal control synthesis for solving optimal control problems with control and state constraints and discrete time delay. The optimal control problem is transcribed into nonlinear programming problem which is implemented with adaptive critic neural network. This approach is applicable to a wide class of nonlinear systems. The proposed simulation methods is illustrated by the optimal control problem of photosynthetic production described by discrete time delay differential equations. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.

  19. Climate Control of Photosynthetic Parameters across Biomes

    NASA Astrophysics Data System (ADS)

    Wei, S.; Yi, C.

    2011-12-01

    Meteorological tower networks measure net ecosystem exchange (NEE) of CO2, which is a balance between ecosystem respiration (Reco) and gross primary production (GPP). For understanding the mechanistic response of CO2 exchange to climate factors at process-level, it's necessary to separate NEE into its two components. A light-response analysis model (Ruimy, et al., 1995) has proved to be an efficient tool for this purpose. Principal light-response parameters-apparent quantum yield (α), photosynthetic capacity (Fmax) and ecosystem respiration (Reco) are important for modeling of CO2 exchange from regional scale to global domains using remote sensing. A major challenge lies in understanding how those parameters vary across biomes under different climatic conditions. So far, few large-sample studies have been conducted on this purpose. In our study, we partition seasonal NEE into photosynthesis and ecosystem respiration of 247 unique fluxnet sites, which represents over 900 site-years. Our results indicate that: (1) apparent quantum yield (α) of deciduous broadleaf forests and mixed forests is sensitive to seasonal temperature; (2) photosynthetic capacity (Fmax) of deciduous forests and evergreen broadleaf forests is controlled by Bowen Ratio; and (3) Ecosystem respiration of evergreen needle forests and mixed forests is controlled by temperature, while evergreen broadleaf forests controlled by Bowen Ratio. Our results also demonstrate that some relationships between photosynthetic parameters and climate controls are latitude dependent. Ecosystem respiration of croplands and deciduous broadleaf forests in high latitudes shows better temperature correlations than that in low latitudes; apparent quantum yield (α) of evergreen needle forests only display temperature control in latitudes above 40N. On biome-scale average, the magnitudes of photosynthetic capacity are categorized into two groups: (1) with high value (from 31.96 to 37.13 umol m-2s-1) of croplands

  20. Barriers to cancer screening.

    PubMed

    Womeodu, R J; Bailey, J E

    1996-01-01

    greatest responsibility lies with medical and health care institutions and those who determine the priorities of these institutions. Patient and physician barriers to mass cancer screening can be addressed by institutional support. If the quality of care delivered by providers, group practices, managed-care organizations, and HMOs is assessed with priority given to the regularity and consistency with which basic screening procedures are performed, cancer screening will undoubtedly receive greater attention in the clinic. Medical institutions must collaborate to develop standards for cancer screening with attention to the cost-effectiveness of various screening techniques to determine how limited resources can best be spent in cancer control. Such efforts should keep in mind "that a very small change implemented over a broad population may have a greater effect in absolute numbers than a large level of change applied in a small segment of the population."

  1. Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: dynamic photosynthetic responses.

    PubMed

    Montgomery, Rebecca A; Givnish, Thomas J

    2008-03-01

    Hawaiian lobeliads have radiated into habitats from open alpine bogs to densely shaded rainforest interiors, and show corresponding adaptations in steady-state photosynthetic light responses and associated leaf traits. Shaded environments are not uniformly dark, however, but punctuated by sunflecks that carry most of the photosynthetically active light that strikes plants. We asked whether lobeliads have diversified in their dynamic photosynthetic light responses and how dynamic responses influence daily leaf carbon gain. We quantified gas exchange and dynamic light regimes under field conditions for ten species representing each major Hawaiian sublineage. Species in shadier habitats experienced shorter and less numerous sunflecks: average sunfleck length varied from 1.4 +/- 1.7 min for Cyanea floribunda in shaded forest understories to 31.2 +/- 2.1 min for Trematolobelia kauaiensis on open ridges. As expected, the rate of photosynthetic induction increased significantly toward shadier sites, with assimilation after 60 s rising from ca. 30% of fully induced rates in species from open environments to 60% in those from densely shaded habitats. Uninduced light use efficiency-actual photosynthesis versus that expected under steady-state conditions-increased from 10 to 70% across the same gradient. In silico transplants-modeling daily carbon gain using one species' photosynthetic light response in its own and other species' dynamic light regimes-demonstrated the potential adaptive nature of species differences: understory Cyanea pilosa in its light regimes outperformed gap-dwelling Clermontia parviflora, while Clermontia in its light regimes outperformed Cyanea. The apparent crossover in daily photosynthesis occurred at about the same photon flux density where dominance shifts from Cyanea to Clermontia in the field. Our results further support our hypothesis that the lobeliads have diversified physiologically across light environments in Hawaiian ecosystems and that

  2. Has the National Cancer Screening Program reduced income inequalities in screening attendance in South Korea?

    PubMed

    Kim, Sujin; Kwon, Soonman; Subramanian, S V

    2015-11-01

    In 1999, the Korean government introduced the National Cancer Screening Program (NCSP) to increase the cancer-screening rate, particularly among the low-income population. This study investigates how the NCSP has decreased both relative and absolute income inequalities in the uptake of cancer screening in South Korea. A nationally representative cross-sectional repeated data from the Korea National Health and Nutrition Examination Survey 1998-2012, managed by the Ministry of Health and Welfare, was used to assess changes over time and the extent of discontinuity at the NCSP-recommended initiation age in the uptake of screening for breast, colorectal, and gastric cancers across income quartiles. Relative inequalities in the uptake of screening for all cancers decreased significantly over the policy period. Absolute inequalities did not change for most cancers, but marginally increased from 9 to 14% points in the uptake of screening for colorectal cancer among men. At the recommended initiation age, absolute inequalities did not change for breast and colorectal cancers but increased from 5 to 16% points for gastric cancer, for which relative inequality significantly decreased. The NCSP, which reduced out-of-pocket payment, may not decrease absolute gap although it leads to overall increases in the uptake of cancer screening and decreases in relative inequalities. Further investigations are needed to understand barriers that prevent the low-income population from attending cancer screening.

  3. A Nanophotonic Structure Containing Living Photosynthetic Bacteria.

    PubMed

    Coles, David; Flatten, Lucas C; Sydney, Thomas; Hounslow, Emily; Saikin, Semion K; Aspuru-Guzik, Alán; Vedral, Vlatko; Tang, Joseph Kuo-Hsiang; Taylor, Robert A; Smith, Jason M; Lidzey, David G

    2017-10-01

    Photosynthetic organisms rely on a series of self-assembled nanostructures with tuned electronic energy levels in order to transport energy from where it is collected by photon absorption, to reaction centers where the energy is used to drive chemical reactions. In the photosynthetic bacteria Chlorobaculum tepidum, a member of the green sulfur bacteria family, light is absorbed by large antenna complexes called chlorosomes to create an exciton. The exciton is transferred to a protein baseplate attached to the chlorosome, before migrating through the Fenna-Matthews-Olson complex to the reaction center. Here, it is shown that by placing living Chlorobaculum tepidum bacteria within a photonic microcavity, the strong exciton-photon coupling regime between a confined cavity mode and exciton states of the chlorosome can be accessed, whereby a coherent exchange of energy between the bacteria and cavity mode results in the formation of polariton states. The polaritons have energy distinct from that of the exciton which can be tuned by modifying the energy of the optical modes of the microcavity. It is believed that this is the first demonstration of the modification of energy levels within living biological systems using a photonic structure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The making of a photosynthetic animal

    PubMed Central

    Rumpho, Mary E.; Pelletreau, Karen N.; Moustafa, Ahmed; Bhattacharya, Debashish

    2011-01-01

    Symbiotic animals containing green photobionts challenge the common perception that only plants are capable of capturing the sun's rays and converting them into biological energy through photoautotrophic CO2 fixation (photosynthesis). ‘Solar-powered’ sacoglossan molluscs, or sea slugs, have taken this type of symbiotic association one step further by solely harboring the photosynthetic organelle, the plastid (=chloroplast). One such sea slug, Elysia chlorotica, lives as a ‘plant’ when provided with only light and air as a result of acquiring plastids during feeding on its algal prey Vaucheria litorea. The captured plastids (kleptoplasts) are retained intracellularly in cells lining the digestive diverticula of the sea slug, a phenomenon sometimes referred to as kleptoplasty. Photosynthesis by the plastids provides E. chlorotica with energy and fixed carbon for its entire lifespan of ∼10 months. The plastids are not transmitted vertically (i.e. are absent in eggs) and do not undergo division in the sea slug. However, de novo protein synthesis continues, including plastid- and nuclear-encoded plastid-targeted proteins, despite the apparent absence of algal nuclei. Here we discuss current data and provide hypotheses to explain how long-term photosynthetic activity is maintained by the kleptoplasts. This fascinating ‘green animal’ provides a unique model to study the evolution of photosynthesis in a multicellular heterotrophic organism. PMID:21177950

  5. Phosphofructokinase Activities in Photosynthetic Organisms 1

    PubMed Central

    Carnal, Nancy Wieland; Black, Clanton C.

    1983-01-01

    A pyrophosphate-dependent phosphofructokinase (PPi-PFK) activity is detectable in extracts of a wide variety of primitive and advanced plants, the Charalean algae, and in the photosynthetic bacterium, Rhodospirillum rubrum. Angiosperms with extractable PPi-PFK activities 4- to 70-fold higher than the respective ATP-PFK activities tend to be succulent and to exhibit CAM. Even though PPi-PFK activity is not detected in crude extracts of some well known CAM plants, e.g. plants in the Crassulaceae, gel filtration of the extract and/or inclusion of the PPi-PFK activator, fructose 2,6-bisphosphate, in the assay reveals that a PPi-PFK activity is present in these species. Fructose 2,6-bisphosphate likewise activates PPi-PFK activities in extracts of C3 and C4 plants. C3 and C4 plant PPi-PFK activities are roughly equivalent to ATP-PFK activities in the same species. PPi-PFK activity is also detected in some bryophytes, lower vascular plants, ferns, and gymnosperms. The Charophytes, advanced algae presumed to be similar to species ancestral to vascular plants, exhibit at least 4-fold higher PPi-PFK than ATP-PFK activities. R. rubrum also exhibits a much higher PPi-PFK activity than ATP-PFK activity. These data indicate that PPi-PFK may serve as an alternate enzyme to ATP-PFK in glycolysis in a wide range of photosynthetic organisms. PMID:16662776

  6. Thermal responses of Symbiodinium photosynthetic carbon assimilation

    NASA Astrophysics Data System (ADS)

    Oakley, Clinton A.; Schmidt, Gregory W.; Hopkinson, Brian M.

    2014-06-01

    The symbiosis between hermatypic corals and their dinoflagellate endosymbionts, genus Symbiodinium, is based on carbon exchange. This symbiosis is disrupted by thermally induced coral bleaching, a stress response in which the coral host expels its algal symbionts as they become physiologically impaired. The disruption of the dissolved inorganic carbon (DIC) supply or the thermal inactivation of Rubisco have been proposed as sites of initial thermal damage that leads to the bleaching response. Symbiodinium possesses a highly unusual Form II ribulose bisphosphate carboxylase/oxygenase (Rubisco), which exhibits a lower CO2:O2 specificity and may be more thermally unstable than the Form I Rubiscos of other algae and land plants. Components of the CO2 concentrating mechanism (CCM), which supplies inorganic carbon for photosynthesis, may also be temperature sensitive. Here, we examine the ability of four cultured Symbiodinium strains to acquire and fix DIC across a temperature gradient. Surprisingly, the half-saturation constant of photosynthesis with respect to DIC concentration ( K P), an index of CCM function, declined with increasing temperature in three of the four strains, indicating a greater potential for photosynthetic carbon acquisition at elevated temperatures. In the fourth strain, there was no effect of temperature on K P. Finding no evidence for thermal inhibition of the CCM, we conclude that CCM components are not likely to be the primary sites of thermal damage. Reduced photosynthetic quantum yields, a hallmark of thermal bleaching, were observed at low DIC concentrations, leaving open the possibility that reduced inorganic carbon availability is involved in bleaching.

  7. Respiratory processes in non-photosynthetic plastids

    PubMed Central

    Renato, Marta; Boronat, Albert; Azcón-Bieto, Joaquín

    2015-01-01

    Chlororespiration is a respiratory process located in chloroplast thylakoids which consists in an electron transport chain from NAD(P)H to oxygen. This respiratory chain involves the NAD(P)H dehydrogenase complex, the plastoquinone pool and the plastid terminal oxidase (PTOX), and it probably acts as a safety valve to prevent the over-reduction of the photosynthetic machinery in stress conditions. The existence of a similar respiratory activity in non-photosynthetic plastids has been less studied. Recently, it has been reported that tomato fruit chromoplasts present an oxygen consumption activity linked to ATP synthesis. Etioplasts and amyloplasts contain several electron carriers and some subunits of the ATP synthase, so they could harbor a similar respiratory process. This review provides an update on the study about respiratory processes in chromoplasts, identifying the major gaps that need to be addressed in future research. It also reviews the proteomic data of etioplasts and amyloplasts, which suggest the presence of a respiratory electron transport chain in these plastids. PMID:26236317

  8. Non-photosynthetic pigments as potential biosignatures

    NASA Astrophysics Data System (ADS)

    Schwieterman, E. W.; Cockell, C. S.; Meadows, V. S.

    2014-03-01

    Photosynthetic organisms on Earth produce potentially detectable surface reflectance biosignatures due in part to the spectral location and strength of pigment absorption. However, life on Earth uses pigments for a multitude of purposes other than photosynthesis, including coping with extreme environments. Macroscopic environments exist on Earth where the surface reflectance is significantly altered by a nonphotosynthetic pigment, such as the case of hypersaline lakes and ponds (Oren et al. 1992). Here we explore the nature and potential detectability of non-photosynthetic pigments in disk-averaged planetary observations using a combination of laboratory measurements and archival reflectance spectra, along with simulated broadband photometry and spectra. The in vivo visible reflectance spectra of a cross section of pigmented microorganisms are presented to illustrate the spectral diversity of biologically produced pigments. Synthetic broadband colors are generated to show a significant spread in color space. A 1D radiative transfer model (Meadows & Crisp 1996; Crisp 1997) is used to approximate the spectra of scenarios where pigmented organisms are widespread on planets with Earth-like atmospheres. Broadband colors are revisited to show that colors due to surface reflectivity are not robust to the addition of scattering and absorption effects from the atmosphere. We consider a èbest case' plausible scenario for the detection of nonphotosynthetic pigments by using the Virtual Planetary Laboratory's 3D spectral Earth model (Robinson et al. 2011) to explore the detectability of the surface biosignature produced by pigmented halophiles that are widespread on an Earth-analog planet.

  9. Absolute-magnitude distributions of supernovae

    SciTech Connect

    Richardson, Dean; Wright, John; Jenkins III, Robert L.; Maddox, Larry

    2014-05-01

    The absolute-magnitude distributions of seven supernova (SN) types are presented. The data used here were primarily taken from the Asiago Supernova Catalogue, but were supplemented with additional data. We accounted for both foreground and host-galaxy extinction. A bootstrap method is used to correct the samples for Malmquist bias. Separately, we generate volume-limited samples, restricted to events within 100 Mpc. We find that the superluminous events (M{sub B} < –21) make up only about 0.1% of all SNe in the bias-corrected sample. The subluminous events (M{sub B} > –15) make up about 3%. The normal Ia distribution was the brightest with a mean absolute blue magnitude of –19.25. The IIP distribution was the dimmest at –16.75.

  10. From Hubble's NGSL to Absolute Fluxes

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  11. Computer processing of spectrograms for absolute intensities.

    PubMed

    Guttman, A; Golden, J; Galbraith, H J

    1967-09-01

    A computer program was developed to process photographically recorded spectra for absolute intensity. Test and calibration films are subjected to densitometric scans that provide digitally recorded densities on magnetic tapes. The nonlinear calibration data are fitted by least-squares cubic polynomials to yield a good approximation to the monochromatic H&D curves for commonly used emulsions (2475 recording film, Royal-X, Tri-X, 4-X). Several test cases were made. Results of these cases show that the machine processed absolute intensities are accurate to within 15%o. Arbitrarily raising the sensitivity threshold by 0.1 density units above gross fog yields cubic polynomial fits to the H&D curves that are radiometrically accurate within 10%. In addition, curves of gamma vs wavelength for 2475, Tri-X, and 4-X emulsions were made. These data show slight evidence of the photographic Purkinje effect in the 2475 emulsion.

  12. Absolute magnitudes and kinematic properties of Cepheids.

    NASA Astrophysics Data System (ADS)

    Wilson, T. D.; Jefferys, W. H.; Barnes, T. G., III; Hawley, S. L.

    A maximum-likelihood statistical parallax analysis of classical Cepheids has been performed to determine the relative solar motion, Oort constants, velocity ellipsoid parameters, and zero points of the PL and PLC relations. The analysis is based upon 90 proper motions drawn from the list of Karimova and Pavlovskaya 1981 and upon the analytical approach of Hawley et al. 1986. The authors' results give a best estimate for the mean absolute magnitude of Cepheids at log P = 0.8 of = -3.46±0.33 mag. This estimate for the Cepheid absolute magnitude zero point is highly stable against refinements in the mathematical technique and against additional Cepheid proper motion data of quality similar to the existing proper motions. Improvement in this value will likely come only from a marked improvement in the quality of the Cepheid proper motions.

  13. [Absolute bioavailability of chlorpromazine, promazine and promethazine].

    PubMed

    Koytchev, R; Alken, R G; Kirkov, V; Neshev, G; Vagaday, M; Kunter, U

    1994-02-01

    The absolute bioavailability of the three phenothiazine neuroleptics, promazine (Sinophenin, CAS 58-40-2), chlorpromazine (Propaphenin, CAS 50-53-3) and promethazine (Prothazin, CAS 60-87-7) was tested in three single-dose cross-over studies. In each trial 12 to 14 healthy volunteers were enrolled. The single doses for promazine, promethazine and chlorpromazine were 100, 75 and 150 mg (orally) and 20, 50 and 50 mg (intravenously), resp. The serum concentrations of the three neuroleptics were measured by means of a selective HPLC-method. the distribution-free confidence intervals for the absolute bioavailability of the three phenothiazines were within 10.5 to 24.7% for chlorpromazine, 7.8 to 24.9% for promazine and 12.3 to 40% for promethazine. Promazine and chlorpromazine are pharmacokinetically very similar and differ substantially from promethazine.

  14. 237Np absolute delayed neutron yield measurements

    NASA Astrophysics Data System (ADS)

    Doré, D.; Ledoux, X.; Nolte, R.; Gagnon-Moisan, F.; Thulliez, L.; Litaize, O.; Roettger, S.; Serot, O.

    2017-09-01

    237Np absolute delayed neutron yields have been measured at different incident neutron energies from 1.5 to 16 MeV. The experiment was performed at the Physikalisch-Technische Bundesanstalt (PTB) facility where the Van de Graaff accelerator and the cyclotron CV28 delivered 9 different neutron energy beams using p+T, d+D and d+T reactions. The detection system is made up of twelve 3He tubes inserted into a polyethylene cylinder. In this paper, the experimental setup and the data analysis method are described. The evolution of the absolute DN yields as a function of the neutron incident beam energies are presented and compared to experimental data found in the literature and data from the libraries.

  15. Asteroid absolute magnitudes and slope parameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1991-01-01

    A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.

  16. Probing absolute spin polarization at the nanoscale.

    PubMed

    Eltschka, Matthias; Jäck, Berthold; Assig, Maximilian; Kondrashov, Oleg V; Skvortsov, Mikhail A; Etzkorn, Markus; Ast, Christian R; Kern, Klaus

    2014-12-10

    Probing absolute values of spin polarization at the nanoscale offers insight into the fundamental mechanisms of spin-dependent transport. Employing the Zeeman splitting in superconducting tips (Meservey-Tedrow-Fulde effect), we introduce a novel spin-polarized scanning tunneling microscopy that combines the probing capability of the absolute values of spin polarization with precise control at the atomic scale. We utilize our novel approach to measure the locally resolved spin polarization of magnetic Co nanoislands on Cu(111). We find that the spin polarization is enhanced by 65% when increasing the width of the tunnel barrier by only 2.3 Å due to the different decay of the electron orbitals into vacuum.

  17. Amaryllidaceae alkaloids: Absolute configuration and biological activity.

    PubMed

    Cimmino, Alessio; Masi, Marco; Evidente, Marco; Superchi, Stefano; Evidente, Antonio

    2017-09-01

    Plants belonging to the Amaryllidaceae family are well known for their ornamental and medicinal use. Plant members of this group are distributed through both tropical and subtropical regions of the world and are dominant in Andean South America, the Mediterranean basin, and southern Africa. Amaryllidaceae plants have been demonstrated to be a good source of alkaloids with a large spectrum of biological activities, the latter being strictly related to the absolute stereochemistry of the alkaloid scaffold. Among them, great importance for practical applications in medicine has galanthamine, which has already spawned an Alzheimer's prescription drug as a potent and selective inhibitor of the enzyme acetylcholinesterase. Furthermore, lycorine as well as its related isocarbostyryl analogs narciclasine and pancratistatine have shown a strong anticancer activity in vitro against different solid tumors with malignant prognosis. This review addresses the assignment of the absolute configuration of several Amaryllidaceae alkaloids and its relationship with their biological activities. © 2017 Wiley Periodicals, Inc.

  18. An absolute measure for a key currency

    NASA Astrophysics Data System (ADS)

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  19. Consistent thermostatistics forbids negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Dunkel, Jörn; Hilbert, Stefan

    2014-01-01

    Over the past 60 years, a considerable number of theories and experiments have claimed the existence of negative absolute temperature in spin systems and ultracold quantum gases. This has led to speculation that ultracold gases may be dark-energy analogues and also suggests the feasibility of heat engines with efficiencies larger than one. Here, we prove that all previous negative temperature claims and their implications are invalid as they arise from the use of an entropy definition that is inconsistent both mathematically and thermodynamically. We show that the underlying conceptual deficiencies can be overcome if one adopts a microcanonical entropy functional originally derived by Gibbs. The resulting thermodynamic framework is self-consistent and implies that absolute temperature remains positive even for systems with a bounded spectrum. In addition, we propose a minimal quantum thermometer that can be implemented with available experimental techniques.

  20. Absolute and relative dosimetry for ELIMED

    NASA Astrophysics Data System (ADS)

    Cirrone, G. A. P.; Cuttone, G.; Candiano, G.; Carpinelli, M.; Leonora, E.; Lo Presti, D.; Musumarra, A.; Pisciotta, P.; Raffaele, L.; Randazzo, N.; Romano, F.; Schillaci, F.; Scuderi, V.; Tramontana, A.; Cirio, R.; Marchetto, F.; Sacchi, R.; Giordanengo, S.; Monaco, V.

    2013-07-01

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  1. Silicon Absolute X-Ray Detectors

    SciTech Connect

    Seely, John F.; Korde, Raj; Sprunck, Jacob; Medjoubi, Kadda; Hustache, Stephanie

    2010-06-23

    The responsivity of silicon photodiodes having no loss in the entrance window, measured using synchrotron radiation in the 1.75 to 60 keV range, was compared to the responsivity calculated using the silicon thickness measured using near-infrared light. The measured and calculated responsivities agree with an average difference of 1.3%. This enables their use as absolute x-ray detectors.

  2. The absolute dynamic ocean topography (ADOT)

    NASA Astrophysics Data System (ADS)

    Bosch, Wolfgang; Savcenko, Roman

    The sea surface slopes relative to the geoid (an equipotential surface) basically carry the in-formation on the absolute velocity field of the surface circulation. Pure oceanographic models may remain unspecific with respect to the absolute level of the ocean topography. In contrast, the geodetic approach to estimate the ocean topography as difference between sea level and the geoid gives by definition an absolute dynamic ocean topography (ADOT). This approach requires, however, a consistent treatment of geoid and sea surface heights, the first being usually derived from a band limited spherical harmonic series of the Earth gravity field and the second observed with much higher spectral resolution by satellite altimetry. The present contribution shows a procedure for estimating the ADOT along the altimeter profiles, preserving as much sea surface height details as the consistency w.r.t. the geoid heights will allow. The consistent treatment at data gaps and the coast is particular demanding and solved by a filter correction. The ADOT profiles are inspected for their innocent properties towards the coast and compared to external estimates of the ocean topography or the velocity field of the surface circulation as derived, for example, by ARGO floats.

  3. Measurement of absolute gravity acceleration in Firenze

    NASA Astrophysics Data System (ADS)

    de Angelis, M.; Greco, F.; Pistorio, A.; Poli, N.; Prevedelli, M.; Saccorotti, G.; Sorrentino, F.; Tino, G. M.

    2011-01-01

    This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0) μGal and (980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  4. Chemical composition of French mimosa absolute oil.

    PubMed

    Perriot, Rodolphe; Breme, Katharina; Meierhenrich, Uwe J; Carenini, Elise; Ferrando, Georges; Baldovini, Nicolas

    2010-02-10

    Since decades mimosa (Acacia dealbata) absolute oil has been used in the flavor and perfume industry. Today, it finds an application in over 80 perfumes, and its worldwide industrial production is estimated five tons per year. Here we report on the chemical composition of French mimosa absolute oil. Straight-chain analogues from C6 to C26 with different functional groups (hydrocarbons, esters, aldehydes, diethyl acetals, alcohols, and ketones) were identified in the volatile fraction. Most of them are long-chain molecules: (Z)-heptadec-8-ene, heptadecane, nonadecane, and palmitic acid are the most abundant, and constituents such as 2-phenethyl alcohol, methyl anisate, and ethyl palmitate are present in smaller amounts. The heavier constituents were mainly triterpenoids such as lupenone and lupeol, which were identified as two of the main components. (Z)-Heptadec-8-ene, lupenone, and lupeol were quantified by GC-MS in SIM mode using external standards and represents 6%, 20%, and 7.8% (w/w) of the absolute oil. Moreover, odorant compounds were extracted by SPME and analyzed by GC-sniffing leading to the perception of 57 odorant zones, of which 37 compounds were identified by their odorant description, mass spectrum, retention index, and injection of the reference compound.

  5. System for absolute measurements by interferometric sensors

    NASA Astrophysics Data System (ADS)

    Norton, Douglas A.

    1993-03-01

    The most common problem of interferometric sensors is their inability to measure absolute path imbalance. Presented in this paper is a signal processing system that gives absolute, unambiguous reading of optical path difference for almost any style of interferometric sensor. Key components are a wide band (incoherent) optical source, a polychromator, and FFT electronics. Advantages include no moving parts in the signal processor, no active components at the sensor location, and the use of standard single mode fiber for sensor illumination and signal transmission. Actual absolute path imbalance of the interferometer is determined without using fringe counting or other inferential techniques. The polychromator extracts the interference information that occurs at each discrete wavelength within the spectral band of the optical source. The signal processing consists of analog and digital filtering, Fast Fourier analysis, and a peak detection and interpolation algorithm. This system was originally designed for use in a remote pressure sensing application that employed a totally passive fiber optic interferometer. A performance qualification was made using a Fabry-Perot interferometer and a commercially available laser interferometer to measure the reference displacement.

  6. Negative absolute temperature for mobile particles

    NASA Astrophysics Data System (ADS)

    Braun, Simon; Ronzheimer, Philipp; Schreiber, Michael; Hodgman, Sean; Bloch, Immanuel; Schneider, Ulrich

    2013-05-01

    Absolute temperature is usually bound to be strictly positive. However, negative absolute temperature states, where the occupation probability of states increases with their energy, are possible in systems with an upper energy bound. So far, such states have only been demonstrated in localized spin systems with finite, discrete spectra. We realized a negative absolute temperature state for motional degrees of freedom with ultracold bosonic 39K atoms in an optical lattice, by implementing the attractive Bose-Hubbard Hamiltonian. This new state strikingly revealed itself by a quasimomentum distribution that is peaked at maximum kinetic energy. The measured kinetic energy distribution and the extracted negative temperature indicate that the ensemble is close to degeneracy, with coherence over several lattice sites. The state is as stable as a corresponding positive temperature state: The negative temperature stabilizes the system against mean-field collapse driven by negative pressure. Negative temperatures open up new parameter regimes for cold atoms, enabling fundamentally new many-body states. Additionally, they give rise to several counterintuitive effects such as heat engines with above unity efficiency.

  7. Effective light absorption and absolute electron transport rates in the coral Pocillopora damicornis.

    PubMed

    Szabó, Milán; Wangpraseurt, Daniel; Tamburic, Bojan; Larkum, Anthony W D; Schreiber, Ulrich; Suggett, David J; Kühl, Michael; Ralph, Peter J

    2014-10-01

    Pulse Amplitude Modulation (PAM) fluorometry has been widely used to estimate the relative photosynthetic efficiency of corals. However, both the optical properties of intact corals as well as past technical constrains to PAM fluorometers have prevented calculations of the electron turnover rate of PSII. We used a new Multi-colour PAM (MC-PAM) in parallel with light microsensors to determine for the first time the wavelength-specific effective absorption cross-section of PSII photochemistry, σII(λ), and thus PAM-based absolute electron transport rates of the coral photosymbiont Symbiodinium both in culture and in hospite in the coral Pocillopora damicornis. In both cases, σII of Symbiodinium was highest in the blue spectral region and showed a progressive decrease towards red wavelengths. Absolute values for σII at 440 nm were up to 1.5-times higher in culture than in hospite. Scalar irradiance within the living coral tissue was reduced by 20% in the blue when compared to the incident downwelling irradiance. Absolute electron transport rates of P. damicornis at 440 nm revealed a maximum PSII turnover rate of ca. 250 electrons PSII(-1) s(-1), consistent with one PSII turnover for every 4 photons absorbed by PSII; this likely reflects the limiting steps in electron transfer between PSII and PSI. Our results show that optical properties of the coral host strongly affect light use efficiency of Symbiodinium. Therefore, relative electron transport rates do not reflect the productivity rates (or indeed how the photosynthesis-light response is parameterised). Here we provide a non-invasive approach to estimate absolute electron transport rates in corals. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. Engineered photosynthetic bacteria, method of manufacture of biofuels

    DOEpatents

    Laible, Philip D.; Snyder, Seth W.

    2016-09-13

    The invention provides for a novel type of biofuel; a method for cleaving anchors from photosynthetic organisms; and a method for producing biofuels using photosynthetic organisms, the method comprising identifying photosynthesis co-factors and their anchors in the organisms; modifying the organisms to increase production of the anchors; accumulating biomass of the organisms in growth media; and harvesting the anchors.

  9. Heliosynthesis: A solar biotechnology based on direct bioconversion of solar energy by photosynthetic cells

    NASA Astrophysics Data System (ADS)

    Gudin, C.

    1982-12-01

    Certain limiting aspects of current technology should be studied, such as the lifetimes of tubing material and the utilization of renewable sources of energy for pumping. Only exocellular or cellular biomass with high specific value, involving small markets and small plant areas (less than 1 ha), will be economically possible for the short term and will allow improvement of this technology. A valorization of the totality of photosynthetic biomass with respect to economics and energy is an absolute necessity. There is an immediate need for genetic studies of microalgae that will allow enhancement or even creation of chemical production satisfying economic and energy needs. Such efforts should permit the rapid establishment of an aggressive and sophisticated solar biotechnology that integrates scientific and technical' developments to meet the new needs of humanity for food, chemicals, and energy, thereby complementing agriculture with a sort of cellular horticulture.

  10. Cytochrome c-553 is not required for photosynthetic activity in the cyanobacterium Synechococcus.

    PubMed Central

    Laudenbach, D E; Herbert, S K; McDowell, C; Fork, D C; Grossman, A R; Straus, N A

    1990-01-01

    In cyanobacteria, the water-soluble cytochrome c-553 functions as a mobile carrier of electrons between the membrane-bound cytochrome b6-f complex and P-700 reaction centers of Photosystem I. The structural gene for cytochrome c-553 (designated cytA) of the cyanobacterium Synechococcus sp. PCC 7942 was cloned, and the deduced amino acid sequence was shown to be similar to known cyanobacterial cytochrome c-553 proteins. A deletion mutant was constructed that had no detectable cytochrome c-553 based on spectral analyses and tetramethylbenzidine-hydrogen peroxide staining of proteins resolved by polyacrylamide gel electrophoresis. The mutant strain was not impaired in overall photosynthetic activity. However, this mutant exhibited a decreased efficiency of cytochrome f oxidation. These results indicate that cytochrome c-553 is not an absolute requirement for reducing Photosystem I reaction centers in Synechococcus sp. PCC 7942. PMID:1967057

  11. PTERIDINES AND THE FUNCTION OF THE PHOTOSYNTHETIC REACTION CENTER*

    PubMed Central

    Fuller, R. C.; Nugent, N. A.

    1969-01-01

    The photoreduction and interaction with the photosynthetic “reaction center” of 2-amino,4-hydroxy-6-substituted pteridine indicates that these low-potential (∼ -0.7 v), naturally occurring compounds play a primary role in photosynthetic electron transport. These unconjugated pteridines, which occur in association with the photosynthetic apparatus of green plants and photosynthetic bacteria, can be reduced by light in the presence of a bacterial chromatophore fraction from the dihydro form to the tetrahydro form. 6,7-Dimethyl-tetrahydropteridine readily reduces spinach ferredoxin. This compound also specifically interacts with reaction-center chlorophyll and bacteriochlorophyll and produces spectral shifts similar to those produced by light. It is proposed that the electron produced by excited-state chlorophyll is captured and separated by a pteridine at -0.67 v at the photosynthetic reaction center. PMID:5260934

  12. Determination of photosynthetic parameters in two seawater-tolerant vegetables

    NASA Astrophysics Data System (ADS)

    Qiu, Nianwei; Zhou, Feng; Liu, Qian; Zhao, Wenqian

    2016-03-01

    It is difficult to determine the photosynthetic parameters of non-flat leaves/green stems using photosynthetic instruments, due to the unusual morphology of both organs, especially for Suaeda salsa and Salicornia bigelovii as two seawater-tolerant vegetables. To solve the problem, we developed a simple, practical, and effective method to measure and calculate the photosynthetic parameters (such as P N, g s, E) based on unit fresh mass, instead of leaf area. The light/CO2/temperature response curves of the plants can also be measured by this method. This new method is more effective, stable, and reliable than conventional methods for plants with non-flat leaves. In addition, the relative notes on measurements and calculation of photosynthetic parameters were discussed in this paper. This method solves technical difficulties in photosynthetic parameter determination of the two seawater-tolerant vegetables and similar plants.

  13. Morning reduction of photosynthetic capacity before midday depression

    PubMed Central

    Koyama, Kohei; Takemoto, Shuhei

    2014-01-01

    Midday depression of photosynthesis has important consequences for ecosystem carbon exchange. Recent studies of forest trees have demonstrated that latent reduction of photosynthetic capacity can begin in the early morning, preceding the midday depression. We investigated whether such early morning reduction also occurs in an herbaceous species, Oenothera biennis. Diurnal changes of the photosynthetic light response curve (measured using a light-emitting diode) and incident sunlight intensity were measured under field conditions. The following results were obtained: (1) the light-saturated photosynthetic rate decreased beginning at sunrise; (2) the incident sunlight intensity on the leaves increased from sunrise; and (3) combining (1) and (2), the net photosynthetic rate under natural sunlight intensity increased from sunrise, reached a maximum at mid-morning, and then showed midday depression. Our results demonstrate that the latent morning reduction of photosynthetic capacity begins at sunrise, preceding the apparent midday depression, in agreement with previous studies of forest trees. PMID:24633128

  14. [Influence of photosynthetic parameters on leaf longevity].

    PubMed

    Vasfilov, S P

    2015-01-01

    Higher plants show a wide range of leaf lifespan (LL) variability. LL is calculated as a sum of functional LL(f) (corresponding to the time of active photosynthesis and CO2 accumulation in the leaf) and nonfunctional LL(n) (the time of photosynthetic activity absence). For evergreen species of boreal zones, LL(n) corresponds to the period of winter rest. Photosynthetic potential of leaf (PPL), interpreted as the maximum possible amount of CO2 that can be fixed during its life, can be estimated on the basis of maximum photosynthesis rate (P(a)) dynamics during LL(f); the maximum (P(a max)) being achieved in mature leaf. Photosynthetic potential depends on LL(f) more strongly than on P(a max). The PPL/LL(f) ratio is indicative of the rate of PPL realization over leaf lifespan. As LL(f) shows strong positive correlation with LL, the latter parameter can also characterize the rate of PPL realization. Long LL(f) in evergreen species provides higher PPL, which is advantageous by comparison with deciduous ones. In evergreen species, the PPL itself is realized slower than in deciduous ones. The increase in LL(f) and LL is accompanied by the increase in leaf constructional cost (LCC(a)) as well as the decrease in photosynthesis rate. At that, photosynthesis rate per unit of dry weight (P(m)) decreases much faster than that per unit of leaf area (P(a)). Apparently, when considering dry leaf weight, the apoplast share seems to be much higher in long-living leaves of evergreen species than in short-living leaves of deciduous species. The leaf payback (LP) may be stabilized by unidirectional shifts in PPL and LCC(a). Species with short/long LL(f) and high/low PPL realization rate are typical for early/late succession stages and for habitats with the environmental conditions favorable/adverse for photosynthesis and growth. If the conditions for photosynthesis and growth are favorable, high PPL realization rate provides advantage in competition. The PPL realization rate is

  15. Diversity and abundance of photosynthetic sponges in temperate Western Australia

    PubMed Central

    Lemloh, Marie-Louise; Fromont, Jane; Brümmer, Franz; Usher, Kayley M

    2009-01-01

    Background Photosynthetic sponges are important components of reef ecosystems around the world, but are poorly understood. It is often assumed that temperate regions have low diversity and abundance of photosynthetic sponges, but to date no studies have investigated this question. The aim of this study was to compare the percentages of photosynthetic sponges in temperate Western Australia (WA) with previously published data on tropical regions, and to determine the abundance and diversity of these associations in a range of temperate environments. Results We sampled sponges on 5 m belt transects to determine the percentage of photosynthetic sponges and identified at least one representative of each group of symbionts using 16S rDNA sequencing together with microscopy techniques. Our results demonstrate that photosynthetic sponges are abundant in temperate WA, with an average of 63% of sponge individuals hosting high levels of photosynthetic symbionts and 11% with low to medium levels. These percentages of photosynthetic sponges are comparable to those found on tropical reefs and may have important implications for ecosystem function on temperate reefs in other areas of the world. A diverse range of symbionts sometimes occurred within a small geographic area, including the three "big" cyanobacterial clades, Oscillatoria spongeliae, "Candidatus Synechococcus spongiarum" and Synechocystis species, and it appears that these clades all occur in a wide range of sponges. Additionally, spongin-permeating red algae occurred in at least 7 sponge species. This study provides the first investigation of the molecular phylogeny of rhodophyte symbionts in sponges. Conclusion Photosynthetic sponges are abundant and diverse in temperate WA, with comparable percentages of photosynthetic to non-photosynthetic sponges to tropical zones. It appears that there are three common generalist clades of cyanobacterial symbionts of sponges which occur in a wide range of sponges in a wide range

  16. Molecular crowding and order in photosynthetic membranes.

    PubMed

    Kirchhoff, Helmut

    2008-05-01

    The integrity and maintenance of the photosynthetic apparatus in thylakoid membranes of higher plants requires lateral mobility of their components between stacked grana thylakoids and unstacked stroma lamellae. Computer simulations based on realistic protein densities suggest serious problems for lateral protein and plastoquinone diffusion especially in grana membranes, owing to strong retardation by protein complexes. It has been suggested that three structural features of grana thylakoids ensure efficient lateral transport: the organization of protein complexes into supercomplexes; the arrangement of supercomplexes into structured assemblies, which facilitates diffusion process in crowded membranes; the limitation of the diameter of grana discs to less than approximately 500 nm, which keeps diffusion times short enough to support regulation of light harvesting and repair of photodamaged photosystem II.

