Sample records for screening genetically modified

  1. Development and validation of duplex, triplex, and pentaplex real-time PCR screening assays for the detection of genetically modified organisms in food and feed.

    PubMed

    Huber, Ingrid; Block, Annette; Sebah, Daniela; Debode, Frédéric; Morisset, Dany; Grohmann, Lutz; Berben, Gilbert; Stebih, Dejan; Milavec, Mojca; Zel, Jana; Busch, Ulrich

    2013-10-30

    Worldwide, qualitative methods based on PCR are most commonly used as screening tools for genetically modified material in food and feed. However, the increasing number and diversity of genetically modified organisms (GMO) require effective methods for simultaneously detecting several genetic elements marking the presence of transgenic events. Herein we describe the development and validation of a pentaplex, as well as complementary triplex and duplex real-time PCR assays, for the detection of the most common screening elements found in commercialized GMOs: P-35S, T-nos, ctp2-cp4-epsps, bar, and pat. The use of these screening assays allows the coverage of many GMO events globally approved for commercialization. Each multiplex real-time PCR assay shows high specificity and sensitivity with an absolute limit of detection below 20 copies for the targeted sequences. We demonstrate by intra- and interlaboratory tests that the assays are robust as well as cost- and time-effective for GMO screening if applied in routine GMO analysis.

  2. Electrochemical sensor for multiplex screening of genetically modified DNA: identification of biotech crops by logic-based biomolecular analysis.

    PubMed

    Liao, Wei-Ching; Chuang, Min-Chieh; Ho, Ja-An Annie

    2013-12-15

    Genetically modified (GM) technique, one of the modern biomolecular engineering technologies, has been deemed as profitable strategy to fight against global starvation. Yet rapid and reliable analytical method is deficient to evaluate the quality and potential risk of such resulting GM products. We herein present a biomolecular analytical system constructed with distinct biochemical activities to expedite the computational detection of genetically modified organisms (GMOs). The computational mechanism provides an alternative to the complex procedures commonly involved in the screening of GMOs. Given that the bioanalytical system is capable of processing promoter, coding and species genes, affirmative interpretations succeed to identify specified GM event in terms of both electrochemical and optical fashions. The biomolecular computational assay exhibits detection capability of genetically modified DNA below sub-nanomolar level and is found interference-free by abundant coexistence of non-GM DNA. This bioanalytical system, furthermore, sophisticates in array fashion operating multiplex screening against variable GM events. Such a biomolecular computational assay and biosensor holds great promise for rapid, cost-effective, and high-fidelity screening of GMO. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Pancreatic ductal adenocarcinoma: Risk factors, screening, and early detection

    PubMed Central

    Becker, Andrew E; Hernandez, Yasmin G; Frucht, Harold; Lucas, Aimee L

    2014-01-01

    Pancreatic cancer is the fourth most common cause of cancer-related deaths in the United States, with over 38000 deaths in 2013. The opportunity to detect pancreatic cancer while it is still curable is dependent on our ability to identify and screen high-risk populations before their symptoms arise. Risk factors for developing pancreatic cancer include multiple genetic syndromes as well as modifiable risk factors. Genetic conditions include hereditary breast and ovarian cancer syndrome, Lynch Syndrome, familial adenomatous polyposis, Peutz-Jeghers Syndrome, familial atypical multiple mole melanoma syndrome, hereditary pancreatitis, cystic fibrosis, and ataxia-telangiectasia; having a genetic predisposition can raise the risk of developing pancreatic cancer up to 132-fold over the general population. Modifiable risk factors, which include tobacco exposure, alcohol use, chronic pancreatitis, diet, obesity, diabetes mellitus, as well as certain abdominal surgeries and infections, have also been shown to increase the risk of pancreatic cancer development. Several large-volume centers have initiated such screening protocols, and consensus-based guidelines for screening high-risk groups have recently been published. The focus of this review will be both the genetic and modifiable risk factors implicated in pancreatic cancer, as well as a review of screening strategies and their diagnostic yields. PMID:25170203

  4. Development of a qualitative real-time PCR method to detect 19 targets for identification of genetically modified organisms.

    PubMed

    Peng, Cheng; Wang, Pengfei; Xu, Xiaoli; Wang, Xiaofu; Wei, Wei; Chen, Xiaoyun; Xu, Junfeng

    2016-01-01

    As the amount of commercially available genetically modified organisms (GMOs) grows recent years, the diversity of target sequences for molecular detection techniques are eagerly needed. Considered as the gold standard for GMO analysis, the real-time PCR technology was optimized to produce a high-throughput GMO screening method. With this method we can detect 19 transgenic targets. The specificity of the assays was demonstrated to be 100 % by the specific amplification of DNA derived from reference material from 20 genetically modified crops and 4 non modified crops. Furthermore, most assays showed a very sensitive detection, reaching the limit of ten copies. The 19 assays are the most frequently used genetic elements present in GM crops and theoretically enable the screening of the known GMO described in Chinese markets. Easy to use, fast and cost efficient, this method approach fits the purpose of GMO testing laboratories.

  5. Development and interlaboratory validation of quantitative polymerase chain reaction method for screening analysis of genetically modified soybeans.

    PubMed

    Takabatake, Reona; Onishi, Mari; Koiwa, Tomohiro; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2013-01-01

    A novel real-time polymerase chain reaction (PCR)-based quantitative screening method was developed for three genetically modified soybeans: RRS, A2704-12, and MON89788. The 35S promoter (P35S) of cauliflower mosaic virus is introduced into RRS and A2704-12 but not MON89788. We then designed a screening method comprised of the combination of the quantification of P35S and the event-specific quantification of MON89788. The conversion factor (Cf) required to convert the amount of a genetically modified organism (GMO) from a copy number ratio to a weight ratio was determined experimentally. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDR), respectively. The determined RSDR values for the method were less than 25% for both targets. We consider that the developed method would be suitable for the simple detection and approximate quantification of GMO.

  6. A practical approach to screen for authorised and unauthorised genetically modified plants.

    PubMed

    Waiblinger, Hans-Ulrich; Grohmann, Lutz; Mankertz, Joachim; Engelbert, Dirk; Pietsch, Klaus

    2010-03-01

    In routine analysis, screening methods based on real-time PCR are most commonly used for the detection of genetically modified (GM) plant material in food and feed. In this paper, it is shown that the combination of five DNA target sequences can be used as a universal screening approach for at least 81 GM plant events authorised or unauthorised for placing on the market and described in publicly available databases. Except for maize event LY038, soybean events DP-305423 and BPS-CV127-9 and cotton event 281-24-236 x 3006-210-23, at least one of the five genetic elements has been inserted in these GM plants and is targeted by this screening approach. For the detection of these sequences, fully validated real-time PCR methods have been selected. A screening table is presented that describes the presence or absence of the target sequences for most of the listed GM plants. These data have been verified either theoretically according to available databases or experimentally using available reference materials. The screening table will be updated regularly by a network of German enforcement laboratories.

  7. A screen for E3 ubiquitination ligases that genetically interact with the adaptor protein Cindr during Drosophila eye patterning

    PubMed Central

    Ketosugbo, Kwami F.; Bushnell, Henry L.

    2017-01-01

    Ubiquitination is a crucial post-translational modification that can target proteins for degradation. The E3 ubiquitin ligases are responsible for recognizing substrate proteins for ubiquitination, hence providing specificity to the process of protein degradation. Here, we describe a genetic modifier screen that identified E3 ligases that modified the rough-eye phenotype generated by expression of cindrRNAi transgenes during Drosophila eye development. In total, we identified 36 E3 ligases, as well as 4 Cullins, that modified the mild cindrRNA mis-patterning phenotype. This indicates possible roles for these E3s/Cullins in processes that require Cindr function, including cytoskeletal regulation, cell adhesion, cell signaling and cell survival. Three E3 ligases identified in our screen had previously been linked to regulating JNK signaling. PMID:29117266

  8. Exploring Middle School Students' Understanding of Three Conceptual Models in Genetics

    ERIC Educational Resources Information Center

    Freidenreich, Hava Bresler; Duncan, Ravit Golan; Shea, Nicole

    2011-01-01

    Genetics is the cornerstone of modern biology and a critical aspect of scientific literacy. Research has shown, however, that many high school graduates lack fundamental understandings in genetics necessary to make informed decisions about issues and emerging technologies in this domain, such as genetic screening, genetically modified foods, etc.…

  9. Yeast diversity and native vigor for flavor phenotypes.

    PubMed

    Carrau, Francisco; Gaggero, Carina; Aguilar, Pablo S

    2015-03-01

    Saccharomyces cerevisiae, the yeast used widely for beer, bread, cider, and wine production, is the most resourceful eukaryotic model used for genetic engineering. A typical concern about using engineered yeasts for food production might be negative consumer perception of genetically modified organisms. However, we believe the true pitfall of using genetically modified yeasts is their limited capacity to either refine or improve the sensory properties of fermented foods under real production conditions. Alternatively, yeast diversity screening to improve the aroma and flavors could offer groundbreaking opportunities in food biotechnology. We propose a 'Yeast Flavor Diversity Screening' strategy which integrates knowledge from sensory analysis and natural whole-genome evolution with information about flavor metabolic networks and their regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Ultrasensitive Single Fluorescence-Labeled Probe-Mediated Single Universal Primer-Multiplex-Droplet Digital Polymerase Chain Reaction for High-Throughput Genetically Modified Organism Screening.

    PubMed

    Niu, Chenqi; Xu, Yuancong; Zhang, Chao; Zhu, Pengyu; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2018-05-01

    As genetically modified (GM) technology develops and genetically modified organisms (GMOs) become more available, GMOs face increasing regulations and pressure to adhere to strict labeling guidelines. A singleplex detection method cannot perform the high-throughput analysis necessary for optimal GMO detection. Combining the advantages of multiplex detection and droplet digital polymerase chain reaction (ddPCR), a single universal primer-multiplex-ddPCR (SUP-M-ddPCR) strategy was proposed for accurate broad-spectrum screening and quantification. The SUP increases efficiency of the primers in PCR and plays an important role in establishing a high-throughput, multiplex detection method. Emerging ddPCR technology has been used for accurate quantification of nucleic acid molecules without a standard curve. Using maize as a reference point, four heterologous sequences ( 35S, NOS, NPTII, and PAT) were selected to evaluate the feasibility and applicability of this strategy. Surprisingly, these four genes cover more than 93% of the transgenic maize lines and serve as preliminary screening sequences. All screening probes were labeled with FAM fluorescence, which allows the signals from the samples with GMO content and those without to be easily differentiated. This fiveplex screening method is a new development in GMO screening. Utilizing an optimal amplification assay, the specificity, limit of detection (LOD), and limit of quantitation (LOQ) were validated. The LOD and LOQ of this GMO screening method were 0.1% and 0.01%, respectively, with a relative standard deviation (RSD) < 25%. This method could serve as an important tool for the detection of GM maize from different processed, commercially available products. Further, this screening method could be applied to other fields that require reliable and sensitive detection of DNA targets.

  11. A theoretical introduction to "combinatory SYBRGreen qPCR screening", a matrix-based approach for the detection of materials derived from genetically modified plants.

    PubMed

    Van den Bulcke, Marc; Lievens, Antoon; Barbau-Piednoir, Elodie; MbongoloMbella, Guillaume; Roosens, Nancy; Sneyers, Myriam; Casi, Amaya Leunda

    2010-03-01

    The detection of genetically modified (GM) materials in food and feed products is a complex multi-step analytical process invoking screening, identification, and often quantification of the genetically modified organisms (GMO) present in a sample. "Combinatory qPCR SYBRGreen screening" (CoSYPS) is a matrix-based approach for determining the presence of GM plant materials in products. The CoSYPS decision-support system (DSS) interprets the analytical results of SYBRGREEN qPCR analysis based on four values: the C(t)- and T(m) values and the LOD and LOQ for each method. A theoretical explanation of the different concepts applied in CoSYPS analysis is given (GMO Universe, "Prime number tracing", matrix/combinatory approach) and documented using the RoundUp Ready soy GTS40-3-2 as an example. By applying a limited set of SYBRGREEN qPCR methods and through application of a newly developed "prime number"-based algorithm, the nature of subsets of corresponding GMO in a sample can be determined. Together, these analyses provide guidance for semi-quantitative estimation of GMO presence in a food and feed product.

  12. Development of an innovative immunoassay for CP4EPSPS and Cry1AB genetically modified protein detection and quantification.

    PubMed

    Ermolli, M; Prospero, A; Balla, B; Querci, M; Mazzeo, A; Van Den Eede, G

    2006-09-01

    An innovative immunoassay, called enzyme-linked immunoabsorbant assay (ELISA) Reverse, based on a new conformation of the solid phase, was developed. The solid support was expressly designed to be immersed directly in liquid samples to detect the presence of protein targets. Its application is proposed in those cases where a large number of samples have to be screened simultaneously or when the simultaneous detection of different proteins is required. As a first application, a quantitative immunoassay for Cry1AB protein in genetically modified maize was optimized. The method was tested using genetically modified organism concentrations from 0.1 to 2.0%. The limit of detection and limit of quantitation of the method were determined as 0.0056 and 0.0168 (expressed as the percentage of genetically modified organisms content), respectively. A qualitative multiplex assay to assess the presence of two genetically modified proteins simultaneously was also established for the case of the Cry1AB and the CP4EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) present in genetically modified maize and soy, respectively.

  13. Development and Validation of a P-35S, T-nos, T-35S and P-FMV Tetraplex Real-time PCR Screening Method to Detect Regulatory Genes of Genetically Modified Organisms in Food.

    PubMed

    Eugster, Albert; Murmann, Petra; Kaenzig, Andre; Breitenmoser, Alda

    2014-10-01

    In routine analysis screening methods based on real-time PCR (polymerase chain reaction) are most commonly used for the detection of genetically modified (GM) plant material in food and feed. Screening tests are based on sequences frequently used for GM development, allowing the detection of a large number of GMOs (genetically modified organisms). Here, we describe the development and validation of a tetraplex real-time PCR screening assay comprising detection systems for the regulatory genes Cauliflower Mosaic Virus 35S promoter, Agrobacterium tumefaciens nos terminator, Cauliflower Mosaic Virus 35S terminator and Figwort Mosaic Virus 34S promoter. Three of the four primer and probe combinations have already been published elsewhere, whereas primers and probe for the 35S terminator have been developed in-house. Adjustment of primer and probe concentrations revealed a high PCR sensitivity with insignificant physical cross-talk between the four detection channels. The sensitivity of each PCR-system is sufficient to detect a GMO concentration as low as 0.05% of the containing respective element. The specificity of the described tetraplex is high when tested on DNA from GM maize, soy, rapeseed and tomato. We also demonstrate the robustness of the system by inter-laboratory tests. In conclusion, this method provides a sensitive and reliable screening procedure for the detection of the most frequently used regulatory elements present in GM crops either authorised or unauthorised for food.

  14. Wild worm embryogenesis harbors ubiquitous polygenic modifier variation.

    PubMed

    Paaby, Annalise B; White, Amelia G; Riccardi, David D; Gunsalus, Kristin C; Piano, Fabio; Rockman, Matthew V

    2015-08-22

    Embryogenesis is an essential and stereotypic process that nevertheless evolves among species. Its essentiality may favor the accumulation of cryptic genetic variation (CGV) that has no effect in the wild-type but that enhances or suppresses the effects of rare disruptions to gene function. Here, we adapted a classical modifier screen to interrogate the alleles segregating in natural populations of Caenorhabditis elegans: we induced gene knockdowns and used quantitative genetic methodology to examine how segregating variants modify the penetrance of embryonic lethality. Each perturbation revealed CGV, indicating that wild-type genomes harbor myriad genetic modifiers that may have little effect individually but which in aggregate can dramatically influence penetrance. Phenotypes were mediated by many modifiers, indicating high polygenicity, but the alleles tend to act very specifically, indicating low pleiotropy. Our findings demonstrate the extent of conditional functionality in complex trait architecture.

  15. A temperature-tolerant multiplex elements and genes screening system for genetically modified organisms based on dual priming oligonucleotide primers and capillary electrophoresis.

    PubMed

    Fu, Wei; Wei, Shuang; Wang, Chenguang; Du, Zhixin; Zhu, Pengyu; Wu, Xiyang; Wu, Gang; Zhu, Shuifang

    2017-08-15

    High throughput screening systems are the preferred solution to meet the urgent requirement of increasing number of genetically modified organisms (GMOs). In this study, we have successfully developed a multiplex GMO element screening system with dual priming oligonucleotide (DPO) primers. This system can detect the cauliflower mosaic virus 35S (CaMV 35S), terminator of nopaline synthase gene (NOS), figwort mosaic virus 35S (FMV 35S) promoter, neomycin phosphotransferaseII (NPTII), Bt Cry 1Ab, phosphinothricin acetyltransferase genes (bar) and Streptomyces viridochromogenes (pat) simultaneously, which covers more than 90% of all authorized GMO species worldwide. This system exhibits a high tolerance to annealing temperatures, high specificity and a limit of detection equal to conventional PCR. A total of 214 samples from markets, national entry-exit agencies, the Institute for Reference Materials and Measurement (IRMM) and the American Oil Chemists' Society (AOCS) were also tested for applicability. This screening system is therefore suitable for GMO screening. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Development of a qualitative, multiplex real-time PCR kit for screening of genetically modified organisms (GMOs).

    PubMed

    Dörries, Hans-Henno; Remus, Ivonne; Grönewald, Astrid; Grönewald, Cordt; Berghof-Jäger, Kornelia

    2010-03-01

    The number of commercially available genetically modified organisms (GMOs) and therefore the diversity of possible target sequences for molecular detection techniques are constantly increasing. As a result, GMO laboratories and the food production industry currently are forced to apply many different methods to reliably test raw material and complex processed food products. Screening methods have become more and more relevant to minimize the analytical effort and to make a preselection for further analysis (e.g., specific identification or quantification of the GMO). A multiplex real-time PCR kit was developed to detect the 35S promoter of the cauliflower mosaic virus, the terminator of the nopaline synthase gene of Agrobacterium tumefaciens, the 35S promoter from the figwort mosaic virus, and the bar gene of the soil bacterium Streptomyces hygroscopicus as the most widely used sequences in GMOs. The kit contains a second assay for the detection of plant-derived DNA to control the quality of the often processed and refined sample material. Additionally, the plant-specific assay comprises a homologous internal amplification control for inhibition control. The determined limits of detection for the five assays were 10 target copies/reaction. No amplification products were observed with DNAs of 26 bacterial species, 25 yeasts, 13 molds, and 41 not genetically modified plants. The specificity of the assays was further demonstrated to be 100% by the specific amplification of DNA derived from reference material from 22 genetically modified crops. The applicability of the kit in routine laboratory use was verified by testing of 50 spiked and unspiked food products. The herein described kit represents a simple and sensitive GMO screening method for the reliable detection of multiple GMO-specific target sequences in a multiplex real-time PCR reaction.

  17. Real-time polymerase chain reaction detection of cauliflower mosaic virus to complement the 35S screening assay for genetically modified organisms.

    PubMed

    Cankar, Katarina; Ravnikar, Maja; Zel, Jana; Gruden, Kristina; Toplak, Natasa

    2005-01-01

    Labeling of genetically modified organisms (GMOs) is now in place in many countries, including the European Union, in order to guarantee the consumer's choice between GM and non-GM products. Screening of samples is performed by polymerase chain reaction (PCR) amplification of regulatory sequences frequently introduced into genetically modified plants. Primers for the 35S promoter from Cauliflower mosaic virus (CaMV) are those most frequently used. In virus-infected plants or in samples contaminated with plant material carrying the virus, false-positive results can consequently occur. A system for real-time PCR using a TaqMan minor groove binder probe was designed that allows recognition of virus coat protein in the sample, thus allowing differentiation between transgenic and virus-infected samples. We measured the efficiency of PCR amplification, limits of detection and quantification, range of linearity, and repeatability of the assay in order to assess the applicability of the assay for routine analysis. The specificity of the detection system was tested on various virus isolates and plant species. All 8 CaMV isolates were successfully amplified using the designed system. No cross-reactivity was detected with DNA from 3 isolates of the closely related Carnation etched ring virus. Primers do not amplify plant DNA from available genetically modified maize and soybean lines or from different species of Brassicaceae or Solanaceae that are natural hosts for CaMV. We evaluated the assay for different food matrixes by spiking CaMV DNA into DNA from food samples and have successfully amplified CaMV from all samples. The assay was tested on rapeseed samples from routine GMO testing that were positive in the 35S screening assay, and the presence of the virus was confirmed.

  18. Wild worm embryogenesis harbors ubiquitous polygenic modifier variation

    PubMed Central

    Paaby, Annalise B; White, Amelia G; Riccardi, David D; Gunsalus, Kristin C; Piano, Fabio; Rockman, Matthew V

    2015-01-01

    Embryogenesis is an essential and stereotypic process that nevertheless evolves among species. Its essentiality may favor the accumulation of cryptic genetic variation (CGV) that has no effect in the wild-type but that enhances or suppresses the effects of rare disruptions to gene function. Here, we adapted a classical modifier screen to interrogate the alleles segregating in natural populations of Caenorhabditis elegans: we induced gene knockdowns and used quantitative genetic methodology to examine how segregating variants modify the penetrance of embryonic lethality. Each perturbation revealed CGV, indicating that wild-type genomes harbor myriad genetic modifiers that may have little effect individually but which in aggregate can dramatically influence penetrance. Phenotypes were mediated by many modifiers, indicating high polygenicity, but the alleles tend to act very specifically, indicating low pleiotropy. Our findings demonstrate the extent of conditional functionality in complex trait architecture. DOI: http://dx.doi.org/10.7554/eLife.09178.001 PMID:26297805

  19. Conserved Genes Act as Modifiers of Invertebrate SMN Loss of Function Defects

    PubMed Central

    Chang, Howard C.; Sen, Anindya; Kalloo, Geetika; Harris, Jevede; Barsby, Tom; Walsh, Melissa B.; Satterlee, John S.; Li, Chris; Van Vactor, David; Artavanis-Tsakonas, Spyros; Hart, Anne C.

    2010-01-01

    Spinal Muscular Atrophy (SMA) is caused by diminished function of the Survival of Motor Neuron (SMN) protein, but the molecular pathways critical for SMA pathology remain elusive. We have used genetic approaches in invertebrate models to identify conserved SMN loss of function modifier genes. Drosophila melanogaster and Caenorhabditis elegans each have a single gene encoding a protein orthologous to human SMN; diminished function of these invertebrate genes causes lethality and neuromuscular defects. To find genes that modulate SMN function defects across species, two approaches were used. First, a genome-wide RNAi screen for C. elegans SMN modifier genes was undertaken, yielding four genes. Second, we tested the conservation of modifier gene function across species; genes identified in one invertebrate model were tested for function in the other invertebrate model. Drosophila orthologs of two genes, which were identified originally in C. elegans, modified Drosophila SMN loss of function defects. C. elegans orthologs of twelve genes, which were originally identified in a previous Drosophila screen, modified C. elegans SMN loss of function defects. Bioinformatic analysis of the conserved, cross-species, modifier genes suggests that conserved cellular pathways, specifically endocytosis and mRNA regulation, act as critical genetic modifiers of SMN loss of function defects across species. PMID:21124729

  20. EYE DEVELOPMENT

    PubMed Central

    Baker, Nicholas E.; Li, Ke; Quiquand, Manon; Ruggiero, Robert; Wang, Lan-Hsin

    2014-01-01

    The eye has been one of the most intensively studied organs in Drosophila. The wealth of knowledge about its development, as well as the reagents that have been developed, and the fact that the eye is dispensable for survival, also make the eye suitable for genetic interaction studies and genetic screens. This chapter provides a brief overview of the methods developed to image and probe eye development at multiple developmental stages, including live imaging, immunostaining of fixed tissues, in situ hybridizations, and scanning electron microscopy and color photography of adult eyes. Also summarized are genetic approaches that can be performed in the eye, including mosaic analysis and conditional mutation, gene misexpression and knockdown, and forward genetic and modifier screens. PMID:24784530

  1. Development and Interlaboratory Validation of a Simple Screening Method for Genetically Modified Maize Using a ΔΔC(q)-Based Multiplex Real-Time PCR Assay.

    PubMed

    Noguchi, Akio; Nakamura, Kosuke; Sakata, Kozue; Sato-Fukuda, Nozomi; Ishigaki, Takumi; Mano, Junichi; Takabatake, Reona; Kitta, Kazumi; Teshima, Reiko; Kondo, Kazunari; Nishimaki-Mogami, Tomoko

    2016-04-19

    A number of genetically modified (GM) maize events have been developed and approved worldwide for commercial cultivation. A screening method is needed to monitor GM maize approved for commercialization in countries that mandate the labeling of foods containing a specified threshold level of GM crops. In Japan, a screening method has been implemented to monitor approved GM maize since 2001. However, the screening method currently used in Japan is time-consuming and requires generation of a calibration curve and experimental conversion factor (C(f)) value. We developed a simple screening method that avoids the need for a calibration curve and C(f) value. In this method, ΔC(q) values between the target sequences and the endogenous gene are calculated using multiplex real-time PCR, and the ΔΔC(q) value between the analytical and control samples is used as the criterion for determining analytical samples in which the GM organism content is below the threshold level for labeling of GM crops. An interlaboratory study indicated that the method is applicable independently with at least two models of PCR instruments used in this study.

  2. Argumentation Based Bioethics Education: Sample Implementation on Genetically Modified Organisms (GMOs) and Genetic Screening Tests

    ERIC Educational Resources Information Center

    Ozer Keskin, Melike; Keskin Samanci, Nilay; Yaman, Hale

    2013-01-01

    Nowadays, there is a need in science education to consider scientific research and its applications alongside ethical consensus. Even though classroom debates of value issues have been demonstrated to significantly contribute to the raising of social consciousness and awareness, research shows that neither academics in higher education nor…

  3. Detection of Genetically Modified Maize in Processed Foods Sold Commercially in Iran by Qualitative PCR

    PubMed Central

    Rabiei, Maryam; Mehdizadeh, Mehrangiz; Rastegar, Hossein; Vahidi, Hossein; Alebouyeh, Mahmoud

    2013-01-01

    Detection of genetically modified organisms (GMOs) in food is an important issue for all the subjects involved in food control and customer’s right. Due to the increasing number of GMOs imported to Iran during the past few years, it has become necessary to screen the products in order to determine the identity of the consumed daily foodstuffs. In this study, following the extraction of genomic DNA from processed foods sold commercially in Iran, qualitative PCR was performed to detect genetically modified maize. The recombinant DNA target sequences were detected with primers highly specific for each investigated transgene such as CaMV35s gene, Bt-11, MON810 and Bt-176 separately. Based on the gel electrophoresis results, Bt- 11 and MON810 events were detected in some maize samples, while, in none of them Bt- 176 modified gene was detected. For the first time, the results demonstrate the presence of genetically modified maize in Iranian food products, reinforcing the need for the development of labeling system and valid quantitative methods in routine analyses. PMID:24250568

  4. Detection of genetically modified maize in processed foods sold commercially in iran by qualitative PCR.

    PubMed

    Rabiei, Maryam; Mehdizadeh, Mehrangiz; Rastegar, Hossein; Vahidi, Hossein; Alebouyeh, Mahmoud

    2013-01-01

    Detection of genetically modified organisms (GMOs) in food is an important issue for all the subjects involved in food control and customer's right. Due to the increasing number of GMOs imported to Iran during the past few years, it has become necessary to screen the products in order to determine the identity of the consumed daily foodstuffs. In this study, following the extraction of genomic DNA from processed foods sold commercially in Iran, qualitative PCR was performed to detect genetically modified maize. The recombinant DNA target sequences were detected with primers highly specific for each investigated transgene such as CaMV35s gene, Bt-11, MON810 and Bt-176 separately. Based on the gel electrophoresis results, Bt- 11 and MON810 events were detected in some maize samples, while, in none of them Bt- 176 modified gene was detected. For the first time, the results demonstrate the presence of genetically modified maize in Iranian food products, reinforcing the need for the development of labeling system and valid quantitative methods in routine analyses.

  5. DNA extraction techniques compared for accurate detection of genetically modified organisms (GMOs) in maize food and feed products.

    PubMed

    Turkec, Aydin; Kazan, Hande; Karacanli, Burçin; Lucas, Stuart J

    2015-08-01

    In this paper, DNA extraction methods have been evaluated to detect the presence of genetically modified organisms (GMOs) in maize food and feed products commercialised in Turkey. All the extraction methods tested performed well for the majority of maize foods and feed products analysed. However, the highest DNA content was achieved by the Wizard, Genespin or the CTAB method, all of which produced optimal DNA yield and purity for different maize food and feed products. The samples were then screened for the presence of GM elements, along with certified reference materials. Of the food and feed samples, 8 % tested positive for the presence of one GM element (NOS terminator), of which half (4 % of the total) also contained a second element (the Cauliflower Mosaic Virus 35S promoter). The results obtained herein clearly demonstrate the presence of GM maize in the Turkish market, and that the Foodproof GMO Screening Kit provides reliable screening of maize food and feed products.

  6. The GMOseek matrix: a decision support tool for optimizing the detection of genetically modified plants.

    PubMed

    Block, Annette; Debode, Frédéric; Grohmann, Lutz; Hulin, Julie; Taverniers, Isabel; Kluga, Linda; Barbau-Piednoir, Elodie; Broeders, Sylvia; Huber, Ingrid; Van den Bulcke, Marc; Heinze, Petra; Berben, Gilbert; Busch, Ulrich; Roosens, Nancy; Janssen, Eric; Žel, Jana; Gruden, Kristina; Morisset, Dany

    2013-08-22

    Since their first commercialization, the diversity of taxa and the genetic composition of transgene sequences in genetically modified plants (GMOs) are constantly increasing. To date, the detection of GMOs and derived products is commonly performed by PCR-based methods targeting specific DNA sequences introduced into the host genome. Information available regarding the GMOs' molecular characterization is dispersed and not appropriately organized. For this reason, GMO testing is very challenging and requires more complex screening strategies and decision making schemes, demanding in return the use of efficient bioinformatics tools relying on reliable information. The GMOseek matrix was built as a comprehensive, online open-access tabulated database which provides a reliable, comprehensive and user-friendly overview of 328 GMO events and 247 different genetic elements (status: 18/07/2013). The GMOseek matrix is aiming to facilitate GMO detection from plant origin at different phases of the analysis. It assists in selecting the targets for a screening analysis, interpreting the screening results, checking the occurrence of a screening element in a group of selected GMOs, identifying gaps in the available pool of GMO detection methods, and designing a decision tree. The GMOseek matrix is an independent database with effective functionalities in a format facilitating transferability to other platforms. Data were collected from all available sources and experimentally tested where detection methods and certified reference materials (CRMs) were available. The GMOseek matrix is currently a unique and very valuable tool with reliable information on GMOs from plant origin and their present genetic elements that enables further development of appropriate strategies for GMO detection. It is flexible enough to be further updated with new information and integrated in different applications and platforms.

  7. The GMOseek matrix: a decision support tool for optimizing the detection of genetically modified plants

    PubMed Central

    2013-01-01

    Background Since their first commercialization, the diversity of taxa and the genetic composition of transgene sequences in genetically modified plants (GMOs) are constantly increasing. To date, the detection of GMOs and derived products is commonly performed by PCR-based methods targeting specific DNA sequences introduced into the host genome. Information available regarding the GMOs’ molecular characterization is dispersed and not appropriately organized. For this reason, GMO testing is very challenging and requires more complex screening strategies and decision making schemes, demanding in return the use of efficient bioinformatics tools relying on reliable information. Description The GMOseek matrix was built as a comprehensive, online open-access tabulated database which provides a reliable, comprehensive and user-friendly overview of 328 GMO events and 247 different genetic elements (status: 18/07/2013). The GMOseek matrix is aiming to facilitate GMO detection from plant origin at different phases of the analysis. It assists in selecting the targets for a screening analysis, interpreting the screening results, checking the occurrence of a screening element in a group of selected GMOs, identifying gaps in the available pool of GMO detection methods, and designing a decision tree. The GMOseek matrix is an independent database with effective functionalities in a format facilitating transferability to other platforms. Data were collected from all available sources and experimentally tested where detection methods and certified reference materials (CRMs) were available. Conclusions The GMOseek matrix is currently a unique and very valuable tool with reliable information on GMOs from plant origin and their present genetic elements that enables further development of appropriate strategies for GMO detection. It is flexible enough to be further updated with new information and integrated in different applications and platforms. PMID:23965170

  8. Irradiation influence on the detection of genetic-modified soybeans

    NASA Astrophysics Data System (ADS)

    Villavicencio, A. L. C. H.; Araújo, M. M.; Baldasso, J. G.; Aquino, S.; Konietzny, U.; Greiner, R.

    2004-09-01

    Three soybean varieties were analyzed to evaluate the irradiation influence on the detection of genetic modification. Samples were treated in a 60Co facility at dose levels of 0, 500, 800, and 1000Gy. The seeds were at first analyzed by Comet Assay as a rapid screening irradiation detection method. Secondly, germination test was performed to detect the viability of irradiated soybeans. Finally, because of its high sensitivity, its specificity and rapidity the polimerase chain reaction was the method applied for genetic modified organism detection. The analysis of DNA by the single technique of microgel electrophoresis of single cells (DNA Comet Assay) showed that DNA damage increased with increasing radiation doses. No negative influence of irradiation on the genetic modification detection was found.

  9. A targeted genetic modifier screen links the SWI2/SNF2 protein domino to growth and autophagy genes in Drosophila melanogaster.

    PubMed

    Kwon, Matt Hyoung; Callaway, Heather; Zhong, Jim; Yedvobnick, Barry

    2013-05-20

    Targeted genetic studies can facilitate phenotypic analyses and provide important insights into development and other complex processes. The SWI2/SNF2 DNA-dependent ATPase Domino (Dom) of Drosophila melanogaster, a component of the Tip60 acetyltransferase complex, has been associated with a wide spectrum of cellular processes at multiple developmental stages. These include hematopoiesis, cell proliferation, homeotic gene regulation, histone exchange during DNA repair, and Notch signaling. To explore the wider gene network associated with Dom action, we used RNAi directed against domino (dom) to mediate loss-of-function at the wing margin, a tissue that is readily scored for phenotypic changes. Dom RNAi driven through GAL4-UAS elicited dominant wing nicking that responded phenotypically to the dose of dom and other loci known to function with dom. We screened for phenotypic modifiers of this wing phenotype among 2500 transpositions of the EP P element and found both enhancers and suppressors. Several classes of modifier were obtained, including those encoding transcription factors, RNA regulatory proteins, and factors that regulate cell growth, proliferation and autophagy, a lysosomal degradation pathway that affects cell growth under conditions of starvation and stress. Our analysis is consistent with prior studies, suggesting that Dom acts pleiotropically as a positive effector of Notch signaling and a repressor of proliferation. This genetic system should facilitate screens for additional loci associated with Dom function, and complement biochemical approaches to their regulatory activity.

  10. Genetic screens in human cells using the CRISPR-Cas9 system.

    PubMed

    Wang, Tim; Wei, Jenny J; Sabatini, David M; Lander, Eric S

    2014-01-03

    The bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system for genome editing has greatly expanded the toolbox for mammalian genetics, enabling the rapid generation of isogenic cell lines and mice with modified alleles. Here, we describe a pooled, loss-of-function genetic screening approach suitable for both positive and negative selection that uses a genome-scale lentiviral single-guide RNA (sgRNA) library. sgRNA expression cassettes were stably integrated into the genome, which enabled a complex mutant pool to be tracked by massively parallel sequencing. We used a library containing 73,000 sgRNAs to generate knockout collections and performed screens in two human cell lines. A screen for resistance to the nucleotide analog 6-thioguanine identified all expected members of the DNA mismatch repair pathway, whereas another for the DNA topoisomerase II (TOP2A) poison etoposide identified TOP2A, as expected, and also cyclin-dependent kinase 6, CDK6. A negative selection screen for essential genes identified numerous gene sets corresponding to fundamental processes. Last, we show that sgRNA efficiency is associated with specific sequence motifs, enabling the prediction of more effective sgRNAs. Collectively, these results establish Cas9/sgRNA screens as a powerful tool for systematic genetic analysis in mammalian cells.

  11. Development of a fragile X syndrome (FXS) knowledge scale: towards a modified multidimensional measure of informed choice for FXS population carrier screening.

    PubMed

    Ames, Alice G; Jaques, Alice; Ukoumunne, Obioha C; Archibald, Alison D; Duncan, Rony E; Emery, Jon; Metcalfe, Sylvia A

    2015-02-01

    Genetic carrier screening is increasingly possible for many conditions, but it is important to ensure decisions are informed. The multidimensional measure of informed choice (MMIC) is a quantitative instrument developed to evaluate informed choice in prenatal screening for Down syndrome, measuring knowledge, attitudes and uptake. To apply the MMIC in other screening settings, the knowledge scale must be modified. To develop and validate a modified MMIC knowledge scale for use with women undergoing carrier screening for fragile X syndrome (FXS). Responses to MMIC items were collected through questionnaires as part of a FXS carrier screening pilot study in a preconception setting in Melbourne, Australia. Ten knowledge scale items were developed using a modified Delphi technique. Cronbach's alpha and factor analysis were used to validate the new FXS knowledge scale. We summarized the knowledge, attitudes and informed choice status based on the modified MMIC. Two hundred and eighty-five women were recruited, 241 eligible questionnaires were complete for analysis. The FXS knowledge scale items measured one salient construct and were internally consistent (alpha = 0.70). 71% (172/241) of participants were classified as having good knowledge, 70% (169/241) had positive attitudes and 27% (65/241) made an informed choice to accept or decline screening. We present the development of a knowledge scale as part of a MMIC to evaluate informed choice in population carrier screening for FXS. This can be used as a template by other researchers to develop knowledge scales for other conditions for use in the MMIC. © 2012 John Wiley & Sons Ltd.

  12. Understanding genetics: a primer for occupational health practice.

    PubMed

    Wright, Lynette

    2005-12-01

    Because biologic diversity is essential for life, genes have developed many versions that may be further modified by interaction with other genes and with environmental factors. Polymorphic alterations of genetic material influence drug responses, predisposition or resistance to disease, and susceptibility to environmental toxicity. The occupational health professional should be aware of rapidly changing genetic tests, be able to distinguish between screening and diagnostic modalities, be able to access genetic resources to find the latest protocols, and should consider the ethical, legal, and social implications of genetic testing in the workplace.

  13. Survey of prenatal counselling practices regarding aneuploidy risk modification, invasive diagnostic procedure risks, and procedure eligibility criteria in Canadian centres.

    PubMed

    Hull, Danna; Davies, Gregory; Armour, Christine M

    2012-07-01

    To explore prenatal practices related to aneuploidy screening, risk modification, and invasive diagnostic procedures across Canadian centres. We conducted a survey of members of the Canadian Association of Genetic Counsellors, the Canadian College of Medical Genetics, and the Canadian Society of Maternal Fetal Medicine, who provide direct counselling or management of prenatal patients in Canada. Eighty-two of 157 respondents indicated that their centre's definition of advanced maternal age was ≥ 35 years, with 33/157 respondents reporting an advanced maternal age definition of ≥ 40 years. The majority of respondents reported that prenatal serum screening for aneuploidy is provincially funded in their province or territory (121/147). The majority of respondents who reported that prenatal screening is not provincially funded (17/147) were from Quebec (14/17). Thirty-nine of 123 respondents reported that their centre defines increased nuchal translucency as ≥ 3.0 mm, whereas 49/123 reported a definition of ≥ 3.5 mm. Sixty-four of 150 respondents reported that the aneuploidy risk provided by serum screening is modified by a soft marker likelihood ratio, whereas 46/150 respondents reported that both age-related and serum screening risks are modified. Fifty-nine of 124 respondents reported that their centre will modify aneuploidy risk after a normal ultrasound; the most commonly cited negative likelihood ratio was 0.5. The most commonly reported procedure-related risk for chorionic villus sampling was 1/100 (123/147) and for amniocentesis was 1/200 (73/142). This study demonstrates inconsistencies in prenatal practices and access to screening programs across Canada. The information gained from this study will inform policy advisors developing prenatal practice guidelines at both the provincial and national levels.

  14. A rapid generation of adenovirus vector with a genetic modification in hexon protein.

    PubMed

    Di, Bingyan; Mao, Qinwen; Zhao, Junli; Li, Xing; Wang, Dongyang; Xia, Haibin

    2012-02-10

    The generation of hexon-modified adenovirus vector has proven difficult. In this paper, we developed a novel method for rapid generation of hexon-modified adenoviral vector via one step ligation in vitro followed by quick white/blue color screening. The new system has the following features. First, eGFP expression driven by the CMV promoter in E1 region functions as a reporter to evaluate the tropism of hexon-modified adenovirus in vitro. Second, it has two unique restriction enzyme sites with sticky ends located in the hexon HVR5 region. Third, a lacZ expression cassette under the control of plac promoter is placed between the two restriction enzyme sites, which allows recombinants to be selected using blue/white screening. To prove the principle of the method, genetically modified adenoviruses were successfully produced by insertion of NGR, RGD or Tat PTD peptide into hexon HVR5. Furthermore, the transduction efficiency of the Tat PTD modified virus was shown to be a significant enhancement in A172 and CHO-K1 cells. In conclusion, the novel system makes the production of truly retargeted vectors more promising, which would be of substantial benefit for cancer gene therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Detection of genetically modified DNA in fresh and processed foods sold in Kuwait.

    PubMed

    Al-Salameen, Fadila; Kumar, Vinod; Al-Aqeel, Hamed; Al-Hashash, Hanadi; Hejji, Ahmed Bin

    2012-01-01

    Developments in genetic engineering technology have led to an increase in number of food products that contain genetically engineered crops in the global market. However, due to lack of scientific studies, the presence of genetically modified organisms (GMOs) in the Kuwaiti food market is currently ambiguous. Foods both for human and animal consumption are being imported from countries that are known to produce GM food. Therefore, an attempt has been made to screen foods sold in the Kuwaiti market to detect GMOs in the food. For this purpose, samples collected from various markets in Kuwait have been screened by SYBR green-based real time polymerase chain reaction (RT-PCR) method. Further confirmation and GMO quantification was performed by TaqMan-based RT-PCR. Results indicated that a significant number of food commodities sold in Kuwait were tested positive for the presence of GMO. Interestingly, certain processed foods were tested positive for more than one transgenic events showing complex nature of GMOs in food samples. Results of this study clearly indicate the need for well-defined legislations and regulations on the marketing of approved GM food and its labeling to protect consumer's rights.

  16. Interlaboratory validation of quantitative duplex real-time PCR method for screening analysis of genetically modified maize.

    PubMed

    Takabatake, Reona; Koiwa, Tomohiro; Kasahara, Masaki; Takashima, Kaori; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Oguchi, Taichi; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2011-01-01

    To reduce the cost and time required to routinely perform the genetically modified organism (GMO) test, we developed a duplex quantitative real-time PCR method for a screening analysis simultaneously targeting an event-specific segment for GA21 and Cauliflower Mosaic Virus 35S promoter (P35S) segment [Oguchi et al., J. Food Hyg. Soc. Japan, 50, 117-125 (2009)]. To confirm the validity of the method, an interlaboratory collaborative study was conducted. In the collaborative study, conversion factors (Cfs), which are required to calculate the GMO amount (%), were first determined for two real-time PCR instruments, the ABI PRISM 7900HT and the ABI PRISM 7500. A blind test was then conducted. The limit of quantitation for both GA21 and P35S was estimated to be 0.5% or less. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSD(R)). The determined bias and RSD(R) were each less than 25%. We believe the developed method would be useful for the practical screening analysis of GM maize.

  17. Presenilin-Based Genetic Screens in Drosophila melanogaster Identify Novel Notch Pathway Modifiers

    PubMed Central

    Mahoney, Matt B.; Parks, Annette L.; Ruddy, David A.; Tiong, Stanley Y. K.; Esengil, Hanife; Phan, Alexander C.; Philandrinos, Panos; Winter, Christopher G.; Chatterjee, Runa; Huppert, Kari; Fisher, William W.; L'Archeveque, Lynn; Mapa, Felipa A.; Woo, Wendy; Ellis, Michael C.; Curtis, Daniel

    2006-01-01

    Presenilin is the enzymatic component of γ-secretase, a multisubunit intramembrane protease that processes several transmembrane receptors, such as the amyloid precursor protein (APP). Mutations in human Presenilins lead to altered APP cleavage and early-onset Alzheimer's disease. Presenilins also play an essential role in Notch receptor cleavage and signaling. The Notch pathway is a highly conserved signaling pathway that functions during the development of multicellular organisms, including vertebrates, Drosophila, and C. elegans. Recent studies have shown that Notch signaling is sensitive to perturbations in subcellular trafficking, although the specific mechanisms are largely unknown. To identify genes that regulate Notch pathway function, we have performed two genetic screens in Drosophila for modifiers of Presenilin-dependent Notch phenotypes. We describe here the cloning and identification of 19 modifiers, including nicastrin and several genes with previously undescribed involvement in Notch biology. The predicted functions of these newly identified genes are consistent with extracellular matrix and vesicular trafficking mechanisms in Presenilin and Notch pathway regulation and suggest a novel role for γ-tubulin in the pathway. PMID:16415372

  18. Presenilin-based genetic screens in Drosophila melanogaster identify novel notch pathway modifiers.

    PubMed

    Mahoney, Matt B; Parks, Annette L; Ruddy, David A; Tiong, Stanley Y K; Esengil, Hanife; Phan, Alexander C; Philandrinos, Panos; Winter, Christopher G; Chatterjee, Runa; Huppert, Kari; Fisher, William W; L'Archeveque, Lynn; Mapa, Felipa A; Woo, Wendy; Ellis, Michael C; Curtis, Daniel

    2006-04-01

    Presenilin is the enzymatic component of gamma-secretase, a multisubunit intramembrane protease that processes several transmembrane receptors, such as the amyloid precursor protein (APP). Mutations in human Presenilins lead to altered APP cleavage and early-onset Alzheimer's disease. Presenilins also play an essential role in Notch receptor cleavage and signaling. The Notch pathway is a highly conserved signaling pathway that functions during the development of multicellular organisms, including vertebrates, Drosophila, and C. elegans. Recent studies have shown that Notch signaling is sensitive to perturbations in subcellular trafficking, although the specific mechanisms are largely unknown. To identify genes that regulate Notch pathway function, we have performed two genetic screens in Drosophila for modifiers of Presenilin-dependent Notch phenotypes. We describe here the cloning and identification of 19 modifiers, including nicastrin and several genes with previously undescribed involvement in Notch biology. The predicted functions of these newly identified genes are consistent with extracellular matrix and vesicular trafficking mechanisms in Presenilin and Notch pathway regulation and suggest a novel role for gamma-tubulin in the pathway.

  19. Development of a reverse genetics system to generate a recombinant Ebola virus Makona expressing a green fluorescent protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albariño, César G., E-mail: calbarino@cdc.gov; Wiggleton Guerrero, Lisa; Lo, Michael K.

    Previous studies have demonstrated the potential application of reverse genetics technology in studying a broad range of aspects of viral biology, including gene regulation, protein function, cell entry, and pathogenesis. Here, we describe a highly efficient reverse genetics system used to generate recombinant Ebola virus (EBOV) based on a recent isolate from a human patient infected during the 2014–2015 outbreak in Western Africa. We also rescued a recombinant EBOV expressing a fluorescent reporter protein from a cleaved VP40 protein fusion. Using this virus and an inexpensive method to quantitate the expression of the foreign gene, we demonstrate its potential usefulnessmore » as a tool for screening antiviral compounds and measuring neutralizing antibodies. - Highlights: • Recombinant Ebola virus (EBOV) derived from Makona variant was rescued. • New protocol for viral rescue allows 100% efficiency. • Modified EBOV expresses a green fluorescent protein from a VP40-fused protein. • Modified EBOV was tested as tool to screen antiviral compounds and measure neutralizing antibodies.« less

  20. Validation of a newly developed hexaplex real-time PCR assay for screening for presence of GMOs in food, feed and seed.

    PubMed

    Bahrdt, C; Krech, A B; Wurz, A; Wulff, D

    2010-03-01

    For years, an increasing number and diversity of genetically modified plants has been grown on a commercial scale. The need for detection and identification of these genetically modified organisms (GMOs) calls for broad and at the same time flexible high throughput testing methods. Here we describe the development and validation of a hexaplex real-time polymerase chain reaction (PCR) screening assay covering more than 100 approved GMOs containing at least one of the GMO targets of the assay. The assay comprises detection systems for Cauliflower Mosaic Virus 35S promoter, Agrobacterium tumefaciens NOS terminator, Figwort Mosaic Virus 34S promoter and two construct-specific sequences present in novel genetically modified soybean and maize that lack common screening elements. Additionally a detection system for an internal positive control (IPC) indicating the presence or absence of PCR inhibiting substances was included. The six real-time PCR systems were allocated to five detection channels showing no significant crosstalk between the detection channels. As part of an extensive validation, a limit of detection (LOD(abs)) < or = ten target copies was proven in hexaplex format. A sensitivity < or = ten target copies of each GMO detection system was still shown in highly asymmetric target situations in the presence of 1,000 copies of all other GMO targets of each detection channel. Furthermore, the applicability to a broad sample spectrum and reliable indication of inhibition by the IPC system was demonstrated. The presented hexaplex assay offers sensitive and reliable detection of GMOs in processed and unprocessed food, feed and seed samples with high efficiency.

  1. Practical experiences with an extended screening strategy for genetically modified organisms (GMOs) in real-life samples.

    PubMed

    Scholtens, Ingrid; Laurensse, Emile; Molenaar, Bonnie; Zaaijer, Stephanie; Gaballo, Heidi; Boleij, Peter; Bak, Arno; Kok, Esther

    2013-09-25

    Nowadays most animal feed products imported into Europe have a GMO (genetically modified organism) label. This means that they contain European Union (EU)-authorized GMOs. For enforcement of these labeling requirements, it is necessary, with the rising number of EU-authorized GMOs, to perform an increasing number of analyses. In addition to this, it is necessary to test products for the potential presence of EU-unauthorized GMOs. Analysis for EU-authorized and -unauthorized GMOs in animal feed has thus become laborious and expensive. Initial screening steps may reduce the number of GMO identification methods that need to be applied, but with the increasing diversity also screening with GMO elements has become more complex. For the present study, the application of an informative detailed 24-element screening and subsequent identification strategy was applied in 50 animal feed samples. Almost all feed samples were labeled as containing GMO-derived materials. The main goal of the study was therefore to investigate if a detailed screening strategy would reduce the number of subsequent identification analyses. An additional goal was to test the samples in this way for the potential presence of EU-unauthorized GMOs. Finally, to test the robustness of the approach, eight of the samples were tested in a concise interlaboratory study. No significant differences were found between the results of the two laboratories.

  2. Cellular and molecular modifier pathways in tauopathies: the big picture from screening invertebrate models.

    PubMed

    Hannan, Shabab B; Dräger, Nina M; Rasse, Tobias M; Voigt, Aaron; Jahn, Thomas R

    2016-04-01

    Abnormal tau accumulations were observed and documented in post-mortem brains of patients affected by Alzheimer's disease (AD) long before the identification of mutations in the Microtubule-associated protein tau (MAPT) gene, encoding the tau protein, in a different neurodegenerative disease called Frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17). The discovery of mutations in the MAPT gene associated with FTDP-17 highlighted that dysfunctions in tau alone are sufficient to cause neurodegeneration. Invertebrate models have been diligently utilized in investigating tauopathies, contributing to the understanding of cellular and molecular pathways involved in disease etiology. An important discovery came with the demonstration that over-expression of human tau in Drosophila leads to premature mortality and neuronal dysfunction including neurodegeneration, recapitulating some key neuropathological features of the human disease. The simplicity of handling invertebrate models combined with the availability of a diverse range of experimental resources make these models, in particular Drosophila a powerful invertebrate screening tool. Consequently, several large-scale screens have been performed using Drosophila, to identify modifiers of tau toxicity. The screens have revealed not only common cellular and molecular pathways, but in some instances the same modifier has been independently identified in two or more screens suggesting a possible role for these modifiers in regulating tau toxicity. The purpose of this review is to discuss the genetic modifier screens on tauopathies performed in Drosophila and C. elegans models, and to highlight the common cellular and molecular pathways that have emerged from these studies. Here, we summarize results of tau toxicity screens providing mechanistic insights into pathological alterations in tauopathies. Key pathways or modifiers that have been identified are associated with a broad range of processes including, but not limited to, phosphorylation, cytoskeleton organization, axonal transport, regulation of cellular proteostasis, transcription, RNA metabolism, cell cycle regulation, and apoptosis. We discuss the utility and application of invertebrate models in elucidating the cellular and molecular functions of novel and uncharacterized disease modifiers identified in large-scale screens as well as for investigating the function of genes identified as risk factors in genome-wide association studies from human patients in the post-genomic era. In this review, we combined and summarized several large-scale modifier screens performed in invertebrate models to identify modifiers of tau toxicity. A summary of the screens show that diverse cellular processes are implicated in the modification of tau toxicity. Kinases and phosphatases are the most predominant class of modifiers followed by components required for cellular proteostasis and axonal transport and cytoskeleton elements. © 2016 International Society for Neurochemistry.

  3. Computational Sensing and in vitro Classification of GMOs and Biomolecular Events

    DTIC Science & Technology

    2008-12-01

    COMPUTATIONAL SENSING AND IN VITRO CLASSIFICATION OF GMOs AND BIOMOLECULAR EVENTS Elebeoba May1∗, Miler T. Lee2†, Patricia Dolan1, Paul Crozier1...modified organisms ( GMOs ) in the pres- ence of non-lethal agents. Using an information and coding- theoretic framework we develop a de novo method for...high through- put screening, distinguishing genetically modified organisms ( GMOs ), molecular computing, differentiating biological mark- ers

  4. One simple DNA extraction device and its combination with modified visual loop-mediated isothermal amplification for rapid on-field detection of genetically modified organisms.

    PubMed

    Zhang, Miao; Liu, Yinan; Chen, Lili; Quan, Sheng; Jiang, Shimeng; Zhang, Dabing; Yang, Litao

    2013-01-02

    Quickness, simplicity, and effectiveness are the three major criteria for establishing a good molecular diagnosis method in many fields. Herein we report a novel detection system for genetically modified organisms (GMOs), which can be utilized to perform both on-field quick screening and routine laboratory diagnosis. In this system, a newly designed inexpensive DNA extraction device was used in combination with a modified visual loop-mediated isothermal amplification (vLAMP) assay. The main parts of the DNA extraction device included a silica gel membrane filtration column and a modified syringe. The DNA extraction device could be easily operated without using other laboratory instruments, making it applicable to an on-field GMO test. High-quality genomic DNA (gDNA) suitable for polymerase chain reaction (PCR) and isothermal amplification could be quickly isolated from plant tissues using this device within 15 min. In the modified vLAMP assay, a microcrystalline wax encapsulated detection bead containing SYBR green fluorescent dye was introduced to avoid dye inhibition and cross-contaminations from post-LAMP operation. The system was successfully applied and validated in screening and identification of GM rice, soybean, and maize samples collected from both field testing and the Grain Inspection, Packers, and Stockyards Administration (GIPSA) proficiency test program, which demonstrated that it was well-adapted to both on-field testing and/or routine laboratory analysis of GMOs.

  5. Repurposing CRISPR/Cas9 for in situ functional assays.

    PubMed

    Malina, Abba; Mills, John R; Cencic, Regina; Yan, Yifei; Fraser, James; Schippers, Laura M; Paquet, Marilène; Dostie, Josée; Pelletier, Jerry

    2013-12-01

    RNAi combined with next-generation sequencing has proven to be a powerful and cost-effective genetic screening platform in mammalian cells. Still, this technology has its limitations and is incompatible with in situ mutagenesis screens on a genome-wide scale. Using p53 as a proof-of-principle target, we readapted the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR associated 9) genome-editing system to demonstrate the feasibility of this methodology for targeted gene disruption positive selection assays. By using novel "all-in-one" lentiviral and retroviral delivery vectors heterologously expressing both a codon-optimized Cas9 and its synthetic guide RNA (sgRNA), we show robust selection for the CRISPR-modified Trp53 locus following drug treatment. Furthermore, by linking Cas9 expression to GFP fluorescence, we use an "all-in-one" system to track disrupted Trp53 in chemoresistant lymphomas in the Eμ-myc mouse model. Deep sequencing analysis of the tumor-derived endogenous Cas9-modified Trp53 locus revealed a wide spectrum of mutants that were enriched with seemingly limited off-target effects. Taken together, these results establish Cas9 genome editing as a powerful and practical approach for positive in situ genetic screens.

  6. Repurposing CRISPR/Cas9 for in situ functional assays

    PubMed Central

    Malina, Abba; Mills, John R.; Cencic, Regina; Yan, Yifei; Fraser, James; Schippers, Laura M.; Paquet, Marilène; Dostie, Josée; Pelletier, Jerry

    2013-01-01

    RNAi combined with next-generation sequencing has proven to be a powerful and cost-effective genetic screening platform in mammalian cells. Still, this technology has its limitations and is incompatible with in situ mutagenesis screens on a genome-wide scale. Using p53 as a proof-of-principle target, we readapted the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR associated 9) genome-editing system to demonstrate the feasibility of this methodology for targeted gene disruption positive selection assays. By using novel “all-in-one” lentiviral and retroviral delivery vectors heterologously expressing both a codon-optimized Cas9 and its synthetic guide RNA (sgRNA), we show robust selection for the CRISPR-modified Trp53 locus following drug treatment. Furthermore, by linking Cas9 expression to GFP fluorescence, we use an “all-in-one” system to track disrupted Trp53 in chemoresistant lymphomas in the Eμ-myc mouse model. Deep sequencing analysis of the tumor-derived endogenous Cas9-modified Trp53 locus revealed a wide spectrum of mutants that were enriched with seemingly limited off-target effects. Taken together, these results establish Cas9 genome editing as a powerful and practical approach for positive in situ genetic screens. PMID:24298059

  7. Mutational screening in genes related with porto-pulmonary hypertension: An analysis of 6 cases.

    PubMed

    Pousada, Guillermo; Baloira, Adolfo; Valverde, Diana

    2017-04-07

    Portopulmonary hypertension (PPH) is a rare disease with a low incidence and without a clearly-identified genetic component. The aim of this work was to check genes and genetic modifiers related to pulmonary arterial hypertension in patients with PPH in order to clarify the molecular basis of the pathology. We selected a total of 6 patients with PPH and amplified the exonic regions and intronic flanking regions of the relevant genes and regions of interest of the genetic modifiers. Six patients diagnosed with PPH were analyzed and compared to 55 healthy individuals. Potentially-pathogenic mutations were identified in the analyzed genes of 5 patients. None of these mutations, which are highly conserved throughout evolution, were detected in the control patients nor different databases analyzed (1000 Genomes, ExAC and DECIPHER). After analyzing for genetic modifiers, we found different variations that could favor the onset of the disease. The genetic analysis carried out in this small cohort of patients with PPH revealed a large number of mutations, with the ENG gene showing the greatest mutational frequency. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  8. Detecting authorized and unauthorized genetically modified organisms containing vip3A by real-time PCR and next-generation sequencing.

    PubMed

    Liang, Chanjuan; van Dijk, Jeroen P; Scholtens, Ingrid M J; Staats, Martijn; Prins, Theo W; Voorhuijzen, Marleen M; da Silva, Andrea M; Arisi, Ana Carolina Maisonnave; den Dunnen, Johan T; Kok, Esther J

    2014-04-01

    The growing number of biotech crops with novel genetic elements increasingly complicates the detection of genetically modified organisms (GMOs) in food and feed samples using conventional screening methods. Unauthorized GMOs (UGMOs) in food and feed are currently identified through combining GMO element screening with sequencing the DNA flanking these elements. In this study, a specific and sensitive qPCR assay was developed for vip3A element detection based on the vip3Aa20 coding sequences of the recently marketed MIR162 maize and COT102 cotton. Furthermore, SiteFinding-PCR in combination with Sanger, Illumina or Pacific BioSciences (PacBio) sequencing was performed targeting the flanking DNA of the vip3Aa20 element in MIR162. De novo assembly and Basic Local Alignment Search Tool searches were used to mimic UGMO identification. PacBio data resulted in relatively long contigs in the upstream (1,326 nucleotides (nt); 95 % identity) and downstream (1,135 nt; 92 % identity) regions, whereas Illumina data resulted in two smaller contigs of 858 and 1,038 nt with higher sequence identity (>99 % identity). Both approaches outperformed Sanger sequencing, underlining the potential for next-generation sequencing in UGMO identification.

  9. Development of a screening method for genetically modified soybean by plasmid-based quantitative competitive polymerase chain reaction.

    PubMed

    Shimizu, Eri; Kato, Hisashi; Nakagawa, Yuki; Kodama, Takashi; Futo, Satoshi; Minegishi, Yasutaka; Watanabe, Takahiro; Akiyama, Hiroshi; Teshima, Reiko; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi

    2008-07-23

    A novel type of quantitative competitive polymerase chain reaction (QC-PCR) system for the detection and quantification of the Roundup Ready soybean (RRS) was developed. This system was designed based on the advantage of a fully validated real-time PCR method used for the quantification of RRS in Japan. A plasmid was constructed as a competitor plasmid for the detection and quantification of genetically modified soy, RRS. The plasmid contained the construct-specific sequence of RRS and the taxon-specific sequence of lectin1 (Le1), and both had 21 bp oligonucleotide insertion in the sequences. The plasmid DNA was used as a reference molecule instead of ground seeds, which enabled us to precisely and stably adjust the copy number of targets. The present study demonstrated that the novel plasmid-based QC-PCR method could be a simple and feasible alternative to the real-time PCR method used for the quantification of genetically modified organism contents.

  10. Detection of airborne genetically modified maize pollen by real-time PCR.

    PubMed

    Folloni, Silvia; Kagkli, Dafni-Maria; Rajcevic, Bojan; Guimarães, Nilson C C; Van Droogenbroeck, Bart; Valicente, Fernando H; Van den Eede, Guy; Van den Bulcke, Marc

    2012-09-01

    The cultivation of genetically modified (GM) crops has raised numerous concerns in the European Union and other parts of the world about their environmental and economic impact. Especially outcrossing of genetically modified organisms (GMO) was from the beginning a critical issue as airborne pollen has been considered an important way of GMO dispersal. Here, we investigate the use of airborne pollen sampling combined with microscopic analysis and molecular PCR analysis as an approach to monitor GM maize cultivations in a specific area. Field trial experiments in the European Union and South America demonstrated the applicability of the approach under different climate conditions, in rural and semi-urban environment, even at very low levels of airborne pollen. The study documents in detail the sampling of GM pollen, sample DNA extraction and real-time PCR analysis. Our results suggest that this 'GM pollen monitoring by bioaerosol sampling and PCR screening' approach might represent an useful aid in the surveillance of GM-free areas, centres of origin and natural reserves. © 2012 Blackwell Publishing Ltd.

  11. Development and validation of a 48-target analytical method for high-throughput monitoring of genetically modified organisms.

    PubMed

    Li, Xiaofei; Wu, Yuhua; Li, Jun; Li, Yunjing; Long, Likun; Li, Feiwu; Wu, Gang

    2015-01-05

    The rapid increase in the number of genetically modified (GM) varieties has led to a demand for high-throughput methods to detect genetically modified organisms (GMOs). We describe a new dynamic array-based high throughput method to simultaneously detect 48 targets in 48 samples on a Fludigm system. The test targets included species-specific genes, common screening elements, most of the Chinese-approved GM events, and several unapproved events. The 48 TaqMan assays successfully amplified products from both single-event samples and complex samples with a GMO DNA amount of 0.05 ng, and displayed high specificity. To improve the sensitivity of detection, a preamplification step for 48 pooled targets was added to enrich the amount of template before performing dynamic chip assays. This dynamic chip-based method allowed the synchronous high-throughput detection of multiple targets in multiple samples. Thus, it represents an efficient, qualitative method for GMO multi-detection.

  12. Development and Validation of A 48-Target Analytical Method for High-throughput Monitoring of Genetically Modified Organisms

    PubMed Central

    Li, Xiaofei; Wu, Yuhua; Li, Jun; Li, Yunjing; Long, Likun; Li, Feiwu; Wu, Gang

    2015-01-01

    The rapid increase in the number of genetically modified (GM) varieties has led to a demand for high-throughput methods to detect genetically modified organisms (GMOs). We describe a new dynamic array-based high throughput method to simultaneously detect 48 targets in 48 samples on a Fludigm system. The test targets included species-specific genes, common screening elements, most of the Chinese-approved GM events, and several unapproved events. The 48 TaqMan assays successfully amplified products from both single-event samples and complex samples with a GMO DNA amount of 0.05 ng, and displayed high specificity. To improve the sensitivity of detection, a preamplification step for 48 pooled targets was added to enrich the amount of template before performing dynamic chip assays. This dynamic chip-based method allowed the synchronous high-throughput detection of multiple targets in multiple samples. Thus, it represents an efficient, qualitative method for GMO multi-detection. PMID:25556930

  13. New multiplex PCR methods for rapid screening of genetically modified organisms in foods

    PubMed Central

    Datukishvili, Nelly; Kutateladze, Tamara; Gabriadze, Inga; Bitskinashvili, Kakha; Vishnepolsky, Boris

    2015-01-01

    We present novel multiplex PCR methods for rapid and reliable screening of genetically modified organisms (GMOs). New designed PCR primers targeting four frequently used GMO specific sequences permitted identification of new DNA markers, in particular 141 bp fragment of cauliflower mosaic virus (CaMV) 35S promoter, 224 bp fragment of Agrobacterium tumefaciens nopaline synthase (NOS) terminator, 256 bp fragment of 5-enolppyruvylshikimate-phosphate synthase (epsps) gene and 258 bp fragment of Cry1Ab delta-endotoxin (cry1Ab) gene for GMO screening. The certified reference materials containing Roundup Ready soybean (RRS) and maize MON 810 were applied for the development and optimization of uniplex and multiplex PCR systems. Evaluation of amplification products by agarose gel electrophoresis using negative and positive controls confirmed high specificity and sensitivity at 0.1% GMO for both RRS and MON 810. The fourplex PCR was developed and optimized that allows simultaneous detection of three common transgenic elements, such as: CaMV 35S promoter, NOS terminator, epsps gene together with soybean-specific lectin gene. The triplex PCR developed enables simultaneous identification of transgenic elements, such as: 35S promoter and cry1Ab gene together with maize zein gene. The analysis of different processed foods demonstrated that multiplex PCR methods developed in this study are useful for accurate and fast screening of GM food products. PMID:26257724

  14. New multiplex PCR methods for rapid screening of genetically modified organisms in foods.

    PubMed

    Datukishvili, Nelly; Kutateladze, Tamara; Gabriadze, Inga; Bitskinashvili, Kakha; Vishnepolsky, Boris

    2015-01-01

    We present novel multiplex PCR methods for rapid and reliable screening of genetically modified organisms (GMOs). New designed PCR primers targeting four frequently used GMO specific sequences permitted identification of new DNA markers, in particular 141 bp fragment of cauliflower mosaic virus (CaMV) 35S promoter, 224 bp fragment of Agrobacterium tumefaciens nopaline synthase (NOS) terminator, 256 bp fragment of 5-enolppyruvylshikimate-phosphate synthase (epsps) gene and 258 bp fragment of Cry1Ab delta-endotoxin (cry1Ab) gene for GMO screening. The certified reference materials containing Roundup Ready soybean (RRS) and maize MON 810 were applied for the development and optimization of uniplex and multiplex PCR systems. Evaluation of amplification products by agarose gel electrophoresis using negative and positive controls confirmed high specificity and sensitivity at 0.1% GMO for both RRS and MON 810. The fourplex PCR was developed and optimized that allows simultaneous detection of three common transgenic elements, such as: CaMV 35S promoter, NOS terminator, epsps gene together with soybean-specific lectin gene. The triplex PCR developed enables simultaneous identification of transgenic elements, such as: 35S promoter and cry1Ab gene together with maize zein gene. The analysis of different processed foods demonstrated that multiplex PCR methods developed in this study are useful for accurate and fast screening of GM food products.

  15. Efficient mitochondrial biogenesis drives incomplete penetrance in Leber’s hereditary optic neuropathy

    PubMed Central

    Iommarini, Luisa; Giordano, Luca; Maresca, Alessandra; Pisano, Annalinda; Valentino, Maria Lucia; Caporali, Leonardo; Liguori, Rocco; Deceglie, Stefania; Roberti, Marina; Fanelli, Francesca; Fracasso, Flavio; Ross-Cisneros, Fred N.; D’Adamo, Pio; Hudson, Gavin; Pyle, Angela; Yu-Wai-Man, Patrick; Chinnery, Patrick F.; Zeviani, Massimo; Salomao, Solange R.; Berezovsky, Adriana; Belfort, Rubens; Ventura, Dora Fix; Moraes, Milton; Moraes Filho, Milton; Barboni, Piero; Sadun, Federico; De Negri, Annamaria; Sadun, Alfredo A.; Tancredi, Andrea; Mancini, Massimiliano; d’Amati, Giulia; Loguercio Polosa, Paola; Cantatore, Palmiro

    2014-01-01

    Leber’s hereditary optic neuropathy is a maternally inherited blinding disease caused as a result of homoplasmic point mutations in complex I subunit genes of mitochondrial DNA. It is characterized by incomplete penetrance, as only some mutation carriers become affected. Thus, the mitochondrial DNA mutation is necessary but not sufficient to cause optic neuropathy. Environmental triggers and genetic modifying factors have been considered to explain its variable penetrance. We measured the mitochondrial DNA copy number and mitochondrial mass indicators in blood cells from affected and carrier individuals, screening three large pedigrees and 39 independently collected smaller families with Leber’s hereditary optic neuropathy, as well as muscle biopsies and cells isolated by laser capturing from post-mortem specimens of retina and optic nerves, the latter being the disease targets. We show that unaffected mutation carriers have a significantly higher mitochondrial DNA copy number and mitochondrial mass compared with their affected relatives and control individuals. Comparative studies of fibroblasts from affected, carriers and controls, under different paradigms of metabolic demand, show that carriers display the highest capacity for activating mitochondrial biogenesis. Therefore we postulate that the increased mitochondrial biogenesis in carriers may overcome some of the pathogenic effect of mitochondrial DNA mutations. Screening of a few selected genetic variants in candidate genes involved in mitochondrial biogenesis failed to reveal any significant association. Our study provides a valuable mechanism to explain variability of penetrance in Leber’s hereditary optic neuropathy and clues for high throughput genetic screening to identify the nuclear modifying gene(s), opening an avenue to develop predictive genetic tests on disease risk and therapeutic strategies. PMID:24369379

  16. Modifiers and mechanisms of multi-system polyglutamine neurodegenerative disorders: lessons from fly models.

    PubMed

    Mallik, Moushami; Lakhotia, Subhash C

    2010-12-01

    Polyglutamine (polyQ) diseases, resulting from a dynamic expansion of glutamine repeats in a polypeptide, are a class of genetically inherited late onset neurodegenerative disorders which, despite expression of the mutated gene widely in brain and other tissues, affect defined subpopulations of neurons in a disease-specific manner. We briefly review the different polyQ-expansion-induced neurodegenerative disorders and the advantages of modelling them in Drosophila. Studies using the fly models have successfully identified a variety of genetic modifiers and have helped in understanding some of the molecular events that follow expression of the abnormal polyQ proteins. Expression of the mutant polyQ proteins causes, as a consequence of intra-cellular and inter-cellular networking, mis-regulation at multiple steps like transcriptional and posttranscriptional regulations, cell signalling, protein quality control systems (protein folding and degradation networks), axonal transport machinery etc., in the sensitive neurons, resulting ultimately in their death. The diversity of genetic modifiers of polyQ toxicity identified through extensive genetic screens in fly and other models clearly reflects a complex network effect of the presence of the mutated protein. Such network effects pose a major challenge for therapeutic applications.

  17. Considerations for designing chemical screening strategies in plant biology

    PubMed Central

    Serrano, Mario; Kombrink, Erich; Meesters, Christian

    2015-01-01

    Traditionally, biologists regularly used classical genetic approaches to characterize and dissect plant processes. However, this strategy is often impaired by redundancy, lethality or pleiotropy of gene functions, which prevent the isolation of viable mutants. The chemical genetic approach has been recognized as an alternative experimental strategy, which has the potential to circumvent these problems. It relies on the capacity of small molecules to modify biological processes by specific binding to protein target(s), thereby conditionally modifying protein function(s), which phenotypically resemble mutation(s) of the encoding gene(s). A successful chemical screening campaign comprises three equally important elements: (1) a reliable, robust, and quantitative bioassay, which allows to distinguish between potent and less potent compounds, (2) a rigorous validation process for candidate compounds to establish their selectivity, and (3) an experimental strategy for elucidating a compound's mode of action and molecular target. In this review we will discuss details of this general strategy and additional aspects that deserve consideration in order to take full advantage of the power provided by the chemical approach to plant biology. In addition, we will highlight some success stories of recent chemical screenings in plant systems, which may serve as teaching examples for the implementation of future chemical biology projects. PMID:25904921

  18. Development and validation of real-time PCR screening methods for detection of cry1A.105 and cry2Ab2 genes in genetically modified organisms.

    PubMed

    Dinon, Andréia Z; Prins, Theo W; van Dijk, Jeroen P; Arisi, Ana Carolina M; Scholtens, Ingrid M J; Kok, Esther J

    2011-05-01

    Primers and probes were developed for the element-specific detection of cry1A.105 and cry2Ab2 genes, based on their DNA sequence as present in GM maize MON89034. Cry genes are present in many genetically modified (GM) plants and they are important targets for developing GMO element-specific detection methods. Element-specific methods can be of use to screen for the presence of GMOs in food and feed supply chains. Moreover, a combination of GMO elements may indicate the potential presence of unapproved GMOs (UGMs). Primer-probe combinations were evaluated in terms of specificity, efficiency and limit of detection. Except for specificity, the complete experiment was performed in 9 PCR runs, on 9 different days and by testing 8 DNA concentrations. The results showed a high specificity and efficiency for cry1A.105 and cry2Ab2 detection. The limit of detection was between 0.05 and 0.01 ng DNA per PCR reaction for both assays. These data confirm the applicability of these new primer-probe combinations for element detection that can contribute to the screening for GM and UGM crops in food and feed samples.

  19. Genetically designed biosensing systems for high-throughput screening of pharmaceuticals, clinical diagnostics, and environmental monitoring

    NASA Astrophysics Data System (ADS)

    Wenner, Brett R.; Douglass, Phillip; Shrestha, Suresh; Sharma, Bethel V.; Lai, Siyi; Madou, Marc J.; Daunert, Sylvia

    2001-05-01

    The genetically-modified binding proteins calmodulin, the phosphate binding protein, the sulfate binding protein, and the galactose/glucose binding protein have been successfully employed as biosensing elements for the detection of phenothiazines, phosphate, sulfate, and glucose, respectively. Mutant proteins containing unique cysteine residues were utilized in the site-specific labeling of environment-sensitive fluorescent probes. Changes in the environment of the probes upon ligand-induced conformational changes of the proteins result in changes in fluorescence intensity.

  20. RUNX family members are covalently modified and regulated by PIAS1-mediated sumoylation

    PubMed Central

    Kim, J-H; Jang, J-W; Lee, Y-S; Lee, J-W; Chi, X-Z; Li, Y-H; Kim, M-K; Kim, D-M; Choi, B-S; Kim, J; Kim, H-M; van Wijnen, A; Park, IlY; Bae, S-C

    2014-01-01

    Transcription factors of the RUNX family (RUNXs), which play pivotal roles in normal development and neoplasia, are regulated by various post-translational modifications. To understand the molecular mechanisms underlying the regulation of RUNXs, we performed a large-scale functional genetic screen of a fly mutant library. The screen identified dPias (the fly ortholog of mammalian PIASs), an E3 ligase for the SUMO (small ubiquitin-like modifier) modification, as a novel genetic modifier of lz (the fly ortholog of mammalian RUNX3). Molecular biological analysis revealed that lz/RUNXs are sumoylated by dPias/PIAS1 at an evolutionarily conserved lysine residue (K372 of lz, K144 of RUNX1, K181 of RUNX2 and K148 of RUNX3). PIAS1-mediated sumoylation inhibited RUNX3 transactivation activity, and this modification was promoted by the AKT1 kinase. Importantly, PIAS1 failed to sumoylate some RUNX1 mutants associated with breast cancer. In nude mice, tumorigenicity was promoted by RUNX3 bearing a mutation in the sumoylation site, but suppressed by wild-type RUNX3. Our results suggest that RUNXs are sumoylated by PIAS1, and that this modification could play a critical role in the regulation of the tumor-suppressive activity of these proteins. PMID:24777122

  1. Chemical Genetic Screens for TDP-43 Modifiers and ALS Drug Discovery

    DTIC Science & Technology

    2015-03-01

    Blackstone , 2012). Recently, a large network including many of these genes have been identify and this network is highly similar to Parkinson’s, ALS and...10.1186/1750- 1326-8-30 Blackstone , C. (2012). Cellular pathways of hereditary spastic paraplegia. Annu. Rev. Neurosci. 35, 25–47. doi: 10.1146/annurev

  2. Interval timing in genetically modified mice: a simple paradigm

    PubMed Central

    Balci, F.; Papachristos, E. B.; Gallistel, C. R.; Brunner, D.; Gibson, J.; Shumyatsky, G. P.

    2009-01-01

    We describe a behavioral screen for the quantitative study of interval timing and interval memory in mice. Mice learn to switch from a short-latency feeding station to a long-latency station when the short latency has passed without a feeding. The psychometric function is the cumulative distribution of switch latencies. Its median measures timing accuracy and its interquartile interval measures timing precision. Next, using this behavioral paradigm, we have examined mice with a gene knockout of the receptor for gastrin-releasing peptide that show enhanced (i.e. prolonged) freezing in fear conditioning. We have tested the hypothesis that the mutants freeze longer because they are more uncertain than wild types about when to expect the electric shock. The knockouts however show normal accuracy and precision in timing, so we have rejected this alternative hypothesis. Last, we conduct the pharmacological validation of our behavioral screen using D-amphetamine and methamphetamine. We suggest including the analysis of interval timing and temporal memory in tests of genetically modified mice for learning and memory and argue that our paradigm allows this to be done simply and efficiently. PMID:17696995

  3. Interval timing in genetically modified mice: a simple paradigm.

    PubMed

    Balci, F; Papachristos, E B; Gallistel, C R; Brunner, D; Gibson, J; Shumyatsky, G P

    2008-04-01

    We describe a behavioral screen for the quantitative study of interval timing and interval memory in mice. Mice learn to switch from a short-latency feeding station to a long-latency station when the short latency has passed without a feeding. The psychometric function is the cumulative distribution of switch latencies. Its median measures timing accuracy and its interquartile interval measures timing precision. Next, using this behavioral paradigm, we have examined mice with a gene knockout of the receptor for gastrin-releasing peptide that show enhanced (i.e. prolonged) freezing in fear conditioning. We have tested the hypothesis that the mutants freeze longer because they are more uncertain than wild types about when to expect the electric shock. The knockouts however show normal accuracy and precision in timing, so we have rejected this alternative hypothesis. Last, we conduct the pharmacological validation of our behavioral screen using d-amphetamine and methamphetamine. We suggest including the analysis of interval timing and temporal memory in tests of genetically modified mice for learning and memory and argue that our paradigm allows this to be done simply and efficiently.

  4. Unlocking the Bottleneck in Forward Genetics Using Whole-Genome Sequencing and Identity by Descent to Isolate Causative Mutations

    PubMed Central

    Siggs, Owen M.; Miosge, Lisa A.; Roots, Carla M.; Enders, Anselm; Bertram, Edward M.; Crockford, Tanya L.; Whittle, Belinda; Potter, Paul K.; Simon, Michelle M.; Mallon, Ann-Marie; Brown, Steve D. M.; Beutler, Bruce; Goodnow, Christopher C.; Lunter, Gerton; Cornall, Richard J.

    2013-01-01

    Forward genetics screens with N-ethyl-N-nitrosourea (ENU) provide a powerful way to illuminate gene function and generate mouse models of human disease; however, the identification of causative mutations remains a limiting step. Current strategies depend on conventional mapping, so the propagation of affected mice requires non-lethal screens; accurate tracking of phenotypes through pedigrees is complex and uncertain; out-crossing can introduce unexpected modifiers; and Sanger sequencing of candidate genes is inefficient. Here we show how these problems can be efficiently overcome using whole-genome sequencing (WGS) to detect the ENU mutations and then identify regions that are identical by descent (IBD) in multiple affected mice. In this strategy, we use a modification of the Lander-Green algorithm to isolate causative recessive and dominant mutations, even at low coverage, on a pure strain background. Analysis of the IBD regions also allows us to calculate the ENU mutation rate (1.54 mutations per Mb) and to model future strategies for genetic screens in mice. The introduction of this approach will accelerate the discovery of causal variants, permit broader and more informative lethal screens to be used, reduce animal costs, and herald a new era for ENU mutagenesis. PMID:23382690

  5. Quantitative Assessment of Eye Phenotypes for Functional Genetic Studies Using Drosophila melanogaster

    PubMed Central

    Iyer, Janani; Wang, Qingyu; Le, Thanh; Pizzo, Lucilla; Grönke, Sebastian; Ambegaokar, Surendra S.; Imai, Yuzuru; Srivastava, Ashutosh; Troisí, Beatriz Llamusí; Mardon, Graeme; Artero, Ruben; Jackson, George R.; Isaacs, Adrian M.; Partridge, Linda; Lu, Bingwei; Kumar, Justin P.; Girirajan, Santhosh

    2016-01-01

    About two-thirds of the vital genes in the Drosophila genome are involved in eye development, making the fly eye an excellent genetic system to study cellular function and development, neurodevelopment/degeneration, and complex diseases such as cancer and diabetes. We developed a novel computational method, implemented as Flynotyper software (http://flynotyper.sourceforge.net), to quantitatively assess the morphological defects in the Drosophila eye resulting from genetic alterations affecting basic cellular and developmental processes. Flynotyper utilizes a series of image processing operations to automatically detect the fly eye and the individual ommatidium, and calculates a phenotypic score as a measure of the disorderliness of ommatidial arrangement in the fly eye. As a proof of principle, we tested our method by analyzing the defects due to eye-specific knockdown of Drosophila orthologs of 12 neurodevelopmental genes to accurately document differential sensitivities of these genes to dosage alteration. We also evaluated eye images from six independent studies assessing the effect of overexpression of repeats, candidates from peptide library screens, and modifiers of neurotoxicity and developmental processes on eye morphology, and show strong concordance with the original assessment. We further demonstrate the utility of this method by analyzing 16 modifiers of sine oculis obtained from two genome-wide deficiency screens of Drosophila and accurately quantifying the effect of its enhancers and suppressors during eye development. Our method will complement existing assays for eye phenotypes, and increase the accuracy of studies that use fly eyes for functional evaluation of genes and genetic interactions. PMID:26994292

  6. 21 CFR 882.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  7. 21 CFR 882.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  8. 21 CFR 890.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  9. 21 CFR 888.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  10. 21 CFR 888.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  11. 21 CFR 870.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  12. 21 CFR 886.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  13. 21 CFR 886.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  14. 21 CFR 892.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  15. 21 CFR 870.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  16. 21 CFR 888.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  17. 21 CFR 892.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  18. 21 CFR 882.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  19. 21 CFR 886.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  20. 21 CFR 870.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  1. 21 CFR 890.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  2. 21 CFR 886.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  3. 21 CFR 892.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  4. 21 CFR 882.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  5. 21 CFR 870.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  6. 21 CFR 890.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  7. 21 CFR 872.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  8. 21 CFR 868.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  9. 21 CFR 868.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  10. 21 CFR 872.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  11. 21 CFR 868.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  12. 21 CFR 888.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  13. 21 CFR 890.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  14. 21 CFR 868.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  15. 21 CFR 892.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES General... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  16. Germline modification of domestic animals

    PubMed Central

    Tang, L.; González, R.; Dobrinski, I.

    2016-01-01

    Genetically-modified domestic animal models are of increasing significance in biomedical research and agriculture. As authentic ES cells derived from domestic animals are not yet available, the prevailing approaches for engineering genetic modifications in those animals are pronuclear microinjection and somatic cell nuclear transfer (SCNT, also known as cloning). Both pronuclear microinjection and SCNT are inefficient, costly, and time-consuming. In animals produced by pronuclear microinjection, the exogenous transgene is usually inserted randomly into the genome, which results in highly variable expression patterns and levels in different founders. Therefore, significant efforts are required to generate and screen multiple founders to obtain animals with optimal transgene expression. For SCNT, specific genetic modifications (both gain-of-function and loss-of-function) can be engineered and carefully selected in the somatic cell nucleus before nuclear transfer. SCNT has been used to generate a variety of genetically modified animals such as goats, pigs, sheep and cattle; however, animals resulting from SCNT frequently suffer from developmental abnormalities associated with incomplete nuclear reprogramming. Other strategies to generate genetically-modified animals rely on the use of the spermatozoon as a natural vector to introduce genetic material into the female gamete. This sperm mediated DNA transfer (SMGT) combined with intracytoplasmatic sperm injection (ICSI) has relatively high efficiency and allows the insertion of large DNA fragments, which, in turn, enhance proper gene expression. An approach currently being developed to complement SCNT for producing genetically modified animals is germ cell transplantation using genetically modified male germline stem cells (GSCs). This approach relies on the ability of GSCs that are genetically modified in vitro to colonize the recipient testis and produce donor derived sperm upon transplantation. As the genetic change is introduced into the male germ line just before the onset of spermatogenesis, the time required for the production of genetically modified sperm is significantly shorter using germ cell transplantation compared to cloning or embryonic stem (ES) cell based technology. Moreover, the GSC-mediated germline modification circumvents problems associated with embryo manipulation and nuclear reprogramming. Currently, engineering targeted mutations in domestic animals using GSCs remains a challenge as GSCs from those animals are difficult to maintain in vitro for an extended period of time. Recent advances in genome editing techniques such as Zinc-Finger Nucleases (ZFNs), Transcription Activator-like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) greatly enhance the efficiency of engineering targeted genetic change in domestic animals as demonstrated by the generation of several gene knock-out pig and cattle models using those techniques. The potential of GSC-mediated germline modification in making targeted genetic modifications in domestic animal models will be maximized if those genome editing techniques can be applied in GSCs. PMID:27390591

  17. A screening method for the detection of the 35S promoter and the nopaline synthase terminator in genetically modified organisms in a real-time multiplex polymerase chain reaction using high-resolution melting-curve analysis.

    PubMed

    Akiyama, Hiroshi; Nakamura, Fumi; Yamada, Chihiro; Nakamura, Kosuke; Nakajima, Osamu; Kawakami, Hiroshi; Harikai, Naoki; Furui, Satoshi; Kitta, Kazumi; Teshima, Reiko

    2009-11-01

    To screen for unauthorized genetically modified organisms (GMO) in the various crops, we developed a multiplex real-time polymerase chain reaction high-resolution melting-curve analysis method for the simultaneous qualitative detection of 35S promoter sequence of cauliflower mosaic virus (35SP) and the nopaline synthase terminator (NOST) in several crops. We selected suitable primer sets for the simultaneous detection of 35SP and NOST and designed the primer set for the detection of spiked ColE1 plasmid to evaluate the validity of the polymerase chain reaction (PCR) analyses. In addition, we optimized the multiplex PCR conditions using the designed primer sets and EvaGreen as an intercalating dye. The contamination of unauthorized GMO with single copy similar to NK603 maize can be detected as low as 0.1% in a maize sample. Furthermore, we showed that the present method would be applicable in identifying GMO in various crops and foods like authorized GM soybean, authorized GM potato, the biscuit which is contaminated with GM soybeans and the rice which is contaminated with unauthorized GM rice. We consider this method to be a simple and reliable assay for screening for unauthorized GMO in crops and the processing food products.

  18. Cap-n-Collar Promotes Tissue Regeneration by Regulating ROS and JNK Signaling in the Drosophila melanogaster Wing Imaginal Disc.

    PubMed

    Brock, Amanda R; Seto, Mabel; Smith-Bolton, Rachel K

    2017-07-01

    Regeneration is a complex process that requires an organism to recognize and repair tissue damage, as well as grow and pattern new tissue. Here, we describe a genetic screen to identify novel regulators of regeneration. We ablated the Drosophila melanogaster larval wing primordium by inducing apoptosis in a spatially and temporally controlled manner and allowed the tissue to regenerate and repattern. To identify genes that regulate regeneration, we carried out a dominant-modifier screen by assessing the amount and quality of regeneration in adult wings heterozygous for isogenic deficiencies. We have identified 31 regions on the right arm of the third chromosome that modify the regenerative response. Interestingly, we observed several distinct phenotypes: mutants that regenerated poorly, mutants that regenerated faster or better than wild-type, and mutants that regenerated imperfectly and had patterning defects. We mapped one deficiency region to cap-n-collar ( cnc ), the Drosophila Nrf2 ortholog, which is required for regeneration. Cnc regulates reactive oxygen species levels in the regenerating epithelium, and affects c-Jun N-terminal protein kinase (JNK) signaling, growth, debris localization, and pupariation timing. Here, we present the results of our screen and propose a model wherein Cnc regulates regeneration by maintaining an optimal level of reactive oxygen species to promote JNK signaling. Copyright © 2017 by the Genetics Society of America.

  19. A highly sensitive and specific method for the screening detection of genetically modified organisms based on digital PCR without pretreatment

    PubMed Central

    Fu, Wei; Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Du, Zhixin; Tian, Wenying; Wang, Qin; Wang, Huiyu; Xu, Wentao; Zhu, Shuifang

    2015-01-01

    Digital PCR has developed rapidly since it was first reported in the 1990s. It was recently reported that an improved method facilitated the detection of genetically modified organisms (GMOs). However, to use this improved method, the samples must be pretreated, which could introduce inaccuracy into the results. In our study, we explored a pretreatment-free digital PCR detection method for the screening for GMOs. We chose the CaMV35s promoter and the NOS terminator as the templates in our assay. To determine the specificity of our method, 9 events of GMOs were collected, including MON810, MON863, TC1507, MIR604, MIR162, GA21, T25, NK603 and Bt176. Moreover, the sensitivity, intra-laboratory and inter-laboratory reproducibility of our detection method were assessed. The results showed that the limit of detection of our method was 0.1%, which was lower than the labeling threshold level of the EU. The specificity and stability among the 9 events were consistent, respectively. The intra-laboratory and inter-laboratory reproducibility were both good. Finally, the perfect fitness for the detection of eight double-blind samples indicated the good practicability of our method. In conclusion, the method in our study would allow more sensitive, specific and stable screening detection of the GMO content of international trading products. PMID:26239916

  20. A highly sensitive and specific method for the screening detection of genetically modified organisms based on digital PCR without pretreatment.

    PubMed

    Fu, Wei; Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Du, Zhixin; Tian, Wenying; Wang, Qin; Wang, Huiyu; Xu, Wentao; Zhu, Shuifang

    2015-08-04

    Digital PCR has developed rapidly since it was first reported in the 1990 s. It was recently reported that an improved method facilitated the detection of genetically modified organisms (GMOs). However, to use this improved method, the samples must be pretreated, which could introduce inaccuracy into the results. In our study, we explored a pretreatment-free digital PCR detection method for the screening for GMOs. We chose the CaMV35s promoter and the NOS terminator as the templates in our assay. To determine the specificity of our method, 9 events of GMOs were collected, including MON810, MON863, TC1507, MIR604, MIR162, GA21, T25, NK603 and Bt176. Moreover, the sensitivity, intra-laboratory and inter-laboratory reproducibility of our detection method were assessed. The results showed that the limit of detection of our method was 0.1%, which was lower than the labeling threshold level of the EU. The specificity and stability among the 9 events were consistent, respectively. The intra-laboratory and inter-laboratory reproducibility were both good. Finally, the perfect fitness for the detection of eight double-blind samples indicated the good practicability of our method. In conclusion, the method in our study would allow more sensitive, specific and stable screening detection of the GMO content of international trading products.

  1. A genome-wide RNAi screen identifies potential drug targets in a C. elegans model of α1-antitrypsin deficiency.

    PubMed

    O'Reilly, Linda P; Long, Olivia S; Cobanoglu, Murat C; Benson, Joshua A; Luke, Cliff J; Miedel, Mark T; Hale, Pamela; Perlmutter, David H; Bahar, Ivet; Silverman, Gary A; Pak, Stephen C

    2014-10-01

    α1-Antitrypsin deficiency (ATD) is a common genetic disorder that can lead to end-stage liver and lung disease. Although liver transplantation remains the only therapy currently available, manipulation of the proteostasis network (PN) by small molecule therapeutics offers great promise. To accelerate the drug-discovery process for this disease, we first developed a semi-automated high-throughput/content-genome-wide RNAi screen to identify PN modifiers affecting the accumulation of the α1-antitrypsin Z mutant (ATZ) in a Caenorhabditis elegans model of ATD. We identified 104 PN modifiers, and these genes were used in a computational strategy to identify human ortholog-ligand pairs. Based on rigorous selection criteria, we identified four FDA-approved drugs directed against four different PN targets that decreased the accumulation of ATZ in C. elegans. We also tested one of the compounds in a mammalian cell line with similar results. This methodology also proved useful in confirming drug targets in vivo, and predicting the success of combination therapy. We propose that small animal models of genetic disorders combined with genome-wide RNAi screening and computational methods can be used to rapidly, economically and strategically prime the preclinical discovery pipeline for rare and neglected diseases with limited therapeutic options. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Drosophila as a screening tool to study human neurodegenerative diseases.

    PubMed

    Lenz, Sarah; Karsten, Peter; Schulz, Jörg B; Voigt, Aaron

    2013-11-01

    In an aging society, research involving neurodegenerative disorders is of paramount importance. Over the past few years, research on Alzheimer's and Parkinson's diseases has made tremendous progress. Experimental studies, however, rely mostly on transgenic animal models, preferentially using mice. Although experiments on mice have enormous advantages, they also have some inherent limitations, some of which can be overcome by the use of Drosophila melanogaster as an experimental animal. Among the major advantages of using the fly is its small genome, which can also be modified very easily. The fact that its genome lends itself to diverse alterations (e. g. mutagenesis, transposons) has made the fly a useful organism to perform large-scale and genome-wide screening approaches. This has opened up an entirely new field of experimental research aiming to elucidate genetic interactions and screen for modifiers of disease processes in vivo. Here, we provide a brief overview of how flies can be used to analyze molecular mechanisms underlying human neurodegenerative diseases. © 2013 International Society for Neurochemistry.

  3. A genetic screen for modifiers of Drosophila caspase Dcp-1 reveals caspase involvement in autophagy and novel caspase-related genes.

    PubMed

    Kim, Young-Il; Ryu, Taewoo; Lee, Judong; Heo, Young-Shin; Ahnn, Joohong; Lee, Seung-Jae; Yoo, OokJoon

    2010-01-25

    Caspases are cysteine proteases with essential functions in the apoptotic pathway; their proteolytic activity toward various substrates is associated with the morphological changes of cells. Recent reports have described non-apoptotic functions of caspases, including autophagy. In this report, we searched for novel modifiers of the phenotype of Dcp-1 gain-of-function (GF) animals by screening promoter element- inserted Drosophila melanogaster lines (EP lines). We screened approximately 15,000 EP lines and identified 72 Dcp-1-interacting genes that were classified into 10 groups based on their functions and pathways: 4 apoptosis signaling genes, 10 autophagy genes, 5 insulin/IGF and TOR signaling pathway genes, 6 MAP kinase and JNK signaling pathway genes, 4 ecdysone signaling genes, 6 ubiquitination genes, 11 various developmental signaling genes, 12 transcription factors, 3 translation factors, and 11 other unclassified genes including 5 functionally undefined genes. Among them, insulin/IGF and TOR signaling pathway, MAP kinase and JNK signaling pathway, and ecdysone signaling are known to be involved in autophagy. Together with the identification of autophagy genes, the results of our screen suggest that autophagy counteracts Dcp-1-induced apoptosis. Consistent with this idea, we show that expression of eGFP-Atg5 rescued the eye phenotype caused by Dcp-1 GF. Paradoxically, we found that over-expression of full-length Dcp-1 induced autophagy, as Atg8b-GFP, an indicator of autophagy, was increased in the eye imaginal discs and in the S2 cell line. Taken together, these data suggest that autophagy suppresses Dcp-1-mediated apoptotic cell death, whereas Dcp-1 positively regulates autophagy, possibly through feedback regulation. We identified a number of Dcp-1 modifiers that genetically interact with Dcp-1-induced cell death. Our results showing that Dcp-1 and autophagy-related genes influence each other will aid future investigations of the complicated relationships between apoptosis and autophagy.

  4. Pharmacogenetic Predictors of Treatment-Related Toxicity Among Children With Acute Lymphoblastic Leukemia.

    PubMed

    Maxwell, Rochelle R; Cole, Peter D

    2017-06-01

    The aim of this review is to summarize the most recent and most robust pharmacogenetic predictors of treatment-related toxicity (TRT) in childhood acute lymphoblastic leukemia (ALL). Multiple studies have examined the toxicities of the primary chemotherapeutic agents used to treat childhood ALL in relation to host genetic factors. However, few results have been replicated independently, largely due to cohort differences in ancestry, chemotherapy treatment protocols, and definitions of toxicities. To date, there is only one widely accepted clinical guideline for dose modification based on gene status: thiopurine dosing based on TPMT genotype. Based on recent data, it is likely that this guideline will be modified to incorporate other gene variants, such as NUDT15. We highlight genetic variants that have been consistently associated with TRT across treatment groups, as well as those that best illustrate the underlying pathophysiology of TRT. In the coming decade, we expect that survivorship care will routinely specify screening recommendations based on genetics. Furthermore, clinical trials testing protective interventions may modify inclusion criteria based on genetically determined risk of specific TRTs.

  5. 21 CFR 874.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  6. 21 CFR 874.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  7. 21 CFR 874.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  8. 21 CFR 874.9 - Limitations of exemptions from section 510(k) of the Federal Food, Drug, and Cosmetic Act (the act).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES... for lay use where the former intended use was by health care professionals only; (b) The modified... use in screening or diagnosis of familial or acquired genetic disorders, including inborn errors of...

  9. Adapting CRISPR/Cas9 for functional genomics screens.

    PubMed

    Malina, Abba; Katigbak, Alexandra; Cencic, Regina; Maïga, Rayelle Itoua; Robert, Francis; Miura, Hisashi; Pelletier, Jerry

    2014-01-01

    The use of CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) for targeted genome editing has been widely adopted and is considered a "game changing" technology. The ease and rapidity by which this approach can be used to modify endogenous loci in a wide spectrum of cell types and organisms makes it a powerful tool for customizable genetic modifications as well as for large-scale functional genomics. The development of retrovirus-based expression platforms to simultaneously deliver the Cas9 nuclease and single guide (sg) RNAs provides unique opportunities by which to ensure stable and reproducible expression of the editing tools and a broad cell targeting spectrum, while remaining compatible with in vivo genetic screens. Here, we describe methods and highlight considerations for designing and generating sgRNA libraries in all-in-one retroviral vectors for such applications.

  10. JRC GMO-Amplicons: a collection of nucleic acid sequences related to genetically modified organisms

    PubMed Central

    Petrillo, Mauro; Angers-Loustau, Alexandre; Henriksson, Peter; Bonfini, Laura; Patak, Alex; Kreysa, Joachim

    2015-01-01

    The DNA target sequence is the key element in designing detection methods for genetically modified organisms (GMOs). Unfortunately this information is frequently lacking, especially for unauthorized GMOs. In addition, patent sequences are generally poorly annotated, buried in complex and extensive documentation and hard to link to the corresponding GM event. Here, we present the JRC GMO-Amplicons, a database of amplicons collected by screening public nucleotide sequence databanks by in silico determination of PCR amplification with reference methods for GMO analysis. The European Union Reference Laboratory for Genetically Modified Food and Feed (EU-RL GMFF) provides these methods in the GMOMETHODS database to support enforcement of EU legislation and GM food/feed control. The JRC GMO-Amplicons database is composed of more than 240 000 amplicons, which can be easily accessed and screened through a web interface. To our knowledge, this is the first attempt at pooling and collecting publicly available sequences related to GMOs in food and feed. The JRC GMO-Amplicons supports control laboratories in the design and assessment of GMO methods, providing inter-alia in silico prediction of primers specificity and GM targets coverage. The new tool can assist the laboratories in the analysis of complex issues, such as the detection and identification of unauthorized GMOs. Notably, the JRC GMO-Amplicons database allows the retrieval and characterization of GMO-related sequences included in patents documentation. Finally, it can help annotating poorly described GM sequences and identifying new relevant GMO-related sequences in public databases. The JRC GMO-Amplicons is freely accessible through a web-based portal that is hosted on the EU-RL GMFF website. Database URL: http://gmo-crl.jrc.ec.europa.eu/jrcgmoamplicons/ PMID:26424080

  11. JRC GMO-Amplicons: a collection of nucleic acid sequences related to genetically modified organisms.

    PubMed

    Petrillo, Mauro; Angers-Loustau, Alexandre; Henriksson, Peter; Bonfini, Laura; Patak, Alex; Kreysa, Joachim

    2015-01-01

    The DNA target sequence is the key element in designing detection methods for genetically modified organisms (GMOs). Unfortunately this information is frequently lacking, especially for unauthorized GMOs. In addition, patent sequences are generally poorly annotated, buried in complex and extensive documentation and hard to link to the corresponding GM event. Here, we present the JRC GMO-Amplicons, a database of amplicons collected by screening public nucleotide sequence databanks by in silico determination of PCR amplification with reference methods for GMO analysis. The European Union Reference Laboratory for Genetically Modified Food and Feed (EU-RL GMFF) provides these methods in the GMOMETHODS database to support enforcement of EU legislation and GM food/feed control. The JRC GMO-Amplicons database is composed of more than 240 000 amplicons, which can be easily accessed and screened through a web interface. To our knowledge, this is the first attempt at pooling and collecting publicly available sequences related to GMOs in food and feed. The JRC GMO-Amplicons supports control laboratories in the design and assessment of GMO methods, providing inter-alia in silico prediction of primers specificity and GM targets coverage. The new tool can assist the laboratories in the analysis of complex issues, such as the detection and identification of unauthorized GMOs. Notably, the JRC GMO-Amplicons database allows the retrieval and characterization of GMO-related sequences included in patents documentation. Finally, it can help annotating poorly described GM sequences and identifying new relevant GMO-related sequences in public databases. The JRC GMO-Amplicons is freely accessible through a web-based portal that is hosted on the EU-RL GMFF website. Database URL: http://gmo-crl.jrc.ec.europa.eu/jrcgmoamplicons/. © The Author(s) 2015. Published by Oxford University Press.

  12. JRC GMO-Matrix: a web application to support Genetically Modified Organisms detection strategies.

    PubMed

    Angers-Loustau, Alexandre; Petrillo, Mauro; Bonfini, Laura; Gatto, Francesco; Rosa, Sabrina; Patak, Alexandre; Kreysa, Joachim

    2014-12-30

    The polymerase chain reaction (PCR) is the current state of the art technique for DNA-based detection of Genetically Modified Organisms (GMOs). A typical control strategy starts by analyzing a sample for the presence of target sequences (GM-elements) known to be present in many GMOs. Positive findings from this "screening" are then confirmed with GM (event) specific test methods. A reliable knowledge of which GMOs are detected by combinations of GM-detection methods is thus crucial to minimize the verification efforts. In this article, we describe a novel platform that links the information of two unique databases built and maintained by the European Union Reference Laboratory for Genetically Modified Food and Feed (EU-RL GMFF) at the Joint Research Centre (JRC) of the European Commission, one containing the sequence information of known GM-events and the other validated PCR-based detection and identification methods. The new platform compiles in silico determinations of the detection of a wide range of GMOs by the available detection methods using existing scripts that simulate PCR amplification and, when present, probe binding. The correctness of the information has been verified by comparing the in silico conclusions to experimental results for a subset of forty-nine GM events and six methods. The JRC GMO-Matrix is unique for its reliance on DNA sequence data and its flexibility in integrating novel GMOs and new detection methods. Users can mine the database using a set of web interfaces that thus provide a valuable support to GMO control laboratories in planning and evaluating their GMO screening strategies. The platform is accessible at http://gmo-crl.jrc.ec.europa.eu/jrcgmomatrix/ .

  13. Molecular toolbox for the identification of unknown genetically modified organisms.

    PubMed

    Ruttink, Tom; Demeyer, Rolinde; Van Gulck, Elke; Van Droogenbroeck, Bart; Querci, Maddalena; Taverniers, Isabel; De Loose, Marc

    2010-03-01

    Competent laboratories monitor genetically modified organisms (GMOs) and products derived thereof in the food and feed chain in the framework of labeling and traceability legislation. In addition, screening is performed to detect the unauthorized presence of GMOs including asynchronously authorized GMOs or GMOs that are not officially registered for commercialization (unknown GMOs). Currently, unauthorized or unknown events are detected by screening blind samples for commonly used transgenic elements, such as p35S or t-nos. If (1) positive detection of such screening elements shows the presence of transgenic material and (2) all known GMOs are tested by event-specific methods but are not detected, then the presence of an unknown GMO is inferred. However, such evidence is indirect because it is based on negative observations and inconclusive because the procedure does not identify the causative event per se. In addition, detection of unknown events is hampered in products that also contain known authorized events. Here, we outline alternative approaches for analytical detection and GMO identification and develop new methods to complement the existing routine screening procedure. We developed a fluorescent anchor-polymerase chain reaction (PCR) method for the identification of the sequences flanking the p35S and t-nos screening elements. Thus, anchor-PCR fingerprinting allows the detection of unique discriminative signals per event. In addition, we established a collection of in silico calculated fingerprints of known events to support interpretation of experimentally generated anchor-PCR GM fingerprints of blind samples. Here, we first describe the molecular characterization of a novel GMO, which expresses recombinant human intrinsic factor in Arabidopsis thaliana. Next, we purposefully treated the novel GMO as a blind sample to simulate how the new methods lead to the molecular identification of a novel unknown event without prior knowledge of its transgene sequence. The results demonstrate that the new methods complement routine screening procedures by providing direct conclusive evidence and may also be useful to resolve masking of unknown events by known events.

  14. Colon cancer screening: which non-invasive filter tests?

    PubMed

    Pox, Christian

    2011-01-01

    The following non-invasive stool tests for colorectal cancer (CRC) screening exist: guaiac or immunochemical fecal occult blood testing (FOBT), genetic stool tests and the M2-PK. Currently the most widely used tests are guaiac-based (gFOBT). Several randomized controlled trials have shown that gFOBT are able to achieve a reduction in CRC-related mortality. This reduction is achieved by detecting asymptomatic cancers at an early stage with a better prognosis. However, gFOBT have a low sensitivity for colorectal adenomas and are thus unlikely to be able to reduce the incidence of CRC. Furthermore, gFOBT are not specific for human blood and can be influenced by external factors. Immunochemical tests (iFOBT) only detect human blood in the stool. In two recent randomized studies from the Netherlands comparing guaiac and immunochemical tests in the asymptomatic population, iFOBT were found to detect more cancers than gFOBT. Furthermore, iFOBT were able to detect more advanced adenomas thus having the potential to be able to reduce the incidence of CRC as well as CRC-related mortality. In the recently released European CRC screening guidelines, iFOBT are considered the screening test of choice. Several questions remain however. It is currently unknown what the optimal cut-off value for an iFOBT to be considered positive should be and what the number of stool samples is that are required. Genetic stool tests detect mutations in stool that can be found in CRC. The original test testing for 21 genetic changes was found to be superior to gFOBT for the detection of cancers. However, the sensitivity was moderate (51.6%) and the sensitivity for advanced adenomas was low. In the meantime the test has been modified improving DNA extraction and reducing the number of mutations tested for as well as including a methylation marker. The efficacy of the modified test in the screening population is unknown. M2-PK is an isomer of the enzyme pyruvate kinase that is involved in glycolysis. Studies have found a good sensitivity for cancers, a low sensitivity for advanced adenomas with a specificity of around 80%. Further studies in the screening population are required. Copyright © 2011 S. Karger AG, Basel.

  15. CRISPR/Cas9 for Human Genome Engineering and Disease Research.

    PubMed

    Xiong, Xin; Chen, Meng; Lim, Wendell A; Zhao, Dehua; Qi, Lei S

    2016-08-31

    The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system, a versatile RNA-guided DNA targeting platform, has been revolutionizing our ability to modify, manipulate, and visualize the human genome, which greatly advances both biological research and therapeutics development. Here, we review the current development of CRISPR/Cas9 technologies for gene editing, transcription regulation, genome imaging, and epigenetic modification. We discuss the broad application of this system to the study of functional genomics, especially genome-wide genetic screening, and to therapeutics development, including establishing disease models, correcting defective genetic mutations, and treating diseases.

  16. Histopathology reveals correlative and unique phenotypes in a high-throughput mouse phenotyping screen

    PubMed Central

    Adissu, Hibret A.; Estabel, Jeanne; Sunter, David; Tuck, Elizabeth; Hooks, Yvette; Carragher, Damian M.; Clarke, Kay; Karp, Natasha A.; Project, Sanger Mouse Genetics; Newbigging, Susan; Jones, Nora; Morikawa, Lily; White, Jacqueline K.; McKerlie, Colin

    2014-01-01

    The Mouse Genetics Project (MGP) at the Wellcome Trust Sanger Institute aims to generate and phenotype over 800 genetically modified mouse lines over the next 5 years to gain a better understanding of mammalian gene function and provide an invaluable resource to the scientific community for follow-up studies. Phenotyping includes the generation of a standardized biobank of paraffin-embedded tissues for each mouse line, but histopathology is not routinely performed. In collaboration with the Pathology Core of the Centre for Modeling Human Disease (CMHD) we report the utility of histopathology in a high-throughput primary phenotyping screen. Histopathology was assessed in an unbiased selection of 50 mouse lines with (n=30) or without (n=20) clinical phenotypes detected by the standard MGP primary phenotyping screen. Our findings revealed that histopathology added correlating morphological data in 19 of 30 lines (63.3%) in which the primary screen detected a phenotype. In addition, seven of the 50 lines (14%) presented significant histopathology findings that were not associated with or predicted by the standard primary screen. Three of these seven lines had no clinical phenotype detected by the standard primary screen. Incidental and strain-associated background lesions were present in all mutant lines with good concordance to wild-type controls. These findings demonstrate the complementary and unique contribution of histopathology to high-throughput primary phenotyping of mutant mice. PMID:24652767

  17. Uptake of Predictive Genetic Testing and Cardiac Evaluation for Children at Risk for an Inherited Arrhythmia or Cardiomyopathy.

    PubMed

    Christian, Susan; Atallah, Joseph; Clegg, Robin; Giuffre, Michael; Huculak, Cathleen; Dzwiniel, Tara; Parboosingh, Jillian; Taylor, Sherryl; Somerville, Martin

    2018-02-01

    Predictive genetic testing in minors should be considered when clinical intervention is available. Children who carry a pathogenic variant for an inherited arrhythmia or cardiomyopathy require regular cardiac screening and may be prescribed medication and/or be told to modify their physical activity. Medical genetics and pediatric cardiology charts were reviewed to identify factors associated with uptake of genetic testing and cardiac evaluation for children at risk for long QT syndrome, hypertrophic cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy. The data collected included genetic diagnosis, clinical symptoms in the carrier parent, number of children under 18 years of age, age of children, family history of sudden cardiac arrest/death, uptake of cardiac evaluation and if evaluated, phenotype for each child. We identified 97 at risk children from 58 families found to carry a pathogenic variant for one of these conditions. Sixty six percent of the families pursued genetic testing and 73% underwent cardiac screening when it was recommended. Declining predictive genetic testing was significantly associated with genetic specialist recommendation (p < 0.001) and having an asymptomatic carrier father (p = 0.006). Cardiac evaluation was significantly associated with uptake of genetic testing (p = 0.007). This study provides a greater understanding of factors associated with uptake of genetic testing and cardiac evaluation in children at risk of an inherited arrhythmia or cardiomyopathy. It also identifies a need to educate families about the importance of cardiac evaluation even in the absence of genetic testing.

  18. Epigenetic silencing by the HUSH complex mediates position-effect variegation in human cells*

    PubMed Central

    Matheson, Nicholas J.; Wals, Kim; Antrobus, Robin; Göttgens, Berthold; Dougan, Gordon; Dawson, Mark A.; Lehner, Paul J.

    2015-01-01

    Forward genetic screens in Drosophila melanogaster for modifiers of position-effect variegation have revealed the basis of much of our understanding of heterochromatin. We took an analogous approach to identify genes required for epigenetic repression in human cells. A non-lethal forward genetic screen in near-haploid KBM7 cells identified the Human Silencing Hub (HUSH), a complex of three poorly-characterised proteins, TASOR, MPP8, and periphilin, which is absent from Drosophila but conserved from fish to humans. Loss of HUSH subunits resulted in decreased H3K9me3 at both endogenous genomic loci and retroviruses integrated into heterochromatin. Our results suggest that the HUSH complex is recruited to genomic loci rich in H3K9me3, where subsequent recruitment of the methyltransferase SETDB1 is required for further H3K9me3 deposition to maintain transcriptional silencing. PMID:26022416

  19. Causes and Consequences of Genetic Background Effects Illuminated by Integrative Genomic Analysis

    PubMed Central

    Chandler, Christopher H.; Chari, Sudarshan; Dworkin, Ian

    2014-01-01

    The phenotypic consequences of individual mutations are modulated by the wild-type genetic background in which they occur. Although such background dependence is widely observed, we do not know whether general patterns across species and traits exist or about the mechanisms underlying it. We also lack knowledge on how mutations interact with genetic background to influence gene expression and how this in turn mediates mutant phenotypes. Furthermore, how genetic background influences patterns of epistasis remains unclear. To investigate the genetic basis and genomic consequences of genetic background dependence of the scallopedE3 allele on the Drosophila melanogaster wing, we generated multiple novel genome-level datasets from a mapping-by-introgression experiment and a tagged RNA gene expression dataset. In addition we used whole genome resequencing of the parental lines—two commonly used laboratory strains—to predict polymorphic transcription factor binding sites for SD. We integrated these data with previously published genomic datasets from expression microarrays and a modifier mutation screen. By searching for genes showing a congruent signal across multiple datasets, we were able to identify a robust set of candidate loci contributing to the background-dependent effects of mutations in sd. We also show that the majority of background-dependent modifiers previously reported are caused by higher-order epistasis, not quantitative noncomplementation. These findings provide a useful foundation for more detailed investigations of genetic background dependence in this system, and this approach is likely to prove useful in exploring the genetic basis of other traits as well. PMID:24504186

  20. Genetics and the Placebo Effect: the Placebome

    PubMed Central

    Hall, Kathryn T.; Loscalzo, Joseph; Kaptchuk, Ted J.

    2015-01-01

    Placebos are indispensable controls in randomized clinical trials (RCTs), and placebo responses significantly contribute to routine clinical outcomes. Recent neurophysiological studies reveal neurotransmitter pathways that mediate placebo effects. Evidence that genetic variations in these pathways can modify placebo effects raises the possibility of using genetic screening to identify placebo responders and thereby increase RCT efficacy and improve therapeutic care. Furthermore, the possibility of interaction between placebo and drug molecular pathways warrants consideration in RCT design. The study of genomic effects on placebo response, “the placebome”, is in its infancy. Here, we review evidence from placebo studies and RCTs to identify putative genes in the placebome, examine evidence for placebo-drug interactions, and discuss implications for RCTs and clinical care. PMID:25883069

  1. Pesticides that inhibit the ubiquitin-proteasome system: effect measure modification by genetic variation in SKP1 in Parkinson׳s disease.

    PubMed

    Rhodes, Shannon L; Fitzmaurice, Arthur G; Cockburn, Myles; Bronstein, Jeff M; Sinsheimer, Janet S; Ritz, Beate

    2013-10-01

    Cytoplasmic inclusions known as Lewy bodies, a hallmark of Parkinson's disease (PD) pathology, may protect against cytotoxic proteins. Since the ubiquitin-proteasome system (UPS) degrades cytotoxic proteins, dysfunction in the UPS may contribute to PD etiology. Our goal in this study was to screen pesticides for proteasome inhibition and investigate (i) whether ambient exposures to pesticides that inhibit the UPS increase PD risk and (ii) whether genetic variation in candidate genes of the UPS pathway modify those increased risks. We assessed 26S UPS activity in SK-N-MC(u) cells by fluorescence. We recruited idiopathic PD cases (n=360) and population-based controls (n=816) from three counties in California with considerable commercial agriculture. We determined ambient pesticide exposure by our validated GIS-based model utilizing residential and workplace address histories. We limited effect measure modification assessment to Caucasians (287 cases, 453 controls). Eleven of 28 pesticides we screened inhibited 26S UPS activity at 10 µM. Benomyl, cyanazine, dieldrin, endosulfan, metam, propargite, triflumizole, and ziram were associated with increased PD risk. We estimated an odds ratio of 2.14 (95% CI: 1.42, 3.22) for subjects with ambient exposure to any UPS-inhibiting pesticide at both residential and workplace addresses; this association was modified by genetic variation in the s-phase kinase-associated protein 1 gene (SKP1; interaction p-value=0.005). Our results provide evidence that UPS-inhibiting pesticides play a role in the etiology of PD and suggest that genetic variation in candidate genes involved in the UPS pathway might exacerbate the toxic effects of pesticide exposures. © 2013 Published by Elsevier Inc.

  2. GMOMETHODS: the European Union database of reference methods for GMO analysis.

    PubMed

    Bonfini, Laura; Van den Bulcke, Marc H; Mazzara, Marco; Ben, Enrico; Patak, Alexandre

    2012-01-01

    In order to provide reliable and harmonized information on methods for GMO (genetically modified organism) analysis we have published a database called "GMOMETHODS" that supplies information on PCR assays validated according to the principles and requirements of ISO 5725 and/or the International Union of Pure and Applied Chemistry protocol. In addition, the database contains methods that have been verified by the European Union Reference Laboratory for Genetically Modified Food and Feed in the context of compliance with an European Union legislative act. The web application provides search capabilities to retrieve primers and probes sequence information on the available methods. It further supplies core data required by analytical labs to carry out GM tests and comprises information on the applied reference material and plasmid standards. The GMOMETHODS database currently contains 118 different PCR methods allowing identification of 51 single GM events and 18 taxon-specific genes in a sample. It also provides screening assays for detection of eight different genetic elements commonly used for the development of GMOs. The application is referred to by the Biosafety Clearing House, a global mechanism set up by the Cartagena Protocol on Biosafety to facilitate the exchange of information on Living Modified Organisms. The publication of the GMOMETHODS database can be considered an important step toward worldwide standardization and harmonization in GMO analysis.

  3. On-site detection of stacked genetically modified soybean based on event-specific TM-LAMP and a DNAzyme-lateral flow biosensor.

    PubMed

    Cheng, Nan; Shang, Ying; Xu, Yuancong; Zhang, Li; Luo, Yunbo; Huang, Kunlun; Xu, Wentao

    2017-05-15

    Stacked genetically modified organisms (GMO) are becoming popular for their enhanced production efficiency and improved functional properties, and on-site detection of stacked GMO is an urgent challenge to be solved. In this study, we developed a cascade system combining event-specific tag-labeled multiplex LAMP with a DNAzyme-lateral flow biosensor for reliable detection of stacked events (DP305423× GTS 40-3-2). Three primer sets, both event-specific and soybean species-specific, were newly designed for the tag-labeled multiplex LAMP system. A trident-like lateral flow biosensor displayed amplified products simultaneously without cross contamination, and DNAzyme enhancement improved the sensitivity effectively. After optimization, the limit of detection was approximately 0.1% (w/w) for stacked GM soybean, which is sensitive enough to detect genetically modified content up to a threshold value established by several countries for regulatory compliance. The entire detection process could be shortened to 120min without any large-scale instrumentation. This method may be useful for the in-field detection of DP305423× GTS 40-3-2 soybean on a single kernel basis and on-site screening tests of stacked GM soybean lines and individual parent GM soybean lines in highly processed foods. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Chemical Genetic Screens for TDP-43 Modifiers and ALS Drug Discovery

    DTIC Science & Technology

    2013-10-01

    proteins ( Hsp27 and Hsp70) and to reduction in levels of misfolded SOD1 species (Fig. 3). A manuscript describing these results is in preparation. 5...misfolded  SOD1  and   a?enuated  loss  of  motor  neurons     (A)  The  protein  levels  of   Hsp27  and  Hsp70  in  the

  5. Evalution of DNA extraction methods in order to monitor genetically modified materials in soy foodstuffs and feeds commercialised in Turkey by multiplex real-time PCR.

    PubMed

    Turkec, Aydin; Kazan, Hande; Baykut, Aykut; Lucas, Stuart J

    2015-01-01

    Soybean is one of the most important biotech crops, widely used as an ingredient in both foodstuffs and feed. DNA extraction methods have been evaluated to detect the presence of genetically modified (GM) materials in soya-containing food and feed products commercialised in Turkey. All extraction methods performed well for the majority of soya foods and feed products analysed. However, the most successful method varied between different products; the Foodproof, Genespin and the cetyltrimethylammonium bromide (CTAB) methods each produced the highest DNA yield and purity for different soya foodstuffs and feeds. Of the samples tested, 20% were positive for the presence of at least two GM elements (35S/NOS) while 11% contained an additional GM element (35S/NOS/FMV). Of the tested products, animal feeds showed a larger prevalence of GM material (50%) than the soya-containing foodstuffs (13%). The best performing extraction methods proved to be the Foodproof, Genespin and CTAB methods for soya-containing food and feed products. The results obtained herein clearly demonstrate the presence of GM soybean in the Turkish market, and that the Foodproof GMO Screening Kit provides reliable screening of soy-containing food and feed products. © 2014 Society of Chemical Industry.

  6. A new era in clinical genetic testing for hypertrophic cardiomyopathy.

    PubMed

    Wheeler, Matthew; Pavlovic, Aleksandra; DeGoma, Emil; Salisbury, Heidi; Brown, Colleen; Ashley, Euan A

    2009-12-01

    Building on seminal studies of the last 20 years, genetic testing for hypertrophic cardiomyopathy (HCM) has become a clinical reality in the form of targeted exonic sequencing of known disease-causing genes. This has been driven primarily by the decreasing cost of sequencing, but the high profile of genome-wide association studies, the launch of direct-to-consumer genetic testing, and new legislative protection have also played important roles. In the clinical management of hypertrophic cardiomyopathy, genetic testing is primarily used for family screening. An increasing role is recognized, however, in diagnostic settings: in the differential diagnosis of HCM; in the differentiation of HCM from hypertensive or athlete's heart; and more rarely in preimplantation genetic diagnosis. Aside from diagnostic clarification and family screening, use of the genetic test for guiding therapy remains controversial, with data currently too limited to derive a reliable mutation risk prediction from within the phenotypic noise of different modifying genomes. Meanwhile, the power of genetic testing derives from the confidence with which a mutation can be called present or absent in a given individual. This confidence contrasts with our more limited ability to judge the significance of mutations for which co-segregation has not been demonstrated. These variants of "unknown" significance represent the greatest challenge to the wider adoption of genetic testing in HCM. Looking forward, next-generation sequencing technologies promise to revolutionize the current approach as whole genome sequencing will soon be available for the cost of today's targeted panel. In summary, our future will be characterized not by lack of genetic information but by our ability to effectively parse it.

  7. [Genetic testing in polygenic diseases : Atrial fibrillation, arterial hypertension and coronary artery disease].

    PubMed

    Trenkwalder, T; Kessler, T; Schunkert, H

    2017-08-01

    Genetic testing plays an increasing role in cardiovascular medicine. Advances in technology and the development of novel and more affordable (high throughput) methods have led to the identification of genetic risk factors in research and clinical practice. Also, this progress has simplified the screening of patients and individuals at risk. In case of rare monogenic diseases, diagnostics, risk stratification, and, in some cases, treatment decisions have become easier. For common, polygenic cardiovascular diseases, the situation is more complex due to interaction of modifiable external risk factors and nonmodifiable factors like genetic predisposition. Over the last few years, it has been shown that multiple genes are involved in the pathophysiology of these cardiovascular diseases rather than one single gene. In the following article, we give an overview of the genetic risk factors in polygenic cardiovascular diseases as atrial fibrillation, arterial hypertension and coronary artery disease. Furthermore, we aim to illustrate in which cases genetic testing is recommended in these diseases.

  8. A CRISPR Cas9-based gene drive platform for genetic interaction analysis in Candida albicans

    PubMed Central

    Shapiro, Rebecca S.; Chavez, Alejandro; Porter, Caroline B. M.; Hamblin, Meagan; Kaas, Christian S.; DiCarlo, James E.; Zeng, Guisheng; Xu, Xiaoli; Revtovich, Alexey V.; Kirienko, Natalia V.; Wang, Yue; Church, George M.; Collins, James J.

    2018-01-01

    Candida albicans is the leading cause of fungal infections; yet, complex genetic interaction analysis remains cumbersome in this diploid pathogen. Here, we developed a CRISPR-Cas9-based ‘gene drive array’ (GDA) platform to facilitate efficient genetic analysis in C. albicans. In our system, a modified DNA donor molecule acts as a selfish genetic element, replaces the targeted site, and propagates to replace additional wild-type loci. Using mating-competent C. albicans haploids, each carrying a different gene drive disabling a gene of interest, we are able to create diploid strains that are homozygous double-deletion mutants. We generate double-gene deletion libraries to demonstrate this technology, targeting antifungal efflux and biofilm adhesion factors. We screen these libraries to identify virulence regulators and determine how genetic networks shift under diverse conditions. This platform transforms our ability to perform genetic interaction analysis in C. albicans and is readily extended to other fungal pathogens. PMID:29062088

  9. Manipulation of Behavioral Decline in Caenorhabditis elegans with the Rag GTPase raga-1

    PubMed Central

    Schreiber, Matthew A.; Pierce-Shimomura, Jonathan T.; Chan, Stefan; Parry, Dianne; McIntire, Steven L.