  17. [An efficient mutational method for photosynthetic bacteria].

    PubMed

    Lin, J Q; Xiao, M; Long, M T; Han, B; Quian, W; Du, J

    2006-01-01

    The pigment and auxotrophic mutants of Rhodobacter sphaeroides Y6 were obtained by treatment with ethyl methanesulfonate (EMS) followed by lithium chloride (LiCI). Treatment with 0.081 M EPS and subsequent treatment with 0.071 M LiCI resulted in 12% higher frequency of pigment mutations than application of 0.081 M EMS alone; the frequency of auxotrophic mutations increased 2.5-fold when treatment with lithium chloride was applied. A blue shift 10 nm was recorded in the absorption spectrum of carotenoids form YM5-3 green mutant; considerable accumulation of neurosporine was revealed by HPLC and mass spectrometry. The method is efficient for isolating mutants of photosynthetic bacteria.

  18. Antenna organization in green photosynthetic bacteria

    SciTech Connect

    Blankenship, R.E.

    1987-01-01

    This project is concerned with the structure and function of the unique antenna system found in the green photosynthetic bacteria. The antenna system in these organisms is contained within a vesicle known as a chlorosome, which is attached to the cytoplasmic side of the cell membrane. Additional antenna pigments and reaction centers are contained in integral membrane proteins. Energy absorbed by the bacteriochlorophyll c (BChl c) pigments in the chlorosome is transferred via a baseplate'' array of BChl a antenna pigments into the membrane and to the reaction center. A schematic model of chlorosome structure is shown. This project is aimed at increasing our understanding of the organization of the pigments in the chlorosome and how the antenna system functions.

  19. Photosynthetic Machineries in Nano-Systems

    PubMed Central

    Nagy, László; Magyar, Melinda; Szabó, Tibor; Hajdu, Kata; Giotta, Livia; Dorogi, Márta; Milano, Francesco

    2014-01-01

    Photosynthetic reaction centres are membrane-spanning proteins, found in several classes of autotroph organisms, where a photoinduced charge separation and stabilization takes place with a quantum efficiency close to unity. The protein remains stable and fully functional also when extracted and purified in detergents thereby biotechnological applications are possible, for example, assembling it in nano-structures or in optoelectronic systems. Several types of bionanocomposite materials have been assembled by using reaction centres and different carrier matrices for different purposes in the field of light energy conversion (e.g., photovoltaics) or biosensing (e.g., for specific detection of pesticides). In this review we will summarize the current status of knowledge, the kinds of applications available and the difficulties to be overcome in the different applications. We will also show possible research directions for the close future in this specific field. PMID:24678673

  20. Phytoplankton strategies for photosynthetic energy allocation.

    PubMed

    Halsey, Kimberly H; Jones, Bethan M

    2015-01-01

    Phytoplankton physiology is dynamic and highly responsive to the environment. Phytoplankton acclimate to changing environmental conditions by a complex reallocation of carbon and energy through metabolic pathways to optimize growth. Considering the tremendous diversity of phytoplankton, it is not surprising that different phytoplankton taxa use different strategies to partition carbon and energy resources. It has therefore been satisfying to discover that general principles of energetic stoichiometry appear to govern these complex processes and can be broadly applied to interpret phytoplankton distributions, productivity, and food web dynamics. The expectation of future changes in aquatic environments brought on by climate change warrants gathering knowledge about underlying patterns of photosynthetic energy allocation and their impacts on community structure and ecosystem productivity.

  1. Structural basis of photosynthetic water-splitting

    SciTech Connect

    Shen, Jian-Ren; Kawakami, Keisuke; Kamiya, Nobuo

    2013-12-10

    Photosynthetic water-splitting takes place in photosystem II (PSII), a membrane protein complex consisting of 20 subunits with an overall molecular mass of 350 kDa. The light-induced water-splitting reaction catalyzed by PSII not only converts light energy into biologically useful chemical energy, but also provides us with oxygen indispensible for sustaining oxygenic life on the earth. We have solved the structure of PSII at a 1.9 Å resolution, from which, the detailed structure of the Mn{sub 4}CaO{sub 5}-cluster, the catalytic center for water-splitting, became clear. Based on the structure of PSII at the atomic resolution, possible mechanism of light-induced water-splitting was discussed.

  2. Phytoplankton Strategies for Photosynthetic Energy Allocation

    NASA Astrophysics Data System (ADS)

    Halsey, Kimberly H.; Jones, Bethan M.

    2015-01-01

    Phytoplankton physiology is dynamic and highly responsive to the environment. Phytoplankton acclimate to changing environmental conditions by a complex reallocation of carbon and energy through metabolic pathways to optimize growth. Considering the tremendous diversity of phytoplankton, it is not surprising that different phytoplankton taxa use different strategies to partition carbon and energy resources. It has therefore been satisfying to discover that general principles of energetic stoichiometry appear to govern these complex processes and can be broadly applied to interpret phytoplankton distributions, productivity, and food web dynamics. The expectation of future changes in aquatic environments brought on by climate change warrants gathering knowledge about underlying patterns of photosynthetic energy allocation and their impacts on community structure and ecosystem productivity.

  3. Mapping the spectral variability in photosynthetic and non-photosynthetic vegetation, soils, and shade using AVIRIS

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Smith, Milton O.; Sabol, Donald E.; Adams, John B.; Ustin, Susan L.

    1992-01-01

    The primary objective of this research was to map as many spectrally distinct types of green vegetation (GV), non-photosynthetic vegetation (NPV), shade, and soil (endmembers) in an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) scene as is warranted by the spectral variability of the data. Once determined, a secondary objective was to interpret these endmembers and their abundances spatially and spectrally in an ecological context.

  4. [Effect of enhanced UV-B radiation on photosynthetic structure and photosynthetic characteristics of Mentha piperita].

    PubMed

    Wu, Nengbiao; Ma, Hongqun; Hu, Litao; Hong, Hong; Sun, Jinchun; Zhang, Yanghuan; Dai, Dalin

    2009-12-01

    To reveal the effects of UV-B radiation on the growth of medical plant Mentha piperita, simulate an enhanced UV-B radiation and evaluate intensity of radiation on the photosynthesis of M. piperita. Three different levels of UV-B radiation were set in the experiment which included: natural light control (0 W x m(-2)), light UV-B radiation stress (0.15 W x m(-2)) and heavy UV-B radiation stress (0.35 W x m(-2)). The chloroplast ultrastructure, photosynthesis indexes and chlorophyll fluorescence parameters of the M. piperita were observed under the three treatments. Although the chloroplast ultrastructure was destroyed to some degree under the light UV-B radiation stress, F(v)/(F)m, F(v)/F(o), qP, phiPS II and ETR could resume to the comparative level of natural light control. At the same time, qN increased firstly and decreased thereafter. But under the high strength UV-B radiation stress, the photosynthetic structures were badly destroyed, which could not recover through protecting mechanism by itself. It was showed that M. piperita was able to protect photosynthetic structures by increasing respiration and dissipation when photosynthetic capacity reduced under light UV-B radiation stress. It is demonstrated that M. piperita has high adaptation to light UV-B radiation stress, which is kind of promising medical plant for area with higher UV-B radiation.

  5. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; hide

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  6. Clock time is absolute and universal

    NASA Astrophysics Data System (ADS)

    Shen, Xinhang

    2015-09-01

    A critical error is found in the Special Theory of Relativity (STR): mixing up the concepts of the STR abstract time of a reference frame and the displayed time of a physical clock, which leads to use the properties of the abstract time to predict time dilation on physical clocks and all other physical processes. Actually, a clock can never directly measure the abstract time, but can only record the result of a physical process during a period of the abstract time such as the number of cycles of oscillation which is the multiplication of the abstract time and the frequency of oscillation. After Lorentz Transformation, the abstract time of a reference frame expands by a factor gamma, but the frequency of a clock decreases by the same factor gamma, and the resulting multiplication i.e. the displayed time of a moving clock remains unchanged. That is, the displayed time of any physical clock is an invariant of Lorentz Transformation. The Lorentz invariance of the displayed times of clocks can further prove within the framework of STR our earth based standard physical time is absolute, universal and independent of inertial reference frames as confirmed by both the physical fact of the universal synchronization of clocks on the GPS satellites and clocks on the earth, and the theoretical existence of the absolute and universal Galilean time in STR which has proved that time dilation and space contraction are pure illusions of STR. The existence of the absolute and universal time in STR has directly denied that the reference frame dependent abstract time of STR is the physical time, and therefore, STR is wrong and all its predictions can never happen in the physical world.

  7. Absolute Radiometric Calibration of EUNIS-06

    NASA Technical Reports Server (NTRS)

    Thomas, R. J.; Rabin, D. M.; Kent, B. J.; Paustian, W.

    2007-01-01

    The Extreme-Ultraviolet Normal-Incidence Spectrometer (EUNIS) is a soundingrocket payload that obtains imaged high-resolution spectra of individual solar features, providing information about the Sun's corona and upper transition region. Shortly after its successful initial flight last year, a complete end-to-end calibration was carried out to determine the instrument's absolute radiometric response over its Longwave bandpass of 300 - 370A. The measurements were done at the Rutherford-Appleton Laboratory (RAL) in England, using the same vacuum facility and EUV radiation source used in the pre-flight calibrations of both SOHO/CDS and Hinode/EIS, as well as in three post-flight calibrations of our SERTS sounding rocket payload, the precursor to EUNIS. The unique radiation source provided by the Physikalisch-Technische Bundesanstalt (PTB) had been calibrated to an absolute accuracy of 7% (l-sigma) at 12 wavelengths covering our bandpass directly against the Berlin electron storage ring BESSY, which is itself a primary radiometric source standard. Scans of the EUNIS aperture were made to determine the instrument's absolute spectral sensitivity to +- 25%, considering all sources of error, and demonstrate that EUNIS-06 was the most sensitive solar E W spectrometer yet flown. The results will be matched against prior calibrations which relied on combining measurements of individual optical components, and on comparisons with theoretically predicted 'insensitive' line ratios. Coordinated observations were made during the EUNIS-06 flight by SOHO/CDS and EIT that will allow re-calibrations of those instruments as well. In addition, future EUNIS flights will provide similar calibration updates for TRACE, Hinode/EIS, and STEREO/SECCHI/EUVI.

  8. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  9. Absolute Rate Theories of Epigenetic Stability

    NASA Astrophysics Data System (ADS)

    Walczak, Aleksandra M.; Onuchic, Jose N.; Wolynes, Peter G.

    2006-03-01

    Spontaneous switching events in most characterized genetic switches are rare, resulting in extremely stable epigenetic properties. We show how simple arguments lead to theories of the rate of such events much like the absolute rate theory of chemical reactions corrected by a transmission factor. Both the probability of the rare cellular states that allow epigenetic escape, and the transmission factor, depend on the rates of DNA binding and unbinding events and on the rates of protein synthesis and degradation. Different mechanisms of escape from the stable attractors occur in the nonadiabatic, weakly adiabatic and strictly adiabatic regimes, characterized by the relative values of those input rates.

  10. Absolute rate theories of epigenetic stability

    NASA Astrophysics Data System (ADS)

    Walczak, Aleksandra M.; Onuchic, José N.; Wolynes, Peter G.

    2005-12-01

    Spontaneous switching events in most characterized genetic switches are rare, resulting in extremely stable epigenetic properties. We show how simple arguments lead to theories of the rate of such events much like the absolute rate theory of chemical reactions corrected by a transmission factor. Both the probability of the rare cellular states that allow epigenetic escape and the transmission factor depend on the rates of DNA binding and unbinding events and on the rates of protein synthesis and degradation. Different mechanisms of escape from the stable attractors occur in the nonadiabatic, weakly adiabatic, and strictly adiabatic regimes, characterized by the relative values of those input rates. rate theory | stochastic gene expression | gene switches

  11. An absolute radius scale for Saturn's rings

    NASA Technical Reports Server (NTRS)

    Nicholson, Philip D.; Cooke, Maren L.; Pelton, Emily

    1990-01-01

    Radio and stellar occultation observations of Saturn's rings made by the Voyager spacecraft are discussed. The data reveal systematic discrepancies of almost 10 km in some parts of the rings, limiting some of the investigations. A revised solution for Saturn's rotation pole has been proposed which removes the discrepancies between the stellar and radio occultation profiles. Corrections to previously published radii vary from -2 to -10 km for the radio occultation, and +5 to -6 km for the stellar occultation. An examination of spiral density waves in the outer A Ring supports that the revised absolute radii are in error by no more than 2 km.

  12. Absolute method of measuring magnetic susceptibility

    USGS Publications Warehouse

    Thorpe, A.; Senftle, F.E.

    1959-01-01

    An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.

  13. Absolute Priority for a Vehicle in VANET

    NASA Astrophysics Data System (ADS)

    Shirani, Rostam; Hendessi, Faramarz; Montazeri, Mohammad Ali; Sheikh Zefreh, Mohammad

    In today's world, traffic jams waste hundreds of hours of our life. This causes many researchers try to resolve the problem with the idea of Intelligent Transportation System. For some applications like a travelling ambulance, it is important to reduce delay even for a second. In this paper, we propose a completely infrastructure-less approach for finding shortest path and controlling traffic light to provide absolute priority for an emergency vehicle. We use the idea of vehicular ad-hoc networking to reduce the imposed travelling time. Then, we simulate our proposed protocol and compare it with a centrally controlled traffic light system.

  14. Brownian motion: Absolute negative particle mobility

    NASA Astrophysics Data System (ADS)

    Ros, Alexandra; Eichhorn, Ralf; Regtmeier, Jan; Duong, Thanh Tu; Reimann, Peter; Anselmetti, Dario

    2005-08-01

    Noise effects in technological applications, far from being a nuisance, can be exploited with advantage - for example, unavoidable thermal fluctuations have found application in the transport and sorting of colloidal particles and biomolecules. Here we use a microfluidic system to demonstrate a paradoxical migration mechanism in which particles always move in a direction opposite to the net acting force (`absolute negative mobility') as a result of an interplay between thermal noise, a periodic and symmetric microstructure, and a biased alternating-current electric field. This counterintuitive phenomenon could be used for bioanalytical purposes, for example in the separation and fractionation of colloids, biological molecules and cells.

  15. Arbitrary segments of absolute negative mobility

    NASA Astrophysics Data System (ADS)

    Chen, Ruyin; Nie, Linru; Chen, Chongyang; Wang, Chaojie

    2017-01-01

    In previous research work, investigators have reported only one or two segments of absolute negative mobility (ANM) in a periodic potential. In fact, many segments of ANM also occur in the system considered here. We investigate transport of an inertial particle in a gating ratchet periodic potential subjected to a constant bias force. Our numerical results show that its mean velocity can decrease with the bias force increasing, i.e. ANM phenomenon. Furthermore, the ANM can take place arbitrary segments, even up to more than thirty. Intrinsic physical mechanism and conditions for arbitrary segments of ANM to occur are discussed in detail.

  16. Computing absolute and essential spectra using continuation

    NASA Astrophysics Data System (ADS)

    Rademacher, Jens D. M.; Sandstede, Björn; Scheel, Arnd

    2007-05-01

    A continuation approach to the computation of essential and absolute spectra of differential operators on the real line is presented. The advantages of this approach, compared with direct eigenvalue computations for the discretized operator, are the efficient and accurate computation of selected parts of the spectrum (typically those near the imaginary axis) and the option to compute nonlinear travelling waves and selected eigenvalues or other stability indicators simultaneously in order to locate accurately the onset to instability. We also discuss the implementation and usage of this approach with the software package AUTO and provide example computations for the FitzHugh-Nagumo and the complex Ginzburg-Landau equation.

  17. Absolute quantification of myocardial blood flow.

    PubMed

    Yoshinaga, Keiichiro; Manabe, Osamu; Tamaki, Nagara

    2016-07-21

    With the increasing availability of positron emission tomography (PET) myocardial perfusion imaging, the absolute quantification of myocardial blood flow (MBF) has become popular in clinical settings. Quantitative MBF provides an important additional diagnostic or prognostic information over conventional visual assessment. The success of MBF quantification using PET/computed tomography (CT) has increased the demand for this quantitative diagnostic approach to be more accessible. In this regard, MBF quantification approaches have been developed using several other diagnostic imaging modalities including single-photon emission computed tomography, CT, and cardiac magnetic resonance. This review will address the clinical aspects of PET MBF quantification and the new approaches to MBF quantification.

  18. Absolute and convective instabilities of shielded vortices

    NASA Astrophysics Data System (ADS)

    Sellier, Antoine; Montijn, Carolynne

    1999-11-01

    We investigate the spatial instability of a parallel and axisymmetric vortex by employing a Chebyshev spectral method. The three-parameters rotating flow, of axial velocity U=a+e^-r^2 and centrifugally unstable azimuthal velocity W=qre^-r^α, exhibits a cyclonic core surrounded by an anticyclonic ring (with zero total circulation [Carton and Legras, J. Fluid Mech. 267, 53 (1994)]). The absolute-convective transition curves are located in the a-q plane for different azimuthal wavenumbers m=0, ^+_-1, ^+_-2, Reynolds numbers and values of α. In the convectively unstable region, the sensitivity of the eigenfunction components to α is also discussed.

  19. Absolute rate theories of epigenetic stability

    PubMed Central

    Walczak, Aleksandra M.; Onuchic, José N.; Wolynes, Peter G.

    2005-01-01

    Spontaneous switching events in most characterized genetic switches are rare, resulting in extremely stable epigenetic properties. We show how simple arguments lead to theories of the rate of such events much like the absolute rate theory of chemical reactions corrected by a transmission factor. Both the probability of the rare cellular states that allow epigenetic escape and the transmission factor depend on the rates of DNA binding and unbinding events and on the rates of protein synthesis and degradation. Different mechanisms of escape from the stable attractors occur in the nonadiabatic, weakly adiabatic, and strictly adiabatic regimes, characterized by the relative values of those input rates. PMID:16361441

  20. Adaptation to Quantum Flux by the Emerson Photosynthetic Unit 1

    PubMed Central

    Sheridan, R. P.

    1972-01-01

    The size of the Emerson photosynthetic unit was measured in Chlorella pyrenoidosa strain no. 252 grown at light intensities between 50 and 1000 foot candles. The Emerson photosynthetic unit changed from a minimum size of 1970 molecules chlorophyll a + b/O2 per flash in cells grown at 1000 foot candles to a maximum size of 3150 molecules chlorophyll a + b/O2 per flash for cells grown at 50 foot candles. The size changes were interpreted as a partial adaptation where the trapping center antenna responded to changes in incident light intensity. Light-induced changes in chlorophyll content and size of the Emerson photosynthetic unit were directly related. Two strains of Chlorella pyrenoidosa adapted by growth to 500 foot candles were then illuminated at the reduced light intensity of 50 foot candles. Emerson photosynthetic unit size (Emerson strain) increased from 2110 molecules Chlorophyll a + b/O2 per flash at time zero to a maximum size of 3160 after 65 hours at 50 foot candles. The Emerson photosynthetic unit size for strain 252 transferred from 500 to 50 foot candles was 2260 at zero hours and 3650 after 50 hours at 50 foot candles. Emerson photosynthetic unit sizes for similar cultures which remained at 500 foot candles were almost constant in size. Oxygen yield per flash per cell was nearly constant whereas Emerson photosynthetic unit size increased in cells moved to the reduced incident light intensity. PMID:16658173

  1. Swarm's Absolute Scalar Magnetometers Burst Mode Results

    NASA Astrophysics Data System (ADS)

    Coisson, P.; Vigneron, P.; Hulot, G.; Crespo Grau, R.; Brocco, L.; Lalanne, X.; Sirol, O.; Leger, J. M.; Jager, T.; Bertrand, F.; Boness, A.; Fratter, I.

    2014-12-01

    Each of the three Swarm satellites embarks an Absolute Scalar Magnetometer (ASM) to provide absolute scalar measurements of the magnetic field with high accuracy and stability. Nominal data acquisition of these ASMs is 1 Hz. But they can also run in a so-called "burst mode" and provide data at 250 Hz. During the commissioning phase of the mission, seven burst mode acquisition campaigns have been run simultaneously for all satellites, obtaining a total of ten days of burs-mode data. These campaigns allowed the identification of issues related to the operations of the piezo-electric motor and the heaters connected to the ASM, that do not impact the nominal 1 Hz scalar data. We analyze the burst mode data to identify high frequency geomagnetic signals, focusing the analysis in two regions: the low latitudes, where we seek signatures of ionospheric irregularities, and the high latitudes, to identify high frequency signals related to polar region currents. Since these campaigns have been conducted during the initial months of the mission, the three satellites where still close to each other, allowing to analyze the spatial coherency of the signals. Wavelet analysis have revealed 31 Hz signals appearing in the night-side in the equatorial region.

  2. Why to compare absolute numbers of mitochondria.

    PubMed

    Schmitt, Sabine; Schulz, Sabine; Schropp, Eva-Maria; Eberhagen, Carola; Simmons, Alisha; Beisker, Wolfgang; Aichler, Michaela; Zischka, Hans

    2014-11-01

    Prompted by pronounced structural differences between rat liver and rat hepatocellular carcinoma mitochondria, we suspected these mitochondrial populations to differ massively in their molecular composition. Aiming to reveal these mitochondrial differences, we came across the issue on how to normalize such comparisons and decided to focus on the absolute number of mitochondria. To this end, fluorescently stained mitochondria were quantified by flow cytometry. For rat liver mitochondria, this approach resulted in mitochondrial protein contents comparable to earlier reports using alternative methods. We determined similar protein contents for rat liver, heart and kidney mitochondria. In contrast, however, lower protein contents were determined for rat brain mitochondria and for mitochondria from the rat hepatocellular carcinoma cell line McA 7777. This result challenges mitochondrial comparisons that rely on equal protein amounts as a typical normalization method. Exemplarily, we therefore compared the activity and susceptibility toward inhibition of complex II of rat liver and hepatocellular carcinoma mitochondria and obtained significant discrepancies by either normalizing to protein amount or to absolute mitochondrial number. Importantly, the latter normalization, in contrast to the former, demonstrated a lower complex II activity and higher susceptibility toward inhibition in hepatocellular carcinoma mitochondria compared to liver mitochondria. These findings demonstrate that solely normalizing to protein amount may obscure essential molecular differences between mitochondrial populations. Copyright © 2014 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  3. [Estimation of absolute risk for fracture].

    PubMed

    Fujiwara, Saeko

    2009-03-01

    Osteoporosis treatment aims to prevent fractures and maintain the QOL of the elderly. However, persons at high risk of future fracture cannot be effectively identified on the basis of bone density (BMD) alone, although BMD is used as an diagnostic criterion. Therefore, the WHO recommended that absolute risk for fracture (10-year probability of fracture) for each individual be evaluated and used as an index for intervention threshold. The 10-year probability of fracture is calculated based on age, sex, BMD at the femoral neck (body mass index if BMD is not available), history of previous fractures, parental hip fracture history, smoking, steroid use, rheumatoid arthritis, secondary osteoporosis and alcohol consumption. The WHO has just announced the development of a calculation tool (FRAX: WHO Fracture Risk Assessment Tool) in February this year. Fractures could be prevented more effectively if, based on each country's medical circumstances, an absolute risk value for fracture to determine when to start medical treatment is established and persons at high risk of fracture are identified and treated accordingly.

  4. Absolute configuration of 7-epi-sesquithujene.

    PubMed

    Khrimian, Ashot; Cossé, Allard A; Crook, Damon J

    2011-06-24

    7-epi-sesquithujene (1) is a bicyclic sesquiterpene isolated from phoebe oil, an essential oil of the Brazilian walnut tree, Phoebe porosa. It is also produced by stressed ash trees and has been shown to elicit strong electrophysiological responses on emerald ash borer, Agrilus planipennis, antennae. In the course of the development of a synthetic 7-epi-sesquithujene lure for field testing against the emerald ash borer, we found that the absolute configuration of this compound had not been determined. We isolated >95% pure 7-epi-sesquithujene from phoebe oil via successive fractionation and conventional and argentation (HPLC) chromatographies. The specific optical rotation of this compound matched that of a synthetic product of known configuration. We also synthesized two other stereoisomers of sesquithujene and developed a chiral GC method to separate all four. Based on the specific rotation, stereoselective syntheses, and chiral GC analyses, 7-epi-sesquithujene present in phoebe oil and white ash was found to have the 2S,6S,7R absolute configuration.

  5. Standardization of the cumulative absolute velocity

    SciTech Connect

    O'Hara, T.F.; Jacobson, J.P. )

    1991-12-01

    EPRI NP-5930, A Criterion for Determining Exceedance of the Operating Basis Earthquake,'' was published in July 1988. As defined in that report, the Operating Basis Earthquake (OBE) is exceeded when both a response spectrum parameter and a second damage parameter, referred to as the Cumulative Absolute Velocity (CAV), are exceeded. In the review process of the above report, it was noted that the calculation of CAV could be confounded by time history records of long duration containing low (nondamaging) acceleration. Therefore, it is necessary to standardize the method of calculating CAV to account for record length. This standardized methodology allows consistent comparisons between future CAV calculations and the adjusted CAV threshold value based upon applying the standardized methodology to the data set presented in EPRI NP-5930. The recommended method to standardize the CAV calculation is to window its calculation on a second-by-second basis for a given time history. If the absolute acceleration exceeds 0.025g at any time during each one second interval, the earthquake records used in EPRI NP-5930 have been reanalyzed and the adjusted threshold of damage for CAV was found to be 0.16g-set.

  6. Linear ultrasonic motor for absolute gravimeter.

    PubMed

    Jian, Yue; Yao, Zhiyuan; Silberschmidt, Vadim V

    2017-02-01

    Thanks to their compactness and suitability for vacuum applications, linear ultrasonic motors are considered as substitutes for classical electromagnetic motors as driving elements in absolute gravimeters. Still, their application is prevented by relatively low power output. To overcome this limitation and provide better stability, a V-type linear ultrasonic motor with a new clamping method is proposed for a gravimeter. In this paper, a mechanical model of stators with flexible clamping components is suggested, according to a design criterion for clamps of linear ultrasonic motors. After that, an effect of tangential and normal rigidity of the clamping components on mechanical output is studied. It is followed by discussion of a new clamping method with sufficient tangential rigidity and a capability to facilitate pre-load. Additionally, a prototype of the motor with the proposed clamping method was fabricated and the performance tests in vertical direction were implemented. Experimental results show that the suggested motor has structural stability and high dynamic performance, such as no-load speed of 1.4m/s and maximal thrust of 43N, meeting the requirements for absolute gravimeters.

  7. Absolute stereochemistry of altersolanol A and alterporriols.

    PubMed

    Kanamaru, Saki; Honma, Miho; Murakami, Takanori; Tsushima, Taro; Kudo, Shinji; Tanaka, Kazuaki; Nihei, Ken-Ichi; Nehira, Tatsuo; Hashimoto, Masaru

    2012-02-01

    The absolute stereochemistry of altersolanol A (1) was established by observing a positive exciton couplet in the circular dichroism (CD) spectrum of the C3,C4-O-bis(2-naphthoyl) derivative 10 and by chemical correlations with known compound 8. Before the discussion, the relative stereochemistry of 1 was confirmed by X-ray crystallographic analysis. The shielding effect at C7'-OMe group by C1-O-benzoylation established the relative stereochemical relationship between the C8-C8' axial bonding and the C1-C4/C1'-C4' polyol moieties of alterporriols E (3), an atropisomer of the C8-C8' dimer of 1. As 3 could be obtained by dimerization of 1 in vitro, the absolute configuration of its central chirality elements (C1-C4) must be identical to those of 1. Spectral comparison between the experimental and theoretical CD spectra supported the above conclusion. Axial stereochemistry of novel C4-O-deoxy dimeric derivatives, alterporriols F (4) and G (5), were also revealed by comparison of their CD spectra to those of 2 and 3.

  8. The absolute threshold of cone vision

    PubMed Central

    Koeing, Darran; Hofer, Heidi

    2013-01-01

    We report measurements of the absolute threshold of cone vision, which has been previously underestimated due to sub-optimal conditions or overly strict subjective response criteria. We avoided these limitations by using optimized stimuli and experimental conditions while having subjects respond within a rating scale framework. Small (1′ fwhm), brief (34 msec), monochromatic (550 nm) stimuli were foveally presented at multiple intensities in dark-adapted retina for 5 subjects. For comparison, 4 subjects underwent similar testing with rod-optimized stimuli. Cone absolute threshold, that is, the minimum light energy for which subjects were just able to detect a visual stimulus with any response criterion, was 203 ± 38 photons at the cornea, ∼0.47 log units lower than previously reported. Two-alternative forced-choice measurements in a subset of subjects yielded consistent results. Cone thresholds were less responsive to criterion changes than rod thresholds, suggesting a limit to the stimulus information recoverable from the cone mosaic in addition to the limit imposed by Poisson noise. Results were consistent with expectations for detection in the face of stimulus uncertainty. We discuss implications of these findings for modeling the first stages of human cone vision and interpreting psychophysical data acquired with adaptive optics at the spatial scale of the receptor mosaic. PMID:21270115

  9. Absolute Electron Extraction Efficiency of Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Kamdin, Katayun; Mizrachi, Eli; Morad, James; Sorensen, Peter

    2016-03-01

    Dual phase liquid/gas xenon time projection chambers (TPCs) currently set the world's most sensitive limits on weakly interacting massive particles (WIMPs), a favored dark matter candidate. These detectors rely on extracting electrons from liquid xenon into gaseous xenon, where they produce proportional scintillation. The proportional scintillation from the extracted electrons serves to internally amplify the WIMP signal; even a single extracted electron is detectable. Credible dark matter searches can proceed with electron extraction efficiency (EEE) lower than 100%. However, electrons systematically left at the liquid/gas boundary are a concern. Possible effects include spontaneous single or multi-electron proportional scintillation signals in the gas, or charging of the liquid/gas interface or detector materials. Understanding EEE is consequently a serious concern for this class of rare event search detectors. Previous EEE measurements have mostly been relative, not absolute, assuming efficiency plateaus at 100%. I will present an absolute EEE measurement with a small liquid/gas xenon TPC test bed located at Lawrence Berkeley National Laboratory.

  10. Absolute Spectrophotometry of 237 Open Cluster Stars

    NASA Astrophysics Data System (ADS)

    Clampitt, L.; Burstein, D.

    1994-12-01

    We present absolute spectrophotometry of 237 stars in 7 nearby open clusters: Hyades, Pleiades, Alpha Persei, Praesepe, Coma Berenices, IC 4665, and M 39. The observations were taken using the Wampler single-channel scanner (Wampler 1966) on the Crossley 0.9m telescope at Lick Observatory from July 1973 through December 1974. 21 bandpasses spanning the spectral range 3500 Angstroms to 7780 Angstroms were observed for each star, with bandwiths ranging from 32Angstroms to 64 Angstroms. Data are standardized to the Hayes--Latham (1975) system. Our measurements are compared to filter colors on the Johnson BV, Stromgren ubvy, and Geneva U V B_1 B_2 V_1 G systems, as well as to spectrophotometry of a few stars published by Gunn, Stryker & Tinsley and in the Spectrophotometric Standards Catalog (Adelman; as distributed by the NSSDC). Both internal and external comparisons to the filter systems indicate a formal statistical accuracy per bandpass of 0.01 to 0.02 mag, with apparent larger ( ~ 0.03 mag) differences in absolute calibration between this data set and existing spectrophotometry. These data will comprise part of the spectrophotometry that will be used to calibrate the Beijing-Arizona-Taipei-Connecticut Color Survey of the Sky (see separate paper by Burstein et al. at this meeting).

  11. Soil Oxidation-Reduction Potential and Plant Photosynthetic Capacity in the Northern Pantanal of Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Lathuilliere, M. J.; Johnson, M. S.; Dalmagro, H. J.; Pinto Junior, O. B.; Couto, E. G.

    2013-12-01

    Plant communities of the Pantanal wetland are able to survive long periods of climatic and physiological stress in the dry and wet seasons. During inundation, soil oxygen demand increases dramatically as reducing soil conditions create stress in the root system with possible impacts on photosynthetic capacity of plants. We look at inundation cycles of a tree island (locally known as a cordilheira) in the Northern Pantanal near Poconé, Mato Grosso, and relate soil oxidation-reduction potential and soil oxygen depletion to the photosynthetic capacity of two plant communities of flooded scrub forest (Vochysia divergens and Curatela americana). Results show a drop in soil oxidation-reduction potential of over 400 mV, to levels below the absolute value of -200 mV, following inundation around the tree island. Both plant species showed increased carbon assimilation at highest soil oxygen demand despite a change in stomatal conductance, suggesting adaptation to the inundated environment. Absolute values of soil oxidation-reduction potential also allow for the determination of specific soil chemical reactions characteristic of the tree island environment, namely the reduction of iron(III), or carbon dioxide which in turn produces methane. Our combined analysis of soil chemistry with plant ecophysiology allows for a better understanding of soil-plant interactions in the Pantanal, specifically the drivers of biogeochemical processes between inundation periods.

  12. Photosynthetic characteristics of plants of a Californian cool coastal environment.

    PubMed

    Mooney, H A; Field, C; Williams, W E; Berry, J A; Björkman, O

    1983-03-01

    Herbaceous perennials native to coastal bluffs in northern California all had similar photosynthetic characteristics: moderate photosynthetic capacities, light saturation at relatively low irradiances, and low photosynthetic temperature optima. They all decreased stomatal conductance in response to decreased humidity. Though the coastal habitat generally has high humidities and cool air temperatures leaf microclimatic conditions lead frequently to large vapor-concentration gradients between leaf and air. Stomatal sensitivty to the vapor-concentration gradient may result in important plant-water conservation in this summer drought habitat.

  13. Authors seldom report the most patient-important outcomes and absolute effect measures in systematic review abstracts.

    PubMed

    Agarwal, Arnav; Johnston, Bradley C; Vernooij, Robin W M; Carrasco-Labra, Alonso; Brignardello-Petersen, Romina; Neumann, Ignacio; Akl, Elie A; Sun, Xin; Briel, Matthias; Busse, Jason W; Ebrahim, Shanil; Granados, Carlos E; Iorio, Alfonso; Irfan, Affan; Martínez García, Laura; Mustafa, Reem A; Ramirez-Morera, Anggie; Selva, Anna; Solà, Ivan; Sanabrai, Andrea J; Tikkinen, Kari A O; Vandvik, Per O; Zhang, Yuqing; Zazueta, Oscar E; Zhou, Qi; Schunemann, Holger J; Guyatt, Gordon H; Alonso-Coello, Pablo

    2017-01-01

    Explicit reporting of absolute measures is important to ensure treatment effects are correctly interpreted. We examined the extent to which authors report absolute effects for patient-important outcomes in abstracts of systematic review (SR). We searched OVID MEDLINE and Cochrane Database of Systematic Reviews to identify eligible SRs published in the year 2010. Citations were stratified into Cochrane and non-Cochrane reviews, with repeated random sampling in a 1:1 ratio. Paired reviewers screened articles and recorded abstract characteristics, including reporting of effect measures for the most patient-important outcomes of benefit and harm. We included 96 Cochrane and 94 non-Cochrane reviews. About 117 (77.5%) relative measures were reported in abstracts for outcomes of benefit, whereas only 34 (22.5%) absolute measures were reported. Similarly, for outcomes of harm, 41 (87.2%) relative measures were provided in abstracts, compared with only 6 (12.8%) absolute measures. Eighteen (9.5%) abstracts reported both absolute and relative measures for outcomes of benefit, whereas only two (1.1%) abstracts reported both measures for outcomes of harm. Results were similar between Cochrane and non-Cochrane reviews. SR abstracts seldom report measures of absolute effect. Journal editors should insist that authors report both relative and absolute effects for patient-important outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Extracting infrared absolute reflectance from relative reflectance measurements.

    PubMed

    Berets, Susan L; Milosevic, Milan

    2012-06-01

    Absolute reflectance measurements are valuable to the optics industry for development of new materials and optical coatings. Yet, absolute reflectance measurements are notoriously difficult to make. In this paper, we investigate the feasibility of extracting the absolute reflectance from a relative reflectance measurement using a reference material with known refractive index.

  15. A Conceptual Approach to Absolute Value Equations and Inequalities

    ERIC Educational Resources Information Center

    Ellis, Mark W.; Bryson, Janet L.

    2011-01-01

    The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…

  16. Electrostatic Interactions in Proteins: Application to the Photosynthetic Reaction Center.

    NASA Astrophysics Data System (ADS)

    Beroza, Paul

    This is a computational study of electrostatic interactions in the reaction center from the photosynthetic bacterium Rhodobacter sphaeroides. The reaction center is a protein/pigment complex that initiates the conversion of light energy into chemical energy. One of the important reactions in this process is the transfer of an electron from the primary electron acceptor (Q_ A , a ubiquinone-10 molecule) to the secondary electron acceptor (Q_ B, also a ubiquinone -10). In this work, I apply a continuum electrostatic model to calculate the energetics of the electron transfer between the quinones. The protein is treated as a continuum of low dielectric embedded in a high-dielectric continuum (the solvent). The atomic coordinates of the protein, determined by X-ray crystallography, provide the atomic detail necessary to define the dielectric interface and the location of charges in the protein. The electrostatic energy for a charge distribution in the protein is determined from a finite -difference solution to the linearized Poisson-Boltzmann equation. The free energy of electron transfer is coupled to the solution pH by electrostatic interactions with titrating amino acids in the reaction center. The effect of these interactions is approximated by a Monte Carlo sampling of the protonation states of the protein. The calculations show that the major difference between the electrostatic environments of the quinones is the large number of titrating residues near Q _{rm B}. Although there are large desolvation energies for charges near Q _{rm B}, compensating interactions, particularly from the dipoles in the polypeptide backbone of the protein, favor the ionization of acidic residues nearby. The calculated pH dependence of the free energy of electron transfer agrees well with experiment, but there is a systematic error in the absolute free energy. Glu L212, an acidic residue near Q_{rm B}, is calculated to dominate the proton uptake resulting from electron transfer, in

  17. Double screening

    SciTech Connect

    Gratia, Pierre; Hu, Wayne; Joyce, Austin; Ribeiro, Raquel H.