    2010-01-01

    Normal aging leads to an inexorable decline in motor performance, contributing to medical morbidity and decreased quality of life. While much has been discovered about genetic determinants of lifespan, less is known about modifiers of age-related behavioral decline and whether new gene targets may be found which extend vigorous activity, with or without extending lifespan. Using Caenorhabditis elegans, we have developed a model of declining neuromuscular function and conducted a screen for increased behavioral activity in aged animals. In this model, behavioral function suffers from profound reductions in locomotory frequency, but coordination is strikingly preserved until very old age. By screening for enhancers of locomotion at advanced ages we identified the ras-related Rag GTPase raga-1 as a novel modifier of behavioral aging. raga-1 loss of function mutants showed vigorous swimming late in life. Genetic manipulations revealed that a gain of function raga-1 curtailed behavioral vitality and shortened lifespan, while a dominant negative raga-1 lengthened lifespan. Dietary restriction results indicated that a raga-1 mutant is relatively protected from the life-shortening effects of highly concentrated food, while RNAi experiments suggested that raga-1 acts in the highly conserved target of rapamycin (TOR) pathway in C. elegans. Rag GTPases were recently shown to mediate nutrient-dependent activation of TOR. This is the first demonstration of their dramatic effects on behavior and aging. This work indicates that novel modulators of behavioral function can be identified in screens, with implications for future study of the clinical amelioration of age-related decline. PMID:20523893

  10. Event specific qualitative and quantitative polymerase chain reaction detection of genetically modified MON863 maize based on the 5'-transgene integration sequence.

    PubMed

    Yang, Litao; Xu, Songci; Pan, Aihu; Yin, Changsong; Zhang, Kewei; Wang, Zhenying; Zhou, Zhigang; Zhang, Dabing

    2005-11-30

    Because of the genetically modified organisms (GMOs) labeling policies issued in many countries and areas, polymerase chain reaction (PCR) methods were developed for the execution of GMO labeling policies, such as screening, gene specific, construct specific, and event specific PCR detection methods, which have become a mainstay of GMOs detection. The event specific PCR detection method is the primary trend in GMOs detection because of its high specificity based on the flanking sequence of the exogenous integrant. This genetically modified maize, MON863, contains a Cry3Bb1 coding sequence that produces a protein with enhanced insecticidal activity against the coleopteran pest, corn rootworm. In this study, the 5'-integration junction sequence between the host plant DNA and the integrated gene construct of the genetically modified maize MON863 was revealed by means of thermal asymmetric interlaced-PCR, and the specific PCR primers and TaqMan probe were designed based upon the revealed 5'-integration junction sequence; the conventional qualitative PCR and quantitative TaqMan real-time PCR detection methods employing these primers and probes were successfully developed. In conventional qualitative PCR assay, the limit of detection (LOD) was 0.1% for MON863 in 100 ng of maize genomic DNA for one reaction. In the quantitative TaqMan real-time PCR assay, the LOD and the limit of quantification were eight and 80 haploid genome copies, respectively. In addition, three mixed maize samples with known MON863 contents were detected using the established real-time PCR systems, and the ideal results indicated that the established event specific real-time PCR detection systems were reliable, sensitive, and accurate.

  11. Network modeling of kinase inhibitor polypharmacology reveals pathways targeted in chemical screens

    PubMed Central

    Ursu, Oana; Gosline, Sara J. C.; Beeharry, Neil; Fink, Lauren; Bhattacharjee, Vikram; Huang, Shao-shan Carol; Zhou, Yan; Yen, Tim; Fraenkel, Ernest

    2017-01-01

    Small molecule screens are widely used to prioritize pharmaceutical development. However, determining the pathways targeted by these molecules is challenging, since the compounds are often promiscuous. We present a network strategy that takes into account the polypharmacology of small molecules in order to generate hypotheses for their broader mode of action. We report a screen for kinase inhibitors that increase the efficacy of gemcitabine, the first-line chemotherapy for pancreatic cancer. Eight kinase inhibitors emerge that are known to affect 201 kinases, of which only three kinases have been previously identified as modifiers of gemcitabine toxicity. In this work, we use the SAMNet algorithm to identify pathways linking these kinases and genetic modifiers of gemcitabine toxicity with transcriptional and epigenetic changes induced by gemcitabine that we measure using DNaseI-seq and RNA-seq. SAMNet uses a constrained optimization algorithm to connect genes from these complementary datasets through a small set of protein-protein and protein-DNA interactions. The resulting network recapitulates known pathways including DNA repair, cell proliferation and the epithelial-to-mesenchymal transition. We use the network to predict genes with important roles in the gemcitabine response, including six that have already been shown to modify gemcitabine efficacy in pancreatic cancer and ten novel candidates. Our work reveals the important role of polypharmacology in the activity of these chemosensitizing agents. PMID:29023490

  12. The Candidate Cancer Gene Database: a database of cancer driver genes from forward genetic screens in mice.

    PubMed

    Abbott, Kenneth L; Nyre, Erik T; Abrahante, Juan; Ho, Yen-Yi; Isaksson Vogel, Rachel; Starr, Timothy K

    2015-01-01

    Identification of cancer driver gene mutations is crucial for advancing cancer therapeutics. Due to the overwhelming number of passenger mutations in the human tumor genome, it is difficult to pinpoint causative driver genes. Using transposon mutagenesis in mice many laboratories have conducted forward genetic screens and identified thousands of candidate driver genes that are highly relevant to human cancer. Unfortunately, this information is difficult to access and utilize because it is scattered across multiple publications using different mouse genome builds and strength metrics. To improve access to these findings and facilitate meta-analyses, we developed the Candidate Cancer Gene Database (CCGD, http://ccgd-starrlab.oit.umn.edu/). The CCGD is a manually curated database containing a unified description of all identified candidate driver genes and the genomic location of transposon common insertion sites (CISs) from all currently published transposon-based screens. To demonstrate relevance to human cancer, we performed a modified gene set enrichment analysis using KEGG pathways and show that human cancer pathways are highly enriched in the database. We also used hierarchical clustering to identify pathways enriched in blood cancers compared to solid cancers. The CCGD is a novel resource available to scientists interested in the identification of genetic drivers of cancer. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. CRISPR library designer (CLD): software for multispecies design of single guide RNA libraries.

    PubMed

    Heigwer, Florian; Zhan, Tianzuo; Breinig, Marco; Winter, Jan; Brügemann, Dirk; Leible, Svenja; Boutros, Michael

    2016-03-24

    Genetic screens using CRISPR/Cas9 are a powerful method for the functional analysis of genomes. Here we describe CRISPR library designer (CLD), an integrated bioinformatics application for the design of custom single guide RNA (sgRNA) libraries for all organisms with annotated genomes. CLD is suitable for the design of libraries using modified CRISPR enzymes and targeting non-coding regions. To demonstrate its utility, we perform a pooled screen for modulators of the TNF-related apoptosis inducing ligand (TRAIL) pathway using a custom library of 12,471 sgRNAs. CLD predicts a high fraction of functional sgRNAs and is publicly available at https://github.com/boutroslab/cld.

  14. Allergic sensitization: screening methods

    PubMed Central

    2014-01-01

    Experimental in silico, in vitro, and rodent models for screening and predicting protein sensitizing potential are discussed, including whether there is evidence of new sensitizations and allergies since the introduction of genetically modified crops in 1996, the importance of linear versus conformational epitopes, and protein families that become allergens. Some common challenges for predicting protein sensitization are addressed: (a) exposure routes; (b) frequency and dose of exposure; (c) dose-response relationships; (d) role of digestion, food processing, and the food matrix; (e) role of infection; (f) role of the gut microbiota; (g) influence of the structure and physicochemical properties of the protein; and (h) the genetic background and physiology of consumers. The consensus view is that sensitization screening models are not yet validated to definitively predict the de novo sensitizing potential of a novel protein. However, they would be extremely useful in the discovery and research phases of understanding the mechanisms of food allergy development, and may prove fruitful to provide information regarding potential allergenicity risk assessment of future products on a case by case basis. These data and findings were presented at a 2012 international symposium in Prague organized by the Protein Allergenicity Technical Committee of the International Life Sciences Institute’s Health and Environmental Sciences Institute. PMID:24739743

  15. Position-effect variegation revisited: HUSHing up heterochromatin in human cells.

    PubMed

    Timms, Richard T; Tchasovnikarova, Iva A; Lehner, Paul J

    2016-04-01

    Much of what we understand about heterochromatin formation in mammals has been extrapolated from forward genetic screens for modifiers of position-effect variegation (PEV) in the fruit fly Drosophila melanogaster. The recent identification of the HUSH (Human Silencing Hub) complex suggests that more recent evolutionary developments contribute to the mechanisms underlying PEV in human cells. Although HUSH-mediated repression also involves heterochromatin spreading through the reading and writing of the repressive H3K9me3 histone modification, clear orthologues of HUSH subunits are not found in Drosophila but are conserved in vertebrates. Here we compare the insights into the mechanisms of PEV derived from genetic screens in the fly, the mouse and in human cells, review what is currently known about the HUSH complex and discuss the implications of HUSH-mediated silencing for viral latency. Future studies will provide mechanistic insight into HUSH complex function and reveal the relationship between HUSH and other epigenetic silencing complexes. © 2016 WILEY Periodicals, Inc.

  16. GENE SILENCING. Epigenetic silencing by the HUSH complex mediates position-effect variegation in human cells.

    PubMed

    Tchasovnikarova, Iva A; Timms, Richard T; Matheson, Nicholas J; Wals, Kim; Antrobus, Robin; Göttgens, Berthold; Dougan, Gordon; Dawson, Mark A; Lehner, Paul J

    2015-06-26

    Forward genetic screens in Drosophila melanogaster for modifiers of position-effect variegation have revealed the basis of much of our understanding of heterochromatin. We took an analogous approach to identify genes required for epigenetic repression in human cells. A nonlethal forward genetic screen in near-haploid KBM7 cells identified the HUSH (human silencing hub) complex, comprising three poorly characterized proteins, TASOR, MPP8, and periphilin; this complex is absent from Drosophila but is conserved from fish to humans. Loss of HUSH components resulted in decreased H3K9me3 both at endogenous genomic loci and at retroviruses integrated into heterochromatin. Our results suggest that the HUSH complex is recruited to genomic loci rich in H3K9me3, where subsequent recruitment of the methyltransferase SETDB1 is required for further H3K9me3 deposition to maintain transcriptional silencing. Copyright © 2015, American Association for the Advancement of Science.

  17. Mob/oriT, a mobilizable site-specific recombination system for unmarked genetic manipulation in Bacillus thuringiensis and Bacillus cereus.

    PubMed

    Wang, Pengxia; Zhu, Yiguang; Zhang, Yuyang; Zhang, Chunyi; Xu, Jianyi; Deng, Yun; Peng, Donghai; Ruan, Lifang; Sun, Ming

    2016-06-10

    Bacillus thuringiensis and Bacillus cereus are two important species in B. cereus group. The intensive study of these strains at the molecular level and construction of genetically modified bacteria requires the development of efficient genetic tools. To insert genes into or delete genes from bacterial chromosomes, marker-less manipulation methods were employed. We present a novel genetic manipulation method for B. thuringiensis and B. cereus strains that does not leave selection markers. Our approach takes advantage of the relaxase Mob02281 encoded by plasmid pBMB0228 from Bacillus thuringiensis. In addition to its mobilization function, this Mob protein can mediate recombination between oriT sites. The Mob02281 mobilization module was associated with a spectinomycin-resistance gene to form a Mob-Spc cassette, which was flanked by the core 24-bp oriT sequences from pBMB0228. A strain in which the wild-type chromosome was replaced with the modified copy containing the Mob-Spc cassette at the target locus was obtained via homologous recombination. Thus, the spectinomycin-resistance gene can be used to screen for Mob-Spc cassette integration mutants. Recombination between the two oriT sequences mediated by Mob02281, encoded by the Mob-Spc cassette, resulted in the excision of the Mob-Spc cassette, producing the desired chromosomal alteration without introducing unwanted selection markers. We used this system to generate an in-frame deletion of a target gene in B. thuringiensis as well as a gene located in an operon of B. cereus. Moreover, we demonstrated that this system can be used to introduce a single gene or an expression cassette of interest in B. thuringiensis. The Mob/oriT recombination system provides an efficient method for unmarked genetic manipulation and for constructing genetically modified bacteria of B. thuringiensis and B. cereus. Our method extends the available genetic tools for B. thuringiensis and B. cereus strains.

  18. Pharmacological profiling of zebrafish behavior using chemical and genetic classification of sleep-wake modifiers.

    PubMed

    Nishimura, Yuhei; Okabe, Shiko; Sasagawa, Shota; Murakami, Soichiro; Ashikawa, Yoshifumi; Yuge, Mizuki; Kawaguchi, Koki; Kawase, Reiko; Tanaka, Toshio

    2015-01-01

    Sleep-wake states are impaired in various neurological disorders. Impairment of sleep-wake states can be an early condition that exacerbates these disorders. Therefore, treating sleep-wake dysfunction may prevent or slow the development of these diseases. Although many gene products are likely to be involved in the sleep-wake disturbance, hypnotics and psychostimulants clinically used are limited in terms of their mode of action and are not without side effects. Therefore, there is a growing demand for developing new hypnotics and psychostimulants with high efficacy and few side effects. Toward this end, animal models are indispensable for use in genetic and chemical screens to identify sleep-wake modifiers. As a proof-of-concept study, we performed behavioral profiling of zebrafish treated with chemical and genetic sleep-wake modifiers. We were able to demonstrate that behavioral profiling of zebrafish treated with hypnotics or psychostimulants from 9 to 10 days post-fertilization was sufficient to identify drugs with specific modes of action. We were also able to identify behavioral endpoints distinguishing GABA-A modulators and hypocretin (hcrt) receptor antagonists and between sympathomimetic and non-sympathomimetic psychostimulants. This behavioral profiling can serve to identify genes related to sleep-wake disturbance associated with various neuropsychiatric diseases and novel therapeutic compounds for insomnia and excessive daytime sleep with fewer adverse side effects.

  19. National Newborn Screening and Genetics Resource Center

    MedlinePlus

    ... GENERAL INFORMATION Conditions Screened by US Programs General Resources Genetics Birth Defects Hearing Screening FOR PROFESSIONALS ACT Sheets(ACMG) General Resources Newborn Screening Genetics Birth Defects FOR FAMILIES FAQs ...

  20. Detection of Genetically Modified Food: Has Your Food Been Genetically Modified?

    ERIC Educational Resources Information Center

    Brandner, Diana L.

    2002-01-01

    Explains the benefits and risks of genetically-modified foods and describes methods for genetically modifying food. Presents a laboratory experiment using a polymerase chain reaction (PCR) test to detect foreign DNA in genetically-modified food. (Contains 18 references.) (YDS)

  1. Screening Jews and genes: a consideration of the ethics of genetic screening within the Jewish community: challenges and responses.

    PubMed

    Levin, M

    1999-01-01

    Screening for genetic disorders, particularly Tay-Sachs Disease, has been traditionally welcome by the Jewish community. I review the history of genetic screening among Jews and the views from the Jewish tradition on the subject, and then discuss ethical challenges of screening and the impact of historical memories upon future acceptance of screening programs. Some rational principles to guide future design of genetic screening programs among Jews are proposed.

  2. Chemical Genetic Screens for TDP-43 Modifiers and ALS Drug Discovery

    DTIC Science & Technology

    2012-10-01

    Mayo Clinic, United States of America Received October 11, 2011; Accepted January 5, 2012; Published February 21, 2012 Copyright: 2012 Vaccaro et al...Editor: Weidong Le, Baylor College of Medicine, Jiao Tong University School of Medicine, United States of America Received March 9, 2012; Accepted July...Grasshopper 2 Camera (Point Grey Research) at 30 Hz. The movies were then analyzed using the manual tracking plugin of ImageJ 1.45r software (NIH) and the swim

  3. Genetically modified plants for non-food or non-feed purposes: straightforward screening for their appearance in food and feed.

    PubMed

    Alderborn, A; Sundström, J; Soeria-Atmadja, D; Sandberg, M; Andersson, H C; Hammerling, U

    2010-02-01

    Genetically modified (GM) plants aimed at producing food/feed are part of regular agriculture in many areas of the World. Commodity plants have also found application as bioreactors, designated non-food/non-feed GM (NFGM) plants, thereby making raw material for further refinement to industrial, diagnostic or pharmaceutical preparations. Many among them may pose health challenge to consumers or livestock animals, if occurring in food/feed. NFGM plants are typically released into the environment, but are grown under special oversight and any among several containment practices, none of which provide full protection against accidental dispersal. Adventitious admixture with food or feed can occur either through distributional mismanagement or as a consequence of gene flow to plant relatives. To facilitate NFGM surveillance we propose a new mandatory tagging of essentially all such plants, prior to cultivation or marketing in the European Union. The suggested tag--Plant-Made Industrial or Pharmaceutical Products Tag (PMIP-T)--is envisaged to occur as a transgenic silent DNA identifier in host plants and designed to enable technically simple identification and characterisation of any NFGM. Implementation of PMIP-T would permit inexpensive, reliable and high-throughput screening for NFGM specifically. The paper outlines key NFGM prospects and challenges as well as the PMIP-T concept. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Monitoring the prevalence of genetically modified maize in commercial animal feeds and food products in Turkey.

    PubMed

    Turkec, Aydin; Lucas, Stuart J; Karlık, Elif

    2016-07-01

    EU legislation strictly controls use of genetically modified (GM) crops in food and feed products, and requires them to be labelled if the total GM content is greater than 9 g kg(-1) (for approved GM crops). We screened maize-containing food and feed products from Turkey to assess the prevalence of GM material. With this aim, 83 food and feed products - none labelled as containing GM material - were screened using multiplex real-time polymerase chain reaction (PCR) for four common GM elements (35S/NOS/bar/FMV). Of these, 18.2% of feeds and 6% of food samples tested positive for one or more of these elements, and were subjected to event-specific PCR to identify which GM organisms they contained. Most samples were negative for the approved GM events tested, suggesting that they may contain adventitious GM contaminants. One sample was shown to contain an unapproved GM event (MON810, along with GA21) at a concentration well above the statutory labelling requirement. Current legislation has restricted the penetration of GM maize into the Turkish food industry but not eliminated it, and the proliferation of different GM events is making monitoring increasingly complex. Our results indicate that labelling requirements are not being followed in some cases. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  5. Multiplex polymerase chain reaction-capillary gel electrophoresis: a promising tool for GMO screening--assay for simultaneous detection of five genetically modified cotton events and species.

    PubMed

    Nadal, Anna; Esteve, Teresa; Pla, Maria

    2009-01-01

    A multiplex polymerase chain reaction assay coupled to capillary gel electrophoresis for amplicon identification by size and color (multiplex PCR-CGE-SC) was developed for simultaneous detection of cotton species and 5 events of genetically modified (GM) cotton. Validated real-time-PCR reactions targeting Bollgard, Bollgard II, Roundup Ready, 3006-210-23, and 281-24-236 junction sequences, and the cotton reference gene acp1 were adapted to detect more than half of the European Union-approved individual or stacked GM cotton events in one reaction. The assay was fully specific (<1.7% of false classification rate), with limit of detection values of 0.1% for each event, which were also achieved with simulated mixtures at different relative percentages of targets. The assay was further combined with a second multiplex PCR-CGE-SC assay to allow simultaneous detection of 6 cotton and 5 maize targets (two endogenous genes and 9 GM events) in two multiplex PCRs and a single CGE, making the approach more economic. Besides allowing simultaneous detection of many targets with adequate specificity and sensitivity, the multiplex PCR-CGE-SC approach has high throughput and automation capabilities, while keeping a very simple protocol, e.g., amplification and labeling in one step. Thus, it is an easy and inexpensive tool for initial screening, to be complemented with quantitative assays if necessary.

  6. A Robust and Engineerable Self-Assembling Protein Template for the Synthesis and Patterning of Ordered Nanoparticle Arrays

    NASA Technical Reports Server (NTRS)

    McMillan, R. Andrew; Howard, Jeanie; Zaluzec, Nestor J.; Kagawa, Hiromi K.; Li, Yi-Fen; Paavola, Chad D.; Trent, Jonathan D.

    2004-01-01

    Self-assembling biomolecules that form highly ordered structures have attracted interest as potential alternatives to conventional lithographic processes for patterning materials. Here we introduce a general technique for patterning materials on the nanoscale using genetically modified protein cage structures called chaperonins that self-assemble into crystalline templates. Constrained chemical synthesis of transition metal nanoparticles is specific to templates genetically functionalized with poly-Histidine sequences. These arrays of materials are ordered by the nanoscale structure of the crystallized protein. This system may be easily adapted to pattern a variety of materials given the rapidly growing list of peptide sequences selected by screening for specificity for inorganic materials.

  7. Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation

    PubMed Central

    Ambegaokar, Surendra S.; Jackson, George R.

    2011-01-01

    A functional genetic screen using loss-of-function and gain-of-function alleles was performed to identify modifiers of tau-induced neurotoxicity using the 2N/4R (full-length) isoform of wild-type human tau expressed in the fly retina. We previously reported eye pigment mutations, which create dysfunctional lysosomes, as potent modifiers; here, we report 37 additional genes identified from ∼1900 genes screened, including the kinases shaggy/GSK-3beta, par-1/MARK, CamKI and Mekk1. Tau acts synergistically with Mekk1 and p38 to down-regulate extracellular regulated kinase activity, with a corresponding decrease in AT8 immunoreactivity (pS202/T205), suggesting that tau can participate in signaling pathways to regulate its own kinases. Modifiers showed poor correlation with tau phosphorylation (using the AT8, 12E8 and AT270 epitopes); moreover, tested suppressors of wild-type tau were equally effective in suppressing toxicity of a phosphorylation-resistant S11A tau construct, demonstrating that changes in tau phosphorylation state are not required to suppress or enhance its toxicity. Genes related to autophagy, the cell cycle, RNA-associated proteins and chromatin-binding proteins constitute a large percentage of identified modifiers. Other functional categories identified include mitochondrial proteins, lipid trafficking, Golgi proteins, kinesins and dynein and the Hsp70/Hsp90-organizing protein (Hop). Network analysis uncovered several other genes highly associated with the functional modifiers, including genes related to the PI3K, Notch, BMP/TGF-β and Hedgehog pathways, and nuclear trafficking. Activity of GSK-3β is strongly upregulated due to TDP-43 expression, and reduced GSK-3β dosage is also a common suppressor of Aβ42 and TDP-43 toxicity. These findings suggest therapeutic targets other than mitigation of tau phosphorylation. PMID:21949350

  8. Proteomic evaluation of genetically modified crops: current status and challenges

    PubMed Central

    Gong, Chun Yan; Wang, Tai

    2013-01-01

    Hectares of genetically modified (GM) crops have increased exponentially since 1996, when such crops began to be commercialized. GM biotechnology, together with conventional breeding, has become the main approach to improving agronomic traits of crops. However, people are concerned about the safety of GM crops, especially GM-derived food and feed. Many efforts have been made to evaluate the unintended effects caused by the introduction of exogenous genes. “Omics” techniques have advantages over targeted analysis in evaluating such crops because of their use of high-throughput screening. Proteins are key players in gene function and are directly involved in metabolism and cellular development or have roles as toxins, antinutrients, or allergens, which are essential for human health. Thus, proteomics can be expected to become one of the most useful tools in safety assessment. This review assesses the potential of proteomics in evaluating various GM crops. We further describe the challenges in ensuring homogeneity and sensitivity in detection techniques. PMID:23471542

  9. Proteomic evaluation of genetically modified crops: current status and challenges.

    PubMed

    Gong, Chun Yan; Wang, Tai

    2013-01-01

    Hectares of genetically modified (GM) crops have increased exponentially since 1996, when such crops began to be commercialized. GM biotechnology, together with conventional breeding, has become the main approach to improving agronomic traits of crops. However, people are concerned about the safety of GM crops, especially GM-derived food and feed. Many efforts have been made to evaluate the unintended effects caused by the introduction of exogenous genes. "Omics" techniques have advantages over targeted analysis in evaluating such crops because of their use of high-throughput screening. Proteins are key players in gene function and are directly involved in metabolism and cellular development or have roles as toxins, antinutrients, or allergens, which are essential for human health. Thus, proteomics can be expected to become one of the most useful tools in safety assessment. This review assesses the potential of proteomics in evaluating various GM crops. We further describe the challenges in ensuring homogeneity and sensitivity in detection techniques.

  10. A genetic modifier suggests that endurance exercise exacerbates Huntington's disease

    PubMed Central

    Corrochano, Silvia; Blanco, Gonzalo; Williams, Debbie; Wettstein, Jessica; Simon, Michelle; Kumar, Saumya; Moir, Lee; Agnew, Thomas; Stewart, Michelle; Landman, Allison; Kotiadis, Vassilios N; Duchen, Michael R; Wackerhage, Henning; Rubinsztein, David C; Brown, Steve D M

    2018-01-01

    Abstract Polyglutamine expansions in the huntingtin gene cause Huntington’s disease (HD). Huntingtin is ubiquitously expressed, leading to pathological alterations also in peripheral organs. Variations in the length of the polyglutamine tract explain up to 70% of the age-at-onset variance, with the rest of the variance attributed to genetic and environmental modifiers. To identify novel disease modifiers, we performed an unbiased mutagenesis screen on an HD mouse model, identifying a mutation in the skeletal muscle voltage-gated sodium channel (Scn4a, termed ‘draggen’ mutation) as a novel disease enhancer. Double mutant mice (HD; Scn4aDgn/+) had decreased survival, weight loss and muscle atrophy. Expression patterns show that the main tissue affected is skeletal muscle. Intriguingly, muscles from HD; Scn4aDgn/+ mice showed adaptive changes similar to those found in endurance exercise, including AMPK activation, fibre type switching and upregulation of mitochondrial biogenesis. Therefore, we evaluated the effects of endurance training on HD mice. Crucially, this training regime also led to detrimental effects on HD mice. Overall, these results reveal a novel role for skeletal muscle in modulating systemic HD pathogenesis, suggesting that some forms of physical exercise could be deleterious in neurodegeneration. PMID:29509900

  11. Landscape of Familial Isolated and Young-Onset Pituitary Adenomas: Prospective Diagnosis in AIP Mutation Carriers

    PubMed Central

    Hernández-Ramírez, Laura C.; Gabrovska, Plamena; Dénes, Judit; Stals, Karen; Trivellin, Giampaolo; Tilley, Daniel; Ferraù, Francesco; Evanson, Jane; Ellard, Sian; Grossman, Ashley B.; Roncaroli, Federico; Gadelha, Mônica R.

    2015-01-01

    Context: Familial isolated pituitary adenoma (FIPA) due to aryl hydrocarbon receptor interacting protein (AIP) gene mutations is an autosomal dominant disease with incomplete penetrance. Clinical screening of apparently unaffected AIP mutation (AIPmut) carriers could identify previously unrecognized disease. Objective: To determine the AIP mutational status of FIPA and young pituitary adenoma patients, analyzing their clinical characteristics, and to perform clinical screening of apparently unaffected AIPmut carrier family members. Design: This was an observational, longitudinal study conducted over 7 years. Setting: International collaborative study conducted at referral centers for pituitary diseases. Participants: FIPA families (n = 216) and sporadic young-onset (≤30 y) pituitary adenoma patients (n = 404) participated in the study. Interventions: We performed genetic screening of patients for AIPmuts, clinical assessment of their family members, and genetic screening for somatic GNAS1 mutations and the germline FGFR4 p.G388R variant. Main Outcome Measure(s): We assessed clinical disease in mutation carriers, comparison of characteristics of AIPmut positive and negative patients, results of GNAS1, and FGFR4 analysis. Results: Thirty-seven FIPA families and 34 sporadic patients had AIPmuts. Patients with truncating AIPmuts had a younger age at disease onset and diagnosis, compared with patients with nontruncating AIPmuts. Somatic GNAS1 mutations were absent in tumors from AIPmut-positive patients, and the studied FGFR4 variant did not modify the disease behavior or penetrance in AIPmut-positive individuals. A total of 164 AIPmut-positive unaffected family members were identified; pituitary disease was detected in 18 of those who underwent clinical screening. Conclusions: A quarter of the AIPmut carriers screened were diagnosed with pituitary disease, justifying this screening and suggesting a variable clinical course for AIPmut-positive pituitary adenomas. PMID:26186299

  12. PCR technology for screening and quantification of genetically modified organisms (GMOs).

    PubMed

    Holst-Jensen, Arne; Rønning, Sissel B; Løvseth, Astrid; Berdal, Knut G

    2003-04-01

    Although PCR technology has obvious limitations, the potentially high degree of sensitivity and specificity explains why it has been the first choice of most analytical laboratories interested in detection of genetically modified (GM) organisms (GMOs) and derived materials. Because the products that laboratories receive for analysis are often processed and refined, the quality and quantity of target analyte (e.g. protein or DNA) frequently challenges the sensitivity of any detection method. Among the currently available methods, PCR methods are generally accepted as the most sensitive and reliable methods for detection of GM-derived material in routine applications. The choice of target sequence motif is the single most important factor controlling the specificity of the PCR method. The target sequence is normally a part of the modified gene construct, for example a promoter, a terminator, a gene, or a junction between two of these elements. However, the elements may originate from wildtype organisms, they may be present in more than one GMO, and their copy number may also vary from one GMO to another. They may even be combined in a similar way in more than one GMO. Thus, the choice of method should fit the purpose. Recent developments include event-specific methods, particularly useful for identification and quantification of GM content. Thresholds for labelling are now in place in many countries including those in the European Union. The success of the labelling schemes is dependent upon the efficiency with which GM-derived material can be detected. We will present an overview of currently available PCR methods for screening and quantification of GM-derived DNA, and discuss their applicability and limitations. In addition, we will discuss some of the major challenges related to determination of the limits of detection (LOD) and quantification (LOQ), and to validation of methods.

  13. Impact of Body Mass Index, Age, Prostate Volume, and Genetic Polymorphisms on Prostate-specific Antigen Levels in a Control Population.

    PubMed

    Cornu, Jean-Nicolas; Cancel-Tassin, Geraldine; Cox, David G; Roupret, Morgan; Koutlidis, Nicolas; Bigot, Pierre; Valeri, Antoine; Ondet, Valerie; Gaffory, Cécile; Fournier, Georges; Azzouzi, Abdel-Rahmene; Cormier, Luc; Cussenot, Olivier

    2016-07-01

    Prostate-specific antigen (PSA) is still the cornerstone of prostate cancer (PCa) screening and diagnosis in both research and current clinical practice. Inaccuracy of PSA is partly due to the influence of a number of genetic, clinical, and biological factors modifying PSA blood levels. In the present study, we detailed the respective influence of each factor among age, body mass index (BMI), prostate volume, and five single-nucleotide polymorphisms-rs10788160 (10q26), rs10993994 (10q11), rs11067228 (12q24), rs17632542 (19q13.33), and rs2928679 (8p21)-on PSA values in a cohort of 1374 men without PCa. Our results show that genetic factors, when risk variants are combined, influence PSA levels with an effect size similar to that of BMI. Taken together, the respective correlations of clinical parameters and genetic parameters would make it possible to correct and adjust PSA values more effectively in each individual. These results establish the basis to understand and implement a more personalised approach for the interpretation of PSA blood levels in the context of PCa screening and diagnosis. Prostate-specific antigen (PSA) values in an individual may vary according to genetic predisposition. The effect size of this variation can be significant, comparable with those resulting from clinical characteristics. Personalised PSA testing should take this into account. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  14. Epigenetic Regulation in Plants

    PubMed Central

    Pikaard, Craig S.; Mittelsten Scheid, Ortrun

    2014-01-01

    The study of epigenetics in plants has a long and rich history, from initial descriptions of non-Mendelian gene behaviors to seminal discoveries of chromatin-modifying proteins and RNAs that mediate gene silencing in most eukaryotes, including humans. Genetic screens in the model plant Arabidopsis have been particularly rewarding, identifying more than 130 epigenetic regulators thus far. The diversity of epigenetic pathways in plants is remarkable, presumably contributing to the phenotypic plasticity of plant postembryonic development and the ability to survive and reproduce in unpredictable environments. PMID:25452385

  15. Calreticulin and Jak2 as Chaperones for MPL: Insights into MPN Pathogenesis

    DTIC Science & Technology

    2017-11-01

    cell surface; and 2) CRISPR -Cas9 gene editing used to repair MPL T814C mutation in transfected cell lines and primary umbilical cord blood-derived...line has then been sub-cloned and individual clones were screened for robust Mpl expression using WB before being further modified (Fig. 1). CRISPR ...rescue its function and response to its ligand (Fig. 6). Genetic editing (using CRISPR /Cas9) performed on cells carrying the W272R mutation restored

  16. Exploring the Role of Genetic Modifiers in DNA Repair and Breast Cancer

    DTIC Science & Technology

    2013-09-01

    GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER E-Mail: 5f. WORK UNIT NUMBER 7. PERFORMING...detailed in the Statement of Work for this training grant . I have applied for and received a no-cost extension (Amendment P00001, 24-Aug-2012...Date In Year 1 of this grant I successfully constructed a yeast tel1∆ ∆ genome-wide double-deletion library that was screened for sensitivity to

  17. Genome-wide bisulfite sensitivity profiling of yeast suggests bisulfite inhibits transcription.

    PubMed

    Segovia, Romulo; Mathew, Veena; Tam, Annie S; Stirling, Peter C

    2017-09-01

    Bisulfite, in the form of sodium bisulfite or metabisulfite, is used commercially as a food preservative. Bisulfite is used in the laboratory as a single-stranded DNA mutagen in epigenomic analyses of DNA methylation. Recently it has also been used on whole yeast cells to induce mutations in exposed single-stranded regions in vivo. To understand the effects of bisulfite on live cells we conducted a genome-wide screen for bisulfite sensitive mutants in yeast. Screening the deletion mutant array, and collections of essential gene mutants we define a genetic network of bisulfite sensitive mutants. Validation of screen hits revealed hyper-sensitivity of transcription and RNA processing mutants, rather than DNA repair pathways and follow-up analyses support a role in perturbation of RNA transactions. We propose a model in which bisulfite-modified nucleotides may interfere with transcription or RNA metabolism when used in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Cystic Fibrosis: A Review of Associated Phenotypes, Use of Molecular Diagnostic Approaches, Genetic Characteristics, Progress, and Dilemmas.

    PubMed

    Brennan, Marie-Luise; Schrijver, Iris

    2016-01-01

    Cystic fibrosis (CF) is an autosomal recessive disease with significant associated morbidity and mortality. It is now appreciated that the broad phenotypic CF spectrum is not explained by obvious genotype-phenotype correlations, suggesting that CF transmembrane conductance regulator (CFTR)-related disease may occur because of multiple additive effects. These contributing effects include complex CFTR alleles, modifier genes, mutations in alternative genes that produce CF-like phenotypes, epigenetic factors, and environmental influences. Most patients in the United States are now diagnosed through newborn screening and use of molecular testing methods. We review the molecular testing approaches and laboratory guidelines for carrier screening, prenatal testing, newborn screening, and clinical diagnostic testing, as well as recent developments in CF treatment, and reasons for the lack of a molecular diagnosis in some patients. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  19. Practical aspects of mutagenicity testing strategy: an industrial perspective.

    PubMed

    Gollapudi, B B; Krishna, G

    2000-11-20

    Genetic toxicology studies play a central role in the development and marketing of new chemicals for pharmaceutical, agricultural, industrial, and consumer use. During the discovery phase of product development, rapid screening tests that require minimal amounts of test materials are used to assist in the design and prioritization of new molecules. At this stage, a modified Salmonella reverse mutation assay and an in vitro micronucleus test with mammalian cell culture are frequently used for screening. Regulatory genetic toxicology studies are conducted with a short list of compounds using protocols that conform to various international guidelines. A set of four assays usually constitutes the minimum test battery that satisfies global requirements. This set includes a bacterial reverse mutation assay, an in vitro cytogenetic test with mammalian cell culture, an in vitro gene mutation assay in mammalian cell cultures, and an in vivo rodent bone marrow micronucleus test. Supplementary studies are conducted in certain instances either as a follow-up to the findings from this initial testing battery and/or to satisfy a regulatory requirement. Currently available genetic toxicology assays have helped the scientific and industrial community over the past several decades in evaluating the mutagenic potential of chemical agents. The emerging field of toxicogenomics has the potential to redefine our ability to study the response of cells to genetic damage and hence our ability to study threshold phenomenon.

  20. Aligning policy to promote cascade genetic screening for prevention and early diagnosis of heritable diseases.

    PubMed

    George, Rani; Kovak, Karen; Cox, Summer L

    2015-06-01

    Cascade genetic screening is a methodology for identifying and testing close blood relatives of individuals at increased risk for heritable conditions and follows a sequential process, minimizing testing costs and the number of family members who need to be tested. It offers considerable potential for cost savings and increased awareness of heritable conditions within families. CDC-classified Tier 1 genomic applications for hereditary breast and ovarian cancer syndrome (HBOC), Lynch Syndrome (LS), and familial hypercholesterolemia (FH) are recommended for clinical use and support the use of cascade genetic screening. Most individuals are unaware of their increased risk for heritable conditions such as HBOC, LS, and FH. Consistent implementation of cascade genetic screening could significantly increase awareness and prevention of heritable conditions. Limitations to effective implementation of cascade genetic screening include: insufficient genetic risk assessment and knowledge by a majority of healthcare providers without genetics credentials; a shortage of genetic specialists, especially in rural areas; a low rate of reimbursement for comprehensive genetic counseling services; and an individual focus on prevention by clinical guidelines and insurance coverage. The family-centric approach of cascade genetic screening improves prevention and early diagnosis of heritable diseases on a population health level. Cascade genetic screening could be better supported and augmented through changes in health policy.

  1. Preimplantation genetic diagnosis and screening by array comparative genomic hybridisation: experience of more than 100 cases in a single centre.

    PubMed

    Chow, J Fc; Yeung, W Sb; Lee, V Cy; Lau, E Yl; Ho, P C; Ng, E Hy

    2017-04-01

    Preimplantation genetic screening has been proposed to improve the in-vitro fertilisation outcome by screening for aneuploid embryos or blastocysts. This study aimed to report the outcome of 133 cycles of preimplantation genetic diagnosis and screening by array comparative genomic hybridisation. This study of case series was conducted in a tertiary assisted reproductive centre in Hong Kong. Patients who underwent preimplantation genetic diagnosis for chromosomal abnormalities or preimplantation genetic screening between 1 April 2012 and 30 June 2015 were included. They underwent in-vitro fertilisation and intracytoplasmic sperm injection. An embryo biopsy was performed on day-3 embryos and the blastomere was subject to array comparative genomic hybridisation. Embryos with normal copy numbers were replaced. The ongoing pregnancy rate, implantation rate, and miscarriage rate were studied. During the study period, 133 cycles of preimplantation genetic diagnosis for chromosomal abnormalities or preimplantation genetic screening were initiated in 94 patients. Overall, 112 cycles proceeded to embryo biopsy and 65 cycles had embryo transfer. The ongoing pregnancy rate per transfer cycle after preimplantation genetic screening was 50.0% and that after preimplantation genetic diagnosis was 34.9%. The implantation rates after preimplantation genetic screening and diagnosis were 45.7% and 41.1%, respectively and the miscarriage rates were 8.3% and 28.6%, respectively. There were 26 frozen-thawed embryo transfer cycles, in which vitrified and biopsied genetically transferrable embryos were replaced, resulting in an ongoing pregnancy rate of 36.4% in the screening group and 60.0% in the diagnosis group. The clinical outcomes of preimplantation genetic diagnosis and screening using comparative genomic hybridisation in our unit were comparable to those reported internationally. Genetically transferrable embryos replaced in a natural cycle may improve the ongoing pregnancy rate and implantation rate when compared with transfer in a stimulated cycle.

  2. Screening of female family members of von Willebrand disease patients: utility of a modified screening tool in a high-risk population.

    PubMed

    Faiz, A S; Kaveney, A; Guo, S; Murphy, S; Philipp, C S

    2017-09-01

    Family members of Von Willebrand disease (VWD) patients may have low levels of VWF without major bleeding episodes and often remain undiagnosed. The purpose of this study was to assess the utility of a modified Screening Tool in identifying previously untested reproductive age female family members of VWD patients for haemostatic evaluation. Ninety-four reproductive age women including 41 previously untested family members of VWD patients, 26 previously diagnosed VWD patients and 27 healthy controls were administered a modified Screening Tool and had blood drawn for CBC, ferritin, and VWF testing. Participants completed a pictorial blood assessment chart (PBAC) with menses. The modified Screening Tool was positive in 32% family members, 77% VWD patients, and 19% controls (P < 0.001). Combined with low ferritin, the modified Screening Tool was positive in 66% family members, 92% VWD patients, and 44% controls (P = 0.001). In family members, incorporating low ferritin with the modified Screening Tool resulted in a sensitivity of 86% (95% CI, 42-100) and negative predictive value of 93% (95% CI, 66-100). In the control group, NPV was between 92% and 95% for the modified Screening Tool and also for the modified Screening Tool combined with low ferritin or a positive PBAC. These data in a racially diverse population suggest the usefulness of a simple, easy to administer modified Screening Tool. In conjunction with ferritin it could be used in a primary care setting to stratify reproductive age women with a family history of VWD for haemostatic evaluation. © 2017 John Wiley & Sons Ltd.

  3. Screening DNA chip and event-specific multiplex PCR detection methods for biotech crops.

    PubMed

    Lee, Seong-Hun

    2014-11-01

    There are about 80 biotech crop events that have been approved by safety assessment in Korea. They have been controlled by genetically modified organism (GMO) and living modified organism (LMO) labeling systems. The DNA-based detection method has been used as an efficient scientific management tool. Recently, the multiplex polymerase chain reaction (PCR) and DNA chip have been developed as simultaneous detection methods for several biotech crops' events. The event-specific multiplex PCR method was developed to detect five biotech maize events: MIR604, Event 3272, LY 038, MON 88017 and DAS-59122-7. The specificity was confirmed and the sensitivity was 0.5%. The screening DNA chip was developed from four endogenous genes of soybean, maize, cotton and canola respectively along with two regulatory elements and seven genes: P35S, tNOS, pat, bar, epsps1, epsps2, pmi, cry1Ac and cry3B. The specificity was confirmed and the sensitivity was 0.5% for four crops' 12 events: one soybean, six maize, three cotton and two canola events. The multiplex PCR and DNA chip can be available for screening, gene-specific and event-specific analysis of biotech crops as efficient detection methods by saving on workload and time. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.

  4. Genetic and epigenetic control of gene expression by CRISPR–Cas systems

    PubMed Central

    Lo, Albert; Qi, Lei

    2017-01-01

    The discovery and adaption of bacterial clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated (Cas) systems has revolutionized the way researchers edit genomes. Engineering of catalytically inactivated Cas variants (nuclease-deficient or nuclease-deactivated [dCas]) combined with transcriptional repressors, activators, or epigenetic modifiers enable sequence-specific regulation of gene expression and chromatin state. These CRISPR–Cas-based technologies have contributed to the rapid development of disease models and functional genomics screening approaches, which can facilitate genetic target identification and drug discovery. In this short review, we will cover recent advances of CRISPR–dCas9 systems and their use for transcriptional repression and activation, epigenome editing, and engineered synthetic circuits for complex control of the mammalian genome. PMID:28649363

  5. Semiautomated TaqMan PCR screening of GMO labelled samples for (unauthorised) GMOs.

    PubMed

    Scholtens, Ingrid M J; Molenaar, Bonnie; van Hoof, Richard A; Zaaijer, Stephanie; Prins, Theo W; Kok, Esther J

    2017-06-01

    In most countries, systems are in place to analyse food products for the potential presence of genetically modified organisms (GMOs), to enforce labelling requirements and to screen for the potential presence of unauthorised GMOs. With the growing number of GMOs on the world market, a larger diversity of methods is required for informative analyses. In this paper, the specificity of an extended screening set consisting of 32 screening methods to identify different crop species (endogenous genes) and GMO elements was verified against 59 different GMO reference materials. In addition, a cost- and time-efficient strategy for DNA isolation, screening and identification is presented. A module for semiautomated analysis of the screening results and planning of subsequent event-specific tests for identification has been developed. The Excel-based module contains information on the experimentally verified specificity of the element methods and of the EU authorisation status of the GMO events. If a detected GMO element cannot be explained by any of the events as identified in the same sample, this may indicate the presence of an unknown unauthorised GMO that may not yet have been assessed for its safety for humans, animals or the environment.

  6. SNP genetic polymorphisms of MDR-1, CYP1A2 and CYPB11 genes in four canine breeds upon toxicological evaluation

    PubMed Central

    Gagliardi, Rosa; Llambí, Silvia

    2015-01-01

    The fields of pharmacogenetics and pharmacogenomics have become increasingly promising regarding the clinical application of genetic data to aid in prevention of adverse reactions. Specific screening tests can predict which animals express modified proteins or genetic sequences responsible for adverse effects associated with a drug. Among the genetic variations that have been investigated in dogs, the multidrug resistance gene (MDR) is the best studied. However, other genes such as CYP1A2 and CYP2B11 control the protein syntheses involved in the metabolism of many drugs. In the present study, the MDR-1, CYP1A2 and CYP2B11 genes were examined to identify SNP polymorphisms associated with these genes in the following four canine breeds: Uruguayan Cimarron, Border Collie, Labrador Retriever and German Shepherd. The results revealed that several SNPs of the CYP1A2 and CYP2B11 genes are potential targets for drug sensitivity investigations. PMID:25797294

  7. SNP genetic polymorphisms of MDR-1, CYP1A2 and CYPB11 genes in four canine breeds upon toxicological evaluation.

    PubMed

    Gagliardi, Rosa; Llambí, Silvia; Arruga, M Victoria

    2015-01-01

    The fields of pharmacogenetics and pharmacogenomics have become increasingly promising regarding the clinical application of genetic data to aid in prevention of adverse reactions. Specific screening tests can predict which animals express modified proteins or genetic sequences responsible for adverse effects associated with a drug. Among the genetic variations that have been investigated in dogs, the multidrug resistance gene (MDR) is the best studied. However, other genes such as CYP1A2 and CYP2B11 control the protein syntheses involved in the metabolism of many drugs. In the present study, the MDR-1, CYP1A2 and CYP2B11 genes were examined to identify SNP polymorphisms associated with these genes in the following four canine breeds: Uruguayan Cimarron, Border Collie, Labrador Retriever and German Shepherd. The results revealed that several SNPs of the CYP1A2 and CYP2B11 genes are potential targets for drug sensitivity investigations.

  8. Screening for hypercholesterolaemia versus case finding for familial hypercholesterolaemia: a systematic review and cost-effectiveness analysis.

    PubMed

    Marks, D; Wonderling, D; Thorogood, M; Lambert, H; Humphries, S E; Neil, H A

    2000-01-01

    In the majority of people with familial hypercholesterolaemia (FH) the disorder is caused by a mutation of the low-density lipoprotein receptor gene that impairs its proper function, resulting in very high levels of plasma cholesterol. Such levels result in early and severe atherosclerosis, and hence substantial excess mortality from coronary heart disease. Most people with FH are undiagnosed or only diagnosed after their first coronary event, but early detection and treatment with hydroxymethylglutaryl-coenzyme (HMG CoA) reductase inhibitors (statins) can reduce morbidity and mortality. The prevalence of FH in the UK population is estimated to be 1 in 500, which means that approximately 110,000 people are affected. To evaluate whether screening for FH is appropriate. To determine which system of screening is most acceptable and cost-effective. To assess the deleterious psychosocial effects of genetic and clinical screening for an asymptomatic treatable inherited condition. To assess whether the risks of screening outweigh potential benefits. Relevant papers were identified through a search of the electronic databases. Additional papers referenced in the search material were identified and collected. Known researchers in the field were contacted and asked to supply information on unpublished or ongoing studies. INCLUSION/EXCLUSION CRITERIA: SCREENING AND TREATMENT: The review included studies of the mortality and morbidity associated with FH, the effectiveness and cost of treatment (ignoring pre-statin therapies in adults), and of the effectiveness or cost of possible screening strategies for FH. PSYCHOSOCIAL EFFECTS OF SCREENING: The search for papers on the psychological and social effects of screening for a treatable inherited condition was limited to the last 5 years because recent developments in genetic testing have changed the nature and implications of such screening tests. Papers focusing on genetic testing for FH and breast cancer were included. Papers relating to the risk of coronary heart disease with similarly modifiable outcome (non-FH) were also included. DATA EXTRACTION AND ASSESSMENT OF VALIDITY: A data assessment tool was designed to assess the quality and validity of the papers which reported primary data for the social and psychological effects of screening. Available guidelines for systematically reviewing papers concentrated on quantitative methods, and were of limited relevance. An algorithm was developed which could be used for both the qualitative and quantitative literature. MODELLING METHODS: A model was constructed to investigate the relative cost and effectiveness of various forms of population screening (universal or opportunistic) and case-finding screening (screening relatives of known FH cases). All strategies involved a two-stage process: first, identifying those people with cholesterol levels sufficiently elevated to be compatible with a diagnosis of FH, and then either making the diagnosis based on clinical signs and a family history of coronary disease or carrying out genetic tests. Cost-effectiveness has been measured in terms of incremental cost per year of life gained. MODELLING COST-EFFECTIVENESS: FH is a life-threatening condition with a long presymptomatic state. Diagnostic tests are reasonably reliable and acceptable, and treatment with statins substantially improves prognosis. Therefore, it is appropriate to consider systematic screening for this condition. Case finding amongst relatives of FH cases was the most cost-effective strategy, and universal systematic screening the least cost-effective. However, when targeted at young people (16 year olds) universal screening was also cost-effective. Screening patients admitted to hospital with premature myocardial infarction was also relatively cost-effective. Screening is least cost-effective in men aged over 35 years, because the gains in life expectancy are small. (ABSTRACT TRUNCA

  9. Optogenetic mutagenesis in Caenorhabditis elegans.

    PubMed

    Noma, Kentaro; Jin, Yishi

    2015-12-03

    Reactive oxygen species (ROS) can modify and damage DNA. Here we report an optogenetic mutagenesis approach that is free of toxic chemicals and easy to perform by taking advantage of a genetically encoded ROS generator. This method relies on the potency of ROS generation by His-mSOG, the mini singlet oxygen generator, miniSOG, fused to a histone. Caenorhabditis elegans expressing His-mSOG in the germline behave and reproduce normally, without photoinduction. Following exposure to blue light, the His-mSOG animals produce progeny with a wide range of heritable phenotypes. We show that optogenetic mutagenesis by His-mSOG induces a broad spectrum of mutations including single-nucleotide variants (SNVs), chromosomal deletions, as well as integration of extrachromosomal transgenes, which complements those derived from traditional chemical or radiation mutagenesis. The optogenetic mutagenesis expands the toolbox for forward genetic screening and also provides direct evidence that nuclear ROS can induce heritable and specific genetic mutations.

  10. Optogenetic mutagenesis in Caenorhabditis elegans

    PubMed Central

    Noma, Kentaro; Jin, Yishi

    2015-01-01

    Reactive oxygen species (ROS) can modify and damage DNA. Here we report an optogenetic mutagenesis approach that is free of toxic chemicals and easy to perform by taking advantage of a genetically encoded ROS generator. This method relies on the potency of ROS generation by His-mSOG, the mini singlet oxygen generator, miniSOG, fused to a histone. Caenorhabditis elegans expressing His-mSOG in the germline behave and reproduce normally, without photoinduction. Following exposure to blue light, the His-mSOG animals produce progeny with a wide range of heritable phenotypes. We show that optogenetic mutagenesis by His-mSOG induces a broad spectrum of mutations including single-nucleotide variants (SNVs), chromosomal deletions, as well as integration of extrachromosomal transgenes, which complements those derived from traditional chemical or radiation mutagenesis. The optogenetic mutagenesis expands the toolbox for forward genetic screening and also provides direct evidence that nuclear ROS can induce heritable and specific genetic mutations. PMID:26632265

  11. What ethical and legal principles should guide the genotyping of children as part of a personalised screening programme for common cancer?

    PubMed

    Hall, Alison Elizabeth; Chowdhury, Susmita; Pashayan, Nora; Hallowell, Nina; Pharoah, Paul; Burton, Hilary

    2014-03-01

    Increased knowledge of the gene-disease associations contributing to common cancer development raises the prospect of population stratification by genotype and other risk factors. Individual risk assessments could be used to target interventions such as screening, treatment and health education. Genotyping neonates, infants or young children as part of a systematic programme would improve coverage and uptake, and facilitate a screening package that maximises potential benefits and minimises harms including overdiagnosis. This paper explores the potential justifications and risks of genotyping children for genetic variants associated with common cancer development within a personalised screening programme. It identifies the ethical and legal principles that might guide population genotyping where the predictive value of the testing is modest and associated risks might arise in the future, and considers the standards required by population screening programme validity measures (such as the Wilson and Jungner criteria including cost-effectiveness and equitable access). These are distinguished from the normative principles underpinning predictive genetic testing of children for adult-onset diseases-namely, to make best-interests judgements and to preserve autonomy. While the case for population-based genotyping of neonates or young children has not yet been made, the justifications for this approach are likely to become increasingly compelling. A modified evaluative and normative framework should be developed, capturing elements from individualistic and population-based approaches. This should emphasise proper communication and genuine parental consent or informed choice, while recognising the challenges associated with making unsolicited approaches to an asymptomatic group. Such a framework would be strengthened by complementary empirical research.

  12. Testing positive for a genetic predisposition to depression magnifies retrospective memory for depressive symptoms.

    PubMed

    Lebowitz, Matthew S; Ahn, Woo-Kyoung

    2017-11-01

    Depression, like other mental disorders and health conditions generally, is increasingly construed as genetically based. This research sought to determine whether merely telling people that they have a genetic predisposition to depression can cause them to retroactively remember having experienced it. U.S. adults (men and women) were recruited online to participate (Experiment 1: N = 288; Experiment 2: N = 599). After conducting a test disguised as genetic screening, we randomly assigned some participants to be told that they carried elevated genetic susceptibility to depression, whereas others were told that they did not carry this genetic liability or were told that they carried elevated susceptibility to a different disorder. Participants then rated their experience of depressive symptoms over the prior 2 weeks on a modified version of the Beck Depression Inventory-II. Participants who were told that their genes predisposed them to depression generally reported higher levels of depressive symptomatology over the previous 2 weeks, compared to those who did not receive this feedback. Given the central role of self-report in psychiatric diagnosis, these findings highlight potentially harmful consequences of personalized genetic testing in mental health. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Benefits and Limitations of Prenatal Screening for Prader-Willi Syndrome

    PubMed Central

    Butler, Merlin G.

    2016-01-01

    This review the status of genetic laboratory testing in Prader-Willi syndrome (PWS) due to different genetic subtypes, most often a paternally derived 15q11-q13 deletion, with benefits and limitations related to prenatal screening. Medical literature was searched for prenatal screening and genetic laboratory testing methods in use or under development and discussed in relationship to PWS. Genetic testing includes six established laboratory diagnostic approaches for PWS with direct application to prenatal screening. Ultrasonographic, obstetric and cytogenetic reports were summarized in relationship to the cause of Prader-Willi syndrome and identification of specific genetic subtypes including maternal disomy 15. Advances in genetic technology were described for diagnosing PWS specifically DNA methylation and high-resolution chromosomal SNP microarrays as current tools for genetic screening and incorporating next generation DNA sequencing for noninvasive prenatal testing (NIPT) using cell-free fetal DNA. Positive experiences are reported with NIPT for detection of numerical chromosomal problems (aneuploidies) but not for structural problems (microdeletions). These reports will be discussed along with future directions for genetic screening of PWS. In summary, this review describes and discusses the status of established and ongoing genetic testing options for PWS applicable in prenatal screening including NIPT and future directions for early diagnosis in Prader-Willi syndrome. PMID:27537837

  14. Benefits and limitations of prenatal screening for Prader-Willi syndrome.

    PubMed

    Butler, Merlin G

    2017-01-01

    This review summarizes the status of genetic laboratory testing in Prader-Willi syndrome (PWS) with different genetic subtypes, most often a paternally derived 15q11-q13 deletion and discusses benefits and limitations related to prenatal screening. Medical literature was searched for prenatal screening and genetic laboratory testing methods in use or under development and discussed in relationship to PWS. Genetic testing includes six established laboratory diagnostic approaches for PWS with direct application to prenatal screening. Ultrasonographic, obstetric and cytogenetic reports were summarized in relationship to the cause of PWS and identification of specific genetic subtypes including maternal disomy 15. Advances in genetic technology were described for diagnosing PWS specifically DNA methylation and high-resolution chromosomal SNP microarrays as current tools for genetic screening and incorporating next generation DNA sequencing for noninvasive prenatal testing (NIPT) using cell-free fetal DNA. Positive experiences are reported with NIPT for detection of numerical chromosomal problems (aneuploidies) but not for structural problems (microdeletions). These reports will be discussed along with future directions for genetic screening of PWS. In summary, this review describes and discusses the status of established and ongoing genetic testing options for PWS applicable in prenatal screening including NIPT and future directions for early diagnosis in PWS. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.

  15. Attitudes to genetically modified food over time: How trust in organizations and the media cycle predict support.

    PubMed

    Marques, Mathew D; Critchley, Christine R; Walshe, Jarrod

    2015-07-01

    This research examined public opinion toward genetically modified plants and animals for food, and how trust in organizations and media coverage explained attitudes toward these organisms. Nationally representative samples (N=8821) over 10 years showed Australians were less positive toward genetically modified animals compared to genetically modified plants for food, especially in years where media coverage was high. Structural equation modeling found that positive attitudes toward different genetically modified organisms for food were significantly associated with higher trust in scientists and regulators (e.g. governments), and with lower trust in watchdogs (e.g. environmental movement). Public trust in scientists and watchdogs was a stronger predictor of attitudes toward the use of genetically modified plants for food than animals, but only when media coverage was low. Results are discussed regarding the moral acceptability of genetically modified organisms for food, the media's role in shaping public opinion, and the role public trust in organizations has on attitudes toward genetically modified organisms. © The Author(s) 2014.

  16. Farmers prevailing perception profiles regarding GM crops: A classification proposal.

    PubMed

    Almeida, Carla; Massarani, Luisa

    2018-04-01

    Genetically modified organisms have been at the centre of a major public controversy, involving different interests and actors. While much attention has been devoted to consumer views on genetically modified food, there have been few attempts to understand the perceptions of genetically modified technology among farmers. By investigating perceptions of genetically modified organisms among Brazilian farmers, we intend to contribute towards filling this gap and thereby add the views of this stakeholder group to the genetically modified debate. A comparative analysis of our data and data from other studies indicate there is a complex variety of views on genetically modified organisms among farmers. Despite this diversity, we found variations in such views occur within limited parameters, concerned principally with expectations or concrete experiences regarding the advantages of genetically modified crops, perceptions of risks associated with them, and ethical questions they raise. We then propose a classification of prevailing profiles to represent the spectrum of perceptions of genetically modified organisms among farmers.

  17. An economic evaluation of a genetic screening program for Tay-Sachs disease.

    PubMed Central

    Nelson, W B; Swint, J M; Caskey, C T

    1978-01-01

    The resolution of policy questions relating to medical genetic screening programs will not be without considerable difficulty. Examples include such issues as the optimal degree of screening program expansion, the relative values of screening for different genetic diseases, the appropriate sources of program funding (public vs. private), and the relative value of funding expanded genetic screening programs vs. research directed toward elimination of genetic traits themselves. Information on the net impact of the relevant alternatives is greatly needed, and this need will increase if the National Genetics Act receives funding approval. We have provided what is hopefully a contribution toward this end. While our analysis pertains to a specific disease and a specific screening program for that disease, the methodology is readily generalizable to other genetic diseases, as well as programs of any size or structure. Hopefully, this will serve to stimulate further research efforts that we believe are needed for the objective consideration of resource allocation alternatives. PMID:418675

  18. An economic evaluation of a genetic screening program for Tay-Sachs disease.

    PubMed

    Nelson, W B; Swint, J M; Caskey, C T

    1978-03-01

    The resolution of policy questions relating to medical genetic screening programs will not be without considerable difficulty. Examples include such issues as the optimal degree of screening program expansion, the relative values of screening for different genetic diseases, the appropriate sources of program funding (public vs. private), and the relative value of funding expanded genetic screening programs vs. research directed toward elimination of genetic traits themselves. Information on the net impact of the relevant alternatives is greatly needed, and this need will increase if the National Genetics Act receives funding approval. We have provided what is hopefully a contribution toward this end. While our analysis pertains to a specific disease and a specific screening program for that disease, the methodology is readily generalizable to other genetic diseases, as well as programs of any size or structure. Hopefully, this will serve to stimulate further research efforts that we believe are needed for the objective consideration of resource allocation alternatives.

  19. Network analyses reveal novel aspects of ALS pathogenesis.

    PubMed

    Sanhueza, Mario; Chai, Andrea; Smith, Colin; McCray, Brett A; Simpson, T Ian; Taylor, J Paul; Pennetta, Giuseppa

    2015-03-01

    Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective loss of motor neurons, muscle atrophy and paralysis. Mutations in the human VAMP-associated protein B (hVAPB) cause a heterogeneous group of motor neuron diseases including ALS8. Despite extensive research, the molecular mechanisms underlying ALS pathogenesis remain largely unknown. Genetic screens for key interactors of hVAPB activity in the intact nervous system, however, represent a fundamental approach towards understanding the in vivo function of hVAPB and its role in ALS pathogenesis. Targeted expression of the disease-causing allele leads to neurodegeneration and progressive decline in motor performance when expressed in the adult Drosophila, eye or in its entire nervous system, respectively. By using these two phenotypic readouts, we carried out a systematic survey of the Drosophila genome to identify modifiers of hVAPB-induced neurotoxicity. Modifiers cluster in a diverse array of biological functions including processes and genes that have been previously linked to hVAPB function, such as proteolysis and vesicular trafficking. In addition to established mechanisms, the screen identified endocytic trafficking and genes controlling proliferation and apoptosis as potent modifiers of ALS8-mediated defects. Surprisingly, the list of modifiers was mostly enriched for proteins linked to lipid droplet biogenesis and dynamics. Computational analysis reveals that most modifiers can be linked into a complex network of interacting genes, and that the human genes homologous to the Drosophila modifiers can be assembled into an interacting network largely overlapping with that in flies. Identity markers of the endocytic process were also found to abnormally accumulate in ALS patients, further supporting the relevance of the fly data for human biology. Collectively, these results not only lead to a better understanding of hVAPB function but also point to potentially relevant targets for therapeutic intervention.

  20. Collaborative trial validation studies of real-time PCR-based GMO screening methods for detection of the bar gene and the ctp2-cp4epsps construct.

    PubMed

    Grohmann, Lutz; Brünen-Nieweler, Claudia; Nemeth, Anne; Waiblinger, Hans-Ulrich

    2009-10-14

    Polymerase Chain Reaction (PCR)-based screening methods targeting genetic elements commonly used in genetically modified (GM) plants are important tools for the detection of GM materials in food, feed, and seed samples. To expand and harmonize the screening capability of enforcement laboratories, the German Federal Office of Consumer Protection and Food Safety conducted collaborative trials for interlaboratory validation of real-time PCR methods for detection of the phosphinothricin acetyltransferase (bar) gene from Streptomyces hygroscopicus and a construct containing the 5-enolpyruvylshikimate-3-phosphate synthase gene from Agrobacterium tumefaciens sp. strain CP4 (ctp2-cp4epsps), respectively. To assess the limit of detection, precision, and accuracy of the methods, laboratories had to analyze two sets of 18 coded genomic DNA samples of events LLRice62 and MS8 with the bar method and NK603 and GT73 with the ctp2-cp4epsps method at analyte levels of 0, 0.02, and 0.1% GM content, respectively. In addition, standard DNAs were provided to the laboratories to generate calibration curves for copy number quantification of the bar and ctp2-cp4epsps target sequences present in the test samples. The study design and the results obtained are discussed with respect to the difficult issue of developing general guidelines and concepts for the collaborative trial validation of qualitative PCR screening methods.