    2016-06-15

    Attempts to modify gravity in the infrared typically require a screening mechanism to ensure consistency with local tests of gravity. These screening mechanisms fit into three broad classes; we investigate theories which are capable of exhibiting more than one type of screening. Specifically, we focus on a simple model which exhibits both Vainshtein and kinetic screening. We point out that due to the two characteristic length scales in the problem, the type of screening that dominates depends on the mass of the sourcing object, allowing for different phenomenology at different scales. We consider embedding this double screening phenomenology in a broader cosmological scenario and show that the simplest examples that exhibit double screening are radiatively stable.

  18. Absolute Depth Sensitivity in Cat Primary Visual Cortex under Natural Viewing Conditions.

    PubMed

    Pigarev, Ivan N; Levichkina, Ekaterina V

    2016-01-01

    Mechanisms of 3D perception, investigated in many laboratories, have defined depth either relative to the fixation plane or to other objects in the visual scene. It is obvious that for efficient perception of the 3D world, additional mechanisms of depth constancy could operate in the visual system to provide information about absolute distance. Neurons with properties reflecting some features of depth constancy have been described in the parietal and extrastriate occipital cortical areas. It has also been shown that, for some neurons in the visual area V1, responses to stimuli of constant angular size differ at close and remote distances. The present study was designed to investigate whether, in natural free gaze viewing conditions, neurons tuned to absolute depths can be found in the primary visual cortex (area V1). Single-unit extracellular activity was recorded from the visual cortex of waking cats sitting on a trolley in front of a large screen. The trolley was slowly approaching the visual scene, which consisted of stationary sinusoidal gratings of optimal orientation rear-projected over the whole surface of the screen. Each neuron was tested with two gratings, with spatial frequency of one grating being twice as high as that of the other. Assuming that a cell is tuned to a spatial frequency, its maximum response to the grating with a spatial frequency twice as high should be shifted to a distance half way closer to the screen in order to attain the same size of retinal projection. For hypothetical neurons selective to absolute depth, location of the maximum response should remain at the same distance irrespective of the type of stimulus. It was found that about 20% of neurons in our experimental paradigm demonstrated sensitivity to particular distances independently of the spatial frequencies of the gratings. We interpret these findings as an indication of the use of absolute depth information in the primary visual cortex.

  19. Absolute Depth Sensitivity in Cat Primary Visual Cortex under Natural Viewing Conditions

    PubMed Central

    Pigarev, Ivan N.; Levichkina, Ekaterina V.

    2016-01-01

    Mechanisms of 3D perception, investigated in many laboratories, have defined depth either relative to the fixation plane or to other objects in the visual scene. It is obvious that for efficient perception of the 3D world, additional mechanisms of depth constancy could operate in the visual system to provide information about absolute distance. Neurons with properties reflecting some features of depth constancy have been described in the parietal and extrastriate occipital cortical areas. It has also been shown that, for some neurons in the visual area V1, responses to stimuli of constant angular size differ at close and remote distances. The present study was designed to investigate whether, in natural free gaze viewing conditions, neurons tuned to absolute depths can be found in the primary visual cortex (area V1). Single-unit extracellular activity was recorded from the visual cortex of waking cats sitting on a trolley in front of a large screen. The trolley was slowly approaching the visual scene, which consisted of stationary sinusoidal gratings of optimal orientation rear-projected over the whole surface of the screen. Each neuron was tested with two gratings, with spatial frequency of one grating being twice as high as that of the other. Assuming that a cell is tuned to a spatial frequency, its maximum response to the grating with a spatial frequency twice as high should be shifted to a distance half way closer to the screen in order to attain the same size of retinal projection. For hypothetical neurons selective to absolute depth, location of the maximum response should remain at the same distance irrespective of the type of stimulus. It was found that about 20% of neurons in our experimental paradigm demonstrated sensitivity to particular distances independently of the spatial frequencies of the gratings. We interpret these findings as an indication of the use of absolute depth information in the primary visual cortex. PMID:27547179

  20. Hydrogen Biogeochemistry in Anaerobic and Photosynthetic Ecosystems

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    culture studies. Our recent work has extended the study of hydrogen to cyanobacterial mat communities. The large amounts of reducing power generated during photosynthetic activity carry the potential to contribute a swamping term to the H2 economy of the anaerobic microbial populations within the mat - and thereby to alter the population structure and biogeochemical function of the mat as a whole. In hypersaline microbial mats, we observe a distinct diel cycle in H2 production and a substantial corresponding flux. On an early Earth dominated by microbial mats, this transmission of photosynthetic reducing power may have carried important implications for both biospheric and atmospheric evolution.

  1. Mapping of Photosynthetic Pigments in Spanish Reservoirs

    NASA Astrophysics Data System (ADS)

    Peña-Martinez, R.; Domínguez-Gómez, J.-A.; de Hoyos, C.; Ruiz-Verdú, A.

    2004-05-01

    We present the preliminary results of the first stage of the project AO-594, which comprises the development and calibration of algorithms for photosynthetic pigment mapping in Spanish reservoirs. In the years 2001-2002, an extensive field campaign was made in 36 reservoirs and lakes in order to obtain a database of Rrs spectra (400-1000 nm), photosynthetic pigments concentration and phytoplankton composition. The sampled water bodies cover a wide range of environmental conditions, trophic levels and phytoplankton communities. As a first approach in algorithm development, we have explored the relationships between ratios of MERIS bands and pigment concentrations through simple linear regression analysis. The bands have been selected based on the spectral properties of each pigment and a peak analysis of the Rrs spectra. For chlorophyll a, we have found a very good linear relationship (R2 =0.919) using the ratio between bands 9 and 7. Similar results are found using band 8 instead of 7. In any case, the model derived for the whole range of concentrations (0-500 mg m3 ) fails for low values (<15 mg m-3 ). Possible solutions include the use of - non-linear models or the use of two different models depending on the ratio values. For cyanobacteria detection, the ratio between bands 9 and 6 (the later centred at 620 nm) shows a good correlation (R2 =0.723) with phycocyanin concentration measured fluorometrically, and better (R2 =0.945) with zeaxanthin measured using HPLC. The correlation of other indicator pigments with MERIS band ratios is less strong, but is still possible to develop algorithms accurate enough for bloom monitoring. We also discuss the problems found with the L2 MERIS reflectance imagery that we have tried to use for model calibration. We present the results of the study carried on six reservoirs in northeastern Spain. In a date coincident with a MERIS image (June 19th, 2003) we have collected pigment concentration and reflectance data measured from a

  2. Hydrogen Biogeochemistry in Anaerobic and Photosynthetic Ecosystems

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    culture studies. Our recent work has extended the study of hydrogen to cyanobacterial mat communities. The large amounts of reducing power generated during photosynthetic activity carry the potential to contribute a swamping term to the H2 economy of the anaerobic microbial populations within the mat - and thereby to alter the population structure and biogeochemical function of the mat as a whole. In hypersaline microbial mats, we observe a distinct diel cycle in H2 production and a substantial corresponding flux. On an early Earth dominated by microbial mats, this transmission of photosynthetic reducing power may have carried important implications for both biospheric and atmospheric evolution.

  3. Modeling absolute plate and plume motions

    NASA Astrophysics Data System (ADS)

    Bodinier, G. P.; Wessel, P.; Conrad, C. P.

    2016-12-01

    Paleomagnetic evidence for plume drift has made modeling of absolute plate motions challenging, especially since direct observations of plume drift are lacking. Predictions of plume drift arising from mantle convection models and broadly satisfying observed paleolatitudes have so far provided the only framework for deriving absolute plate motions over moving hotspots. However, uncertainties in mantle rheology, temperature, and initial conditions make such models nonunique. Using simulated and real data, we will show that age progressions along Pacific hotspot trails provide strong constraints on plume motions for all major trails, and furthermore that it is possible to derive models for relative plume drift from these data alone. Relative plume drift depends on the inter-hotspot distances derived from age progressions but lacks a fixed reference point and orientation. By incorporating paleolatitude histories for the Hawaii and Louisville chains we add further constraints on allowable plume motions, yet one unknown parameter remains: a longitude shift that applies equally to all plumes. To obtain a solution we could restrict either the Hawaii or Louisville plume to have latitudinal motion only, thus satisfying paleolatitude constraints. Yet, restricting one plume to latitudinal motion while all others move freely is not realistic. Consequently, it is only possible to resolve the motion of hotspots relative to an overall and unknown longitudinal shift as a function of time. Our plate motions are therefore dependent on the same shift via an unknown rotation about the north pole. Yet, as plume drifts are consequences of mantle convection, our results place strong constraints on the pattern of convection. Other considerations, such as imposed limits on plate speed, plume speed, proximity to LLSVP edges, model smoothness, or relative plate motions via ridge-spotting may add further constraints that allow a unique model of Pacific absolute plate and plume motions to be

  4. Colon cancer screening

    MedlinePlus

    Screening for colon cancer; Colonoscopy - screening; Sigmoidoscopy - screening; Virtual colonoscopy - screening; Fecal immunochemical test; Stool DNA test; sDNA test; Colorectal cancer - screening; Rectal ...

  5. New ratiometric optical oxygen and pH dual sensors with three emission colors for measuring photosynthetic activity in Cyanobacteria.

    PubMed

    Lu, Hongguang; Jin, Yuguang; Tian, Yanqing; Zhang, Weiwen; Holl, Mark R; Meldrum, Deirdre R

    2011-01-01

    Photosynthetic algae and cyanobacteria have been proposed for producing biofuels through a direct photoconversion process. To accelerate the efforts of discovering and screening microbes for biofuel production, sensitive and high throughput methods to measure photosynthetic activity need to be developed. Here we report the development of new ratiometric optical oxygen and pH dual sensors with three emission colors for measuring photosynthetic activities directly. The dual sensor system can measure oxygen (O(2)) generation and pH increase resulted from carbon dioxide (CO(2)) consumption simultaneously. The sensor was prepared by a copolymerization of three monomeric probes, an intra-reference probe (IRP) which does not respond to pH or O(2), a probe for pH sensing (pHS), and an O(2) probe for O(2) sensing (OS) with 2-hydroxyethyl methacrylate (HEMA) and acrylamide (AM). After polymerization, the three probes were chemically immobilized in an ion and O(2) permeable poly(2-hydroxyethyl methacrylate)-co-polyacrylamide (PHEMA-co-PAM) matrix. The resulted sensing films (membranes) exhibited three emission colors with well separated emission spectra, covering blue, green, and red emission windows, under 380 nm light excitation. Responses of the sensors to pH and dissolved O(2) were investigated in buffers and cyanobacterial cell cultures (Synechocystis sp. PCC 6803). In spite of the strong autofluorescence from cyanobacteria, the sensors were able to determine the pH values and dissolved O(2) concentrations accurately and reproducibly. The measured results using the optical sensors were well in accordance with measurements using electrodes with minimal experimental variations. The sensors were further applied for evaluation of photosynthetic activities of Synechocystis sp. PCC 6803 at the exponential and stationary phases. The results were consistent with biological observation that the photosynthetic activity in the exponential phase was higher than that in the

  6. Use of Absolute and Comparative Performance Feedback in Absolute and Comparative Judgments and Decisions

    ERIC Educational Resources Information Center

    Moore, Don A.; Klein, William M. P.

    2008-01-01

    Which matters more--beliefs about absolute ability or ability relative to others? This study set out to compare the effects of such beliefs on satisfaction with performance, self-evaluations, and bets on future performance. In Experiment 1, undergraduate participants were told they had answered 20% correct, 80% correct, or were not given their…

  7. Use of Absolute and Comparative Performance Feedback in Absolute and Comparative Judgments and Decisions

    ERIC Educational Resources Information Center

    Moore, Don A.; Klein, William M. P.

    2008-01-01

    Which matters more--beliefs about absolute ability or ability relative to others? This study set out to compare the effects of such beliefs on satisfaction with performance, self-evaluations, and bets on future performance. In Experiment 1, undergraduate participants were told they had answered 20% correct, 80% correct, or were not given their…

  8. Swarm's Absolute Scalar Magnetometer metrological performances

    NASA Astrophysics Data System (ADS)

    Leger, J.; Fratter, I.; Bertrand, F.; Jager, T.; Morales, S.

    2012-12-01

    The Absolute Scalar Magnetometer (ASM) has been developed for the ESA Earth Observation Swarm mission, planned for launch in November 2012. As its Overhauser magnetometers forerunners flown on Oersted and Champ satellites, it will deliver high resolution scalar measurements for the in-flight calibration of the Vector Field Magnetometer manufactured by the Danish Technical University. Latest results of the ground tests carried out to fully characterize all parameters that may affect its accuracy, both at instrument and satellite level, will be presented. In addition to its baseline function, the ASM can be operated either at a much higher sampling rate (burst mode at 250 Hz) or in a dual mode where it also delivers vector field measurements as a by-product. The calibration procedure and the relevant vector performances will be discussed.

  9. MAGSAT: Vector magnetometer absolute sensor alignment determination

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1981-01-01

    A procedure is described for accurately determining the absolute alignment of the magnetic axes of a triaxial magnetometer sensor with respect to an external, fixed, reference coordinate system. The method does not require that the magnetic field vector orientation, as generated by a triaxial calibration coil system, be known to better than a few degrees from its true position, and minimizes the number of positions through which a sensor assembly must be rotated to obtain a solution. Computer simulations show that accuracies of better than 0.4 seconds of arc can be achieved under typical test conditions associated with existing magnetic test facilities. The basic approach is similar in nature to that presented by McPherron and Snare (1978) except that only three sensor positions are required and the system of equations to be solved is considerably simplified. Applications of the method to the case of the MAGSAT Vector Magnetometer are presented and the problems encountered discussed.

  10. An estimate of global absolute dynamic topography

    NASA Technical Reports Server (NTRS)

    Tai, C.-K.; Wunsch, C.

    1984-01-01

    The absolute dynamic topography of the world ocean is estimated from the largest scales to a short-wavelength cutoff of about 6700 km for the period July through September, 1978. The data base consisted of the time-averaged sea-surface topography determined by Seasat and geoid estimates made at the Goddard Space Flight Center. The issues are those of accuracy and resolution. Use of the altimetric surface as a geoid estimate beyond the short-wavelength cutoff reduces the spectral leakage in the estimated dynamic topography from erroneous small-scale geoid estimates without contaminating the low wavenumbers. Comparison of the result with a similarly filtered version of Levitus' (1982) historical average dynamic topography shows good qualitative agreement. There is quantitative disagreement, but it is within the estimated errors of both methods of calculation.

  11. Micron Accurate Absolute Ranging System: Range Extension

    NASA Technical Reports Server (NTRS)

    Smalley, Larry L.; Smith, Kely L.

    1999-01-01

    The purpose of this research is to investigate Fresnel diffraction as a means of obtaining absolute distance measurements with micron or greater accuracy. It is believed that such a system would prove useful to the Next Generation Space Telescope (NGST) as a non-intrusive, non-contact measuring system for use with secondary concentrator station-keeping systems. The present research attempts to validate past experiments and develop ways to apply the phenomena of Fresnel diffraction to micron accurate measurement. This report discusses past research on the phenomena, and the basis of the use Fresnel diffraction distance metrology. The apparatus used in the recent investigations, experimental procedures used, preliminary results are discussed in detail. Continued research and equipment requirements on the extension of the effective range of the Fresnel diffraction systems is also described.

  12. Absolute flatness testing of large synchrotron optics

    NASA Astrophysics Data System (ADS)

    Lin, Weihao; He, Yumei; Song, Li; Luo, Hongxin; Wang, Jie

    2014-09-01

    Interferometry is one of the most efficient techniques in surface figure testing while the transmission surface usually limits the accuracy. Besides, standard figure interferometers often have a typical aperture of about 150 mm diameter which can not satisfy the need of large optics calibration. A novel method for characterizing the absolute surface figure of long grazing-incidence optics used in synchrotron radiation beamlines is presented. We demonstrate oblique incidence interferometry to overcome the aperture limitation. Furthermore, multiple rotating measurements are used to remove the transmission surface errors. The new solution is simple and easy without dismantling the transmission flat throughout the calibration procedure. The theoretical derivation, experiment results and uncertainty analysis are presented.

  13. Absolute calibration of ultraviolet filter photometry

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Fairchild, T.; Code, A. D.

    1972-01-01

    The essential features of the calibration procedure can be divided into three parts. First, the shape of the bandpass of each photometer was determined by measuring the transmissions of the individual optical components and also by measuring the response of the photometer as a whole. Secondly, each photometer was placed in the essentially-collimated synchrotron radiation bundle maintained at a constant intensity level, and the output signal was determined from about 100 points on the objective. Finally, two or three points on the objective were illuminated by synchrotron radiation at several different intensity levels covering the dynamic range of the photometers. The output signals were placed on an absolute basis by the electron counting technique described earlier.

  14. Absolute Measurement of Electron Cloud Density

    SciTech Connect

    Covo, M K; Molvik, A W; Cohen, R H; Friedman, A; Seidl, P A; Logan, G; Bieniosek, F; Baca, D; Vay, J; Orlando, E; Vujic, J L

    2007-06-21

    Beam interaction with background gas and walls produces ubiquitous clouds of stray electrons that frequently limit the performance of particle accelerator and storage rings. Counterintuitively we obtained the electron cloud accumulation by measuring the expelled ions that are originated from the beam-background gas interaction, rather than by measuring electrons that reach the walls. The kinetic ion energy measured with a retarding field analyzer (RFA) maps the depressed beam space-charge potential and provides the dynamic electron cloud density. Clearing electrode current measurements give the static electron cloud background that complements and corroborates with the RFA measurements, providing an absolute measurement of electron cloud density during a 5 {micro}s duration beam pulse in a drift region of the magnetic transport section of the High-Current Experiment (HCX) at LBNL.

  15. Absolute nonlocality via distributed computing without communication

    NASA Astrophysics Data System (ADS)

    Czekaj, Ł.; Pawłowski, M.; Vértesi, T.; Grudka, A.; Horodecki, M.; Horodecki, R.

    2015-09-01

    Understanding the role that quantum entanglement plays as a resource in various information processing tasks is one of the crucial goals of quantum information theory. Here we propose an alternative perspective for studying quantum entanglement: distributed computation of functions without communication between nodes. To formalize this approach, we propose identity games. Surprisingly, despite no signaling, we obtain that nonlocal quantum strategies beat classical ones in terms of winning probability for identity games originating from certain bipartite and multipartite functions. Moreover we show that, for a majority of functions, access to general nonsignaling resources boosts success probability two times in comparison to classical ones for a number of large enough outputs. Because there are no constraints on the inputs and no processing of the outputs in the identity games, they detect very strong types of correlations: absolute nonlocality.

  16. Absolute instability of a viscous hollow jet.

    PubMed

    Gañán-Calvo, Alfonso M

    2007-02-01

    An investigation of the spatiotemporal stability of hollow jets in unbounded coflowing liquids, using a general dispersion relation previously derived, shows them to be absolutely unstable for all physical values of the Reynolds and Weber numbers. The roots of the symmetry breakdown with respect to the liquid jet case, and the validity of asymptotic models are here studied in detail. Asymptotic analyses for low and high Reynolds numbers are provided, showing that old and well-established limiting dispersion relations [J. W. S. Rayleigh, The Theory of Sound (Dover, New York, 1945); S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover, New York, 1961)] should be used with caution. In the creeping flow limit, the analysis shows that, if the hollow jet is filled with any finite density and viscosity fluid, a steady jet could be made arbitrarily small (compatible with the continuum hypothesis) if the coflowing liquid moves faster than a critical velocity.

  17. Optical cryostat realizations at absolut System

    NASA Astrophysics Data System (ADS)

    Trollier, T.; Ravex, A.; Tanchon, J.

    2014-01-01

    This paper describes two kinds of optical cryostats designed and manufactured at Absolut System. The first one makes use of pressurized LN2 for temperature control of a sample holder in the 80 K - 470 K temperature range. An optical window is implemented above the sample holder to allow for rugosity and 3D distortion of heterogeneous semicon sample assemblies on a wafer. The second one makes use of CRYOMECH remote motor type pulse tube cryocoolers for temperature control of the sample holder in the 3 K - 300 K temperature range. In this type of cryostats, particular attention has been paid to reduce the vibrations exported by the cooler. These 4 K ultra low vibration cryostats are used for characterization of samples via optical windows. Both designs will be presented and the performance reported.

  18. In vivo absorption spectroscopy for absolute measurement.

    PubMed

    Furukawa, Hiromitsu; Fukuda, Takashi

    2012-10-01

    In in vivo spectroscopy, there are differences between individual subjects in parameters such as tissue scattering and sample concentration. We propose a method that can provide the absolute value of a particular substance concentration, independent of these individual differences. Thus, it is not necessary to use the typical statistical calibration curve, which assumes an average level of scattering and an averaged concentration over individual subjects. This method is expected to greatly reduce the difficulties encountered during in vivo measurements. As an example, for in vivo absorption spectroscopy, the method was applied to the reflectance measurement in retinal vessels to monitor their oxygen saturation levels. This method was then validated by applying it to the tissue phantom under a variety of absorbance values and scattering efficiencies.

  19. Absolute measurements of fast neutrons using yttrium.

    PubMed

    Roshan, M V; Springham, S V; Rawat, R S; Lee, P; Krishnan, M

    2010-08-01

    Yttrium is presented as an absolute neutron detector for pulsed neutron sources. It has high sensitivity for detecting fast neutrons. Yttrium has the property of generating a monoenergetic secondary radiation in the form of a 909 keV gamma-ray caused by inelastic neutron interaction. It was calibrated numerically using MCNPX and does not need periodic recalibration. The total yttrium efficiency for detecting 2.45 MeV neutrons was determined to be f(n) approximately 4.1x10(-4) with an uncertainty of about 0.27%. The yttrium detector was employed in the NX2 plasma focus experiments and showed the neutron yield of the order of 10(8) neutrons per discharge.

  20. Absolute image registration for geosynchronous satellites

    NASA Technical Reports Server (NTRS)

    Nankervis, R.; Koch, D.; Sielski, H.; Hall, D.

    1980-01-01

    A procedure for the absolute registration of earth images acquired by cameras on geosynchronous satellites is described. A conventional least squares process is used to estimate navigational parameters and camera pointing biases from observed minus computed landmark line and element numbers. These estimated parameters along with orbit and attitude dynamic models are used to register images, employing an automated grey-level correlation technique, inside the span represented by the landmark data. Experimental results obtained from processing the SMS-2 observation data base covering May 2, 1979 through May 20, 1979 show registration accuracies with a standard deviation of less than two pixels if the registration is within the landmark data span. It is also found that accurate registration can be expected for images obtained up to 48 hours outside of the landmark data span.

  1. Cultivar variation in cotton photosynthetic performance under different temperature regimes

    USDA-ARS?s Scientific Manuscript database

    Cotton (Gossypium hirsutum L.) yields are impacted by overall photosynthetic production. Factors that influence crop photosynthesis are the plants genetic makeup and the environmental conditions. This study investigated cultivar variation in photosynthesis when plants were grown in the field under...

  2. Environmental regulation of intrinsic photosynthetic capacity: an integrated view.

    PubMed

    Demmig-Adams, Barbara; Stewart, Jared J; Adams, William W

    2017-06-01

    Environmental modulation of photosynthetic capacity is reviewed in the context of its assessment and its regulation, genetic differences among species and ecotypes, and links to plant stress tolerance and productivity. Modulation of intrinsic photosynthetic capacity matches investment in photosynthetic components to opportunity for CO2 uptake and productivity in specific environments, with exceptionally high rates during particularly narrow windows of opportunity. Response varies among species and ecotypes and should be evaluated on multiple reference bases as well as chloroplast, leaf, and whole plant scales. Photosynthetic capacity, total foliar vascular transport capacity, and plant sink strength are modulated in concert. Switching among alternative target sinks and alternative foliar vascular architectures may provide avenues for co-optimization of productivity and stress tolerance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Genetic Screening

    PubMed Central

    Burke, Wylie; Tarini, Beth; Press, Nancy A.; Evans, James P.

    2011-01-01

    Current approaches to genetic screening include newborn screening to identify infants who would benefit from early treatment, reproductive genetic screening to assist reproductive decision making, and family history assessment to identify individuals who would benefit from additional prevention measures. Although the traditional goal of screening is to identify early disease or risk in order to implement preventive therapy, genetic screening has always included an atypical element—information relevant to reproductive decisions. New technologies offer increasingly comprehensive identification of genetic conditions and susceptibilities. Tests based on these technologies are generating a different approach to screening that seeks to inform individuals about all of their genetic traits and susceptibilities for purposes that incorporate rapid diagnosis, family planning, and expediting of research, as well as the traditional screening goal of improving prevention. Use of these tests in population screening will increase the challenges already encountered in genetic screening programs, including false-positive and ambiguous test results, overdiagnosis, and incidental findings. Whether this approach is desirable requires further empiric research, but it also requires careful deliberation on the part of all concerned, including genomic researchers, clinicians, public health officials, health care payers, and especially those who will be the recipients of this novel screening approach. PMID:21709145

  4. Absolute Measurements of Optical Oscillator Strengths of Xe

    NASA Astrophysics Data System (ADS)

    Gibson, N. D.

    1998-05-01

    The dramatically increased interest in Xe as a discharge medium for the efficient generation of UV radiation, and Xe use in high technology applications such as flat panel displays for laptop computer screens and home TV and theater applications, has created the need for significantly more accurate oscillator strength data. Modeling of plasma processing systems and lighting discharges critically depends on accurate, precise atomic data. We are measuring the optical oscillator strengths of several Xe resonance lines. These measurements use a 900 eV collimated electron beam to excite the Xe atoms. In the method of self absorption used here, the transmission of the emitted radiation is measured as a function of the gas density. The measured oscillator strengths are proportional to the distance between the electron beam and the fixed aperture of the spectrometer-detector system. Since the theoretical form of the transmission function is well understood, there are few systematic errors. Absolute errors as low as 3-4% can be obtained.

  5. Variance computations for functional of absolute risk estimates.

    PubMed

    Pfeiffer, R M; Petracci, E

    2011-07-01

    We present a simple influence function based approach to compute the variances of estimates of absolute risk and functions of absolute risk. We apply this approach to criteria that assess the impact of changes in the risk factor distribution on absolute risk for an individual and at the population level. As an illustration we use an absolute risk prediction model for breast cancer that includes modifiable risk factors in addition to standard breast cancer risk factors. Influence function based variance estimates for absolute risk and the criteria are compared to bootstrap variance estimates.

  6. Variance computations for functional of absolute risk estimates

    PubMed Central

    Pfeiffer, R.M.; Petracci, E.

    2011-01-01

    We present a simple influence function based approach to compute the variances of estimates of absolute risk and functions of absolute risk. We apply this approach to criteria that assess the impact of changes in the risk factor distribution on absolute risk for an individual and at the population level. As an illustration we use an absolute risk prediction model for breast cancer that includes modifiable risk factors in addition to standard breast cancer risk factors. Influence function based variance estimates for absolute risk and the criteria are compared to bootstrap variance estimates. PMID:21643476

  7. Absolute GPS Positioning Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Ramillien, G.

    A new inverse approach for restoring the absolute coordinates of a ground -based station from three or four observed GPS pseudo-ranges is proposed. This stochastic method is based on simulations of natural evolution named genetic algorithms (GA). These iterative procedures provide fairly good and robust estimates of the absolute positions in the Earth's geocentric reference system. For comparison/validation, GA results are compared to the ones obtained using the classical linearized least-square scheme for the determination of the XYZ location proposed by Bancroft (1985) which is strongly limited by the number of available observations (i.e. here, the number of input pseudo-ranges must be four). The r.m.s. accuracy of the non -linear cost function reached by this latter method is typically ~10-4 m2 corresponding to ~300-500-m accuracies for each geocentric coordinate. However, GA can provide more acceptable solutions (r.m.s. errors < 10-5 m2), even when only three instantaneous pseudo-ranges are used, such as a lost of lock during a GPS survey. Tuned GA parameters used in different simulations are N=1000 starting individuals, as well as Pc=60-70% and Pm=30-40% for the crossover probability and mutation rate, respectively. Statistical tests on the ability of GA to recover acceptable coordinates in presence of important levels of noise are made simulating nearly 3000 random samples of erroneous pseudo-ranges. Here, two main sources of measurement errors are considered in the inversion: (1) typical satellite-clock errors and/or 300-metre variance atmospheric delays, and (2) Geometrical Dilution of Precision (GDOP) due to the particular GPS satellite configuration at the time of acquisition. Extracting valuable information and even from low-quality starting range observations, GA offer an interesting alternative for high -precision GPS positioning.

  8. Measured and modelled absolute gravity in Greenland

    NASA Astrophysics Data System (ADS)

    Nielsen, E.; Forsberg, R.; Strykowski, G.

    2012-12-01

    Present day changes in the ice volume in glaciated areas like Greenland will change the load on the Earth and to this change the lithosphere will respond elastically. The Earth also responds to changes in the ice volume over a millennial time scale. This response is due to the viscous properties of the mantle and is known as Glaical Isostatic Adjustment (GIA). Both signals are present in GPS and absolute gravity (AG) measurements and they will give an uncertainty in mass balance estimates calculated from these data types. It is possible to separate the two signals if both gravity and Global Positioning System (GPS) time series are available. DTU Space acquired an A10 absolute gravimeter in 2008. One purpose of this instrument is to establish AG time series in Greenland and the first measurements were conducted in 2009. Since then are 18 different Greenland GPS Network (GNET) stations visited and six of these are visited more then once. The gravity signal consists of three signals; the elastic signal, the viscous signal and the direct attraction from the ice masses. All of these signals can be modelled using various techniques. The viscous signal is modelled by solving the Sea Level Equation with an appropriate ice history and Earth model. The free code SELEN is used for this. The elastic signal is modelled as a convolution of the elastic Greens function for gravity and a model of present day ice mass changes. The direct attraction is the same as the Newtonian attraction and is calculated as this. Here we will present the preliminary results of the AG measurements in Greenland. We will also present modelled estimates of the direct attraction, the elastic and the viscous signals.

  9. Absolute bioavailability of quinine formulations in Nigeria.

    PubMed

    Babalola, C P; Bolaji, O O; Ogunbona, F A; Ezeomah, E

    2004-09-01

    This study compared the absolute bioavailability of quinine sulphate as capsule and as tablet against the intravenous (i.v.) infusion of the drug in twelve male volunteers. Six of the volunteers received intravenous infusion over 4 h as well as the capsule formulation of the drug in a cross-over manner, while the other six received the tablet formulation. Blood samples were taken at predetermined time intervals and plasma analysed for quinine (QN) using reversed-phase HPLC method. QN was rapidly absorbed after the two oral formulations with average t(max) of 2.67 h for both capsule and tablet. The mean elimination half-life of QN from the i.v. and oral dosage forms varied between 10 and 13.5 hr and were not statistically different (P > 0.05). On the contrary, the maximum plasma concentration (C(max)) and area under the curve (AUC) from capsule were comparable to those from i.v. (P > 0.05), while these values were markedly higher than values from tablet formulation (P < 0.05). The therapeutic QN plasma levels were not achieved with the tablet formulation. The absolute bioavailability (F) were 73% (C.l., 53.3 - 92.4%) and 39 % (C.I., 21.7 - 56.6%) for the capsule and tablet respectively and the difference was significant (P < 0.05). The subtherapeutic levels obtained from the tablet form used in this study may cause treatment failure during malaria and caution should be taken when predictions are made from results obtained from different formulations of QN.

  10. Photosynthetic light harvesting: excitons and coherence.

    PubMed

    Fassioli, Francesca; Dinshaw, Rayomond; Arpin, Paul C; Scholes, Gregory D

    2014-03-06

    Photosynthesis begins with light harvesting, where specialized pigment-protein complexes transform sunlight into electronic excitations delivered to reaction centres to initiate charge separation. There is evidence that quantum coherence between electronic excited states plays a role in energy transfer. In this review, we discuss how quantum coherence manifests in photosynthetic light harvesting and its implications. We begin by examining the concept of an exciton, an excited electronic state delocalized over several spatially separated molecules, which is the most widely available signature of quantum coherence in light harvesting. We then discuss recent results concerning the possibility that quantum coherence between electronically excited states of donors and acceptors may give rise to a quantum coherent evolution of excitations, modifying the traditional incoherent picture of energy transfer. Key to this (partially) coherent energy transfer appears to be the structure of the environment, in particular the participation of non-equilibrium vibrational modes. We discuss the open questions and controversies regarding quantum coherent energy transfer and how these can be addressed using new experimental techniques.

  11. Photosynthetic reaction centers/ITO hybrid nanostructure.

    PubMed

    Szabó, Tibor; Bencsik, Gábor; Magyar, Melinda; Visy, Csaba; Gingl, Zoltán; Nagy, Krisztina; Váró, György; Hajdu, Kata; Kozák, Gábor; Nagy, László

    2013-03-01

    Photosynthetic reaction center proteins purified from Rhodobacter sphaeroides purple bacterium were deposited on the surface of indium tin oxide (ITO), a transparent conductive oxide, and the photochemical/-physical properties of the composite were investigated. The kinetics of the light induced absorption change indicated that the RC was active in the composite and there was an interaction between the protein cofactors and the ITO. The electrochromic response of the bacteriopheophytine absorption at 771 nm showed an increased electric field perturbation around this chromophore on the surface of ITO compared to the one measured in solution. This absorption change is associated with the charge-compensating relaxation events inside the protein. Similar life time, but smaller magnitude of this absorption change was measured on the surface of borosilicate glass. The light induced change in the conductivity of the composite as a function of the concentration showed the typical sigmoid saturation characteristics unlike if the photochemically inactive chlorophyll was layered on the ITO. In this later case the light induced change in the conductivity was oppositely proportional to the chlorophyll concentration due to the thermal dissipation of the excitation energy. The sensitivity of the measurement is very high; few picomole RC can change the light induced resistance of the composite. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect

    Dr. David J. Bayless; Dr. Morgan Vis; Dr. Gregory Kremer; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-01-16

    This is the first quarterly report of the project Enhanced Practical Photosynthetic CO{sub 2} Mitigation. The official project start date, 10/02/2000, was delayed until 10/31/2000 due to an intellectual property dispute that was resolved. However, the delay forced a subsequent delay in subcontracting with Montana State University, which then delayed obtaining a sampling permit from Yellowstone National Park. However, even with these delays, the project moved forward with some success. Accomplishments for this quarter include: Culturing of thermophilic organisms from Yellowstone; Testing of mesophilic organisms in extreme CO{sub 2} conditions; Construction of a second test bed for additional testing; Purchase of a total carbon analyzer dedicated to the project; Construction of a lighting container for Oak Ridge National Laboratory optical fiber testing; Modified lighting of existing test box to provide more uniform distribution; Testing of growth surface adhesion and properties; Experimentation on water-jet harvesting techniques; and Literature review underway regarding uses of biomass after harvesting. Plans for next quarter's work and an update on the project's web page are included in the conclusions.

  13. Photosynthetic light harvesting: excitons and coherence

    PubMed Central

    Fassioli, Francesca; Dinshaw, Rayomond; Arpin, Paul C.; Scholes, Gregory D.

    2014-01-01

    Photosynthesis begins with light harvesting, where specialized pigment–protein complexes transform sunlight into electronic excitations delivered to reaction centres to initiate charge separation. There is evidence that quantum coherence between electronic excited states plays a role in energy transfer. In this review, we discuss how quantum coherence manifests in photosynthetic light harvesting and its implications. We begin by examining the concept of an exciton, an excited electronic state delocalized over several spatially separated molecules, which is the most widely available signature of quantum coherence in light harvesting. We then discuss recent results concerning the possibility that quantum coherence between electronically excited states of donors and acceptors may give rise to a quantum coherent evolution of excitations, modifying the traditional incoherent picture of energy transfer. Key to this (partially) coherent energy transfer appears to be the structure of the environment, in particular the participation of non-equilibrium vibrational modes. We discuss the open questions and controversies regarding quantum coherent energy transfer and how these can be addressed using new experimental techniques. PMID:24352671

  14. Photosynthetic activities in the petunia corolla.

    PubMed

    Weiss, D; Schönfeld, M; Halevy, A H

    1988-07-01

    Pink Petuniahybrida (cv Hit Parade Rosa) corollas were found to contain photosynthetically active chloroplasts. The corolla chloroplasts were similar to those of green leaves in size and structure. The chlorophyll (Chl) content of Petunia corollas increased during early stages of flower development, reaching a maximum just before anthesis. Chloroplasts isolated from corollas at this stage, carried out photosystem I-dependent electron transport at rates which were two-thirds of those measured in chloroplasts from green leaves, but full chain electron transport at only one-quarter of the rate carried out by chloroplasts from green leaves. Both the light saturated rate and the quantum yield for electron transport were lower in corolla chloroplasts, which also required lower intensities for light saturation. Reduced efficiency of photosystem II photoreactions in the corolla was also indicated by the ratio between variable and constant components of Chl fluorescence, which was lower in corollas compared to green leaves. The induction time of Chl fluorescence was at least three times shorter in corollas compared to green leaves, indicating a smaller number of functional photosystem II centers (per Chl) in the corolla. It is suggested that corolla chloroplasts of Petunia might have a role in flower developmental processes.

  15. Multiantenna artificial photosynthetic reaction center complex.

    PubMed

    Terazono, Yuichi; Kodis, Gerdenis; Liddell, Paul A; Garg, Vikas; Moore, Thomas A; Moore, Ana L; Gust, Devens

    2009-05-21

    In order to ensure efficient utilization of the solar spectrum, photosynthetic organisms use a variety of antenna chromophores to absorb light and transfer excitation to a reaction center, where photoinduced charge separation occurs. Reported here is a synthetic molecular heptad that features two bis(phenylethynyl)anthracene and two borondipyrromethene antennas linked to a hexaphenylbenzene core that also bears two zinc porphyrins. A fullerene electron acceptor self-assembles to both porhyrins via dative bonds. Excitation energy is transferred very efficiently from all four antennas to the porphyrins. Singlet-singlet energy transfer occurs both directly and by a stepwise funnel-like pathway wherein excitation moves down a thermodynamic gradient. The porphyrin excited states donate an electron to the fullerene with a time constant of 3 ps to generate a charge-separated state with a lifetime of 230 ps. The overall quantum yield is close to unity. In the absence of the fullerene, the porphyrin excited singlet state donates an electron to a borondipyrromethene on a slower time scale. This molecule demonstrates that by incorporating antennas, it is possible for a molecular system to harvest efficiently light throughout the visible from ultraviolet wavelengths out to approximately 650 nm.

  16. Light gradients in spherical photosynthetic vesicles.

    PubMed

    Paillotin, G; Leibl, W; Gapiński, J; Breton, J; Dobek, A

    1998-07-01

    Light-gradient photovoltage measurements were performed on EDTA-treated thylakoids and on osmotically swollen thylakoids (blebs), both of spherical symmetry but of different sizes. In the case of EDTA vesicles, a negative polarity (due to the normal light gradient) was observed in the blue range of the absorption spectrum, and a positive polarity, corresponding to an inverse light gradient, was observed at lambda = 530 and lambda = 682 nm. The sign of the photovoltage polarity measured in large blebs (swollen thylakoids) is the same as that obtained for whole chloroplasts, although differences in the amplitudes are observed. An approach based on the use of polar coordinates was adapted for a theoretical description of these membrane systems of spherical symmetry. The light intensity distribution and the photovoltage in such systems were calculated. Fits to the photovoltage amplitudes, measured as a function of light wavelength, made it possible to derive the values of the dielectric constant of the protein, epsilons = 3, and the refractive index of the photosynthetic membrane for light propagating perpendicular and parallel to the membrane surface, nt = 1.42 and nn = 1.60, respectively. The latter two values determine the birefringence of the biological membrane, Deltan = nn - nt = 0.18.

  17. Plasmidless, photosynthetically incompetent mutants of Rhodospirillum rubrum.

    PubMed Central

    Kuhl, S A; Wimer, L T; Yoch, D C

    1984-01-01

    Ethyl methanesulfonate rendered a high percentage of Rhodospirillum rubrum cells plasmidless and photosynthetically incompetent (Kuhl et al., J. Bacteriol. 156:737-742, 1983). By probing restriction endonuclease-digested chromosomal DNA from these plasmidless strains with 32P-labeled R. rubrum plasmid DNA, we showed that no homology exists between the plasmid and the chromosomal DNA of the mutant. Loss of the plasmid in all the nonphotosynthetic isolates was accompanied by the synthesis of spirilloxanthin under aerobic growth conditions, resistance to cycloserine and HgCl2, and loss of ability to grow fermentatively on fructose. Changes in both the protein and lipid composition of the membranes and the impaired uptake of 203HgCl2 in the plasmidless strains (compared with the wild type) suggest either that membrane modification occurs as a result of plasmid loss, accounting for several of the acquired phenotype characteristics of the cured strains, or that both membrane modification and plasmid loss are part of the same pleiotropic mutation. Images PMID:6434514

  18. Photocurrent of a single photosynthetic protein

    NASA Astrophysics Data System (ADS)

    Gerster, Daniel; Reichert, Joachim; Bi, Hai; Barth, Johannes V.; Kaniber, Simone M.; Holleitner, Alexander W.; Visoly-Fisher, Iris; Sergani, Shlomi; Carmeli, Itai

    2012-10-01

    Photosynthesis is used by plants, algae and bacteria to convert solar energy into stable chemical energy. The initial stages of this process--where light is absorbed and energy and electrons are transferred--are mediated by reaction centres composed of chlorophyll and carotenoid complexes. It has been previously shown that single small molecules can be used as functional components in electric and optoelectronic circuits, but it has proved difficult to control and probe individual molecules for photovoltaic and photoelectrochemical applications. Here, we show that the photocurrent generated by a single photosynthetic protein--photosystem I--can be measured using a scanning near-field optical microscope set-up. One side of the protein is anchored to a gold surface that acts as an electrode, and the other is contacted by a gold-covered glass tip. The tip functions as both counter electrode and light source. A photocurrent of ~10 pA is recorded from the covalently bound single-protein junctions, which is in agreement with the internal electron transfer times of photosystem I.

  19. Renewable hydrogen production by photosynthetic water splitting

    SciTech Connect

    Greenbaum, E.; Lee, J.W.

    1998-06-01

    This mission-oriented research project is focused on the production of renewable hydrogen. The authors have demonstrated that certain unicellular green algae are capable of sustained simultaneous photoproduction of hydrogen and oxygen by light-activated photosynthetic water splitting. It is the goal of this project to develop a practical chemical engineering system for the development of an economic process that can be used to produce renewable hydrogen. There are several fundamental problems that need to be solved before the application of this scientific knowledge can be applied to the development a practical process: (I) maximizing net thermodynamic conversion efficiency of light energy into hydrogen energy, (2) development of oxygen-sensitive hydrogenase-containing mutants, and (3) development of bioreactors that can be used in a real-world chemical engineering process. The authors are addressing each of these problems here at ORNL and in collaboration with their research colleagues at the National Renewable Energy Laboratory, the University of California, Berkeley, and the University of Hawaii. This year the authors have focused on item 1 above. In particular, they have focused on the question of how many light reactions are required to split water to molecular hydrogen and oxygen.

  20. Supplemental photosynthetic lighting for greenhouse tomato production

    SciTech Connect

    Godfriaux, B.L.; Wittman, W.K. ); Janes, H.W.; McAvoy, R.J.; Putman, J.; Logendra, S. . Dept. of Horticulture and Forestry); Mears, D.R.; Giacommelli, G.; Giniger, M. . Dept. of Biological and Agricultural Engineering)

    1989-12-01

    The influence of supplemental light on the growth and productivity of greenhouse tomatoes grown to a single cluster on movable benches is examined, and the economic feasibility of such a system is evaluated. Experiments were conducted to quantify the tomato plants' response to various levels of supplemental light in terms of growth rate and yield at various stages in their development (e.g., seedling, flowering plant, etc.). The 1984--85 experiments showed that supplemental photosynthetic lighting nearly doubled tomato yields, from 0.48 to 0.86 lbs/plant. Subsequent experiments in 1985--86 identified the best tomato varieties for this treatment and further increased yields to 1.3 lbs/plant. In addition, the use of supplemental lighting was found to hasten tomato crop maturity. An economic analysis was performed on the 1985--86 empirical data using the tax rates and provisions then in force. It indicated that a 10-acre greenhouse could provide an after-tax internal rate of return of 10% to 12% using only equity financing. This return could likely be increased to 15--18% with the use of combined debt/equity financing. Using supplemental lighting on 10,000 acres of greenhouse production would require an estimated 7.5 billion kWh of additional electricity per year and, at 4.7 cents/kWh, generate an estimated $350 million in additional utility revenues. 48 refs., 34 figs., 24 tabs.

  1. Production of bioplastics and hydrogen gas by photosynthetic microorganisms

    NASA Astrophysics Data System (ADS)

    Yasuo, Asada; Masato, Miyake; Jun, Miyake

    1998-03-01

    Our efforts have been aimed at the technological basis of photosynthetic-microbial production of materials and an energy carrier. We report here accumulation of poly-(3-hydroxybutyrate) (PHB), a raw material of biodegradable plastics and for production of hydrogen gas, and a renewable energy carrier by photosynthetic microorganisms (tentatively defined as cyanobacteria plus photosynthetic bateria, in this report). A thermophilic cyanobacterium, Synechococcus sp. MA19 that accumulates PHB at more than 20% of cell dry wt under nitrogen-starved conditions was isolated and microbiologically identified. The mechanism of PHB accumulation was studied. A mesophilic Synechococcus PCC7942 was transformed with the genes encoding PHB-synthesizing enzymes from Alcaligenes eutrophus. The transformant accumulated PHB under nitrogen-starved conditions. The optimal conditions for PHB accumulation by a photosynthetic bacterium grown on acetate were studied. Hydrogen production by photosynthetic microorganisms was studied. Cyanobacteria can produce hydrogen gas by nitrogenase or hydrogenase. Hydrogen production mediated by native hydrogenase in cyanobacteria was revealed to be in the dark anaerobic degradation of intracellular glycogen. A new system for light-dependent hydrogen production was targeted. In vitro and in vivo coupling of cyanobacterial ferredoxin with a heterologous hydrogenase was shown to produce hydrogen under light conditions. A trial for genetic trasformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridium pasteurianum is going on. The strong hydrogen producers among photosynthetic bacteria were isolated and characterized. Co-culture of Rhodobacter and Clostriumdium was applied to produce hydrogen from glucose. Conversely in the case of cyanobacteria, genetic regulation of photosynthetic proteins was intended to improve conversion efficiency in hydrogen production by the photosynthetic bacterium, Rhodobacter sphaeroides RV. A mutant acquired by

  2. On the photosynthetic potential in the very Early Archean oceans.

    PubMed

    Avila, Daile; Cardenas, Rolando; Martin, Osmel

    2013-02-01

    In this work we apply a mathematical model of photosynthesis to quantify the potential for photosynthetic life in the very Early Archean oceans. We assume the presence of oceanic blockers of ultraviolet radiation, specifically ferrous ions. For this scenario, our results suggest a potential for photosynthetic life greater than or similar to that in later eras/eons, such as the Late Archean and the current Phanerozoic eon.

  3. Fluctuating Two-State Light Harvesting in a Photosynthetic Membrane

    SciTech Connect

    Pan, Duohai; Hu, Dehong; Liu, Ruchuan; Zeng, Xiaohua; Kaplan, Samuel; Lu, H. Peter

    2007-06-28

    How light is converted into chemical energy in a natural photosynthetic system is of great interest in energy sciences. Using single-molecule and single-vesicle fluorescence spectroscopy and imaging, we have observed fluctuating inter-molecular protein energy transfers in the photosynthetic membranes of R. sphaeroides. Our results suggest that there are dynamic coupled and non-coupled states in the light-harvesting protein assembly.

  4. The Photosynthetic Reaction Center from the Purple Bacterium Rhodopseudomonas viridis

    NASA Astrophysics Data System (ADS)

    Deisenhofer, Johann; Michel, Hartmut

    1989-09-01

    The history and methods of membrane protein crystallization are described. The solution of the structure of the photosynthetic reaction center from the bacterium Rhodopseudomonas viridis is described, and the structure of this membrane protein complex is correlated with its function as a light-driven electron pump across the photosynthetic membrane. Conclusions about the structure of the photosystem II reaction center from plants are drawn, and aspects of membrane protein structure are discussed.

  5. Photosynthetic benefits of ultraviolet-A to Pimelea ligustrina, a woody shrub of sub-alpine Australia.

    PubMed

    Turnbull, Tarryn L; Barlow, Alexandra M; Adams, Mark A

    2013-10-01

    The definition of photosynthetically active radiation (Q) as the visible waveband (λ 400-700 nm) is a core assumption of much of modern plant biology and global models of carbon and water fluxes. On the other hand, much research has focused on potential mutation and damage to leaves caused by ultraviolet (UV) radiation (280-400 nm), and anatomical and physiological adaptations that help avoid such damage. Even so, plant responses to UV-A are poorly described and, until now, photosynthetic utilization of UV-A has not been elucidated under full light conditions in the field. We found that the UV-A content of sunlight increased photosynthetic rates in situ by 12% in Pimelea ligustrina Labill., a common and indigenous woody shrub of alpine ecosystems of the Southern Hemisphere. Compared to companion shrubs, UV-A-induced photosynthesis in P. ligustrina resulted from reduced physical and chemical capacities to screen UV-A at the leaf surface (illustrated by a lack of cuticle and reduced phenol index) and the resulting ability of UV-A to excite chlorophyll (Chl) a directly, and via energy provided by the carotenoid lutein. A screening of 55 additional sub-alpine species showed that 47% of the plant taxa also display Chl a fluorescence under UV-A. If Chl a fluorescence indicates potential for photosynthetic gain, continued exclusion of UV-A from definitions of Q in this ecosystem could result in underestimates of measured and modeled rates of photosynthesis and miscalculation of potential for carbon sequestration. We suggest that carbon gain for alpine environs across the globe could be similarly underestimated given that UV-A radiation increases with altitude and that the frequently dominant herb and grass life-forms often transmit UV-A through the epidermis.

  6. Electrochemical and optical studies of model photosynthetic systems

    SciTech Connect

    Not Available

    1992-01-15

    The objective of this research is to obtain a better understanding of the relationship between the structural organization of photosynthetic pigments and their spectroscopic and electrochemical properties. Defined model systems were studied first. These included the least ordered (solutions) through the most highly ordered (Langmuir-Blodgett (LB) monolayers and self-assembled monolayers) systems containing BChl, BPheo, and UQ. Molecules other than the photosynthetic pigments and quinones were also examined, including chromophores (i.e. surface active cyanine dyes and phtahlocyanines) an redox active compounds (methyl viologen (MV) and surfactant ferrocenes), in order to develop the techniques needed to study the photosynthetic components. Because the chlorophylls are photosensitive and labile, it was easier first to develop procedures using stable species. Three different techniques were used to characterize these model systems. These included electrochemical techniques for determining the standard oxidation and reduction potentials of the photosynthetic components as well as methods for determining the heterogeneous electron transfer rate constants for BChl and BPheo at metal electrodes (Pt and Au). Resonance Raman (RR) and surface enhanced resonance Raman (SERR) spectroscopy were used to determine the spectra of the photosynthetic pigments and model compounds. SERRS was also used to study several types of photosynthetic preparations.

  7. Rice photosynthetic productivity and PSII photochemistry under nonflooded irrigation.

    PubMed

    He, Haibing; Yang, Ru; Jia, Biao; Chen, Lin; Fan, Hua; Cui, Jing; Yang, Dong; Li, Menglong; Ma, Fu-Yu

    2014-01-01

    Nonflooded irrigation is an important water-saving rice cultivation technology, but little is known on its photosynthetic mechanism. The aims of this work were to investigate photosynthetic characteristics of rice during grain filling stage under three nonflooded irrigation treatments: furrow irrigation with plastic mulching (FIM), furrow irrigation with nonmulching (FIN), and drip irrigation with plastic mulching (DI). Compared with the conventional flooding (CF) treatment, those grown in the nonflooded irrigation treatments showed lower net photosynthetic rate (PN), lower maximum quantum yield (Fv/Fm), and lower effective quantum yield of PSII photochemistry (ΦPSII). And the poor photosynthetic characteristics in the nonflooded irrigation treatments were mainly attributed to the low total nitrogen content (TNC). Under non-flooded irrigation, the PN, Fv/Fm, and ΦPSII significantly decreased with a reduction in the soil water potential, but these parameters were rapidly recovered in the DI and FIM treatments when supplementary irrigation was applied. Moreover, The DI treatment always had higher photosynthetic productivity than the FIM and FIN treatments. Grain yield, matter translocation, and dry matter post-anthesis (DMPA) were the highest in the CF treatment, followed by the DI, FIM, and FIN treatments in turn. In conclusion, increasing nitrogen content in leaf of rice plants could be a key factor to improve photosynthetic capacity in nonflooded irrigation.

  8. Regulation of the photosynthetic apparatus under fluctuating growth light.

    PubMed

    Tikkanen, Mikko; Grieco, Michele; Nurmi, Markus; Rantala, Marjaana; Suorsa, Marjaana; Aro, Eva-Mari

    2012-12-19

    Safe and efficient conversion of solar energy to metabolic energy by plants is based on tightly inter-regulated transfer of excitation energy, electrons and protons in the photosynthetic machinery according to the availability of light energy, as well as the needs and restrictions of metabolism itself. Plants have mechanisms to enhance the capture of energy when light is limited for growth and development. Also, when energy is in excess, the photosynthetic machinery slows down the electron transfer reactions in order to prevent the production of reactive oxygen species and the consequent damage of the photosynthetic machinery. In this opinion paper, we present a partially hypothetical scheme describing how the photosynthetic machinery controls the flow of energy and electrons in order to enable the maintenance of photosynthetic activity in nature under continual fluctuations in white light intensity. We discuss the roles of light-harvesting II protein phosphorylation, thermal dissipation of excess energy and the control of electron transfer by cytochrome b(6)f, and the role of dynamically regulated turnover of photosystem II in the maintenance of the photosynthetic machinery. We present a new hypothesis suggesting that most of the regulation in the thylakoid membrane occurs in order to prevent oxidative damage of photosystem I.

  9. Rice Photosynthetic Productivity and PSII Photochemistry under Nonflooded Irrigation

    PubMed Central

    He, Haibing; Yang, Ru; Jia, Biao; Chen, Lin; Fan, Hua; Cui, Jing; Yang, Dong; Li, Menglong; Ma, Fu-Yu

    2014-01-01

    Nonflooded irrigation is an important water-saving rice cultivation technology, but little is known on its photosynthetic mechanism. The aims of this work were to investigate photosynthetic characteristics of rice during grain filling stage under three nonflooded irrigation treatments: furrow irrigation with plastic mulching (FIM), furrow irrigation with nonmulching (FIN), and drip irrigation with plastic mulching (DI). Compared with the conventional flooding (CF) treatment, those grown in the nonflooded irrigation treatments showed lower net photosynthetic rate (P N), lower maximum quantum yield (F v/F m), and lower effective quantum yield of PSII photochemistry (ΦPSII). And the poor photosynthetic characteristics in the nonflooded irrigation treatments were mainly attributed to the low total nitrogen content (TNC). Under non-flooded irrigation, the P N, F v/F m, and ΦPSII significantly decreased with a reduction in the soil water potential, but these parameters were rapidly recovered in the DI and FIM treatments when supplementary irrigation was applied. Moreover, The DI treatment always had higher photosynthetic productivity than the FIM and FIN treatments. Grain yield, matter translocation, and dry matter post-anthesis (DMPA) were the highest in the CF treatment, followed by the DI, FIM, and FIN treatments in turn. In conclusion, increasing nitrogen content in leaf of rice plants could be a key factor to improve photosynthetic capacity in nonflooded irrigation. PMID:24741364

  10. Hydrogen photoproduction by use of photosynthetic organisms and biomimetic systems.

    PubMed

    Allakhverdiev, Suleyman I; Kreslavski, Vladimir D; Thavasi, Velmurugan; Zharmukhamedov, Sergei K; Klimov, Vyacheslav V; Nagata, Toshi; Nishihara, Hiroshi; Ramakrishna, Seeram

    2009-02-01

    Hydrogen can be important clean fuel for future. Among different technologies for hydrogen production, oxygenic natural and artificial photosyntheses using direct photochemistry in synthetic complexes have a great potential to produce hydrogen, since both use clean and cheap sources: water and solar energy. Artificial photosynthesis is one way to produce hydrogen from water using sunlight by employing biomimetic complexes. However, splitting of water into protons and oxygen is energetically demanding and chemically difficult. In oxygenic photosynthetic microorganisms such as algae and cyanobacteria, water is split into electrons and protons, which during primary photosynthetic process are redirected by photosynthetic electron transport chain, and ferredoxin, to the hydrogen-producing enzymes hydrogenase or nitrogenase. By these enzymes, e- and H+ recombine and form gaseous hydrogen. Biohydrogen activity of hydrogenase can be very high but it is extremely sensitive to photosynthetic O2. In contrast, nitrogenase is insensitive to O2, but has lower activity. At the moment, the efficiency of biohydrogen production is low. However, theoretical expectations suggest that the rates of photon conversion efficiency for H2 bioproduction can be high enough (>10%). Our review examines the main pathways of H2 photoproduction by using of photosynthetic organisms and biomimetic photosynthetic systems.

  11. Hydraulic basis for the evolution of photosynthetic productivity.

    PubMed

    Scoffoni, Christine; Chatelet, David S; Pasquet-Kok, Jessica; Rawls, Michael; Donoghue, Michael J; Edwards, Erika J; Sack, Lawren

    2016-05-27

    Clarifying the evolution and mechanisms for photosynthetic productivity is a key to both improving crops and understanding plant evolution and habitat distributions. Current theory recognizes a role for the hydraulics of water transport as a potential determinant of photosynthetic productivity based on comparative data across disparate species. However, there has never been rigorous support for the maintenance of this relationship during an evolutionary radiation. We tested this theory for 30 species of Viburnum, diverse in leaf shape and photosynthetic anatomy, grown in a common garden. We found strong support for a fundamental requirement for leaf hydraulic capacity (Kleaf) in determining photosynthetic capacity (Amax), as these traits diversified across this lineage in tight coordination, with their proportionality modulated by the climate experienced in the species' range. Variation in Kleaf arose from differences in venation architecture that influenced xylem and especially outside-xylem flow pathways. These findings substantiate an evolutionary basis for the coordination of hydraulic and photosynthetic physiology across species, and their co-dependence on climate, establishing a fundamental role for water transport in the evolution of the photosynthetic rate.

  12. Differential allocation to photosynthetic and non-photosynthetic nitrogen fractions among native and invasive species.

    PubMed

    Funk, Jennifer L; Glenwinkel, Lori A; Sack, Lawren

    2013-01-01

    Invasive species are expected to cluster on the "high-return" end of the leaf economic spectrum, displaying leaf traits consistent with higher carbon assimilation relative to native species. Intra-leaf nitrogen (N) allocation should support these physiological differences; however, N biochemistry has not been examined in more than a few invasive species. We measured 34 leaf traits including seven leaf N pools for five native and five invasive species from Hawaii under low irradiance to mimic the forest understory environment. We found several trait differences between native and invasive species. In particular, invasive species showed preferential N allocation to metabolism (amino acids) rather than photosynthetic light reactions (membrane-bound protein) by comparison with native species. The soluble protein concentration did not vary between groups. Under these low irradiance conditions, native species had higher light-saturated photosynthetic rates, possibly as a consequence of a greater investment in membrane-bound protein. Invasive species may succeed by employing a wide range of N allocation mechanisms, including higher amino acid production for fast growth under high irradiance or storage of N in leaves as soluble protein or amino acids.

  13. Differential Allocation to Photosynthetic and Non-Photosynthetic Nitrogen Fractions among Native and Invasive Species

    PubMed Central

    Funk, Jennifer L.; Glenwinkel, Lori A.; Sack, Lawren

    2013-01-01

    Invasive species are expected to cluster on the “high-return” end of the leaf economic spectrum, displaying leaf traits consistent with higher carbon assimilation relative to native species. Intra-leaf nitrogen (N) allocation should support these physiological differences; however, N biochemistry has not been examined in more than a few invasive species. We measured 34 leaf traits including seven leaf N pools for five native and five invasive species from Hawaii under low irradiance to mimic the forest understory environment. We found several trait differences between native and invasive species. In particular, invasive species showed preferential N allocation to metabolism (amino acids) rather than photosynthetic light reactions (membrane-bound protein) by comparison with native species. The soluble protein concentration did not vary between groups. Under these low irradiance conditions, native species had higher light-saturated photosynthetic rates, possibly as a consequence of a greater investment in membrane-bound protein. Invasive species may succeed by employing a wide range of N allocation mechanisms, including higher amino acid production for fast growth under high irradiance or storage of N in leaves as soluble protein or amino acids. PMID:23700483

  14. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect

    Dr. David J. Bayless; Dr. Morgan Vis; Dr. Gregory Kremer; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-04-16

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 1/03/2001 through 4/02/2001. Many of the activities and accomplishments are continuations of work initiated and reported in last quarter's status report. Major activities and accomplishments for this quarter include: Three sites in Yellowstone National Park have been identified that may contain suitable organisms for use in a bioreactor; Full-scale culturing of one thermophilic organism from Yellowstone has progressed to the point that there is a sufficient quantity to test this organism in the model-scale bioreactor; The effects of the additive monoethanolamine on the growth of one thermophilic organism from Yellowstone has been tested; Testing of growth surface adhesion and properties is continuing; Construction of a larger model-scale bioreactor to improve and expand testing capabilities is completed and the facility is undergoing proof tests; Model-scale bioreactor tests examining the effects of CO{sub 2} concentration levels and lighting levels on organism growth rates are continuing; Alternative fiber optic based deep-penetration light delivery systems for use in the pilot-scale bioreactor have been designed, constructed and tested; An existing slug flow reactor system has been modified for use in this project, and a proof-of-concept test plan has been developed for the slug flow reactor; Research and testing of water-jet harvesting techniques is continuing, and a harvesting system has been designed for use in the model-scale bioreactor; and The investigation of comparative digital image analysis as a means for determining the ''density'' of algae on a growth surface is continuing Plans for next quarter's work and an update on the project's web page are included in the conclusions.

  15. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes.

    PubMed

    Atteia, Ariane; van Lis, Robert; Tielens, Aloysius G M; Martin, William F

    2013-02-01

    Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metabolism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoautotrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the oceans, others are more typically soil inhabitants. All these species are important from the ecological (O(2)/CO(2) budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here, mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukaryotic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermentative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pronounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2004-01-30

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 10/2/2003 through 1/1/2004. As indicated in the list of accomplishments below we have seen very encouraging results from the model scale tests in terms of organism growth rates and we have begun the final tests necessary to meet our project goals. Specific results and accomplishments for the fourth quarter of 2003 include: (1) Bioreactor support systems and test facilities--(A) The solar collector is working well and has survived the winter weather. (B) The improved high-flow CRF-2 test system has been used successfully to run several long-term growth tests with periodic harvesting events. The high flow harvesting system performed well. The mass measurement results after a 4-week test show 275% growth over the initial mass loading. This figure would have been higher had there been no leakage and handling losses. Carbon dating of biomass from this test is planned for carbon uptake estimation. The next test will include direct measurement of carbon uptake in addition to organism mass measurements. (C) Qualitative organism growth testing has begun in the pilot scale bioreactor. Some issues with uniformity of organism loading, fluid leakage and evaporation have surfaced and are currently being addressed, and quantitative testing will begin as soon as these problems are resolved. (2) Organisms and Growth Surfaces--(A) Montana State University (Subcontracted to do organism studies) submitted their final (3-year) project report. An abstract of the report in included in this quarterly report.

  17. Enhanced Practical Photosynthetic CO2 Mitigation

    SciTech Connect

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2003-10-15

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 7/2/2003 through 10/01/2003. As indicated in the list of accomplishments below we are preparing for the final tests necessary to meet our project goals. Specific results and accomplishments for the third quarter of 2003 include: (1) Bioreactor support systems and test facilities: (A) The solar collector used in the light delivery system showed signs of degradation and hence had to be replaced by ORNL. A set of light readings were taken after the new solar collector was installed. The readings showed an acceptable light profile. (B) The CRF-2 test system has undergone major improvements to produce the high flow rates needed for harvesting (as determined by previous experiments). The main changes to the system are new stainless steel header/frame units with increased flow capacity and a modified pipe end sealing method to improve flow uniformity, and installation and plumbing for a new high flow harvesting pump. The improvements have been completed and the system is ready for testing. (C) The pilot scale bioreactor is ready for testing pending some information from the CRF-2 tests. (2) Organisms and Growth Surfaces: (A) The shape of the Chlorogloeopsis sp. cells (cyanobacteria) was found to be affected by environmental pH, which may be useful in culture quality control. Besides, the further investigation of this phenomenon suggested that the rate of cell adhesion to glass surface decreases upon medium alkalinization. Thus, harvesting effectiveness may be improved by increasing medium pH up to 9 before harvesting of cyanobacteria from a substratum.

  18. Carotenoid photoprotection in artificial photosynthetic antennas.

    PubMed

    Kloz, Miroslav; Pillai, Smitha; Kodis, Gerdenis; Gust, Devens; Moore, Thomas A; Moore, Ana L; van Grondelle, Rienk; Kennis, John T M

    2011-05-11

    of structural and environmental effects on the interactions between carotenoids and tetrapyrroles and thereby better defining their role in controlling natural photosynthetic systems.

  19. An absolute clock of the cosmos?

    NASA Astrophysics Data System (ADS)

    Kotov, V. A.; Lyuty, V. M.

    2010-06-01

    In 1968-2005 different observers (mainly, one of the authors—V.M. Lyuty) performed numerous measurements of luminosity of the nucleus of the Seyfert galaxy NGC 4151. It is shown that ( a) luminosity of the object pulsated over 38 years with a period of 160.0106(7) min coinciding, within the error limits, with the well-known period P 0 = 160.0101(2) min of the enigmatic “solar” pulsations, and ( b) when registering oscillations of luminosity of NGC 4151 nucleus with the P 0 period, time moments of observations must be reduced to the earth instead of the sun, i.e., to the reference frame of the observer. The coherent P 0 oscillation is characterized, therefore, by invariability of both frequency and phase with respect to redshift z and the earth’s orbital motion, respectively. From these results it, thus, follows that the coherent P 0 oscillation seems to be of a true cosmological origin. The P 0 period itself might represent a course of the “cosmic clock” related to the existence of an absolute time of the Universe in Newton’s comprehension.

  20. Gyrokinetic statistical absolute equilibrium and turbulence

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Zhou; Hammett, Gregory W.

    2010-12-01

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: a finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N+1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  1. Absolute calibration of forces in optical tweezers

    NASA Astrophysics Data System (ADS)

    Dutra, R. S.; Viana, N. B.; Maia Neto, P. A.; Nussenzveig, H. M.

    2014-07-01

    Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress achieved in a program aiming at absolute calibration, conducted over the past 15 years, is briefly reviewed. Here we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary aberrations of the optical system, which are now included in the theory. All required experimental parameters are readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused laser spot, adapting frequently employed video microscopy techniques. Combined with interface spherical aberration, it reveals a previously unknown window of instability for trapping. Comparison with experimental data leads to an overall agreement within error bars, with no fitting, for a broad range of microsphere radii, from the Rayleigh regime to the ray optics one, for different polarizations and trapping heights, including all commonly employed parameter domains. Besides signaling full first-principles theoretical understanding of optical tweezers operation, the results may lead to improved instrument design and control over experiments, as well as to an extended domain of applicability, allowing reliable force measurements, in principle, from femtonewtons to nanonewtons.

  2. Elevation correction factor for absolute pressure measurements

    NASA Technical Reports Server (NTRS)

    Panek, Joseph W.; Sorrells, Mark R.

    1996-01-01

    With the arrival of highly accurate multi-port pressure measurement systems, conditions that previously did not affect overall system accuracy must now be scrutinized closely. Errors caused by elevation differences between pressure sensing elements and model pressure taps can be quantified and corrected. With multi-port pressure measurement systems, the sensing elements are connected to pressure taps that may be many feet away. The measurement system may be at a different elevation than the pressure taps due to laboratory space or test article constraints. This difference produces a pressure gradient that is inversely proportional to height within the interface tube. The pressure at the bottom of the tube will be higher than the pressure at the top due to the weight of the tube's column of air. Tubes with higher pressures will exhibit larger absolute errors due to the higher air density. The above effect is well documented but has generally been taken into account with large elevations only. With error analysis techniques, the loss in accuracy from elevation can be easily quantified. Correction factors can be applied to maintain the high accuracies of new pressure measurement systems.

  3. What is Needed for Absolute Paleointensity?

    NASA Astrophysics Data System (ADS)

    Valet, J. P.

    2015-12-01

    Many alternative approaches to the Thellier and Thellier technique for absolute paleointensity have been proposed during the past twenty years. One reason is the time consuming aspect of the experiments. Another reason is to avoid uncertainties in determinations of the paleofield which are mostly linked to the presence of multidomain grains. Despite great care taken by these new techniques, there is no indication that they always provide the right answer and in fact sometimes fail. We are convinced that the most valid approach remains the original double heating Thellier protocol provided that natural remanence is controlled by pure magnetite with a narrow distribution of small grain sizes, mostly single domains. The presence of titanium, even in small amount generates biases which yield incorrect field values. Single domain grains frequently dominate the magnetization of glass samples, which explains the success of this selective approach. They are also present in volcanic lava flows but much less frequently, and therefore contribute to the low success rate of most experiments. However the loss of at least 70% of the magnetization at very high temperatures prior to the Curie point appears to be an essential prerequisite that increases the success rate to almost 100% and has been validated from historical flows and from recent studies. This requirement can easily be tested by thermal demagnetization while low temperature experiments can document the detection of single domain magnetite using the δFC/δZFC parameter as suggested (Moskowitz et al, 1993) for biogenic magnetite.

  4. Color assimilation and contrast near absolute threshold

    NASA Astrophysics Data System (ADS)

    McCann, John

    2012-01-01

    Simultaneous Contrast and Assimilation test targets are almost always viewed at high light levels. We measured the appearances of Simultaneous Contrast, Assimilation and other spatial surrounds near absolute rod threshold. Given the very different spatial organizations of receptive fields in rod and cone vision at detection threshold, it is not obvious that these familiar cone-vision spatial effects would be observed at rod light levels. Nevertheless, the spatial experiments showed that these targets have the same changes in appearance as those observed in bright light. Our experiments used very dim candle light that was above threshold for rods and L cones, and below threshold for M and S cones. Although detection threshold experiments show very different spatial organizations for rod and cone vision, we found that spatial contrast experiments gave the same changes of appearance. Neural contrast mechanisms at the lowest end of our visual HDR range are very similar to those at the top of the range in sunlight. This is true for both chromatic and achromatic targets.

  5. Absolute flux measurements for swift atoms

    NASA Technical Reports Server (NTRS)

    Fink, M.; Kohl, D. A.; Keto, J. W.; Antoniewicz, P.

    1987-01-01

    While a torsion balance in vacuum can easily measure the momentum transfer from a gas beam impinging on a surface attached to the balance, this measurement depends on the accommodation coefficients of the atoms with the surface and the distribution of the recoil. A torsion balance is described for making absolute flux measurements independent of recoil effects. The torsion balance is a conventional taut suspension wire design and the Young modulus of the wire determines the relationship between the displacement and the applied torque. A compensating magnetic field is applied to maintain zero displacement and provide critical damping. The unique feature is to couple the impinging gas beam to the torsion balance via a Wood's horn, i.e., a thin wall tube with a gradual 90 deg bend. Just as light is trapped in a Wood's horn by specular reflection from the curved surfaces, the gas beam diffuses through the tube. Instead of trapping the beam, the end of the tube is open so that the atoms exit the tube at 90 deg to their original direction. Therefore, all of the forward momentum of the gas beam is transferred to the torsion balance independent of the angle of reflection from the surfaces inside the tube.

  6. Climate Absolute Radiance and Refractivity Observatory (CLARREO)

    NASA Technical Reports Server (NTRS)

    Leckey, John P.

    2015-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a mission, led and developed by NASA, that will measure a variety of climate variables with an unprecedented accuracy to quantify and attribute climate change. CLARREO consists of three separate instruments: an infrared (IR) spectrometer, a reflected solar (RS) spectrometer, and a radio occultation (RO) instrument. The mission will contain orbiting radiometers with sufficient accuracy, including on orbit verification, to calibrate other space-based instrumentation, increasing their respective accuracy by as much as an order of magnitude. The IR spectrometer is a Fourier Transform spectrometer (FTS) working in the 5 to 50 microns wavelength region with a goal of 0.1 K (k = 3) accuracy. The FTS will achieve this accuracy using phase change cells to verify thermistor accuracy and heated halos to verify blackbody emissivity, both on orbit. The RS spectrometer will measure the reflectance of the atmosphere in the 0.32 to 2.3 microns wavelength region with an accuracy of 0.3% (k = 2). The status of the instrumentation packages and potential mission options will be presented.

  7. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    SciTech Connect

    Jian-Zhou Zhu and Gregory W. Hammett

    2011-01-10

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  8. The Effect of Kanamycin and Tetracycline on Growth and Photosynthetic Activity of Two Chlorophyte Algae.

    PubMed

    Bashir, Khawaja Muhammad Imran; Cho, Man-Gi

    2016-01-01

    Antibiotics are routinely used in microalgae culture screening, stock culture maintenance, and genetic transformation. By studying the effect of antibiotics on microalgae growth, we can estimate the least value to inhibit growth of undesired pathogens in algal culture. We studied the effect of kanamycin and tetracycline on the growth and photosynthetic activity of two chlorophyte microalgae, Dictyosphaerium pulchellum and Micractinium pusillum. We measured CFU mL(-1) on agar plates, optical density, fluorescence yields, and photosynthetic inhibition. Our results showed a significant effect of kan and tet on the tested microalgae species except tet, which showed a minor effect on M. pusillum. Both antibiotics are believed to interact with the protein synthesis machinery; hence, the inhibitory effect of the tested antibiotics was further confirmed by isolation and quantification of the whole cell protein. A significant reduction in protein quantity was observed at concentrations more than 5 mg L(-1), except M. pusillum, which showed only a slight reduction in protein quantity even at the maximum tested concentration of tet (30 mg L(-1)). This study can further aid in aquaculture industry, for the maintenance of the microalgae stock cultures and it can also help the microalgae genetic engineers in the construction of molecular markers.

  9. Developing Research Capabilities in Energy Biosciences: Design principles of photosynthetic biofuel production.

    SciTech Connect

    Donald D. Brown; David Savage

    2012-06-30

    The current fossil fuel-based energy infrastructure is not sustainable. Solar radiation is a plausible alternative, but realizing it as such will require significant technological advances in the ability to harvest light energy and convert it into suitable fuels. The biological system of photosynthesis can carry out these reactions, and in principle could be engineered using the tools of synthetic biology. One desirable implementation would be to rewire the reactions of a photosynthetic bacterium to direct the energy harvested from solar radiation into the synthesis of the biofuel H2. Proposed here is a series of experiments to lay the basic science groundwork for such an attempt. The goal is to elucidate the transcriptional network of photosynthesis using a novel driver-reporter screen, evolve more robust hydrogenases for improved catalysis, and to test the ability of the photosynthetic machinery to directly produce H2 in vivo. The results of these experiments will have broad implications for the understanding of photosynthesis, enzyme function, and the engineering of biological systems for sustainable energy production. The ultimate impact could be a fundamental transformation of the world's energy economy.

  10. Separation of bacteriochlorophyll homologues from green photosynthetic sulfur bacteria by reversed-phase HPLC.

    PubMed

    Borrego, C M; Garcia-Gil, L J

    1994-07-01

    A reversed-phase High Performance Liquid Cromatography (HPLC) method has been developed to accurately separate bacteriochlorophyllsc, d ande homologues in a reasonably short run time of 60 minutes. By using this method, two well-defined groups of bacteriochlorophyll homologue peaks can be discriminated. The first one consists of 4 peaks (min 24 to 30), which corresponds to the four main farnesyl homologues. The second peak subset is formed by a cluster of up to 10 minor peaks (min 33 to 40). These peaks can be related with series of several alcohol esters of the different chlorosome chlorophylls. The number of homologues was, however, quite variable depending on both, the bacteriochlorophyll and the bacterial species. The method hereby described, also provides a good separation of other photosynthetic pigments, either bacterial (Bacteriochlorophylla, chlorobactene, isorenieratene and okenone) or algal ones (Chlorophylla, Pheophytina and β-carotene). A preliminary screening of the homologue composition of several green photosynthetic bacterial species and isolates, has revealed different relative quantitative patterns. These differences seem to be related to physiological aspects rather than to taxonomic ones. The application of the method to the study of natural populations avoids the typical drawbacks on the pigment identification of overlapping eukaryotic and prokaryotic phototrophic microorganisms, giving further information about their physiological status.