  1. Novel whole blood assay for phenotyping platelet reactivity in mice identifies ICAM-1 as a mediator of platelet-monocyte interaction

    PubMed Central

    Kirkby, Nicholas S.; Chan, Melissa V.; Finsterbusch, Michaela; Hogg, Nancy; Nourshargh, Sussan; Warner, Timothy D.

    2015-01-01

    Testing of platelet function is central to the cardiovascular phenotyping of genetically modified mice. Traditional platelet function tests have been developed primarily for testing human samples and the volumes required make them highly unsuitable for the testing of mouse platelets. This limits research in this area. To address this problem, we have developed a miniaturized whole blood aggregometry assay, based on a readily accessible 96-well plate format coupled with quantification of single platelet depletion by flow cytometric analysis. Using this approach, we observed a concentration-dependent loss of single platelets in blood exposed to arachidonic acid, collagen, U46619 or protease activated receptor 4 activating peptide. This loss was sensitive to well-established antiplatelet agents and genetic manipulation of platelet activation pathways. Observations were more deeply analyzed by flow cytometric imaging, confocal imaging, and measurement of platelet releasates. Phenotypic analysis of the reactivity of platelets taken from mice lacking intercellular adhesion molecule (ICAM)-1 identified a marked decrease in fibrinogen-dependent platelet-monocyte interactions, especially under inflammatory conditions. Such findings exemplify the value of screening platelet phenotypes of genetically modified mice and shed further light upon the roles and interactions of platelets in inflammation. PMID:26215112

  2. Carrier screening for single gene disorders.

    PubMed

    Rose, Nancy C; Wick, Myra

    2018-04-01

    Screening for genetic disorders began in 1963 with the initiation of newborn screening for phenylketonuria. Advances in molecular technology have made both newborn screening for newborns affected with serious disorders, and carrier screening of individuals at risk for offspring with genetic disorders, more complex and more widely available. Carrier screening today can be performed secondary to family history-based screening, ethnic-based screening, and expanded carrier screening (ECS). ECS is panel-based screening, which analyzes carrier status for hundreds of genetic disorders irrespective of patient race or ethnicity. In this article, we review the historical and current aspects of carrier screening for single gene disorders, including future research directions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Recombinase Polymerase Amplification (RPA) of CaMV-35S Promoter and nos Terminator for Rapid Detection of Genetically Modified Crops

    PubMed Central

    Xu, Chao; Li, Liang; Jin, Wujun; Wan, Yusong

    2014-01-01

    Recombinase polymerase amplification (RPA) is a novel isothermal DNA amplification and detection technology that enables the amplification of DNA within 30 min at a constant temperature of 37–42 °C by simulating in vivo DNA recombination. In this study, based on the regulatory sequence of the cauliflower mosaic virus 35S (CaMV-35S) promoter and the Agrobacterium tumefaciens nopaline synthase gene (nos) terminator, which are widely incorporated in genetically modified (GM) crops, we designed two sets of RPA primers and established a real-time RPA detection method for GM crop screening and detection. This method could reliably detect as few as 100 copies of the target molecule in a sample within 15–25 min. Furthermore, the real-time RPA detection method was successfully used to amplify and detect DNA from samples of four major GM crops (maize, rice, cotton, and soybean). With this novel amplification method, the test time was significantly shortened and the reaction process was simplified; thus, this method represents an effective approach to the rapid detection of GM crops. PMID:25310647

  4. Quartz crystal microbalance (QCM) affinity biosensor for genetically modified organisms (GMOs) detection.

    PubMed

    Mannelli, Ilaria; Minunni, Maria; Tombelli, Sara; Mascini, Marco

    2003-03-01

    A DNA piezoelectric sensor has been developed for the detection of genetically modified organisms (GMOs). Single stranded DNA (ssDNA) probes were immobilised on the sensor surface of a quartz crystal microbalance (QCM) device and the hybridisation between the immobilised probe and the target complementary sequence in solution was monitored. The probe sequences were internal to the sequence of the 35S promoter (P) and Nos terminator (T), which are inserted sequences in the genome of GMOs regulating the transgene expression. Two different probe immobilisation procedures were applied: (a) a thiol-dextran procedure and (b) a thiol-derivatised probe and blocking thiol procedure. The system has been optimised using synthetic oligonucleotides, which were then applied to samples of plasmidic and genomic DNA isolated from the pBI121 plasmid, certified reference materials (CRM), and real samples amplified by the polymerase chain reaction (PCR). The analytical parameters of the sensor have been investigated (sensitivity, reproducibility, lifetime etc.). The results obtained showed that both immobilisation procedures enabled sensitive and specific detection of GMOs, providing a useful tool for screening analysis in food samples.

  5. Recombinase polymerase amplification (RPA) of CaMV-35S promoter and nos terminator for rapid detection of genetically modified crops.

    PubMed

    Xu, Chao; Li, Liang; Jin, Wujun; Wan, Yusong

    2014-10-10

    Recombinase polymerase amplification (RPA) is a novel isothermal DNA amplification and detection technology that enables the amplification of DNA within 30 min at a constant temperature of 37-42 °C by simulating in vivo DNA recombination. In this study, based on the regulatory sequence of the cauliflower mosaic virus 35S (CaMV-35S) promoter and the Agrobacterium tumefaciens nopaline synthase gene (nos) terminator, which are widely incorporated in genetically modified (GM) crops, we designed two sets of RPA primers and established a real-time RPA detection method for GM crop screening and detection. This method could reliably detect as few as 100 copies of the target molecule in a sample within 15-25 min. Furthermore, the real-time RPA detection method was successfully used to amplify and detect DNA from samples of four major GM crops (maize, rice, cotton, and soybean). With this novel amplification method, the test time was significantly shortened and the reaction process was simplified; thus, this method represents an effective approach to the rapid detection of GM crops.

  6. Evolutionary Analysis of Heterochromatin Protein Compatibility by Interspecies Complementation in Saccharomyces

    PubMed Central

    Zill, Oliver A.; Scannell, Devin R.; Kuei, Jeffrey; Sadhu, Meru; Rine, Jasper

    2012-01-01

    The genetic bases for species-specific traits are widely sought, but reliable experimental methods with which to identify functionally divergent genes are lacking. In the Saccharomyces genus, interspecies complementation tests can be used to evaluate functional conservation and divergence of biological pathways or networks. Silent information regulator (SIR) proteins in S. bayanus provide an ideal test case for this approach because they show remarkable divergence in sequence and paralog number from those found in the closely related S. cerevisiae. We identified genes required for silencing in S. bayanus using a genetic screen for silencing-defective mutants. Complementation tests in interspecies hybrids identified an evolutionarily conserved Sir-protein-based silencing machinery, as defined by two interspecies complementation groups (SIR2 and SIR3). However, recessive mutations in S. bayanus SIR4 isolated from this screen could not be complemented by S. cerevisiae SIR4, revealing species-specific functional divergence in the Sir4 protein despite conservation of the overall function of the Sir2/3/4 complex. A cladistic complementation series localized the occurrence of functional changes in SIR4 to the S. cerevisiae and S. paradoxus branches of the Saccharomyces phylogeny. Most of this functional divergence mapped to sequence changes in the Sir4 PAD. Finally, a hemizygosity modifier screen in the interspecies hybrids identified additional genes involved in S. bayanus silencing. Thus, interspecies complementation tests can be used to identify (1) mutations in genetically underexplored organisms, (2) loci that have functionally diverged between species, and (3) evolutionary events of functional consequence within a genus. PMID:22923378

  7. Population screening for genetic disorders in the 21st century: evidence, economics, and ethics.

    PubMed

    Grosse, S D; Rogowski, W H; Ross, L F; Cornel, M C; Dondorp, W J; Khoury, M J

    2010-01-01

    Proposals for population screening for genetic diseases require careful scrutiny by decision makers because of the potential for harms and the need to demonstrate benefits commensurate with the opportunity cost of resources expended. We review current evidence-based processes used in the United States, the United Kingdom, and the Netherlands to assess genetic screening programs, including newborn screening programs, carrier screening, and organized cascade testing of relatives of patients with genetic syndromes. In particular, we address critical evidentiary, economic, and ethical issues that arise in the appraisal of screening tests offered to the population. Specific case studies include newborn screening for congenital adrenal hyperplasia and cystic fibrosis and adult screening for hereditary hemochromatosis. Organizations and countries often reach different conclusions about the suitability of screening tests for implementation on a population basis. Deciding when and how to introduce pilot screening programs is challenging. In certain cases, e.g., hereditary hemochromatosis, a consensus does not support general screening although cascade screening may be cost-effective. Genetic screening policies have often been determined by technological capability, advocacy, and medical opinion rather than through a rigorous evidence-based review process. Decision making should take into account principles of ethics and opportunity costs. Copyright 2009 S. Karger AG, Basel.

  8. Creation of a National, At-home Model for Ashkenazi Jewish Carrier Screening.

    PubMed

    Grinzaid, Karen Arnovitz; Page, Patricia Zartman; Denton, Jessica Johnson; Ginsberg, Jessica

    2015-06-01

    Ethnicity-based carrier screening for the Ashkenazi Jewish population has been available and encouraged by advocacy and community groups since the early 1970's. Both the American College of Medical Genetics and the American Congress of Obstetricians and Gynecologists recommend carrier screening for this population (Obstetrics and Gynecology, 114(4), 950-953, 2009; Genetics in Medicine, 10(1), 55-56, 2008). While many physicians inquire about ethnic background and offer appropriate carrier screening, studies show that a gap remains in implementing recommendations (Genetic testing and molecular biomarkers, 2011). In addition, education and outreach efforts targeting Jewish communities have had limited success in reaching this at-risk population. Despite efforts by the medical and Jewish communities, many Jews of reproductive age are not aware of screening, and remain at risk for having children with preventable diseases. Reaching this population, preferably pre-conception, and facilitating access to screening is critically important. To address this need, genetic counselors at Emory University developed JScreen, a national Jewish genetic disease screening program. The program includes a national marketing and PR campaign, online education, at-home saliva-based screening, post-test genetic counseling via telephone or secure video conferencing, and referrals for face-to-face genetic counseling as needed. Our goals are to create a successful education and screening program for this population and to develop a model that could potentially be used for other at-risk populations.

  9. Studying circadian rhythm and sleep using genetic screens in Drosophila.

    PubMed

    Axelrod, Sofia; Saez, Lino; Young, Michael W

    2015-01-01

    The power of Drosophila melanogaster as a model organism lies in its ability to be used for large-scale genetic screens with the capacity to uncover the genetic basis of biological processes. In particular, genetic screens for circadian behavior, which have been performed since 1971, allowed researchers to make groundbreaking discoveries on multiple levels: they discovered that there is a genetic basis for circadian behavior, they identified the so-called core clock genes that govern this process, and they started to paint a detailed picture of the molecular functions of these clock genes and their encoded proteins. Since the discovery that fruit flies sleep in 2000, researchers have successfully been using genetic screening to elucidate the many questions surrounding this basic animal behavior. In this chapter, we briefly recall the history of circadian rhythm and sleep screens and then move on to describe techniques currently employed for mutagenesis and genetic screening in the field. The emphasis lies on comparing the newer approaches of transgenic RNA interference (RNAi) to classical forms of mutagenesis, in particular in their application to circadian behavior and sleep. We discuss the different screening approaches in light of the literature and published and unpublished sleep and rhythm screens utilizing ethyl methanesulfonate mutagenesis and transgenic RNAi from our lab. © 2015 Elsevier Inc. All rights reserved.

  10. Identification of five novel modifier loci of ApcMin harbored in the BXH14 recombinant inbred strain

    PubMed Central

    Siracusa, Linda D.

    2012-01-01

    Every year thousands of people in the USA are diagnosed with small intestine and colorectal cancers (CRC). Although environmental factors affect disease etiology, uncovering underlying genetic factors is imperative for risk assessment and developing preventative therapies. Familial adenomatous polyposis is a heritable genetic disorder in which individuals carry germ-line mutations in the adenomatous polyposis coli (APC) gene that predisposes them to CRC. The Apc Min mouse model carries a point mutation in the Apc gene and develops polyps along the intestinal tract. Inbred strain background influences polyp phenotypes in Apc Min mice. Several Modifier of Min (Mom) loci that alter tumor phenotypes associated with the Apc Min mutation have been identified to date. We screened BXH recombinant inbred (RI) strains by crossing BXH RI females with C57BL/6J (B6) Apc Min males and quantitating tumor phenotypes in backcross progeny. We found that the BXH14 RI strain harbors five modifier loci that decrease polyp multiplicity. Furthermore, we show that resistance is determined by varying combinations of these modifier loci. Gene interaction network analysis shows that there are multiple networks with proven gene–gene interactions, which contain genes from all five modifier loci. We discuss the implications of this result for studies that define susceptibility loci, namely that multiple networks may be acting concurrently to alter tumor phenotypes. Thus, the significance of this work resides not only with the modifier loci we identified but also with the combinations of loci needed to get maximal protection against polyposis and the impact of this finding on human disease studies. Abbreviations:APCadenomatous polyposis coliGWASgenome-wide association studiesQTLquantitative trait lociSNPsingle-nucleotide polymorphism. PMID:22637734

  11. Screening for Behavioral Health Issues in Children Enrolled in Massachusetts Medicaid

    PubMed Central

    Penfold, Robert; Arsenault, Lisa; Zhang, Fang; Murphy, Michael; Wissow, Larry

    2014-01-01

    OBJECTIVES: To understand mandated behavioral health (BH) screening in Massachusetts Medicaid including characteristics of screened children, predictors of positive screens, and whether screening identifies children without a previous BH history. METHODS: Massachusetts mandated BH screening in particularly among underidentified groups. 2008. Providers used a billing code and modifier to indicate a completed screen and whether a BH need was identified. Using MassHealth claims data, children with ≥300 days of eligibility in fiscal year (FY) 2009 were identified and categorized into groups based on first use of the modifier, screening code, or claim. Bivariate analyses were conducted to determine differences among groups. BH history was examined by limiting the sample to those continuously enrolled in FY 2008 and 2009. Multivariate logistic regression was used to determine predictors of positive screens. RESULTS: Of 355 490 eligible children, 46% had evidence of screening. Of those with modifiers, 12% were positive. Among continuously enrolled children (FY 2008 and FY 2009) with evidence of screening, 43% with positive modifiers had no BH history. This “newly identified” group were more likely to be female, younger, minority, and from rural residences (P < .0001). Among children with modifiers; gender (male), age (5–7), being in foster care, recent BH history, and Hispanic ethnicity predicted having a positive modifier. CONCLUSIONS: The high rate of newly identified Medicaid children with a BH need suggests that screening is performing well, particularly among underidentified groups. To better assess screening value, future work on cost-effectiveness and the impact on subsequent mental health treatment is needed. PMID:24298005

  12. A multiplex degenerate PCR analytical approach targeting to eight genes for screening GMOs.

    PubMed

    Guo, Jinchao; Chen, Lili; Liu, Xin; Gao, Ying; Zhang, Dabing; Yang, Litao

    2012-06-01

    Currently, the detection methods with lower cost and higher throughput are the major trend in screening genetically modified (GM) food or feed before specific identification. In this study, we developed a quadruplex degenerate PCR screening approach for more than 90 approved GMO events. This assay is consisted of four PCR systems targeting on nine DNA sequences from eight trait genes widely introduced into GMOs, such as CP4-EPSPS derived from Acetobacterium tumefaciens sp. strain CP4, phosphinothricin acetyltransferase gene derived from Streptomyceshygroscopicus (bar) and Streptomyces viridochromogenes (pat), and Cry1Ab, Cry1Ac, Cry1A(b/c), mCry3A, and Cry3Bb1 derived from Bacillus thuringiensis. The quadruplex degenerate PCR assay offers high specificity and sensitivity with the absolute limit of detection (LOD) of approximate 80targetcopies. Furthermore, the applicability of the quadruplex PCR assay was confirmed by screening either several artificially prepared samples or samples of Grain Inspection, Packers and Stockyards Administration (GIPSA) proficiency program. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. [Consumer reaction to information on the labels of genetically modified food].

    PubMed

    Sebastian-Ponce, Miren Itxaso; Sanz-Valero, Javier; Wanden-Berghe, Carmina

    2014-02-01

    To analyze consumer opinion on genetically modified foods and the information included on the label. A systematic review of the scientific literature on genetically modified food labeling was conducted consulting bibliographic databases (Medline - via PubMed -, EMBASE, ISI-Web of knowledge, Cochrane Library Plus, FSTA, LILACS, CINAHL and AGRICOLA) using the descriptors "organisms, genetically modified" and "food labeling". The search covered the first available date, up to June 2012, selecting relevant articles written in English, Portuguese or Spanish. Forty articles were selected after applying the inclusion and exclusion criteria. All of them should have conducted a population-based intervention focused on consumer awareness of genetically modified foods and their need or not, to include this on the label. The consumers expressed a preference for non-genetically modified products, and added that they were prepared to pay more for this but, ultimately, the product bought was that with the best price, in a market which welcomes new technologies. In 18 of the articles, the population was in favor of obligatory labelling, and in six, in favor of this being voluntary; seven studies showed the consumer knew little about genetically modified food, and in three, the population underestimated the quantity they consumed. Price was an influencing factor in all cases. Label should be homogeneous and clarify the degree of tolerance of genetically modified products in humans, in comparison with those non-genetically modified. Label should also present the content or not of genetically modified products and how these commodities are produced and should be accompanied by the certifying entity and contact information. Consumers express their preference for non-genetically modified products and they even notice that they are willing to pay more for it, but eventually they buy the item with the best price, in a market that welcomes new technologies.

  14. Acceptance of genetically modified foods: the relation between technology and evaluation.

    PubMed

    Tenbült, Petra; De Vries, Nanne K; van Breukelen, Gerard; Dreezens, Ellen; Martijn, Carolien

    2008-07-01

    This study investigates why consumers accept different genetically modified food products to different extents. The study shows that whether food products are genetically modified or not and whether they are processed or not are the two important features that affect the acceptance of food products and their evaluation (in terms of perceived healthiness, naturalness, necessity and tastiness). The extent to which these evaluation attributes and acceptance of a product are affected by genetic modification or processing depends on whether the product is negatively affected by the other technology: Any technological change to a 'natural' product (when nonprocessed products are genetically modified or when non-genetically modified products are processed) affect evaluation and acceptance stronger than a change to an technologically adapted product (when processed products are also genetically modified or vice versa). Furthermore, evaluation attributes appear to mediate the effects of genetic modification and processing on acceptance.

  15. Gene-nutrient interaction markedly influences yeast chronological lifespan.

    PubMed

    Smith, Daniel L; Maharrey, Crystal H; Carey, Christopher R; White, Richard A; Hartman, John L

    2016-12-15

    Research into the genetic mechanisms of aging has expanded rapidly over the past two decades. This has in part been the result of the use of model organisms (particularly yeast, worms and flies) and high-throughput technologies, combined with a growing interest in aging research. Despite this progress, widespread consensus regarding the pathways that are fundamental to the modulation of cellular aging and lifespan for all organisms has been limited due to discrepancies between different studies. We have compared results from published genome-wide, chronological lifespan (CLS) screens of individual gene deletion strains in Saccharomyces cerevisiae in order to identify gene deletion strains with consistent influences on longevity as possible indicators of fundamental aging processes from this single-celled, eukaryotic model organism. Three previous reports have described genetic modifiers of chronological aging in the budding yeast (S. cerevisiae) using the yeast gene deletion strain collection. We performed a comparison among the data sets using correlation and decile distribution analysis to describe concordance between screens and identify strains that consistently increased or decreased CLS. We used gene enrichment analysis in an effort to understand the biology underlying genes identified in multiple studies. We attempted to replicate the different experimental conditions employed by the screens to identify potential sources of variability in CLS worth further investigating. Among 3209 strains present in all three screens, nine deletions strains were in common in the longest-lived decile (2.80%) and thirteen were in common in the shortest-lived decile (4.05%) of all three screens. Similarly, pairwise overlap between screens was low. When the same comparison was extended to three deciles to include more mutants studied in common between the three screens, enrichment of cellular processes based on gene ontology analysis in the long-lived strains remained very limited. To test the hypothesis that different parental strain auxotrophic requirements or media formulations employed by the respective genome-wide screens might contribute to the lack of concordance, different CLS assay conditions were assessed in combination with strains having different ploidy and auxotrophic requirements (all relevant to differences in the way the three genome-wide CLS screens were performed). This limited but systematic analysis of CLS with respect to auxotrophy, ploidy, and media revealed several instances of gene-nutrient interaction. There is surprisingly little overlap between the results of three independently performed genome-wide screens of CLS in S. cerevisiae. However, differences in strain genetic background (ploidy and specific auxotrophic requirements) were present, as well as different media and experimental conditions (e.g., aeration and pooled vs. individual culturing), which, along with stochastic effects such as genetic drift or selection of secondary mutations that suppress the loss of function from gene deletion, could in theory account for some of the lack of consensus between results. Considering the lack of overlap in CLS phenotypes among the set of genes reported by all three screens, and the results of a CLS experiment that systematically tested (incorporating extensive controls) for interactions between variables existing between the screens, we propose that discrepancies can be reconciled through deeper understanding of the influence of cell intrinsic factors such as auxotrophic requirements ploidy status, extrinsic factors such as media composition and aeration, as well as interactions that may occur between them, for example as a result of different pooling vs. individually aging cultures. Such factors may have a more significant impact on CLS outcomes than previously realized. Future studies that systematically account for these contextual factors, and can thus clarify the interactions between genetic and nutrient factors that alter CLS phenotypes, should aid more complete understanding of the underlying biology so that genetic principles of CLS in yeast can be extrapolated to differential cellular aging observed in animal models. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Gene-Nutrient Interaction Markedly Influences Yeast Chronological Lifespan

    PubMed Central

    Smith, Daniel L.; Maharrey, Crystal H.; Carey, Christopher R.; White, Richard A.; Hartman, John L.

    2016-01-01

    Purpose Research into the genetic mechanisms of aging has expanded rapidly over the past two decades. This has in part been the result of the use of model organisms (particularly yeast, worms and flies) and high-throughput technologies, combined with a growing interest in aging research. Despite this progress, widespread consensus regarding the pathways that are fundamental to the modulation of cellular aging and lifespan for all organisms has been limited due to discrepancies between different studies. We have compared results from published genome-wide, chronological lifespan (CLS) screens of individual gene deletion strains in S. cerevisiae in order to identify gene deletion strains with consistent influences on longevity as possible indicators of fundamental aging processes from this single-celled, eukaryotic model organism. Methods Three previous reports have described genetic modifiers of chronological aging in the budding yeast (S. cerevisiae) using the yeast gene deletion strain collection. We performed a comparison among the data sets using correlation and decile distribution analysis to describe concordance between screens and identify strains that consistently increased or decreased CLS. We used gene enrichment analysis in an effort to understand the biology underlying genes identified in multiple studies. We attempted to replicate the different experimental conditions employed by the screens to identify potential sources of variability in CLS worth further investigating. Results Among 3209 strains present in all three screens, nine (2.80%) deletions strains were in common in the longest-lived decile and thirteen (4.05%) were in common in the shortest-lived decile for all three screens. Similarly, pairwise overlap between screens was low. When the same comparison was extended to three deciles to include more mutants studied in common between the three screens, enrichment of cellular processes based on gene ontology analysis in the long-lived strains remained very limited. To test the hypothesis that different parental strain auxotrophic requirements or media formulations employed by the respective genome-wide screens might contribute to the lack of concordance, different CLS assay conditions were assessed in combination with strains having different ploidy and auxotrophic requirements (all relevant to differences in the way the three genome-wide CLS screens were performed). This limited but systematic analysis of CLS with respect to auxotrophy, ploidy, and media revealed several instances of gene × nutrient interaction. Conclusions There is surprisingly little overlap between the results of three independently performed genome-wide screens of CLS in S. cerevisiae. However, differences in strain genetic background (ploidy and specific auxotrophic requirements) were present, as well as different media and experimental conditions (e.g., aeration and pooled vs. individual culturing), which, along with stochastic effects such as genetic drift or selection of secondary mutations that suppress the loss of function from gene deletion, could in theory account for some of the lack of consensus between results. Considering the lack of overlap in CLS phenotypes among the set of genes reported by all three screens, and the results of a CLS experiment that systematically tested (incorporating extensive controls) for interactions between variables existing between the screens, we propose that discrepancies can be reconciled through deeper understanding of the influence of cell intrinsic factors such as auxotrophic requirements ploidy status, extrinsic factors such as media composition and aeration, as well as interactions that may occur between them, for example as a result of different pooling vs. individually aging cultures. Such factors may have a more significant impact on CLS outcomes than previously realized. Future studies that systematically account for these contextual factors, and can thus clarify the interactions between genetic and nutrient factors that alter CLS phenotypes, should aid more complete understanding of the underlying biology so that genetic principles of CLS in yeast can be extrapolated to differential cellular aging observed in animal models. PMID:27125759

  17. Current practices of commercial cryobanks in screening prospective donors for genetic disease and reproductive risk.

    PubMed

    Conrad, E A; Fine, B; Hecht, B R; Pergament, E

    1996-01-01

    To determine how the screening practices of commercial semen banks vary from published guidelines, which factors influence cryobanks to exclude prospective semen donors for genetic reasons, and the current role of clinical geneticists/genetic counselors in evaluating prospective semen donors. The genetic screening of prospective donors by commercial semen banks was evaluated using written questionnaires completed by bank directors. Responses were analyzed to determine exclusion criteria, adherence to published guidelines, and contribution of genetic professionals. Semen banks were selected on the basis of membership in the American Association of Tissue Banks and commercial use of semen for artificial insemination by donor. Semen bank practices as reported by commercial semen bank directors. Of 37 eligible banks, 16 responded. All screen prospective donors by medical/family history and physical examination, 94% have upper age limits; 63% examine for minor physical defects; 56% routinely karyotype; 81% screen men of ethnic groups at risk for Tay Sachs disease, sickle cell disease and thalassemia; 19% screen all donors; 25% screen all donors for cystic fibrosis and 50% only screen if family history positive. Donor rejection was based on three criteria: mode of inheritance of familial disorder, severity of disease, and availability of carrier/confirmatory testing of donor genotype. Ten of 16 banks have no genetic professional on staff. Commercial semen banks primarily rely on family history as the major exclusion criterion in genetic screening of donors. Considerable differences exist among semen bank practices in accordance with guidelines published by national agencies. Genetic professionals have a minimal effect overall on evaluation of semen donors.

  18. The art and design of genetic screens: maize

    USDA-ARS?s Scientific Manuscript database

    Maize (Zea mays) is an excellent model for basic research. Genetic screens have informed our understanding of developmental processes, meiosis, epigenetics and biochemical pathways--not only in maize but also in other cereal crops. We discuss the forward and reverse genetic screens that are possible...

  19. A guide to the contained use of plant virus infectious clones.

    PubMed

    Brewer, Helen C; Hird, Diane L; Bailey, Andy M; Seal, Susan E; Foster, Gary D

    2018-04-01

    Plant virus infectious clones are important tools with wide-ranging applications in different areas of biology and medicine. Their uses in plant pathology include the study of plant-virus interactions, and screening of germplasm as part of prebreeding programmes for virus resistance. They can also be modified to induce transient plant gene silencing (Virus Induced Gene Silencing - VIGS) and as expression vectors for plant or exogenous proteins, with applications in both plant pathology and more generally for the study of plant gene function. Plant viruses are also increasingly being investigated as expression vectors for in planta production of pharmaceutical products, known as molecular farming. However, plant virus infectious clones may pose a risk to the environment due to their ability to reconstitute fully functional, transmissible viruses. These risks arise from both their inherent pathogenicity and the effect of any introduced genetic modifications. Effective containment measures are therefore required. There has been no single comprehensive review of the biosafety considerations for the contained use of genetically modified plant viruses, despite their increasing importance across many biological fields. This review therefore explores the biosafety considerations for working with genetically modified plant viruses in contained environments, with focus on plant growth facilities. It includes regulatory frameworks, risk assessment, assignment of biosafety levels, facility features and working practices. The review is based on international guidance together with information provided by plant virus researchers. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Measuring informed choice in population-based reproductive genetic screening: a systematic review

    PubMed Central

    Ames, Alice Grace; Metcalfe, Sylvia Ann; Archibald, Alison Dalton; Duncan, Rony Emily; Emery, Jon

    2015-01-01

    Genetic screening and health-care guidelines recommend that programmes should facilitate informed choice. It is therefore important that accurate measures of informed choice are available to evaluate such programmes. This review synthesises and appraises measures used to evaluate informed choice in population-based genetic screening programmes for reproductive risk. Databases were searched for studies offering genetic screening for the purpose of establishing reproductive risk to an adult population sample, in which aspects of informed choice were measured. Studies were included if, at a minimum, measures of uptake of screening and knowledge were used. Searches identified 1462 citations and 76 studies were reviewed in full text; 34 studies met the inclusion criteria. Over 20 different measures of informed choice were used. Many measures lacked adequate validity and reliability data. This systematic review will inform future evaluation of informed choice in population genetic screening programmes. PMID:24848746

  1. Genetically modified foods and allergy.

    PubMed

    Lee, T H; Ho, H K; Leung, T F

    2017-06-01

    2015 marked the 25th anniversary of the commercial use and availability of genetically modified crops. The area of planted biotech crops cultivated globally occupies a cumulative two billion hectares, equivalent to twice the land size of China or the United States. Foods derived from genetically modified plants are widely consumed in many countries and genetically modified soybean protein is extensively used in processed foods throughout the industrialised countries. Genetically modified food technology offers a possible solution to meet current and future challenges in food and medicine. Yet there is a strong undercurrent of anxiety that genetically modified foods are unsafe for human consumption, sometimes fuelled by criticisms based on little or no firm evidence. This has resulted in some countries turning away food destined for famine relief because of the perceived health risks of genetically modified foods. The major concerns include their possible allergenicity and toxicity despite the vigorous testing of genetically modified foods prior to marketing approval. It is imperative that scientists engage the public in a constructive evidence-based dialogue to address these concerns. At the same time, improved validated ways to test the safety of new foods should be developed. A post-launch strategy should be established routinely to allay concerns. Mandatory labelling of genetically modified ingredients should be adopted for the sake of transparency. Such ingredient listing and information facilitate tracing and recall if required.

  2. Stigmatization of carrier status: social implications of heterozygote genetic screening programs.

    PubMed Central

    Kenen, R H; Schmidt, R M

    1978-01-01

    Possible latent psychological and social consequences ensuing from genetic screening programs need to be investigated during the planning phase of national genetic screening programs. The relatively few studies which have been performed to determine psychological, social, and economic consequences resulting from a genetic screening program are reviewed. Stigmatization of carrier-status, having major psychosocial implications in heterozygote genetic screening programs, is discussed and related to Erving Goffman's work in the area of stigmatization. Questions are raised regarding the relationship between such variables as religiosity and sex of the individual and acceptance of the status of newly identified carrier of a mutant gene. Severity of the deleterious gene and visibility of the carrier status are two important factors to consider in an estimation of potential stigma. Specific implications are discussed for four genetic diseases: Tay-Sachs, Sickle-Cell Anemia, Huntington's disease and Hemophilia. PMID:152585

  3. Genetic screening of spinal muscular atrophy using a real-time modified COP-PCR technique with dried blood-spot DNA.

    PubMed

    Ar Rochmah, Mawaddah; Harahap, Nur Imma Fatimah; Niba, Emma Tabe Eko; Nakanishi, Kenta; Awano, Hiroyuki; Morioka, Ichiro; Iijima, Kazumoto; Saito, Toshio; Saito, Kayoko; Lai, Poh San; Takeshima, Yasuhiro; Takeuchi, Atsuko; Bouike, Yoshihiro; Okamoto, Maya; Nishio, Hisahide; Shinohara, Masakazu

    2017-10-01

    Spinal muscular atrophy (SMA) is a common neuromuscular disorder caused by mutations in SMN1. More than 95% of SMA patients carry homozygous SMN1 deletion. SMA is the leading genetic cause of infant death, and has been considered an incurable disease. However, a recent clinical trial with an antisense oligonucleotide drug has shown encouraging clinical efficacy. Thus, early and accurate detection of SMN1 deletion may improve prognosis of many infantile SMA patients. A total of 88 DNA samples (37 SMA patients, 12 carriers and 39 controls) from dried blood spots (DBS) on filter paper were analyzed. All participants had previously been screened for SMN genes by PCR restriction fragment length polymorphism (PCR-RFLP) using DNA extracted from freshly collected blood. DNA was extracted from DBS that had been stored at room temperature (20-25°C) for 1week to 5years. To ensure sufficient quality and quantity of DNA samples, target sequences were pre-amplified by conventional PCR. Real-time modified competitive oligonucleotide priming-PCR (mCOP-PCR) with the pre-amplified PCR products was performed for the gene-specific amplification of SMN1 and SMN2 exon 7. Compared with PCR-RFLP using DNA from freshly collected blood, results from real-time mCOP-PCR using DBS-DNA for detection of SMN1 exon 7 deletion showed a sensitivity of 1.00 (CI [0.87, 1.00])] and specificity of 1.00 (CI [0.90, 1.00]), respectively. We combined DNA extraction from DBS on filter paper, pre-amplification of target DNA, and real-time mCOP-PCR to specifically detect SMN1 and SMN2 genes, thereby establishing a rapid, accurate, and high-throughput system for detecting SMN1-deletion with practical applications for newborn screening. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  4. Adjustment of Trehalose Metabolism in Wine Saccharomyces cerevisiae Strains To Modify Ethanol Yields

    PubMed Central

    Rossouw, D.; Heyns, E. H.; Setati, M. E.; Bosch, S.

    2013-01-01

    The ability of Saccharomyces cerevisiae to efficiently produce high levels of ethanol through glycolysis has been the focus of much scientific and industrial activity. Despite the accumulated knowledge regarding glycolysis, the modification of flux through this pathway to modify ethanol yields has proved difficult. Here, we report on the systematic screening of 66 strains with deletion mutations of genes encoding enzymes involved in central carbohydrate metabolism for altered ethanol yields. Five of these strains showing the most prominent changes in carbon flux were selected for further investigation. The genes were representative of trehalose biosynthesis (TPS1, encoding trehalose-6-phosphate synthase), central glycolysis (TDH3, encoding glyceraldehyde-3-phosphate dehydrogenase), the oxidative pentose phosphate pathway (ZWF1, encoding glucose-6-phosphate dehydrogenase), and the tricarboxylic acid (TCA) cycle (ACO1 and ACO2, encoding aconitase isoforms 1 and 2). Two strains exhibited lower ethanol yields than the wild type (tps1Δ and tdh3Δ), while the remaining three showed higher ethanol yields. To validate these findings in an industrial yeast strain, the TPS1 gene was selected as a good candidate for genetic modification to alter flux to ethanol during alcoholic fermentation in wine. Using low-strength promoters active at different stages of fermentation, the expression of the TPS1 gene was slightly upregulated, resulting in a decrease in ethanol production and an increase in trehalose biosynthesis during fermentation. Thus, the mutant screening approach was successful in terms of identifying target genes for genetic modification in commercial yeast strains with the aim of producing lower-ethanol wines. PMID:23793638

  5. Multiplex quantification of 12 European Union authorized genetically modified maize lines with droplet digital polymerase chain reaction.

    PubMed

    Dobnik, David; Spilsberg, Bjørn; Bogožalec Košir, Alexandra; Holst-Jensen, Arne; Žel, Jana

    2015-08-18

    Presence of genetically modified organisms (GMO) in food and feed products is regulated in many countries. The European Union (EU) has implemented a threshold for labeling of products containing more than 0.9% of authorized GMOs per ingredient. As the number of GMOs has increased over time, standard-curve based simplex quantitative polymerase chain reaction (qPCR) analyses are no longer sufficiently cost-effective, despite widespread use of initial PCR based screenings. Newly developed GMO detection methods, also multiplex methods, are mostly focused on screening and detection but not quantification. On the basis of droplet digital PCR (ddPCR) technology, multiplex assays for quantification of all 12 EU authorized GM maize lines (per April first 2015) were developed. Because of high sequence similarity of some of the 12 GM targets, two separate multiplex assays were needed. In both assays (4-plex and 10-plex), the transgenes were labeled with one fluorescence reporter and the endogene with another (GMO concentration = transgene/endogene ratio). It was shown that both multiplex assays produce specific results and that performance parameters such as limit of quantification, repeatability, and trueness comply with international recommendations for GMO quantification methods. Moreover, for samples containing GMOs, the throughput and cost-effectiveness is significantly improved compared to qPCR. Thus, it was concluded that the multiplex ddPCR assays could be applied for routine quantification of 12 EU authorized GM maize lines. In case of new authorizations, the events can easily be added to the existing multiplex assays. The presented principle of quantitative multiplexing can be applied to any other domain.

  6. Detection of Genetically Modified Sugarcane by Using Terahertz Spectroscopy and Chemometrics

    NASA Astrophysics Data System (ADS)

    Liu, J.; Xie, H.; Zha, B.; Ding, W.; Luo, J.; Hu, C.

    2018-03-01

    A methodology is proposed to identify genetically modified sugarcane from non-genetically modified sugarcane by using terahertz spectroscopy and chemometrics techniques, including linear discriminant analysis (LDA), support vector machine-discriminant analysis (SVM-DA), and partial least squares-discriminant analysis (PLS-DA). The classification rate of the above mentioned methods is compared, and different types of preprocessing are considered. According to the experimental results, the best option is PLS-DA, with an identification rate of 98%. The results indicated that THz spectroscopy and chemometrics techniques are a powerful tool to identify genetically modified and non-genetically modified sugarcane.

  7. Genetic screening: programs, principles, and research--thirty years later. Reviewing the recommendations of the Committee for the Study of Inborn Errors of Metabolism (SIEM).

    PubMed

    Simopoulos, A P

    2009-01-01

    Screening programs for genetic diseases and characteristics have multiplied in the last 50 years. 'Genetic Screening: Programs, Principles, and Research' is the report of the Committee for the Study of Inborn Errors of Metabolism (SIEM Committee) commissioned by the Division of Medical Sciences of the National Research Council at the National Academy of Sciences in Washington, DC, published in 1975. The report is considered a classic in the field worldwide, therefore it was thought appropriate 30 years later to present the Committee's modus operandi and bring the Committee's recommendations to the attention of those involved in genetics, including organizational, educational, legal, and research aspects of genetic screening. The Committee's report anticipated many of the legal, ethical, economic, social, medical, and policy aspects of genetic screening. The recommendations are current, and future committees should be familiar with them. In 1975 the Committee stated: 'As new screening tests are devised, they should be carefully reviewed. If the experimental rate of discovery of new genetic characteristics means an accelerating rate of appearance of new screening tests, now is the time to develop the medical and social apparatus to accommodate what later on may otherwise turn out to be unmanageable growth.' What a prophetic statement that was. If the Committee's recommendations had been implemented on time, there would be today a federal agency in existence, responsive and responsible to carry out the programs and support research on various aspects of genetic screening, including implementation of a federal law that protects consumers from discrimination by their employers and the insurance industry on the basis of genetic information. Copyright 2008 S. Karger AG, Basel.

  8. Feedback inhibition by thiols outranks glutathione depletion: a luciferase-based screen reveals glutathione-deficient γ -ECS and glutathione synthetase mutants impaired in cadmium-induced sulfate assimilation

    PubMed Central

    Jobe, Timothy O.; Sung, Dong-Yul; Akmakjian, Garo; Pham, Allis; Komives, Elizabeth A.; Mendoza-Cózatl, David G.; Schroeder, Julian I.

    2015-01-01

    Summary Plants exposed to heavy metals rapidly induce changes in gene expression that activate and enhance detoxification mechanisms, including toxic-metal chelation and the scavenging of reactive oxygen species. However, the mechanisms mediating toxic heavy metal-induced gene expression remain largely unknown. To genetically elucidate cadmium-specific transcriptional responses in Arabidopsis, we designed a genetic screen based on the activation of a cadmium-inducible reporter gene. Microarray studies identified a high-affinity sulfate transporter (SULTR1;2) among the most robust and rapid cadmium-inducible transcripts. The SULTR1;2 promoter (2.2 kb) was fused with the firefly luciferase reporter gene to quantitatively report the transcriptional response of plants exposed to cadmium. Stably transformed luciferase reporter lines were ethyl methanesulfonate (EMS) mutagenized, and stable M2 seedlings were screened for an abnormal luciferase response during exposure to cadmium. The screen identified non-allelic mutant lines that fell into one of three categories: (i) super response to cadmium (SRC) mutants; (ii) constitutive response to cadmium (CRC) mutants; or (iii) non-response and reduced response to cadmium (NRC) mutants. Two nrc mutants, nrc1 and nrc2, were mapped, cloned and further characterized. The nrc1 mutation was mapped to the γ-glutamylcysteine synthetase gene and the nrc2 mutation was identified as the first viable recessive mutant allele in the glutathione synthetase gene. Moreover, genetic, HPLC mass spectrometry, and gene expression analysis of the nrc1 and nrc2 mutants, revealed that intracellular glutathione depletion alone would be insufficient to induce gene expression of sulfate uptake and assimilation mechanisms. Our results modify the glutathione-depletion driven model for sulfate assimilation gene induction during cadmium stress, and suggest that an enhanced oxidative state and depletion of upstream thiols, in addition to glutathione depletion, are necessary to induce the transcription of sulfate assimilation genes during early cadmium stress. PMID:22283708

  9. Exploring Middle School Students' Understanding of Three Conceptual Models in Genetics

    NASA Astrophysics Data System (ADS)

    Bresler Freidenreich, Hava; Golan Duncan, Ravit; Shea, Nicole

    2011-11-01

    Genetics is the cornerstone of modern biology and a critical aspect of scientific literacy. Research has shown, however, that many high school graduates lack fundamental understandings in genetics necessary to make informed decisions about issues and emerging technologies in this domain, such as genetic screening, genetically modified foods, etc. Genetic literacy entails understanding three interrelated models: a genetic model that describes patterns of genetic inheritance, a meiotic model that describes the process by which genes are segregated into sex cells, and a molecular model that describes the mechanisms that link genotypes to phenotypes within an individual. Currently, much of genetics instruction, especially in terms of the molecular model, occurs at the high school level, and we know little about the ways in which middle school students can reason about these models. Furthermore, we do not know the extent to which carefully designed instruction can help younger students develop coherent and interrelated understandings in genetics. In this paper, we discuss a research study aimed at elucidating middle school students' abilities to reason about the three genetic models. As part of our research, we designed an eight-week inquiry unit that was implemented in a combined sixth- to eighth-grade science classroom. We describe our instructional design and report results based on an analysis of written assessments, clinical interviews, and artifacts of the unit. Our findings suggest that middle school students are able to successfully reason about all three genetic models.

  10. Development of fiber optic spectroscopy for in-vitro and in-planta detection of fluorescent proteins

    NASA Astrophysics Data System (ADS)

    Liew, Oi Wah; Chen, Jun-Wei; Asundi, Anand K.

    2001-10-01

    The objective of this project is to apply photonics technology to bio-safety management of genetically modified (GM) plants. The conventional method for screening GM plants is through selection using antibiotic resistance markers. There is public concern with such approaches and these are associated with food safety issues, escape of antibiotic resistance genes to pathogenic microorganisms and interference with antibiotic therapy. Thus, the strategy taken in this project is to replace antibiotic resistance markers with fluorescent protein markers that allow for rapid and non-invasive optical screening of genetically modified plants. In this paper, fibre optic spectroscopy was developed to detect and quantify recombinant green (EGFP) and red (DsRED) fluorescent proteins in vitro and in planta. In vitro detection was first carried out to optimize the sensitivity of the optical system. The bacterial expression vectors carrying the coding regions of EGFP and DsRED were introduced into Escherichia coli host cells and fluorescent proteins were produced following induction with IPTG. Soluble EGFP and DsRED proteins were isolated from lysed bacterial cells and serially diluted for quantitative analysis by fibre optic spectroscopy using different light sources, namely, blue LED (475 nm), tungsten halogen (350 - 1000 nm) and double frequency Nd:YAG green laser (532 nm). Fluorescence near the expected emission wavelengths could be detected up to 320X dilution for EGFP and DsRED with blue LED and 532 nm green laser, respectively, as the excitation source. Tungsten halogen was found to be unsuitable for excitation of both EGFP and DsRED. EGFP was successfully purified by size separation under non-denaturing electrophoretic conditions and quantified. The minimum concentration of EGFP detectable with blue LED excitation was 5 mg/ml. To determine the capability of spectroscopy detection in planta, transgenic potato hairy roots and whole modified plant lines expressing the fluorescent markers were regenerated. T

  11. Genetic Basis and Genetic Modifiers of β-Thalassemia and Sickle Cell Disease.

    PubMed

    Thein, Swee Lay

    2017-01-01

    β-thalassemia and sickle cell disease (SCD) are prototypical Mendelian single gene disorders, both caused by mutations affecting the adult β-globin gene. Despite the apparent genetic simplicity, both disorders display a remarkable spectrum of phenotypic severity and share two major genetic modifiers-α-globin genotype and innate ability to produce fetal hemoglobin (HbF, α 2 γ 2 ).This article provides an overview of the genetic basis for SCD and β-thalassemia, and genetic modifiers identified through phenotype correlation studies. Identification of the genetic variants modifying HbF production in combination with α-globin genotype provide some prediction of disease severity for β-thalassemia and SCD but generation of a personalized genetic risk score to inform prognosis and guide management requires a larger panel of genetic modifiers yet to be discovered.Nonetheless, genetic studies have been successful in characterizing some of the key variants and pathways involved in HbF regulation, providing new therapeutic targets for HbF reactivation.

  12. What Is Carrier Screening?

    MedlinePlus

    ... Financial Planning Who Should I Tell? Genetic Testing & Counseling Compensation for Genetic Testing Whole Genome Sequencing Screening vs. Testing What Is Genetic Counseling? Participating in Research Disease Research Patient Privacy Clinical ...

  13. ERAD defects and the HFE-H63D variant are associated with increased risk of liver damages in Alpha 1-Antitrypsin Deficiency

    PubMed Central

    Di Martino, Julie; Ruiz, Mathias; Garin, Roman; Restier, Lioara; Belmalih, Abdelouahed; Marchal, Christelle; Cullin, Christophe; Arveiler, Benoit; Fergelot, Patricia; Gitler, Aaron D.; Lachaux, Alain; Couthouis, Julien

    2017-01-01

    Background The most common and severe disease causing allele of Alpha 1-Antitrypsin Deficiency (1ATD) is Z-1AT. This protein aggregates in the endoplasmic reticulum, which is the main cause of liver disease in childhood. Based on recent evidences and on the frequency of liver disease occurrence in Z-1AT patients, it seems that liver disease progression is linked to still unknown genetic factors. Methods We used an innovative approach combining yeast genetic screens with next generation exome sequencing to identify and functionally characterize the genes involved in 1ATD associated liver disease. Results Using yeast genetic screens, we identified HRD1, an Endoplasmic Reticulum Associated Degradation (ERAD) associated protein, as an inducer of Z-mediated toxicity. Whole exome sequencing of 1ATD patients resulted in the identification of two variants associated with liver damages in Z-1AT homozygous cases: HFE H63D and HERPUD1 R50H. Functional characterization in Z-1AT model cell lines demonstrated that impairment of the ERAD machinery combined with the HFE H63D variant expression decreased both cell proliferation and cell viability, while Unfolded Protein Response (UPR)-mediated cell death was hyperstimulated. Conclusion This powerful experimental pipeline allowed us to identify and functionally validate two genes involved in Z-1AT-mediated severe liver toxicity. This pilot study moves forward our understanding on genetic modifiers involved in 1ATD and highlights the UPR pathway as a target for the treatment of liver diseases associated with 1ATD. Finally, these findings support a larger scale screening for HERPUD1 R50H and HFE H63D variants in the sub-group of 1ATD patients developing significant chronic hepatic injuries (hepatomegaly, chronic cholestasis, elevated liver enzymes) and at risk developing liver cirrhosis. PMID:28617828

  14. Gene targeting and cloning in pigs using fetal liver derived cells.

    PubMed

    Waghmare, Sanjeev K; Estrada, Jose; Reyes, Luz; Li, Ping; Ivary, Bess; Sidner, Richard A; Burlak, Chris; Tector, A Joseph

    2011-12-01

    Since there are no pig embryonic stem cells, pig genetic engineering is done in fetal fibroblasts that remain totipotent for only 3 to 5 wk. Nuclear donor cells that remain totipotent for longer periods of time would facilitate complicated genetic engineering in pigs. The goal of this study was to test the feasibility of using fetal liver-derived cells (FLDC) to perform gene targeting, and create a genetic knockout pig. FLDC were isolated and processed using a human liver stem cell protocol. Single copy α-1,3-galactosyl transferase knockout (GTKO) FLDCs were created using electroporation and neomycin resistant colonies were screened using PCR. Homozygous GTKO cells were created through loss of heterozygosity mutations in single GTKO FLDCs. Double GTKO FLDCs were used in somatic cell nuclear transfer (SCNT) to create GTKO pigs. FLDCs grew for more than 80 population doublings, maintaining normal karyotype. Gene targeting and loss of heterozygosity mutations produced homozygous GTKO FLDCs. FLDCs used in SCNT gave rise to homozygous GTKO pigs. FDLCs can be used in gene targeting and SCNT to produce genetically modified pigs. The increased life span in culture compared to fetal fibroblasts may facilitate genetic engineering in the pig. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Epidemiological correlates of breast cancer in South India.

    PubMed

    Babu, Giridhara Rathnaiah; Lakshmi, Srikanthi Bodapati; Thiyagarajan, Jotheeswaran Amuthavalli

    2013-01-01

    Breast cancer is the most frequent cancer in women globally and represents the second leading cause of cancer death among women (after lung cancer). India is going through epidemiologic transition. It is reported that the incidence of breast cancer is rising rapidly as a result of changes in reproductive risk factors, dietary habits and increasing life expectancy, acting in concert with genetic factors. In order to understand the existing epidemiological correlates of breast cancer in South India, a systematic review of evidence available on epidemiologic correlates of breast cancer addressing incidence, prevalence, and associated factors like age, reproductive factors, cultural and religious factors was performed with specific focus on screening procedures in southern India. An increase in breast cancer incidence due to various modifiable risk factors was noted, especially in women over 40 years of age, with late stage of presentation, lack of awareness about screening, costs, fear and stigma associated with the disease serving as major barriers for early presentation. Educational strategies should be aimed at modifying the life style, early planning of pregnancy, promoting breast feeding and physical activity. It is very important to obtain reliable data for planning policies, decision-making and setting up the priorities.

  16. CRISPR genetic screens to discover host-virus interactions.

    PubMed

    McDougall, William M; Perreira, Jill M; Reynolds, Erin C; Brass, Abraham L

    2018-04-01

    Viruses impose an immense burden on human health. With the goal of treating and preventing viral infections, researchers have carried out genetic screens to improve our understanding of viral dependencies and identify potential anti-viral strategies. The emergence of CRISPR genetic screening tools has facilitated this effort by enabling host-virus screens to be undertaken in a more versatile and fidelitous manner than previously possible. Here we review the growing number of CRISPR screens which continue to increase our understanding of host-virus interactions. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. RNAi-Based Suppressor Screens Reveal Genetic Interactions Between the CRL2LRR-1 E3-Ligase and the DNA Replication Machinery in Caenorhabditis elegans

    PubMed Central

    Ossareh-Nazari, Batool; Katsiarimpa, Anthi; Merlet, Jorge; Pintard, Lionel

    2016-01-01

    Cullin-RING E3-Ligases (CRLs), the largest family of E3 ubiquitin-Ligases, regulate diverse cellular processes by promoting ubiquitination of target proteins. The evolutionarily conserved Leucine Rich Repeat protein 1 (LRR-1) is a substrate-recognition subunit of a CRL2LRR-1 E3-ligase. Here we provide genetic evidence supporting a role of this E3-enzyme in the maintenance of DNA replication integrity in Caenorhabditis elegans. Through RNAi-based suppressor screens of lrr-1(0) and cul-2(or209ts) mutants, we identified two genes encoding components of the GINS complex, which is part of the Cdc45-MCM-GINS (CMG) replicative helicase, as well as CDC-7 and MUS-101, which drives the assembly of the CMG helicase during DNA replication. In addition, we identified the core components of the ATR/ATL-1 DNA replication checkpoint pathway (MUS-101, ATL-1, CLSP-1, CHK-1). These results suggest that the CRL2LRR-1 E3-ligase acts to modify or degrade factor(s) that would otherwise misregulate the replisome, eventually leading to the activation of the DNA replication checkpoint. PMID:27543292

  18. Chemical and genetic wrappers for improved phage and RNA display.

    PubMed

    Lamboy, Jorge A; Tam, Phillip Y; Lee, Lucie S; Jackson, Pilgrim J; Avrantinis, Sara K; Lee, Hye J; Corn, Robert M; Weiss, Gregory A

    2008-11-24

    An Achilles heel inherent to all molecular display formats, background binding between target and display system introduces false positives into screens and selections. For example, the negatively charged surfaces of phage, mRNA, and ribosome display systems bind with unacceptably high nonspecificity to positively charged target molecules, which represent an estimated 35% of proteins in the human proteome. Here we report the first systematic attempt to understand why a broad class of molecular display selections fail, and then solve the underlying problem for both phage and RNA display. Firstly, a genetic strategy was used to introduce a short, charge-neutralizing peptide into the solvent-exposed, negatively charged phage coat. The modified phage (KO7(+)) reduced or eliminated nonspecific binding to the problematic high-pI proteins. In the second, chemical approach, nonspecific interactions were blocked by oligolysine wrappers in the cases of phage and total RNA. For phage display applications, the peptides Lys(n) (where n=16 to 24) emerged as optimal for wrapping the phage. Lys(8), however, provided effective wrappers for RNA binding in assays against the RNA binding protein HIV-1 Vif. The oligolysine peptides blocked nonspecific binding to allow successful selections, screens, and assays with five previously unworkable protein targets.

  19. Consistent and reproducible positioning in longitudinal imaging for phenotyping genetically modified swine

    NASA Astrophysics Data System (ADS)

    Hammond, Emily; Dilger, Samantha K. N.; Stoyles, Nicholas; Judisch, Alexandra; Morgan, John; Sieren, Jessica C.

    2015-03-01

    Recent growth of genetic disease models in swine has presented the opportunity to advance translation of developed imaging protocols, while characterizing the genotype to phenotype relationship. Repeated imaging with multiple clinical modalities provides non-invasive detection, diagnosis, and monitoring of disease to accomplish these goals; however, longitudinal scanning requires repeatable and reproducible positioning of the animals. A modular positioning unit was designed to provide a fixed, stable base for the anesthetized animal through transit and imaging. Post ventilation and sedation, animals were placed supine in the unit and monitored for consistent vitals. Comprehensive imaging was performed with a computed tomography (CT) chest-abdomen-pelvis scan at each screening time point. Longitudinal images were rigidly registered, accounting for rotation, translation, and anisotropic scaling, and the skeleton was isolated using a basic thresholding algorithm. Assessment of alignment was quantified via eleven pairs of corresponding points on the skeleton with the first time point as the reference. Results were obtained with five animals over five screening time points. The developed unit aided in skeletal alignment within an average of 13.13 +/- 6.7 mm for all five subjects providing a strong foundation for developing qualitative and quantitative methods of disease tracking.

  20. Joint SOGC-CCMG Opinion for Reproductive Genetic Carrier Screening: An Update for All Canadian Providers of Maternity and Reproductive Healthcare in the Era of Direct-to-Consumer Testing.

    PubMed

    Wilson, R Douglas; De Bie, Isabelle; Armour, Christine M; Brown, Richard N; Campagnolo, Carla; Carroll, June C; Okun, Nan; Nelson, Tanya; Zwingerman, Rhonda; Audibert, Francois; Brock, Jo-Ann; Brown, Richard N; Campagnolo, Carla; Carroll, June C; De Bie, Isabelle; Johnson, Jo-Ann; Okun, Nan; Pastruck, Melanie; Vallée-Pouliot, Karine; Wilson, R Douglas; Zwingerman, Rhonda; Armour, Christine; Chitayat, David; De Bie, Isabelle; Fernandez, Sara; Kim, Raymond; Lavoie, Josee; Leonard, Norma; Nelson, Tanya; Taylor, Sherry; Van Allen, Margot; Van Karnebeek, Clara

    2016-08-01

    This guideline was written to update Canadian maternity care and reproductive healthcare providers on pre- and postconceptional reproductive carrier screening for women or couples who may be at risk of being carriers for autosomal recessive (AR), autosomal dominant (AD), or X-linked (XL) conditions, with risk of transmission to the fetus. Four previous SOGC- Canadian College of Medical Geneticists (CCMG) guidelines are updated and merged into the current document. All maternity care (most responsible health provider [MRHP]) and paediatric providers; maternity nursing; nurse practitioner; provincial maternity care administrator; medical student; and postgraduate resident year 1-7. Fertile, sexually active females and their fertile, sexually active male partners who are either planning a pregnancy or are pregnant (preferably in the first trimester of pregnancy, but any gestational age is acceptable). Women and their partners will be able to obtain appropriate genetic carrier screening information and possible diagnosis of AR, AD, or XL disorders (preferably pre-conception), thereby allowing an informed choice regarding genetic carrier screening and reproductive options (e.g., prenatal diagnosis, preimplantation genetic diagnosis, egg or sperm donation, or adoption). Informed reproductive decisions related to genetic carrier screening and reproductive outcomes based on family history, ethnic background, past obstetrical history, known carrier status, or genetic diagnosis. SOGC REPRODUCTIVE CARRIER SCREENING SUMMARY STATEMENT (2016): Pre-conception or prenatal education and counselling for reproductive carrier screening requires a discussion about testing within the three perinatal genetic carrier screening/diagnosis time periods, which include pre-conception, prenatal, and neonatal for conditions currently being screened for and diagnosed. This new information should be added to the standard reproductive carrier screening protocols that are already being utilized by the most responsible maternity provider through the informed consent process with the patient. (III-A; GRADE low/moderate) SOGC OVERVIEW OF RECOMMENDATIONS QUALITY AND GRADE: There was a strong observational/expert opinion (quality and grade) for the genetic carrier literature with randomized controlled trial evidence being available only for the invasive testing. Both the Canadian Task Force on Preventive Health Care quality and classification and the GRADE evidence quality and grade are provided. MEDLINE; PubMed; government neonatal screening websites; key words/common reproductive genetic carrier screened diseases/previous SOGC Guidelines/medical academic societies (Society of Maternal-Fetal Medicine [SMFM]; American College of Medical Genetics and Genomics; American College of Obstetricians and Gynecologists [ACOG]; CCMG; Royal College Obstetrics and Gynaecology [RCOG] [UK]; American Society of Human Genetics [ASHG]; International Society of Prenatal Diagnosis [ISPD])/provincial neonatal screening policies and programs; search terms (carrier screening, prenatal screening, neonatal genetic/metabolic screening, cystic fibrosis (CF), thalassemia, hemoglobinopathy, hemophilia, Fragile X syndrome (FXS), spinal muscular atrophy, Ashkenazi Jewish carrier screening, genetic carrier screening protocols, AR, AD, XL). 10 years (June 2005-September 2015); initial search dates June 30, 2015 and September 15, 2015; completed final search January 4, 2016. Validation of articles was completed by primary authors RD Wilson and I De Bie. Benefits are to provide an evidenced based reproductive genetic carrier screening update consensus based on international opinions and publications for the use of Canadian women, who are planning a pregnancy or who are pregnant and have been identified to be at risk (personal or male partner family or reproductive history) for the transmission of a clinically significant genetic condition to their offspring with associated morbidity and/or mortality. Harm may arise from having counselling and informed testing of the carrier status of the mother, their partner, or their fetus, as well as from declining to have this counselling and informed testing or from not having the opportunity for counselling and informed testing. Costs will ensue both from the provision of opportunities for counselling and testing, as well as when no such opportunities are offered or are declined and the birth of a child with a significant inherited condition and resulting morbidity/mortality occurs; these comprise not only the health care costs to the system but also the social/financial/psychological/emotional costs to the family. These recommendations are based on expert opinion and have not been subjected to a health economics assessment and local or provincial implementation will be required. This guideline is an update of four previous joint SOGC-CCMG Genetic Screening Guidelines dated 2002, 2006, 2008, and 2008 developed by the SOGC Genetic Committee in collaboration with the CCMG Prenatal Diagnosis Committee (now Clinical Practice Committee). 2016 CARRIER SCREENING RECOMMENDATIONS. Copyright © 2016 The Society of Obstetricians and Gynaecologists of Canada/La Société des obstétriciens et gynécologues du Canada. Published by Elsevier Inc. All rights reserved.

  1. Towards the discovery of novel genetic component involved in stress resistance in Arabidopsis thaliana.

    PubMed

    Juraniec, Michal; Lequeux, Hélène; Hermans, Christian; Willems, Glenda; Nordborg, Magnus; Schneeberger, Korbinian; Salis, Pietrino; Vromant, Maud; Lutts, Stanley; Verbruggen, Nathalie

    2014-02-01

    The exposure of plants to high concentrations of trace metallic elements such as copper involves a remodeling of the root system, characterized by a primary root growth inhibition and an increase in the lateral root density. These characteristics constitute easy and suitable markers for screening mutants altered in their response to copper excess. A forward genetic approach was undertaken in order to discover novel genetic factors involved in the response to copper excess. A Cu(2+) -sensitive mutant named copper modified resistance1 (cmr1) was isolated and a causative mutation in the CMR1 gene was identified by using positional cloning and next-generation sequencing. CMR1 encodes a plant-specific protein of unknown function. The analysis of the cmr1 mutant indicates that the CMR1 protein is required for optimal growth under normal conditions and has an essential role in the stress response. Impairment of the CMR1 activity alters root growth through aberrant activity of the root meristem, and modifies potassium concentration and hormonal balance (ethylene production and auxin accumulation). Our data support a putative role for CMR1 in cell division regulation and meristem maintenance. Research on the role of CMR1 will contribute to the understanding of the plasticity of plants in response to changing environments. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  2. Identification of Atg2 and ArfGAP1 as Candidate Genetic Modifiers of the Eye Pigmentation Phenotype of Adaptor Protein-3 (AP-3) Mutants in Drosophila melanogaster.

    PubMed

    Rodriguez-Fernandez, Imilce A; Dell'Angelica, Esteban C

    2015-01-01

    The Adaptor Protein (AP)-3 complex is an evolutionary conserved, molecular sorting device that mediates the intracellular trafficking of proteins to lysosomes and related organelles. Genetic defects in AP-3 subunits lead to impaired biogenesis of lysosome-related organelles (LROs) such as mammalian melanosomes and insect eye pigment granules. In this work, we have performed a forward screening for genetic modifiers of AP-3 function in the fruit fly, Drosophila melanogaster. Specifically, we have tested collections of large multi-gene deletions--which together covered most of the autosomal chromosomes-to identify chromosomal regions that, when deleted in single copy, enhanced or ameliorated the eye pigmentation phenotype of two independent AP-3 subunit mutants. Fine-mapping led us to define two non-overlapping, relatively small critical regions within fly chromosome 3. The first critical region included the Atg2 gene, which encodes a conserved protein involved in autophagy. Loss of one functional copy of Atg2 ameliorated the pigmentation defects of mutants in AP-3 subunits as well as in two other genes previously implicated in LRO biogenesis, namely Blos1 and lightoid, and even increased the eye pigment content of wild-type flies. The second critical region included the ArfGAP1 gene, which encodes a conserved GTPase-activating protein with specificity towards GTPases of the Arf family. Loss of a single functional copy of the ArfGAP1 gene ameliorated the pigmentation phenotype of AP-3 mutants but did not to modify the eye pigmentation of wild-type flies or mutants in Blos1 or lightoid. Strikingly, loss of the second functional copy of the gene did not modify the phenotype of AP-3 mutants any further but elicited early lethality in males and abnormal eye morphology when combined with mutations in Blos1 and lightoid, respectively. These results provide genetic evidence for new functional links connecting the machinery for biogenesis of LROs with molecules implicated in autophagy and small GTPase regulation.

  3. High-throughput, image-based screening of pooled genetic variant libraries

    PubMed Central

    Emanuel, George; Moffitt, Jeffrey R.; Zhuang, Xiaowei

    2018-01-01

    Image-based, high-throughput screening of genetic perturbations will advance both biology and biotechnology. We report a high-throughput screening method that allows diverse genotypes and corresponding phenotypes to be imaged in numerous individual cells. We achieve genotyping by introducing barcoded genetic variants into cells and using massively multiplexed FISH to measure the barcodes. We demonstrated this method by screening mutants of the fluorescent protein YFAST, yielding brighter and more photostable YFAST variants. PMID:29083401

  4. Genetic Screens in Yeast to Identify BRCA1 Modifiers

    DTIC Science & Technology

    2005-12-01

    wall chitin COX13 YGL191W subunit of cytochrome c oxidase DBP5 YOR046C,RAT8 ATP-dependent RNA helicase DBP6 YNR038W ribosome biogenesis DBR1 YKL149C...DML1 YMR211W inv in mtDNA inheritance DPB11 YJL090C reqd for loading DNA polymerase,checkpt DUN1 YDL101C checkpt for DNA damage DIN7 structural ...for assembly of cytochrome c oxidase PFA4 YOL003C palmitoyltransferase activity PHD1 YKL043W enhances pseudohyphal growth,reg FLO11exp PPA2

  5. Versatile microbial surface-display for environmental remediation and biofuels production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Cindy H.; Mulchandani, Ashok; Chen, wilfred

    2008-02-14

    Surface display is a powerful technique that utilizes natural microbial functional components to express proteins or peptides on the cell exterior. Since the reporting of the first surface-display system in the mid-1980s, a variety of new systems have been reported for yeast, Gram-positive and Gram-negative bacteria. Non-conventional display methods are emerging, eliminating the generation of genetically modified microorganisms. Cells with surface display are used as biocatalysts, biosorbents and biostimulants. Microbial cell-surface display has proven to be extremely important for numerous applications ranging from combinatorial library screening and protein engineering to bioremediation and biofuels production.

  6. Contribution of extended family history in assessment of risk for breast and colon cancer.

    PubMed

    Solomon, Benjamin L; Whitman, Todd; Wood, Marie E

    2016-09-01

    Family history is important for identifying candidates for high risk cancer screening and referral for genetic counseling. We sought to determine the percentage of individuals who would be eligible for high risk cancer screening or genetic referral and testing if family history includes an extended (vs limited) family history. Family histories were obtained from 626 women at UVMMC associated mammography centers from 2001 to 2002. ACS guidelines were used to determine eligibility for high risk breast or colon cancer screening. Eligibility for referral for genetic counseling for hereditary breast and colon cancer was determined using the Referral Screening Tool and Amsterdam II screening criteria, respectively. All family histories were assessed for eligibility by a limited history (first degree relatives only) and extended history (first and second degree relatives). Four hundred ninety-nine histories were eligible for review. 18/282 (3.6 %) and 62/123 (12 %) individuals met criteria for high risk breast and colon cancer screening, respectively. 13/18 (72 %) in the high risk breast cancer screening group and 12/62 (19 %) in the high risk colon cancer screening group met criteria based upon an extended family history. 9/282 (1.8 %) and 31/123 (6.2 %) individuals met criteria for genetic counseling referral and testing for breast and colon cancer, respectively. 2/9 (22 %) of individuals in the genetic breast cancer screening group and 21/31 (68 %) individuals in the genetic colon cancer screening group met criteria based upon extended family history. This is one of the first studies to suggest that first degree family history alone is not adequate for identification of candidates for high risk screening and referral for genetic counseling for hereditary breast and colon cancer syndromes. A larger population is needed to further validate this data.

  7. In silico peptide prediction for antibody generation to recognize 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in genetically modified organisms.

    PubMed

    Marani, Mariela M; Costa, Joana; Mafra, Isabel; Oliveira, Maria Beatriz P P; Camperi, Silvia A; Leite, José Roberto de Souza Almeida

    2015-03-01

    For the prospective immunorecognition of 5-enolpyruvylshikimate-3-phosphate synthase (CP4-EPSPS) as a biomarker protein expressed by transgenic soybean, an extensive in silico evaluation of the referred protein was performed. The main objective of this study was the selection of a set of peptides that could function as potential immunogens for the production of novel antibodies against CP4-EPSPS protein. For this purpose, the protein was in silico cleaved with trypsin/chymotrypsin and the resultant peptides were extensively analyzed for further selection of the best candidates for antibody production. The analysis enabled the successful proposal of four peptides with potential immunogenicity for their future use as screening biomarkers of genetically modified organisms. To our knowledge, this is the first attempt to select and define potential linear epitopes for the immunization of animals and, subsequently, to generate adequate antibodies for CP4-EPSPS recognition. The present work will be followed by the synthesis of the candidate peptides to be incubated in animals for antibody generation and potential applicability for the development of an immunosensor for CP4-EPSPS detection. © 2015 Wiley Periodicals, Inc.

  8. Development of Monoclonal Antibodies Recognizing Linear Epitope: Illustration by Three Bacillus thuringiensis Crystal Proteins of Genetically Modified Cotton, Maize, and Tobacco.

    PubMed

    Cao, Zhen; Zhang, Wei; Ning, Xiangxue; Wang, Baomin; Liu, Yunjun; Li, Qing X

    2017-11-22

    Bacillus thuringiensis Cry1Ac, Cry1Ia1, and Cry1Ie are δ-endotoxin insecticidal proteins widely implemented in genetically modified organisms (GMO), such as cotton, maize, and potato. Western blot assay integrates electrophoresis separation power and antibody high specificity for monitoring specific exogenous proteins expressed in GMO. Procedures for evoking monoclonal antibody (mAb) for Western blot were poorly documented. In the present study, Cry1Ac partially denatured at 100 °C for 5 min was used as an immunogen to develop mAbs selectively recognizing a linear epitope of Cry1Ac for Western blot. mAb 5E9C6 and 3E6E2 selected with sandwich ELISA strongly recognized the heat semidenatured Cry1Ac. Particularly, 3E6E2 recognized both E. coli and cotton seed expressed Cry1Ac in Western blot. Such strategy of using partially denatured proteins as immunogens and using sandwich ELISA for mAb screening was also successfully demonstrated with production of mAbs against Cry1Ie for Western blot assay in maize.

  9. Development and validation of a multiplex real-time PCR method to simultaneously detect 47 targets for the identification of genetically modified organisms.

    PubMed

    Cottenet, Geoffrey; Blancpain, Carine; Sonnard, Véronique; Chuah, Poh Fong

    2013-08-01

    Considering the increase of the total cultivated land area dedicated to genetically modified organisms (GMO), the consumers' perception toward GMO and the need to comply with various local GMO legislations, efficient and accurate analytical methods are needed for their detection and identification. Considered as the gold standard for GMO analysis, the real-time polymerase chain reaction (RTi-PCR) technology was optimised to produce a high-throughput GMO screening method. Based on simultaneous 24 multiplex RTi-PCR running on a ready-to-use 384-well plate, this new procedure allows the detection and identification of 47 targets on seven samples in duplicate. To comply with GMO analytical quality requirements, a negative and a positive control were analysed in parallel. In addition, an internal positive control was also included in each reaction well for the detection of potential PCR inhibition. Tested on non-GM materials, on different GM events and on proficiency test samples, the method offered high specificity and sensitivity with an absolute limit of detection between 1 and 16 copies depending on the target. Easy to use, fast and cost efficient, this multiplex approach fits the purpose of GMO testing laboratories.

  10. Development of a targeted transgenesis strategy in highly differentiated cells: a powerful tool for functional genomic analysis.

    PubMed

    Puttini, Stefania; Ouvrard-Pascaud, Antoine; Palais, Gael; Beggah, Ahmed T; Gascard, Philippe; Cohen-Tannoudji, Michel; Babinet, Charles; Blot-Chabaud, Marcel; Jaisser, Frederic

    2005-03-16

    Functional genomic analysis is a challenging step in the so-called post-genomic field. Identification of potential targets using large-scale gene expression analysis requires functional validation to identify those that are physiologically relevant. Genetically modified cell models are often used for this purpose allowing up- or down-expression of selected targets in a well-defined and if possible highly differentiated cell type. However, the generation of such models remains time-consuming and expensive. In order to alleviate this step, we developed a strategy aimed at the rapid and efficient generation of genetically modified cell lines with conditional, inducible expression of various target genes. Efficient knock-in of various constructs, called targeted transgenesis, in a locus selected for its permissibility to the tet inducible system, was obtained through the stimulation of site-specific homologous recombination by the meganuclease I-SceI. Our results demonstrate that targeted transgenesis in a reference inducible locus greatly facilitated the functional analysis of the selected recombinant cells. The efficient screening strategy we have designed makes possible automation of the transfection and selection steps. Furthermore, this strategy could be applied to a variety of highly differentiated cells.

  11. Quantitative maps of genetic interactions in yeast - comparative evaluation and integrative analysis.

    PubMed

    Lindén, Rolf O; Eronen, Ville-Pekka; Aittokallio, Tero

    2011-03-24

    High-throughput genetic screening approaches have enabled systematic means to study how interactions among gene mutations contribute to quantitative fitness phenotypes, with the aim of providing insights into the functional wiring diagrams of genetic interaction networks on a global scale. However, it is poorly known how well these quantitative interaction measurements agree across the screening approaches, which hinders their integrated use toward improving the coverage and quality of the genetic interaction maps in yeast and other organisms. Using large-scale data matrices from epistatic miniarray profiling (E-MAP), genetic interaction mapping (GIM), and synthetic genetic array (SGA) approaches, we carried out here a systematic comparative evaluation among these quantitative maps of genetic interactions in yeast. The relatively low association between the original interaction measurements or their customized scores could be improved using a matrix-based modelling framework, which enables the use of single- and double-mutant fitness estimates and measurements, respectively, when scoring genetic interactions. Toward an integrative analysis, we show how the detections from the different screening approaches can be combined to suggest novel positive and negative interactions which are complementary to those obtained using any single screening approach alone. The matrix approximation procedure has been made available to support the design and analysis of the future screening studies. We have shown here that even if the correlation between the currently available quantitative genetic interaction maps in yeast is relatively low, their comparability can be improved by means of our computational matrix approximation procedure, which will enable integrative analysis and detection of a wider spectrum of genetic interactions using data from the complementary screening approaches.

  12. A natural compromise: a moderate solution to the GMO & "natural" labeling disputes.

    PubMed

    Amaru, Stephanie

    2014-01-01

    In the United States, genetically modified (GM) foods are labeled no differently from their natural counterparts, leaving consumers with no mechanism for deciphering genetically modified food content. The Food and Drug Administration (FDA) has not formally defined the term "natural," which is frequently used on food labels despite consumer confusion as to what it means. The FDA should initiate a notice and comment rulemaking addressing the narrow issue of whether use of the word "natural" should be permitted oil GM food labels. Prohibition of the use of"natural" on genetically modified foods would mitigate consumer deception regarding genetically modified food content without significantly disadvantaging genetically modified food producers.

  13. Detection by real-time PCR and pyrosequencing of the cry1Ab and cry1Ac genes introduced in genetically modified (GM) constructs.

    PubMed

    Debode, Frederic; Janssen, Eric; Bragard, Claude; Berben, Gilbert

    2017-08-01

    The presence of genetically modified organisms (GMOs) in food and feed is mainly detected by the use of targets focusing on promoters and terminators. As some genes are frequently used in genetically modified (GM) construction, they also constitute excellent screening elements and their use is increasing. In this paper we propose a new target for the detection of cry1Ab and cry1Ac genes by real-time polymerase chain reaction (PCR) and pyrosequencing. The specificity, sensitivity and robustness of the real-time PCR method were tested following the recommendations of international guidelines and the method met the expected performance criteria. This paper also shows how the robustness testing was assessed. This new cry1Ab/Ac method can provide a positive signal with a larger number of GM events than do the other existing methods using double dye-probes. The method permits the analysis of results with less ambiguity than the SYBRGreen method recommended by the European Reference Laboratory (EURL) GM Food and Feed (GMFF). A pyrosequencing method was also developed to gain additional information thanks to the sequence of the amplicon. This method of sequencing-by-synthesis can determine the sequence between the primers used for PCR. Pyrosequencing showed that the sequences internal to the primers present differences following the GM events considered and three different sequences were observed. The sensitivity of the pyrosequencing was tested on reference flours with a low percentage GM content and different copy numbers. Improvements in the pyrosequencing protocol provided correct sequences with 50 copies of the target. Below this copy number, the quality of the sequence was more random.

  14. A new PCR-CGE (size and color) method for simultaneous detection of genetically modified maize events.

    PubMed

    Nadal, Anna; Coll, Anna; La Paz, Jose-Luis; Esteve, Teresa; Pla, Maria

    2006-10-01

    We present a novel multiplex PCR assay for simultaneous detection of multiple transgenic events in maize. Initially, five PCR primers pairs specific to events Bt11, GA21, MON810, and NK603, and Zea mays L. (alcohol dehydrogenase) were included. The event specificity was based on amplification of transgene/plant genome flanking regions, i.e., the same targets as for validated real-time PCR assays. These short and similarly sized amplicons were selected to achieve high and similar amplification efficiency for all targets; however, its unambiguous identification was a technical challenge. We achieved a clear distinction by a novel CGE approach that combined the identification by size and color (CGE-SC). In one single step, all five targets were amplified and specifically labeled with three different fluorescent dyes. The assay was specific and displayed an LOD of 0.1% of each genetically modified organism (GMO). Therefore, it was adequate to fulfill legal thresholds established, e.g., in the European Union. Our CGE-SC based strategy in combination with an adequate labeling design has the potential to simultaneously detect higher numbers of targets. As an example, we present the detection of up to eight targets in a single run. Multiplex PCR-CGE-SC only requires a conventional sequencer device and enables automation and high throughput. In addition, it proved to be transferable to a different laboratory. The number of authorized GMO events is rapidly growing; and the acreage of genetically modified (GM) varieties cultivated and commercialized worldwide is rapidly increasing. In this context, our multiplex PCR-CGE-SC can be suitable for screening GM contents in food.

  15. DNA extraction methods for detecting genetically modified foods: A comparative study.

    PubMed

    Elsanhoty, Rafaat M; Ramadan, Mohamed Fawzy; Jany, Klaus Dieter

    2011-06-15

    The work presented in this manuscript was achieved to compare six different methods for extracting DNA from raw maize and its derived products. The methods that gave higher yield and quality of DNA were chosen to detect the genetic modification in the samples collected from the Egyptian market. The different methods used were evaluated for extracting DNA from maize kernels (without treatment), maize flour (mechanical treatment), canned maize (sweet corn), frozen maize (sweet corn), maize starch, extruded maize, popcorn, corn flacks, maize snacks, and bread made from corn flour (mechanical and thermal treatments). The quality and quantity of the DNA extracted from the standards, containing known percentages of GMO material and from the different food products were evaluated. For qualitative detection of the GMO varieties in foods, the GMOScreen 35S/NOS test kit was used, to screen the genetic modification in the samples. The positive samples for the 35S promoter and/or the NOS terminator were identified by the standard methods adopted by EU. All of the used methods extracted yielded good DNA quality. However, we noted that the purest DNA extract were obtained using the DNA extraction kit (Roche) and this generally was the best method for extracting DNA from most of the maize-derived foods. We have noted that the yield of DNA extracted from maize-derived foods was generally lower in the processed products. The results indicated that 17 samples were positive for the presence of 35S promoter, while 34% from the samples were positive for the genetically modified maize line Bt-176. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Employment discrimination implications of genetic screening in the workplace under Title VII and the Rehabilitation Act.

    PubMed

    Canter, E F

    1984-01-01

    The emergence of genetic screening techniques will permit employers to exclude hypersusceptible individuals from potentially hazardous workplace environments. The denial of employment opportunities to these individuals, however, may constitute discrimination. This Note analyzes genetic screening cases with respect to currently available remedies contained in Title VII of the Civil Rights Act of 1964 and the Rehabilitation Act of 1973. The Note concludes that Title VII claims may succeed but only in limited circumstances and that Rehabilitation Act claims will encounter numerous obstacles to relief. Additionally, the Note discusses some of the implications of the use of genetic screening in the workplace.

  17. Which BRCA genetic testing programs are ready for implementation in health care? A systematic review of economic evaluations.

    PubMed

    D'Andrea, Elvira; Marzuillo, Carolina; De Vito, Corrado; Di Marco, Marco; Pitini, Erica; Vacchio, Maria Rosaria; Villari, Paolo

    2016-12-01

    There is considerable evidence regarding the efficacy and effectiveness of BRCA genetic testing programs, but whether they represent good use of financial resources is not clear. Therefore, we aimed to identify the main health-care programs for BRCA testing and to evaluate their cost-effectiveness. We performed a systematic review of full economic evaluations of health-care programs involving BRCA testing. Nine economic evaluations were included, and four main categories of BRCA testing programs were identified: (i) population-based genetic screening of individuals without cancer, either comprehensive or targeted based on ancestry; (ii) family history (FH)-based genetic screening, i.e., testing individuals without cancer but with FH suggestive of BRCA mutation; (iii) familial mutation (FM)-based genetic screening, i.e., testing individuals without cancer but with known familial BRCA mutation; and (iv) cancer-based genetic screening, i.e., testing individuals with BRCA-related cancers. Currently BRCA1/2 population-based screening represents good value for the money among Ashkenazi Jews only. FH-based screening is potentially very cost-effective, although further studies that include costs of identifying high-risk women are needed. There is no evidence of cost-effectiveness for BRCA screening of all newly diagnosed cases of breast/ovarian cancers followed by cascade testing of relatives, but programs that include tools for identifying affected women at higher risk for inherited forms are promising. Cost-effectiveness is highly sensitive to the cost of BRCA1/2 testing.Genet Med 18 12, 1171-1180.

  18. [Genetically modified plants and food safety. State of the art and discussion in the European Union].

    PubMed

    Schauzu, M

    2004-09-01

    Placing genetically modified (GM) plants and derived products on the European Union's (EU) market has been regulated by a Community Directive since 1990. This directive was complemented by a regulation specific for genetically modified and other novel foods in 1997. Specific labelling requirements have been applicable for GM foods since 1998. The law requires a pre-market safety assessment for which criteria have been elaborated and continuously adapted in accordance with the state of the art by national and international bodies and organisations. Consequently, only genetically modified products that have been demonstrated to be as safe as their conventional counterparts can be commercialized. However, the poor acceptance of genetically modified foods has led to a de facto moratorium since 1998. It is based on the lack of a qualified majority of EU member states necessary for authorization to place genetically modified plants and derived foods on the market. New Community Regulations are intended to end this moratorium by providing a harmonized and transparent safety assessment, a centralised authorization procedure, extended labelling provisions and a traceability system for genetically modified organisms (GMO) and derived food and feed.

  19. “This Lifetime Commitment”: Public Conceptions of Disability and Noninvasive Prenatal Genetic Screening

    PubMed Central

    Steinbach, Rosemary J.; Allyse, Megan; Michie, Marsha; Liu, Emily Y.; Cho, Mildred K.

    2016-01-01

    Recently, new noninvasive prenatal genetic screening technologies for Down syndrome and other genetic conditions have become commercially available. Unique characteristics of these screening tests have reignited long-standing concerns about prenatal testing for intellectual and developmental disabilities. We conducted a web-based survey of a sample of the US public to examine how attitudes towards disability inform views of prenatal testing in the context of these rapidly advancing prenatal genetic screening technologies. Regardless of opinion toward disability, the majority of respondents supported both the availability of screening and the decision to continue a pregnancy positive for aneuploidy. Individuals rationalized their support with various conceptions of disability; complications of the expressivist argument and other concerns from the disability literature were manifested in many responses analyzed. PMID:26566970

  20. Changes in screening behaviors and attitudes toward screening from pre-test genetic counseling to post-disclosure in Lynch syndrome families

    PubMed Central

    Burton-Chase, Allison M.; Hovick, Shelly R.; Peterson, Susan K.; Marani, Salma K.; Vernon, Sally W.; Amos, Christopher I.; Frazier, Marsha L.; Lynch, Patrick M.; Gritz, Ellen R.

    2013-01-01

    Purpose This study examined colonoscopy adherence and attitudes towards colorectal cancer (CRC) screening in individuals who underwent Lynch syndrome genetic counseling and testing. Methods We evaluated changes in colonoscopy adherence and CRC screening attitudes in 78 cancer-unaffected relatives of Lynch syndrome mutation carriers before pre-test genetic counseling (baseline) and at 6 and 12 months post-disclosure of test results (52 mutation-negative, 26 mutation-positive). Results While both groups were similar at baseline, at 12 months post-disclosure, a greater number of mutation-positive individuals had had a colonoscopy compared with mutation-negative individuals. From baseline to 12 months post-disclosure, the mutation-positive group demonstrated an increase in mean scores on measures of colonoscopy commitment, self-efficacy, and perceived benefits of CRC screening, and a decrease in mean scores for perceived barriers to CRC screening. Mean scores on colonoscopy commitment decreased from baseline to 6 months in the mutation-negative group. Conclusion Adherence to risk-appropriate guidelines for CRC surveillance improved after genetic counseling and testing for Lynch syndrome. Mutation-positive individuals reported increasingly positive attitudes toward CRC screening after receiving genetic test results, potentially reinforcing longer term colonoscopy adherence. PMID:23414081

  1. Consumer reaction to information on the labels of genetically modified food

    PubMed Central

    Sebastian-Ponce, Miren Itxaso; Sanz-Valero, Javier; Wanden-Berghe, Carmina

    2014-01-01

    OBJECTIVE To analyze consumer opinion on genetically modified foods and the information included on the label. METHODS A systematic review of the scientific literature on genetically modified food labeling was conducted consulting bibliographic databases (Medline – via PubMed –, EMBASE, ISI-Web of knowledge, Cochrane Library Plus, FSTA, LILACS, CINAHL and AGRICOLA) using the descriptors “organisms, genetically modified” and “food labeling”. The search covered the first available date, up to June 2012, selecting relevant articles written in English, Portuguese or Spanish. RESULTS Forty articles were selected after applying the inclusion and exclusion criteria. All of them should have conducted a population-based intervention focused on consumer awareness of genetically modified foods and their need or not, to include this on the label. The consumers expressed a preference for non-genetically modified products, and added that they were prepared to pay more for this but, ultimately, the product bought was that with the best price, in a market which welcomes new technologies. In 18 of the articles, the population was in favor of obligatory labelling, and in six, in favor of this being voluntary; seven studies showed the consumer knew little about genetically modified food, and in three, the population underestimated the quantity they consumed. Price was an influencing factor in all cases. CONCLUSIONS Label should be homogeneous and clarify the degree of tolerance of genetically modified products in humans, in comparison with those non-genetically modified. Label should also present the content or not of genetically modified products and how these commodities are produced and should be accompanied by the certifying entity and contact information. Consumers express their preference for non-genetically modifiedproducts and they even notice that they are willing to pay more for it, but eventually they buy the item with the best price, in a market that welcomes new technologies. PMID:24789648

  2. Genetic Modifiers and Oligogenic Inheritance

    PubMed Central

    Kousi, Maria; Katsanis, Nicholas

    2015-01-01

    Despite remarkable progress in the identification of mutations that drive genetic disorders, progress in understanding the effect of genetic background on the penetrance and expressivity of causal alleles has been modest, in part because of the methodological challenges in identifying genetic modifiers. Nonetheless, the progressive discovery of modifier alleles has improved both our interpretative ability and our analytical tools to dissect such phenomena. In this review, we analyze the genetic properties and behaviors of modifiers as derived from studies in patient populations and model organisms and we highlight conceptual and technological tools used to overcome some of the challenges inherent in modifier mapping and cloning. Finally, we discuss how the identification of these modifiers has facilitated the elucidation of biological pathways and holds the potential to improve the clinical predictive value of primary causal mutations and to develop novel drug targets. PMID:26033081

  3. Genetic screens for mutations affecting development of Xenopus tropicalis.

    PubMed

    Goda, Tadahiro; Abu-Daya, Anita; Carruthers, Samantha; Clark, Matthew D; Stemple, Derek L; Zimmerman, Lyle B

    2006-06-01

    We present here the results of forward and reverse genetic screens for chemically-induced mutations in Xenopus tropicalis. In our forward genetic screen, we have uncovered 77 candidate phenotypes in diverse organogenesis and differentiation processes. Using a gynogenetic screen design, which minimizes time and husbandry space expenditures, we find that if a phenotype is detected in the gynogenetic F2 of a given F1 female twice, it is highly likely to be a heritable abnormality (29/29 cases). We have also demonstrated the feasibility of reverse genetic approaches for obtaining carriers of mutations in specific genes, and have directly determined an induced mutation rate by sequencing specific exons from a mutagenized population. The Xenopus system, with its well-understood embryology, fate map, and gain-of-function approaches, can now be coupled with efficient loss-of-function genetic strategies for vertebrate functional genomics and developmental genetics.

  4. Genetic counseling for beta-thalassemia trait following health screening in a health maintenance organization: comparison of programmed and conventional counseling.

    PubMed Central

    Fisher, L; Rowley, P T; Lipkin, M

    1981-01-01

    Providing adequate counseling of patients identified in genetic screening programs is a major responsibility and expense. Adults in a health maintenance organization, unselected for interest, were screened for beta-thalassemia trait as part of preventive health care. Counseling was provided by either a trained physician (conventional counseling) or by a videotape containing the same information followed by an opportunity to question a trained physician (programmed counseling). Immediately before and after counseling, knowledge of thalassemia, knowledge of genetics, and mood change were assessed by questionnaire. Comparable mood changes and similar learning about thalassemia and genetics occurred with both counseling methods. Thus, as judged by immediate effects on knowledge and mood, videotaped instruction can greatly reduce professional time required for genetic counseling and facilitate the incorporation of genetic screening into primary health care. PMID:7325162

  5. A Quantitative PCR-Electrochemical Genosensor Test for the Screening of Biotech Crops

    PubMed Central

    Moura-Melo, Suely; Miranda-Castro, Rebeca; de-los-Santos-Álvarez, Noemí; Miranda-Ordieres, Arturo J.; dos Santos Junior, José Ribeiro; da Silva Fonseca, Rosana A.; Lobo-Castañón, María Jesús

    2017-01-01

    The design of screening methods for the detection of genetically modified organisms (GMOs) in food would improve the efficiency in their control. We report here a PCR amplification method combined with a sequence-specific electrochemical genosensor for the quantification of a DNA sequence characteristic of the 35S promoter derived from the cauliflower mosaic virus (CaMV). Specifically, we employ a genosensor constructed by chemisorption of a thiolated capture probe and p-aminothiophenol gold surfaces to entrap on the sensing layer the unpurified PCR amplicons, together with a signaling probe labeled with fluorescein. The proposed test allows for the determination of a transgene copy number in both hemizygous (maize MON810 trait) and homozygous (soybean GTS40-3-2) transformed plants, and exhibits a limit of quantification of at least 0.25% for both kinds of GMO lines. PMID:28420193

  6. Instant, Visual, and Instrument-Free Method for On-Site Screening of GTS 40-3-2 Soybean Based on Body-Heat Triggered Recombinase Polymerase Amplification.

    PubMed

    Wang, Rui; Zhang, Fang; Wang, Liu; Qian, Wenjuan; Qian, Cheng; Wu, Jian; Ying, Yibin

    2017-04-18

    On-site monitoring the plantation of genetically modified (GM) crops is of critical importance in agriculture industry throughout the world. In this paper, a simple, visual and instrument-free method for instant on-site detection of GTS 40-3-2 soybean has been developed. It is based on body-heat recombinase polymerase amplification (RPA) and followed with naked-eye detection via fluorescent DNA dye. Combining with extremely simplified sample preparation, the whole detection process can be accomplished within 10 min and the fluorescent results can be photographed by an accompanied smart phone. Results demonstrated a 100% detection rate for screening of practical GTS 40-3-2 soybean samples by 20 volunteers under different ambient temperatures. This method is not only suitable for on-site detection of GM crops but also demonstrates great potential to be applied in other fields.

  7. Powerful workhorses for antimicrobial peptide expression and characterization.

    PubMed

    Li, Chun; Blencke, Hans-Matti; Paulsen, Victoria; Haug, Tor; Stensvåg, Klara

    2010-01-01

    Discovery of antimicrobial peptides (AMP) is to a large extent based on screening of fractions of natural samples in bacterial growth inhibition assays. However, the use of bacteria is not limited to screening for antimicrobial substances. In later steps, bioengineered "bugs" can be applied to both production and characterization of AMPs. Here we describe the idea to use genetically modified Escherichia coli strains for both these purposes. This approach allowed us to investigate SpStrongylocins 1 and 2 from the purple sea urchin Strongylocentrotus purpuratus only based on sequence information from a cDNA library and without previous direct isolation or chemical synthesis of these peptides. The recombinant peptides are proved active against all bacterial strains tested. An assay based on a recombinant E. coli sensor strain expressing insect luciferase, revealed that SpStrongylocins are not interfering with membrane integrity and are therefore likely to have intracellular targets. © 2010 Landes Bioscience

  8. Not all GMOs are crop plants: non-plant GMO applications in agriculture.

    PubMed

    Hokanson, K E; Dawson, W O; Handler, A M; Schetelig, M F; St Leger, R J

    2014-12-01

    Since tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteria, fungi, insects, and viruses. Many of these organisms, as with crop plants, are being engineered for applications in agriculture, to control plant insect pests or diseases. This paper reviews the genetically modified non-plant organisms that have been the subject of permit approvals for environmental release by the United States Department of Agriculture/Animal and Plant Health Inspection Service since the US began regulating genetically modified organisms. This is an indication of the breadth and progress of research in the area of non-plant genetically modified organisms. This review includes three examples of promising research on non-plant genetically modified organisms for application in agriculture: (1) insects for insect pest control using improved vector systems; (2) fungal pathogens of insects to control insect pests; and (3) virus for use as transient-expression vectors for disease control in plants.

  9. A fast boosting-based screening method for large-scale association study in complex traits with genetic heterogeneity.

    PubMed

    Wang, Lu-Yong; Fasulo, D

    2006-01-01

    Genome-wide association study for complex diseases will generate massive amount of single nucleotide polymorphisms (SNPs) data. Univariate statistical test (i.e. Fisher exact test) was used to single out non-associated SNPs. However, the disease-susceptible SNPs may have little marginal effects in population and are unlikely to retain after the univariate tests. Also, model-based methods are impractical for large-scale dataset. Moreover, genetic heterogeneity makes the traditional methods harder to identify the genetic causes of diseases. A more recent random forest method provides a more robust method for screening the SNPs in thousands scale. However, for more large-scale data, i.e., Affymetrix Human Mapping 100K GeneChip data, a faster screening method is required to screening SNPs in whole-genome large scale association analysis with genetic heterogeneity. We propose a boosting-based method for rapid screening in large-scale analysis of complex traits in the presence of genetic heterogeneity. It provides a relatively fast and fairly good tool for screening and limiting the candidate SNPs for further more complex computational modeling task.

  10. Genetically Modified Porcine Skin Grafts for Treatment of Severe Burn Injuries

    DTIC Science & Technology

    2010-07-01

    TITLE: Genetically Modified Porcine Skin Grafts for Treatment of Severe Burn Injuries PRINCIPAL INVESTIGATOR: David H. Sachs, M.D...4. TITLE AND SUBTITLE Genetically Modified Porcine Skin Grafts for Treatment of 5a. CONTRACT NUMBER Severe Burn Injuries 5b. GRANT NUMBER...DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES Burns, skin grafts , genetic

  11. The Case of the "Tainted" Taco Shells: A Case Study on Genetically Modified Foods

    ERIC Educational Resources Information Center

    Taylor, Ann T. S.

    2004-01-01

    This case study introduces students to the use of genetically modified foods. Students learn how genetically modified plants are made, and then they read primary literature papers to evaluate the environmental, economic, and health issues. (Contains 2 figures.)

  12. Overview of the current status of genetically modified plants in Europe as compared to the USA.

    PubMed

    Brandt, Peter

    2003-07-01

    Genetically modified crops have been tested in 1,726 experimental releases in the EU member states and in 7,815 experimental releases in the USA. The global commercial cultivation area of genetically modified crops is likely to reach 50 million hectares in 2001, however, the commercial production of genetically modified crops in the EU amounts to only a few thousand hectares and accounts for only some 0.03% of the world production. A significant gap exists between the more than fifty genetically modified crop species already permitted to be cultivated and to be placed on the market in the USA, Canada and other countries and the five genetically modified crop species permitted for the same use in the EU member states, which are still pending inclusion in the Common Catalogue of agricultural plant species. The further development of the "green gene technology" in the EU will be a matter of public acceptance and administrative legislation.

  13. Glycerol Hypersensitivity in a Drosophila Model for Glycerol Kinase Deficiency Is Affected by Mutations in Eye Pigmentation Genes

    PubMed Central

    Wightman, Patrick J.; Jackson, George R.; Dipple, Katrina M.

    2012-01-01

    Glycerol kinase plays a critical role in metabolism by converting glycerol to glycerol 3-phosphate in an ATP dependent reaction. In humans, glycerol kinase deficiency results in a wide range of phenotypic variability; patients can have severe metabolic and CNS abnormalities, while others possess hyperglycerolemia and glyceroluria with no other apparent phenotype. In an effort to help understand the pathogenic mechanisms underlying the phenotypic variation, we have created a Drosophila model for glycerol kinase deficiency by RNAi targeting of dGyk (CG18374) and dGK (CG7995). As expected, RNAi flies have reduced glycerol kinase RNA expression, reduced phosphorylation activity and elevated glycerol levels. Further investigation revealed these flies to be hypersensitive to fly food supplemented with glycerol. Due to the hygroscopic nature of glycerol, we predict glycerol hypersensitivity is a result of greater susceptibility to desiccation, suggesting glycerol kinase to play an important role in desiccation resistance in insects. To evaluate a role for genetic modifier loci in determining severity of the glycerol hypersensitivity observed in knockdown flies, we performed a preliminary screen of lethal transposon insertion mutant flies using a glycerol hypersensitive survivorship assay. We demonstrate that this type of screen can identify both enhancer and suppressor genetic loci of glycerol hypersensitivity. Furthermore, we found that the glycerol hypersensitivity phenotype can be enhanced or suppressed by null mutations in eye pigmentation genes. Taken together, our data suggest proteins encoded by eye pigmentation genes play an important role in desiccation resistance and that eye pigmentation genes are strong modifiers of the glycerol hypersensitive phenotype identified in our Drosophila model for glycerol kinase deficiency. PMID:22427807

  14. Multiplex electrochemical DNA platform for femtomolar-level quantification of genetically modified soybean.

    PubMed

    Manzanares-Palenzuela, C Lorena; de-Los-Santos-Álvarez, Noemí; Lobo-Castañón, María Jesús; López-Ruiz, Beatriz

    2015-06-15

    Current EU regulations on the mandatory labeling of genetically modified organisms (GMOs) with a minimum content of 0.9% would benefit from the availability of reliable and rapid methods to detect and quantify DNA sequences specific for GMOs. Different genosensors have been developed to this aim, mainly intended for GMO screening. A remaining challenge, however, is the development of genosensing platforms for GMO quantification, which should be expressed as the number of event-specific DNA sequences per taxon-specific sequences. Here we report a simple and sensitive multiplexed electrochemical approach for the quantification of Roundup-Ready Soybean (RRS). Two DNA sequences, taxon (lectin) and event-specific (RR), are targeted via hybridization onto magnetic beads. Both sequences are simultaneously detected by performing the immobilization, hybridization and labeling steps in a single tube and parallel electrochemical readout. Hybridization is performed in a sandwich format using signaling probes labeled with fluorescein isothiocyanate (FITC) or digoxigenin (Dig), followed by dual enzymatic labeling using Fab fragments of anti-Dig and anti-FITC conjugated to peroxidase or alkaline phosphatase, respectively. Electrochemical measurement of the enzyme activity is finally performed on screen-printed carbon electrodes. The assay gave a linear range of 2-250 pM for both targets, with LOD values of 650 fM (160 amol) and 190 fM (50 amol) for the event-specific and the taxon-specific targets, respectively. Results indicate that the method could be applied for GMO quantification below the European labeling threshold level (0.9%), offering a general approach for the rapid quantification of specific GMO events in foods. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. An Inside Look at Genetic Counseling | NIH MedlinePlus the Magazine

    MedlinePlus

    ... hoped they would learn more about their personal health risks. Why else do people seek genetic screening? There are many reasons why a person might have genetic testing or screening. One of the most common reasons ...

  16. Rapid Characterization of Bacterial Electrogenicity Using a Single-Sheet Paper-Based Electrofluidic Array

    PubMed Central

    Gao, Yang; Hassett, Daniel J.; Choi, Seokheun

    2017-01-01

    Electrogenicity, or bacterial electron transfer capacity, is an important application which offers environmentally sustainable advances in the fields of biofuels, wastewater treatment, bioremediation, desalination, and biosensing. Significant boosts in this technology can be achieved with the growth of synthetic biology that manipulates microbial electron transfer pathways, thereby potentially significantly improving their electrogenic potential. There is currently a need for a high-throughput, rapid, and highly sensitive test array to evaluate the electrogenic properties of newly discovered and/or genetically engineered bacterial species. In this work, we report a single-sheet, paper-based electrofluidic (incorporating both electronic and fluidic structure) screening platform for rapid, sensitive, and potentially high-throughput characterization of bacterial electrogenicity. This novel screening array uses (i) a commercially available wax printer for hydrophobic wax patterning on a single sheet of paper and (ii) water-dispersed electrically conducting polymer mixture, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate, for full integration of electronic and fluidic components into the paper substrate. The engineered 3-D, microporous, hydrophilic, and conductive paper structure provides a large surface area for efficient electron transfer. This results in rapid and sensitive power assessment of electrogenic bacteria from a microliter sample volume. We validated the effectiveness of the sensor array using hypothesis-driven genetically modified Pseudomonas aeruginosa mutant strains. Within 20 min, we observed that the sensor platform successfully measured the electricity-generating capacities of five isogenic mutants of P. aeruginosa while distinguishing their differences from genetically unmodified bacteria. PMID:28798914

  17. CHROMIUM ELECTROANALYSIS AT SCREEN PRINTED ELECTRODE MODIFIED BY THIN FILMS OF NICKEL

    EPA Science Inventory

    A rapid and potentially cost-effective electrochemical method is reported for analysis of chromium (VI) and Chromium(III) using a nickel modified screen printed carbon ink electrode. Electrochemical characteristics of nickel modified electrode as well voltammetric behavior f...

  18. Prevalence of Autism Spectrum Disorders in Siblings of Indian Children With Autism Spectrum Disorders.

    PubMed

    Kumar, Ankur; Juneja, Monica; Mishra, Devendra

    2016-06-01

    This study determined the prevalence of autism spectrum disorders in 201 siblings of children with autism spectrum disorders. Siblings were screened using Modified Checklist for Autism in Toddlers and Social Responsiveness Scale, parent version. Screen-positive siblings were assessed using Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition) criteria. The risk of autism spectrum disorder in siblings was correlated with various familial and disease characteristics of the index case. Prevalence of autism spectrum disorder in siblings was 4.97%. There was a significant effect of the presence of aggressive behavior, externalizing problems and total problems in the proband, assessed using Childhood Behavior Checklist, and the young age of the father at conception on sibling risk of autism spectrum disorder. Results of our study are in line with previous studies reporting similar prevalence but have also brought up the association with behavioral problems as a possible risk factor. Siblings of children with autism spectrum disorder should be routinely screened, and genetic counseling for this increased risk should be explained to the family. © The Author(s) 2016.

  19. Regulating genetically modified food. Policy trajectories, political culture, and risk perceptions in the U.S., Canada, and EU.

    PubMed

    Wohlers, Anton E

    2010-09-01

    This paper examines whether national differences in political culture add an explanatory dimension to the formulation of policy in the area of biotechnology, especially with respect to genetically modified food. The analysis links the formulation of protective regulatory policies governing genetically modified food to both country and region-specific differences in uncertainty tolerance levels and risk perceptions in the United States, Canada, and European Union. Based on polling data and document analysis, the findings illustrate that these differences matter. Following a mostly opportunistic risk perception within an environment of high tolerance for uncertainty, policymakers in the United States and Canada modified existing regulatory frameworks that govern genetically modified food in their respective countries. In contrast, the mostly cautious perception of new food technologies and low tolerance for uncertainty among European Union member states has contributed to the creation of elaborate and stringent regulatory policies governing genetically modified food.

  20. Genetic modifiers of Duchenne and facioscapulohumeral muscular dystrophies.

    PubMed

    Hightower, Rylie M; Alexander, Matthew S

    2018-01-01

    Muscular dystrophy is defined as the progressive wasting of skeletal muscles that is caused by inherited or spontaneous genetic mutations. Next-generation sequencing has greatly improved the accuracy and speed of diagnosis for different types of muscular dystrophy. Advancements in depth of coverage, convenience, and overall reduced cost have led to the identification of genetic modifiers that are responsible for phenotypic variability in affected patients. These genetic modifiers have been postulated to explain key differences in disease phenotypes, including age of loss of ambulation, steroid responsiveness, and the presence or absence of cardiac defects in patients with the same form of muscular dystrophy. This review highlights recent findings on genetic modifiers of Duchenne and facioscapulohumeral muscular dystrophies based on animal and clinical studies. These genetic modifiers hold great promise to be developed into novel therapeutic targets for the treatment of muscular dystrophies. Muscle Nerve 57: 6-15, 2018. © 2017 Wiley Periodicals, Inc.

  1. Genetic Modifiers of Duchenne and Facioscapulohumeral Muscular Dystrophies

    PubMed Central

    Hightower, Rylie M.; Alexander, Matthew S.

    2017-01-01

    Muscular dystrophy is defined as the progressive wasting of skeletal muscles that is caused by inherited or spontaneous genetic mutations. Next-generation sequencing (NGS) has greatly improved the accuracy and speed of diagnosis for different types of muscular dystrophy. Advancements in depth of coverage, convenience, and overall reduced cost, have led to the identification of genetic modifiers that are responsible for phenotypic variability in affected patients. These genetic modifiers have been postulated to explain key differences in disease phenotypes including age of loss of ambulation, steroid-responsiveness, and the presence or absence of cardiac defects in patients with the same form of muscular dystrophy. Here we review and highlight recent findings on genetic modifiers of Duchenne and Facioscapulohumeral muscular dystrophies based on animal and clinical studies. These genetic modifiers hold great promise to be developed into novel therapeutic targets for the treatment of muscular dystrophies. PMID:28877560

  2. Combined CRISPRi/a-Based Chemical Genetic Screens Reveal that Rigosertib Is a Microtubule-Destabilizing Agent. | Office of Cancer Genomics

    Cancer.gov

    Chemical libraries paired with phenotypic screens can now readily identify compounds with therapeutic potential. A central limitation to exploiting these compounds, however, has been in identifying their relevant cellular targets. Here, we present a two-tiered CRISPR-mediated chemical-genetic strategy for target identification: combined genome-wide knockdown and overexpression screening as well as focused, comparative chemical-genetic profiling.

  3. Genome-scale CRISPR-Cas9 Knockout and Transcriptional Activation Screening

    PubMed Central

    Joung, Julia; Konermann, Silvana; Gootenberg, Jonathan S.; Abudayyeh, Omar O.; Platt, Randall J.; Brigham, Mark D.; Sanjana, Neville E.; Zhang, Feng

    2017-01-01

    Forward genetic screens are powerful tools for the unbiased discovery and functional characterization of specific genetic elements associated with a phenotype of interest. Recently, the RNA-guided endonuclease Cas9 from the microbial CRISPR (clustered regularly interspaced short palindromic repeats) immune system has been adapted for genome-scale screening by combining Cas9 with pooled guide RNA libraries. Here we describe a protocol for genome-scale knockout and transcriptional activation screening using the CRISPR-Cas9 system. Custom- or ready-made guide RNA libraries are constructed and packaged into lentiviral vectors for delivery into cells for screening. As each screen is unique, we provide guidelines for determining screening parameters and maintaining sufficient coverage. To validate candidate genes identified from the screen, we further describe strategies for confirming the screening phenotype as well as genetic perturbation through analysis of indel rate and transcriptional activation. Beginning with library design, a genome-scale screen can be completed in 9–15 weeks followed by 4–5 weeks of validation. PMID:28333914

  4. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening.

    PubMed

    Joung, Julia; Konermann, Silvana; Gootenberg, Jonathan S; Abudayyeh, Omar O; Platt, Randall J; Brigham, Mark D; Sanjana, Neville E; Zhang, Feng

    2017-04-01

    Forward genetic screens are powerful tools for the unbiased discovery and functional characterization of specific genetic elements associated with a phenotype of interest. Recently, the RNA-guided endonuclease Cas9 from the microbial CRISPR (clustered regularly interspaced short palindromic repeats) immune system has been adapted for genome-scale screening by combining Cas9 with pooled guide RNA libraries. Here we describe a protocol for genome-scale knockout and transcriptional activation screening using the CRISPR-Cas9 system. Custom- or ready-made guide RNA libraries are constructed and packaged into lentiviral vectors for delivery into cells for screening. As each screen is unique, we provide guidelines for determining screening parameters and maintaining sufficient coverage. To validate candidate genes identified by the screen, we further describe strategies for confirming the screening phenotype, as well as genetic perturbation, through analysis of indel rate and transcriptional activation. Beginning with library design, a genome-scale screen can be completed in 9-15 weeks, followed by 4-5 weeks of validation.

  5. Impact of preimplantation genetic screening on donor oocyte-recipient cycles in the United States.

    PubMed

    Barad, David H; Darmon, Sarah K; Kushnir, Vitaly A; Albertini, David F; Gleicher, Norbert

    2017-11-01

    Our objective was to estimate the contribution of preimplantation genetic screening to in vitro fertilization pregnancy outcomes in donor oocyte-recipient cycles. This was a retrospective cross-sectional study of US national data from the Society for Assisted Reproductive Technology Clinic Outcome Reporting System between 2005 and 2013. Society for Assisted Reproductive Technology Clinic Outcome Reporting relies on voluntarily annual reports by more than 90% of US in vitro fertilization centers. We evaluated pregnancy and live birth rates in donor oocyte-recipient cycles after the first embryo transfer with day 5/6 embryos. Statistical models, adjusted for patient and donor ages, number of embryos transferred, race, infertility diagnosis, and cycle year were created to compare live birth rates in 392 preimplantation genetic screening and 20,616 control cycles. Overall, pregnancy and live birth rates were significantly lower in preimplantation genetic screening cycles than in control cycles. Adjusted odds of live birth for preimplantation genetic screening cycles were reduced by 35% (odds ratio, 0.65, 95% confidence interval, 0.53-0.80; P < .001). Preimplantation genetic screening, as practiced in donor oocyte-recipient cycles over the past 9 years, has not been associated with improved odds of live birth or reduction in miscarriage rates. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Cadherins and Their Partners in the Nematode Worm Caenorhabditis elegans

    PubMed Central

    Hardin, Jeff; Lynch, Allison; Loveless, Timothy; Pettitt, Jonathan

    2018-01-01

    The extreme simplicity of Caenorhabditis elegans makes it an ideal system to study the basic principles of cadherin function at the level of single cells within the physiologically relevant context of a developing animal. The genetic tractability of C. elegans also means that components of cadherin complexes can be identified through genetic modifier screens, allowing a comprehensive in vivo characterization of the macromolecular assemblies involved in cadherin function during tissue formation and maintenance in C. elegans. This work shows that a single cadherin system, the classical cadherin–catenin complex, is essential for diverse morphogenetic events during embryogenesis through its interactions with a range of mostly conserved proteins that act to modulate its function. The role of other members of the cadherin family in C. elegans, including members of the Fat-like, Flamingo/CELSR and calsyntenin families is less well characterized, but they have clear roles in neuronal development and function. PMID:23481198

  7. A survey of the use of soy in processed Turkish meat products and detection of genetic modification.

    PubMed

    Ulca, Pelin; Balta, Handan; Senyuva, Hamide Z

    2014-01-01

    To screen for possible illegal use of soybeans in meat products, the performance characteristics of a commercial polymer chain reaction (PCR) kit for detection of soybean DNA in raw and cooked meat products were established. Minced chicken and beef products containing soybean at levels from 0.1% to 10.0% were analysed by real-time PCR to amplify the soybean lectin gene. The PCR method could reliably detect the addition of soybean at a level of 0.1%. A survey of 38 Turkish processed meat products found only six samples to be negative for the presence of soybean. In 32 (84%) positive samples, 13 (34%) contained levels of soy above 0.1%. Of soybean positive samples, further DNA analysis was conducted by real-time PCR to detect whether genetically modified (GM) soybean had been used. Of 32 meat samples containing soybean, two samples were positive for GM modification.

  8. Animal models to detect allergenicity to foods and genetically modified products: workshop summary.

    PubMed Central

    Tryphonas, Helen; Arvanitakis, George; Vavasour, Elizabeth; Bondy, Genevieve

    2003-01-01

    Respiratory allergy and allergy to foods continue to be important health issues. There is evidence to indicate that the incidence of food allergy around the world is on the rise. Current estimates indicate that approximately 5% of young children and 1-2% of adults suffer from true food allergy (Kagan 2003). Although a large number of in vivo and in vitro tests exist for the clinical diagnosis of allergy in humans, we lack validated animal models of allergenicity. This deficiency creates serious problems for regulatory agencies and industries that must define the potential allergenicity of foods before marketing. The emergence of several biotechnologically derived foods and industrial proteins, as well as their potential to sensitize genetically predisposed populations to develop allergy, has prompted health officials and regulatory agencies around the world to seek approaches and methodologies to screen novel proteins for allergenicity. PMID:12573909

  9. 77 FR 7172 - Sequoyah National Wildlife Refuge, Sequoyah, Muskogee, and Haskell Counties, OK; Comprehensive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    .... Scoping for the environmental assessment (EA) on use of specified genetically modified crops in... of genetically modified crops in association with the cooperative farming program was released on... assessment of using specified genetically modified crops into the CCP and determined that an environmental...

  10. HYBRIDIZATION STUDY BETWEEN GENETICALLY MODIFIED BRASSICA NAPUS AND NON-GENETICALLY MODIFIED B. NAPUS AND B. RAPA

    EPA Science Inventory

    Gene exchange between cultivated crops and wild species has gained significance in recent years because of concerns regarding the potential for gene flow between genetically modified (GM) crops and their domesticated and wild relatives. As part of our ecological effects of gene ...

  11. MATERNAL EFFECTS IN ADVANCED HYBRIDS OF GENETICALLY MODIFIED AND NON-GENETICALLY MODIFIED BRASSICA SPECIES

    EPA Science Inventory

    Identification of fitness traits potentially impacted by gene flow from genetically modified (GM) crops to compatible relatives is of interest in risk assessments for GM crops. Reciprocal crosses were made between GM canola, Brassica napus cv. RaideRR that expresses CP4 EPSPS fo...

  12. Judaism, genetic screening and genetic therapy.

    PubMed

    Rosner, F

    1998-01-01

    Genetic screening, gene therapy and other applications of genetic engineering are permissible in Judaism when used for the treatment, cure, or prevention of disease. Such genetic manipulation is not considered to be a violation of God's natural law, but a legitimate implementation of the biblical mandate to heal. If Tay-Sachs disease, diabetes, hemophilia, cystic fibrosis, Huntington's disease or other genetic diseases can be cured or prevented by "gene surgery," then it is certainly permitted in Jewish law. Genetic premarital screening is encouraged in Judaism for the purpose of discouraging at-risk marriages for a fatal illness such as Tay-Sachs disease. Neonatal screening for treatable conditions such as phenylketonuria is certainly desirable and perhaps required in Jewish law. Preimplantation screening and the implantation of only "healthy" zygotes into the mother's womb to prevent the birth of an affected child are probably sanctioned in Jewish law. Whether or not these assisted reproduction techniques may be used to choose the sex of one's offspring, to prevent the birth of a child with a sex-linked disease such as hemophilia, has not yet been ruled on by modern rabbinic decisions. Prenatal screening with the specific intent of aborting an affected fetus is not allowed according to most rabbinic authorities, although a minority view permits it "for great need." Not to have children if both parents are carriers of genetic diseases such as Tay-Sachs is not a Jewish option. Preimplantation screening is preferable. All screening test results must remain confidential. Judaism does not permit the alteration or manipulation of physical traits and characteristics such as height, eye and hair color, facial features and the like, when such change provides no useful benefit to mankind. On the other hand, it is permissible to clone organisms and microorganisms to facilitate the production of insulin, growth hormone, and other agents intended to benefit mankind and to cure and treat diseases.

  13. A Strategy To Isolate Modifiers of Caenorhabditis elegans Lethal Mutations: Investigating the Endoderm Specifying Ability of the Intestinal Differentiation GATA Factor ELT-2.

    PubMed

    Wiesenfahrt, Tobias; Duanmu, Jingjie; Snider, Frances; Moerman, Don; Au, Vinci; Li-Leger, Erica; Flibotte, Stephane; Parker, Dylan M; Marshall, Craig J; Nishimura, Erin Osborne; Mains, Paul E; McGhee, James D

    2018-05-04

    The ELT-2 GATA factor normally functions in differentiation of the C. elegans endoderm, downstream of endoderm specification. We have previously shown that, if ELT-2 is expressed sufficiently early, it is also able to specify the endoderm and to replace all other members of the core GATA-factor transcriptional cascade (END-1, END-3, ELT-7). However, such rescue requires multiple copies (and presumably overexpression) of the end-1p :: elt-2 cDNA transgene; a single copy of the transgene does not rescue. We have made this observation the basis of a genetic screen to search for genetic modifiers that allow a single copy of the end-1p :: elt-2 cDNA transgene to rescue the lethality of the end-1 end-3 double mutant. We performed this screen on a strain that has a single copy insertion of the transgene in an end-1 end-3 background. These animals are kept alive by virtue of an extrachromosomal array containing multiple copies of the rescuing transgene; the extrachromosomal array also contains a toxin under heat shock control to counterselect for mutagenized survivors that have been able to lose the rescuing array. A screen of ∼14,000 mutagenized haploid genomes produced 17 independent surviving strains. Whole genome sequencing was performed to identify genes that incurred independent mutations in more than one surviving strain. The C. elegans gene tasp-1 was mutated in four independent strains. tasp-1 encodes the C. elegans homolog of Taspase, a threonine-aspartic acid protease that has been found, in both mammals and insects, to cleave several proteins involved in transcription, in particular MLL1/trithorax and TFIIA. A second gene, pqn-82 , was mutated in two independent strains and encodes a glutamine-asparagine rich protein. tasp-1 and pqn-82 were verified as loss-of-function modifiers of the end-1p :: elt-2 transgene by RNAi and by CRISPR/Cas9-induced mutations. In both cases, gene loss leads to modest increases in the level of ELT-2 protein in the early endoderm although ELT-2 levels do not strictly correlate with rescue. We suggest that tasp-1 and pqn-82 represent a class of genes acting in the early embryo to modulate levels of critical transcription factors or to modulate the responsiveness of critical target genes. The screen's design, rescuing lethality with an extrachromosomal transgene followed by counterselection, has a background survival rate of <10 -4 without mutagenesis and should be readily adapted to the general problem of identifying suppressors of C. elegans lethal mutations. Copyright © 2018 Wiesenfahrt et al.

  14. Changes in screening behaviors and attitudes toward screening from pre-test genetic counseling to post-disclosure in Lynch syndrome families.

    PubMed

    Burton-Chase, A M; Hovick, S R; Peterson, S K; Marani, S K; Vernon, S W; Amos, C I; Frazier, M L; Lynch, P M; Gritz, E R

    2013-03-01

    The purpose of this study was to examine colonoscopy adherence and attitudes toward colorectal cancer (CRC) screening in individuals who underwent Lynch syndrome genetic counseling and testing. We evaluated changes in colonoscopy adherence and CRC screening attitudes in 78 cancer-unaffected relatives of Lynch syndrome mutation carriers before pre-test genetic counseling (baseline) and at 6 and 12 months post-disclosure of test results (52 mutation negative and 26 mutation positive). While both groups were similar at baseline, at 12 months post-disclosure, a greater number of mutation-positive individuals had had a colonoscopy compared with mutation-negative individuals. From baseline to 12 months post-disclosure, the mutation-positive group demonstrated an increase in mean scores on measures of colonoscopy commitment, self-efficacy, and perceived benefits of CRC screening, and a decrease in mean scores for perceived barriers to CRC screening. Mean scores on colonoscopy commitment decreased from baseline to 6 months in the mutation-negative group. To conclude, adherence to risk-appropriate guidelines for CRC surveillance improved after genetic counseling and testing for Lynch syndrome. Mutation-positive individuals reported increasingly positive attitudes toward CRC screening after receiving genetic test results, potentially reinforcing longer term colonoscopy adherence. © 2013 John Wiley & Sons A/S.

  15. A modified MS-PCR approach to diagnose patients with Prader-Willi and Angelman syndrome.

    PubMed

    Dos Santos, Jéssica Fernandes; Mota, Laís R; Rocha, Pedro Henrique Silva Andrade; Ferreira de Lima, Renata Lúcia L

    2016-11-01

    Prader-Willi (PWS) and Angelman (AS) syndromes are clinically distinct neurodevelopmental genetic diseases with multiple phenotypic manifestations. They are one of the most common genetic syndromes caused by non-Mendelian inheritance in the form of genomic imprinting, and can be attributable to the loss of gene expression due to imprinting within the chromosomal region 15q11-q13. Clinical diagnosis of PWS and AS is challenging, and the use of molecular and cytomolecular studies is recommended to help in determining the diagnosis of these conditions. The methylation analysis is a sensible approach; however there are several techniques for this purpose, such as the methylation-sensitive polymerase chain reaction (MS-PCR). This study aims to optimize the MS-PCR assay for the diagnosis of potential PWS and AS patients using DNA modified by sodium bisulfite. We used the MS-PCR technique of PCR described by Kosaki et al. (1997) adapted with betaine. All different concentrations of betaine used to amplify the methylated and unmethylated chromosomal region 15q11-q13 on the gene SNRPN showed amplification results, which increased proportionally to the concentration of betaine. The methylation analysis is a technically robust and reproducible screening method for PWS and AS. The MS-PCR assures a faster, cheaper and more efficient method for the primary diagnosis of the SNRPN gene in cases with PWS and AS, and may detect all of the three associated genetic abnormalities: deletion, uniparental disomy or imprinting errors.

  16. A high-throughput multiplex method adapted for GMO detection.

    PubMed

    Chaouachi, Maher; Chupeau, Gaëlle; Berard, Aurélie; McKhann, Heather; Romaniuk, Marcel; Giancola, Sandra; Laval, Valérie; Bertheau, Yves; Brunel, Dominique

    2008-12-24

    A high-throughput multiplex assay for the detection of genetically modified organisms (GMO) was developed on the basis of the existing SNPlex method designed for SNP genotyping. This SNPlex assay allows the simultaneous detection of up to 48 short DNA sequences (approximately 70 bp; "signature sequences") from taxa endogenous reference genes, from GMO constructions, screening targets, construct-specific, and event-specific targets, and finally from donor organisms. This assay avoids certain shortcomings of multiplex PCR-based methods already in widespread use for GMO detection. The assay demonstrated high specificity and sensitivity. The results suggest that this assay is reliable, flexible, and cost- and time-effective for high-throughput GMO detection.

  17. RNAi-Based Suppressor Screens Reveal Genetic Interactions Between the CRL2LRR-1 E3-Ligase and the DNA Replication Machinery in Caenorhabditis elegans.

    PubMed

    Ossareh-Nazari, Batool; Katsiarimpa, Anthi; Merlet, Jorge; Pintard, Lionel

    2016-10-13

    Cullin-RING E3-Ligases (CRLs), the largest family of E3 ubiquitin-Ligases, regulate diverse cellular processes by promoting ubiquitination of target proteins. The evolutionarily conserved Leucine Rich Repeat protein 1 (LRR-1) is a substrate-recognition subunit of a CRL2 LRR-1 E3-ligase. Here we provide genetic evidence supporting a role of this E3-enzyme in the maintenance of DNA replication integrity in Caenorhabditis elegans Through RNAi-based suppressor screens of lrr-1(0) and cul-2(or209ts) mutants, we identified two genes encoding components of the GINS complex, which is part of the Cdc45-MCM-GINS (CMG) replicative helicase, as well as CDC-7 and MUS-101, which drives the assembly of the CMG helicase during DNA replication. In addition, we identified the core components of the ATR/ATL-1 DNA replication checkpoint pathway (MUS-101, ATL-1, CLSP-1, CHK-1). These results suggest that the CRL2 LRR-1 E3-ligase acts to modify or degrade factor(s) that would otherwise misregulate the replisome, eventually leading to the activation of the DNA replication checkpoint. Copyright © 2016 Ossareh-Nazari et al.

  18. Incorporating genomics into breast and prostate cancer screening: assessing the implications

    PubMed Central

    Chowdhury, Susmita; Dent, Tom; Pashayan, Nora; Hall, Alison; Lyratzopoulos, Georgios; Hallowell, Nina; Hall, Per; Pharoah, Paul; Burton, Hilary

    2013-01-01

    Individual risk prediction and stratification based on polygenic profiling may be useful in disease prevention. Risk-stratified population screening based on multiple factors including a polygenic risk profile has the potential to be more efficient than age-stratified screening. In this article, we summarize the implications of personalized screening for breast and prostate cancers. We report the opinions of multidisciplinary international experts who have explored the scientific, ethical, and logistical aspects of stratified screening. We have identified (i) the need to recognize the benefits and harms of personalized screening as compared with existing screening methods, (ii) that the use of genetic data highlights complex ethical issues including discrimination against high-risk individuals by insurers and employers and patient autonomy in relation to genetic testing of minors, (iii) the need for transparency and clear communication about risk scores, about harms and benefits, and about reasons for inclusion and exclusion from the risk-based screening process, and (iv) the need to develop new professional competences and to assess cost-effectiveness and acceptability of stratified screening programs before implementation. We conclude that health professionals and stakeholders need to consider the implications of incorporating genetic information in intervention strategies for health-care planning in the future. Genet Med 2013:15(6):423–432 PMID:23412607

  19. [Progress on biosafety assessment of marker genes in genetically modified foods].

    PubMed

    Yang, Lichen; Yang, Xiaoguang

    2003-05-01

    Marker genes are useful in facilitating the detection of genetically modified organisms(GMO). These genes play an important role during the early identification stage of GMO development, but they exist in the mature genetically modified crops. So the safety assessment of these genes could not be neglected. In this paper, all the study on the biosafety assessment of marker genes were reviewed, their possible hazards and risks were appraised, and the marker genes proved safe were list too. GMO Labeling the is one important regulations for the development of genetically modified foods in the market. The accurate detecting techniques for GMO are the basis for setting up labeling regulation. In addition, some methods used to remove marker genes in genetically modified foods were introduced in the paper, which can eliminate their biosafety concern thoroughly.