  11. Genetic screening

    PubMed Central

    Andermann, Anne; Blancquaert, Ingeborg

    2010-01-01

    Abstract OBJECTIVE To provide a primer for primary care professionals who are increasingly called upon to discuss the growing number of genetic screening services available and to help patients make informed decisions about whether to participate in genetic screening, how to interpret results, and which interventions are most appropriate. QUALITY OF EVIDENCE As part of a larger research program, a wide literature relating to genetic screening was reviewed. PubMed and Internet searches were conducted using broad search terms. Effort was also made to identify the gray literature. MAIN MESSAGE Genetic screening is a type of public health program that is systematically offered to a specified population of asymptomatic individuals with the aim of providing those identified as high risk with prevention, early treatment, or reproductive options. Ensuring an added benefit from screening, as compared with standard clinical care, and preventing unintended harms, such as undue anxiety or stigmatization, depends on the design and implementation of screening programs, including the recruitment methods, education and counseling provided, timing of screening, predictive value of tests, interventions available, and presence of oversight mechanisms and safeguards. There is therefore growing apprehension that economic interests might lead to a market-driven approach to introducing and expanding screening before program effectiveness, acceptability, and feasibility have been demonstrated. As with any medical intervention, there is a moral imperative for genetic screening to do more good than harm, not only from the perspective of individuals and families, but also for the target population and society as a whole. CONCLUSION Primary care professionals have an important role to play in helping their patients navigate the rapidly changing terrain of genetic screening services by informing them about the benefits and risks of new genetic and genomic technologies and empowering them to

  12. Issues in Absolute Spectral Radiometric Calibration: Intercomparison of Eight Sources

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H.; Kindel, Bruce; Pilewskie, Peter

    1998-01-01

    The application of atmospheric models to AVIRIS and other spectral imaging data to derive surface reflectance requires that the sensor output be calibrated to absolute radiance. Uncertainties in absolute calibration are to be expected, and claims of 92% accuracy have been published. Measurements of accurate surface albedos and cloud absorption to be used in radiative balance calculations depend critically on knowing the absolute spectral-radiometric response of the sensor. The Earth Observing System project is implementing a rigorous program of absolute radiometric calibration for all optical sensors. Since a number of imaging instruments that provide output in terms of absolute radiance are calibrated at different sites, it is important to determine the errors that can be expected among calibration sites. Another question exists about the errors in the absolute knowledge of the exoatmospheric spectral solar irradiance.

  13. Pigmentation as a survival strategy for ancient and modern photosynthetic microbes under high ultraviolet stress on planetary surfaces

    NASA Astrophysics Data System (ADS)

    Wynn-Williams, D. D.; Edwards, H. G. M.; Newton, E. M.; Holder, J. M.

    2002-01-01

    Solar radiation is the primary energy source for surface planetary life, so that pigments are fundamental components of any surface-dwelling organism. They may therefore have evolved in some form on Mars as they did on Earth. Photosynthetic microbes are major primary producers on Earth, but are concurrently vulnerable to ultraviolet (UV) damage. Using non-intrusive laser Raman spectroscopy to recognize the component parts of biomolecules, we have shown not only the abundance of microbial photosynthetic and photoprotective pigments in situ, but also their spatial distribution within their microhabitat. This essential aspect of their screening or avoidance survival strategies is lost on extraction with solvents. This precise approach is eminently suited to analysis of epilithic (surface) and endolithic (within rocks) communities in Antarctic desert habitats, which are putative analogues of early Mars. Raman spectra for key biomolecules (e.g. the UV screen parietin and the antioxidant [beta]-carotene in epilithic lichens) enable not only the detection of organics in light-stratified habitats, but also the characterization of unknown pigments. Typical biomarkers of astrobiological relevance in our Raman spectral database include scytonemin (a UV screen), chlorophyll (primary photosynthetic pigment), phycocyanin (accessory pigment for shade adaptation) and a hopanoid extracted from 2.5 Gya microbial stromatolite from Australia. This compound dates from the same time period when a wetter Mars could have had a potentially flourishing surface microbial community of its own. Analyses with a laboratory Raman instrument have been extended to a novel miniature Raman spectrometer, operating at the same optimal excitation wavelength (1064 nm) via an In-Ga-As detector. After evaluation in Antarctica, this instrument will be space-qualified for a proposed Mars rover mission to detect biomolecules in the near-surface sediment profile of palaeolakes, using experience with Antarctic

  14. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    2015-12-01

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  15. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  16. Positioning, alignment and absolute pointing of the ANTARES neutrino telescope

    NASA Astrophysics Data System (ADS)

    Fehr, F.; Distefano, C.; Antares Collaboration

    2010-01-01

    A precise detector alignment and absolute pointing is crucial for point-source searches. The ANTARES neutrino telescope utilises an array of hydrophones, tiltmeters and compasses for the relative positioning of the optical sensors. The absolute calibration is accomplished by long-baseline low-frequency triangulation of the acoustic reference devices in the deep-sea with a differential GPS system at the sea surface. The absolute pointing can be independently verified by detecting the shadow of the Moon in cosmic rays.

  17. Absolute and Convective Instability of a Liquid Jet

    NASA Technical Reports Server (NTRS)

    Lin, S. P.; Hudman, M.; Chen, J. N.

    1999-01-01

    The existence of absolute instability in a liquid jet has been predicted for some time. The disturbance grows in time and propagates both upstream and downstream in an absolutely unstable liquid jet. The image of absolute instability is captured in the NASA 2.2 sec drop tower and reported here. The transition from convective to absolute instability is observed experimentally. The experimental results are compared with the theoretical predictions on the transition Weber number as functions of the Reynolds number. The role of interfacial shear relative to all other relevant forces which cause the onset of jet breakup is explained.

  18. The absolute disparity anomaly and the mechanism of relative disparities

    PubMed Central

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-01-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1). PMID:27248566

  19. Absolute Plate Velocities from Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Kreemer, Corné; Zheng, Lin; Gordon, Richard

    2015-04-01

    The orientation of seismic anisotropy inferred beneath plate interiors may provide a means to estimate the motions of the plate relative to the sub-asthenospheric mantle. Here we analyze two global sets of shear-wave splitting data, that of Kreemer [2009] and an updated and expanded data set, to estimate plate motions and to better understand the dispersion of the data, correlations in the errors, and their relation to plate speed. We also explore the effect of using geologically current plate velocities (i.e., the MORVEL set of angular velocities [DeMets et al. 2010]) compared with geodetically current plate velocities (i.e., the GSRM v1.2 angular velocities [Kreemer et al. 2014]). We demonstrate that the errors in plate motion azimuths inferred from shear-wave splitting beneath any one tectonic plate are correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. The SKS-MORVEL absolute plate angular velocities (based on the Kreemer [2009] data set) are determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25±0.11° Ma-1 (95% confidence limits) right-handed about 57.1°S, 68.6°E. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ=19.2° ) differs insignificantly from that for continental lithosphere (σ=21.6° ). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ=7.4° ) than for continental

  20. Carotenoid Photoprotection in Artificial Photosynthetic Antennas

    SciTech Connect

    Kloz, Miroslav; Pillai, Smitha; Kodis, Gerdenis; Gust, Devens; Moore, Thomas A.; Moore, Ana L.; van Grondelle, Rienk; Kennis, John T. M.

    2011-04-14

    . These synthetic systems are providing a deeper understanding of structural and environmental effects on the interactions between carotenoids and tetrapyrroles and thereby better defining their role in controlling natural photosynthetic systems.

  1. Optimization of Light-Harvesting Pigment Improves Photosynthetic Efficiency.

    PubMed

    Jin, Honglei; Li, Mengshu; Duan, Sujuan; Fu, Mei; Dong, Xiaoxiao; Liu, Bing; Feng, Dongru; Wang, Jinfa; Wang, Hong-Bin

    2016-11-01

    Maximizing light capture by light-harvesting pigment optimization represents an attractive but challenging strategy to improve photosynthetic efficiency. Here, we report that loss of a previously uncharacterized gene, HIGH PHOTOSYNTHETIC EFFICIENCY1 (HPE1), optimizes light-harvesting pigments, leading to improved photosynthetic efficiency and biomass production. Arabidopsis (Arabidopsis thaliana) hpe1 mutants show faster electron transport and increased contents of carbohydrates. HPE1 encodes a chloroplast protein containing an RNA recognition motif that directly associates with and regulates the splicing of target RNAs of plastid genes. HPE1 also interacts with other plastid RNA-splicing factors, including CAF1 and OTP51, which share common targets with HPE1. Deficiency of HPE1 alters the expression of nucleus-encoded chlorophyll-related genes, probably through plastid-to-nucleus signaling, causing decreased total content of chlorophyll (a+b) in a limited range but increased chlorophyll a/b ratio. Interestingly, this adjustment of light-harvesting pigment reduces antenna size, improves light capture, decreases energy loss, mitigates photodamage, and enhances photosynthetic quantum yield during photosynthesis. Our findings suggest a novel strategy to optimize light-harvesting pigments that improves photosynthetic efficiency and biomass production in higher plants.

  2. Photosynthetic biomaterials: a pathway towards autotrophic tissue engineering.

    PubMed

    Schenck, Thilo Ludwig; Hopfner, Ursula; Chávez, Myra Noemi; Machens, Hans-Günther; Somlai-Schweiger, Ian; Giunta, Riccardo Enzo; Bohne, Alexandra Viola; Nickelsen, Jörg; Allende, Miguel L; Egaña, José Tomás

    2015-03-01

    Engineered tissues are highly limited by poor vascularization in vivo, leading to hypoxia. In order to overcome this challenge, we propose the use of photosynthetic biomaterials to provide oxygen. Since photosynthesis is the original source of oxygen for living organisms, we suggest that this could be a novel approach to provide a constant source of oxygen supply independently of blood perfusion. In this study we demonstrate that bioartificial scaffolds can be loaded with a solution containing the photosynthetic microalgae Chlamydomonas reinhardtii, showing high biocompatibility and photosynthetic activity in vitro. Furthermore, when photosynthetic biomaterials were engrafted in a mouse full skin defect, we observed that the presence of the microalgae did not trigger a native immune response in the host. Moreover, the analyses showed that the algae survived for at least 5 days in vivo, generating chimeric tissues comprised of algae and murine cells. The results of this study represent a crucial step towards the establishment of autotrophic tissue engineering approaches and suggest the use of photosynthetic cells to treat a broad spectrum of hypoxic conditions. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Development of photosynthetic biomaterials for in vitro tissue engineering.

    PubMed

    Hopfner, Ursula; Schenck, Thilo-Ludwig; Chávez, Myra-Noemi; Machens, Hans-Günther; Bohne, Alexandra-Viola; Nickelsen, Jörg; Giunta, Riccardo-Enzo; Egaña, José-Tomás

    2014-06-01

    Tissue engineering has opened a new therapeutic avenue that promises a revolution in regenerative medicine. To date, however, the translation of engineered tissues into clinical settings has been highly limited and the clinical results are often disappointing. Despite decades of research, the appropriate delivery of oxygen into three-dimensional cultures still remains one of the biggest unresolved problems for in vitro tissue engineering. In this work, we propose an alternative source of oxygen delivery by introducing photosynthetic scaffolds. Here we demonstrate that the unicellular and photosynthetic microalga Chlamydomonas reinhardtii can be cultured in scaffolds for tissue repair; this microalga shows high biocompatibility and photosynthetic activity. Moreover, Chlamydomonas can be co-cultured with fibroblasts, decreasing the hypoxic response under low oxygen culture conditions. Finally, results showed that photosynthetic scaffolds are capable of producing enough oxygen to be independent of external supply in vitro. The results of this study represent the first step towards engineering photosynthetic autotrophic tissues. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Growth and photosynthetic responses of wheat plants grown in space.

    PubMed Central

    Tripathy, B C; Brown, C S; Levine, H G; Krikorian, A D

    1996-01-01

    Growth and photosynthesis of wheat (Triticum aestivum L. cv Super Dwarf) plants grown onboard the space shuttle Discovery for 10 d were examined. Compared to ground control plants, the shoot fresh weight of space-grown seedlings decreased by 25%. Postflight measurements of the O2 evolution/photosynthetic photon flux density response curves of leaf samples revealed that the CO2-saturated photosynthetic rate at saturating light intensities in space-grown plants declined 25% relative to the rate in ground control plants. The relative quantum yield of CO2-saturated photosynthetic O2 evolution measured at limiting light intensities was not significantly affected. In space-grown plants, the light compensation point of the leaves increased by 33%, which likely was due to an increase (27%) in leaf dark-respiration rates. Related experiments with thylakoids isolated from space-grown plants showed that the light-saturated photosynthetic electron transport rate from H2O through photosystems II and I was reduced by 28%. These results demonstrate that photosynthetic functions are affected by the microgravity environment. PMID:8819868

  5. Photosynthetic terpene hydrocarbon production for fuels and chemicals

    SciTech Connect

    Wang, X; Ort, DR; Yuan, JS

    2015-01-28

    Photosynthetic hydrocarbon production bypasses the traditional biomass hydrolysis process and represents the most direct conversion of sunlight energy into the next-generation biofuels. As a major class of biologically derived hydrocarbons with diverse structures, terpenes are also valuable in producing a variety of fungible bioproducts in addition to the advanced drop-in' biofuels. However, it is highly challenging to achieve the efficient redirection of photosynthetic carbon and reductant into terpene biosynthesis. In this review, we discuss four major scientific and technical barriers for photosynthetic terpene production and recent advances to address these constraints. Collectively, photosynthetic terpene production needs to be optimized in a systematic fashion, in which the photosynthesis improvement, the optimization of terpene biosynthesis pathway, the improvement of key enzymes and the enhancement of sink effect through terpene storage or secretion are all important. New advances in synthetic biology also offer a suite of potential tools to design and engineer photosynthetic terpene platforms. The systemic integration of these solutions may lead to disruptive' technologies to enable biofuels and bioproducts with high efficiency, yield and infrastructure compatibility.

  6. Growth and photosynthetic responses of wheat plants grown in space

    NASA Technical Reports Server (NTRS)

    Tripathy, B. C.; Brown, C. S.; Levine, H. G.; Krikorian, A. D.

    1996-01-01

    Growth and photosynthesis of wheat (Triticum aestivum L. cv Super Dwarf) plants grown onboard the space shuttle Discovery for 10 d were examined. Compared to ground control plants, the shoot fresh weight of space-grown seedlings decreased by 25%. Postflight measurements of the O2 evolution/photosynthetic photon flux density response curves of leaf samples revealed that the CO2-saturated photosynthetic rate at saturating light intensities in space-grown plants declined 25% relative to the rate in ground control plants. The relative quantum yield of CO2-saturated photosynthetic O2 evolution measured at limiting light intensities was not significantly affected. In space-grown plants, the light compensation point of the leaves increased by 33%, which likely was due to an increase (27%) in leaf dark-respiration rates. Related experiments with thylakoids isolated from space-grown plants showed that the light-saturated photosynthetic electron transport rate from H2O through photosystems II and I was reduced by 28%. These results demonstrate that photosynthetic functions are affected by the microgravity environment.

  7. Photosynthetic characteristics and organization of chlorophyll in marine dinoflagellates

    PubMed Central

    Prézelin, Barbara B.; Alberte, Randall S.

    1978-01-01

    The photosystem I reaction center complex, the P-700-chlorophyll a-protein, has been isolated from the photosynthetic membranes of two marine dinoflagellates, Gonyaulax polyedra and Glenodinium sp., by detergent solubilization with Triton X-100. The complexes isolated from the two species were indistinguishable, exhibiting identical absorption properties (400-700 nm) at both room (300 K) and low (77 K) temperature. The room temperature, red wavelength maximum was at 675 nm. The absorption properties, kinetics of photobleaching, sodium dodecyl sulfate electrophoretic mobilities, and chlorophyll a/P-700 ratio (50 ± 10) of the P-700-chlorophyll a-protein complexes from the two species also were essentially the same and similar to those properties characterizing P-700-chlorophyll a-protein complexes of higher plants and green algae. Photosynthetic unit sizes were determined for cells grown at 1000 μW/cm2. Both dinoflagellates had unit sizes (total chlorophyll/P-700 ratios) of about 600, even though the distribution of chlorophyll a, chlorophyll c, and peridinin in the light-harvesting components differed in Gonyaulax and Glenodinium. The number of photosynthetic units per cell in the two species correlates directly with their photosynthetic activities. A model is presented for the distribution of chlorophyll in the photosynthetic apparatus of these dinoflagellates which accounts for the known role of the isolated pigment-protein complexes and for the known photoadaptive physiology in pigmentation and photosynthesis for these species. PMID:16592518

  8. Growth and photosynthetic responses of wheat plants grown in space

    NASA Technical Reports Server (NTRS)

    Tripathy, B. C.; Brown, C. S.; Levine, H. G.; Krikorian, A. D.

    1996-01-01

    Growth and photosynthesis of wheat (Triticum aestivum L. cv Super Dwarf) plants grown onboard the space shuttle Discovery for 10 d were examined. Compared to ground control plants, the shoot fresh weight of space-grown seedlings decreased by 25%. Postflight measurements of the O2 evolution/photosynthetic photon flux density response curves of leaf samples revealed that the CO2-saturated photosynthetic rate at saturating light intensities in space-grown plants declined 25% relative to the rate in ground control plants. The relative quantum yield of CO2-saturated photosynthetic O2 evolution measured at limiting light intensities was not significantly affected. In space-grown plants, the light compensation point of the leaves increased by 33%, which likely was due to an increase (27%) in leaf dark-respiration rates. Related experiments with thylakoids isolated from space-grown plants showed that the light-saturated photosynthetic electron transport rate from H2O through photosystems II and I was reduced by 28%. These results demonstrate that photosynthetic functions are affected by the microgravity environment.

  9. Growth and photosynthetic responses of wheat plants grown in space.

    PubMed

    Tripathy, B C; Brown, C S; Levine, H G; Krikorian, A D

    1996-03-01

    Growth and photosynthesis of wheat (Triticum aestivum L. cv Super Dwarf) plants grown onboard the space shuttle Discovery for 10 d were examined. Compared to ground control plants, the shoot fresh weight of space-grown seedlings decreased by 25%. Postflight measurements of the O2 evolution/photosynthetic photon flux density response curves of leaf samples revealed that the CO2-saturated photosynthetic rate at saturating light intensities in space-grown plants declined 25% relative to the rate in ground control plants. The relative quantum yield of CO2-saturated photosynthetic O2 evolution measured at limiting light intensities was not significantly affected. In space-grown plants, the light compensation point of the leaves increased by 33%, which likely was due to an increase (27%) in leaf dark-respiration rates. Related experiments with thylakoids isolated from space-grown plants showed that the light-saturated photosynthetic electron transport rate from H2O through photosystems II and I was reduced by 28%. These results demonstrate that photosynthetic functions are affected by the microgravity environment.

  10. Isotope Ratios of Cellulose from Plants Having Different Photosynthetic Pathways

    PubMed Central

    Sternberg, Leonel O.; Deniro, Michael J.; Johnson, Hyrum B.

    1984-01-01

    Hydrogen and carbon isotope ratios of cellulose nitrate and oxygen isotope ratios of cellulose from C3, C4, and Crassulacean acid metabolism (CAM) plants were determined for plants growing within a small area in Val Verde County, Texas. Plants having CAM had distinctly higher deuterium/hydrogen (D/H) ratios than plants having C3 and C4 metabolism. When hydrogen isotope ratios are plotted against carbon isotope ratios, each photosynthetic mode separates into a distinct cluster of points. C4 plants had many D/H ratios similar to those of C3 plants, so that hydrogen isotope ratios cannot be used to distinguish between these two photosynthetic modes. Portulaca mundula, which may have a modified photosynthetic mode between C4 and CAM, had a hydrogen isotope ratio between those of the C4 and CAM plants. When oxygen isotope ratios are plotted against carbon isotope ratios, no distinct clustering of the C4 and CAM plants occurs. Thus, oxygen isotope ratios are not useful in distinguishing between these metabolic modes. A plot of hydrogen isotope ratios versus oxygen isotope ratios for this sample set shows considerable overlap between oxygen isotope ratios of the different photosynthetic modes without a concomitant overlap in the hydrogen isotope ratios of CAM and the other two photosynthetic modes. This observation is consistent with the hypothesis that higher D/H ratios in CAM plants relative to C3 and C4 plants are due to isotopic fractionations occurring during biochemical reactions. PMID:16663460

  11. Species-Specific Associations Between Bacterioplankton and Photosynthetic Picoeukaryotes

    NASA Astrophysics Data System (ADS)

    Farnelid, H.; Turk-Kubo, K.; Zehr, J. P.

    2016-02-01

    Photosynthetic picoeukaryotes are significant contributors to marine primary productivity. Interactions between marine bacterioplankton and picoeukaryotes frequently occur and can have large biogeochemical impacts. Currently, partly due to methodological difficulties for studying microbial associations in situ, these ecological interactions are poorly characterized. Here we use flow cytometry sorting to identify novel bacterial phylotypes found in physical association with photosynthetic picoeukaryotes. Samples were collected on eight occasions at the Santa Cruz wharf on Monterey Bay during summer and fall, 2014. The phylogeny of associated microbes was assessed through clone libraries and Illumina MiSeq sequencing of amplicons of the 16S rRNA gene. In addition, 16 bacterial isolates comprised of 14 taxa were obtained from sorted photosynthetic picoeukaryote cells. The most frequently detected bacterioplankton phyla were Alphaproteobacteria, Bacteriodetes, and Gammaproteobacteria. The sequences from the sorted populations were a community distinct from the unsorted seawater samples suggesting species-specific functional associations. These species-specific patterns were further supported by re-occurring patterns between replicates and sampling dates. The finding of sequences from the free-living genera Synechococcus and Pelagibacter also suggest that photosynthetic picoeukaryotes can be bacterivores, possibly feeding on some of the most numerically abundant bacteria. The results show that specific bacterial phylotypes are found in association with photosynthetic picoeukaryotes. Taxonomic identification of these associations is a prerequisite for further characterizing the interactions, their metabolic pathways and ecological functions.

  12. Absolute parameters of young stars: QZ Carinae

    NASA Astrophysics Data System (ADS)

    Walker, W. S. G.; Blackford, M.; Butland, R.; Budding, E.

    2017-09-01

    New high-resolution spectroscopy and BVR photometry together with literature data on the complex massive quaternary star QZ Car are collected and analysed. Absolute parameters are found as follows. System A: M1 = 43 (±3), M2 = 19 (+3 -7), R1 = 28 (±2), R2 = 6 (±2), (⊙); T1 ∼ 28 000, T2 ∼ 33 000 K; System B: M1 = 30 (±3), M2 = 20 (±3), R1 = 10 (±0.5), R2 = 20 (±1), (⊙); T1 ∼ 36 000, T2 ∼ 30 000 K (model dependent temperatures). The wide system AB: Period = 49.5 (±1) yr, Epochs, conjunction = 1984.8 (±1), periastron = 2005.3 (±3) yr, mean separation = 65 (±3), (au); orbital inclination = 85 (+5 -15) deg, photometric distance ∼2700 (±300) pc, age = 4 (±1) Myr. Other new contributions concern: (a) analysis of the timing of minima differences (O - C)s for the eclipsing binary (System B); (b) the width of the eclipses, pointing to relatively large effects of radiation pressure; (c) inferences from the rotational widths of lines for both Systems A and B; and (d) implications for theoretical models of early-type stars. While feeling greater confidence on the quaternary's general parametrization, observational complications arising from strong wind interactions or other, unclear, causes still inhibit precision and call for continued multiwavelength observations. Our high-inclination value for the AB system helps to explain failures to resolve the wide binary in the previous years. The derived young age independently confirms membership of QZ Car to the open cluster Collinder 228.

  13. Absolute Radiometric Calibration of KOMPSAT-3A

    NASA Astrophysics Data System (ADS)

    Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.

    2016-06-01

    This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2) To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4). Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.

  14. Orion Absolute Navigation System Progress and Challenge

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; D'Souza, Christopher

    2012-01-01

    The absolute navigation design of NASA's Orion vehicle is described. It has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to benchmark the current state of the design and some of the rationale and analysis behind it. There are specific challenges to address when preparing a timely and effective design for the Exploration Flight Test (EFT-1), while still looking ahead and providing software extensibility for future exploration missions. The primary onboard measurements in a Near-Earth or Mid-Earth environment consist of GPS pseudo-range and delta-range, but for future explorations missions the use of star-tracker and optical navigation sources need to be considered. Discussions are presented for state size and composition, processing techniques, and consider states. A presentation is given for the processing technique using the computationally stable and robust UDU formulation with an Agee-Turner Rank-One update. This allows for computational savings when dealing with many parameters which are modeled as slowly varying Gauss-Markov processes. Preliminary analysis shows up to a 50% reduction in computation versus a more traditional formulation. Several state elements are discussed and evaluated, including position, velocity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. Another consideration is the initialization of the EKF in various scenarios. Scenarios such as single-event upset, ground command, and cold start are discussed as are strategies for whole and partial state updates as well as covariance considerations. Strategies are given for dealing with latent measurements and high-rate propagation using multi-rate architecture. The details of the rate groups and the data ow between the elements is discussed and evaluated.

  15. Evaluation of the Absolute Regional Temperature Potential

    NASA Technical Reports Server (NTRS)

    Shindell, D. T.

    2012-01-01

    The Absolute Regional Temperature Potential (ARTP) is one of the few climate metrics that provides estimates of impacts at a sub-global scale. The ARTP presented here gives the time-dependent temperature response in four latitude bands (90-28degS, 28degS-28degN, 28-60degN and 60-90degN) as a function of emissions based on the forcing in those bands caused by the emissions. It is based on a large set of simulations performed with a single atmosphere-ocean climate model to derive regional forcing/response relationships. Here I evaluate the robustness of those relationships using the forcing/response portion of the ARTP to estimate regional temperature responses to the historic aerosol forcing in three independent climate models. These ARTP results are in good accord with the actual responses in those models. Nearly all ARTP estimates fall within +/-20%of the actual responses, though there are some exceptions for 90-28degS and the Arctic, and in the latter the ARTP may vary with forcing agent. However, for the tropics and the Northern Hemisphere mid-latitudes in particular, the +/-20% range appears to be roughly consistent with the 95% confidence interval. Land areas within these two bands respond 39-45% and 9-39% more than the latitude band as a whole. The ARTP, presented here in a slightly revised form, thus appears to provide a relatively robust estimate for the responses of large-scale latitude bands and land areas within those bands to inhomogeneous radiative forcing and thus potentially to emissions as well. Hence this metric could allow rapid evaluation of the effects of emissions policies at a finer scale than global metrics without requiring use of a full climate model.

  16. Absolute determination of local tropospheric OH concentrations

    NASA Technical Reports Server (NTRS)

    Armerding, Wolfgang; Comes, Franz-Josef

    1994-01-01

    Long path absorption (LPA) according to Lambert Beer's law is a method to determine absolute concentrations of trace gases such as tropospheric OH. We have developed a LPA instrument which is based on a rapid tuning of the light source which is a frequency doubled dye laser. The laser is tuned across two or three OH absorption features around 308 nm with a scanning speed of 0.07 cm(exp -1)/microsecond and a repetition rate of 1.3 kHz. This high scanning speed greatly reduces the fluctuation of the light intensity caused by the atmosphere. To obtain the required high sensitivity the laser output power is additionally made constant and stabilized by an electro-optical modulator. The present sensitivity is of the order of a few times 10(exp 5) OH per cm(exp 3) for an acquisition time of a minute and an absorption path length of only 1200 meters so that a folding of the optical path in a multireflection cell was possible leading to a lateral dimension of the cell of a few meters. This allows local measurements to be made. Tropospheric measurements have been carried out in 1991 resulting in the determination of OH diurnal variation at specific days in late summer. Comparison with model calculations have been made. Interferences are mainly due to SO2 absorption. The problem of OH self generation in the multireflection cell is of minor extent. This could be shown by using different experimental methods. The minimum-maximum signal to noise ratio is about 8 x 10(exp -4) for a single scan. Due to the small size of the absorption cell the realization of an open air laboratory is possible in which by use of an additional UV light source or by additional fluxes of trace gases the chemistry can be changed under controlled conditions allowing kinetic studies of tropospheric photochemistry to be made in open air.

  17. Absolute determination of local tropospheric OH concentrations

    NASA Technical Reports Server (NTRS)

    Armerding, Wolfgang; Comes, Franz-Josef

    1994-01-01

    Long path absorption (LPA) according to Lambert Beer's law is a method to determine absolute concentrations of trace gases such as tropospheric OH. We have developed a LPA instrument which is based on a rapid tuning of the light source which is a frequency doubled dye laser. The laser is tuned across two or three OH absorption features around 308 nm with a scanning speed of 0.07 cm(exp -1)/microsecond and a repetition rate of 1.3 kHz. This high scanning speed greatly reduces the fluctuation of the light intensity caused by the atmosphere. To obtain the required high sensitivity the laser output power is additionally made constant and stabilized by an electro-optical modulator. The present sensitivity is of the order of a few times 10(exp 5) OH per cm(exp 3) for an acquisition time of a minute and an absorption path length of only 1200 meters so that a folding of the optical path in a multireflection cell was possible leading to a lateral dimension of the cell of a few meters. This allows local measurements to be made. Tropospheric measurements have been carried out in 1991 resulting in the determination of OH diurnal variation at specific days in late summer. Comparison with model calculations have been made. Interferences are mainly due to SO2 absorption. The problem of OH self generation in the multireflection cell is of minor extent. This could be shown by using different experimental methods. The minimum-maximum signal to noise ratio is about 8 x 10(exp -4) for a single scan. Due to the small size of the absorption cell the realization of an open air laboratory is possible in which by use of an additional UV light source or by additional fluxes of trace gases the chemistry can be changed under controlled conditions allowing kinetic studies of tropospheric photochemistry to be made in open air.

  18. Cyanobacteria: photosynthetic factories combining biodiversity, radiation resistance, and genetics to facilitate drug discovery.

    PubMed

    Cassier-Chauvat, Corinne; Dive, Vincent; Chauvat, Franck

    2017-02-01

    Cyanobacteria are ancient, abundant, and widely diverse photosynthetic prokaryotes, which are viewed as promising cell factories for the ecologically responsible production of chemicals. Natural cyanobacteria synthesize a vast array of biologically active (secondary) metabolites with great potential for human health, while a few genetic models can be engineered for the (low level) production of biofuels. Recently, genome sequencing and mining has revealed that natural cyanobacteria have the capacity to produce many more secondary metabolites than have been characterized. The corresponding panoply of enzymes (polyketide synthases and non-ribosomal peptide synthases) of interest for synthetic biology can still be increased through gene manipulations with the tools available for the few genetically manipulable strains. In this review, we propose to exploit the metabolic diversity and radiation resistance of cyanobacteria, and when required the genetics of model strains, for the production and radioactive ((14)C) labeling of bioactive products, in order to facilitate the screening for new drugs.

  19. Biological optimization systems for enhancing photosynthetic efficiency and methods of use

    DOEpatents

    Hunt, Ryan W.; Chinnasamy, Senthil; Das, Keshav C.; de Mattos, Erico Rolim

    2012-11-06

    Biological optimization systems for enhancing photosynthetic efficiency and methods of use. Specifically, methods for enhancing photosynthetic efficiency including applying pulsed light to a photosynthetic organism, using a chlorophyll fluorescence feedback control system to determine one or more photosynthetic efficiency parameters, and adjusting one or more of the photosynthetic efficiency parameters to drive the photosynthesis by the delivery of an amount of light to optimize light absorption of the photosynthetic organism while providing enough dark time between light pulses to prevent oversaturation of the chlorophyll reaction centers are disclosed.

  20. MRSA Screening

    MedlinePlus

    ... identify S. aureus and the mecA gene that confers resistance to methicillin, oxacillin, nafcillin, dicloxacillin, and other similar antibiotics. Molecular MRSA screening is becoming more widespread. Some ...

  1. Hypertension screening

    NASA Technical Reports Server (NTRS)

    Foulke, J. M.

    1975-01-01

    An attempt was made to measure the response to an announcement of hypertension screening at the Goddard Space Center, to compare the results to those of previous statistics. Education and patient awareness of the problem were stressed.

  2. Get Screened

    MedlinePlus

    ... health. Depending on your age, sex, and medical history, you may need to be screened for things like: Certain types of cancer High blood pressure or high cholesterol Diabetes Osteoporosis (weak bones) ...

  3. Developmental Screening

    MedlinePlus

    Learn More about Your Child’s Development: Developmental Monitoring and Screening Taking a first step, waving “bye-bye,” and pointing to something interesting are all developmental milestones, ...

  4. Airport Screening

    MedlinePlus

    Health Physics Society Specialists in Radiation Safety Airport Screening Fact Sheet Adopted: May 2011 Photo courtesy of Dan Paluska/ ... safe level. An American National Standards Institute/Health Physics Society industry standard states that the maxi- mum ...

  5. Carrier Screening

    MedlinePlus

    ... available for a limited number of diseases, including cystic fibrosis , fragile X syndrome , sickle cell disease , and Tay– ... are already pregnant are offered carrier screening for cystic fibrosis, hemoglobinopathies , and spinal muscular atrophy . You can have ...

  6. Hypertension screening

    NASA Technical Reports Server (NTRS)

    Foulke, J. M.

    1975-01-01

    An attempt was made to measure the response to an announcement of hypertension screening at the Goddard Space Center, to compare the results to those of previous statistics. Education and patient awareness of the problem were stressed.

  7. Tracking photosynthetic efficiency with narrow-band spectroradiometry

    NASA Technical Reports Server (NTRS)

    Gamon, John A.; Field, Christopher B.

    1992-01-01

    Narrow-waveband spectroradiometry presents the possibility of detecting subtle signals closely related to the current physiological state of vegetation. One such signal related to the epoxidation state of the xanthophyll cycle pigments, violaxanthin, antheraxanthin, and zeaxanthin is discussed. Recent advances in plant ecophysiology demonstrated a close relationship between these pigments and the regulatory state of photosystem 2 in photosynthesis. Our recent field studies of sunflower (Helianthus annuus) and oak (Quercus agrifolia) demonstrated that a 'xanthophyll signal' can be isolated from the diurnal reflectance spectra of intact canopies. Furthermore, the xanthophyll signal can be used to derive a 'physiological reflectance index' (PRI) that closely correlates with the actual photosynthetic efficiency (defined as the photosynthetic rate divided by the incident PAR) in closed canopies. If these signals were detectable in Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) images, they could lead to improved remote estimates of photosynthetic fluxes.

  8. Photovoltaic concepts inspired by coherence effects in photosynthetic systems

    NASA Astrophysics Data System (ADS)

    Brédas, Jean-Luc; Sargent, Edward H.; Scholes, Gregory D.

    2017-01-01

    The past decade has seen rapid advances in our understanding of how coherent and vibronic phenomena in biological photosynthetic systems aid in the efficient transport of energy from light-harvesting antennas to photosynthetic reaction centres. Such coherence effects suggest strategies to increase transport lengths even in the presence of structural disorder. Here we explore how these principles could be exploited in making improved solar cells. We investigate in depth the case of organic materials, systems in which energy and charge transport stand to be improved by overcoming challenges that arise from the effects of static and dynamic disorder -- structural and energetic -- and from inherently strong electron-vibration couplings. We discuss how solar-cell device architectures can evolve to use coherence-exploiting materials, and we speculate as to the prospects for a coherent energy conversion system. We conclude with a survey of the impacts of coherence and bioinspiration on diverse solar-energy harvesting solutions, including artificial photosynthetic systems.

  9. Photosynthetic light reactions: integral to chloroplast retrograde signalling.

    PubMed

    Gollan, Peter J; Tikkanen, Mikko; Aro, Eva-Mari

    2015-10-01

    Chloroplast retrograde signalling is ultimately dependent on the function of the photosynthetic light reactions and not only guides the acclimation of the photosynthetic apparatus to changing environmental and metabolic cues, but has a much wider influence on the growth and development of plants. New information generated during the past few years about regulation of photosynthetic light reactions and identification of the underlying regulatory proteins has paved the way towards better understanding of the signalling molecules produced in chloroplasts upon changes in the environment. Likewise, the availability of various mutants lacking regulatory functions has made it possible to address the role of excitation energy distribution and electron flow in the thylakoid membrane in inducing the retrograde signals from chloroplasts to the nucleus. Such signalling molecules also induce and interact with hormonal signalling cascades to provide comprehensive information from chloroplasts to the nucleus.

  10. Evolution of photosynthetic prokaryotes: a maximum-likelihood mapping approach.

    PubMed Central

    Raymond, Jason; Zhaxybayeva, Olga; Gogarten, J Peter; Blankenship, Robert E

    2003-01-01

    Reconstructing the early evolution of photosynthesis has been guided in part by the geological record, but the complexity and great antiquity of these early events require molecular genetic techniques as the primary tools of inference. Recent genome sequencing efforts have made whole genome data available from representatives of each of the five phyla of bacteria with photosynthetic members, allowing extensive phylogenetic comparisons of these organisms. Here, we have undertaken whole genome comparisons using maximum likelihood to compare 527 unique sets of orthologous genes from all five photosynthetic phyla. Substantiating recent whole genome analyses of other prokaryotes, our results indicate that horizontal gene transfer (HGT) has played a significant part in the evolution of these organisms, resulting in genomes with mosaic evolutionary histories. A small plurality phylogenetic signal was observed, which may be a core of remnant genes not subject to HGT, or may result from a propensity for gene exchange between two or more of the photosynthetic organisms compared. PMID:12594930

  11. Evolution of photosynthetic and respiratory prokaryotes and organelles

    SciTech Connect

    Olson, J.M.

    1981-02-28

    Common ancestors for mitochondria, chloroplasts, and photosynthetic bacteria (including cyanobacteria) probably existed more than three billion years ago. One ancestral prokaryote may have contained P(chl) Chloroplast a in photochemical reaction centers that drove cyclic electron flow and phosphorylation through membrane-bound components including cytochromes and quinones. Substitution of Chl a for Pchl a and the development of linear electron-transport chains permitted the reduction of NAD/sup +/ and/or NADP/sup +/ for carbon-dioxide fixation. Evolution of photosystem II from photosystem I enabled one prokaryote to evolve oxygen as a byproduct of carbon-dioxide fixation. This organism was the common ancestor of cyanobacteria, Prochloron, and various chloroplasts. A photosynthetic bacterium containing Bchl a appears to have branched off from the Chl a line. This bacterium was the common ancestor of extant respiring bacteria, mitochondria, and purple and green photosynthetic bacteria.