  20. Assessment of Genetic Screening in the Military

    DTIC Science & Technology

    against the likelihood of saving lives of military recruits with undetected, potentially life- threatening genetic conditions. Largegenomic databases...The goal of this project was to undertake a cost-benefit analysis of genetic testing in military populations . We weighed the costs of genetictesting...of asymptomatic populations were used to analyze the effect that genetic screening for hypertrophic cardiomyopathy(HCM, the most common cause of sudden

  1. A methodological overview on molecular preimplantation genetic diagnosis and screening: a genomic future?

    PubMed

    Vendrell, Xavier; Bautista-Llácer, Rosa

    2012-12-01

    The genetic diagnosis and screening of preimplantation embryos generated by assisted reproduction technology has been consolidated in the prenatal care framework. The rapid evolution of DNA technologies is tending to molecular approaches. Our intention is to present a detailed methodological view, showing different diagnostic strategies based on molecular techniques that are currently applied in preimplantation genetic diagnosis. The amount of DNA from one single, or a few cells, obtained by embryo biopsy is a limiting factor for the molecular analysis. In this sense, genetic laboratories have developed molecular protocols considering this restrictive condition. Nevertheless, the development of whole-genome amplification methods has allowed preimplantation genetic diagnosis for two or more indications simultaneously, like the selection of histocompatible embryos plus detection of monogenic diseases or aneuploidies. Moreover, molecular techniques have permitted preimplantation genetic screening to progress, by implementing microarray-based comparative genome hybridization. Finally, a future view of the embryo-genetics field based on molecular advances is proposed. The normalization, cost-effectiveness analysis, and new technological tools are the next topics for preimplantation genetic diagnosis and screening. Concomitantly, these additions to assisted reproduction technologies could have a positive effect on the schedules of preimplantation studies.

  2. Current and future molecular approaches in the diagnosis of cystic fibrosis.

    PubMed

    Bergougnoux, Anne; Taulan-Cadars, Magali; Claustres, Mireille; Raynal, Caroline

    2018-05-01

    Cystic Fibrosis is among the first diseases to have general population genetic screening tests and one of the most common indications of prenatal and preimplantation genetic diagnosis for single gene disorders. During the past twenty years, thanks to the evolution of diagnostic techniques, our knowledge of CFTR genetics and pathophysiological mechanisms involved in cystic fibrosis has significantly improved. Areas covered: Sanger sequencing and quantitative methods greatly contributed to the identification of more than 2,000 sequence variations reported worldwide in the CFTR gene. We are now entering a new technological age with the generalization of high throughput approaches such as Next Generation Sequencing and Droplet Digital PCR technologies in diagnostics laboratories. These powerful technologies open up new perspectives for scanning the entire CFTR locus, exploring modifier factors that possibly influence the clinical evolution of patients, and for preimplantation and prenatal diagnosis. Expert commentary: Such breakthroughs would, however, require powerful bioinformatics tools and relevant functional tests of variants for analysis and interpretation of the resulting data. Ultimately, an optimal use of all those resources may improve patient care and therapeutic decision-making.

  3. Some legal aspects of genetic screening.

    PubMed

    Abbing, H R

    2003-01-01

    Screening activities in health care are not always useful and sometimes harmful. The mere offer of a screening test puts the individual's autonomy under constraint. With genetic (predictive and risk assessment) tests, the right to free, informed consent and to protection of privacy and medical confidentiality is even more warranted. Screening evokes many questions from the perspective of the right to health care as well as (in particular with genetic screening) from the perspective of respect for individual human rights. Fear of liability puts pressure on professional restraint not to offer every screening test available. States have to take legislative measures for guaranteeing that only those screening activities become available that can significantly contribute to individual and public health. They also should consider additional rules for protecting individual rights where those that are generally accepted in the "ordinary" medical setting (the individual patient-doctor relationship), offer insufficient protection.

  4. The Role of Genetic Counseling in Pompe Disease After Patients Are Identified Through Newborn Screening.

    PubMed

    Atherton, Andrea M; Day-Salvatore, Debra

    2017-07-01

    An important part of the coordinated care by experienced health care teams for all Pompe disease patients, whether diagnosed through newborn screening (NBS), clinical diagnosis, or prenatal diagnosis, is genetic counseling. Genetic counseling helps families better understand medical recommendations and options presented by the patient's health care team so they can make informed decisions. In addition to providing important information about the inheritance and genetic risks, genetic counseling also provides information about Pompe disease and available treatments and resources and should be offered to families with an affected child and all adults diagnosed with Pompe disease. Although the need for genetic counseling after a positive newborn screen for Pompe disease is recognized, the role that genetic counseling plays for both families of affected patients and health care teams is not fully understood. Consistent best genetic counseling practices also are lacking. The guidance in this article in the "Newborn Screening, Diagnosis, and Treatment for Pompe Disease" supplement is derived from expert consensus from the Pompe Disease Newborn Screening Working Group. It is intended to help guide genetic counseling efforts and provide a clear understanding of the role for families or carriers of Pompe disease identified through NBS; explain special considerations (eg, diagnosis of late-onset Pompe disease before the appearance of symptoms) and the impact and implications associated with a diagnosis (eg, determination of genetic risk and carrier status and preconception counseling); and provide health care teams caring for patients with a framework for a standardized approach to genetic counseling for patients and at-risk family members. Copyright © 2017 by the American Academy of Pediatrics.

  5. Immunotoxicological evaluation of wheat genetically modified with TaDREB4 gene on BALB/c mice.

    PubMed

    Liang, Chun Lai; Zhang, Xiao Peng; Song, Yan; Jia, Xu Dong

    2013-08-01

    To evaluate the immunotoxicological effects of genetically modified wheat with TaDREB4 gene in female BALB/c mice. Female mice weighing 18-22 g were divided into five groups (10 mice/group), which were set as negative control group, common wheat group, parental wheat group, genetically modified wheat group and cyclophosphamide positive control group, respectively. Mice in negative control group and positive control group were fed with AIN93G diet, mice in common wheat group, non-genetically modified parental wheat group and genetically modified wheat group were fed with feedstuffs added corresponding wheat (the proportion is 76%) for 30 days, then body weight, absolute and relative weight of spleen and thymus, white blood cell count, histological examination of immune organ, peripheral blood lymphocytes phenotyping, serum cytokine, serum immunoglobulin, antibody plaque-forming cell, serum half hemolysis value, mitogen-induced splenocyte proliferation, delayed-type hypersensitivity reaction and phagocytic activities of phagocytes were detected. No immunotoxicological effects related to the consumption of the genetically modified wheat were observed in BALB/c mice when compared with parental wheat group, common wheat group and negative control group. From the immunotoxicological point of view, results from this study demonstrate that genetically modified wheat with TaDREB4 gene is as safe as the parental wheat. Copyright © 2013 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  6. Women's Understanding and Attitudes towards Down Syndrome and Other Genetic Conditions in the Context of Prenatal Screening.

    PubMed

    Long, Sarah; O'Leary, Peter; Lobo, Roanna; Dickinson, Jan E

    2018-06-01

    In order to explore the impact of potential new technologies in the area of prenatal screening, we conducted a baseline study using qualitative interviews to explore women's attitudes and knowledge regarding current and future prenatal screening technology and methods. Three cohorts were interviewed, including healthy women without children, healthy women with healthy children, and healthy women with children who have de novo genetic disorders. This study aimed to assess the baseline understanding and attitudes of women in Western Australia. Women from each cohort demonstrated adequate knowledge of the differences between screening and diagnostic tests, but were mostly unaware of the conditions for which screening is currently available except Down syndrome. Women who had children with de novo genetic conditions were generally aware of more genetic conditions than women with or without healthy children. Most women recognised the genetic basis for the conditions mentioned. Two thirds of women understood that Down syndrome is a chromosomal condition; just one third recognised that the phenotype is variable. Most women expressed a positive attitude towards Down syndrome. Social acceptance of children with Down syndrome was commonly mentioned as a concern. While the majority of women with children supported screening for Down syndrome, they emphasised that it must be an autonomous choice. General knowledge of genetic conditions illustrated that women are exposed to diverse conditions from lived experience as well as the media.

  7. [Genetically modified food--unnecessary controversy?].

    PubMed

    Tchórz, Michał; Radoniewicz-Chagowska, Anna; Lewandowska-Stanek, Hanna; Szponar, Elzbieta; Szponar, Jarosław

    2012-01-01

    Fast development of genetic engineering and biotechnology allows use of genetically modified organisms (GMO) more and more in different branches of science and economy. Every year we can see an increase of food amount produced with the use of modification of genetic material. In our supermarkets we can find brand new types of plants, products including genetically modified ingredients or meat from animals fed with food containing GMO. This article presents general information about genetically modified organisms, it also explains the range of genetic manipulation, use of newly developed products and current field area for GMO in the world. Based on scientific data the article presents benefits from development of biotechnology in reference to modified food. It also presents the voice of skeptics who are extremely concerned about the impact of those organisms on human health and natural environment. Problems that appear or can appear as a result of an increase of GMO are very important not only from a toxicologist's or a doctor's point of view but first of all from the point of view of ordinary consumers--all of us.

  8. Feedback inhibition by thiols outranks glutathione depletion: a luciferase-based screen reveals glutathione-deficient γ-ECS and glutathione synthetase mutants impaired in cadmium-induced sulfate assimilation.

    PubMed

    Jobe, Timothy O; Sung, Dong-Yul; Akmakjian, Garo; Pham, Allis; Komives, Elizabeth A; Mendoza-Cózatl, David G; Schroeder, Julian I

    2012-06-01

    Plants exposed to heavy metals rapidly induce changes in gene expression that activate and enhance detoxification mechanisms, including toxic-metal chelation and the scavenging of reactive oxygen species. However, the mechanisms mediating toxic heavy metal-induced gene expression remain largely unknown. To genetically elucidate cadmium-specific transcriptional responses in Arabidopsis, we designed a genetic screen based on the activation of a cadmium-inducible reporter gene. Microarray studies identified a high-affinity sulfate transporter (SULTR1;2) among the most robust and rapid cadmium-inducible transcripts. The SULTR1;2 promoter (2.2 kb) was fused with the firefly luciferase reporter gene to quantitatively report the transcriptional response of plants exposed to cadmium. Stably transformed luciferase reporter lines were ethyl methanesulfonate (EMS) mutagenized, and stable M(2) seedlings were screened for an abnormal luciferase response during exposure to cadmium. The screen identified non-allelic mutant lines that fell into one of three categories: (i) super response to cadmium (SRC) mutants; (ii) constitutive response to cadmium (CRC) mutants; or (iii) non-response and reduced response to cadmium (NRC) mutants. Two nrc mutants, nrc1 and nrc2, were mapped, cloned and further characterized. The nrc1 mutation was mapped to the γ-glutamylcysteine synthetase gene and the nrc2 mutation was identified as the first viable recessive mutant allele in the glutathione synthetase gene. Moreover, genetic, HPLC mass spectrometry, and gene expression analysis of the nrc1 and nrc2 mutants, revealed that intracellular glutathione depletion alone would be insufficient to induce gene expression of sulfate uptake and assimilation mechanisms. Our results modify the glutathione-depletion driven model for sulfate assimilation gene induction during cadmium stress, and suggest that an enhanced oxidative state and depletion of upstream thiols, in addition to glutathione depletion, are necessary to induce the transcription of sulfate assimilation genes during early cadmium stress. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  9. Pathway-based discovery of genetic interactions in breast cancer

    PubMed Central

    Xu, Zack Z.; Boone, Charles; Lange, Carol A.

    2017-01-01

    Breast cancer is the second largest cause of cancer death among U.S. women and the leading cause of cancer death among women worldwide. Genome-wide association studies (GWAS) have identified several genetic variants associated with susceptibility to breast cancer, but these still explain less than half of the estimated genetic contribution to the disease. Combinations of variants (i.e. genetic interactions) may play an important role in breast cancer susceptibility. However, due to a lack of statistical power, the current tests for genetic interactions from GWAS data mainly leverage prior knowledge to focus on small sets of genes or SNPs that are known to have an association with breast cancer. Thus, many genetic interactions, particularly among novel variants, remain understudied. Reverse-genetic interaction screens in model organisms have shown that genetic interactions frequently cluster into highly structured motifs, where members of the same pathway share similar patterns of genetic interactions. Based on this key observation, we recently developed a method called BridGE to search for such structured motifs in genetic networks derived from GWAS studies and identify pathway-level genetic interactions in human populations. We applied BridGE to six independent breast cancer cohorts and identified significant pathway-level interactions in five cohorts. Joint analysis across all five cohorts revealed a high confidence consensus set of genetic interactions with support in multiple cohorts. The discovered interactions implicated the glutathione conjugation, vitamin D receptor, purine metabolism, mitotic prometaphase, and steroid hormone biosynthesis pathways as major modifiers of breast cancer risk. Notably, while many of the pathways identified by BridGE show clear relevance to breast cancer, variants in these pathways had not been previously discovered by traditional single variant association tests, or single pathway enrichment analysis that does not consider SNP-SNP interactions. PMID:28957314

  10. Moderating Effects of Autism on Parent Views of Genetic Screening for Aggression

    ERIC Educational Resources Information Center

    May, Michael E.; Brandt, Rachel C.; Bohannan, Joseph K.

    2012-01-01

    Advances in gene-environment interaction research have revealed genes that are associated with aggression. However, little is known about parent perceptions of genetic screening for behavioral symptoms like aggression as opposed to diagnosing disabilities. These perceptions may influence future research endeavors involving genetic linkage studies…

  11. Development and inter-laboratory assessment of droplet digital PCR assays for multiplex quantification of 15 genetically modified soybean lines.

    PubMed

    Košir, Alexandra Bogožalec; Spilsberg, Bjørn; Holst-Jensen, Arne; Žel, Jana; Dobnik, David

    2017-08-17

    Quantification of genetically modified organisms (GMOs) in food and feed products is often required for their labelling or for tolerance thresholds. Standard-curve-based simplex quantitative polymerase chain reaction (qPCR) is the prevailing technology, which is often combined with screening analysis. With the rapidly growing number of GMOs on the world market, qPCR analysis becomes laborious and expensive. Innovative cost-effective approaches are therefore urgently needed. Here, we report the development and inter-laboratory assessment of multiplex assays to quantify GMO soybean using droplet digital PCR (ddPCR). The assays were developed to facilitate testing of foods and feed for compliance with current GMO regulations in the European Union (EU). Within the EU, the threshold for labelling is 0.9% for authorised GMOs per ingredient. Furthermore, the EU has set a technical zero tolerance limit of 0.1% for certain unauthorised GMOs. The novel multiplex ddPCR assays developed target 11 GMO soybean lines that are currently authorised, and four that are tolerated, pending authorisation in the EU. Potential significant improvements in cost efficiency are demonstrated. Performance was assessed for the critical parameters, including limits of detection and quantification, and trueness, repeatability, and robustness. Inter-laboratory performance was also determined on a number of proficiency programme and real-life samples.

  12. Proteomic profiling of liver from Atlantic salmon (Salmo salar) fed genetically modified soy compared to the near-isogenic non-GM line.

    PubMed

    Sissener, Nini H; Martin, Samuel A M; Cash, Phillip; Hevrøy, Ernst M; Sanden, Monica; Hemre, Gro-Ingunn

    2010-06-01

    The aim of this study was to investigate potential differences in liver protein expression of Atlantic salmon fed genetically modified (GM) Roundup Ready soy at a high inclusion level (25% inclusion, constituting 21% of crude protein in the diet) for 7 months or a compositionally similar non-GM diet. The liver was selected as the target organ due to its importance in the general metabolism, and 2D gel electrophoresis used as a screening tool. Samples from 12 individual fish from each diet group were evaluated. Of a total of 781 analysed protein spots, only 36 were significantly different by ANOVA (p < 0.05) in abundance between the diet groups. All these spots had low fold differences (1.2-1.6) and high false discovery rate (q = 0.44), indicating minor differences in liver protein synthesis between fish fed GM and non-GM soy. Additionally, low fold differences were observed. Four protein spots were analyzed by liquid chromatography tandem mass spectrometry and identified using a combination of online searches in NCBI and searches in an inhouse database containing salmonid expressed sequence tags and contigs. Follow-up on these proteins by real-time polymerase chain reaction did not identify differences at the transcriptional level.

  13. Traceability of genetically modified organisms.

    PubMed

    Aarts, Henk J M; van Rie, Jean-Paul P F; Kok, Esther J

    2002-01-01

    EU regulations stipulate the labeling of food products containing genetically modified organisms (GMOs) unless the GMO content is due to adventitious and unintended 'contamination' and not exceeding the 1% level at ingredient basis. In addition, member states have to ensure full traceability at all stages of the placing on the market of GMOs. Both requirements ensure consumers 'right to know', facilitate enforcement of regulatory requirements and are of importance for environmental monitoring and postmarket surveillance. Besides administrative procedures, such as used in quality certification systems, the significance of adequate molecular methods becomes more and more apparent. During the last decade a considerable number of molecular methods have been developed and validated that enable the detection, identification and quantification of GMO impurities. Most of them rely on the PCR technology and can only detect one specific stretch of DNA. It can, however, be anticipated that in the near future the situation will become more complex. The number of GMO varieties, including 'stacked-gene' varieties, which will enter the European Market will increase and it is likely that these varieties will harbor more variable constructs. New tools will be necessary to keep up with these developments. One of the most promising techniques is microarray analysis. This technique enables the screening for a large number of different GMOs within a single experiment.

  14. ALDH1A2 (RALDH2) genetic variation in human congenital heart disease

    PubMed Central

    2009-01-01

    Background Signaling by the vitamin A-derived morphogen retinoic acid (RA) is required at multiple steps of cardiac development. Since conversion of retinaldehyde to RA by retinaldehyde dehydrogenase type II (ALDH1A2, a.k.a RALDH2) is critical for cardiac development, we screened patients with congenital heart disease (CHDs) for genetic variation at the ALDH1A2 locus. Methods One-hundred and thirty-three CHD patients were screened for genetic variation at the ALDH1A2 locus through bi-directional sequencing. In addition, six SNPs (rs2704188, rs1441815, rs3784259, rs1530293, rs1899430) at the same locus were studied using a TDT-based association approach in 101 CHD trios. Observed mutations were modeled through molecular mechanics (MM) simulations using the AMBER 9 package, Sander and Pmemd programs. Sequence conservation of observed mutations was evaluated through phylogenetic tree construction from ungapped alignments containing ALDH8 s, ALDH1Ls, ALDH1 s and ALDH2 s. Trees were generated by the Neighbor Joining method. Variations potentially affecting splicing mechanisms were cloned and functional assays were designed to test splicing alterations using the pSPL3 splicing assay. Results We describe in Tetralogy of Fallot (TOF) the mutations Ala151Ser and Ile157Thr that change non-polar to polar residues at exon 4. Exon 4 encodes part of the highly-conserved tetramerization domain, a structural motif required for ALDH oligomerization. Molecular mechanics simulation studies of the two mutations indicate that they hinder tetramerization. We determined that the SNP rs16939660, previously associated with spina bifida and observed in patients with TOF, does not affect splicing. Moreover, association studies performed with classical models and with the transmission disequilibrium test (TDT) design using single marker genotype, or haplotype information do not show differences between cases and controls. Conclusion In summary, our screen indicates that ALDH1A2 genetic variation is present in TOF patients, suggesting a possible causal role for this gene in rare cases of human CHD, but does not support the hypothesis that variation at the ALDH1A2 locus is a significant modifier of the risk for CHD in humans. PMID:19886994

  15. Multiple organ histopathological changes in broiler chickens fed on genetically modified organism.

    PubMed

    Cîrnatu, Daniela; Jompan, A; Sin, Anca Ileana; Zugravu, Cornelia Aurelia

    2011-01-01

    Diet can influence the structural characteristics of internal organs. An experiment involving 130 meat broilers was conducted during 42 days (life term for a meat broiler) to study the effect of feed with protein from genetically modified soy. The 1-day-old birds were randomly allocated to five study groups, fed with soy, sunflower, wheat, fish flour, PC starter. In the diet of each group, an amount of protein from soy was replaced with genetically modified soy (I - 0%, II - 25%, III - 50%, IV - 75%, V - 100% protein from genetically modified soy). The level of protein in soy, either modified, or non-modified, was the same. Organs and carcass weights were measured at about 42 days of age of the birds and histopathology exams were performed during May-June 2009. No statistically significant differences were observed in mortality, growth performance variables or carcass and organ yields between broilers consuming diets produced with genetically modified soybean fractions and those consuming diets produced with near-isoline control soybean fractions. Inflammatory and degenerative liver lesions, muscle hypertrophy, hemorrhagic necrosis of bursa, kidney focal tubular necrosis, necrosis and superficial ulceration of bowel and pancreatic dystrophies were found in tissues from broilers fed on protein from genetically modified soy. Different types of lesions found in our study might be due to other causes (parasites, viral) superimposed but their presence exclusively in groups fed with modified soy raises some serious questions about the consequences of use of this type of feed.

  16. Current issues connected with usage of genetically modified crops in production of feed and livestock feeding.

    PubMed

    Kwiatek, K; Mazur, M; Sieradzki, Z

    2008-01-01

    Progress, which is brought by new advances in modern molecular biology, allowed interference in the genome of live organisms and gene manipulation. Introducing new genes to the recipient organism enables to give them new features, absent before. Continuous increase in the area of the biotech crops triggers continuous discussion about safety of genetically modified (GM) crops, including food and feed derived from them. Important issue connected with cultivation of genetically modified crops is a horizontal gene transfer and a bacterial antibiotic resistance. Discussion about safety of GM crops concerns also food allergies caused by eating genetically modified food. The problem of genetic modifications of GM crops used for livestock feeding is widely discussed, taking into account Polish feed law.

  17. Lifestyle Risk Factors Among People Who Have Had Cancer Genetic Testing.

    PubMed

    Quillin, John M

    2016-10-01

    Hereditary cancer genetic counseling often focuses on medically intensive risk-reduction strategies, like imaging and risk-reducing surgeries. Lifestyle factors also influence cancer risk, but health behavior counseling is not common in genetic counseling. Information about typical lifestyle risk factors among patients seeking hereditary cancer risk is sparse. The current study describes cancer risk-relevant lifestyle factors for people who have had cancer genetic testing. Data came from the Health Information National Trends Survey (HINTS 4) collected in 2013. Analytic variables represented American Cancer Society nutrition and physical activity guidelines. Lifestyle factors were assessed for people who had undergone testing for BRCA1, BRCA2, or Lynch Syndrome genes. Among 3016 HINTS respondents, 135 had cancer genetic testing. Of these, 58 % were overweight or obese. Eighteen percent reported no moderate-intensity physical activity. Average sedentary screen-time was 3.4 h (SE = 0.472) daily. Sixty-three percent drank non-diet soda, and 23 % of these people drank soda every day. Between 18 and 36 % consumed less than 2 ½ cups fruits/vegetables daily. Twenty-four percent were current smokers. Lifestyle risk factors were not different between people who had genetic testing and those who had not. In conclusion, most people who had genetic testing for cancer susceptibility have at least one modifiable risk factor. Genetic counselors have opportunities to impact a counselee's cancer risk not only through risk-tailored medical procedures, but also through lifestyle modification recommendations. Results of the current study may foster a broader discussion of genetic counselors' roles in healthy lifestyle education.

  18. To Test or Not to Test? The Role of Attitudes, Knowledge, and Religious Involvement among U.s. Adults on Intent-to-Obtain Adult Genetic Testing

    ERIC Educational Resources Information Center

    Botoseneanu, Anda; Alexander, Jeffrey A.; Banaszak-Holl, Jane

    2011-01-01

    Genetic testing can advance cancer prevention if current screening behaviors improve. Increased prevalence of high-risk genotypes within specific religious groups, use of religious venues for recruiting to genetic screening, and ethical-religious considerations argue for exploring the role of religiosity in forming genetic testing decisions. This…

  19. GMO detection in food and feed through screening by visual loop-mediated isothermal amplification assays.

    PubMed

    Wang, Cong; Li, Rong; Quan, Sheng; Shen, Ping; Zhang, Dabing; Shi, Jianxin; Yang, Litao

    2015-06-01

    Isothermal DNA/RNA amplification techniques are the primary methodology for developing on-spot rapid nucleic acid amplification assays, and the loop-mediated isothermal amplification (LAMP) technique has been developed and applied in the detection of foodborne pathogens, plant/animal viruses, and genetically modified (GM) food/feed contents. In this study, one set of LAMP assays targeting on eight frequently used universal elements, marker genes, and exogenous target genes, such as CaMV35S promoter, FMV35S promoter, NOS, bar, cry1Ac, CP4 epsps, pat, and NptII, were developed for visual screening of GM contents in plant-derived food samples with high efficiency and accuracy. For these eight LAMP assays, their specificity was evaluated by testing commercial GM plant events and their limits of detection were also determined, which are 10 haploid genome equivalents (HGE) for FMV35S promoter, cry1Ac, and pat assays, as well as five HGE for CaMV35S promoter, bar, NOS terminator, CP4 epsps, and NptII assays. The screening applicability of these LAMP assays was further validated successfully using practical canola, soybean, and maize samples. The results suggested that the established visual LAMP assays are applicable and cost-effective for GM screening in plant-derived food samples.

  20. Potential of plant genetic systems for monitoring and screening mutagens

    PubMed Central

    Nilan, R. A.

    1978-01-01

    Plants have too long been ignored as useful screening and monitoring systems of environmental mutagens. However, there are about a dozen reliable, some even unique, plant genetic systems that can increase the scope and effectiveness of chemical and physical mutagen screening and monitoring procedures. Some of these should be included in the Tier II tests. Moreover, plants are the only systems now in use as monitors of genetic effects caused by polluted atmosphere and water and by pesticides. There are several major advantages of the plant test systems which relate to their reproductive nature, easy culture and growth habits that should be considered in mutagen screening and monitoring. In addition to these advantages, the major plant test systems exhibit numerous genetic and chromosome changes for determining the effects of mutagens. Some of these have not yet been detected in other nonmammalian and mammalian test systems, but probably occur in the human organism. Plants have played major roles in various aspects of mutagenesis research, primarily in mutagen screening (detection and verification of mutagenic activity), mutagen monitoring, and determining mutagen effects and mechanisms of mutagen action. They have played lesser roles in quantification of mutagenic activity and understanding the nature of induced mutations. Mutagen monitoring with plants, especially in situ on land or in water, will help determine potential genetic hazards of air and water pollutants and protect the genetic purity of crop plants and the purity of the food supply. The Tradescantia stamen-hair system is used in a mobile laboratory for determining the genetic effects of industrial and automobile pollution in a number of sites in the U.S.A. The fern is employed for monitoring genetic effects of water pollution in the Eastern states. The maize pollen system and certain weeds have monitored genetic effects of pesticides. Several other systems that have considerable value and should be developed and more widely used in mutagen monitoring and screening, especially for in situ monitoring, are discussed. Emphasis is placed on pollen systems in which changes in pollen structure, chemistry, and chromosomes can be scored for monitoring; and screening systems which can record low levels of genetic effects as well as provide information on the nature of induced mutations. The value of plant systems for monitoring and screening mutagens can be improved by: greater knowledge of plant cell processes at the molecular and ultrastructural levels; relating these processes to mutagen effects and plant cell responses; improving current systems for increased sensitivity, ease of detecting genetic and chromosome changes, recording of data (including automation), and for extending the range of genetic and chromosome end points; and designing and developing new systems with the aid of previous and current botanical and genetic knowledge. PMID:367768

  1. ["Screening" in special situations. Assessing predictive genetic screening for hereditary breast and colorectal cancer].

    PubMed

    Jonas, Susanna; Wild, Claudia; Schamberger, Chantal

    2003-02-01

    The aim of this health technology assessment was to analyse the current scientific and genetic counselling on predictive genetic testing for hereditary breast and colorectal cancer. Predictive genetic testing will be available for several common diseases in the future and questions related to financial issues and quality standards will be raised. This report is based on a systematic/nonsystematic literature search in several databases (e.g. EmBase, Medline, Cochrane Library) and on a specific health technology assessment report (CCOHTA) and review (American Gastroenterological Ass.), respectively. Laboratory test methods, early detection methods and the benefit from prophylactic interventions were analysed and social consequences interpreted. Breast and colorectal cancer are counted among the most frequently cancer diseases. Most of them are based on random accumulation of risk factors, 5-10% show a familial determination. A hereditary modified gene is responsible for the increased cancer risk. In these families, high tumour frequency, young age at diagnosis and multiple primary tumours are remarkable. GENETIC DIAGNOSIS: Sequence analysis is the gold standard. Denaturing high performance liquid chromatography is a quick alternative method. The identification of the responsible gene defect in an affected family member is important. If the test result is positive there is an uncertainty whether the disease will develop or not, when and in which degree, which is founded in the geno-/phenotype correlation. The individual risk estimation is based upon empirical evidence. The test results affect the whole family. Currently, primary prevention is possible for familial adenomatous polyposis (celecoxib, prophylactic colectomy) and for hereditary mamma carcinoma (prophylactic mastectomy). The so-called preventive medical check-ups are early detection examinations. The evidence about early detection methods for colorectal cancer is better than for breast cancer. Prophylactic mastectomy (PM) reduces the relative breast cancer risk by approximately 90%. The question is if PM has an impact on mortality. The acceptance of PM is culture-dependent. Colectomy can be used as a prophylactic (FAP) and therapeutic method. After surgery, the cancer risk remains high and so early detection examinations are still necessary. EVIDENCE-BASED STATEMENTS: The evidence is often fragmentary and of limited quality. For objective test result presentation information about sensitivity, specificity, positive predictive value, and number needed to screen and treat, respectively, are necessary. New identification of mutations and demand will lead to an increase of predictive genetic counselling and testing. There is a gap between predictive genetic diagnosis and prediction, prevention, early detection and surgical interventions. These circumstances require a basic strategy. Since predictive genetic diagnosis is a very sensitive issue it is important to deal with it carefully in order to avoid inappropriate hopes. Thus, media, experts and politicians need to consider opportunities and limitations in their daily decision-making processes.

  2. Functional genomics platform for pooled screening and mammalian genetic interaction maps

    PubMed Central

    Kampmann, Martin; Bassik, Michael C.; Weissman, Jonathan S.

    2014-01-01

    Systematic genetic interaction maps in microorganisms are powerful tools for identifying functional relationships between genes and defining the function of uncharacterized genes. We have recently implemented this strategy in mammalian cells as a two-stage approach. First, genes of interest are robustly identified in a pooled genome-wide screen using complex shRNA libraries. Second, phenotypes for all pairwise combinations of hit genes are measured in a double-shRNA screen and used to construct a genetic interaction map. Our protocol allows for rapid pooled screening under various conditions without a requirement for robotics, in contrast to arrayed approaches. Each stage of the protocol can be implemented in ~2 weeks, with additional time for analysis and generation of reagents. We discuss considerations for screen design, and present complete experimental procedures as well as a full computational analysis suite for identification of hits in pooled screens and generation of genetic interaction maps. While the protocols outlined here were developed for our original shRNA-based approach, they can be applied more generally, including to CRISPR-based approaches. PMID:24992097

  3. Detection and traceability of genetically modified organisms in the food production chain.

    PubMed

    Miraglia, M; Berdal, K G; Brera, C; Corbisier, P; Holst-Jensen, A; Kok, E J; Marvin, H J P; Schimmel, H; Rentsch, J; van Rie, J P P F; Zagon, J

    2004-07-01

    Both labelling and traceability of genetically modified organisms are current issues that are considered in trade and regulation. Currently, labelling of genetically modified foods containing detectable transgenic material is required by EU legislation. A proposed package of legislation would extend this labelling to foods without any traces of transgenics. These new legislations would also impose labelling and a traceability system based on documentation throughout the food and feed manufacture system. The regulatory issues of risk analysis and labelling are currently harmonised by Codex Alimentarius. The implementation and maintenance of the regulations necessitates sampling protocols and analytical methodologies that allow for accurate determination of the content of genetically modified organisms within a food and feed sample. Current methodologies for the analysis of genetically modified organisms are focused on either one of two targets, the transgenic DNA inserted- or the novel protein(s) expressed- in a genetically modified product. For most DNA-based detection methods, the polymerase chain reaction is employed. Items that need consideration in the use of DNA-based detection methods include the specificity, sensitivity, matrix effects, internal reference DNA, availability of external reference materials, hemizygosity versus homozygosity, extrachromosomal DNA, and international harmonisation. For most protein-based methods, enzyme-linked immunosorbent assays with antibodies binding the novel protein are employed. Consideration should be given to the selection of the antigen bound by the antibody, accuracy, validation, and matrix effects. Currently, validation of detection methods for analysis of genetically modified organisms is taking place. In addition, new methodologies are developed, including the use of microarrays, mass spectrometry, and surface plasmon resonance. Challenges for GMO detection include the detection of transgenic material in materials with varying chromosome numbers. The existing and proposed regulatory EU requirements for traceability of genetically modified products fit within a broader tendency towards traceability of foods in general and, commercially, towards products that can be distinguished from each other. Traceability systems document the history of a product and may serve the purpose of both marketing and health protection. In this framework, segregation and identity preservation systems allow for the separation of genetically modified and non-modified products from "farm to fork". Implementation of these systems comes with specific technical requirements for each particular step of the food processing chain. In addition, the feasibility of traceability systems depends on a number of factors, including unique identifiers for each genetically modified product, detection methods, permissible levels of contamination, and financial costs. In conclusion, progress has been achieved in the field of sampling, detection, and traceability of genetically modified products, while some issues remain to be solved. For success, much will depend on the threshold level for adventitious contamination set by legislation. Copryright 2004 Elsevier Ltd.

  4. [Assessment of allergenicity of genetically modified food crops].

    PubMed

    Schauzu, M; Pöting, A; Rubin, D; Lampen, A

    2012-03-01

    The placing on the European Union's market of genetically modified crops requires authorization by the European Commission which is based on the proof that the derived foods are as safe as their conventional counterparts. The assessment of potential allergenicity is part of the necessary investigations recommended in the updated Guidance Document of the Scientific Panel on Genetically Modified Organisms (GMO) of the European Food Safety Authority (EFSA), which is based on internationally agreed recommendations. All genetically modified crops which so far have been authorized in the European Union were evaluated by the EFSA GMO Panel which considered it unlikely that their overall allergenicity has been altered.

  5. [Hypothetical link between endometriosis and xenobiotics-associated genetically modified food].

    PubMed

    Aris, A; Paris, K

    2010-12-01

    Endometriosis is an oestrogen-dependent inflammatory disease affecting 10 % of reproductive-aged women. Often accompanied by chronic pelvic pain and infertility, endometriosis rigorously interferes with women's quality of life. Although the pathophysiology of endometriosis remains unclear, a growing body of evidence points to the implication of environmental toxicants. Over the last decade, an increase in the incidence of endometriosis has been reported and coincides with the introduction of genetically modified foods in our diet. Even though assessments of genetically modified food risk have not indicated any hazard on human health, xenobiotics-associated genetically modified food, such as pesticides residues and xenoproteins, could be harmful in the long-term. The "low-dose hypothesis", accumulation and biotransformation of pesticides-associated genetically modified food and the multiplied toxicity of pesticides-formulation adjuvants support this hypothesis. This review summarizes toxic effects (in vitro and on animal models) of some xenobiotics-associated genetically modified food, such as glyphosate and Cry1Ab protein, and extrapolates on their potential role in the pathophysiology of endometriosis. Their roles as immune toxicants, pro-oxidants, endocrine disruptors and epigenetic modulators are discussed. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  6. Genetic and QTL analysis of resistance to Xiphinema index in a grapevine cross.

    PubMed

    Xu, K; Riaz, S; Roncoroni, N C; Jin, Y; Hu, R; Zhou, R; Walker, M A

    2008-01-01

    Resistance to the dagger nematode Xiphinema index has been an important objective in grape rootstock breeding programs. This nematode not only causes severe feeding damage to the root system, but it also vectors grapevine fanleaf virus (GFLV), the causal agent of fanleaf degeneration and one of the most severe viral diseases of grape. The established screening procedures for dagger nematode resistance are time consuming and can produce inconsistent results. A fast and reliable greenhouse-based system for screening resistance to X. index that is suitable for genetic studies and capable of evaluating breeding populations is needed. In this report, the dynamics of nematode numbers, gall formation, and root weight loss were investigated using a variety of soil mixes and pot sizes over a 52-week period. Results indicated that the number of galls formed was correlated with the size of the nematode population and with the degree of root weight loss. After inoculation with 100 nematodes, gall formation could be reliably evaluated in 4-8 weeks in most plant growth conditions and results were obtained 6 months more rapidly than past evaluation methods. This modified X. index resistance screening method was successfully applied to 185 of the 188 F(1) progeny from a cross of D8909-15 x F8909-17 (the 9621 population), which segregates for a form of X. index resistance originally derived from Vitis arizonica. Quantitative trait loci (QTL) analysis was carried out on both parental genetic maps of 255 markers using MapQTL 4.0. Results revealed that X. index resistance is controlled by a major QTL, designated Xiphinema index Resistance 1 (XiR1), near marker VMC5a10 on chromosome 19. The XiR1 QTL was supported by a LOD score of 36.9 and explained 59.9% of the resistance variance in the mapping population.

  7. Adopted Individuals' Views on the Utility and Value of Expanded Carrier Screening.

    PubMed

    Spencer, Sara; Ewing, Sarah; Calcagno, Kathryn; O'Neill, Suzanne

    2018-03-30

    Adoptees may not have family medical history and ethnicity information. Carrier screening assesses reproductive risk. Expanded carrier screening (ECS) screens for many genetic conditions regardless of a patient's knowledge of family history and ethnicity. This study aimed to better understand the opinions and attitudes of adopted individuals on the use of ECS in determining a patient's reproductive genetic risks. Specifically, the study assessed how adopted individuals feel that results of ECS may be useful to them and whether adoptees feel that meeting with a genetics professional in the process of undergoing ECS would be useful. Adult adoptees (N = 124) were recruited online. Their opinions on ECS were explored. The majority reported they had never been offered carrier screening (92%). The majority of adoptees wanted ECS (76%). Neither the amount of contact with biological relatives nor having medical knowledge about biological relatives was significantly associated with adoptees' desire to pursue ECS. There was a significant positive correlation between adoptees of higher education levels and the amount they would pay for ECS (p = 0.004). The majority of participants (95%) indicated a genetics professional would be helpful when undergoing ECS. The findings suggest this population may want ECS and support from genetics healthcare professionals. Advocacy for genetic counseling and testing for adoptees appears justifiable.

  8. Genetics Evaluation Guidelines for the Etiologic Diagnosis of Congenital Hearing Loss

    PubMed Central

    2002-01-01

    The advent of hearing screening in newborns in many states has led to an increase in the use of genetic testing and related genetic services in the follow-up of infants with hearing loss. A significant proportion of those with congenital hearing loss have genetic etiologies underlying their hearing loss. To ensure that those identified with congenital hearing loss receive the genetic services appropriate to their conditions, the Maternal and Child Health Bureau of the Health Resources and Services Administration funded the American College of Medical Genetics to convene an expert panel to develop guidelines for the genetic evaluation of congential hearing loss. After a brief overview of the current knowledge of hearing loss, newborn screening, and newborn hearing screening, we provide an overview of genetic services and a guideline that describes how best to ensure that patients receive appropriate genetic services. The significant contribution of genetic factors to these conditions combined with the rapid evolution of knowledge about the genetics of these conditions overlaid with the inherently multidisciplinary nature of genetic services provides an example of a condition for which a well-integrated multidisciplinary approach to care is clearly needed. PMID:12180152

  9. Cost-Effectiveness Analysis of Different Genetic Testing Strategies for Lynch Syndrome in Taiwan.

    PubMed

    Chen, Ying-Erh; Kao, Sung-Shuo; Chung, Ren-Hua

    2016-01-01

    Patients with Lynch syndrome (LS) have a significantly increased risk of developing colorectal cancer (CRC) and other cancers. Genetic screening for LS among patients with newly diagnosed CRC aims to identify mutations in the disease-causing genes (i.e., the DNA mismatch repair genes) in the patients, to offer genetic testing for relatives of the patients with the mutations, and then to provide early prevention for the relatives with the mutations. Several genetic tests are available for LS, such as DNA sequencing for MMR genes and tumor testing using microsatellite instability and immunohistochemical analyses. Cost-effectiveness analyses of different genetic testing strategies for LS have been performed in several studies from different countries such as the US and Germany. However, a cost-effectiveness analysis for the testing has not yet been performed in Taiwan. In this study, we evaluated the cost-effectiveness of four genetic testing strategies for LS described in previous studies, while population-specific parameters, such as the mutation rates of the DNA mismatch repair genes and treatment costs for CRC in Taiwan, were used. The incremental cost-effectiveness ratios based on discounted life years gained due to genetic screening were calculated for the strategies relative to no screening and to the previous strategy. Using the World Health Organization standard, which was defined based on Taiwan's Gross Domestic Product per capita, the strategy based on immunohistochemistry as a genetic test followed by BRAF mutation testing was considered to be highly cost-effective relative to no screening. Our probabilistic sensitivity analysis results also suggest that the strategy has a probability of 0.939 of being cost-effective relative to no screening based on the commonly used threshold of $50,000 to determine cost-effectiveness. To the best of our knowledge, this is the first cost-effectiveness analysis for evaluating different genetic testing strategies for LS in Taiwan. The results will be informative for the government when considering offering screening for LS in patients newly diagnosed with CRC.

  10. A design for the control of apoptosis in genetically modified Saccharomyces cerevisiae.

    PubMed

    Nishida, Nao; Noguchi, Misa; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2014-01-01

    We have engineered a system that holds potential for use as a safety switch in genetically modified yeasts. Human apoptotic factor BAX (no homolog in yeast), under the control of the FBP1 (gluconeogenesis enzyme) promoter, was conditionally expressed to induce yeast cell apoptosis after glucose depletion. Such systems might prove useful for the safe use of genetically modified organisms.

  11. Disease-modifying genetic factors in cystic fibrosis.

    PubMed

    Marson, Fernando A L

    2018-05-01

    To compile data from the past 10 years regarding the role of modifying genes in cystic fibrosis (CF). CF is a model disease for understanding of the action of modifying genes. Although it is a monogenic (CFTR) autosomal recessive disease, CF presents with wide phenotypic variability. In CF, variability occurs with different intensity among patients by each organ, being organ-specific, resulting from the mutual interaction of environmental and genetic factors, including CFTR mutations and various other genes, most of which are associated with inflammatory processes. In individuals, using precision medicine, gene modification studies have revealed individualized responses to drugs depending on particular CFTR mutations and modifying genes, most of which are alternative ion channels. Studies of modifying genes in CF allow: understanding of clinical variability among patients with the same CFTR genotype; evaluation of precision medicine; understanding of environmental and genetic effects at the organ level; understanding the involvement of genetic variants in inflammatory responses; improvements in genetic counseling; understanding the involvement of genetic variants in inflammatory responses in lung diseases, such as asthma; and understanding the individuality of the person with the disease.

  12. Evaluation of two-year Jewish genetic disease screening program in Atlanta: insight into community genetic screening approaches.

    PubMed

    Shao, Yunru; Liu, Shuling; Grinzaid, Karen

    2015-04-01

    Improvements in genetic testing technologies have led to the development of expanded carrier screening panels for the Ashkenazi Jewish population; however, there are major inconsistencies in current screening practices. A 2-year pilot program was launched in Atlanta in 2010 to promote and facilitate screening for 19 Jewish genetic diseases. We analyzed data from this program, including participant demographics and outreach efforts. This retrospective analysis is based on a de-identified dataset of 724 screenees. Data were obtained through medical chart review and questionnaires and included demographic information, screening results, response to outreach efforts, and follow-up behavior and preferences. We applied descriptive analysis, chi-square tests, and logistic regression to analyze the data and compare findings with published literature. The majority of participants indicated that they were not pregnant or did not have a partner who was pregnant were affiliated with Jewish organizations and reported 100 % AJ ancestry. Overall, carrier frequency was 1 in 3.9. Friends, rabbis, and family members were the most common influencers of the decision to receive screening. People who were older, had a history of pregnancy, and had been previously screened were more likely to educate others (all p < 0.05). Analysis of this 2-year program indicated that people who are ready to have children or expand their families are more likely to get screened and encourage others to be screened. The most effective outreach efforts targeted influencers who then encouraged screening in the target population. Educating influencers and increasing overall awareness were the most effective outreach strategies.

  13. COLA with scale-dependent growth: applications to screened modified gravity models

    NASA Astrophysics Data System (ADS)

    Winther, Hans A.; Koyama, Kazuya; Manera, Marc; Wright, Bill S.; Zhao, Gong-Bo

    2017-08-01

    We present a general parallelized and easy-to-use code to perform numerical simulations of structure formation using the COLA (COmoving Lagrangian Acceleration) method for cosmological models that exhibit scale-dependent growth at the level of first and second order Lagrangian perturbation theory. For modified gravity theories we also include screening using a fast approximate method that covers all the main examples of screening mechanisms in the literature. We test the code by comparing it to full simulations of two popular modified gravity models, namely f(R) gravity and nDGP, and find good agreement in the modified gravity boost-factors relative to ΛCDM even when using a fairly small number of COLA time steps.

  14. 76 FR 78232 - Monsanto Co.; Determination of Nonregulated Status for Soybean Genetically Engineered To Have a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... peer review of safety tests, and health effects of genetically modified organisms and glyphosate. APHIS...] Monsanto Co.; Determination of Nonregulated Status for Soybean Genetically Engineered To Have a Modified... that there is reason to believe are plant pests. Such genetically engineered organisms and products are...

  15. Germ-line variants identified by next generation sequencing in a panel of estrogen and cancer associated genes correlate with poor clinical outcome in Lynch syndrome patients.

    PubMed

    Jóri, Balazs; Kamps, Rick; Xanthoulea, Sofia; Delvoux, Bert; Blok, Marinus J; Van de Vijver, Koen K; de Koning, Bart; Oei, Felicia Trups; Tops, Carli M; Speel, Ernst Jm; Kruitwagen, Roy F; Gomez-Garcia, Encarna B; Romano, Andrea

    2015-12-01

    The risk to develop colorectal and endometrial cancers among subjects testing positive for a pathogenic Lynch syndrome mutation varies, making the risk prediction difficult. Genetic risk modifiers alter the risk conferred by inherited Lynch syndrome mutations, and their identification can improve genetic counseling. We aimed at identifying rare genetic modifiers of the risk of Lynch syndrome endometrial cancer. A family based approach was used to assess the presence of genetic risk modifiers among 35 Lynch syndrome mutation carriers having either a poor clinical phenotype (early age of endometrial cancer diagnosis or multiple cancers) or a neutral clinical phenotype. Putative genetic risk modifiers were identified by Next Generation Sequencing among a panel of 154 genes involved in endometrial physiology and carcinogenesis. A simple pipeline, based on an allele frequency lower than 0.001 and on predicted non-conservative amino-acid substitutions returned 54 variants that were considered putative risk modifiers. The presence of two or more risk modifying variants in women carrying a pathogenic Lynch syndrome mutation was associated with a poor clinical phenotype. A gene-panel is proposed that comprehends genes that can carry variants with putative modifying effects on the risk of Lynch syndrome endometrial cancer. Validation in further studies is warranted before considering the possible use of this tool in genetic counseling.

  16. GAPscreener: an automatic tool for screening human genetic association literature in PubMed using the support vector machine technique.

    PubMed

    Yu, Wei; Clyne, Melinda; Dolan, Siobhan M; Yesupriya, Ajay; Wulf, Anja; Liu, Tiebin; Khoury, Muin J; Gwinn, Marta

    2008-04-22

    Synthesis of data from published human genetic association studies is a critical step in the translation of human genome discoveries into health applications. Although genetic association studies account for a substantial proportion of the abstracts in PubMed, identifying them with standard queries is not always accurate or efficient. Further automating the literature-screening process can reduce the burden of a labor-intensive and time-consuming traditional literature search. The Support Vector Machine (SVM), a well-established machine learning technique, has been successful in classifying text, including biomedical literature. The GAPscreener, a free SVM-based software tool, can be used to assist in screening PubMed abstracts for human genetic association studies. The data source for this research was the HuGE Navigator, formerly known as the HuGE Pub Lit database. Weighted SVM feature selection based on a keyword list obtained by the two-way z score method demonstrated the best screening performance, achieving 97.5% recall, 98.3% specificity and 31.9% precision in performance testing. Compared with the traditional screening process based on a complex PubMed query, the SVM tool reduced by about 90% the number of abstracts requiring individual review by the database curator. The tool also ascertained 47 articles that were missed by the traditional literature screening process during the 4-week test period. We examined the literature on genetic associations with preterm birth as an example. Compared with the traditional, manual process, the GAPscreener both reduced effort and improved accuracy. GAPscreener is the first free SVM-based application available for screening the human genetic association literature in PubMed with high recall and specificity. The user-friendly graphical user interface makes this a practical, stand-alone application. The software can be downloaded at no charge.

  17. Avoiding genetically modified foods in GMO Ground Zero: A reflective self-narrative.

    PubMed

    Edwards, Sachi

    2015-05-01

    I engage in a reflective self-narrative of my experience attempting to maintain a diet free of genetically modified organisms. Social tension over the genetically modified organism industry in Hawai'i, United States, has led to public debates over jobs and social identities. Drawing on local media sources, grassroots organizations, and blog posts, I describe the way this tension has shaped my experience with food, eating, and being with others as a genetically modified organism avoider. I utilize discursive positioning to make sense of my experiences by locating them within the ongoing public conversations that give structure to the daily lives of Hawai'i's residents. © The Author(s) 2015.

  18. ESHRE Task Force on Ethics and Law 21: genetic screening of gamete donors: ethical issues.

    PubMed

    Dondorp, W; De Wert, G; Pennings, G; Shenfield, F; Devroey, P; Tarlatzis, B; Barri, P; Diedrich, K; Eichenlaub-Ritter, U; Tüttelmann, F; Provoost, V

    2014-07-01

    This Task Force document explores the ethical issues involved in the debate about the scope of genetic screening of gamete donors. Calls for expanded donor screening arise against the background of both occasional findings of serious but rare genetic conditions in donors or donor offspring that were not detected through present screening procedures and the advent of new genomic technologies promising affordable testing of donors for a wide range of conditions. Ethical principles require that all stakeholders' interests are taken into account, including those of candidate donors. The message of the profession should be that avoiding all risks is impossible and that testing should remain proportional.

  19. An RNAi-based chemical genetic screen identifies three small-molecule inhibitors of the Wnt/wingless signaling pathway

    PubMed Central

    Gonsalves, Foster C.; Klein, Keren; Carson, Brittany B.; Katz, Shauna; Ekas, Laura A.; Evans, Steve; Nagourney, Robert; Cardozo, Timothy; Brown, Anthony M. C.; DasGupta, Ramanuj

    2011-01-01

    Misregulated β-catenin responsive transcription (CRT) has been implicated in the genesis of various malignancies, including colorectal carcinomas, and it is a key therapeutic target in combating various cancers. Despite significant effort, successful clinical implementation of CRT inhibitory therapeutics remains a challenging goal. This is, in part, because of the challenge of identifying inhibitory compounds that specifically modulate the nuclear transcriptional activity of β-catenin while not affecting its cytoskeletal function in stabilizing adherens junctions at the cell membrane. Here, we report an RNAi-based modifier screening strategy for the identification of CRT inhibitors. Our data provide support for the specificity of these inhibitory compounds in antagonizing the transcriptional function of nuclear β-catenin. We show that these inhibitors efficiently block Wnt/β-catenin–induced target genes and phenotypes in various mammalian and cancer cell lines. Importantly, these Wnt inhibitors are specifically cytotoxic to human colon tumor biopsy cultures as well as colon cancer cell lines that exhibit deregulated Wnt signaling. PMID:21393571

  20. Effective Immunological Guidance of Genetic Analyses Including Exome Sequencing in Patients Evaluated for Hemophagocytic Lymphohistiocytosis.

    PubMed

    Ammann, Sandra; Lehmberg, Kai; Zur Stadt, Udo; Klemann, Christian; Bode, Sebastian F N; Speckmann, Carsten; Janka, Gritta; Wustrau, Katharina; Rakhmanov, Mirzokhid; Fuchs, Ilka; Hennies, Hans C; Ehl, Stephan

    2017-11-01

    We report our experience in using flow cytometry-based immunological screening prospectively as a decision tool for the use of genetic studies in the diagnostic approach to patients with hemophagocytic lymphohistiocytosis (HLH). We restricted genetic analysis largely to patients with abnormal immunological screening, but included whole exome sequencing (WES) for those with normal findings upon Sanger sequencing. Among 290 children with suspected HLH analyzed between 2010 and 2014 (including 17 affected, but asymptomatic siblings), 87/162 patients with "full" HLH and 79/111 patients with "incomplete/atypical" HLH had normal immunological screening results. In 10 patients, degranulation could not be tested. Among the 166 patients with normal screening, genetic analysis was not performed in 107 (all with uneventful follow-up), while 154 single gene tests by Sanger sequencing in the remaining 59 patients only identified a single atypical CHS patient. Flow cytometry correctly predicted all 29 patients with FHL-2, XLP1 or 2. Among 85 patients with defective NK degranulation (including 13 asymptomatic siblings), 70 were Sanger sequenced resulting in a genetic diagnosis in 55 (79%). Eight patients underwent WES, revealing mutations in two known and one unknown cytotoxicity genes and one metabolic disease. FHL3 was the most frequent genetic diagnosis. Immunological screening provided an excellent decision tool for the need and depth of genetic analysis of HLH patients and provided functionally relevant information for rapid patient classification, contributing to a significant reduction in the time from diagnosis to transplantation in recent years.

  1. See what you eat--broad GMO screening with microarrays.

    PubMed

    von Götz, Franz

    2010-03-01

    Despite the controversy of whether genetically modified organisms (GMOs) are beneficial or harmful for humans, animals, and/or ecosystems, the number of cultivated GMOs is increasing every year. Many countries and federations have implemented safety and surveillance systems for GMOs. Potent testing technologies need to be developed and implemented to monitor the increasing number of GMOs. First, these GMO tests need to be comprehensive, i.e., should detect all, or at least the most important, GMOs on the market. This type of GMO screening requires a high degree of parallel tests or multiplexing. To date, DNA microarrays have the highest number of multiplexing capabilities when nucleic acids are analyzed. This trend article focuses on the evolution of DNA microarrays for GMO testing. Over the last 7 years, combinations of multiplex PCR detection and microarray detection have been developed to qualitatively assess the presence of GMOs. One example is the commercially available DualChip GMO (Eppendorf, Germany; http://www.eppendorf-biochip.com), which is the only GMO screening system successfully validated in a multicenter study. With use of innovative amplification techniques, promising steps have recently been taken to make GMO detection with microarrays quantitative.

  2. How scary! An analysis of visual communication concerning genetically modified organisms in Italy.

    PubMed

    Ventura, Vera; Frisio, Dario G; Ferrazzi, Giovanni; Siletti, Elena

    2017-07-01

    Several studies provide evidence of the role of written communication in influencing public perception towards genetically modified organisms, whereas visual communication has been sparsely investigated. This article aims to evaluate the exposure of the Italian population to scary genetically modified organism-related images. A set of 517 images collected through Google are classified considering fearful attributes, and an index that accounts for the scary impact of these images is built. Then, through an ordinary least-squares regression, we estimate the relationship between the Scary Impact Index and a set of variables that describes the context in which the images appear. The results reveal that the first (and most viewed) Google result images contain the most frightful contents. In addition, the agri-food sector in Italy is strongly oriented towards offering a negative representation of genetically modified organisms. Exposure to scary images could be a factor that affects the negative perception of genetically modified organisms in Italy.

  3. Effects of genetically modified T2A-1 rice on the GI health of rats after 90-day supplement

    PubMed Central

    Yuan, Yanfang; Xu, Wentao; He, Xiaoyun; Liu, Haiyan; Cao, Sishuo; Qi, Xiaozhe; Huang, Kunlun; Luo, Yunbo

    2013-01-01

    Bacillus thuringiensis insecticidal toxin (Bt) rice will be commercialized as a main food source. Traditional safety assessments on genetically modified products pay little attention on gastrointestinal (GI) health. More data about GI health of Bt rice must be provided to dispel public' doubts about the potential effects on human health. We constructed an improved safety assessment animal model using a basic subchronic toxicity experiment, measuring a range of parameters including microflora composition, intestinal permeability, epithelial structure, fecal enzymes, bacterial activity, and intestinal immunity. Significant differences were found between rice-fed groups and AIN93G-fed control groups in several parameters, whereas no differences were observed between genetically modified and non-genetically modified groups. No adverse effects were found on GI health resulting from genetically modified T2A-1 rice. In conclusion, this study may offer a systematic safety assessment model for GM material with respect to the effects on GI health. PMID:23752350

  4. Determination of inorganic elements in blood of mice immunized with Bothrops Snake venom using XRF and NAA

    NASA Astrophysics Data System (ADS)

    Lopes da Silva, L. F. F.; Zamboni, C. B.; Bahovschi, V.; Metairon, S.; Suzuki, M. F.; Sant'Anna, O. A.; Rizzutto, M. A.

    2015-07-01

    In this work, mice genetically modified [HIII line] were immunized against different Bothrops snake venoms to produce anti-Bothrops serum (antivenom). The Neutron Activation Analysis (NAA) and Energy Dispersive X-Ray Fluorescence (EDXRF) techniques were used to evaluate Ca and Fe concentrations in blood of these immunized mice in order to establish a potential correlation between both phenotypes: antibody response and blood constituents after Bothrops venom administration. The results were compared with the control group (mice not immunized) and with human being estimative. These data are important for clinical screening of patients submitted to immunological therapy as well as the understanding of the envenoming mechanisms.

  5. Methods for Engineering Sulfate Reducing Bacteria of the Genus Desulfovibrio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chhabra, Swapnil R; Keller, Kimberly L.; Wall, Judy D.

    Sulfate reducing bacteria are physiologically important given their nearly ubiquitous presence and have important applications in the areas of bioremediation and bioenergy. This chapter provides details on the steps used for homologous-recombination mediated chromosomal manipulation of Desulfovibrio vulgaris Hildenborough, a well-studied sulfate reducer. More specifically, we focus on the implementation of a 'parts' based approach for suicide vector assembly, important aspects of anaerobic culturing, choices for antibiotic selection, electroporation-based DNA transformation, as well as tools for screening and verifying genetically modified constructs. These methods, which in principle may be extended to other sulfate-reducing bacteria, are applicable for functional genomics investigations,more » as well as metabolic engineering manipulations.« less

  6. A challenge to the striking genotypic heterogeneity of retinitis pigmentosa: a better understanding of the pathophysiology using the newest genetic strategies

    PubMed Central

    Sorrentino, F S; Gallenga, C E; Bonifazzi, C; Perri, P

    2016-01-01

    Retinitis pigmentosa (RP) is a group of inherited retinal disorders characterized by a complex association between tremendous genotypic multiplicity and great phenotypic heterogeneity. The severity of the clinical manifestation depends on penetrance and expressivity of the disease-gene. Also, various interactions between gene expression and environmental factors have been hypothesized. More than 250 genes with ~4500 causative mutations have been reported to be involved in different RP-related mechanisms. Nowadays, not more than the 50% of RPs are attributable to identified genes, whereas the rest of molecular defects are still undetectable, especially in populations where few genetic screenings have been performed. Therefore, new genetic strategies can be a remarkably useful tool to aid clinical diagnosis, potentially modifying treatment options, and family counseling. Genome-wide analytical techniques (array comparative genomic hybridization and single-nucleotide polymorphism genotyping) and DNA sequencing strategies (arrayed primer extension, Sanger sequencing, and ultra high-throughput sequencing) are successfully used to early make molecular diagnosis detecting single or multiple mutations in the huge heterogeneity of RPs. To date, further research needs to be carried out to better investigate the genotype/phenotype correlation, putting together genetic and clinical findings to provide detailed information concerning the risk of RP development and novel effective treatments. PMID:27564722

  7. Behavioral Health Services Following Implementation of Screening in Massachusetts Medicaid Children

    PubMed Central

    Penfold, Robert B.; Arsenault, Lisa N.; Zhang, Fang; Murphy, Michael; Wissow, Lawrence S.

    2014-01-01

    OBJECTIVES: To determine the relationship of child behavioral health (BH) screening results to receipt of BH services in Massachusetts Medicaid (MassHealth) children. METHODS: After a court decision, Massachusetts primary care providers were mandated to conduct BH screening at well-child visits and use a Current Procedural Terminology code along with a modifier indicating whether a BH need was identified. Using MassHealth claims data, a cohort of continuously enrolled (July 2007–June 2010) children was constructed. The salient visit (first use of the modifier, screening code, or claim in fiscal year 2009) was considered a reference point to examine BH history and postscreening BH services. Bivariate and multivariate logistic regression analyses were performed to determine predictors of postscreening BH services. RESULTS: Of 261 160 children in the cohort, 45% (118 464) were screened and 37% had modifiers. Fifty-seven percent of children screening positive received postscreening BH services compared with 22% of children screening negative. However, only 30% of newly identified children received BH services. The strongest predictors of postscreening BH services for children without a BH history were being in foster care (odds ratio, 10.38; 95% confidence interval, 9.22–11.68) and having a positive modifier (odds ratio, 3.79; 95% confidence interval, 3.53–4.06). CONCLUSIONS: Previous BH history, a positive modifier, and foster care predicted postscreening BH services. Only one-third of newly identified children received services. Thus although screening is associated with an increase in BH recognition, it may be insufficient to improve care. Additional strategies may be needed to enhance engagement in BH services. PMID:25225135

  8. Genetics and bioethics: how our thinking has changed since 1969.

    PubMed

    Walters, LeRoy

    2012-02-01

    In 1969, the field of human genetics was in its infancy. Amniocentesis was a new technique for prenatal diagnosis, and a newborn genetic screening program had been established in one state. There were also concerns about the potential hazards of genetic engineering. A research group at the Hastings Center and Paul Ramsey pioneered in the discussion of genetics and bioethics. Two principal techniques have emerged as being of enduring importance: human gene transfer research and genetic testing and screening. This essay tracks the development and use of these techniques and considers the ethical issues that they raise.

  9. [Methods of identification and assessment of safety of genetically modified microorganisms in manufacture food production].

    PubMed

    Khovaev, A A; Nesterenko, L N; Naroditskiĭ, B S

    2011-01-01

    Methods of identification of genetically modified microorganisms (GMM), used in manufacture food on control probes are presented. Results of microbiological and molecular and genetic analyses of food products and their components important in microbiological and genetic expert examination of GMM in foods are considered. Examination of biosafety of GMM are indicated.

  10. Establishment of apoptotic regulatory network for genetic markers of colorectal cancer.

    PubMed

    Hao, Yibin; Shan, Guoyong; Nan, Kejun

    2017-03-01

    Our purpose is to screen out genetic markers applicable to early diagnosis for colorectal cancer and to establish apoptotic regulatory network model for colorectal cancer, thereby providing theoretical evidence and targeted therapy for early diagnosis of colorectal cancer. Taking databases including CNKI, VIP, Wanfang data, Pub Med, and MEDLINE as main sources of literature retrieval, literatures associated with genetic markers applied to early diagnosis of colorectal cancer were searched to perform comprehensive and quantitative analysis by Meta analysis, hence screening genetic markers used in early diagnosis of colorectal cancer. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were employed to establish apoptotic regulatory network model based on screened genetic markers, and then verification experiment was conducted. Through Meta analysis, seven genetic markers were screened out, including WWOX, K-ras, COX-2, p53, APC, DCC and PTEN, among which DCC shows highest diagnostic efficiency. GO analysis of genetic markers found that six genetic markers played role in biological process, molecular function and cellular component. It was indicated in apoptotic regulatory network built by KEGG analysis and verification experiment that WWOX could promote tumor cell apoptotic in colorectal cancer and elevate expression level of p53. The apoptotic regulatory model of colorectal cancer established in this study provides clinically theoretical evidence and targeted therapy for early diagnosis of colorectal cancer.

  11. Comparison of a Broad-Based Screen versus Disorder-Specific Screen in Detecting Young Children with an Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Wiggins, Lisa D; Piazza, Vivian; Robins, Diana L

    2014-01-01

    The goals of our study were to (a) compare agreement between autism spectrum disorder diagnosis and outcome of the Modified Checklist for Autism in Toddlers and Parents Evaluation of Developmental Status in a sample of toddlers and (b) examine specific concerns noted for toddlers who screened negative on the Modified Checklist for Autism in…

  12. Examination of the Properties of the Modified Checklist for Autism in Toddlers (M-CHAT) in a Population Sample

    ERIC Educational Resources Information Center

    Yama, Brie; Freeman, Tom; Graves, Erin; Yuan, Su; Campbell, M. Karen

    2012-01-01

    This study examines the following properties of the Modified Checklist for Autism in Toddlers (M-CHAT) in an unselected low-risk sample: (a) the maximum age for screen administration; (b) the positive screen rate in the absence of follow-up telephone interviews and; (c) the distributional properties of positive screens. Data came from a…

  13. Readiness of adolescents to use genetically modified organisms according to their knowledge and emotional attitude towards GMOs.

    PubMed

    Lachowski, Stanisław; Jurkiewicz, Anna; Choina, Piotr; Florek-Łuszczki, Magdalena; Buczaj, Agnieszka; Goździewska, Małgorzata

    2017-06-07

    Agriculture based on genetically modified organisms plays an increasingly important role in feeding the world population, which is evidenced by a considerable growth in the size of land under genetically modified crops (GM). Uncertainty and controversy around GM products are mainly due to the lack of accurate and reliable information, and lack of knowledge concerning the essence of genetic modifications, and the effect of GM food on the human organism, and consequently, a negative emotional attitude towards what is unknown. The objective of the presented study was to discover to what extent knowledge and the emotional attitude of adolescents towards genetically modified organisms is related with acceptance of growing genetically modified plants or breeding GM animals on own farm or allotment garden, and the purchase and consumption of GM food, as well as the use of GMOs in medicine. The study was conducted by the method of a diagnostic survey using a questionnaire designed by the author, which covered a group of 500 adolescents completing secondary school on the level of maturity examination. The collected material was subjected to statistical analysis. Research hypotheses were verified using chi-square test (χ 2 ), t-Student test, and stepwise regression analysis. Stepwise regression analysis showed that the readiness of adolescents to use genetically modified organisms as food or for the production of pharmaceuticals, the production of GM plants or animals on own farm, depends on an emotional-evaluative attitude towards GMOs, and the level of knowledge concerning the essence of genetic modifications.

  14. Survival of Skin Graft between Transgenic Cloned Dogs and Non-Transgenic Cloned Dogs

    PubMed Central

    Kim, Geon A; Oh, Hyun Ju; Kim, Min Jung; Jo, Young Kwang; Choi, Jin; Park, Jung Eun; Park, Eun Jung; Lim, Sang Hyun; Yoon, Byung Il; Kang, Sung Keun; Jang, Goo; Lee, Byeong Chun

    2014-01-01

    Whereas it has been assumed that genetically modified tissues or cells derived from somatic cell nuclear transfer (SCNT) should be accepted by a host of the same species, their immune compatibility has not been extensively explored. To identify acceptance of SCNT-derived cells or tissues, skin grafts were performed between cloned dogs that were identical except for their mitochondrial DNA (mtDNA) haplotypes and foreign gene. We showed here that differences in mtDNA haplotypes and genetic modification did not elicit immune responses in these dogs: 1) skin tissues from genetically-modified cloned dogs were successfully transplanted into genetically-modified cloned dogs with different mtDNA haplotype under three successive grafts over 63 days; and 2) non-transgenic cloned tissues were accepted into transgenic cloned syngeneic recipients with different mtDNA haplotypes and vice versa under two successive grafts over 63 days. In addition, expression of the inserted gene was maintained, being functional without eliciting graft rejection. In conclusion, these results show that transplanting genetically-modified tissues into normal, syngeneic or genetically-modified recipient dogs with different mtDNA haplotypes do not elicit skin graft rejection or affect expression of the inserted gene. Therefore, therapeutically valuable tissue derived from SCNT with genetic modification might be used safely in clinical applications for patients with diseased tissues. PMID:25372489

  15. 40 CFR 172.45 - Requirement for a notification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EXPERIMENTAL USE PERMITS Notification for Certain Genetically Modified Microbial Pesticides § 172.45... modified. (2) Nonindigenous microbial pesticides that have not been acted upon by the U.S. Department of... introduction of genetic material that has been deliberately modified. (ii) [Reserved] (2) Testing conducted in...

  16. Coherent spectroscopic methods for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution

    NASA Astrophysics Data System (ADS)

    Moguilnaya, T.; Suminov, Y.; Botikov, A.; Ignatov, S.; Kononenko, A.; Agibalov, A.

    2017-01-01

    We developed the new automatic method that combines the method of forced luminescence and stimulated Brillouin scattering. This method is used for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution. We carried out the statistical spectral analysis of pathogens, genetically modified soy and nano-particles of silver in water from different regions in order to determine the statistical errors of the method. We studied spectral characteristics of these objects in water to perform the initial identification with 95% probability. These results were used for creation of the model of the device for monitor of pathogenic organisms and working model of the device to determine the genetically modified soy in meat.

  17. Good laboratory practices for biochemical genetic testing and newborn screening for inherited metabolic disorders.

    PubMed

    2012-04-06

    Biochemical genetic testing and newborn screening are essential laboratory services for the screening, detection, diagnosis, and monitoring of inborn errors of metabolism or inherited metabolic disorders. Under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) regulations, laboratory testing is categorized on the basis of the level of testing complexity as either waived (i.e., from routine regulatory oversight) or nonwaived testing (which includes tests of moderate and high complexity). Laboratories that perform biochemical genetic testing are required by CLIA regulations to meet the general quality systems requirements for nonwaived testing and the personnel requirements for high-complexity testing. Laboratories that perform public health newborn screening are subject to the same CLIA regulations and applicable state requirements. As the number of inherited metabolic diseases that are included in state-based newborn screening programs continues to increase, ensuring the quality of performance and delivery of testing services remains a continuous challenge not only for public health laboratories and other newborn screening facilities but also for biochemical genetic testing laboratories. To help ensure the quality of laboratory testing, CDC collaborated with the Centers for Medicare & Medicaid Services, the Food and Drug Administration, the Health Resources and Services Administration, and the National Institutes of Health to develop guidelines for laboratories to meet CLIA requirements and apply additional quality assurance measures for these areas of genetic testing. This report provides recommendations for good laboratory practices that were developed based on recommendations from the Clinical Laboratory Improvement Advisory Committee, with additional input from the Secretary's Advisory Committee on Genetics, Health, and Society; the Secretary's Advisory Committee on Heritable Disorders in Newborns and Children; and representatives of newborn screening laboratories. The recommended practices address the benefits of using a quality management system approach, factors to consider before introducing new tests, establishment and verification of test performance specifications, the total laboratory testing process (which consists of the preanalytic, analytic, and postanalytic phases), confidentiality of patient information and test results, and personnel qualifications and responsibilities for laboratory testing for inherited metabolic diseases. These recommendations are intended for laboratories that perform biochemical genetic testing to improve the quality of laboratory services and for newborn screening laboratories to ensure the quality of laboratory practices for inherited metabolic disorders. These recommendations also are intended as a resource for medical and public health professionals who evaluate laboratory practices, for users of laboratory services to facilitate their collaboration with newborn screening systems and use of biochemical genetic tests, and for standard-setting organizations and professional societies in developing future laboratory quality standards and practice recommendations. This report complements Good Laboratory Practices for Molecular Genetic Testing for Heritable Diseases and Conditions (CDC. Good laboratory practices for molecular genetic testing for heritable diseases and conditions. MMWR 2009;58 [No. RR-6]) to provide guidance for ensuring and improving the quality of genetic laboratory services and public health outcomes. Future recommendations for additional areas of genetic testing will be considered on the basis of continued monitoring and evaluation of laboratory practices, technology advancements, and the development of laboratory standards and guidelines.

  18. Genetic testing in congenital heart disease: A clinical approach

    PubMed Central

    Chaix, Marie A; Andelfinger, Gregor; Khairy, Paul

    2016-01-01

    Congenital heart disease (CHD) is the most common type of birth defect. Traditionally, a polygenic model defined by the interaction of multiple genes and environmental factors was hypothesized to account for different forms of CHD. It is now understood that the contribution of genetics to CHD extends beyond a single unified paradigm. For example, monogenic models and chromosomal abnormalities have been associated with various syndromic and non-syndromic forms of CHD. In such instances, genetic investigation and testing may potentially play an important role in clinical care. A family tree with a detailed phenotypic description serves as the initial screening tool to identify potentially inherited defects and to guide further genetic investigation. The selection of a genetic test is contingent upon the particular diagnostic hypothesis generated by clinical examination. Genetic investigation in CHD may carry the potential to improve prognosis by yielding valuable information with regards to personalized medical care, confidence in the clinical diagnosis, and/or targeted patient follow-up. Moreover, genetic assessment may serve as a tool to predict recurrence risk, define the pattern of inheritance within a family, and evaluate the need for further family screening. In some circumstances, prenatal or preimplantation genetic screening could identify fetuses or embryos at high risk for CHD. Although genetics may appear to constitute a highly specialized sector of cardiology, basic knowledge regarding inheritance patterns, recurrence risks, and available screening and diagnostic tools, including their strengths and limitations, could assist the treating physician in providing sound counsel. PMID:26981213

  19. Phenotypic screening of hepatocyte nuclear factor (HNF) 4-{gamma} receptor knockout mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerdin, Anna Karin; Surve, Vikas V.; Joensson, Marie

    2006-10-20

    Using the mouse as a model organism in pharmaceutical research presents unique advantages as its physiology in many ways resembles the human physiology, it also has a relatively short generation time, low breeding and maintenance costs, and is available in a wide variety of inbred strains. The ability to genetically modify mouse embryonic stem cells to generate mouse models that better mimic human disease is another advantage. In the present study, a comprehensive phenotypic screening protocol is applied to elucidate the phenotype of a novel mouse knockout model of hepatocyte nuclear factor (HNF) 4-{gamma}. HNF4-{gamma} is expressed in the kidneys,more » gut, pancreas, and testis. First level of the screen is aimed at general health, morphologic appearance, normal cage behaviour, and gross neurological functions. The second level of the screen looks at metabolic characteristics and lung function. The third level of the screen investigates behaviour more in-depth and the fourth level consists of a thorough pathological characterisation, blood chemistry, haematology, and bone marrow analysis. When compared with littermate wild-type mice (HNF4-{gamma}{sup +/+}), the HNF4-{gamma} knockout (HNF4-{gamma}{sup -/-}) mice had lowered energy expenditure and locomotor activity during night time that resulted in a higher body weight despite having reduced intake of food and water. HNF4-{gamma}{sup -/-} mice were less inclined to build nest and were found to spend more time in a passive state during the forced swim test.« less

  20. A Systematic Genetic Screen to Dissect the MicroRNA Pathway in Drosophila.

    PubMed

    Pressman, Sigal; Reinke, Catherine A; Wang, Xiaohong; Carthew, Richard W

    2012-04-01

    A central goal of microRNA biology is to elucidate the genetic program of miRNA function and regulation. However, relatively few of the effectors that execute miRNA repression have been identified. Because such genes may function in many developmental processes, mutations in them are expected to be pleiotropic and thus are discarded in most standard genetic screens. Here, we describe a systematic screen designed to identify all Drosophila genes in ∼40% of the genome that function in the miRNA pathway. To identify potentially pleiotropic genes, the screen analyzed clones of homozygous mutant cells in heterozygous animals. We identified 45 mutations representing 24 genes, and we molecularly characterized 9 genes. These include 4 previously known genes that encode core components of the miRNA pathway, including Drosha, Pasha, Dicer-1, and Ago1. The rest are new genes that function through chromatin remodeling, signaling, and mRNA decapping. The results suggest genetic screens that use clonal analysis can elucidate the miRNA program and that ∼100 genes are required to execute the miRNA program.

  1. Development of a colloidal gold immunochromatographic strip assay for simple and fast detection of human α-lactalbumin in genetically modified cow milk.

    PubMed

    Tao, Chenyu; Zhang, Qingde; Feng, Na; Shi, Deshi; Liu, Bang

    2016-03-01

    The qualitative and quantitative declaration of food ingredients is important to consumers, especially for genetically modified food as it experiences a rapid increase in sales. In this study, we designed an accurate and rapid detection system using colloidal gold immunochromatographic strip assay (GICA) methods to detect genetically modified cow milk. First, we prepared 2 monoclonal antibodies for human α-lactalbumin (α-LA) and measured their antibody titers; the one with the higher titer was used for further experiments. Then, we found the optimal pH value and protein amount of GICA for detection of pure milk samples. The developed strips successfully detected genetically modified cow milk and non-modified cow milk. To determine the sensitivity of GICA, a quantitative ELISA system was used to determine the exact amount of α-LA, and then genetically modified milk was diluted at different rates to test the sensitivity of GICA; the sensitivity was 10 μg/mL. Our results demonstrated that the applied method was effective to detect human α-LA in cow milk. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Emotional attitudes of young people completing secondary schools towards genetic modification of organisms (GMO) and genetically modified foods (GMF).

    PubMed

    Jurkiewicz, Anna; Zagórski, Jerzy; Bujak, Franciszek; Lachowski, Stanisław; Florek-Łuszczki, Magdalena

    2014-01-01

    The objective of the study was recognition of the opinions of adolescents completing secondary schools concerning genetically modified organisms and genetically modified food, especially the respondents' emotional attitude towards scientific achievements in the area of live genetically modified organisms. The study covered a group of 500 school adolescents completing secondary school at the level of maturity examination. The study was conducted by the method of a diagnostic survey using a self-designed questionnaire form. Knowledge concerning the possible health effects of consumption of food containing GMO among adolescents competing secondary schools is on a relatively low level; the adolescents examined 'know rather little' or 'very little know' about this problem. In respondents' opinions the results of reliable studies pertaining to the health effects of consumption of GMO 'rather do not exist'. The respondents are against the cultivation of GM plants and breeding of GM animals on own farm in the future. Secondary school adolescents considered that the production of genetically modified food means primarily the enrichment of biotechnological companies, higher income for food producers, and not the elimination of hunger in the world or elimination of many diseases haunting humans.

  3. [Safety assessment of foods derived from genetically modified plants].

    PubMed

    Pöting, A; Schauzu, M

    2010-06-01

    The placing of genetically modified plants and derived food on the market falls under Regulation (EC) No. 1829/2003. According to this regulation, applicants need to perform a safety assessment according to the Guidance Document of the Scientific Panel on Genetically Modified Organisms of the European Food Safety Authority (EFSA), which is based on internationally agreed recommendations. This article gives an overview of the underlying legislation as well as the strategy and scientific criteria for the safety assessment, which should generally be based on the concept of substantial equivalence and carried out in relation to an unmodified conventional counterpart. Besides the intended genetic modification, potential unintended changes also have to be assessed with regard to potential adverse effects for the consumer. All genetically modified plants and derived food products, which have been evaluated by EFSA so far, were considered to be as safe as products derived from the respective conventional plants.

  4. Theory-based modifications of an advanced notification letter improves screening for bowel cancer in men: A randomised controlled trial.

    PubMed

    Zajac, Ian T; Duncan, Amy C; Flight, Ingrid; Wittert, Gary A; Cole, Stephen R; Young, Graeme P; Wilson, Carlene J; Turnbull, Deborah A

    2016-09-01

    Male participation in screening for bowel cancer is sub-optimal. Theory-based interventions provide a means of improving screening uptake. To test the efficacy of modifying consumer invitation material in line with continuum and stage theories of health behaviour on screening participation. N = 9216 Australian men aged 50-74 years were randomised to one of four trial arms in a 2 × 2 factorial design randomised controlled trial. Participants received either standard invitation material (control group), or combinations of modified advance-notification and invitation letters. A subsample completed baseline and endpoint behavioural surveys. Participants who received the modified advance notification letter were 12% more likely to screen than those who received the standard version (RR = 1.12, χ(2)(1) = 10.38, p = 0.001). The modified invitation letter did not impact screening uptake (RR = 0.97, χ(2)(1) = 0.63, p = 0.424). No significant changes in psychological variables due to the intervention were observed. Modifications to advance notification letters in line with health behaviour theories significantly improves screening uptake in men. Australian New Zealand Clinical Trials Registry: ACTRN12612001122842 https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=362688. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A Low-Cost and Simple Genetic Screening for Cystic Fibrosis Provided by the Brazilian Public Health System.

    PubMed

    Rispoli, Thaiane; Martins de Castro, Simone; Grandi, Tarciana; Prado, Mayara; Filippon, Letícia; Dornelles da Silva, Cláudia Maria; Vargas, José Eduardo; Rossetti, Lucia Maria Rosa

    2018-05-03

    Cystic fibrosis newborn screening was implemented in Brazil by the Public Health System in 2012. Because of cost, only 1 mutation was tested - p.Phe508del. We developed a robust low-cost genetic test for screening 11 CFTR gene mutations with potential use in developing countries. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Not all GMOs are crop plants: non-plant GMO applications in agriculture

    USDA-ARS?s Scientific Manuscript database

    In the time since the tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteri...

  7. Evaluation of spontaneous propulsive movement as a screening tool to detect rescue of Parkinsonism phenotypes in zebrafish models

    PubMed Central

    Farrell, Thomas C.; Cario, Clinton L.; Milanese, Chiara; Vogt, Andreas; Jeong, Jong-Hyeon; Burton, Edward A.

    2011-01-01

    Zebrafish models of human neuropsychiatric diseases offer opportunities to identify novel therapeutic targets and treatments through phenotype-based genetic or chemical modifier screens. In order to develop an assay to detect rescue of zebrafish models of Parkinsonism, we characterized spontaneous zebrafish larval motor behavior from 3 to 9 days post fertilization in a microtiter plate format suitable for screening, and clarified the role of dopaminergic signaling in its regulation. The proportion of time that larvae spent moving increased progressively between 3 and 9 dpf, whereas their active velocity decreased between 5 and 6 dpf as sporadic burst movements gave way to a more mature beat-and-glide pattern. Spontaneous movement varied between larvae and during the course of recordings as a result of intrinsic larval factors including genetic background. Variability decreased with age, such that small differences between groups of larvae exposed to different experimental conditions could be detected robustly by 6 to 7 dpf. Suppression of endogenous dopaminergic signaling by exposure to MPP+, haloperidol or chlorpromazine reduced mean velocity by decreasing the frequency with which spontaneous movements were initiated, but did not alter active velocity. The variability of mean velocity assays could be reduced by analyzing groups of larvae for each data point, yielding acceptable screening window coefficients; the sample size required in each group was determined by the magnitude of the motor phenotype in different models. For chlorpromazine exposure, samples of four larvae allowed robust separation of treated and untreated data points (Z=0.42), whereas the milder impairment provoked by MPP+ necessitated groups of eight larvae in order to provide a useful discovery assay (Z=0.13). Quantification of spontaneous larval movement offers a simple method to determine functional integrity of motor systems, and may be a useful tool to isolate novel molecular modulators of Parkinsonism phenotypes. PMID:21669287

  8. Introduction of Exogenous HSV-TK Suicide Gene Increases Safety of Keratinocyte-Derived Induced Pluripotent Stem Cells by Providing Genetic "Emergency Exit" Switch.

    PubMed

    Sułkowski, Maciej; Konieczny, Paweł; Chlebanowska, Paula; Majka, Marcin

    2018-01-09

    Since their invention in 2006, induced Pluripotent Stem (iPS) cells remain a great promise for regenerative medicine circumventing the ethical issues linked to Embryonic Stem (ES) cell research. iPS cells can be generated in a patient-specific manner as an unlimited source of various cell types for in vitro drug screening, developmental biology studies and regenerative use. Having the capacity of differentiating into the cells of all three primary germ layers, iPS cells have high potential to form teratoma tumors. This remains their main disadvantage and hazard which, until resolved, prevents utilization of iPS cells in clinic. Here, we present an approach for increasing iPS cells safety by introducing genetic modification-exogenous suicide gene Herpes Simplex Virus Thymidine Kinase ( HSV-TK ). Its expression results in specific vulnerability of genetically modified cells to prodrug-ganciclovir (GCV). We show that HSV-TK expressing cells can be eradicated both in vitro and in vivo with high specificity and efficiency with low doses of GCV. Described strategy increases iPS cells safety for future clinical applications by generating "emergency exit" switch allowing eradication of transplanted cells in case of their malfunction.

  9. Assessment of pleiotropic transcriptome perturbations in Arabidopsis engineered for indirect insect defence.

    PubMed

    Houshyani, Benyamin; van der Krol, Alexander R; Bino, Raoul J; Bouwmeester, Harro J

    2014-06-19

    Molecular characterization is an essential step of risk/safety assessment of genetically modified (GM) crops. Holistic approaches for molecular characterization using omics platforms can be used to confirm the intended impact of the genetic engineering, but can also reveal the unintended changes at the omics level as a first assessment of potential risks. The potential of omics platforms for risk assessment of GM crops has rarely been used for this purpose because of the lack of a consensus reference and statistical methods to judge the significance or importance of the pleiotropic changes in GM plants. Here we propose a meta data analysis approach to the analysis of GM plants, by measuring the transcriptome distance to untransformed wild-types. In the statistical analysis of the transcriptome distance between GM and wild-type plants, values are compared with naturally occurring transcriptome distances in non-GM counterparts obtained from a database. Using this approach we show that the pleiotropic effect of genes involved in indirect insect defence traits is substantially equivalent to the variation in gene expression occurring naturally in Arabidopsis. Transcriptome distance is a useful screening method to obtain insight in the pleiotropic effects of genetic modification.

  10. Targeting a genetic defect: cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis.

    PubMed

    Derichs, Nico

    2013-03-01

    Cystic fibrosis (CF) is caused by genetic mutations that affect the cystic fibrosis transmembrane conductance regulator (CFTR) protein. These mutations can impact the synthesis and transfer of the CFTR protein to the apical membrane of epithelial cells, as well as influencing the gating or conductance of chloride and bicarbonate ions through the channel. CFTR dysfunction results in ionic imbalance of epithelial secretions in several organ systems, such as the pancreas, gastrointestinal tract, liver and the respiratory system. Since discovery of the CFTR gene in 1989, research has focussed on targeting the underlying genetic defect to identify a disease-modifying treatment for CF. Investigated management strategies have included gene therapy and the development of small molecules that target CFTR mutations, known as CFTR modulators. CFTR modulators are typically identified by high-throughput screening assays, followed by preclinical validation using cell culture systems. Recently, one such modulator, the CFTR potentiator ivacaftor, was approved as an oral therapy for CF patients with the G551D-CFTR mutation. The clinical development of ivacaftor not only represents a breakthrough in CF care but also serves as a noteworthy example of personalised medicine.

  11. Pre and post-natal risk and determination of factors for child obesity.

    PubMed

    Trandafir, L M; Temneanu, O R

    2016-01-01

    Obesity is considered a condition presenting a complex, multi-factorial etiology that implies genetic and non-genetic factors. The way the available information should be efficiently and strategically used in the obesity and overweight prohylaxisprogrammes for children all over the world is still unclear for most of the risk factors. Mothers' pre-conception weight and weight gain during pregnancy are two of the most important prenatal determinants of childhood obesity. Maternal obesity and gestational weight gain are associated with foetal macrosomia and childhood obesity, and this effect extends into adulthood. Obesity and the metabolic syndrome in children originate in intrauterine life. The current obesity epidemic is probably the result of our evolutive inheritance associated with the consumption of highly processed food with an increased calorific value. The determination of risk factors involved in child obesity are: genetic predisposition, diet, sedentary behaviors, socioeconomic position, ethnic origin, microbiota, iatrogenic, endocrine diseases, congenital and acquired hypothalamic defects, usage of medications affecting appetite. However, the vast majority of patients will not have any of these identifiable conditions. Regardless of the aetiology, all the patients should be considered for modifiable lifestyle risk factors and screened for the complications of obesity.

  12. Position statement on opportunistic genomic screening from the Association of Genetic Nurses and Counsellors (UK and Ireland).

    PubMed

    Middleton, Anna; Patch, Chris; Wiggins, Jennifer; Barnes, Kathy; Crawford, Gill; Benjamin, Caroline; Bruce, Anita

    2014-08-01

    The American College of Medical Genetics and Genomics released recommendations for reporting incidental findings (IFs) in clinical exome and genome sequencing. These suggest 'opportunistic genomic screening' should be available to both adults and children each time a sequence is done and would be undertaken without seeking preferences from the patient first. Should opportunistic genomic screening be implemented in the United Kingdom, the Association of Genetic Nurses and Counsellors (AGNC), which represents British and Irish genetic counsellors and nurses, feels strongly that the following must be considered (see article for complete list): (1) Following appropriate genetic counselling, patients should be allowed to consent to or opt out of opportunistic genomic screening. (2) If true IFs are discovered the AGNC are guided by the report from the Joint Committee on Medical Genetics about the sharing of genetic testing results. (3) Children should not be routinely tested for adult-onset conditions. (4) The formation of a list of variants should involve a representative from the AGNC as well as a patient support group. (5) The variants should be for serious or life-threatening conditions for which there are treatments or preventative strategies available. (6) There needs to be robust evidence that the benefits of opportunistic screening outweigh the potential harms. (7) The clinical validity and utility of variants should be known. (8) There must be a quality assurance framework that operates to International standards for laboratory testing. (9) Psychosocial research is urgently needed in this area to understand the impact on patients.

  13. Pregnant Women's Perspectives on Expanded Carrier Screening.

    PubMed

    Propst, Lauren; Connor, Gwendolyn; Hinton, Megan; Poorvu, Tabitha; Dungan, Jeffrey

    2018-02-23

    Expanded carrier screening (ECS) is a relatively new carrier screening option that assesses many conditions simultaneously, as opposed to traditional ethnicity-based carrier screening for a limited number of conditions. This study aimed to explore pregnant women's perspectives on ECS, including reasons for electing or declining and anxiety associated with this decision-making. A total of 80 pregnant women were surveyed from Northwestern Medicine's Clinical Genetics Division after presenting for aneuploidy screening. Of the 80 participants, 40 elected and 40 declined ECS. Trends regarding reasons for electing or declining ECS include ethnicity, desire for genetic risk information, lack of family history, perceived likelihood of being a carrier, and perceived impact on reproductive decisions. Individuals who declined ECS seemed to prefer ethnicity-based carrier screening and believed that ECS would increase their anxiety, whereas individuals who elected ECS seemed to prefer more screening and tended to believe that ECS would reduce their anxiety. These findings provide insight on decision-making with regard to ECS and can help guide interactions that genetic counselors and other healthcare providers have with patients, including assisting patients in the decision-making process.

  14. Detection of the 35S promoter in transgenic maize via various isothermal amplification techniques: a practical approach.

    PubMed

    Zahradnik, Celine; Kolm, Claudia; Martzy, Roland; Mach, Robert L; Krska, Rudolf; Farnleitner, Andreas H; Brunner, Kurt

    2014-11-01

    In 2003 the European Commission introduced a 0.9% threshold for food and feed products containing genetically modified organism (GMO)-derived components. For commodities containing GMO contents higher than this threshold, labelling is mandatory. To provide a DNA-based rapid and simple detection method suitable for high-throughput screening of GMOs, several isothermal amplification approaches for the 35S promoter were tested: strand displacement amplification, nicking-enzyme amplification reaction, rolling circle amplification, loop-mediated isothermal amplification (LAMP) and helicase-dependent amplification (HDA). The assays developed were tested for specificity in order to distinguish between samples containing genetically modified (GM) maize and non-GM maize. For those assays capable of this discrimination, tests were performed to determine the lower limit of detection. A false-negative rate was determined to rule out whether GMO-positive samples were incorrectly classified as GMO-negative. A robustness test was performed to show reliable detection independent from the instrument used for amplification. The analysis of three GM maize lines showed that only LAMP and HDA were able to differentiate between the GMOs MON810, NK603, and Bt11 and non-GM maize. Furthermore, with the HDA assay it was possible to realize a detection limit as low as 0.5%. A false-negative rate of only 5% for 1% GM maize for all three maize lines shows that HDA has the potential to be used as an alternative strategy for the detection of transgenic maize. All results obtained with the LAMP and HDA assays were compared with the results obtained with a previously reported real-time PCR assay for the 35S promoter in transgenic maize. This study presents two new screening assays for detection of the 35S promoter in transgenic maize by applying the isothermal amplification approaches HDA and LAMP.

  15. The Modified Checklist for Autism in Toddlers: A Follow-Up Study Investigating the Early Detection of Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Kleinman, Jamie M.; Robins, Diana L.; Ventola, Pamela E.; Pandey, Juhi; Boorstein, Hilary C.; Esser, Emma L.; Wilson, Leandra B.; Rosenthal, Michael A.; Sutera, Saasha; Verbalis, Alyssa D.; Barton, Marianne; Hodgson, Sarah; Green, James; Dumont-Mathieu, Thyde; Volkmar, Fred; Chawarska, Katarzyna; Klin, Ami; Fein, Deborah

    2008-01-01

    Autism spectrum disorders (ASD) often go undetected in toddlers. The Modified Checklist for Autism in Toddlers (M-CHAT) was used to screen 3,793 children aged 16-30 months from low- and high-risk sources; screen positive cases were diagnostically evaluated. Re-screening was performed on 1,416 children aged 42-54 months. Time1 Positive Predictive…

  16. A parametrisation of modified gravity on nonlinear cosmological scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombriser, Lucas, E-mail: llo@roe.ac.uk

    2016-11-01

    Viable modifications of gravity on cosmological scales predominantly rely on screening mechanisms to recover Einstein's Theory of General Relativity in the Solar System, where it has been well tested. A parametrisation of the effects of such modifications in the spherical collapse model is presented here for the use of modelling the modified nonlinear cosmological structure. The formalism allows an embedding of the different screening mechanisms operating in scalar-tensor theories through large values of the gravitational potential or its first or second derivatives as well as of linear suppression effects or more general transitions between modified and Einstein gravity limits. Eachmore » screening or suppression mechanism is parametrised by a time, mass, and environment dependent screening scale, an effective modified gravitational coupling in the fully unscreened limit that can be matched to linear theory, the exponent of a power-law radial profile of the screened coupling, determined by derivatives, symmetries, and potentials in the scalar field equation, and an interpolation rate between the screened and unscreened limits. Along with generalised perturbative methods, the parametrisation may be used to formulate a nonlinear extension to the linear parametrised post-Friedmannian framework to enable generalised tests of gravity with the wealth of observations from the nonlinear cosmological regime.« less

  17. [Ethical aspects of prenatal screening for Down's syndrome].

    PubMed

    Tóth, A; Szabó, J

    2000-10-15

    Trisomy 21, the chromosomal base of Down's syndrome, results in severe mental and physical handicap. Owing to the development of medical genetics reliable screening and diagnostic procedures for the detection of the disorder are available in Hungary. To achieve the goals of prenatal screening it is important to address the main ethical issues arising through the application of technical-professional skills. The core objective of prenatal screening for Down's syndrome is to give information about the genetic condition of the fetus in order to enhance the autonomy of the parents in family planning. Screening programs should respect the ethical requirements of the principles of "do no harm", beneficence and autonomy of the patients, which are the most important ethical norms of doctor-patient relationship. Regarding the social aspects of screening it is essential to claim that voluntary participation and nondirective genetic counselling can exclude eugenic purposes. Though introduction of prenatal tests does not imply the discrimination of the disabled, anxiety of handicapped people deserves more attention. Abortion of affected fetuses isn't among the objectives of prenatal genetic screening but patient's autonomy is supported in decisions concerning the future of the pregnancy. Social justice can be taken into consideration by providing the test to all women without respect to their social position, educational level or their age. An open debate about the issues of prenatal screening for Down's syndrome could promote the formation of a consensus between professionals and the public.

  18. Identification of Associations Between Genetic Factors and Asthma that are Modified by Obesity

    DTIC Science & Technology

    2016-06-01

    AFRL-SA-WP-TR-2016-0010 Identification of Associations Between Genetic Factors and Asthma That Are Modified by Obesity Andrew T...Between Genetic Factors and Asthma That Are Modified by Obesity 5a. CONTRACT NUMBER FA8650-13-2-6371 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...among African American women in the Women’s Health Initiative study. 15. SUBJECT TERMS Body mass index, SNP, asthma, obesity , genome, genes 16

  19. Unscented Sampling Techniques For Evolutionary Computation With Applications To Astrodynamic Optimization

    DTIC Science & Technology

    2016-09-01

    to both genetic algorithms and evolution strategies to achieve these goals. The results of this research offer a promising new set of modified ...abs_all.jsp?arnumber=203904 [163] Z. Michalewicz, C. Z. Janikow, and J. B. Krawczyk, “A modified genetic algo- rithm for optimal control problems...Available: http://arc.aiaa.org/doi/abs/10.2514/ 2.7053 375 [166] N. Yokoyama and S. Suzuki, “ Modified genetic algorithm for constrained trajectory

  20. The C. elegans Excretory Canal as a Model for Intracellular Lumen Morphogenesis and In Vivo Polarized Membrane Biogenesis in a Single Cell: labeling by GFP-fusions, RNAi Interaction Screen and Imaging.

    PubMed

    Zhang, Nan; Membreno, Edward; Raj, Susan; Zhang, Hongjie; Khan, Liakot A; Gobel, Verena

    2017-10-03

    The four C. elegans excretory canals are narrow tubes extended through the length of the animal from a single cell, with almost equally far extended intracellular endotubes that build and stabilize the lumen with a membrane and submembraneous cytoskeleton of apical character. The excretory cell expands its length approximately 2,000 times to generate these canals, making this model unique for the in vivo assessment of de novo polarized membrane biogenesis, intracellular lumen morphogenesis and unicellular tubulogenesis. The protocol presented here shows how to combine standard labeling, gain- and loss-of-function genetic or RNA interference (RNAi)-, and microscopic approaches to use this model to visually dissect and functionally analyze these processes on a molecular level. As an example of a labeling approach, the protocol outlines the generation of transgenic animals with fluorescent fusion proteins for live analysis of tubulogenesis. As an example of a genetic approach, it highlights key points of a visual RNAi-based interaction screen designed to modify a gain-of-function cystic canal phenotype. The specific methods described are how to: label and visualize the canals by expressing fluorescent proteins; construct a targeted RNAi library and strategize RNAi screening for the molecular analysis of canal morphogenesis; visually assess modifications of canal phenotypes; score them by dissecting fluorescence microscopy; characterize subcellular canal components at higher resolution by confocal microscopy; and quantify visual parameters. The approach is useful for the investigator who is interested in taking advantage of the C. elegans excretory canal for identifying and characterizing genes involved in the phylogenetically conserved processes of intracellular lumen and unicellular tube morphogenesis.

  1. Gene-by-Environment Interactions in Pancreatic Cancer: Implications for Prevention

    PubMed Central

    Jansen, Rick J.; Tan, Xiang-Lin; Petersen, Gloria M.

    2015-01-01

    Pancreatic cancer (PC) has been estimated to have higher incidence and correspondingly higher mortality rates in more developed regions worldwide. Overall, the age-adjusted incidence rate is 4.9/105 and age-adjusted mortality rate is at 4.8/105. We review here our current knowledge of modifiable risk factors (cigarette smoking, obesity, diet, and alcohol) for PC, genetic variants implicated by genome-wide association studies, possible genetic interactions with risk factors, and prevention strategies to provide future research directions that may further our understanding of this complex disease. Cigarette smoking is consistently associated with a two-fold increased PC risk. PC associations with dietary intake have been largely inconsistent, with the potential exception of certain unsaturated fatty acids decreasing risk and well-done red meat or meat mutagens increasing risk. There is strong evidence to support that obesity (and related measures) increase risk of PC. Only the heaviest alcohol drinkers seem to be at an increased risk of PC. Currently, key prevention strategies include avoiding tobacco and excessive alcohol consumption and adopting a healthy lifestyle. Screening technologies and PC chemoprevention are likely to become more sophisticated, but may only apply to those at high risk. Risk stratification may be improved by taking into account gene environment interactions. Research on these modifiable risk factors is key to reducing the incidence of PC and understanding who in the population can be considered high risk. PMID:26029010

  2. [Impacts of genetically modified soybean leaf residues on Folsomia candida.

    PubMed

    Zhou, Lin; Wang, Bai Feng; Liu, Xin Ying; Jiang, Ying; Wang, Da Ming; Feng, Shu Dan; Song, Xin Yuan

    2016-09-01

    When the genetically modified soybean is planted in the field, the expression product of exogenous gene could be exposed in the soil ecosystem and bring potential risk to the soil fauna, with the form of leaves and other debris. A few of genetically modified soybeans developed by China independently were used in our study as materials. They were Phytophthora-resistant soybean harboring hrpZm gene (B4J8049), leaf-feeding insect-resistant soybean harboring Cry1C gene (A2A8001) and Leguminivora glycinivorella-resistant soybean harboring Cry1Iem gene (C802). By feeding Folsomia candida with the three genetically modified soybeans for continuous 60 days, the surviving rate, reproductive rate and changes on the body length of F. candida were studied. The results showed that all the three genetically modified soybeans of B4J8049, A2A8001 and C802 had no significant adverse effects on the growth of F. candida, as an environmental indicator organism. It was initially inferred that they were environmentally safe under short-term exposure, which provided basic data of ecological safety for their wide cultivation.

  3. Genetic basis and detection of unintended effects in genetically modified crop plants

    USDA-ARS?s Scientific Manuscript database

    In January 2014, an international meeting sponsored by the International Life Sciences Institute/Health and Environmental Sciences Institute and the Canadian Food Inspection Agency titled “Genetic Basis of Unintended Effects in Modified Plants” was held in Ottawa, Canada, bringing together over 75 s...

  4. 76 FR 37771 - Monsanto Co.; Availability of Petition, Plant Pest Risk Assessment, and Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Determination of Nonregulated Status for Soybean Genetically Engineered To Have a Modified Fatty Acid Profile... soybean designated as MON 87705, which has been genetically engineered to have a modified fatty acid... our regulations concerning the introduction of certain genetically engineered organisms and products...

  5. A PATO-compliant zebrafish screening database (MODB): management of morpholino knockdown screen information.

    PubMed

    Knowlton, Michelle N; Li, Tongbin; Ren, Yongliang; Bill, Brent R; Ellis, Lynda Bm; Ekker, Stephen C

    2008-01-07

    The zebrafish is a powerful model vertebrate amenable to high throughput in vivo genetic analyses. Examples include reverse genetic screens using morpholino knockdown, expression-based screening using enhancer trapping and forward genetic screening using transposon insertional mutagenesis. We have created a database to facilitate web-based distribution of data from such genetic studies. The MOrpholino DataBase is a MySQL relational database with an online, PHP interface. Multiple quality control levels allow differential access to data in raw and finished formats. MODBv1 includes sequence information relating to almost 800 morpholinos and their targets and phenotypic data regarding the dose effect of each morpholino (mortality, toxicity and defects). To improve the searchability of this database, we have incorporated a fixed-vocabulary defect ontology that allows for the organization of morpholino affects based on anatomical structure affected and defect produced. This also allows comparison between species utilizing Phenotypic Attribute Trait Ontology (PATO) designated terminology. MODB is also cross-linked with ZFIN, allowing full searches between the two databases. MODB offers users the ability to retrieve morpholino data by sequence of morpholino or target, name of target, anatomical structure affected and defect produced. MODB data can be used for functional genomic analysis of morpholino design to maximize efficacy and minimize toxicity. MODB also serves as a template for future sequence-based functional genetic screen databases, and it is currently being used as a model for the creation of a mutagenic insertional transposon database.

  6. Direct and mediated electrochemistry of peroxidase and its electrocatalysis on a variety of screen-printed carbon electrodes: amperometric hydrogen peroxide and phenols biosensor.

    PubMed

    Chekin, Fereshteh; Gorton, Lo; Tapsobea, Issa

    2015-01-01

    This study compares the behaviour of direct and mediated electrochemistry of horseradish peroxidase (HRP) immobilised on screen-printed carbon electrodes (SPCEs), screen-printed carbon electrodes modified with carboxyl-functionalised multi-wall carbon nanotubes (MWCNT-SPCEs) and screen-printed carbon electrodes modified with carboxyl-functionalised single-wall carbon nanotubes (SWCNT-SPCEs). The techniques of cyclic voltammetry and amperometry in the flow mode were used to characterise the properties of the HRP immobilised on screen-printed electrodes. From measurements of the mediated and mediatorless currents of hydrogen peroxide reduction at the HRP-modified electrodes, it was concluded that the fraction of enzyme molecules in direct electron transfer (DET) contact with the electrode varies substantially for the different electrodes. It was observed that the screen-printed carbon electrodes modified with carbon nanotubes (MWCNT-SPCEs and SWCNT-SPCEs) demonstrated a substantially higher percentage (≈100 %) of HRP molecules in DET contact than the screen-printed carbon electrodes (≈60 %). The HRP-modified electrodes were used for determination of hydrogen peroxide in mediatorless mode. The SWCNT-SPCE gave the lowest detection limit (0.40 ± 0.09 μM) followed by MWCNT-SPCE (0.48 ± 0.07 μM) and SPCE (0.98 ± 0.2 μM). These modified electrodes were additionally developed for amperometric determination of phenolic compounds. It was found that the SWCNT-SPCE gave a detection limit for catechol of 110.2 ± 3.6 nM, dopamine of 640.2 ± 9.2 nM, octopamine of 3341 ± 15 nM, pyrogallol of 50.10 ± 2.9 nM and 3,4-dihydroxy-L-phenylalanine of 980.7 ± 8.7 nM using 50 μM H2O2 in the flow carrier.

  7. Recent advances in the molecular genetics of epilepsy.

    PubMed

    Hildebrand, Michael S; Dahl, Hans-Henrik M; Damiano, John Anthony; Smith, Richard J H; Scheffer, Ingrid E; Berkovic, Samuel F

    2013-05-01

    Recent advances in molecular genetics have translated into the increasing utilisation of genetic testing in the routine clinical practice of neurologists. There has been a steady, incremental increase in understanding the genetic variation associated with epilepsies. Genetic testing in the epilepsies is not yet widely practiced, but the advent of new screening technologies promises to exponentially expand both knowledge and clinical utility. To maximise the value of this new genetic insight we need to rapidly extrapolate genetic findings to inform patients of their diagnosis, prognosis, recurrence risk and the clinical management options available for their specific genetic condition. Comprehensive, highly specific and sensitive genetic test results improve the management of patients by neurologists and clinical geneticists. Here we discuss the latest developments in clinical genetic testing for epilepsy and describe new molecular genetics platforms that will transform both genetic screening and novel gene discovery.

  8. Development and validation of an oxygen dissociation assay, a screening platform for discovering, and characterizing hemoglobin-oxygen affinity modifiers.

    PubMed

    Patel, Mira P; Siu, Vincent; Silva-Garcia, Abel; Xu, Qing; Li, Zhe; Oksenberg, Donna

    2018-01-01

    Hemoglobin (Hb) is a critical molecule necessary for all vertebrates to maintain aerobic metabolism. Hb-oxygen (O 2 ) affinity modifiers have been studied to address various diseases including sickle cell disease, hypoxemia, tumor hypoxia, and wound healing. However, drug development of exogenous Hb modifiers has been hindered by the lack of a technique to rapidly screen compounds for their ability to alter Hb-O 2 affinity. We have developed a novel screening assay based upon the spectral changes observed during Hb deoxygenation and termed it the oxygen dissociation assay (ODA). ODA allows for the quantitation of oxygenated Hb at given time points during Hb deoxygenation on a 96-well plate. This assay was validated by comparing the ability of 500 Hb modifiers to alter the Hb-O 2 affinity in the ODA vs the oxygen equilibrium curves obtained using the industry standard Hemox Analyzer instrument. A correlation ( R 2 ) of 0.7 indicated that the ODA has the potential to screen and identify potent exogenous Hb modifiers. In addition, it allows for concurrent comparison of compounds, concentrations, buffers, or pHs on the level of Hb oxygenation. With a cost-effective, simple, rapid, and highly adaptable assay, the ODA will allow researchers to rapidly characterize Hb-O 2 affinity modifiers.

  9. Genetic association studies in β-hemoglobinopathies.

    PubMed

    Thein, Swee Lay

    2013-01-01

    Characterization of the molecular basis of the β-thalassemias and sickle cell disease (SCD) clearly showed that individuals with the same β-globin genotypes can have extremely diverse clinical severity. Two key modifiers, an innate ability to produce fetal hemoglobin and coinheritance of α-thalassemia, both derived from family and population studies, affect the pathophysiology of both disorders at the primary level. In the past 2 decades, scientific research had applied genetic approaches to identify additional genetic modifiers. The review summarizes recent genetic studies and key genetic modifiers identified and traces the story of fetal hemoglobin genetics, which has led to an emerging network of globin gene regulation. The discoveries have provided insights on new targets for therapeutic intervention and raise possibilities of developing fetal hemoglobin predictive diagnostics for predicting disease severity in the newborn and for integration into prenatal diagnosis to better inform genetic counseling.

  10. Genetically Modified Foods and Consumer Perspective.

    PubMed

    Boccia, Flavio; Sarnacchiaro, Pasquale

    2015-01-01

    Genetically modified food is able to oppose the world's hunger and preserve the environment, even if the patents in this matter are symptomatic of several doubts. And also, transgenic consumption causes problems and skepticism among consumers in several European countries, but above all in Italy, where there is a strong opposition over recent years. So, the present study conducted a research to study the consumption of genetically modified food products by Italian young generation. This research presented the following purposes: firstly, to analyze genetically modified products' consumption among a particular category of consumers; secondly, to implement a quantitative model to understand behaviour about this particular kind of consumption and identify the factors that determine their purchase. The proposed model shows that transgenic consumption is especially linked to knowledge and impact on environment and mankind's health.

  11. Analysis of genetically modified organisms by pyrosequencing on a portable photodiode-based bioluminescence sequencer.

    PubMed

    Song, Qinxin; Wei, Guijiang; Zhou, Guohua

    2014-07-01

    A portable bioluminescence analyser for detecting the DNA sequence of genetically modified organisms (GMOs) was developed by using a photodiode (PD) array. Pyrosequencing on eight genes (zSSIIb, Bt11 and Bt176 gene of genetically modified maize; Lectin, 35S-CTP4, CP4EPSPS, CaMV35S promoter and NOS terminator of the genetically modified Roundup ready soya) was successfully detected with this instrument. The corresponding limit of detection (LOD) was 0.01% with 35 PCR cycles. The maize and soya available from three different provenances in China were detected. The results indicate that pyrosequencing using the small size of the detector is a simple, inexpensive, and reliable way in a farm/field test of GMO analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The "GeneTrustee": a universal identification system that ensures privacy and confidentiality for human genetic databases.

    PubMed

    Burnett, Leslie; Barlow-Stewart, Kris; Proos, Anné L; Aizenberg, Harry

    2003-05-01

    This article describes a generic model for access to samples and information in human genetic databases. The model utilises a "GeneTrustee", a third-party intermediary independent of the subjects and of the investigators or database custodians. The GeneTrustee model has been implemented successfully in various community genetics screening programs and has facilitated research access to genetic databases while protecting the privacy and confidentiality of research subjects. The GeneTrustee model could also be applied to various types of non-conventional genetic databases, including neonatal screening Guthrie card collections, and to forensic DNA samples.

  13. Identification of Metabolic Modifiers That Underlie Phenotypic Variations in Energy-Balance Regulation

    PubMed Central

    Chang, Chia Lin; Cai, James J.; Cheng, Po Jen; Chueh, Ho Yen; Hsu, Sheau Yu Teddy

    2011-01-01

    OBJECTIVE Although recent studies have shown that human genomes contain hundreds of loci that exhibit signatures of positive selection, variants that are associated with adaptation in energy-balance regulation remain elusive. We reasoned that the difficulty in identifying such variants could be due to heterogeneity in selection pressure and that an integrative approach that incorporated experiment-based evidence and population genetics-based statistical judgments would be needed to reveal important metabolic modifiers in humans. RESEARCH DESIGN AND METHODS To identify common metabolic modifiers that underlie phenotypic variation in diabetes-associated or obesity-associated traits in humans, or both, we screened 207 candidate loci for regulatory single nucleotide polymorphisms (SNPs) that exhibited evidence of gene–environmental interactions. RESULTS Three SNPs (rs3895874, rs3848460, and rs937301) at the 5′ gene region of human GIP were identified as prime metabolic-modifier candidates at the enteroinsular axis. Functional studies have shown that GIP promoter reporters carrying derived alleles of these three SNPs (haplotype GIP−1920A) have significantly lower transcriptional activities than those with ancestral alleles at corresponding positions (haplotype GIP−1920G). Consistently, studies of pregnant women who have undergone a screening test for gestational diabetes have shown that patients with a homozygous GIP−1920A/A genotype have significantly lower serum concentrations of glucose-dependent insulinotropic polypeptide (GIP) than those carrying an ancestral GIP−1920G haplotype. After controlling for a GIPR variation, we showed that serum glucose concentrations of patients carrying GIP−1920A/A homozygotes are significantly higher than that of those carrying an ancestral GIP−1920G haplotype (odds ratio 3.53). CONCLUSIONS Our proof-of-concept study indicates that common regulatory GIP variants impart a difference in GIP and glucose metabolism. The study also provides a rare example that identified the common variant-common phenotypic variation pattern based on evidence of moderate gene–environmental interactions. PMID:21300845

  14. Genetic technology: Promises and problems

    NASA Technical Reports Server (NTRS)

    Frankel, M. S.

    1975-01-01

    Issues concerning the use of genetic technology are discussed. Some areas discussed include treating genetic disease, prenatal diagnosis and selective abortion, screening for genetic disease, and genetic counseling. Policy issues stemming from these capabilities are considered.

  15. GMOseek: a user friendly tool for optimized GMO testing.

    PubMed

    Morisset, Dany; Novak, Petra Kralj; Zupanič, Darko; Gruden, Kristina; Lavrač, Nada; Žel, Jana

    2014-08-01

    With the increasing pace of new Genetically Modified Organisms (GMOs) authorized or in pipeline for commercialization worldwide, the task of the laboratories in charge to test the compliance of food, feed or seed samples with their relevant regulations became difficult and costly. Many of them have already adopted the so called "matrix approach" to rationalize the resources and efforts used to increase their efficiency within a limited budget. Most of the time, the "matrix approach" is implemented using limited information and some proprietary (if any) computational tool to efficiently use the available data. The developed GMOseek software is designed to support decision making in all the phases of routine GMO laboratory testing, including the interpretation of wet-lab results. The tool makes use of a tabulated matrix of GM events and their genetic elements, of the laboratory analysis history and the available information about the sample at hand. The tool uses an optimization approach to suggest the most suited screening assays for the given sample. The practical GMOseek user interface allows the user to customize the search for a cost-efficient combination of screening assays to be employed on a given sample. It further guides the user to select appropriate analyses to determine the presence of individual GM events in the analyzed sample, and it helps taking a final decision regarding the GMO composition in the sample. GMOseek can also be used to evaluate new, previously unused GMO screening targets and to estimate the profitability of developing new GMO screening methods. The presented freely available software tool offers the GMO testing laboratories the possibility to select combinations of assays (e.g. quantitative real-time PCR tests) needed for their task, by allowing the expert to express his/her preferences in terms of multiplexing and cost. The utility of GMOseek is exemplified by analyzing selected food, feed and seed samples from a national reference laboratory for GMO testing and by comparing its performance to existing tools which use the matrix approach. GMOseek proves superior when tested on real samples in terms of GMO coverage and cost efficiency of its screening strategies, including its capacity of simple interpretation of the testing results.

  16. Genetic Counselors' Perspectives About Cell-Free DNA: Experiences, Challenges, and Expectations for Obstetricians.

    PubMed

    Agatisa, Patricia K; Mercer, Mary Beth; Coleridge, Marissa; Farrell, Ruth M

    2018-06-27

    The expansion of cell-free fetal DNA (cfDNA) screening for a larger and diverse set of genetic variants, in addition for use among the low-risk obstetric population, presents important clinical challenges for all healthcare providers involved in the delivery of prenatal care. It is unclear how to leverage the different members of the healthcare team to respond to these challenges. We conducted interviews with 25 prenatal genetic counselors to understand their experience with the continued expansion of cfDNA screening. Participants supported the use of cfDNA screening for the common autosomal aneuploidies, but noted some reservations for its use to identify fetal sex and microdeletions. Participants reported several barriers to ensuring that patients have the information and support to make informed decisions about using cfDNA to screen for these different conditions. This was seen as a dual-sided problem, and necessitated additional education interventions that addressed patients seeking cfDNA screening, and obstetricians who introduce the concepts of genetic risk and cfDNA to patients. In addition, participants noted that they have a professional responsibility to educate obstetricians about cfDNA so they can be prepared to be gatekeepers of counseling and education about this screening option for use among the general obstetric population.

  17. Genetic screening of prospective parents and of workers: some scientific and social issues.

    PubMed

    Hubbard, R; Henifin, M S

    1985-01-01

    Genetic screening programs are based on assumptions and values that reflect the history of racial and social eugenics in the United States and Europe. They stigmatize individuals by shifting the focus from social, economic, and political decisions that affect the health of prospective parents, newborns, and workers to "bad genes," that is, intrapersonal factors that are given the status of "causes" of disease. Prenatal screening, at best, can help the relatively few individuals who know that their future children are at risk for a particular inherited disease or disability; it has little positive value for the average person. Workplace genetic screening has not been shown to reduce occupational disease, but it has led to employment discrimination and has drawn attention away from controlling exposures to toxic chemicals in the workplace.

  18. ENU mutagenesis to generate genetically modified rat models.

    PubMed

    van Boxtel, Ruben; Gould, Michael N; Cuppen, Edwin; Smits, Bart M G

    2010-01-01

    The rat is one of the most preferred model organisms in biomedical research and has been extremely useful for linking physiology and pathology to the genome. However, approaches to genetically modify specific genes in the rat germ line remain relatively scarce. To date, the most efficient approach for generating genetically modified rats has been the target-selected N-ethyl-N-nitrosourea (ENU) mutagenesis-based technology. Here, we describe the detailed protocols for ENU mutagenesis and mutant retrieval in the rat model organism.

  19. Safety assessment, detection and traceability, and societal aspects of genetically modified foods. European Network on Safety Assessment of Genetically Modified Food Crops (ENTRANSFOOD). Concluding remarks.

    PubMed

    Kuiper, H A; König, A; Kleter, G A; Hammes, W P; Knudsen, I

    2004-07-01

    The most important results from the EU-sponsored ENTRANSFOOD Thematic Network project are reviewed, including the design of a detailed step-wise procedure for the risk assessment of foods derived from genetically modified crops based on the latest scientific developments, evaluation of topical risk assessment issues, and the formulation of proposals for improved risk management and public involvement in the risk analysis process. Copyright 2004 Elsevier Ltd.

  20. GAPscreener: An automatic tool for screening human genetic association literature in PubMed using the support vector machine technique

    PubMed Central

    Yu, Wei; Clyne, Melinda; Dolan, Siobhan M; Yesupriya, Ajay; Wulf, Anja; Liu, Tiebin; Khoury, Muin J; Gwinn, Marta

    2008-01-01

    Background Synthesis of data from published human genetic association studies is a critical step in the translation of human genome discoveries into health applications. Although genetic association studies account for a substantial proportion of the abstracts in PubMed, identifying them with standard queries is not always accurate or efficient. Further automating the literature-screening process can reduce the burden of a labor-intensive and time-consuming traditional literature search. The Support Vector Machine (SVM), a well-established machine learning technique, has been successful in classifying text, including biomedical literature. The GAPscreener, a free SVM-based software tool, can be used to assist in screening PubMed abstracts for human genetic association studies. Results The data source for this research was the HuGE Navigator, formerly known as the HuGE Pub Lit database. Weighted SVM feature selection based on a keyword list obtained by the two-way z score method demonstrated the best screening performance, achieving 97.5% recall, 98.3% specificity and 31.9% precision in performance testing. Compared with the traditional screening process based on a complex PubMed query, the SVM tool reduced by about 90% the number of abstracts requiring individual review by the database curator. The tool also ascertained 47 articles that were missed by the traditional literature screening process during the 4-week test period. We examined the literature on genetic associations with preterm birth as an example. Compared with the traditional, manual process, the GAPscreener both reduced effort and improved accuracy. Conclusion GAPscreener is the first free SVM-based application available for screening the human genetic association literature in PubMed with high recall and specificity. The user-friendly graphical user interface makes this a practical, stand-alone application. The software can be downloaded at no charge. PMID:18430222

  1. On being an individual, or: the man in the red hat.

    PubMed

    Scriver, C R

    If health is a state of equilibrium between intrinsic (genetic) functions and extrinsic (environmental) factors, then disease can be defined as a state of disequilibrium. Medicine has traditionally emphasized extrinsic factors in the origin of human diseases; medical genetics is concerned with the intrinsic factors (mutations) that either yield disease in the universal environment or constitute states of risk for individuals in particular (or universal) enviroments. Genetic screening is a process that defines specific risks for particular individuals. Screening is an ineffective activity if there is no participation by clients. Newborn (and homozygote) screening, on the basis of an experience involving 35 million infants, is usually considered as a 'successful' enterprise. But adult screening, usually for heterozygosity, is quantitatively a much more important activity in its execution, judging from current experience. Comprehension of risk and perceived importance of biological individuality by potential participants and advocates are part of the problem. A major revision in the education of medical personnel and citizens is indicated if medical genetics is to achieve its goals.

  2. Pre- and post-test genetic counseling for chromosomal and Mendelian disorders.

    PubMed

    Fonda Allen, Jill; Stoll, Katie; Bernhardt, Barbara A

    2016-02-01

    Genetic carrier screening, prenatal screening for aneuploidy, and prenatal diagnostic testing have expanded dramatically over the past 2 decades. Driven in part by powerful market forces, new complex testing modalities have become available after limited clinical research. The responsibility for offering these tests lies primarily on the obstetrical care provider and has become more burdensome as the number of testing options expands. Genetic testing in pregnancy is optional, and decisions about undergoing tests, as well as follow-up testing, should be informed and based on individual patients' values and needs. Careful pre- and post-test counseling is central to supporting informed decision-making. This article explores three areas of technical expansion in genetic testing: expanded carrier screening, non-invasive prenatal screening for fetal aneuploidies using cell-free DNA, and diagnostic testing using fetal chromosomal microarray testing, and provides insights aimed at enabling the obstetrical practitioner to better support patients considering these tests. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Multiplex Polymerase Chain Reaction for Identification of Shigellae and Four Shigella Species Using Novel Genetic Markers Screened by Comparative Genomics.

    PubMed

    Kim, Hyun-Joong; Ryu, Ji-Oh; Song, Ji-Yeon; Kim, Hae-Yeong

    2017-07-01

    In the detection of Shigella species using molecular biological methods, previously known genetic markers for Shigella species were not sufficient to discriminate between Shigella species and diarrheagenic Escherichia coli. The purposes of this study were to screen for genetic markers of the Shigella genus and four Shigella species through comparative genomics and develop a multiplex polymerase chain reaction (PCR) for the detection of shigellae and Shigella species. A total of seven genomic DNA sequences from Shigella species were subjected to comparative genomics for the screening of genetic markers of shigellae and each Shigella species. The primer sets were designed from the screened genetic markers and evaluated using PCR with genomic DNAs from Shigella and other bacterial strains in Enterobacteriaceae. A novel Shigella quintuplex PCR, designed for the detection of Shigella genus, S. dysenteriae, S. boydii, S. flexneri, and S. sonnei, was developed from the evaluated primer sets, and its performance was demonstrated with specifically amplified results from each Shigella species. This Shigella multiplex PCR is the first to be reported with novel genetic markers developed through comparative genomics and may be a useful tool for the accurate detection of the Shigella genus and species from closely related bacteria in clinical microbiology and food safety.

  4. Establishment of apoptotic regulatory network for genetic markers of colorectal cancer and optimal selection of traditional Chinese medicine target.

    PubMed

    Tian, Tongde; Chen, Chuanliang; Yang, Feng; Tang, Jingwen; Pei, Junwen; Shi, Bian; Zhang, Ning; Zhang, Jianhua

    2017-03-01

    The paper aimed to screen out genetic markers applicable to early diagnosis for colorectal cancer and establish apoptotic regulatory network model for colorectal cancer, and to analyze the current situation of traditional Chinese medicine (TCM) target, thereby providing theoretical evidence for early diagnosis and targeted therapy of colorectal cancer. Taking databases including CNKI, VIP, Wanfang data, Pub Med, and MEDLINE as main sources of literature retrieval, literatures associated with genetic markers that are applied to early diagnosis of colorectal cancer were searched and performed comprehensive and quantitative analysis by Meta analysis, hence screening genetic markers used in early diagnosis of colorectal cancer. KEGG analysis was employed to establish apoptotic regulatory network model based on screened genetic markers, and optimization was conducted on TCM targets. Through Meta analysis, seven genetic markers were screened out, including WWOX, K-ras, COX-2, P53, APC, DCC and PTEN, among which DCC has the highest diagnostic efficiency. Apoptotic regulatory network was built by KEGG analysis. Currently, it was reported that TCM has regulatory function on gene locus in apoptotic regulatory network. The apoptotic regulatory model of colorectal cancer established in this study provides theoretical evidence for early diagnosis and TCM targeted therapy of colorectal cancer in clinic.