  12. Superradiance Transition and Nonphotochemical Quenching in Photosynthetic Complexes

    SciTech Connect

    Berman, Gennady Petrovich; Nesterov, Alexander; Lopez, Gustavo; Sayre, Richard Thomas

    2015-04-23

    Photosynthetic organisms have evolved protective strategies to allow them to survive in cases of intense sunlight fluctuation with the development of nonphotochemical quenching (NPQ). This process allows light harvesting complexes to transfer the excess sunlight energy to non-damaging quenching channels. This report compares the NPQ process with the superradiance transition (ST). We demonstrated that the maximum of the NPQ efficiency is caused by the ST to the sink associated with the CTS. However, experimental verifications are required in order to determine whether or not the NPQ regime is associated with the ST transition for real photosynthetic complexes. Indeed, it can happen that, in the photosynthetic apparatus, the NPQ regime occurs in the “non-optimal” region of parameters, and it could be independent of the ST.

  13. Clinorotation affects mesophyll photosynthetic cells in leaves of pea seedlings.

    PubMed

    Adamchuk, N I

    1998-07-01

    Experiments with autotrophs in altered gravity condition have a grate significant for development of space biology. The main results of investigation in the photosynthetic apparatus state under microgravity condition have based on the experiments with maturity plants and their differentiated cells. The structural and functional organization of photosynthetic cells in seedlings is poor understandable still. Along with chloroplasts preserving a native membrane system in palisade parenchyma cells of the 29-day pea plant leaves in microgravity, chloroplasts with fribly packed or damaged granae, whose thylakoids appeared as vesicles with an electrontransparent content, were also observed. The investigation of preceding process induced these effects have a sense. That is why, the goal of our experiments was to perform the study of a structural organization of the photosynthetic cells of 3-d pair of pea seedlings leaves under the influence of clinorotation.

  14. Photovoltaic concepts inspired by coherence effects in photosynthetic systems.

    PubMed

    Brédas, Jean-Luc; Sargent, Edward H; Scholes, Gregory D

    2016-12-20

    The past decade has seen rapid advances in our understanding of how coherent and vibronic phenomena in biological photosynthetic systems aid in the efficient transport of energy from light-harvesting antennas to photosynthetic reaction centres. Such coherence effects suggest strategies to increase transport lengths even in the presence of structural disorder. Here we explore how these principles could be exploited in making improved solar cells. We investigate in depth the case of organic materials, systems in which energy and charge transport stand to be improved by overcoming challenges that arise from the effects of static and dynamic disorder - structural and energetic - and from inherently strong electron-vibration couplings. We discuss how solar-cell device architectures can evolve to use coherence-exploiting materials, and we speculate as to the prospects for a coherent energy conversion system. We conclude with a survey of the impacts of coherence and bioinspiration on diverse solar-energy harvesting solutions, including artificial photosynthetic systems.

  15. Cyanobacteria as photosynthetic biocatalysts: a systems biology perspective.

    PubMed

    Gudmundsson, Steinn; Nogales, Juan

    2015-01-01

    The increasing need to replace oil-based products and to address global climate change concerns has triggered considerable interest in photosynthetic microorganisms. Cyanobacteria, in particular, have great potential as biocatalysts for fuels and fine-chemicals. During the last few years the biotechnological applications of cyanobacteria have experienced an unprecedented increase and the use of these photosynthetic organisms for chemical production is becoming a tangible reality. However, the field is still immature and many concerns about the economic feasibility of the biotechnological potential of cyanobacteria remain. In this review we describe recent successes in biofuel and fine-chemical production using cyanobacteria. We discuss the role of the photosynthetic metabolism and highlight the need for systems-level metabolic optimization in order to achieve the true potential of cyanobacterial biocatalysts.

  16. [HCC screening].

    PubMed

    Albrecht, T

    2008-01-01

    Hepatocellular carcinoma (HCC) is one of the most frequently diagnosed tumour diseases throughout the world. In the vast majority of cases those affected are high-risk patients with chronic viral hepatitis and/or liver cirrhosis, which means there is a clearly identifiable target group for HCC screening. With resection, transplantation, and interventional procedures for local ablation, following early diagnosis curative treatment options are available with which 5-year survival rates of over 60% can be reached. Such early diagnosis is a reality only in a minority of patients, however, and in the majority of cases the disease is already in an advanced stage at diagnosis. One of the objects of HCC screening is diagnosis in an early stage when curative treatment is still possible. Precisely this is achieved by screening, so that the proportion of patients treated with curative intent is decisively higher. There is not yet any clear evidence as to whether this leads to a lowering of the mortality of HCC. As lower mortality is the decisive indicator of success for a screening programme the benefit of HCC screening has so far been neither documented nor refuted. Nonetheless, in large regions of the world it is the practice for high-risk patients to undergo HCC screening in the form of twice-yearly ultrasound examination and determination of AFP.

  17. Global scale environmental control of plant photosynthetic capacity

    DOE PAGES

    Ali, Ashehad; Xu, Chonggang; Rogers, Alistair; ...

    2015-12-01

    Photosynthetic capacity, determined by light harvesting and carboxylation reactions, is a key plant trait that determines the rate of photosynthesis; however, in Earth System Models (ESMs) at a reference temperature, it is either a fixed value for a given plant functional type or derived from a linear function of leaf nitrogen content. In this study, we conducted a comprehensive analysis that considered correlations of environmental factors with photosynthetic capacity as determined by maximum carboxylation (Vc,m) rate scaled to 25°C (i.e., Vc,25; μmol CO2·m–2·s–1) and maximum electron transport rate (Jmax) scaled to 25°C (i.e., J25; μmol electron·m–2·s–1) at the global scale.more » Our results showed that the percentage of variation in observed Vc,25 and J25 explained jointly by the environmental factors (i.e., day length, radiation, temperature, and humidity) were 2–2.5 times and 6–9 times of that explained by area-based leaf nitrogen content, respectively. Environmental factors influenced photosynthetic capacity mainly through photosynthetic nitrogen use efficiency, rather than through leaf nitrogen content. The combination of leaf nitrogen content and environmental factors was able to explain ~56% and ~66% of the variation in Vc,25 and J25 at the global scale, respectively. As a result, our analyses suggest that model projections of plant photosynthetic capacity and hence land–atmosphere exchange under changing climatic conditions could be substantially improved if environmental factors are incorporated into algorithms used to parameterize photosynthetic capacity in ESMs.« less

  18. Global scale environmental control of plant photosynthetic capacity

    SciTech Connect

    Ali, Ashehad; Xu, Chonggang; Rogers, Alistair; McDowell, Nathan G.; Medlyn, Belinda E.; Fisher, Rosie A.; Wullschleger, Stan D.; Reich, Peter B.; Bauerle, William L.; Wilson, Cathy J.; Vrugt, Jasper A.; Santiago, Louis S.

    2015-12-01

    Photosynthetic capacity, determined by light harvesting and carboxylation reactions, is a key plant trait that determines the rate of photosynthesis; however, in Earth System Models (ESMs) at a reference temperature, it is either a fixed value for a given plant functional type or derived from a linear function of leaf nitrogen content. In this study, we conducted a comprehensive analysis that considered correlations of environmental factors with photosynthetic capacity as determined by maximum carboxylation (Vc,m) rate scaled to 25°C (i.e., Vc,25; μmol CO2·m–2·s–1) and maximum electron transport rate (Jmax) scaled to 25°C (i.e., J25; μmol electron·m–2·s–1) at the global scale. Our results showed that the percentage of variation in observed Vc,25 and J25 explained jointly by the environmental factors (i.e., day length, radiation, temperature, and humidity) were 2–2.5 times and 6–9 times of that explained by area-based leaf nitrogen content, respectively. Environmental factors influenced photosynthetic capacity mainly through photosynthetic nitrogen use efficiency, rather than through leaf nitrogen content. The combination of leaf nitrogen content and environmental factors was able to explain ~56% and ~66% of the variation in Vc,25 and J25 at the global scale, respectively. As a result, our analyses suggest that model projections of plant photosynthetic capacity and hence land–atmosphere exchange under changing climatic conditions could be substantially improved if environmental factors are incorporated into algorithms used to parameterize photosynthetic capacity in ESMs.

  19. Global-scale environmental control of plant photosynthetic capacity.

    PubMed

    Ali, Ashehad A; Xu, Chonggang; Rogers, Alistair; McDowell, Nathan G; Medlyn, Belinda E; Fisher, Rosie A; Wullschleger, Stan D; Reich, Peter B; Vrugt, Jasper A; Bauerle, William L; Santiago, Louis S; Wilson, Cathy J

    2015-12-01

    Photosynthetic capacity, determined by light harvesting and carboxylation reactions, is a key plant trait that determines the rate of photosynthesis; however, in Earth System Models (ESMs) at a reference temperature, it is either a fixed value for a given plant functional type or derived from a linear function of leaf nitrogen content. In this study, we conducted a comprehensive analysis that considered correlations of environmental factors with photosynthetic capacity as determined by maximum carboxylation (V(cm)) rate scaled to 25 degrees C (i.e., V(c),25; μmol CO2 x m(-2)x s(-1)) and maximum electron transport rate (J(max)) scaled to 25 degrees C (i.e., J25; μmol electron x m(-2) x s(-1)) at the global scale. Our results showed that the percentage of variation in observed V(c),25 and J25 explained jointly by the environmental factors (i.e., day length, radiation, temperature, and humidity) were 2-2.5 times and 6-9 times of that explained by area-based leaf nitrogen content, respectively. Environmental factors influenced photosynthetic capacity mainly through photosynthetic nitrogen use efficiency, rather than through leaf nitrogen content. The combination of leaf nitrogen content and environmental factors was able to explain -56% and -66% of the variation in V(c),25 and J25 at the global scale, respectively. Our analyses suggest that model projections of plant photosynthetic capacity and hence land-atmosphere exchange under changing climatic conditions could be substantially improved if environmental factors are incorporated into algorithms used to parameterize photosynthetic capacity in ESMs.

  20. Energy transfer in real and artificial photosynthetic systems

    SciTech Connect

    Hindman, J.C.; Hunt, J.E.; Katz, J.J.

    1995-02-01

    Fluorescence emission from the photosynthetic organisms Tribonema aequale, Anacystis nidulau, and Chlorelia vulgais and from some chlorophyll model systems have been recorded as a function of excitation wavelength and temperature. Considerable similarity was observed in the effects of excitation wavelength and temperature on the fluorescence from intact photosynthetic organisms and the model systems. The parallelism in behavior suggest that self-assembly processes may occur in both the in vivo and in vitro systems that give rise to chlorophyll species at low temperature that may differ significantly from those present at ambient temperatures.

  1. [Effects of cadmium stress on photosynthetic functions of strawberry].

    PubMed

    Zhang, Jin-Biao; Huang, Wei-Nan

    2007-07-01

    With pot experiment, this paper studied the effects of cadmium stress on the leaf chlorophyll content, photosynthetic rate, stomatal conductance, transpiration rate, and intercellular CO2 concentration of strawberry. The results showed that cadmium reduced the chlorophyll content, and changed the chlorophyll a/b ratio. Cadmium reduced the photosynthetic rate and stomatal conductance, though they were increased by low concentration cadmium at the initial stage of cadmium stress. Cadmium also reduced the transpiration rate and intercellular CO2 concentration, but the decrement of intercellular CO2 concentration was relatively less.

  2. Novalis' Poetic Uncertainty: A "Bildung" with the Absolute

    ERIC Educational Resources Information Center

    Mika, Carl

    2016-01-01

    Novalis, the Early German Romantic poet and philosopher, had at the core of his work a mysterious depiction of the "absolute." The absolute is Novalis' name for a substance that defies precise knowledge yet calls for a tentative and sensitive speculation. How one asserts a truth, represents an object, and sets about encountering things…

  3. Novalis' Poetic Uncertainty: A "Bildung" with the Absolute

    ERIC Educational Resources Information Center

    Mika, Carl

    2016-01-01

    Novalis, the Early German Romantic poet and philosopher, had at the core of his work a mysterious depiction of the "absolute." The absolute is Novalis' name for a substance that defies precise knowledge yet calls for a tentative and sensitive speculation. How one asserts a truth, represents an object, and sets about encountering things…

  4. Absolute Humidity and the Seasonality of Influenza (Invited)

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.; Pitzer, V.; Viboud, C.; Grenfell, B.; Goldstein, E.; Lipsitch, M.

    2010-12-01

    Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent re-analysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here we show that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions. In addition, we show that variations of the basic and effective reproductive numbers for influenza, caused by seasonal changes in absolute humidity, are consistent with the general timing of pandemic influenza outbreaks observed for 2009 A/H1N1 in temperate regions. Indeed, absolute humidity conditions correctly identify the region of the United States vulnerable to a third, wintertime wave of pandemic influenza. These findings suggest that the timing of pandemic influenza outbreaks is controlled by a combination of absolute humidity conditions, levels of susceptibility and changes in population mixing and contact rates.

  5. A Global Forecast of Absolute Poverty and Employment.

    ERIC Educational Resources Information Center

    Hopkins, M. J. D.

    1980-01-01

    Estimates are made of absolute poverty and employment under the hypothesis that existing trends continue. Concludes that while the number of people in absolute poverty is not likely to decline by 2000, the proportion will fall. Jobs will have to grow 3.9% per year in developing countries to achieve full employment. (JOW)

  6. Determination of Absolute Zero Using a Computer-Based Laboratory

    ERIC Educational Resources Information Center

    Amrani, D.

    2007-01-01

    We present a simple computer-based laboratory experiment for evaluating absolute zero in degrees Celsius, which can be performed in college and undergraduate physical sciences laboratory courses. With a computer, absolute zero apparatus can help demonstrators or students to observe the relationship between temperature and pressure and use…

  7. Determination of Absolute Zero Using a Computer-Based Laboratory

    ERIC Educational Resources Information Center

    Amrani, D.

    2007-01-01

    We present a simple computer-based laboratory experiment for evaluating absolute zero in degrees Celsius, which can be performed in college and undergraduate physical sciences laboratory courses. With a computer, absolute zero apparatus can help demonstrators or students to observe the relationship between temperature and pressure and use…

  8. Enhanced Practical Photosynthetic CO2 Mitigation

    SciTech Connect

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2003-07-22

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 4/2/2003 through 7/01/2003. As indicated in the list of accomplishments below we have completed some long-term model scale bioreactor tests and are prepared to begin pilot scale bioreactor testing. Specific results and accomplishments for the second quarter of 2003 include: (1) Bioreactor support systems and test facilities: (a) Qualitative long-term survivability tests for S.C.1.2(2) on Omnisil have been successfully completed and results demonstrate a growth rate that appears to be acceptable. (b) Quantitative tests of long-term growth productivity for S.C.1.2(2) on Omnisil have been completed and initial results are promising. Initial results show that the mass of organisms doubled (from 54.9 grams to 109.8 grams) in about 5 weeks. Full results will be available as soon as all membranes and filters are completely dried. The growth rate should increase significantly with the initiation of weekly harvesting during the long term tests. (c) The phase 1 construction of the pilot scale bioreactor has been completed, including the solar collector and light distribution system. We are now in the phase of system improvement as we wait for CRF-2 results in order to be able to finalize the design and construction of the pilot scale system. (d) A mass transfer experimental setup was constructed in order to measure the mass transfer rate from the gas to the liquid film flowing over a membrane and to study the hydrodynamics of the liquid film flowing over a membrane in the bioreactor. Results were reported for mass transfer coefficient, film thickness, and fluid velocity over an Omnisil membrane with a ''drilled hole'' header pipe design. (2) Organisms and Growth Surfaces: (a) A selectivity approach was used to obtain a cyanobacterial culture with elevated resistance to acid pH. Microlonies of ''3.2.2 S.C.1 Positive'' migrated

  9. Absolute test for cylindrical surfaces using the conjugate differential method

    NASA Astrophysics Data System (ADS)

    Huang, Ya; Ma, Jun; Yuan, Caojin; Pruss, Christof; Sun, Weiyuan; Liu, Mincai; Zhu, Rihong; Gao, Zhishan; Osten, Wolfgang

    2016-11-01

    An absolute testing method for cylindrical surfaces is presented in a null test setup with a computer-generated hologram. The absolute test exploits the symmetry of cylinders, which allows us to introduce a certain shift of the test surface both parallel to and rotated about the centerline while the null test condition is still maintained. With two shifts of the cylindrical surface, four measurements belonging to two groups in conjugate positions can be accomplished to obtain the absolute differential map with the interferometer and null optics errors removed. The absolute surface can be obtained by wavefront reconstruction from local differential data. A simulation of the method is presented to estimate the error propagation. Experimental absolute test results of a concave cylindrical surface with 100-mm radius are given. The measured profiles are compared with those obtained from a commercial profiler, showing a difference of less than 15 nm (root-mean-square).

  10. A developmental study of latent absolute pitch memory.

    PubMed

    Jakubowski, Kelly; Müllensiefen, Daniel; Stewart, Lauren

    2017-03-01

    The ability to recall the absolute pitch level of familiar music (latent absolute pitch memory) is widespread in adults, in contrast to the rare ability to label single pitches without a reference tone (overt absolute pitch memory). The present research investigated the developmental profile of latent absolute pitch (AP) memory and explored individual differences related to this ability. In two experiments, 288 children from 4 to12 years of age performed significantly above chance at recognizing the absolute pitch level of familiar melodies. No age-related improvement or decline, nor effects of musical training, gender, or familiarity with the stimuli were found in regard to latent AP task performance. These findings suggest that latent AP memory is a stable ability that is developed from as early as age 4 and persists into adulthood.

  11. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  12. A Global Least-Squares Fit for Absolute Zero

    NASA Astrophysics Data System (ADS)

    Salter, Carl

    2003-09-01

    A simple, nonlinear least-squares method is described that permits gas thermometry data to be fitted directly to absolute zero. This nonlinear method can be implemented using Solver in Excel, and unlike other linear methods previously reported, it is statistically sound. The Excel macro SolverAid can be used to compute the error in absolute zero. The method can be applied simultaneously to multiple sets of data, permitting a global value of absolute zero to be computed from different gas samples. Constant volume thermometry data for helium are used to illustrate the global fit to absolute zero using Solver in an Excel spreadsheet. The relationship between the global value of absolute zero and the values from the individual fits is analyzed.

  13. The next chapter of direct phytolith 14C dating: debunking the myth of occluded photosynthetic carbon exclusivity

    NASA Astrophysics Data System (ADS)

    Santos, G.; Harutyunyan, A.; Alexandre, A. E.; Reyerson, P. E.; Gallagher, K. L.; Isabelle, B. D.

    2014-12-01

    Radiocarbon dating of carbon (C) encapsulated in phytoliths (phytC) is currently used in many Earth Science disciplines for absolute chronologies and paleoclimatic reconstructions; however, the usefulness of phytC has been hampered by inadequate extraction methods[1] and uncertainties regarding its origin as purely photosynthetic [2,3,4]. An early investigation measuring isotopes from Gramineae spp. grown in free-air C enrichment experiments (FACE), showed that part of of its phytC is from a non-photosynthetic source, thus indicating a dual origin[5]. To demonstrate that non-photosynthetic sources within phytC could be from soil C stocks, we measured 14C-AMS phytC extracted from a set of Sorghum bicolor growing on known 14C and d13C bulk substrates and hydroponic solutions. The phytolith concentrates and a silica blank were extracted at UCI, CEREGE and Wisconsin using an improved protocol [1,2]. We also measured CO2 fluxes and isotopic signatures of microbial respiration, percentage of biomass and phytolith extracts produced, and isotopic signatures of the local air and bulk-plant during the growing season of 2012. This allowed comparison of the belowground substrate and nutrient C contributions to phytC 14C results. Meanwhile, NanoSIMS analyses of phytolith polished sections was used to locate phytC in the phytolith siliceous structure [6]. These results will be shown and discussed. [1] Corbineau et al. 2013 R. Paleobot. Palyn. 197: 179 [2] Santos et al. 2010 T. Radiocarbon 52:113 [3] Santos et al. 2012a Biogeosci. 9:1873 [4] Santos et al. 2012b Biogeosci. Discussion 9:C6114 [5] Reyerson et al. 2013 AGU Fall meeting 2013 (Abstract ID: 1803125). [6] Alexandre, et al., submitted.

  14. Growth and photosynthetic responses of Lemna minor L. exposed to cadmium in combination with zinc or copper.

    PubMed

    Vidaković-Cifrek, Željka; Tkalec, Mirta; Šikić, Sandra; Tolić, Sonja; Lepeduš, Hrvoje; Pevalek-Kozlina, Branka

    2015-06-01

    Metals have a variety of negative outcomes on plants, essential components of any ecosystem. The effects of CdCl2 (5 μmol L-1), ZnCl2 (25 or 50 μmol L-1), and CuCl2 (2.5 or 5 μmol L-1) and combinations of CdCl2 with either ZnCl2 or CuCl2 on the growth, photosynthetic pigments, and photosystem II (PSII) efficiency of duckweed (Lemna minor L.) were investigated. All of the treatments caused growth inhibition and remarkable metal accumulation in plant tissue after 4 and 7 days. In the combined treatments, the accumulation of each metal applied was lesser in comparison to treatments with single metals. After 4 days, all of the treatments generally diminished chlorophyll a content and decreased the maximum quantum yield (Fv/Fm) and effective quantum yield (ΔF/F'm) of PSII. However, after 7 days of exposure to a combination of Cd and Zn, pigment content and PSII activity recovered to control levels. A higher concentration of Cu (5 μmol L-1) as well as Cd in combination with Cu had a prolonged inhibitory effect on photosynthetic features. Our results suggest that growth inhibition was due to the toxic effect of absolute metal quantity in plant tissue. Zn counteracted Cd uptake, as seen from the recovery of pigment content and PSII efficiency in plants exposed for 7 days to the Cd and Zn combination. Cu-induced oxidative stress led to a prolonged inhibitory effect in plants treated both with a higher concentration of Cu (5 μmol L-1) and simultaneously with Cd and Cu. Our findings could contribute to general knowledge on anthropogenic and environmental contaminants that endanger plant communities and significantly disrupt the sensitive balance of an ecosystem by influencing photosynthetic mechanisms.

  15. Protein structure, electron transfer and evolution of prokaryotic photosynthetic reaction centers

    NASA Technical Reports Server (NTRS)

    Blankenship, R. E.

    1994-01-01

    Photosynthetic reaction centers from a variety of organisms have been isolated and characterized. The groups of prokaryotic photosynthetic organisms include the purple bacteria, the filamentous green bacteria, the green sulfur bacteria and the heliobacteria as anoxygenic representatives as well as the cyanobacteria and prochlorophytes as oxygenic representatives. This review focuses on structural and functional comparisons of the various groups of photosynthetic reaction centers and considers possible evolutionary scenarios to explain the diversity of existing photosynthetic organisms.

  16. Protein structure, electron transfer and evolution of prokaryotic photosynthetic reaction centers

    NASA Technical Reports Server (NTRS)

    Blankenship, R. E.

    1994-01-01

    Photosynthetic reaction centers from a variety of organisms have been isolated and characterized. The groups of prokaryotic photosynthetic organisms include the purple bacteria, the filamentous green bacteria, the green sulfur bacteria and the heliobacteria as anoxygenic representatives as well as the cyanobacteria and prochlorophytes as oxygenic representatives. This review focuses on structural and functional comparisons of the various groups of photosynthetic reaction centers and considers possible evolutionary scenarios to explain the diversity of existing photosynthetic organisms.

  17. Evolution of heliobacteria: implications for photosynthetic reaction center complexes

    NASA Technical Reports Server (NTRS)

    Vermaas, W. F.; Blankenship, R. E. (Principal Investigator)

    1994-01-01

    The evolutionary position of the heliobacteria, a group of green photosynthetic bacteria with a photosynthetic apparatus functionally resembling Photosystem I of plants and cyanobacteria, has been investigated with respect to the evolutionary relationship to Gram-positive bacteria and cyanobacteria. On the basis of 16S rRNA sequence analysis, the heliobacteria appear to be most closely related to Gram-positive bacteria, but also an evolutionary link to cyanobacteria is evident. Interestingly, a 46-residue domain including the putative sixth membrane-spanning region of the heliobacterial reaction center protein show rather strong similarity (33% identity and 72% similarity) to a region including the sixth membrane-spanning region of the CP47 protein, a chlorophyll-binding core antenna polypeptide of Photosystem II. The N-terminal half of the heliobacterial reaction center polypeptide shows a moderate sequence similarity (22% identity over 232 residues) with the CP47 protein, which is significantly more than the similarity with the Photosystem I core polypeptides in this region. An evolutionary model for photosynthetic reaction center complexes is discussed, in which an ancestral homodimeric reaction center protein (possibly resembling the heliobacterial reaction center protein) with 11 membrane-spanning regions per polypeptide has diverged to give rise to the core of Photosystem I, Photosystem II, and of the photosynthetic apparatus in green, purple, and heliobacteria.

  18. Predicting Photosynthetic Fluxes from Spectral Reflectance of Leaves and Canopies

    NASA Technical Reports Server (NTRS)

    Gamon, John A.

    1997-01-01

    The central hypothesis of this study has been that photosynthetic efficiency and capacity can be predicted from 'physiological reflectance indices' derived from spectral reflectance of leaves and canopies. I have approached this topic with a combination of laboratory and field experiments, and have also explored the potential of deriving a meaningful physiological index from imaging spectrometry (e.g. AVIRIS). A few highlights are presented below. The main emphasis has been on the 'Photochemical Reflectance Index' (PRI), derived from reflectance at 531 nm and 570 nm. Unlike most 'conventional' vegetation indices (e.g. NDVI), PRI changes rapidly both with illumination and physiological state, because it detects the interconversion of xanthophyll cycle pigments, which serve as photoregulatory pigments and control energy distribution for the photosynthetic system. This approach has differed dramatically from most remote sensing in that it has emphasized temporal variation in narrow-band spectral signatures, instead of spatial patterns of broadband indices. Our primary conclusion has been that PRI works well as an index of photosynthetic light-use efficiency at the leaf scale, much in the same way as the fluorescence index DeltaF/Fm. However, unlike DeltaF/Fm which must be measured at close scales, PRI can be sampled at a range of spatial scales, presenting the possibility of monitoring photosynthetic fluxes remotely.

  19. An Improved Method for Extraction and Separation of Photosynthetic Pigments

    ERIC Educational Resources Information Center

    Katayama, Nobuyasu; Kanaizuka, Yasuhiro; Sudarmi, Rini; Yokohama, Yasutsugu

    2003-01-01

    The method for extracting and separating hydrophobic photosynthetic pigments proposed by Katayama "et al." ("Japanese Journal of Phycology," 42, 71-77, 1994) has been improved to introduce it to student laboratories at the senior high school level. Silica gel powder was used for removing water from fresh materials prior to…

  20. A Model for Prediction of Heat Stability of Photosynthetic Membranes

    USDA-ARS?s Scientific Manuscript database

    A previous study has revealed a positive correlation between heat-induced damage to photosynthetic membranes (thylakoid membranes) and chlorophyll loss. In this study, we exploited this correlation and developed a model for prediction of thermal damage to thylakoids. Prediction is based on estimat...

  1. Towards autotrophic tissue engineering: Photosynthetic gene therapy for regeneration.

    PubMed

    Chávez, Myra Noemi; Schenck, Thilo Ludwig; Hopfner, Ursula; Centeno-Cerdas, Carolina; Somlai-Schweiger, Ian; Schwarz, Christian; Machens, Hans-Günther; Heikenwalder, Mathias; Bono, María Rosa; Allende, Miguel L; Nickelsen, Jörg; Egaña, José Tomás

    2016-01-01

    The use of artificial tissues in regenerative medicine is limited due to hypoxia. As a strategy to overcome this drawback, we have shown that photosynthetic biomaterials can produce and provide oxygen independently of blood perfusion by generating chimeric animal-plant tissues during dermal regeneration. In this work, we demonstrate the safety and efficacy of photosynthetic biomaterials in vivo after engraftment in a fully immunocompetent mouse skin defect model. Further, we show that it is also possible to genetically engineer such photosynthetic scaffolds to deliver other key molecules in addition to oxygen. As a proof-of-concept, biomaterials were loaded with gene modified microalgae expressing the angiogenic recombinant protein VEGF. Survival of the algae, growth factor delivery and regenerative potential were evaluated in vitro and in vivo. This work proposes the use of photosynthetic gene therapy in regenerative medicine and provides scientific evidence for the use of engineered microalgae as an alternative to deliver recombinant molecules for gene therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The Glycolate Pathway and Photosynthetic Competence in Euglena

    PubMed Central

    Davis, Barry; Merrett, Michael J.

    1975-01-01

    The development of glycolate pathway enzymes has been determined in relation to photosynthetic competence during the regreening of Euglena cultures. Phosphoglycolate phosphatase and glycolate dehydrogenase rapidly reached maximal levels of activity but the complete development of ribulose 1,5-diphosphate carboxylase and concomitant photosynthetic carbon dioxide fixation were not attained until 72 hours of illumination. Specific inhibitors of protein synthesis showed that the formation of ribulose 1,5-diphosphate carboxylase in both division-synchronized and regreening cultures was prevented by both cycloheximide and d-threo-chloramphenicol, whereas phosphoglycolate phosphatase formation was only inhibited by d-threo-chloramphenicol but not by l-threo-chloramphenicol or cycloheximide. Since cycloheximide prevented ribulose diphosphate carboxylase synthesis and photosynthetic carbon dioxide fixation without affecting phosphoglycolate phosphatase synthesis during regreening, it was concluded that photosynthetic competence was not necessary for the development of the glycolate pathway enzymes. The inhibition of phosphoglycolate phosphatase synthesis by d-threo-chloramphenicol but not by l-threo-chloramphenicol or cycloheximide shows that the enzyme was synthesized exclusively on chloroplast ribosomes, whereas protein synthesis on both chloroplast and cytoplasmic ribosomes was required for the formation of ribulose 1,5-diphosphate carboxylase. Although light is required for the development of both Calvin cycle and glycolate pathway enzymes during regreening it is concluded that the two pathways are not coordinately regulated. PMID:16659023

  3. An Improved Method for Extraction and Separation of Photosynthetic Pigments

    ERIC Educational Resources Information Center

    Katayama, Nobuyasu; Kanaizuka, Yasuhiro; Sudarmi, Rini; Yokohama, Yasutsugu

    2003-01-01

    The method for extracting and separating hydrophobic photosynthetic pigments proposed by Katayama "et al." ("Japanese Journal of Phycology," 42, 71-77, 1994) has been improved to introduce it to student laboratories at the senior high school level. Silica gel powder was used for removing water from fresh materials prior to…

  4. Photosynthetic terpene hydrocarbon production for fuels and chemicals

    USDA-ARS?s Scientific Manuscript database

    Photosynthetic terpene production[ED1] represents an energy and carbon-efficient route for hydrocarbon fuel production. Diverse terpene structures also provide the potential to produce next-generation 'drop-in' hydrocarbon fuel molecules. However, it is highly challenging to achieve efficient redire...

  5. Functional Implications of Photosystem II Crystal Formation in Photosynthetic Membranes*

    PubMed Central

    Tietz, Stefanie; Puthiyaveetil, Sujith; Enlow, Heather M.; Yarbrough, Robert; Wood, Magnus; Semchonok, Dmitry A.; Lowry, Troy; Li, Zhirong; Jahns, Peter; Boekema, Egbert J.; Lenhert, Steven; Niyogi, Krishna K.; Kirchhoff, Helmut

    2015-01-01

    The structural organization of proteins in biological membranes can affect their function. Photosynthetic thylakoid membranes in chloroplasts have the remarkable ability to change their supramolecular organization between disordered and semicrystalline states. Although the change to the semicrystalline state is known to be triggered by abiotic factors, the functional significance of this protein organization has not yet been understood. Taking advantage of an Arabidopsis thaliana fatty acid desaturase mutant (fad5) that constitutively forms semicrystalline arrays, we systematically test the functional implications of protein crystals in photosynthetic membranes. Here, we show that the change into an ordered state facilitates molecular diffusion of photosynthetic components in crowded thylakoid membranes. The increased mobility of small lipophilic molecules like plastoquinone and xanthophylls has implications for diffusion-dependent electron transport and photoprotective energy-dependent quenching. The mobility of the large photosystem II supercomplexes, however, is impaired, leading to retarded repair of damaged proteins. Our results demonstrate that supramolecular changes into more ordered states have differing impacts on photosynthesis that favor either diffusion-dependent electron transport and photoprotection or protein repair processes, thus fine-tuning the photosynthetic energy conversion. PMID:25897076

  6. Zones of photosynthetic potential on Mars and the early Earth

    NASA Astrophysics Data System (ADS)

    Cockell, Charles S.; Raven, John A.

    2004-06-01

    Ultraviolet radiation is more damaging on the surface of Mars than on Earth because of the lack of an ozone shield. We investigated micro-habitats in which UV radiation could be reduced to levels similar to those found on the surface of present-day Earth, but where light in the photosynthetically active region (400-700 nm) would be above the minimum required for photosynthesis. We used a simple radiative transfer model to study four micro-habitats in which such a theoretical Martian Earth-like Photosynthetic Zone (MEPZ) might exist. A favorable radiation environment was found in martian soils containing iron, encrustations of halite, polar snows and crystalline rocks shocked by asteroid or comet impacts, all of which are known habitats for phototrophs on Earth. Although liquid water and nutrients are also required for life, micro-environments with favorable radiation environments for phototrophic life exist in a diversity of materials on Mars. This finding suggests that the lack of an ozone shield is not in itself a limit to the biogeographically widespread colonization of land by photosynthetic organisms, even if there are no other UV-absorbers in the atmosphere apart from carbon dioxide. When applied to the Archean Earth, these data suggest that even with the worst-case assumptions about the UV radiation environment, early land masses could have been colonized by primitive photosynthetic organisms. Such zones could similarly exist on anoxic extra-solar planets lacking ozone shields.

  7. Effect of Photosynthetic Photon Flux Density on Carboxylation Efficiency 1

    PubMed Central

    Weber, James A.; Tenhunen, John D.; Gates, David M.; Lange, Otto L.

    1987-01-01

    The effect of photosynthetic photon flux density (PPFD) on photosynthetic response (A) to CO2 partial pressures between 35 pascals and CO2 compensation point (Γ) was investigated, especially below PPFD saturation. Spinacia oleracea cv `Atlanta,' Glycine max cv `Clark,' and Arbutus unedo were studied in detail. The initial slope of the photosynthetic response to CO2 (∂A/∂C[Γ]) was constant above a PPFD of about 500 to 600 micromoles per square meter per second for all three species; but declined rapidly with PPFD below this critical level. For Γ there was also a critical PPFD (approximately 200 micromoles per square meter per second for S. oleracea and G. max; 100 for A. unedo) above which Γ was essentially constant, but below which Γ increased with decreasing PPFD. All three species showed a dependence of ∂A/∂C(Γ) on PPFD at low PPFD. Simulated photosynthetic responses obtained with a biochemically based model of whole-leaf photosynthesis were similar to measured responses. PMID:16665640

  8. Photoconversion of organic substrates into hydrogen using photosynthetic bacteria

    SciTech Connect

    Weaver, P. F.

    1981-03-01

    Under nitrogen-limited conditions, photosynthetic bacteria photoconvert a wide variety of organic substrates nearly totally into H/sub 2/ and CO/sub 2/. More than 98% of the chemical energy of defined organic compounds even from dilute solutions can be recovered as combustible energy of the H/sub 2/ produced. Not calculating the chemical energy input, radiant (solar) energy recoveries are approximately 5% over a wide range of incident light intensities. Batch cultures can photoproduce H/sub 2/ at rates of 175 ml per gram dry weight of cells per hour (equal to a volume of H/sub 2/ per equivalent volume of liquid medium every 4 to 6 hours) when incubated in saturating light. With periodic refeeding, rates remain constant for several weeks. In closed containers H/sub 2/ pressures of 735 psig can be generated. In principle, this pressure can be used to decrease storage volume of the gas, to move it through pipelines or to provide required process pressures. Alcohol stillage and food processing wastes are excellent photoconvertible substances. When non-photosynthetic bacteria synthesizing appropriate polysaccharases are included in co-culture with photosynthetic bacteria, cellulose and other polysaccharides can be converted to H/sub 2/ and CO/sub 2/, albeit at low rates. Prospects for enhancing the photoconversion reactions of photosynthetic bacteria by environmental and genetic manipulations are discussed.

  9. FLASH SPECTROSCOPY AND FLASH FLUORIMETRY IN PHOTOSYNTHETIC STUDIES

    DTIC Science & Technology

    A comparative study of the flash induced forma tion of a pigment , X, absorbing at 515 millimicron in different classes of algae was made. This...that it occurs as a non- photosynthetic inter mediate, specifically as a consequence of damag ing photo-oxidation processes was examined. The latter

  10. Hydraulic constraints modify optimal photosynthetic profiles in giant sequoia trees.

    PubMed

    Ambrose, Anthony R; Baxter, Wendy L; Wong, Christopher S; Burgess, Stephen S O; Williams, Cameron B; Næsborg, Rikke R; Koch, George W; Dawson, Todd E

    2016-11-01

    Optimality theory states that whole-tree carbon gain is maximized when leaf N and photosynthetic capacity profiles are distributed along vertical light gradients such that the marginal gain of nitrogen investment is identical among leaves. However, observed photosynthetic N gradients in trees do not follow this prediction, and the causes for this apparent discrepancy remain uncertain. Our objective was to evaluate how hydraulic limitations potentially modify crown-level optimization in Sequoiadendron giganteum (giant sequoia) trees up to 90 m tall. Leaf water potential (Ψ l ) and branch sap flow closely followed diurnal patterns of solar radiation throughout each tree crown. Minimum leaf water potential correlated negatively with height above ground, while leaf mass per area (LMA), shoot mass per area (SMA), leaf nitrogen content (%N), and bulk leaf stable carbon isotope ratios (δ(13)C) correlated positively with height. We found no significant vertical trends in maximum leaf photosynthesis (A), stomatal conductance (g s), and intrinsic water-use efficiency (A/g s), nor in branch-averaged transpiration (E L), stomatal conductance (G S), and hydraulic conductance (K L). Adjustments in hydraulic architecture appear to partially compensate for increasing hydraulic limitations with height in giant sequoia, allowing them to sustain global maximum summer water use rates exceeding 2000 kg day(-1). However, we found that leaf N and photosynthetic capacity do not follow the vertical light gradient, supporting the hypothesis that increasing limitations on water transport capacity with height modify photosynthetic optimization in tall trees.

  11. Linking Auxin with Photosynthetic Rate via Leaf Venation1[OPEN

    PubMed Central

    Best, Melanie; Dimitriou, Theodore; Gill, Warwick M.; Hegarty, Matthew; Maconochie, Mary; McAdam, Erin L.

    2017-01-01

    Land plants lose vast quantities of water to the atmosphere during photosynthetic gas exchange. In angiosperms, a complex network of veins irrigates the leaf, and it is widely held that the density and placement of these veins determines maximum leaf hydraulic capacity and thus maximum photosynthetic rate. This theory is largely based on interspecific comparisons and has never been tested using vein mutants to examine the specific impact of leaf vein morphology on plant water relations. Here we characterize mutants at the Crispoid (Crd) locus in pea (Pisum sativum), which have altered auxin homeostasis and activity in developing leaves, as well as reduced leaf vein density and aberrant placement of free-ending veinlets. This altered vein phenotype in crd mutant plants results in a significant reduction in leaf hydraulic conductance and leaf gas exchange. We find Crispoid to be a member of the YUCCA family of auxin biosynthetic genes. Our results link auxin biosynthesis with maximum photosynthetic rate through leaf venation and substantiate the theory that an increase in the density of leaf veins coupled with their efficient placement can drive increases in leaf photosynthetic capacity. PMID:28733387

  12. Evolution of heliobacteria: implications for photosynthetic reaction center complexes

    NASA Technical Reports Server (NTRS)

    Vermaas, W. F.; Blankenship, R. E. (Principal Investigator)

    1994-01-01

    The evolutionary position of the heliobacteria, a group of green photosynthetic bacteria with a photosynthetic apparatus functionally resembling Photosystem I of plants and cyanobacteria, has been investigated with respect to the evolutionary relationship to Gram-positive bacteria and cyanobacteria. On the basis of 16S rRNA sequence analysis, the heliobacteria appear to be most closely related to Gram-positive bacteria, but also an evolutionary link to cyanobacteria is evident. Interestingly, a 46-residue domain including the putative sixth membrane-spanning region of the heliobacterial reaction center protein show rather strong similarity (33% identity and 72% similarity) to a region including the sixth membrane-spanning region of the CP47 protein, a chlorophyll-binding core antenna polypeptide of Photosystem II. The N-terminal half of the heliobacterial reaction center polypeptide shows a moderate sequence similarity (22% identity over 232 residues) with the CP47 protein, which is significantly more than the similarity with the Photosystem I core polypeptides in this region. An evolutionary model for photosynthetic reaction center complexes is discussed, in which an ancestral homodimeric reaction center protein (possibly resembling the heliobacterial reaction center protein) with 11 membrane-spanning regions per polypeptide has diverged to give rise to the core of Photosystem I, Photosystem II, and of the photosynthetic apparatus in green, purple, and heliobacteria.

  13. Effect of Pb2+ ions on photosynthetic apparatus.

    PubMed

    Sersen, Frantisek; Kralova, Katarina; Pesko, Matus; Cigan, Marek

    2014-01-01

    Using model lead compounds Pb(NO3)2 and Pb(CH3CHOO)2, the mechanism and the site of action of Pb2+ ions in the photosynthetic apparatus of spinach chloroplasts were studied. Both compounds inhibited photosynthetic electron transport (PET) through photosystem 1 (PS1) and photosystem 2 (PS2), while Pb(NO3)2 was found to be more effective PET inhibitor. Using EPR spectroscopy the following sites of Pb2+ action in the photosynthetic apparatus were determined: the water-splitting complex and the Z•/D• intermediates on the donor side of PS2 and probably also the ferredoxin on the acceptor side of PS1, because cyclic electron flow in chloroplasts was impaired by treatment with Pb2+ ions. Study of chlorophyll fluorescence in suspension of spinach chloroplasts in the presence of Pb2+ ions confirmed their site of action in PS2. Using fluorescence spectroscopy also formation of complexes between Pb2+ and amino acid residues in photosynthetic proteins was confirmed and constants of complex formation among Pb2+ and aromatic amino acids were calculated for both studied lead compounds.

  14. Lipids in photosynthetic reaction centres: structural roles and functional holes.

    PubMed

    Jones, Michael R

    2007-01-01

    Photosynthetic proteins power the biosphere. Reaction centres, light harvesting antenna proteins and cytochrome b(6)f (or bc(1)) complexes are expressed at high levels, have been subjected to an intensive spectroscopic, biochemical and mutagenic analysis, and several have been characterised to an informatively high resolution by X-ray crystallography. In addition to revealing the structural basis for the transduction of light energy, X-ray crystallography has brought molecular insights into the relationships between these multicomponent membrane proteins and their lipid environment. Lipids resolved in the X-ray crystal structures of photosynthetic proteins bind light harvesting cofactors, fill intra-protein cavities through which quinones can diffuse, form an important part of the monomer-monomer interface in multimeric structures and may facilitate structural flexibility in complexes that undergo partial disassembly and repair. It has been proposed that individual lipids influence the biophysical properties of reaction centre cofactors, and so affect the rate of electron transfer through the complex. Lipids have also been shown to be important for successful crystallisation of photosynthetic proteins. Comparison of the three types of reaction centre that have been structurally characterised reveals interesting similarities in the position of bound lipids that may point towards a generic requirement to reinforce the structure of the core electron transfer domain. The crystallographic data are also providing new opportunities to find molecular explanations for observed effects of different types of lipid on the structure, mechanism and organisation of reaction centres and other photosynthetic proteins.

  15. Patterns and determinants of functional and absolute iron deficiency in patients undergoing cardiac rehabilitation following heart surgery.

    PubMed

    Tramarin, Roberto; Pistuddi, Valeria; Maresca, Luigi; Pavesi, Marco; Castelvecchio, Serenella; Menicanti, Lorenzo; de Vincentiis, Carlo; Ranucci, Marco

    2017-01-01

    Background Anaemia and iron deficiency are frequent following major surgery. The present study aims to identify the iron deficiency patterns in cardiac surgery patients at their admission to a cardiac rehabilitation programme, and to determine which perioperative risk factor(s) may be associated with functional and absolute iron deficiency. Design This was a retrospective study on prospectively collected data. Methods The patient population included 339 patients. Functional iron deficiency was defined in the presence of transferrin saturation <20% and serum ferritin ≥100 µg/l. Absolute iron deficiency was defined in the presence of serum ferritin values <100 µg/l. Results Functional iron deficiency was found in 62.9% of patients and absolute iron deficiency in 10% of the patients. At a multivariable analysis, absolute iron deficiency was significantly ( p = 0.001) associated with mechanical prosthesis mitral valve replacement (odds ratio 5.4, 95% confidence interval 1.9-15) and tissue valve aortic valve replacement (odds ratio 4.5, 95% confidence interval 1.9-11). In mitral valve surgery, mitral repair carried a significant ( p = 0.013) lower risk of absolute iron deficiency (4.4%) than mitral valve replacement with tissue valves (8.3%) or mechanical prostheses (22.5%). Postoperative outcome did not differ between patients with functional iron deficiency and patients without iron deficiency; patients with absolute iron deficiency had a significantly ( p = 0.017) longer postoperative hospital stay (median 11 days) than patients without iron deficiency (median nine days) or with functional iron deficiency (median eight days). Conclusions Absolute iron deficiency following cardiac surgery is more frequent in heart valve surgery and is associated with a prolonged hospital stay. Routine screening for iron deficiency at admission in the cardiac rehabilitation unit is suggested.

  16. Carotid Artery Screening

    MedlinePlus

    ... Physician Resources Professions Site Index A-Z Carotid Artery Screening What is carotid artery screening? Who should ... information about carotid artery screening? What is carotid artery screening? Screening examinations are tests performed to find ...

  17. Mini-implants and miniplates generate sub-absolute and absolute anchorage.

    PubMed

    Consolaro, Alberto

    2014-01-01

    The functional demand imposed on bone promotes changes in the spatial properties of osteocytes as well as in their extensions uniformly distributed throughout the mineralized surface. Once spatial deformation is established, osteocytes create the need for structural adaptations that result in bone formation and resorption that happen to meet the functional demands. The endosteum and the periosteum are the effectors responsible for stimulating adaptive osteocytes in the inner and outer surfaces. Changes in shape, volume and position of the jaws as a result of skeletal correction of the maxilla and mandible require anchorage to allow bone remodeling to redefine morphology, esthetics and function as a result of spatial deformation conducted by orthodontic appliances. Examining the degree of changes in shape, volume and structural relationship of areas where mini-implants and miniplates are placed allows us to classify mini-implants as devices of subabsolute anchorage and miniplates as devices of absolute anchorage.

  18. Assembly of Photosynthetic Antenna Protein / Pigments Complexes from Algae and Plants for Development of Nanobiodevices

    DTIC Science & Technology

    2012-07-10

    Assembly of Photosynthetic Antenna Protein / Pigments Complexes from Algae and Plants for Development of Nanobiodevices Key...Assembly of Photosynthetic Antenna Protein / Pigments Complexes from Algae and Plants for Development of Nanobiodevices 5a. CONTRACT NUMBER...unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT This is the report of a project to use photosynthetic antenna pigment complexes from algae and plants as

  19. Screening for cancer

    SciTech Connect

    Miller, A.B.

    1985-01-01

    This book contains three sections: Fundamentals of Screening, Screening Tests, and Screening for Specific Cancer Sites. Each section consists of several chapters. Some of the chapter titles are: Principles of Screening and of the Evaluation of Screening Programs; Economic Aspects of Screening; Cervical Cytology; Screening Tests for Bladder Cancer; Fecal Occult Blood Testing; Screening for Cancer of the Cervix; Screening for Gastric Cancer; and Screening for Oral Cancer.

  20. Sun and Shade leaves, SIF, and Photosynthetic Capacity

    NASA Astrophysics Data System (ADS)

    Berry, J. A.; Badgley, G.

    2016-12-01

    Recent advances in retrieval of solar induced chlorophyll fluorescence (SIF) have opened up new possibilities for remote sensing of canopy physiology and structure. To date most of the emphasis has been placed on SIF as an indicator of stress and photosynthetic capacity. However, it is clear that canopy structure can also have an influence. To this point, simulations of SIF in land surface models tend to under predict observed variation in SIF. Also, large, systematic differences in SIF from different canopy types seem to correlate well with the photosynthetic capacity of these canopies. SIF emissions from pampered crops can be several-fold that from evergreen, needle-leaf forests. Yet, these may have similar vegetation indices and absorb a similar fraction of incident PAR. SIF photons produced in a conifer canopy do have a lower probability of escaping its dense, clumped foliage. However, this does not explain the correlated differences in photosynthetic rate and SIF. It is useful, in this regard, to consider the separate contributions of sun and shade leaves to the SIF emitted by a canopy. Sun leaves tend to be displayed to intercept the direct solar beam, and these highly illuminated leaves are often visible from above the canopy. Sun leaves produce more SIF and a large fraction of it escapes. Therefore, the intensity of SIF may be a sensitive indicator of the partitioning of absorbed PAR to sun and shade leaves. Many models account tor the different photosynthetic capacity of sun and shade leaves in calculating canopy responses. However, the fraction of leaves in each category is usually parameterized by an assumed leaf angle distribution (e.g. spherical). In reality, the sun/shade fraction can vary over a wide range, and it has been difficult to measure. SIF and possibly near-IR reflectance of canopies can be used to specify this key parameter with obvious importance to understanding photosynthetic rate.

  1. Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae).

    PubMed

    Melis, Anastasios

    2007-10-01

    Unicellular green algae have the ability to operate in two distinctly different environments (aerobic and anaerobic), and to photosynthetically generate molecular hydrogen (H2). A recently developed metabolic protocol in the green alga Chlamydomonas reinhardtii permitted separation of photosynthetic O2-evolution and carbon accumulation from anaerobic consumption of cellular metabolites and concomitant photosynthetic H2-evolution. The H2 evolution process was induced upon sulfate nutrient deprivation of the cells, which reversibly inhibits photosystem-II and O2-evolution in their chloroplast. In the absence of O2, and in order to generate ATP, green algae resorted to anaerobic photosynthetic metabolism, evolved H2 in the light and consumed endogenous substrate. This study summarizes recent advances on green algal hydrogen metabolism and discusses avenues of research for the further development of this method. Included is the mechanism of a substantial tenfold starch accumulation in the cells, observed promptly upon S-deprivation, and the regulated starch and protein catabolism during the subsequent H2-evolution. Also discussed is the function of a chloroplast envelope-localized sulfate permease, and the photosynthesis-respiration relationship in green algae as potential tools by which to stabilize and enhance H2 metabolism. In addition to potential practical applications of H2, approaches discussed in this work are beginning to address the biochemistry of anaerobic H2 photoproduction, its genes, proteins, regulation, and communication with other metabolic pathways in microalgae. Photosynthetic H2 production by green algae may hold the promise of generating a renewable fuel from nature's most plentiful resources, sunlight and water. The process potentially concerns global warming and the question of energy supply and demand.

  2. Hydrogen peroxide inhibits photosynthetic electron transport in cells of cyanobacteria.

    PubMed

    Samuilov, V D; Bezryadnov, D B; Gusev, M V; Kitashov, A V; Fedorenko, T A

    2001-06-01

    The effect of H2O2 on photosynthetic O2 evolution and photosynthetic electron transfer in cells of cyanobacteria Anabaena variabilis and Anacystis nidulans was studied. The following experiments were performed: 1) directly testing the effect of exogenous H2O2; 2) testing the effect of intracellular H2O2 generated with the use of methyl viologen (MV); 3) testing the effect of inhibiting intracellular H2O2 decomposition by salicylic acid (SA) and 3-amino-1,2,4-triazole (AT). H2O2 inhibited photosynthetic O2 evolution and light-induced reduction of p-benzoquinone (BQ) + ferricyanide (FeCy) in the Hill reaction. The I50 value for H2O2 was ~0.75 mM. Photosynthetic electron transfer in the cells treated with H2O2 was not maintained by H2O2, NH2OH, 1,5-diphenylcarbazide, tetraphenylboron, or butylated hydroxytoluene added as artificial electron donors for Photosystem (PS) II. The H2O --> CO2, H2O --> MV (involving PSII and PSI) and H2O --> BQ + FeCy (chiefly dependent on PSII) electron transfer reactions were inhibited upon incubation of the cells with MV, SA, or AT. The N,N,N,N-tetramethyl-p-phenylenediamine --> MV (chiefly dependent on PSI) electron transfer was inhibited by SA and AT but was resistant to MV. The results show that H2O2 inhibits photosynthetic electron transfer. It is unlikely that H2O2 could be a physiological electron donor in oxygenic photosynthesis.

  3. Measuring the absolute magnetic field using high-Tc SQUID

    NASA Astrophysics Data System (ADS)

    He, D. F.; Itozaki, H.

    2006-06-01

    SQUID normally can only measure the change of magnetic field instead of the absolute value of magnetic field. Using a compensation method, a mobile SQUID, which could keep locked when moving in the earth's magnetic field, was developed. Using the mobile SQUID, it was possible to measure the absolute magnetic field. The absolute value of magnetic field could be calculated from the change of the compensation output when changing the direction of the SQUID in a magnetic field. Using this method and the mobile SQUID, we successfully measured the earth's magnetic field in our laboratory.

  4. Absolute Antenna Calibration at the US National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G. L.; Bilich, A. L.

    2012-12-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. Determination of antenna phase center behavior is known as "antenna calibration". Since 1994, NGS has computed relative antenna calibrations for more than 350 antennas. In recent years, the geodetic community has moved to absolute calibrations - the IGS adopted absolute antenna phase center calibrations in 2006 for use in their orbit and clock products, and NGS's CORS group began using absolute antenna calibration upon the release of the new CORS coordinates in IGS08 epoch 2005.00 and NAD 83(2011,MA11,PA11) epoch 2010.00. Although NGS relative calibrations can be and have been converted to absolute, it is considered best practice to independently measure phase center characteristics in an absolute sense. Consequently, NGS has developed and operates an absolute calibration system. These absolute antenna calibrations accommodate the demand for greater accuracy and for 2-dimensional (elevation and azimuth) parameterization. NGS will continue to provide calibration values via the NGS web site www.ngs.noaa.gov/ANTCAL, and will publish calibrations in the ANTEX format as well as the legacy ANTINFO

  5. Absolute dose verifications in small photon fields using BANGTM gel

    NASA Astrophysics Data System (ADS)

    Scheib, S. G.; Schenkel, Y.; Gianolini, S.

    2004-01-01

    Polymer gel dosimeters change their magnetic resonance (MR) and optical properties with the absorbed dose when irradiated and are suitable for narrow photon beam dosimetry in radiosurgery. Such dosimeters enable relative and absolute 3D dose verifications in order to check the entire treatment chain from imaging to dose application during commissioning and quality assurance. For absolute 3D dose verifications in radiosurgery using Gamma Knife B, commercially available BANGTM Gels (BANG 25 Gy and BANG 3 Gy) together with dedicated phantoms were chosen in order to determine the potential of absolute gel dosimetry in radiosurgery.

  6. Surveying Rubisco Diversity and Temperature Response to Improve Crop Photosynthetic Efficiency.

    PubMed

    Orr, Douglas J; Alcântara, André; Kapralov, Maxim V; Andralojc, P John; Carmo-Silva, Elizabete; Parry, Martin A J

    2016-10-01

    The threat to global food security of stagnating yields and population growth makes increasing crop productivity a critical goal over the coming decades. One key target for improving crop productivity and yields is increasing the efficiency of photosynthesis. Central to photosynthesis is Rubisco, which is a critical but often rate-limiting component. Here, we present full Rubisco catalytic properties measured at three temperatures for 75 plants species representing both crops and undomesticated plants from diverse climates. Some newly characterized Rubiscos were naturally "better" compared to crop enzymes and have the potential to improve crop photosynthetic efficiency. The temperature response of the various catalytic parameters was largely consistent across the diverse range of species, though absolute values showed significant variation in Rubisco catalysis, even between closely related species. An analysis of residue differences among the species characterized identified a number of candidate amino acid substitutions that will aid in advancing engineering of improved Rubisco in crop systems. This study provides new insights on the range of Rubisco catalysis and temperature response present in nature, and provides new information to include in models from leaf to canopy and ecosystem scale.

  7. Surveying Rubisco Diversity and Temperature Response to Improve Crop Photosynthetic Efficiency1[OPEN

    PubMed Central

    Andralojc, P. John

    2016-01-01

    The threat to global food security of stagnating yields and population growth makes increasing crop productivity a critical goal over the coming decades. One key target for improving crop productivity and yields is increasing the efficiency of photosynthesis. Central to photosynthesis is Rubisco, which is a critical but often rate-limiting component. Here, we present full Rubisco catalytic properties measured at three temperatures for 75 plants species representing both crops and undomesticated plants from diverse climates. Some newly characterized Rubiscos were naturally “better” compared to crop enzymes and have the potential to improve crop photosynthetic efficiency. The temperature response of the various catalytic parameters was largely consistent across the diverse range of species, though absolute values showed significant variation in Rubisco catalysis, even between closely related species. An analysis of residue differences among the species characterized identified a number of candidate amino acid substitutions that will aid in advancing engineering of improved Rubisco in crop systems. This study provides new insights on the range of Rubisco catalysis and temperature response present in nature, and provides new information to include in models from leaf to canopy and ecosystem scale. PMID:27342312

  8. Absolute Binding Free Energy Calculations: On the Accuracy of Computational Scoring of Protein-ligand Interactions

    PubMed Central

    Singh, Nidhi; Warshel, Arieh

    2010-01-01

    Calculating the absolute binding free energies is a challenging task. Reliable estimates of binding free energies should provide a guide for rational drug design. It should also provide us with deeper understanding of the correlation between protein structure and its function. Further applications may include identifying novel molecular scaffolds and optimizing lead compounds in computer-aided drug design. Available options to evaluate the absolute binding free energies range from the rigorous but expensive free energy perturbation to the microscopic Linear Response Approximation (LRA/β version) and its variants including the Linear Interaction Energy (LIE) to the more approximated and considerably faster scaled Protein Dipoles Langevin Dipoles (PDLD/S-LRA version), as well as the less rigorous Molecular Mechanics Poisson–Boltzmann/Surface Area (MM/PBSA) and Generalized Born/Surface Area (MM/GBSA) to the less accurate scoring functions. There is a need for an assessment of the performance of different approaches in terms of computer time and reliability. We present a comparative study of the LRA/β, the LIE, the PDLD/S-LRA/β and the more widely used MM/PBSA and assess their abilities to estimate the absolute binding energies. The LRA and LIE methods perform reasonably well but require specialized parameterization for the non-electrostatic term. On the average, the PDLD/S-LRA/β performs effectively. Our assessment of the MM/PBSA is less optimistic. This approach appears to provide erroneous estimates of the absolute binding energies due to its incorrect entropies and the problematic treatment of electrostatic energies. Overall, the PDLD/S-LRA/β appears to offer an appealing option for the final stages of massive screening approaches. PMID:20186976

  9. Hearing Screening

    ERIC Educational Resources Information Center

    Johnson-Curiskis, Nanette

    2012-01-01

    Hearing levels are threatened by modern life--headsets for music, rock concerts, traffic noises, etc. It is crucial we know our hearing levels so that we can draw attention to potential problems. This exercise requires that students receive a hearing screening for their benefit as well as for making the connection of hearing to listening.

  10. Hearing Screening

    ERIC Educational Resources Information Center

    Johnson-Curiskis, Nanette

    2012-01-01

    Hearing levels are threatened by modern life--headsets for music, rock concerts, traffic noises, etc. It is crucial we know our hearing levels so that we can draw attention to potential problems. This exercise requires that students receive a hearing screening for their benefit as well as for making the connection of hearing to listening.

  11. Preparation of an oakmoss absolute with reduced allergenic potential.

    PubMed

    Ehret, C; Maupetit, P; Petrzilka, M; Klecak, G

    1992-06-01

    Synopsis Oakmoss absolute, an extract of the lichen Evernia prunastri, is known to cause allergenic skin reactions due to the presence of certain aromatic aldehydes such as atranorin, chloratranorin, ethyl hematommate and ethyl chlorohematommate. In this paper it is shown that treatment of Oakmoss absolute with amino acids such as lysine and/or leucine, lowers considerably the content of these allergenic constituents including atranol and chloratranol. The resulting Oakmoss absolute, which exhibits an excellent olfactive quality, was tested extensively in comparative studies on guinea pigs and on man. The results of the Guinea Pig Maximization Test (GPMT) and Human Repeated Insult Patch Test (HRIPT) indicate that, in comparison with the commercial test sample, the allergenicity of this new quality of Oakmoss absolute was considerably reduced, and consequently better skin tolerance of this fragrance for man was achieved.

  12. Absolute calibration of sniffer probes on Wendelstein 7-X

    SciTech Connect

    Moseev, D. Laqua, H. P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V.; Gellert, F.; Oosterbeek, J. W.

    2016-08-15

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m{sup 2} per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m{sup 2} per MW injected beam power is measured.

  13. Method for absolute flatness measurement of optical surfaces.

    PubMed

    Xu, Chen; Chen, Lei; Yin, Jiayi

    2009-05-01

    To determine the absolute flatness deviations of optical surfaces, a novel method using two optical plates to achieve the absolute flatness test is presented. Absolute deviations of three surfaces, the rear surface of plate I and the front and rear surfaces of plate II, are obtained by four measurements. Wavefront error due to the inhomogeneity of plate II is measured beforehand and is then subtracted from the test results. Vertical profiles of the three surfaces are compared with the measurement results obtained by Zygo's three-flat application. Good agreement validates our method. The advantage of our method is that only one transmission flat is needed during the absolute test, which is especially useful for large-aperture interferometer calibration.

  14. Gibbs Paradox Revisited from the Fluctuation Theorem with Absolute Irreversibility

    NASA Astrophysics Data System (ADS)

    Murashita, Yûto; Ueda, Masahito

    2017-02-01

    The inclusion of the factor ln (1 /N !) in the thermodynamic entropy proposed by Gibbs is shown to be equivalent to the validity of the fluctuation theorem with absolute irreversibility for gas mixing.

  15. Monochromator-Based Absolute Calibration of Radiation Thermometers

    NASA Astrophysics Data System (ADS)

    Keawprasert, T.; Anhalt, K.; Taubert, D. R.; Hartmann, J.

    2011-08-01

    A monochromator integrating-sphere-based spectral comparator facility has been developed to calibrate standard radiation thermometers in terms of the absolute spectral radiance responsivity, traceable to the PTB cryogenic radiometer. The absolute responsivity calibration has been improved using a 75 W xenon lamp with a reflective mirror and imaging optics to a relative standard uncertainty at the peak wavelength of approximately 0.17 % ( k = 1). Via a relative measurement of the out-of-band responsivity, the spectral responsivity of radiation thermometers can be fully characterized. To verify the calibration accuracy, the absolutely calibrated radiation thermometer is used to measure Au and Cu freezing-point temperatures and then to compare the obtained results with the values obtained by absolute methods, resulting in T - T 90 values of +52 mK and -50 mK for the gold and copper fixed points, respectively.

  16. Absolute Value Boundedness, Operator Decomposition, and Stochastic Media and Equations

    NASA Technical Reports Server (NTRS)

    Adomian, G.; Miao, C. C.

    1973-01-01

    The research accomplished during this period is reported. Published abstracts and technical reports are listed. Articles presented include: boundedness of absolute values of generalized Fourier coefficients, propagation in stochastic media, and stationary conditions for stochastic differential equations.

  17. Photosynthetic response of Nodularia spumigena to UV and photosynthetically active radiation depends on nutrient (N and P) availability.

    PubMed

    Roleda, Michael Y; Mohlin, Malin; Pattanaik, Bagmi; Wulff, Angela

    2008-11-01

    Biomass of N. spumigena is distributed within the dynamic photic zone that changes in both light quantity and quality. This study was designed to determine whether nutrient status can mitigate the negative impacts of experimental radiation treatments on the photosynthetic performance of N. spumigena. Cyanobacterial suspensions were exposed to radiation consisting of photosynthetically active radiation (PAR=400-700 nm), PAR+UV-A (=PA, 320-700 nm), and PAR+UV-A+UV-B (=PAB, 280-700 nm) under different nutrient media either replete with external dissolved nitrate (N) and orthophosphate (P; designated as +N/+P), replete with P only (-N/+P), or replete with N only (+N/-P). Under low PAR (75 micromol photons m(-2) s(-1)), nutrient status had no significant effect on the photosynthetic performance of N. spumigena in terms of rETRmax, alpha, and E(k). Nodularia spumigena was able to acclimate to high PAR (300 micromol photons m(-2) s(-1)), with a corresponding increase in rETRmax and E(k). The photosynthetic performance of N. spumigena cultured with supplemental nitrogen was more susceptible to experimental PAR irradiance. Under UVR, P-enrichment in the absence of additional external N (-N/+P) induced lower photoinhibition of photosynthesis compared with +N/-P cultures. However, the induction of NPQ may have provided PSII protection under P-deplete and PAR+UVR conditions. Because N. spumigena are able to fix nitrogen, access to available P can render them less susceptible to photoinhibition, effectively promoting blooms. Under a P-deficient condition, N. spumigena were more susceptible to radiation but were capable of photosynthetic recovery immediately after removal of radiation stress. In the presence of an internal P pool in the Baltic Sea, which may be seasonally available to the diazotrophic cyanobacteria, summer blooms of the resilient N. spumigena will persist.

  18. Absolute Continuity of Stable Foliations for Mappings of Banach Spaces

    NASA Astrophysics Data System (ADS)

    Blumenthal, Alex; Young, Lai-Sang

    2017-09-01

    We prove the absolute continuity of stable foliations for mappings of Banach spaces satisfying conditions consistent with time- t maps of certain classes of dissipative PDEs. This property is crucial for passing information from submanifolds transversal to the stable foliation to the rest of the phase space; it is also used in proofs of ergodicity. Absolute continuity of stable foliations is well known in finite dimensional hyperbolic theory. On Banach spaces, the absence of nice geometric properties poses some additional difficulties.

  19. Absolute and Convective Instability of a Liquid Jet in Microgravity

    NASA Technical Reports Server (NTRS)

    Lin, Sung P.; Vihinen, I.; Honohan, A.; Hudman, Michael D.

    1996-01-01

    The transition from convective to absolute instability is observed in the 2.2 second drop tower of the NASA Lewis Research Center. In convective instability the disturbance grows spatially as it is convected downstream. In absolute instability the disturbance propagates both downstream and upstream, and manifests itself as an expanding sphere. The transition Reynolds numbers are determined for two different Weber numbers by use of Glycerin and a Silicone oil. Preliminary comparisons with theory are made.

  20. Absolute flux calibration of optical spectrophotometric standard stars

    NASA Technical Reports Server (NTRS)

    Colina, Luis; Bohlin, Ralph C.

    1994-01-01

    A method based on Landolt photometry in B and V is developed to correct for a wavelength independent offset of the absolute flux level of optical spectrophotometric standards. The method is based on synthetic photometry techniques in B and V and is accurate to approximately 1%. The correction method is verified by Hubble Space Telescope Faint Object Spectrograph absolute fluxes for five calibration stars, which agree with Landolt photometry to 0.5% in B and V.

  1. Effect of visual restitution training on absolute homonymous scotomas.

    PubMed

    Schreiber, A; Vonthein, R; Reinhard, J; Trauzettel-Klosinski, S; Connert, C; Schiefer, U

    2006-07-11

    The authors examined 16 patients with stable homonymous visual field defects (HVFDs) with static automated perimetry (SAP). Training effect E was defined as difference of the proportions of absolutely defective locations in all test locations, before and after visual restitution training (VRT). E was 0.05 +/- 0.05 (mean +/- SD). The authors observed a relevant training effect (E >or= 0.12) in two subjects, but only monocularly. VRT has little effect on absolute HVFDs in SAP.

  2. Modeling the relationship between photosynthetically active radiation and global horizontal irradiance using singular spectrum analysis

    NASA Astrophysics Data System (ADS)

    Zempila, Melina-Maria; Taylor, Michael; Bais, Alkiviadis; Kazadzis, Stelios

    2016-10-01

    We report on the construction of generic models to calculate photosynthetically active radiation (PAR) from global horizontal irradiance (GHI), and vice versa. Our study took place at stations of the Greek UV network (UVNET) and the Hellenic solar energy network (HNSE) with measurements from NILU-UV multi-filter radiometers and CM pyranometers, chosen due to their long (≈1 M record/site) high temporal resolution (≈1 min) record that captures a broad range of atmospheric environments and cloudiness conditions. The uncertainty of the PAR measurements is quantified to be ±6.5% while the uncertainty involved in GHI measurements is up to ≈±7% according to the manufacturer. We show how multi-linear regression and nonlinear neural network (NN) models, trained at a calibration site (Thessaloniki) can be made generic provided that the input-output time series are processed with multi-channel singular spectrum analysis (M-SSA). Without M-SSA, both linear and nonlinear models perform well only locally. M-SSA with 50 time-lags is found to be sufficient for identification of trend, periodic and noise components in aerosol, cloud parameters and irradiance, and to construct regularized noise models of PAR from GHI irradiances. Reconstructed PAR and GHI time series capture ≈95% of the variance of the cross-validated target measurements and have median absolute percentage errors <2%. The intra-site median absolute error of M-SSA processed models were ≈8.2±1.7 W/m2 for PAR and ≈9.2±4.2 W/m2 for GHI. When applying the models trained at Thessaloniki to other stations, the average absolute mean bias between the model estimates and measured values was found to be ≈1.2 W/m2 for PAR and ≈0.8 W/m2 for GHI. For the models, percentage errors are well within the uncertainty of the measurements at all sites. Generic NN models were found to perform marginally better than their linear counterparts.

  3. Structure elucidation and absolute stereochemistry of isomeric monoterpene chromane esters.

    PubMed

    Batista, João M; Batista, Andrea N L; Mota, Jonas S; Cass, Quezia B; Kato, Massuo J; Bolzani, Vanderlan S; Freedman, Teresa B; López, Silvia N; Furlan, Maysa; Nafie, Laurence A

    2011-04-15

    Six novel monoterpene chromane esters were isolated from the aerial parts of Peperomia obtusifolia (Piperaceae) using chiral chromatography. This is the first time that chiral chromane esters of this kind, ones with a tethered chiral terpene, have been isolated in nature. Due to their structural features, it is not currently possible to assess directly their absolute stereochemistry using any of the standard classical approaches, such as X-ray crystallography, NMR, optical rotation, or electronic circular dichroism (ECD). Herein we report the absolute configuration of these molecules, involving four chiral centers, using vibrational circular dichroism (VCD) and density functional theory (DFT) (B3LYP/6-31G*) calculations. This work further reinforces the capability of VCD to determine unambiguously the absolute configuration of structurally complex molecules in solution, without crystallization or derivatization, and demonstrates the sensitivity of VCD to specify the absolute configuration for just one among a number of chiral centers. We also demonstrate the sufficiency of using the so-called inexpensive basis set 6-31G* compared to the triple-ζ basis set TZVP for absolute configuration analysis of larger molecules using VCD. Overall, this work extends our knowledge of secondary metabolites in plants and provides a straightforward way to determine the absolute configuration of complex natural products involving a chiral parent moiety combined with a chiral terpene adduct.

  4. Photosynthetic and respiratory characterization of field grown tomato.

    PubMed

    Bolaños, J A; Hsiao, T C

    1991-04-01

    The photosynthetic responses of tomato (Lycopersicum esculentum Mill.) leaves to environmental and ontogenetic factors were determined on plants grown in the field under high radiation and high nitrogen fertilization. Response curves showed net photosynthesis to only approach light saturation at a photosynthetic photon flux density (PPFD) of 2200 μmol m(-2) s(-1), with rates of approx. 40 μmol CO2 m(-2) s(-1). A broad temperature optimum was observed between 25° and 35°C, with 50% of the photosynthetic rates remaining even at 47°C. The high rate, the lack of saturation at the equivalent of full sunlight, and the tolerance to high temperature of tomato were unusual in light of the literature on this C3 species. Apparently, acclimation to the field environment of high radiation and hot daytime temperature, coupled with the high nitrogen nutrition, made possible the high photosynthetic performance normally associated with C4 species.Photosynthetic ability of the leaf reached a maximum near the time of its full expansion and declined steadily thereafter, regardless of the time of leaf initiation. Leaf nitrogen content showed a similar decline with leaf ontogeny. Photosynthesis was linearly correlated with nitrogen content, whether the nitrogen variation was due to leaf age or rates of nitrogen fertilization. Internal CO2 concentrations (Ci) of the leaf indicated that stomatal function was well coordinated with photosynthetic capacity as leaf age and fluence rate varied down to a PPFD of 500 μmol m(-2) s(-1). As PPFD decreased further, there was less stomatal control and Ci increased to as high as 320 μ bar bar(-1).Dark respiration was highest for expanding leaves and increased nearly exponentially with temperature. Respiration was also highest for young and expanding fruits, and next highest for fruits just turning pink. Fruit respiration increased approximately linearly with temperature, and was estimated to be an important component of the CO2 flux of the

  5. Vision Screening

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Visi Screen OSS-C, marketed by Vision Research Corporation, incorporates image processing technology originally developed by Marshall Space Flight Center. Its advantage in eye screening is speed. Because it requires no response from a subject, it can be used to detect eye problems in very young children. An electronic flash from a 35 millimeter camera sends light into a child's eyes, which is reflected back to the camera lens. The photorefractor then analyzes the retinal reflexes generated and produces an image of the child's eyes, which enables a trained observer to identify any defects. The device is used by pediatricians, day care centers and civic organizations that concentrate on children with special needs.

  6. Apparatus and method for measuring single cell and sub-cellular photosynthetic efficiency

    DOEpatents

    Davis, Ryan Wesley; Singh, Seema; Wu, Huawen

    2013-07-09

    Devices for measuring single cell changes in photosynthetic efficiency in algal aquaculture are disclosed that include a combination of modulated LED trans-illumination of different intensities with synchronized through objective laser illumination and confocal detection. Synchronization and intensity modulation of a dual illumination scheme were provided using a custom microcontroller for a laser beam block and constant current LED driver. Therefore, single whole cell photosynthetic efficiency, and subcellular (diffraction limited) photosynthetic efficiency measurement modes are permitted. Wide field rapid light scanning actinic illumination is provided for both by an intensity modulated 470 nm LED. For the whole cell photosynthetic efficiency measurement, the same LED provides saturating pulses for generating photosynthetic induction curves. For the subcellular photosynthetic efficiency measurement, a switched through objective 488 nm laser provides saturating pulses for generating photosynthetic induction curves. A second near IR LED is employed to generate dark adapted states in the system under study.

  7. Method to obtain absolute impurity density profiles combining charge exchange and beam emission spectroscopy without absolute intensity calibration

    SciTech Connect

    Kappatou, A.; Delabie, E.; Jaspers, R. J. E.; Jakobs, M. A.; Marchuk, O.; Biel, W.

    2012-10-15

    Investigation of impurity transport properties in tokamak plasmas is essential and a diagnostic that can provide information on the impurity content is required. Combining charge exchange recombination spectroscopy (CXRS) and beam emission spectroscopy (BES), absolute radial profiles of impurity densities can be obtained from the CXRS and BES intensities, electron density and CXRS and BES emission rates, without requiring any absolute calibration of the spectra. The technique is demonstrated here with absolute impurity density radial profiles obtained in TEXTOR plasmas, using a high efficiency charge exchange spectrometer with high etendue, that measures the CXRS and BES spectra along the same lines-of-sight, offering an additional advantage for the determination of absolute impurity densities.

  8. [Colonoscopies for colorectal cancer screening].

    PubMed

    Bessa Caserras, Xavier

    2014-09-01

    Colonoscopies play a vital role in population screening programs, either for initial examinations or as a test carried out after a positive result from a fecal occult blood test or sigmoidoscopy. Colonoscopies, and ancillary techniques such as polipectomies, must comply with basic quality criteria that must be reflected in the quality standards of screening programs. A quality colonoscopy is absolutely vital to avoid the occurrence of interval cancers. It is extremely important to detect any proximal lesions during a colonoscopy, especially those which are serrated, because they are difficult to identify and due to the increased risk of colorectal cancer. Regarding follow-up programs for resected colorectal polyps, current evidence of the relationship between the risk of neoplasia and certain variables (age, sex, smoker, BMI, diabetes, etc.) must allow for individualized risk and algorithms for screening and follow-up frequency to be developed for these patients. However, initial endoscopic exploration in a screening colonoscopy is essential to establishing the optimum interval and ensuring follow-up. Despite poor adherence to follow-up programs, mostly due to their overuse, follow-up colonoscopies 3 years after resection of all polypoid lesions detect clinically significant lesions as effectively as colonoscopies at one year.

  9. Transparent screens.

    PubMed

    Rosenthal, R J

    1988-01-01

    There is a kind of transitional phenomenon found among certain borderline patients which is quite distinct from Winnicott's transitional object. These are patients who are preoccupied with maintaining proper physical distance from their objects, in order to regulate anxieties about isolation on the one hand, and identity-annihilating closeness on the other. Since they believe the activity of looking to be intrusive and devouring, hence dangerous, transparent screens are interposed between self and other, and serve as protective barriers. These screens function intrapsychically as well, to split off or hide those aspects of the self felt to be unacceptable. The analyst may witness the failure of the screen in several ways: it may create too great a distance, isolating the individual and keeping him from life; it may become contaminated by projections and turn into a persecutor, or trap the individual, a state of intolerable claustrophobia; most dramatically, it may suddenly shatter. The latter is associated with psychosis and death, and its appearance may be a harbinger of suicide.

  10. Prognostic impact of absolute lymphocyte count/absolute monocyte count ratio and prognostic score in patients with nasal-type, extranodal natural killer/T-cell lymphoma.

    PubMed

    Li, Na; Zhang, Li; Song, Hao-Lan; Zhang, Jing; Weng, Hua-Wei; Zou, Li-Qun

    2017-05-01

    Nasal-type, extranodal natural killer/T-cell lymphoma is a heterogeneous disorder with poor prognosis, requiring risk stratification in this population. The combined value of baseline absolute lymphocyte count and absolute monocyte count provided prognostic information in some malignancies. However, the evidence requires validation in extranodal natural killer/T-cell lymphoma. Aiming to investigate the prognostic significance of absolute lymphocyte count/absolute monocyte count ratio and absolute lymphocyte count/absolute monocyte count prognostic score for extranodal natural killer/T-cell lymphoma, a retrospective research was carried out. A total of 264 patients with newly diagnosed extranodal natural killer/T-cell lymphoma were analyzed in this study. The patients' absolute lymphocyte count and absolute monocyte count tested at initial diagnosis were collected. Receiver operating curve analysis showed that the optimal cut-off values for absolute lymphocyte count and absolute monocyte count were 1.0 × 10(9) and 0.5 × 10(9)L(-1), respectively, and for absolute lymphocyte count/absolute monocyte count ratio was 2.85. After a median follow-up of 27 months (range 1-87 months), the 3-year overall survival and progression-free survival was 75.4% and 67.6%, respectively. Patients with absolute lymphocyte count/absolute monocyte count ratio ≥ 2.85 had better 3-year overall survival and progression-free survival than those with absolute lymphocyte count/absolute monocyte count ratio <2.85 (p < 0.001). According to absolute lymphocyte count/absolute monocyte count prognostic score, significant difference has been noticed in 3-year overall survival and progression-free survival (p < 0.001) and high absolute lymphocyte count/absolute monocyte count prognostic score was associated with poorer survival. The International Prognostic Index and Korean Prognostic Index were used for prognosis and showed no significant difference. When adding absolute lymphocyte count/absolute

  11. Hydrogen Production by the Photosynthetic Bacterium Rhodospirillum rubrum

    PubMed Central

    Zürrer, Hans; Bachofen, Reinhard

    1979-01-01

    Continuous photosynthetic production of hydrogen by Rhodospirillum rubrum in batch cultures was observed up to 80 days with the hydrogen donor, pure lactate or lactic acid-containing wastes, supplied periodically. Hydrogen was produced at an average rate of 6 ml/h per g (dry weight) of cells with whey as a hydrogen donor. In continuous cultures with glutamate as a growth-limiting nitrogen source and lactate as a hydrogen donor, hydrogen was evolved at a rate of 20 ml/h per g (dry weight). The composition of the gas evolved remained practically constant (70 to 75% H2, 25 to 30% CO2). Photosynthetic bacteria processing specific organic wastes could be an advantage in large-scale production of hydrogen together with food protein of high value, compared to other biological systems. Images PMID:16345375

  12. Photosynthetic carbon reduction by seagrasses exposed to ultraviolet A radiation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The seagrasses Halophila engelmannii, Halodule wrightii, and Syringodium filiforme were examined for their intrinsic sensitivity to ultraviolet-A-UV-A and ultraviolet-B-UV-B radiation. The effect of UV-A on photosynthetically active radiation (PAR) was also determined. Ultraviolet-A and ultraviolet-B were studied with emphasis on the greater respective environmental consequence in terms of seagrass distribution and abundance. Results indicate that an intrinsic sensitivity to UV-A alone is apparent only in Halophila, while net photosynthesis in Halodule and Syringodium seems unaffected by the level of UV-A provided. The sensitivity of Halophila to UV-A in the absense of (PAR) indicates that the photosynthetic reaction does not need to be in operation for damage to occur. Other significant results are reported.

  13. BOREAS TE-9 NSA Photosynthetic Capacity and Foliage Nitrogen Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Dang, Qinglai; Margolis, Hank; Coyea, Marie

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-9 (Terrestrial Ecology) team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. This data set describes the spatial and temporal relationship between foliage nitrogen concentration and photosynthetic capacity in the canopies of black spruce, jack pine, and aspen located within the Northern Study Area (NSA). The data were collected from June to September 1994 and are useful for modeling the vertical distribution of carbon fixation for different forest types in the boreal forest. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  14. Influence of thermal light correlations on photosynthetic structures

    NASA Astrophysics Data System (ADS)

    de Mendoza, Adriana; Manrique, Pedro; Caycedo-Soler, Felipe; Johnson, Neil F.; Rodríguez, Ferney J.; Quiroga, Luis

    2014-03-01

    The thermal light from the sun is characterized by both classical and quantum mechanical correlations. These correlations have left a fingerprint on the natural harvesting structures developed through five billion years of evolutionary pressure, specially in photosynthetic organisms. In this work, based upon previous extensive studies of spatio-temporal correlations of light fields, we hypothesize that structures involving photosensitive pigments like those present in purple bacteria vesicles emerge as an evolutionary response to the different properties of incident light. By using burstiness and memory as measures that quantify higher moments of the photon arrival statistics, we generate photon-time traces. They are used to simulate absorption on detectors spatially extended over regions comparable to these light fields coherence length. Finally, we provide some insights into the connection between these photo-statistical features with the photosynthetic membrane architecture and the lights' spatial correlation. Facultad de Ciencias Uniandes.

  15. Pigment oligomers as natural and artificial photosynthetic antennas

    SciTech Connect

    Blankenship, R.E.

    1996-12-31

    Green photosynthetic bacteria contain antenna complexes known as chlorosomes. These complexes are appressed to the cytoplasmic side of the inner cell membrane and function to absorb light and transfer the energy to the photochemical reaction center, where photochemical energy storage takes place. Chlorosomes differ from all other known photosynthetic antenna complexes in that the geometrical arrangement of pigments is determined primarily by pigment-pigment interactions instead of pigment-protein interactions. The bacteriochlorophyll c, d or e pigments found in chlorosomes form large oligomers with characteristic spectral properties significantly perturbed from those exhibited by monomeric pigments. Because of their close spatial interaction, the pigments are thought to be strongly coupled electronically, and many of the optical properties result from exciton interactions. This presentation will summarize existing knowledge on the chemical composition and properties of chlorosomes, the evidence for the oligomeric nature of chlorosome pigment organization and proposed structures for the oligomers, and the kinetics and mechanisms of energy transfer in chlorosomes.

  16. Quantum oscillatory exciton migration in photosynthetic reaction centers.

    PubMed

    Abramavicius, Darius; Mukamel, Shaul

    2010-08-14

    The harvesting of solar energy and its conversion to chemical energy is essential for all forms of life. The primary photon absorption, transport, and charge separation events, which trigger a chain of chemical reactions, take place in membrane-bound photosynthetic complexes. Whether quantum effects, stemming from entanglement of chromophores, persist in the energy transport at room temperature, despite the rapid decoherence effects caused by environment fluctuations, is under current active debate. If confirmed, these may explain the high efficiency of light harvesting and open up numerous applications to quantum computing and information processing. We present simulations of the photosynthetic reaction center of photosystem II that clearly establish oscillatory energy transport at room temperature originating from interference of quantum pathways. These signatures of quantum transport may be observed by two dimensional coherent optical spectroscopy.

  17. Friedelane triterpenes from Celastrus vulcanicola as photosynthetic inhibitors.

    PubMed

    Torres-Romero, David; King-Díaz, Beatriz; Strasser, Reto J; Jiménez, Ignacio A; Lotina-Hennsen, Blas; Bazzocchi, Isabel L

    2010-10-27

    Five friedelane triterpenoids, epifriedelinol (1), friedelin (2), canophyllol (3), pulpononic acid (4) and 3-oxo-29-hydroxyfriedelane (5), were isolated from Celastrus vulcanicola (Celastraceae), and were identified by spectroscopic methods, comparison with authentic samples and reported data. In the search for potential herbicides, compounds 1-5 were evaluated for their photosynthetic inhibitory activity. Compound 1 acts as an energy transfer inhibitor, interacting and enhancing the light-activated Mg(2+)-ATPase, while 3 behaves as a Hill reaction inhibitor. The in vivo assays indicated that 1 and 3 act as selective postemergence herbicides at 100 μM by reducing biomass production in the weed Physalis ixocarpa. Moreover, results from Chl a fluorescence transients in leaves of Lolium perenne and P. ixocarpa suggest that both compounds affect photosynthesis efficiency of the chloroplasts as a response to a process of detoxification and repair. Thus, 1 and 3 reduce biomass by more complex mechanisms than only the damaging of the photosynthetic apparatus.

  18. Light energy to bioelectricity: photosynthetic microbial fuel cells.

    PubMed

    Rosenbaum, Miriam; He, Zhen; Angenent, Largus T

    2010-06-01

    Here, we reviewed five different approaches that integrate photosynthesis with microbial fuel cells (MFCs)-photoMFCs. Until now, no conclusive report has been published that identifies direct electron transfer (DET) between a photosynthetic biocatalyst and the anode of a MFC. Therefore, most recent research has been performed to generate sufficient electric current from sunlight with either electrocatalysts or heterotrophic bacteria on the anode to convert photosynthetic products indirectly. The most promising photoMFCs to date are electrocatalytic bioelectrochemical systems (BESs) that convert hydrogen from photosynthesis and sediment-based BESs that can convert excreted organics from cyanobacteria or plants. In addition, illumination on the cathode may provide either oxygen for an electrocatalytic reduction reaction or a promising anoxygenic biocathode.

  19. Quantum oscillatory exciton migration in photosynthetic reaction centers

    NASA Astrophysics Data System (ADS)

    Abramavicius, Darius; Mukamel, Shaul

    2010-08-01

    The harvesting of solar energy and its conversion to chemical energy is essential for all forms of life. The primary photon absorption, transport, and charge separation events, which trigger a chain of chemical reactions, take place in membrane-bound photosynthetic complexes. Whether quantum effects, stemming from entanglement of chromophores, persist in the energy transport at room temperature, despite the rapid decoherence effects caused by environment fluctuations, is under current active debate. If confirmed, these may explain the high efficiency of light harvesting and open up numerous applications to quantum computing and information processing. We present simulations of the photosynthetic reaction center of photosystem II that clearly establish oscillatory energy transport at room temperature originating from interference of quantum pathways. These signatures of quantum transport may be observed by two dimensional coherent optical spectroscopy.

  20. Detection of circular polarization in light scattered from photosynthetic microbes

    PubMed Central

    Sparks, William B.; Hough, James; Germer, Thomas A.; Chen, Feng; DasSarma, Shiladitya; DasSarma, Priya; Robb, Frank T.; Manset, Nadine; Kolokolova, Ludmilla; Reid, Neill; Macchetto, F. Duccio; Martin, William

    2009-01-01

    The identification of a universal biosignature that could be sensed remotely is critical to the prospects for success in the search for life elsewhere in the universe. A candidate universal biosignature is homochirality, which is likely to be a generic property of all biochemical life. Because of the optical activity of chiral molecules, it has been hypothesized that this unique characteristic may provide a suitable remote sensing probe using circular polarization spectroscopy. Here, we report the detection of circular polarization in light scattered by photosynthetic microbes. We show that the circular polarization appears to arise from circular dichroism of the strong electronic transitions of photosynthetic absorption bands. We conclude that circular polarization spectroscopy could provide a powerful remote sensing technique for generic life searches. PMID:19416893

  1. Changes of Photosynthetic Behaviors in Kappaphycus alvarezii Infected by Epiphyte.

    PubMed

    Pang, Tong; Liu, Jianguo; Liu, Qian; Lin, Wei

    2011-01-01

    Epiphytic filamentous algae (EFA) were noted as a serious problem to reduce the production and quality of K. alvarezii. The morphological studies revealed that the main epiphyte on K. alvarezii was Neosiphonia savatieri in China. Though the harmful effects of EFA on the production of K. alvarezii have been reported, the detailed mechanism of the N. savatieri in limiting the production of K. alvarezii has not been studied yet. The present paper studied the effects of N. savatieri infection on photosynthetic behaviors in K. alvarezii by detecting chlorophyll fluorescence transient in vivo. The results revealed that damage of oxygen-evolving complex (OEC), decrease of active reaction centers (RCs), and the plastoquinone (PQ) pool as well as significant reduction in the performance indexes (PI) of PSII were caused by the infection of N. savatieri. The influence of N. savatieri on photosynthetic activity of K. alvarezii should be one of the important reasons to reduce the production of K. alvarezii infected by N. savatieri.

  2. Ion antiport accelerates photosynthetic acclimation in fluctuating light environments

    PubMed Central

    Armbruster, Ute; Carrillo, L. Ruby; Venema, Kees; Pavlovic, Lazar; Schmidtmann, Elisabeth; Kornfeld, Ari; Jahns, Peter; Berry, Joseph A.; Kramer, David M.; Jonikas, Martin C.

    2014-01-01

    Many photosynthetic organisms globally, including crops, forests and algae, must grow in environments where the availability of light energy fluctuates dramatically. How photosynthesis maintains high efficiency despite such fluctuations in its energy source remains poorly understood. Here we show that Arabidopsis thaliana K+ efflux antiporter (KEA3) is critical for high photosynthetic efficiency under fluctuating light. On a shift from dark to low light, or high to low light, kea3 mutants show prolonged dissipation of absorbed light energy as heat. KEA3 localizes to the thylakoid membrane, and allows proton efflux from the thylakoid lumen by proton/potassium antiport. KEA3’s activity accelerates the downregulation of pH-dependent energy dissipation after transitions to low light, leading to faster recovery of high photosystem II quantum efficiency and increased CO2 assimilation. Our results reveal a mechanism that increases the efficiency of photosynthesis under fluctuating light. PMID:25451040

  3. An allosteric photoredox catalyst inspired by photosynthetic machinery.

    PubMed

    Lifschitz, Alejo M; Young, Ryan M; Mendez-Arroyo, Jose; Stern, Charlotte L; McGuirk, C Michael; Wasielewski, Michael R; Mirkin, Chad A

    2015-03-30

    Biological photosynthetic machinery allosterically regulate light harvesting via conformational and electronic changes at the antenna protein complexes as a response to specific chemical inputs. Fundamental limitations in current approaches to regulating inorganic light-harvesting mimics prevent their use in catalysis. Here we show that a light-harvesting antenna/reaction centre mimic can be regulated by utilizing a coordination framework incorporating antenna hemilabile ligands and assembled via a high-yielding, modular approach. As in nature, allosteric regulation is afforded by coupling the conformational changes to the disruptions in the electrochemical landscape of the framework upon recognition of specific coordinating analytes. The hemilabile ligands enable switching using remarkably mild and redox-inactive inputs, allowing one to regulate the photoredox catalytic activity of the photosynthetic mimic reversibly and in situ. Thus, we demonstrate that bioinspired regulatory mechanisms can be applied to inorganic light-harvesting arrays displaying switchable catalytic properties and with potential uses in solar energy conversion and photonic devices.

  4. Detecting extraterrestrial life with the Colossus telescope using photosynthetic biosignatures

    NASA Astrophysics Data System (ADS)

    Berdyugina, S.; Kuhn, J.; Harrington, D.; Moretto, G.; Langlois, M.; Halliday, D.; Harlingten, C.

    2014-03-01

    We propose to search for life on Earth-like planets in habitable zones using photosynthesis biosignatures. Many life forms on Earth process the solar light and utilize it to support their own activity and to provide a valuable energy source for other life forms. We expect therefore that photosynthesis is very likely to arise on another planet and can produce conspicuous biosignatures. We have recently identified biological polarization effects, e.g., selective light absorption or scattering by photosynthetic molecules which can be used for remote detection of extraterrestrial life. Here we present synthetic spectra and polarization of Earth-like planets with photosynthetic life and evaluate the sensitivity of the Colossus telescope for their remote detection in the solar neighborhood.

  5. Engineering photosynthetic organisms for the production of biohydrogen.

    PubMed

    Dubini, Alexandra; Ghirardi, Maria L

    2015-03-01

    Oxygenic photosynthetic organisms such as green algae are capable of absorbing sunlight and converting the chemical energy into hydrogen gas. This process takes advantage of the photosynthetic apparatus of these organisms which links water oxidation to H2 production. Biological H2 has therefore the potential to be an alternative fuel of the future and shows great promise for generating large scale sustainable energy. Microalgae are able to produce H2 under light anoxic or dark anoxic condition by activating 3 different pathways that utilize the hydrogenases as catalysts. In this review, we highlight the principal barriers that prevent hydrogen production in green algae and how those limitations are being addressed, through metabolic and genetic engineering.  We also discuss the major challenges and bottlenecks facing the development of future commercial algal photobiological systems for H2 production. Finally we provide suggestions for future strategies and potential new techniques to be developed towards an integrated system with optimized hydrogen production.

  6. Remote sensing of vegetation canopy photosynthetic and stomatal conductance efficiencies

    NASA Technical Reports Server (NTRS)

    Myneni, R. B.; Ganapol, B. D.; Asrar, G.

    1992-01-01

    The problem of remote sensing the canopy photosynthetic and stomatal conductance efficiencies is investigated with the aid of one- and three-dimensional radiative transfer methods coupled to a semi-empirical mechanistic model of leaf photosynthesis and stomatal conductance. Desertlike vegetation is modeled as clumps of leaves randomly distributed on a bright dry soil with partial ground cover. Normalized difference vegetation index (NDVI), canopy photosynthetic (Ep), and stomatal efficiencies (Es) are calculated for various geometrical, optical, and illumination conditions. The contribution of various radiative fluxes to estimates of Ep is evaluated and the magnitude of errors in bulk canopy formulation of problem parameters are quantified. The nature and sensitivity of the relationship between Ep and Es to NDVI is investigated, and an algorithm is proposed for use in operational remote sensing.

  7. Auditory working memory predicts individual differences in absolute pitch learning.

    PubMed

    Van Hedger, Stephen C; Heald, Shannon L M; Koch, Rachelle; Nusbaum, Howard C

    2015-07-01

    Absolute pitch (AP) is typically defined as the ability to label an isolated tone as a musical note in the absence of a reference tone. At first glance the acquisition of AP note categories seems like a perceptual learning task, since individuals must assign a category label to a stimulus based on a single perceptual dimension (pitch) while ignoring other perceptual dimensions (e.g., loudness, octave, instrument). AP, however, is rarely discussed in terms of domain-general perceptual learning mechanisms. This is because AP is typically assumed to depend on a critical period of development, in which early exposure to pitches and musical labels is thought to be necessary for the development of AP precluding the possibility of adult acquisition of AP. Despite this view of AP, several previous studies have found evidence that absolute pitch category learning is, to an extent, trainable in a post-critical period adult population, even if the performance typically achieved by this population is below the performance of a "true" AP possessor. The current studies attempt to understand the individual differences in learning to categorize notes using absolute pitch cues by testing a specific prediction regarding cognitive capacity related to categorization - to what extent does an individual's general auditory working memory capacity (WMC) predict the success of absolute pitch category acquisition. Since WMC has been shown to predict performance on a wide variety of other perceptual and category learning tasks, we predict that individuals with higher WMC should be better at learning absolute pitch note categories than individuals with lower WMC. Across two studies, we demonstrate that auditory WMC predicts the efficacy of learning absolute pitch note categories. These results suggest that a higher general auditory WMC might underlie the formation of absolute pitch categories for post-critical period adults. Implications for understanding the mechanisms that underlie the

  8. Transition dipole moments of the Qy band in photosynthetic pigments.

    PubMed

    Oviedo, M Belén; Sánchez, Cristián G

    2011-11-10

    From studying the time evolution of the single electron density matrix within a density functional tight-binding formalism we calculate the Q(y) transition dipole moments vector direction and strength for a series of important photosynthetic pigments. We obtain good agreement with first-principles and experimental results and provide insights into the detailed nature of these excitations from the time evolving populations of molecular orbitals involved as well as correlations between pigment chemistry and dipole strength.

  9. Excitation energy transfer in photosynthetic protein-pigment complexes

    NASA Astrophysics Data System (ADS)

    Yeh, Shu-Hao

    Quantum biology is a relatively new research area which investigates the rules that quantum mechanics plays in biology. One of the most intriguing systems in this field is the coherent excitation energy transport (EET) in photosynthesis. In this document I will discuss the theories that are suitable for describing the photosynthetic EET process and the corresponding numerical results on several photosynthetic protein-pigment complexes (PPCs). In some photosynthetic EET processes, because of the electronic coupling between the chromophores within the system is about the same order of magnitude as system-bath coupling (electron-phonon coupling), a non-perturbative method called hierarchy equation of motion (HEOM) is applied to study the EET dynamics. The first part of this thesis includes brief introduction and derivation to the HEOM approach. The second part of this thesis the HEOM method will be applied to investigate the EET process within the B850 ring of the light harvesting complex 2 (LH2) from purple bacteria, Rhodopseudomonas acidophila. The dynamics of the exciton population and coherence will be analyzed under different initial excitation configurations and temperatures. Finally, how HEOM can be implemented to simulate the two-dimensional electronic spectra of photosynthetic PPCs will be discussed. Two-dimensional electronic spectroscopy is a crucial experimental technique to probe EET dynamics in multi-chromophoric systems. The system we are interested in is the 7-chromophore Fenna-Matthews-Olson (FMO) complex from green sulfur bacteria, Prosthecochloris aestuarii. Recent crystallographic studies report the existence of an additional (eighth) chromophore in some of the FMO monomers. By applying HEOM we are able to calculate the two-dimensional electronic spectra of the 7-site and 8-site FMO complexes and investigate the functionality of the eighth chromophore.

  10. Systemic regulation of photosynthetic function in field-grown sorghum.

    PubMed

    Li, Tao; Liu, Yujun; Shi, Lei; Jiang, Chuangdao

    2015-09-01

    The photosynthetic characteristics of developing leaves of plants grown under artificial conditions are, to some extent, regulated systemically by mature leaves; however, whether systemic regulation of photosynthesis occurs in field-grown crops is unclear. To explore this question, we investigated the effects of planting density on growth characteristics, gas exchange, leaf nitrogen concentration and chlorophyll a fluorescence in field-grown sorghum (Sorghum bicolor L.). Our results showed that close planting resulted in a marked decline in light intensity in lower canopy. Sorghum plants grown at a high planting density had lower net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (E) than plants grown at a low planting density. Moreover, in the absence of mineral deficiency, close planting induced a slight increase in leaf nitrogen concentration. The decreased photosynthesis in leaves of the lower canopy at high planting density was caused mainly by the low light. However, newly developed leaves exposed to high light in the upper canopy of plants grown at high planting density also exhibited a distinct decline in photosynthesis relative to plants grown at low planting density. Based on these results, the photosynthetic function of the newly developed leaves in the upper canopy was not determined fully by their own high light environment. Accordingly, we suggest that the photosynthetic function of newly developed leaves in the upper canopy of field-grown sorghum plants is regulated systemically by the lower canopy leaves. The differences in systemic regulation of photosynthesis were also discussed between field conditions and artificial conditions. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Photooxidative Damage in Photosynthetic Activities of Chromatium vinosum 1

    PubMed Central

    Asami, Sumio; Akazawa, Takashi

    1978-01-01

    The capacity of photosynthetic CO2 fixation in the anaerobic purple-sulfur bacterium, Chromatium vinosum is markedly impaired by strong illumination (9 × 104 lux) in the presence of 100% O2. In the absence of HCO3−, decline in activity occurred gradually, with about 40% of the initial activity remaining after a 1-hour incubation. The addition of 50 millimolar HCO3− to the incubation medium resulted in a measurable delay (about 30 minutes) of the inactivation process. Ribulose-1,5-bisphosphate carboxylase activity and light-dependent O2 uptake (electron flow) or crude extracts prepared after pretreatment of the bacterial cells with O2 and light were not affected but the photophosphorylation capacity of either bacterial cells or chromatophores was drastically reduced. The inhibition of photophos-phorylation in the chromatophore preparations was significantly reduced by the addition of either an O2− scavenger, Tiron, or an 1O2 scavenger, α-tocopherol. These results suggest that the active O2 species, O2− or 1O2, might take part in the observed inactivation. The pretreatment of the bacteria with O2 and light inhibited CO2 assimilation through the Calvin-Benson cycle, while relatively stimulating the formation of aspartate and glutamate. It also inhibited the conversion of glycolate to glycine, resulting in a sustained extracellular excretion of glycolate. The inactivation of photosynthetic CO2 fixation by intact cells was enhanced by low temperature, KCN, or methylviologen addition during the pretreatment with O2 and light. The mechanism(s) of O2-dependent photoinactivation of photosynthetic activities in Chromatium are discussed in relation to the possible role of photorespiration as a means of producing CO2 in the photosynthetic system. PMID:16660651

  12. Stoichiometry and kinetics of mercury uptake by photosynthetic bacteria.

    PubMed

    Kis, Mariann; Sipka, Gábor; Maróti, Péter

    2017-05-01

    Mercury adsorption on the cell surface and intracellular uptake by bacteria represent the key first step in the production and accumulation of highly toxic mercury in living organisms. In this work, the biophysical characteristics of mercury bioaccumulation are studied in intact cells of photosynthetic bacteria by use of analytical (dithizone) assay and physiological photosynthetic markers (pigment content, fluorescence induction, and membrane potential) to determine the amount of mercury ions bound to the cell surface and taken up by the cell. It is shown that the Hg(II) uptake mechanism (1) has two kinetically distinguishable components, (2) includes co-opted influx through heavy metal transporters since the slow component is inhibited by Ca(2+) channel blockers, (3) shows complex pH dependence demonstrating the competition of ligand binding of Hg(II) ions with H(+) ions (low pH) and high tendency of complex formation of Hg(II) with hydroxyl ions (high pH), and (4) is not a passive but an energy-dependent process as evidenced by light activation and inhibition by protonophore. Photosynthetic bacteria can accumulate Hg(II) in amounts much (about 10(5)) greater than their own masses by well-defined strong and weak binding sites with equilibrium binding constants in the range of 1 (μM)(-1) and 1 (mM)(-1), respectively. The strong binding sites are attributed to sulfhydryl groups as the uptake is blocked by use of sulfhydryl modifying agents and their number is much (two orders of magnitude) smaller than the number of weak binding sites. Biofilms developed by some bacteria (e.g., Rvx. gelatinosus) increase the mercury binding capacity further by a factor of about five. Photosynthetic bacteria in the light act as a sponge of Hg(II) and can be potentially used for biomonitoring and bioremediation of mercury-contaminated aqueous cultures.

  13. Importance of Fluctuations in Light on Plant Photosynthetic Acclimation.

    PubMed

    Vialet-Chabrand, Silvere; Matthews, Jack S A; Simkin, Andrew J; Raines, Christine A; Lawson, Tracy

    2017-04-01

    The acclimation of plants to light has been studied extensively, yet little is known about the effect of dynamic fluctuations in light on plant phenotype and acclimatory responses. We mimicked natural fluctuations in light over a diurnal period to examine the effect on the photosynthetic processes and growth of Arabidopsis (Arabidopsis thaliana). High and low light intensities, delivered via a realistic dynamic fluctuating or square wave pattern, were used to grow and assess plants. Plants subjected to square wave light had thicker leaves and greater photosynthetic capacity compared with fluctuating light-grown plants. This, together with elevated levels of proteins associated with electron transport, indicates greater investment in leaf structural components and photosynthetic processes. In contrast, plants grown under fluctuating light had thinner leaves, lower leaf light absorption, but maintained similar photosynthetic rates per unit leaf area to square wave-grown plants. Despite high light use efficiency, plants grown under fluctuating light had a slow growth rate early in development, likely due to the fact that plants grown under fluctuating conditions were not able to fully utilize the light energy absorbed for carbon fixation. Diurnal leaf-level measurements revealed a negative feedback control of photosynthesis, resulting in a decrease in total diurnal carbon assimilated of at least 20%. These findings highlight that growing plants under square wave growth conditions ultimately fails to predict plant performance under realistic light regimes and stress the importance of considering fluctuations in incident light in future experiments that aim to infer plant productivity under natural conditions in the field.

  14. Quantifying reflectance anisotropy of photosynthetically active radiation in grasslands

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.

    1992-01-01

    Quantifying the vegetative surface's reflectance anisotropy was an important part of the First ISLSCP Field Experiment, as its major objectives focused on retrieval of surface parameters from satellite-derived reflectances. The explicit remote measurements for approximating the bidirectional reflectance distribution function (BRDF) of photosynthetically active radiation had not been previously undertaken. In this paper the proper expression of reflectance for BRDFs for retrieval of canopy parameters is assessed.

  15. Modeling the dynamic modulation of light energy in photosynthetic algae.

    PubMed

    Papadakis, Ioannis A; Kotzabasis, Kiriakos; Lika, Konstadia

    2012-05-07

    An integrated cell-based dynamic mathematical model that take into account the role of the photon absorbing process, the partition of excitation energy, and the photoinactivation and repair of photosynthetic units, under variable light and dissolved inorganic carbon (DIC) availability is proposed. The modeling of the photon energy absorption and the energy dissipation is based on the photoadaptive changes of the underlying mechanisms. The partition of the excitation energy is based on the relative availability of light and DIC to the cell. The modeling of the photoinactivation process is based on the common aspect that it occurs under any light intensity and the modeling of the repair process is based on the evidence that it is controlled by chloroplast and nuclear-encoded enzymes. The present model links the absorption of photons and the partitioning of excitation energy to the linear electron flow and other quenchers with chlorophyll fluorescence emission parameters, and the number of the functional photosynthetic units with the photosynthetic oxygen production rate. The energy allocation to the LEF increases as DIC availability increases and/or light intensity decreases. The rate of rejected energy increases with light intensity and with DIC availability. The resulting rate coefficient of photoinactivation increases as light intensity and/or as DIC concentration increases. We test the model against chlorophyll fluorescence induction and photosynthetic oxygen production rate measurements, obtained from cultures of the unicellular green alga Scenedesmus obliquus, and find a very close quantitative and qualitative correspondence between predictions and data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Iron-mediated changes in phytoplankton photosynthetic competence during SOIREE

    NASA Astrophysics Data System (ADS)

    Boyd, P. W.; Abraham, E. R.

    Active fluorescence (fast repetition rate fluorometry, FRRF) was used to follow the photosynthetic response of the phytoplankton community during the 13-day Southern Ocean Iron RElease Experiment (SOIREE). This in situ iron enrichment was conducted in the polar waters of the Australasian-Pacific sector of the Southern Ocean in February 1999. Iron fertilisation of these high nitrate low chlorophyll (HNLC) waters resulted in an increase in the photosynthetic competence ( Fv/ Fm) of the resident cells from around 0.20 to greater than 0.60 (i.e. close to the theoretical maximum) by 10/11 days after the first enrichment. Although a significant iron-mediated response in Fv/ Fm was detected as early as 24 h after the initial fertilisation, the increase in Fv/ Fm to double ambient levels took 6 days. This response was five-fold slower than observed in iron enrichments (in situ and in vitro) in the HNLC waters of the subarctic and equatorial Pacific. Although little is known about the relationship between water temperature and Fv/ Fm, it is likely that low water temperatures — and possibly the deep mixed layer — were responsible for this slow response time. During SOIREE, the photosynthetic competence of the resident phytoplankton in iron-enriched waters increased at dissolved iron levels above 0.2 nM, suggesting that iron limitation was alleviated at this concentration. Increases in Fv/ Fm of cells within four algal size classes suggested that all taxa displayed a photosynthetic response to iron enrichment. Other physiological proxies of algal iron stress (such as flavodoxin levels in diatoms) exhibited different temporal trends to iron-enrichment than Fv/ Fm during the time-course of SOIREE. The relationship between Fv/ Fm, algal growth rate and such proxies in Southern Ocean waters is discussed.

  17. Prochlorococcus, a Marine Photosynthetic Prokaryote of Global Significance

    PubMed Central

    Partensky, F.; Hess, W. R.; Vaulot, D.

    1999-01-01

    The minute photosynthetic prokaryote Prochlorococcus, which was discovered about 10 years ago, has proven exceptional from several standpoints. Its tiny size (0.5 to 0.7 μm in diameter) makes it the smallest known photosynthetic organism. Its ubiquity within the 40°S to 40°N latitudinal band of oceans and its occurrence at high density from the surface down to depths of 200 m make it presumably the most abundant photosynthetic organism on Earth. Prochlorococcus typically divides once a day in the subsurface layer of oligotrophic areas, where it dominates the photosynthetic biomass. It also possesses a remarkable pigment complement which includes divinyl derivatives of chlorophyll a (Chl a) and Chl b, the so-called Chl a2 and Chl b2, and, in some strains, small amounts of a new type of phycoerythrin. Phylogenetically, Prochlorococcus has also proven fascinating. Recent studies suggest that it evolved from an ancestral cyanobacterium by reducing its cell and genome sizes and by recruiting a protein originally synthesized under conditions of iron depletion to build a reduced antenna system as a replacement for large phycobilisomes. Environmental constraints clearly played a predominant role in Prochlorococcus evolution. Its tiny size is an advantage for its adaptation to nutrient-deprived environments. Furthermore, genetically distinct ecotypes, with different antenna systems and ecophysiological characteristics, are present at depth and in surface waters. This vertical species variation has allowed Prochlorococcus to adapt to the natural light gradient occurring in the upper layer of oceans. The present review critically assesses the basic knowledge acquired about Prochlorococcus both in the ocean and in the laboratory. PMID:10066832

  18. Water flow influences oxygen transport and photosynthetic efficiency in corals

    NASA Astrophysics Data System (ADS)

    Finelli, Christopher M.; Helmuth, Brian S. T.; Pentcheff, N. Dean; Wethey, David S.

    2006-03-01

    Recent studies indicate that the incidence and persistence of damage from coral reef bleaching are often highest in areas of restricted water motion, and that resistance to and recovery from bleaching is increased by enhanced water motion. We examined the hypothesis that water motion increases the efflux of oxygen from coral tissue thereby reducing oxidative stress on the photosynthetic apparatus of endosymbiotic zooxanthellae. We experimentally exposed colonies of Montastrea annularis and Agaricia agaricites to manipulations of water flow, light intensity, and oxygen concentration in the field using a novel mini-flume. We measured photosynthetic efficiency using a pulse amplitude modulated fluorometer to test the short-term response of corals to our manipulations. Under normal oxygen concentrations, A. agaricites showed a significant 8% increase in photosynthetic efficiency from 0.238 (± 0.032) in still water to 0.256 (± 0.037) in 15 cm s-1 flow, while M. annularis exhibited no detectable change. Under high-ambient oxygen concentrations, the observed effect of flow on A. agaricites was reversed: photosynthetic efficiencies showed a significant 11% decrease from 0.236 (± 0.056) in still water to 0.211 (± 0.048) in 15 cm s-1 flow. These results support the hypothesis that water motion helps to remove oxygen from coral tissues during periods of maximal photosynthesis. Flow mitigation of oxidative stress may at least partially explain the increased incidence and severity of coral bleaching in low flow areas and observations of enhanced recovery in high-flow areas.

  19. Photosynthetic light capture and processing from cell to canopy

    SciTech Connect

    Stenberg, P.; DeLucia, E.H.; Schoettle, A.W.; Smolander, H.

    1995-07-01

    We have addressed the unique structural features of conifers, as they relate to photosynthetic production, at different levels of organization (from needle to canopy). Many concepts and measures must be defined for conifers so that they are consistent with the structural properties of needles and shoots. Consistency is needed in comparing the photosynthetic performance of conifers and broad leaves, wherein it is important to distinguish the effect of structural factors on light capture from differences in the photosynthetic response at a fixed interception. Needles differ from broad leaves both with respect to inner structure and external shape, which includes a continuum from nearly flat to cylindrical. For nonflat three-dimensional objects such as for conifer needles, total surface area is the natural measure. The meaning of the one-sided area of needles is not clear, but consistency requires that it be defined as half the total needle surface area, as concluded. Characteristic structural factors of conifers that affect their ability to harvest light are a deep canopy combined with a small needle size, which create an important penumbra effect, and the clustering of needles on shoots, which creates a discontinuous distribution of needle area. These factors imply that, at a fixed leaf area index, the intercepted PAR would be smaller in coniferous than in broad-leafed canopies, but the vertical gradient of light in conifers is less steep and light reaching the lower canopy is all penumbral (diffuse). Conifers can maintain a higher leaf area index, and this may be accomplished by a more even distribution of light between shoots at different locations in the canopy and also because shade shoots have a structure that effectively intercepts light. Broad leaves in general have higher maximum photosynthetic rates than do needles, and yet conifers are at least equally productive on a stand basis. Possible reasons are discussed.

  20. Photosynthetic Physiological Characteristics of Gazania rigens L. Under Drought Stress

    NASA Astrophysics Data System (ADS)

    Gao, T. T.; Zheng, S. W.; Zhou, X. H.; Wang, D. X.; Lu, X. P.

    2016-08-01

    To investigate the responses of photosynthetic physiological characteristics of Gazania rigens L. to drought stress, the changes of three cultivars (‘Xingbai’, ‘XH’ and ‘Hongwen’) photosynthetic values under drought stress were determined via LI-6400 portable photosynthesis analyzer (LI-COR, USA), and the relationships between photosynthesis and drought resistance of each cultivar were analyzed. The results showed that, three cultivars net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), and light use efficiency (LUE) value indicated the trend of decreasing gradually and there existed significant reduction in Pn and Gs values. There were extremely negative significant correlations between drought stress treatment days and Pn, Gs, Tr, water use efficiency (WUE) and LUE values. A small amount of leaves began to turn soft and yellow after drought stress treatment for 10 days, but they could recover to grow quickly after rehydration. The Pn values of ‘Hongwen’ decreased quickly and changed in a large range, so it had a poor resistance; the Pn values of ‘Xingbai’ decreased slowly and changed in a small range, so it had a strong resistance; while the changes of their hybrids -‘XH’ were between its parents. This research would provide a theoretical basis for gazania resistance cultivar breeding and application in landscape.