  5. Responsible implementation of expanded carrier screening

    PubMed Central

    Henneman, Lidewij; Borry, Pascal; Chokoshvili, Davit; Cornel, Martina C; van El, Carla G; Forzano, Francesca; Hall, Alison; Howard, Heidi C; Janssens, Sandra; Kayserili, Hülya; Lakeman, Phillis; Lucassen, Anneke; Metcalfe, Sylvia A; Vidmar, Lovro; de Wert, Guido; Dondorp, Wybo J; Peterlin, Borut

    2016-01-01

    This document of the European Society of Human Genetics contains recommendations regarding responsible implementation of expanded carrier screening. Carrier screening is defined here as the detection of carrier status of recessive diseases in couples or persons who do not have an a priori increased risk of being a carrier based on their or their partners' personal or family history. Expanded carrier screening offers carrier screening for multiple autosomal and X-linked recessive disorders, facilitated by new genetic testing technologies, and allows testing of individuals regardless of ancestry or geographic origin. Carrier screening aims to identify couples who have an increased risk of having an affected child in order to facilitate informed reproductive decision making. In previous decades, carrier screening was typically performed for one or few relatively common recessive disorders associated with significant morbidity, reduced life-expectancy and often because of a considerable higher carrier frequency in a specific population for certain diseases. New genetic testing technologies enable the expansion of screening to multiple conditions, genes or sequence variants. Expanded carrier screening panels that have been introduced to date have been advertised and offered to health care professionals and the public on a commercial basis. This document discusses the challenges that expanded carrier screening might pose in the context of the lessons learnt from decades of population-based carrier screening and in the context of existing screening criteria. It aims to contribute to the public and professional discussion and to arrive at better clinical and laboratory practice guidelines. PMID:26980105

  6. Genetic Modifiers of Sickle Cell Disease

    PubMed Central

    Steinberg, Martin H.; Sebastiani, Paola

    2015-01-01

    Sickle cell anemia is associated with unusual clinical heterogeneity for a Mendelian disorder. Fetal hemoglobin concentration and coincident ∝ thalassemia, both which directly affect the sickle erythrocyte, are the major modulators of the phenotype of disease. Understanding the genetics underlying the heritable subphenotypes of sickle cell anemia would be prognostically useful, could inform personalized therapeutics, and might help the discovery of new “druggable” pathophysiologic targets. Genotype-phenotype association studies have been used to identify novel genetic modifiers. In the future, whole genome sequencing with its promise of discovering hitherto unsuspected variants could add to our understanding of the genetic modifiers of this disease. PMID:22641398

  7. Modifying Knowledge, Emotions, and Attitudes Regarding Genetically Modified Foods

    ERIC Educational Resources Information Center

    Heddy, Benjamin C.; Danielson, Robert W.; Sinatra, Gale M.; Graham, Jesse

    2017-01-01

    The purpose of this study was to explore whether conceptual change predicted emotional and attitudinal change while learning about genetically modified foods (GMFs). Participants were 322 college students; half read a refutation text designed to shift conceptual knowledge, emotions, and attitudes, while the other half served as a control group.…

  8. Modifier genes in Mendelian disorders: the example of cystic fibrosis

    PubMed Central

    Cutting, Garry R.

    2011-01-01

    In the past three decades, scientists have had immense success in identifying genes and their variants that contribute to an array of diseases. While the identification of such genetic variants has informed our knowledge of the etiologic bases of diseases, there continues to be a substantial gap in our understanding of the factors that modify disease severity. Monogenic diseases provide an opportunity to identify modifiers as they have uniform etiology, detailed phenotyping of affected individuals, and familial clustering. Cystic fibrosis (CF) is among the more common life-shortening recessive disorders that displays wide variability in clinical features and survival. Considerable progress has been made in elucidating the contribution of genetic and nongenetic factors to CF. Allelic variation in CFTR, the gene responsible for CF, correlates with some aspects of the disease. However, lung function, neonatal intestinal obstruction, diabetes, and anthropometry display strong genetic control independent of CFTR, and candidate gene studies have revealed genetic modifiers underlying these traits. The application of genome-wide techniques holds great promise for the identification of novel genetic variants responsible for the heritable features and complications of CF. Since the genetic modifiers are known to alter the course of disease, their protein products become immediate targets for therapeutic intervention. PMID:21175684

  9. ASSESSING POSSIBLE ECOLOGICAL RISKS OF GENETICALLY MODIFIED CROPS: GENE EXPRESSION ASSAYS AND GENETIC MONITORING OF NON-TARGET ORGANISMS

    EPA Science Inventory

    Widespread planting of genetically modified crops with the Bt transgene pesticide has led to concern over non-target effects of Bt compounds in agroecosystems. While some research suggests that non-target organisms exposed to Bt toxin exhibit reduced fecundity and increased morta...

  10. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2014-01-07

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  11. Using the Modified Checklist for Autism in Toddlers in a Well-Child Clinic in Turkey: Adapting the Screening Method Based on Culture and Setting

    ERIC Educational Resources Information Center

    Kara, Bülent; Mukaddes, Nahit Motavalli; Altinkaya, Isilay; Güntepe, Dilek; Gökçay, Gülbin; Özmen, Meral

    2014-01-01

    We aimed to adapt the Modified Checklist for Autism in Toddlers to Turkish culture. The Modified Checklist for Autism in Toddlers was filled out independently by 191 parents while they were waiting for the well-child examination of their child. A high screen-positive rate was found. Because of this high false-positive rate, a second study was done…

  12. 40 CFR 158.2100 - Microbial pesticides definition and applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to which the organism has been genetically modified. (4) Pest control organisms such as insect... and supported by data required in this subpart. (3) Genetically modified microbial pesticides may be...

  13. The social dynamics of genetic testing: the case of Fragile-X.

    PubMed

    Nelkin, D

    1996-12-01

    This article considers a program to screen school children for Fragile-X Syndrome as a way to explore several features of the growing practice of genetic testing in American society. These include the common practice of predictive testing in nonclinical settings; the economic, entrepreneurial, and policy interests that are driving the development of genetic screening programs; and the public support for genetic testing even when there are no effective therapeutic interventions. Drawing from research on popular images of genetics, I argue that cultural beliefs and expectations, widely conveyed through popular narratives, are encouraging the search for diagnostic information and enhancing the appeal of genetic explanations for a growing range of conditions.

  14. Clinical applications of preimplantation genetic testing.

    PubMed

    Brezina, Paul R; Kutteh, William H

    2015-02-19

    Genetic diagnostic technologies are rapidly changing the way medicine is practiced. Preimplantation genetic testing is a well established application of genetic testing within the context of in vitro fertilization cycles. It involves obtaining a cell(s) from a developing embryo in culture, which is then subjected to genetic diagnostic analysis; the resulting information is used to guide which embryos are transferred into the uterus. The potential applications and use of this technology have increased in recent years. Experts agree that preimplantation genetic diagnosis is clinically appropriate for many known genetic disorders. However, some applications of such testing, such as preimplantation genetic screening for aneuploidy, remain controversial. Clinical data suggest that preimplantation genetic screening may be useful, but further studies are needed to quantify the size of the effect and who would benefit most. © BMJ Publishing Group Ltd 2015.

  15. Validity of a modified Parkinson's disease screening questionnaire in India: effects of literacy of participants and medical training of screeners and implications for screening efforts in developing countries.

    PubMed

    Sarangmath, Nagaraja; Rattihalli, Rohini; Ragothaman, Mona; Gopalkrishna, Gururaj; Doddaballapur, Subbakrishna; Louis, Elan D; Muthane, Uday B

    2005-12-01

    The prevalence of Parkinson's disease (PD) is low among Indians, except in the Parsis. Data for Indians come from studies using different screening tools and criteria to detect PD. An epidemiological study in India, which has nearly a billion people, more than 18 spoken languages, and varying levels of literacy, requires development and validation of a screening tool for PD. The objectives of this study are to (1) validate a modified version of a widely used screening questionnaire for PD to suit the needs of the Indian population; (2) compare the use of a nonmedical assistant (NMA) with the use of a medical person during screening; and (3) compare the effect of literacy of participants on the validity of the screening tool. The validity of the questionnaire was tested on 125 participants from a home for the elderly. NMAs of similar background and medical personnel administered the modified screening questionnaire. A movement disorder neurologist blind to the responses on the questionnaire, examined participants independently and diagnosed if participants had PD. The questionnaire was validated in the movement disorders clinic, on known PD patients and their family members without PD. In the movement disorders clinic, sensitivity and specificity of the questionnaire were 100% and 89%, respectively. Fifty-seven participants were included for analysis. The questionnaire had a higher sensitivity when NMAs (75%) rather than the medical personnel (61%) administered it, and its specificity was higher with the medical personnel (61%) than with NMAs (55% and 25%). The questionnaire had a higher specificity in literates than illiterates, whereas sensitivity varied considerably. The modified questionnaire translated in a local Indian language had reasonable sensitivity and can be used to screen individuals for PD in epidemiological studies in India. This questionnaire can be administered by NMAs to screen PD and this strategy would reduce manpower costs. Literacy may influence epidemiological estimates when screening PD.

  16. Applicability of three alternative instruments for food authenticity analysis: GMO identification.

    PubMed

    Burrell, A; Foy, C; Burns, M

    2011-03-06

    Ensuring foods are correctly labelled for ingredients derived from genetically modified organisms (GMOs) is an issue facing manufacturers, retailers, and enforcement agencies. DNA approaches for the determination of food authenticitys often use the polymerase chain reaction (PCR), and PCR products can be detected using capillary or gel electrophoresis. This study examines the fitness for purpose of the application of three laboratory electrophoresis instruments (Agilent Bioanalyzer 2100, Lab901 TapeStation, and Shimadzu MCE-202 MultiNA) for the detection of GMOs using PCR based on a previously validated protocol. Whilst minor differences in the performance characteristics of bias and precision were observed, all three instruments demonstrated their applicability in using this protocol for screening of GMO ingredients.

  17. Applicability of Three Alternative Instruments for Food Authenticity Analysis: GMO Identification

    PubMed Central

    Burrell, A.; Foy, C.; Burns, M.

    2011-01-01

    Ensuring foods are correctly labelled for ingredients derived from genetically modified organisms (GMOs) is an issue facing manufacturers, retailers, and enforcement agencies. DNA approaches for the determination of food authenticitys often use the polymerase chain reaction (PCR), and PCR products can be detected using capillary or gel electrophoresis. This study examines the fitness for purpose of the application of three laboratory electrophoresis instruments (Agilent Bioanalyzer 2100, Lab901 TapeStation, and Shimadzu MCE-202 MultiNA) for the detection of GMOs using PCR based on a previously validated protocol. Whilst minor differences in the performance characteristics of bias and precision were observed, all three instruments demonstrated their applicability in using this protocol for screening of GMO ingredients. PMID:21527985

  18. DNA methods: critical review of innovative approaches.

    PubMed

    Kok, Esther J; Aarts, Henk J M; Van Hoef, A M Angeline; Kuiper, Harry A

    2002-01-01

    The presence of ingredients derived from genetically modified organisms (GMOs) in food products in the market place is subject to a number of European regulations that stipulate which product consisting of or containing GMO-derived ingredients should be labeled as such. In order to maintain these labeling requirements, a variety of different GMO detection methods have been developed to screen for either the presence of DNA or protein derived from (approved) GM varieties. Recent incidents where unapproved GM varieties entered the European market show that more powerful GMO detection and identification methods will be needed to maintain European labeling requirements in an adequate, efficient, and cost-effective way. This report discusses the current state-of-the-art as well as future developments in GMO detection.

  19. A Murine Hypertrophic Cardiomyopathy Model: The DBA/2J Strain.

    PubMed

    Zhao, Wenyuan; Zhao, Tieqiang; Chen, Yuanjian; Zhao, Fengbo; Gu, Qingqing; Williams, Robert W; Bhattacharya, Syamal K; Lu, Lu; Sun, Yao

    2015-01-01

    Familial hypertrophic cardiomyopathy (HCM) is attributed to mutations in genes that encode for the sarcomere proteins, especially Mybpc3 and Myh7. Genotype-phenotype correlation studies show significant variability in HCM phenotypes among affected individuals with identical causal mutations. Morphological changes and clinical expression of HCM are the result of interactions with modifier genes. With the exceptions of angiotensin converting enzyme, these modifiers have not been identified. Although mouse models have been used to investigate the genetics of many complex diseases, natural murine models for HCM are still lacking. In this study we show that the DBA/2J (D2) strain of mouse has sequence variants in Mybpc3 and Myh7, relative to widely used C57BL/6J (B6) reference strain and the key features of human HCM. Four-month-old of male D2 mice exhibit hallmarks of HCM including increased heart weight and cardiomyocyte size relative to B6 mice, as well as elevated markers for cardiac hypertrophy including β-myosin heavy chain (MHC), atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and skeletal muscle alpha actin (α1-actin). Furthermore, cardiac interstitial fibrosis, another feature of HCM, is also evident in the D2 strain, and is accompanied by up-regulation of type I collagen and α-smooth muscle actin (SMA)-markers of fibrosis. Of great interest, blood pressure and cardiac function are within the normal range in the D2 strain, demonstrating that cardiac hypertrophy and fibrosis are not secondary to hypertension, myocardial infarction, or heart failure. Because D2 and B6 strains have been used to generate a large family of recombinant inbred strains, the BXD cohort, the D2 model can be effectively exploited for in-depth genetic analysis of HCM susceptibility and modifier screens.

  20. Dual gene activation and knockout screen reveals directional dependencies in genetic networks. | Office of Cancer Genomics

    Cancer.gov

    Understanding the direction of information flow is essential for characterizing how genetic networks affect phenotypes. However, methods to find genetic interactions largely fail to reveal directional dependencies. We combine two orthogonal Cas9 proteins from Streptococcus pyogenes and Staphylococcus aureus to carry out a dual screen in which one gene is activated while a second gene is deleted in the same cell. We analyze the quantitative effects of activation and knockout to calculate genetic interaction and directionality scores for each gene pair.

  1. Validation of Version 3.0 of the Breast Cancer Genetics Referral Screening Tool (B-RST™).

    PubMed

    Bellcross, Cecelia; Hermstad, April; Tallo, Christine; Stanislaw, Christine

    2018-05-08

    Despite increased awareness of hereditary breast and ovarian cancer among clinicians and the public, many BRCA1/2 mutation carriers remain unaware of their risk status. The Breast Cancer Genetics Referral Screening Tool (B-RST™) was created and validated to easily identify individuals at increased risk for hereditary breast and ovarian cancer for referral to cancer genetics services. The purpose of this study was to revise B-RST™ to maximize sensitivity against BRCA1/2 mutation status. We analyzed pedigrees of 277 individuals who had undergone BRCA1/2 testing to determine modifications to the B-RST™ 2.0 algorithm that would maximize sensitivity for mutations, while maintaining simplicity. We used McNemar's chi-square test to compare validation measures between the revised version (3.0) and the 2.0 version. Algorithmic changes made to B-RST™ 2.0 increased the sensitivity against BRCA1/2 mutation analysis from 71.1 to 94.0% (P < 0.0001). While specificity decreased, all screen-positive individuals were appropriate for cancer genetics referral, the primary purpose of the tool. Despite calls for BRCA1/2 population screening, there remains a critical need to identify those most at risk who should receive cancer genetics services. B-RST™ version 3.0 demonstrates high sensitivity for BRCA1/2 mutations, yet remains a simple and quick screening tool for at-risk individuals.

  2. The KinFact intervention - a randomized controlled trial to increase family communication about cancer history.

    PubMed

    Bodurtha, Joann N; McClish, Donna; Gyure, Maria; Corona, Rosalie; Krist, Alexander H; Rodríguez, Vivian M; Maibauer, Alisa M; Borzelleca, Joseph; Bowen, Deborah J; Quillin, John M

    2014-10-01

    Knowing family history is important for understanding cancer risk, yet communication within families is suboptimal. Providing strategies to enhance communication may be useful. Four hundred ninety women were recruited from urban, safety-net, hospital-based primary care women's health clinics. Participants were randomized to receive the KinFact intervention or the control handout on lowering risks for breast/colon cancer and screening recommendations. Cancer family history was reviewed with all participants. The 20-minute KinFact intervention, based in communication and behavior theory, included reviewing individualized breast/colon cancer risks and an interactive presentation about cancer and communication. Study outcomes included whether participants reported collecting family history, shared cancer risk information with relatives, and the frequency of communication with relatives. Data were collected at baseline, 1, 6, and 14 months. Overall, intervention participants were significantly more likely to gather family cancer information at follow-up (odds ratio [OR]: 2.73; 95% confidence interval [CI]: 2.01, 3.71) and to share familial cancer information with relatives (OR: 1.85; 95% CI: 1.37, 2.48). Communication frequency (1=not at all; 4=a lot) was significantly increased at follow-up (1.67 vs. 1.54). Differences were not modified by age, race, education, or family history. However, effects were modified by pregnancy status and genetic literacy. Intervention effects for information gathering and frequency were observed for nonpregnant women but not for pregnant women. Additionally, intervention effects were observed for information gathering in women with high genetic literacy, but not in women with low genetic literacy. The KinFact intervention successfully promoted family communication about cancer risk. Educating women to enhance their communication skills surrounding family history may allow them to partner more effectively with their families and ultimately their providers in discussing risks and prevention.

  3. [Genetically modified food and allergies - an update].

    PubMed

    Niemann, Birgit; Pöting, Annette; Braeuning, Albert; Lampen, Alfonso

    2016-07-01

    Approval by the European Commission is mandatory for placing genetically modified plants as food or feed on the market in member states of the European Union (EU). The approval is preceded by a safety assessment based on the guidance of the European Food Safety Authority EFSA. The assessment of allergenicity of genetically modified plants and their newly expressed proteins is an integral part of this assessment process. Guidance documents for the assessment of allergenicity are currently under revision. For this purpose, an expert workshop was conducted in Brussels on June 17, 2015. There, methodological improvements for the assessment of coeliac disease-causing properties of proteins, as well as the use of complex models for in vitro digestion of proteins were discussed. Using such techniques a refinement of the current, proven system of allergenicity assessment of genetically modified plants can be achieved.

  4. Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum.

    PubMed

    Vinayak, Sumiti; Pawlowic, Mattie C; Sateriale, Adam; Brooks, Carrie F; Studstill, Caleb J; Bar-Peled, Yael; Cipriano, Michael J; Striepen, Boris

    2015-07-23

    Recent studies into the global causes of severe diarrhoea in young children have identified the protozoan parasite Cryptosporidium as the second most important diarrhoeal pathogen after rotavirus. Diarrhoeal disease is estimated to be responsible for 10.5% of overall child mortality. Cryptosporidium is also an opportunistic pathogen in the contexts of human immunodeficiency virus (HIV)-caused AIDS and organ transplantation. There is no vaccine and only a single approved drug that provides no benefit for those in gravest danger: malnourished children and immunocompromised patients. Cryptosporidiosis drug and vaccine development is limited by the poor tractability of the parasite, which includes a lack of systems for continuous culture, facile animal models, and molecular genetic tools. Here we describe an experimental framework to genetically modify this important human pathogen. We established and optimized transfection of C. parvum sporozoites in tissue culture. To isolate stable transgenics we developed a mouse model that delivers sporozoites directly into the intestine, a Cryptosporidium clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system, and in vivo selection for aminoglycoside resistance. We derived reporter parasites suitable for in vitro and in vivo drug screening, and we evaluated the basis of drug susceptibility by gene knockout. We anticipate that the ability to genetically engineer this parasite will be transformative for Cryptosporidium research. Genetic reporters will provide quantitative correlates for disease, cure and protection, and the role of parasite genes in these processes is now open to rigorous investigation.

  5. Clinician-Stakeholders' Perspectives on Using Patient Portals to Return Lynch Syndrome Screening Results.

    PubMed

    Korngiebel, Diane M; West, Kathleen M; Burke, Wylie

    2018-04-01

    Test results for genetic conditions, such as Lynch Syndrome (LS), have traditionally been returned by genetic counselors or other providers who can explain results implications and provide psychosocial support. Returning genetic results through an Electronic Health Record's patient portal may increase the efficiency of returning results and could activate patient follow-up; however, stakeholder input is necessary to determine acceptability and appropriate implementation for LS. Twenty interviews were conducted with clinicians from six specialties involved in LS screening that represent a range of settings. Data were analyzed using directed content analysis and thematic analysis across content categories. Participants felt that patient portals could supplement personal calls, but the potential sensitive nature of LS screening results indicated the need for caution. Others felt that LS results could be returned through portals if there were clear explanations of the result, reputable additional information available within the portal, urging follow up confirmatory testing, and a referral to a genetics specialist. Patient portals were seen as helpful for prompting patient follow-up and providing resources to notify at-risk family members. There is potential for patient portals to return LS screening and other genetic results, however we raise several issues to resolve before implementation is warranted.

  6. Frequency and distribution of incidental findings deemed appropriate for S modifier designation on low-dose CT in a lung cancer screening program.

    PubMed

    Reiter, Michael J; Nemesure, Allison; Madu, Ezemonye; Reagan, Lisa; Plank, April

    2018-06-01

    To describe the frequency, distribution and reporting patterns of incidental findings receiving the Lung-RADS S modifier on low-dose chest computed tomography (CT) among lung cancer screening participants. This retrospective investigation included 581 individuals who received baseline low-dose chest CT for lung cancer screening between October 2013 and June 2017 at a single center. Incidental findings resulting in assignment of Lung-RADS S modifier were recorded as were incidental abnormalities detailed within the body of the radiology report only. A subset of 60 randomly selected CTs was reviewed by a second (blinded) radiologist to evaluate inter-rater variability of Lung-RADS reporting. A total of 261 (45%) participants received the Lung-RADS S modifier on baseline CT with 369 incidental findings indicated as potentially clinically significant. Coronary artery calcification was most commonly reported, accounting for 182 of the 369 (49%) findings. An additional 141 incidentalomas of the same types as these 369 findings were described in reports but were not labelled with the S modifier. Therefore, as high as 69% (402 of 581) of participants could have received the S modifier if reporting was uniform. Inter-radiologist concordance of S modifier reporting in a subset of 60 participants was poor (42% agreement, kappa = 0.2). Incidental findings are commonly identified on chest CT for lung cancer screening, yet reporting of the S modifier within Lung-RADS is inconsistent. Specific guidelines are necessary to better define potentially clinically significant abnormalities and to improve reporting uniformity. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Ectopic expression of the Drosophila Cdk1 inhibitory kinases, Wee1 and Myt1, interferes with the second mitotic wave and disrupts pattern formation during eye development.

    PubMed Central

    Price, Donald M; Jin, Zhigang; Rabinovitch, Simon; Campbell, Shelagh D

    2002-01-01

    Wee1 kinases catalyze inhibitory phosphorylation of the mitotic regulator Cdk1, preventing mitosis during S phase and delaying it in response to DNA damage or developmental signals during G2. Unlike yeast, metazoans have two distinct Wee1-like kinases, a nuclear protein (Wee1) and a cytoplasmic protein (Myt1). We have isolated the genes encoding Drosophila Wee1 and Myt1 and are using genetic approaches to dissect their functions during normal development. Overexpression of Dwee1 or Dmyt1 during eye development generates a rough adult eye phenotype. The phenotype can be modified by altering the gene dosage of known regulators of the G2/M transition, suggesting that we could use these transgenic strains in modifier screens to identify potential regulators of Wee1 and Myt1. To confirm this idea, we tested a collection of deletions for loci that can modify the eye overexpression phenotypes and identified several loci as dominant modifiers. Mutations affecting the Delta/Notch signaling pathway strongly enhance a GMR-Dmyt1 eye phenotype but do not affect a GMR-Dwee1 eye phenotype, suggesting that Myt1 is potentially a downstream target for Notch activity during eye development. We also observed interactions with p53, which suggest that Wee1 and Myt1 activity can block apoptosis. PMID:12072468

  8. Service innovation: a comparison of two approaches for physical screening of psychiatric inpatients.

    PubMed

    Harrison, Mark Richard; McMillan, Catherine Frances; Dickinson, Timothy

    2012-06-01

    Psychiatric medications have clear links to obesity, diabetes, dyslipidaemia, hypertension, hyperprolactinaemia and movement disorders. These disorders are a common cause of morbidity and mortality in psychiatric patients but physical screening by health services is often haphazard. We report the findings of an audit of physical screening across two hospital wards. Each ward undertook a process of service improvement. One ward modified the admissions proforma and the other developed a discharge screening clinic. The effectiveness of each of these interventions was then compared through a reaudit of practice across both wards. At baseline, screening was performed inconsistently and infrequently. On average, the modified admissions proforma increased screening rates by 4.7% compared to 30.7% for discharge screening clinics. The discharge screening clinic demonstrated statistically significant improvements in screening rates and effectively delivered health promotion advice. Discharge screening clinics are significantly more likely than improved admissions procedures to detect clinically significant abnormalities. If these abnormalities are detected and treated then the long-term physical health of psychiatric patients may be improved.

  9. The Premenstrual Symptoms Screening Tool revised for adolescents (PSST-A): prevalence of severe PMS and premenstrual dysphoric disorder in adolescents.

    PubMed

    Steiner, Meir; Peer, Miki; Palova, Eva; Freeman, Ellen W; Macdougall, Mary; Soares, Claudio N

    2011-02-01

    The Premenstrual Symptoms Screening Tool was modified for use in adolescents and piloted in 578 girls at three international sites. Nearly one third (29.6%) reported experiencing severe PMS or PMDD, with irritability being the most commonly reported symptom. Rates of menstrual-related pain were high, particularly in those with severe PMS or PMDD. Severe PMS and PMDD present with similar rates and symptoms in adolescents as in adults, and the Premenstrual Symptoms Screening Tool modified for adolescents is a fast, reliable tool to screen for these syndromes in adolescents.

  10. Impact of the increased adoption of prenatal cfDNA screening on non-profit patient advocacy organizations in the United States.

    PubMed

    Meredith, Stephanie; Kaposy, Christopher; Miller, Victoria J; Allyse, Megan; Chandrasekharan, Subhashini; Michie, Marsha

    2016-08-01

    The 'Stakeholder Perspectives on Noninvasive Prenatal Genetic Screening' Symposium was held in conjunction with the 2015 annual meeting of the International Society for Prenatal Diagnosis. During the day-long meeting, a panel of patient advocacy group (PAG) representatives discussed concerns and challenges raised by prenatal cell-free DNA (cfDNA) screening, which has resulted in larger demands upon PAGs from concerned patients receiving prenatal cfDNA screening results. Prominent concerns included confusion about the accuracy of cfDNA screening and a lack of patient education resources about genetic conditions included in cfDNA screens. Some of the challenges faced by PAGs included funding limitations, lack of consistently implemented standards of care and oversight, diverse perspectives among PAGs and questions about neutrality, and lack of access to training and genetic counselors. PAG representatives also put forward suggestions for addressing these challenges, including improving educational and PAG funding and increasing collaboration between PAGs and the medical community. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.

  11. Discovery and Development of Synthetic and Natural Biomaterials for Protein Therapeutics and Medical Device Applications

    NASA Astrophysics Data System (ADS)

    Keefe, Andrew J.

    Controlling nonspecific protein interactions is important for applications from medical devices to protein therapeutics. The presented work is a compilation of efforts aimed at using zwitterionic (ionic yet charge neutral) polymers to modify and stabilize the surface of sensitive biomedical and biological materials. Traditionally, when modifying the surface of a material, the stability of the underlying substrate. The materials modified in this dissertation are unique due to their unconventional amorphous characteristics which provide additional challenges. These are poly(dimethyl siloxane) (PDMS) rubber, and proteins. These materials may seem dissimilar, but both have amorphous surfaces, that do not respond well to chemical modification. PDMS is a biomaterial extensively used in medical device manufacturing, but experiences unacceptably high levels of non-specific protein fouling when used with biological samples. To reduce protein fouling, surface modification is often needed. Unfortunately conventional surface modification methods, such as Poly(ethylene glycol) (PEG) coatings, do not work for PDMS due to its amorphous state. Herein, we demonstrate how a superhydrophilic zwitterionic material, poly(carboxybetaine methacrylate) (pCBMA), can provide a highly stable nonfouling coating with long term stability due to the sharp the contrast in hydrophobicity between pCBMA and PDMS. Biological materials, such as proteins, also require stabilization to improve shelf life, circulation time, and bioactivity. Conjugation of proteins with PEG is often used to increase protein stability, but has a detrimental effect on bioactivity. Here we have shown that pCBMA conjugation improves stability in a similar fashion to PEG, but also retains, or even improves, binding affinity due to enhanced protein-substrate hydrophobic interactions. Recognizing that pCBMA chemically resembles the combination of lysine (K) and glutamic acid (E) amino acids, we have shown how zwitterionic nonfouling peptides can be genetically engineered onto a protein to form recombinant protein-polymer conjugates. This technique avoids the need to post-modify proteins, that is often expensive and time consuming in protein manufacturing. Finally, we have developed two new peptide screening methods that were able to select for nonfouling peptide sequences. The selection for nonfouling sequences is not possible using traditional methods (phage display, yeast display, bacterial display and resin display) due to the presence of background interference. In our first nonfouling peptide screening method, we measured the fouling properties of peptides that were immobilized on the surface of solid glass beads. Peptides first needed to be rationally designed, and then subsequently evaluated for protein binding. Using this method, we were able to screen of 10's of sequences. Our second nonfouling peptide screening method is able to screen thousands of peptide sequences using a combinatorially generated peptide library. This was accomplished using controlled pore glass (CPG) beads as substrates to develop one-bead-one-compound (OBOC) peptide libraries. The choice of a porous substrate made it possible to synthesize enough peptide material to allow for peptide sequencing from a single bead using mass spectrometry techniques.

  12. Genetically Modified Plants: Public and Scientific Perceptions

    PubMed Central

    2013-01-01

    The potential of genetically modified plants to meet the requirements of growing population is not being recognized at present. This is a consequence of concerns raised by the public and the critics about their applications and release into the environment. These include effect on human health and environment, biosafety, world trade monopolies, trustworthiness of public institutions, integrity of regulatory agencies, loss of individual choice, and ethics as well as skepticism about the real potential of the genetically modified plants, and so on. Such concerns are enormous and prevalent even today. However, it should be acknowledged that most of them are not specific for genetically modified plants, and the public should not forget that the conventionally bred plants consumed by them are also associated with similar risks where no information about the gene(s) transfer is available. Moreover, most of the concerns are hypothetical and lack scientific background. Though a few concerns are still to be disproved, it is viewed that, with proper management, these genetically modified plants have immense potential for the betterment of mankind. In the present paper, an overview of the raised concerns and wherever possible reasons assigned to explain their intensity or unsuitability are reviewed. PMID:25937981

  13. Evaluation of genetically-improved (glandless) and genetically-modified low-gossypol cottonseed meal as alternative protein sources in the diet of juvenile southern flounder Paralichthys lethostigma reared in a recirculating

    USDA-ARS?s Scientific Manuscript database

    Cottonseed meal (CSM) proteins from genetically-improved (glandless) seed (GI-CSM, 52.1% crude protein, CP), genetically-modified low-gossypol seed (GMO-CSM, 56.0% CP) and from an untreated regular (glanded) seed (R-CSM 49.9% CP) were evaluated to replace fish meal (FM) protein (59.5% CP) in juvenil...

  14. Genetic dyslexia risk variant is related to neural connectivity patterns underlying phonological awareness in children.

    PubMed

    Skeide, Michael A; Kirsten, Holger; Kraft, Indra; Schaadt, Gesa; Müller, Bent; Neef, Nicole; Brauer, Jens; Wilcke, Arndt; Emmrich, Frank; Boltze, Johannes; Friederici, Angela D

    2015-09-01

    Phonological awareness is the best-validated predictor of reading and spelling skill and therefore highly relevant for developmental dyslexia. Prior imaging genetics studies link several dyslexia risk genes to either brain-functional or brain-structural factors of phonological deficits. However, coherent evidence for genetic associations with both functional and structural neural phenotypes underlying variation in phonological awareness has not yet been provided. Here we demonstrate that rs11100040, a reported modifier of SLC2A3, is related to the functional connectivity of left fronto-temporal phonological processing areas at resting state in a sample of 9- to 12-year-old children. Furthermore, we provide evidence that rs11100040 is related to the fractional anisotropy of the arcuate fasciculus, which forms the structural connection between these areas. This structural connectivity phenotype is associated with phonological awareness, which is in turn associated with the individual retrospective risk scores in an early dyslexia screening as well as to spelling. These results suggest a link between a dyslexia risk genotype and a functional as well as a structural neural phenotype, which is associated with a phonological awareness phenotype. The present study goes beyond previous work by integrating genetic, brain-functional and brain-structural aspects of phonological awareness within a single approach. These combined findings might be another step towards a multimodal biomarker for developmental dyslexia. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Toward a generalized and high-throughput enzyme screening system based on artificial genetic circuits.

    PubMed

    Choi, Su-Lim; Rha, Eugene; Lee, Sang Jun; Kim, Haseong; Kwon, Kilkoang; Jeong, Young-Su; Rhee, Young Ha; Song, Jae Jun; Kim, Hak-Sung; Lee, Seung-Goo

    2014-03-21

    Large-scale screening of enzyme libraries is essential for the development of cost-effective biological processes, which will be indispensable for the production of sustainable biobased chemicals. Here, we introduce a genetic circuit termed the Genetic Enzyme Screening System that is highly useful for high-throughput enzyme screening from diverse microbial metagenomes. The circuit consists of two AND logics. The first AND logic, the two inputs of which are the target enzyme and its substrate, is responsible for the accumulation of a phenol compound in cell. Then, the phenol compound and its inducible transcription factor, whose activation turns on the expression of a reporter gene, interact in the other logic gate. We confirmed that an individual cell harboring this genetic circuit can present approximately a 100-fold higher cellular fluorescence than the negative control and can be easily quantified by flow cytometry depending on the amounts of phenolic derivatives. The high sensitivity of the genetic circuit enables the rapid discovery of novel enzymes from metagenomic libraries, even for genes that show marginal activities in a host system. The crucial feature of this approach is that this single system can be used to screen a variety of enzymes that produce a phenol compound from respective synthetic phenyl-substrates, including cellulase, lipase, alkaline phosphatase, tyrosine phenol-lyase, and methyl parathion hydrolase. Consequently, the highly sensitive and quantitative nature of this genetic circuit along with flow cytometry techniques could provide a widely applicable toolkit for discovering and engineering novel enzymes at a single cell level.

  16. Diagnostic guidelines for newborns who screen positive in newborn screening.

    PubMed

    Kronn, David; Mofidi, Shideh; Braverman, Nancy; Harris, Katharine

    2010-12-01

    Recent expansion of the newborn screening panels has presented an interesting challenge to specialty care centers, especially the clinical genetics community. Some of the conditions in the core and secondary newborn screening panels have extremely variable clinical presentations; others are so rare that only a handful of newborns have been diagnosed with them to date (Region 4 Collaborative MS/MS project-http://region4genetics.org/msms_data_project/data_project_home.aspx). Definition of some disorders is problematic-does continued abnormality of the screening analyte constitute diagnosis or is further testing necessary? A work group of the New York Mid-Atlantic Consortium for Genetic and Newborn Screening Services (region 2), one of seven regional collaboratives funded by the Federal Health Resources and Services Administration and administered by the Maternal and Child Health Bureau (U22MC03956), has developed guidelines for the confirmation of diagnosis of the conditions in the newborn screening panels for use by the specialty care centers. The diagnostic guidelines are a work in progress and are being reviewed and revised regularly as our understanding of the newborn screened disorders improves. The aim is to make it a relevant guide for specialty care physicians and other healthcare professionals in the diagnostic workup of these patients.

  17. Testing for Genetically Modified Foods Using PCR

    ERIC Educational Resources Information Center

    Taylor, Ann; Sajan, Samin

    2005-01-01

    The polymerase chain reaction (PCR) is a Nobel Prize-winning technique that amplifies a specific segment of DNA and is commonly used to test for the presence of genetic modifications. Students use PCR to test corn meal and corn-muffin mixes for the presence of a promoter commonly used in genetically modified foods, the cauliflower mosaic virus 35S…

  18. Genetically Modified Crops and Nuisance: Exploring the Role of Precaution in Private Law

    ERIC Educational Resources Information Center

    Craik, Neil; Culver, Keith; Siebrasse, Norman

    2007-01-01

    This article critically considers calls for the precautionary principle to inform judicial decision making in a private law context in light of the Hoffman litigation, where it is alleged that the potential for genetic contamination from genetically modified (GM) crops causes an unreasonable interference with the rights of organic farmers to use…

  19. Variables Affecting Secondary School Students' Willingness to Eat Genetically Modified Food Crops

    ERIC Educational Resources Information Center

    Maes, Jasmien; Bourgonjon, Jeroen; Gheysen, Godelieve; Valcke, Martin

    2018-01-01

    A large-scale cross-sectional study (N = 4002) was set up to determine Flemish secondary school students' willingness to eat genetically modified food (WTE) and to link students' WTE to previously identified key variables from research on the acceptance of genetic modification (GM). These variables include subjective and objective knowledge about…

  20. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2013-05-14

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  1. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2017-09-12

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  2. Genetically modified yeast species and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2011-05-17

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications', include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  3. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2016-08-09

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  4. Sorting Out Antibiotics' Mechanisms of Action: a Double Fluorescent Protein Reporter for High-Throughput Screening of Ribosome and DNA Biosynthesis Inhibitors

    PubMed Central

    Osterman, Ilya A.; Komarova, Ekaterina S.; Shiryaev, Dmitry I.; Korniltsev, Ilya A.; Khven, Irina M.; Lukyanov, Dmitry A.; Tashlitsky, Vadim N.; Serebryakova, Marina V.; Efremenkova, Olga V.; Ivanenkov, Yan A.; Bogdanov, Alexey A.; Dontsova, Olga A.

    2016-01-01

    In order to accelerate drug discovery, a simple, reliable, and cost-effective system for high-throughput identification of a potential antibiotic mechanism of action is required. To facilitate such screening of new antibiotics, we created a double-reporter system for not only antimicrobial activity detection but also simultaneous sorting of potential antimicrobials into those that cause ribosome stalling and those that induce the SOS response due to DNA damage. In this reporter system, the red fluorescent protein gene rfp was placed under the control of the SOS-inducible sulA promoter. The gene of the far-red fluorescent protein, katushka2S, was inserted downstream of the tryptophan attenuator in which two tryptophan codons were replaced by alanine codons, with simultaneous replacement of the complementary part of the attenuator to preserve the ability to form secondary structures that influence transcription termination. This genetically modified attenuator makes possible Katushka2S expression only upon exposure to ribosome-stalling compounds. The application of red and far-red fluorescent proteins provides a high signal-to-background ratio without any need of enzymatic substrates for detection of the reporter activity. This reporter was shown to be efficient in high-throughput screening of both synthetic and natural chemicals. PMID:27736765

  5. Unbiased RNAi screen for hepcidin regulators links hepcidin suppression to proliferative Ras/RAF and nutrient-dependent mTOR signaling

    PubMed Central

    Mleczko-Sanecka, Katarzyna; Roche, Franziska; Rita da Silva, Ana; Call, Debora; D’Alessio, Flavia; Ragab, Anan; Lapinski, Philip E.; Ummanni, Ramesh; Korf, Ulrike; Oakes, Christopher; Damm, Georg; D’Alessandro, Lorenza A.; Klingmüller, Ursula; King, Philip D.; Boutros, Michael; Hentze, Matthias W.

    2014-01-01

    The hepatic hormone hepcidin is a key regulator of systemic iron metabolism. Its expression is largely regulated by 2 signaling pathways: the “iron-regulated” bone morphogenetic protein (BMP) and the inflammatory JAK-STAT pathways. To obtain broader insights into cellular processes that modulate hepcidin transcription and to provide a resource to identify novel genetic modifiers of systemic iron homeostasis, we designed an RNA interference (RNAi) screen that monitors hepcidin promoter activity after the knockdown of 19 599 genes in hepatocarcinoma cells. Interestingly, many of the putative hepcidin activators play roles in signal transduction, inflammation, or transcription, and affect hepcidin transcription through BMP-responsive elements. Furthermore, our work sheds light on new components of the transcriptional machinery that maintain steady-state levels of hepcidin expression and its responses to the BMP- and interleukin-6–triggered signals. Notably, we discover hepcidin suppression mediated via components of Ras/RAF MAPK and mTOR signaling, linking hepcidin transcriptional control to the pathways that respond to mitogen stimulation and nutrient status. Thus using a combination of RNAi screening, reverse phase protein arrays, and small molecules testing, we identify links between the control of systemic iron homeostasis and critical liver processes such as regeneration, response to injury, carcinogenesis, and nutrient metabolism. PMID:24385536

  6. A high-throughput liquid bead array-based screening technology for Bt presence in GMO manipulation.

    PubMed

    Fu, Wei; Wang, Huiyu; Wang, Chenguang; Mei, Lin; Lin, Xiangmei; Han, Xueqing; Zhu, Shuifang

    2016-03-15

    The number of species and planting areas of genetically modified organisms (GMOs) has been rapidly developed during the past ten years. For the purpose of GMO inspection, quarantine and manipulation, we have now devised a high-throughput Bt-based GMOs screening method based on the liquid bead array. This novel method is based on the direct competitive recognition between biotinylated antibodies and beads-coupled antigens, searching for Bt presence in samples if it contains Bt Cry1 Aa, Bt Cry1 Ab, Bt Cry1 Ac, Bt Cry1 Ah, Bt Cry1 B, Bt Cry1 C, Bt Cry1 F, Bt Cry2 A, Bt Cry3 or Bt Cry9 C. Our method has a wide GMO species coverage so that more than 90% of the whole commercialized GMO species can be identified throughout the world. Under our optimization, specificity, sensitivity, repeatability and availability validation, the method shows a high specificity and 10-50 ng/mL sensitivity of quantification. We then assessed more than 1800 samples in the field and food market to prove capacity of our method in performing a high throughput screening work for GMO manipulation. Our method offers an applicant platform for further inspection and research on GMO plants. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. A preliminary investigation into the use of biosensors to screen stomach contents for selected poisons and drugs.

    PubMed

    Redshaw, Natalie; Dickson, Stuart J; Ambrose, Vikki; Horswell, Jacqui

    2007-10-25

    The bioluminescence response of two genetically modified (lux-marked) bacteria to potentially toxic compounds (PTCs) in stomach contents was monitored using an in vitro assay. Cells of Escherichia coli HB101 and Salmonella typhimurium both carrying the lux light producing gene on a plasmid (pUDC607) were added to stomach contents containing various concentrations of organic and inorganic compounds. There was some variability in the response of the two biosensors, but both were sensitive to the herbicides glyphosate, 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T); pentachlorophenol (PCP), and inorganic poisons arsenic and mercury at a concentration range likely to be found in stomach contents samples submitted for toxicological analysis. This study demonstrates that biosensor bioassays could be a useful preliminary screening tool in forensic toxicology and that such a toxicological screening should include more than one test organism to maximise the number of PTC's detected. The probability of false positive results from samples containing compounds that may interfere with the assay such as over-the-counter (OTC) drugs and caffeine in tea and coffee was also investigated. Of the substances tested only coffee has the potential to cause false positive results.

  8. Moderating effects of autism on parent views of genetic screening for aggression.

    PubMed

    May, Michael E; Brandt, Rachel C; Bohannan, Joseph K

    2012-10-01

    Advances in gene-environment interaction research have revealed genes that are associated with aggression. However, little is known about parent perceptions of genetic screening for behavioral symptoms like aggression as opposed to diagnosing disabilities. These perceptions may influence future research endeavors involving genetic linkage studies to behavior, including proactive approaches for parents to avoid events leading to aggression. The purpose of this study was to solicit the perspectives of parents who have children with autism about screening for genes associated with aggression, compared to responses from those who have children without disabilities and those planning to have children. Parents of children with autism were more likely to support screening and the use of the results to seek treatment if necessary. Results are discussed in the context of surveillance screening and systematic early intervention for behavioral symptoms related to autism. The results may provide insight for clincians, researchers, policymakers, and advocacy groups related to diagnosing and treating aggression in people with autism.

  9. Making Sense of Your Genes: A Guide to Genetic Counseling

    MedlinePlus

    ... to think about genetic counseling and perhaps genetic testing. A cancer genetic counselor will evaluate your family health history and talk about risks for inherited cancer, as well as screening and ...

  10. Carrier screening for cystic fibrosis.

    PubMed

    Dungan, Jeffrey S

    2010-03-01

    Cystic fibrosis is the first genetic disorder for which universal screening of preconceptional or prenatal patients became a component of standard prenatal care. The molecular genetics and mutation profile of the CFTR gene are complex, with a wide range of phenotypic consequences. Carrier screening can facilitate risk assessment for prospective parents to have an affected offspring, although there remains a small residual risk for carrying a mutation even with a negative screening result. There are ethnic differences with respect to disease incidence and effectiveness of carrier testing, which may complicate counseling. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  11. Psychological impact of von Hippel-Lindau genetic screening in patients with a previous history of hemangioblastoma of the central nervous system.

    PubMed

    Rochette, Claire; Baumstarck, Karine; Canoni-Zattara, Hélène; Abdullah, Ahmad Esmaeel; Figarella-Branger, Dominique; Pertuit, Morgane; Barlier, Anne; Castinetti, Frédéric; Pacak, Karel; Metellus, Philippe; Taïeb, David

    2018-05-15

    Von Hippel-Lindau (VHL) syndrome is a hereditary cancer syndrome characterized by a high risk of developing benign and malignant tumors, including central nervous system hemangioblastomas (CNS HBs). For an early diagnosis of VHL, before the occurrence of cancers (especially renal cell carcinoma), it is of huge importance to initiate VHL genetic testing in at-risk patients. The aim of the study was to assess the psychological impact of VHL genetic testing in patients previously diagnosed with a CNS HB. From 1999 until 2015, 55 patients underwent surgery for CNS HBs. Eleven patients were already screened for VHL mutations and 3 patients deceased before the start of the study. From the remaining 42 patients, 24 were accepted to be enrolled in the study. Assessment of psychological impact of VHL genetic testing was performed by measuring anxiety levels, mood disorders, quality of life, and psychological consequences of genetic screening. Twenty-one of the enrolled 24 patients underwent VHL genetic testing and 12 patients came back for the communication of positive genetic results. The baseline psychological status did not differ between these 2 groups. Patients who attended the visit of communication of genetic results had similar anxiety levels compared to those who had not. Furthermore, they also experienced an improvement in the level of anxiety and two QoL dimension scores compared to their baseline status. In summary, there is no evidence of a negative psychosocial impact of VHL genetic testing in patients with a previous history of CNS HB. We, therefore, recommend the recall of patients who have not been previously screened.

  12. Between myth and reality: genetically modified maize, an example of a sizeable scientific controversy.

    PubMed

    Wisniewski, Jean-Pierre; Frangne, Nathalie; Massonneau, Agnès; Dumas, Christian

    2002-11-01

    Maize is a major crop plant with essential agronomical interests and a model plant for genetic studies. With the development of plant genetic engineering technology, many transgenic strains of this monocotyledonous plant have been produced over the past decade. In particular, field-cultivated insect-resistant Bt-maize hybrids are at the centre of an intense debate between scientists and organizations recalcitrant to genetically modified organisms (GMOs). This debate, which addresses both safety and ethical aspects, has raised questions about the impact of genetically modified (GM) crops on the biodiversity of traditional landraces and on the environment. Here, we review some of the key points of maize genetic history as well as the methods used to stably transform this cereal. We describe the genetically engineered Bt-maizes available for field cultivation and we investigate the controversial reports on their impacts on non-target insects such as the monarch butterfly and on the flow of transgenes into Mexican maize landraces.

  13. Genetic diversity and genetic structure of an endemic Mexican Dusky Rattlesnake (Crotalus triseriatus) in a highly modified agricultural landscape: implications for conservation.

    PubMed

    Sunny, Armando; Monroy-Vilchis, Octavio; Zarco-González, Martha M; Mendoza-Martínez, Germán David; Martínez-Gómez, Daniel

    2015-12-01

    It is necessary to determine genetic diversity of fragmented populations in highly modified landscapes to understand how populations respond to land-use change. This information will help guide future conservation and management strategies. We conducted a population genetic study on an endemic Mexican Dusky Rattlesnake (Crotalus triseriatus) in a highly modified landscape near the Toluca metropolitan area, in order to provide crucial information for the conservation of this species. There was medium levels of genetic diversity, with a few alleles and genotypes. We identified three genetically differentiated clusters, likely as a result of different habitat cover type. We also found evidence of an ancestral genetic bottleneck and medium values of effective population size. Inbreeding coefficients were low and there was a moderate gene flow. Our results can be used as a basis for future research and C. triseriatus conservation efforts, particularly considering that the Trans-Mexican Volcanic Belt is heavily impacted by destructive land-use practices.

  14. USEPA Resistance Management Research

    EPA Science Inventory

    A significant increase in genetically modified corn planting driven by biofuel demand is expected for future planted acreages approaching 80% of total corn plantings in 2009. As demand increases, incidence of farmer non-compliance with mandated non-genetically modified refuge is...

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruegg, Thomas Lawrence; Thelen, Michael P.

    The present invention provides for a method of genetically modifying microorganisms to enhance resistance to ionic liquids, host cells genetically modified in accordance with the methods, and methods of using the host cells in a reaction comprising biomass that has been pretreated with ionic liquids.

  16. Fluorescence imaging technology (FI) for high-throughput screening of selenide-modified nano-TiO2 catalysts.

    PubMed

    Wang, Liping; Lee, Jianchao; Zhang, Meijuan; Duan, Qiannan; Zhang, Jiarui; Qi, Hailang

    2016-02-18

    A high-throughput screening (HTS) method based on fluorescence imaging (FI) was implemented to evaluate the catalytic performance of selenide-modified nano-TiO2. Chemical ink-jet printing (IJP) technology was reformed to fabricate a catalyst library comprising 1405 (Ni(a)Cu(b)Cd(c)Ce(d)In(e)Y(f))Se(x)/TiO2 (M6Se/Ti) composite photocatalysts. Nineteen M6Se/Tis were screened out from the 1405 candidates efficiently.

  17. First application of a microsphere-based immunoassay to the detection of genetically modified organisms (GMOs): quantification of Cry1Ab protein in genetically modified maize.

    PubMed

    Fantozzi, Anna; Ermolli, Monica; Marini, Massimiliano; Scotti, Domenico; Balla, Branko; Querci, Maddalena; Langrell, Stephen R H; Van den Eede, Guy

    2007-02-21

    An innovative covalent microsphere immunoassay, based on the usage of fluorescent beads coupled to a specific antibody, was developed for the quantification of the endotoxin Cry1Ab present in MON810 and Bt11 genetically modified (GM) maize lines. In particular, a specific protocol was developed to assess the presence of Cry1Ab in a very broad range of GM maize concentrations, from 0.1 to 100% [weight of genetically modified organism (GMO)/weight]. Test linearity was achieved in the range of values from 0.1 to 3%, whereas fluorescence signal increased following a nonlinear model, reaching a plateau at 25%. The limits of detection and quantification were equal to 0.018 and 0.054%, respectively. The present study describes the first application of quantitative high-throughput immunoassays in GMO analysis.

  18. Application of whole genome shotgun sequencing for detection and characterization of genetically modified organisms and derived products.

    PubMed

    Holst-Jensen, Arne; Spilsberg, Bjørn; Arulandhu, Alfred J; Kok, Esther; Shi, Jianxin; Zel, Jana

    2016-07-01

    The emergence of high-throughput, massive or next-generation sequencing technologies has created a completely new foundation for molecular analyses. Various selective enrichment processes are commonly applied to facilitate detection of predefined (known) targets. Such approaches, however, inevitably introduce a bias and are prone to miss unknown targets. Here we review the application of high-throughput sequencing technologies and the preparation of fit-for-purpose whole genome shotgun sequencing libraries for the detection and characterization of genetically modified and derived products. The potential impact of these new sequencing technologies for the characterization, breeding selection, risk assessment, and traceability of genetically modified organisms and genetically modified products is yet to be fully acknowledged. The published literature is reviewed, and the prospects for future developments and use of the new sequencing technologies for these purposes are discussed.

  19. Integrating functional genomics to accelerate mechanistic personalized medicine.

    PubMed

    Tyner, Jeffrey W

    2017-03-01

    The advent of deep sequencing technologies has resulted in the deciphering of tremendous amounts of genetic information. These data have led to major discoveries, and many anecdotes now exist of individual patients whose clinical outcomes have benefited from novel, genetically guided therapeutic strategies. However, the majority of genetic events in cancer are currently undrugged, leading to a biological gap between understanding of tumor genetic etiology and translation to improved clinical approaches. Functional screening has made tremendous strides in recent years with the development of new experimental approaches to studying ex vivo and in vivo drug sensitivity. Numerous discoveries and anecdotes also exist for translation of functional screening into novel clinical strategies; however, the current clinical application of functional screening remains largely confined to small clinical trials at specific academic centers. The intersection between genomic and functional approaches represents an ideal modality to accelerate our understanding of drug sensitivities as they relate to specific genetic events and further understand the full mechanisms underlying drug sensitivity patterns.

  20. Systematic genetic screening in a prospective group of Danish patients with pheochromocytoma

    PubMed Central

    Hansen, Morten Steen Svarer; Jacobsen, Niels; Frederiksen, Anja Lisbeth; Lund, Lars; Andersen, Marianne Skovsager; Glintborg, Dorte

    2017-01-01

    Recent guidelines recommend consideration of genetic screening in all newly diagnosed patients with pheochromocytoma. Patients diagnosed with pheochromocytoma in the Region of Southern Denmark during 2006–2013 without previously recognized monogenetic etiology were offered genetic screening for mutations in the VHL, RET, SDHB, SDHC, and SDHD genes. A total of 41 patients were included, and genetic data were available in 35. In four of the 35 patients, a pathogenic variant was identified prior to the diagnosis of pheochromocytoma (von Hippel–Lindau disease, n=2; neurofibromatosis type 1, n=2). The patients carrying a genetic mutation were all younger than 45 years at time of diagnosis of pheochromocytoma, two patients presented with bilateral tumors, and one patient had a positive family history of pheochromocytoma. Genetic screening of the remaining 31 patients did not identify any mutations. The sporadic cases had a median age of 58 years (range 33–80 years). Three of 31 sporadic cases (ages 60, 69, and 76 years at time of diagnosis) presented with bilateral adrenal tumors, one patient had multiple adrenal tumors in both adrenal glands, and no patients had a positive family history of pheochromocytoma. Of the 31 patients, 24 (68.6%) were diagnosed with pheochromocytoma due to evaluation of an adrenal incidentaloma. In conclusion, monogenetic etiology was identified in four of 35 (11.4%) patients diagnosed with pheochromocytoma. PMID:28721348

  1. Targeted Genetic Screen in Amyotrophic Lateral Sclerosis Reveals Novel Genetic Variants with Synergistic Effect on Clinical Phenotype.

    PubMed

    Cooper-Knock, Johnathan; Robins, Henry; Niedermoser, Isabell; Wyles, Matthew; Heath, Paul R; Higginbottom, Adrian; Walsh, Theresa; Kazoka, Mbombe; Ince, Paul G; Hautbergue, Guillaume M; McDermott, Christopher J; Kirby, Janine; Shaw, Pamela J

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is underpinned by an oligogenic rare variant architecture. Identified genetic variants of ALS include RNA-binding proteins containing prion-like domains (PrLDs). We hypothesized that screening genes encoding additional similar proteins will yield novel genetic causes of ALS. The most common genetic variant of ALS patients is a G4C2-repeat expansion within C9ORF72 . We have shown that G4C2-repeat RNA sequesters RNA-binding proteins. A logical consequence of this is that loss-of-function mutations in G4C2-binding partners might contribute to ALS pathogenesis independently of and/or synergistically with C9ORF72 expansions. Targeted sequencing of genomic DNA encoding either RNA-binding proteins or known ALS genes ( n = 274 genes) was performed in ALS patients to identify rare deleterious genetic variants and explore genotype-phenotype relationships. Genomic DNA was extracted from 103 ALS patients including 42 familial ALS patients and 61 young-onset (average age of onset 41 years) sporadic ALS patients; patients were chosen to maximize the probability of identifying genetic causes of ALS. Thirteen patients carried a G4C2-repeat expansion of C9ORF72 . We identified 42 patients with rare deleterious variants; 6 patients carried more than one variant. Twelve mutations were discovered in known ALS genes which served as a validation of our strategy. Rare deleterious variants in RNA-binding proteins were significantly enriched in ALS patients compared to control frequencies ( p = 5.31E-18). Nineteen patients featured at least one variant in a RNA-binding protein containing a PrLD. The number of variants per patient correlated with rate of disease progression ( t -test, p = 0.033). We identified eighteen patients with a single variant in a G4C2-repeat binding protein. Patients with a G4C2-binding protein variant in combination with a C9ORF72 expansion had a significantly faster disease course ( t -test, p = 0.025). Our data are consistent with an oligogenic model of ALS. We provide evidence for a number of entirely novel genetic variants of ALS caused by mutations in RNA-binding proteins. Moreover we show that these mutations act synergistically with each other and with C9ORF72 expansions to modify the clinical phenotype of ALS. A key finding is that this synergy is present only between functionally interacting variants. This work has significant implications for ALS therapy development.

  2. MS-based analytical methodologies to characterize genetically modified crops.

    PubMed

    García-Cañas, Virginia; Simó, Carolina; León, Carlos; Ibáñez, Elena; Cifuentes, Alejandro

    2011-01-01

    The development of genetically modified crops has had a great impact on the agriculture and food industries. However, the development of any genetically modified organism (GMO) requires the application of analytical procedures to confirm the equivalence of the GMO compared to its isogenic non-transgenic counterpart. Moreover, the use of GMOs in foods and agriculture faces numerous criticisms from consumers and ecological organizations that have led some countries to regulate their production, growth, and commercialization. These regulations have brought about the need of new and more powerful analytical methods to face the complexity of this topic. In this regard, MS-based technologies are increasingly used for GMOs analysis to provide very useful information on GMO composition (e.g., metabolites, proteins). This review focuses on the MS-based analytical methodologies used to characterize genetically modified crops (also called transgenic crops). First, an overview on genetically modified crops development is provided, together with the main difficulties of their analysis. Next, the different MS-based analytical approaches applied to characterize GM crops are critically discussed, and include "-omics" approaches and target-based approaches. These methodologies allow the study of intended and unintended effects that result from the genetic transformation. This information is considered to be essential to corroborate (or not) the equivalence of the GM crop with its isogenic non-transgenic counterpart. Copyright © 2010 Wiley Periodicals, Inc.

  3. [Plant genetic engineering in Monsanto company: from the first laboratory experiments to worldwide practical use].

    PubMed

    Konov, A L; Velchev, M; Parcel, D

    2005-01-01

    The history of modern biotechnology of agricultural plants is briefly considered in the article. Methods of genetic transformation and regeneration of transgenic plants as well as the mechanisms of resistance of genetically modified plants to herbicides and pests are discussed. By the example of genetically modified varieties and hybrids there are shown the ways of solving the problem of weeds and pests. The questions of biosafety legislation in different countries are considered.

  4. Nematicidal protease genes screened from a soil metagenomic library to control Radopholus similis mediated by Pseudomonas fluorescens pf36.

    PubMed

    Chen, Deqiang; Wang, Dongwei; Xu, Chunling; Chen, Chun; Li, Junyi; Wu, Wenjia; Huang, Xin; Xie, Hui

    2018-04-01

    Controlling Radopholus similis, an important phytopathogenic nematode, is a challenge worldwide. Herein, we constructed a metagenomic fosmid library from the rhizosphere soil of banana plants, and six clones with protease activity were obtained by functionally screening the library. Furthermore, subclones were constructed using the six clones, and three protease genes with nematicidal activity were identified: pase1, pase4, and pase6. The pase4 gene was successfully cloned and expressed, demonstrating that the protease PASE4 could effectively degrade R. similis tissues and result in nematode death. Additionally, we isolated a predominant R. similis-associated bacterium, Pseudomonas fluorescens (pf36), from 10 R. similis populations with different hosts. The pase4 gene was successfully introduced into the pf36 strain by vector transformation and conjugative transposition, and two genetically modified strains were obtained: p4MCS-pf36 and p4Tn5-pf36. p4MCS-pf36 had significantly higher protease expression and nematicidal activity (p < 0.05) than p4Tn5-pf36 in a microtiter plate assay, whereas p4Tn5-pf36 was superior to p4MCS-pf36 in terms of genetic stability and controlling R. similis in growth pot tests. This study confirmed that R. similis is inhibited by the associated bacterium pf36-mediated expression of nematicidal proteases. Herein, a novel approach is provided for the study and development of efficient, environmentally friendly, and sustainable biocontrol techniques against phytonematodes.

  5. Future directions in early cystic fibrosis lung disease research: an NHLBI workshop report.

    PubMed

    Ramsey, Bonnie W; Banks-Schlegel, Susan; Accurso, Frank J; Boucher, Richard C; Cutting, Garry R; Engelhardt, John F; Guggino, William B; Karp, Christopher L; Knowles, Michael R; Kolls, Jay K; LiPuma, John J; Lynch, Susan; McCray, Paul B; Rubenstein, Ronald C; Singh, Pradeep K; Sorscher, Eric; Welsh, Michael

    2012-04-15

    Since the 1989 discovery that mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF), there has been substantial progress toward understanding the molecular basis for CF lung disease, leading to the discovery and development of new therapeutic approaches. However, the earliest impact of the loss of CFTR function on airway physiology and structure and its relationship to initial infection and inflammation are poorly understood. Universal newborn screening for CF in the United States represents an unprecedented opportunity for investigating CF clinical manifestations very early in life. Recently developed animal models with pulmonary phenotypic manifestations also provide a window into the early consequences of this genetic disorder. For these reasons, the National Heart, Lung, and Blood Institute (NHLBI) convened a working group of extramural experts, entitled "Future Research Directions in Early CF Lung Disease" on September 21-22, 2010, to identify future research directions of great promise in CF. The priority areas identified included (1) exploring pathogenic mechanisms of early CF lung disease; (2) leveraging newborn screening to elucidate the natural history of early lung disease; (3) developing a spectrum of biomarkers of early lung disease that reflects CF pathophysiology, clinical outcome, and response to treatment; (4) exploring the role of genetics/genomics (e.g., modifier genes, gene-environmental interactions, and epigenetics) in early CF pathogenesis; (5) defining early microbiological events in CF lung disease; and (6) elucidating the initial airway inflammatory, remodeling, and repair mechanisms in CF lung disease.

  6. Random mutagenesis by error-prone pol plasmid replication in Escherichia coli.

    PubMed

    Alexander, David L; Lilly, Joshua; Hernandez, Jaime; Romsdahl, Jillian; Troll, Christopher J; Camps, Manel

    2014-01-01

    Directed evolution is an approach that mimics natural evolution in the laboratory with the goal of modifying existing enzymatic activities or of generating new ones. The identification of mutants with desired properties involves the generation of genetic diversity coupled with a functional selection or screen. Genetic diversity can be generated using PCR or using in vivo methods such as chemical mutagenesis or error-prone replication of the desired sequence in a mutator strain. In vivo mutagenesis methods facilitate iterative selection because they do not require cloning, but generally produce a low mutation density with mutations not restricted to specific genes or areas within a gene. For this reason, this approach is typically used to generate new biochemical properties when large numbers of mutants can be screened or selected. Here we describe protocols for an advanced in vivo mutagenesis method that is based on error-prone replication of a ColE1 plasmid bearing the gene of interest. Compared to other in vivo mutagenesis methods, this plasmid-targeted approach allows increased mutation loads and facilitates iterative selection approaches. We also describe the mutation spectrum for this mutagenesis methodology in detail, and, using cycle 3 GFP as a target for mutagenesis, we illustrate the phenotypic diversity that can be generated using our method. In sum, error-prone Pol I replication is a mutagenesis method that is ideally suited for the evolution of new biochemical activities when a functional selection is available.

  7. Identification of Genetically Modified Maraba Virus as an Oncolytic Rhabdovirus

    PubMed Central

    Brun, Jan; McManus, Dan; Lefebvre, Charles; Hu, Kang; Falls, Theresa; Atkins, Harold; Bell, John C; McCart, J. Andrea; Mahoney, Douglas; Stojdl, David F

    2010-01-01

    To expand our current array of safe and potent oncolytic viruses, we screened a variety of wild-type (WT) rhabdoviruses against a panel of tumor cell lines. Our screen identified a number of viruses with varying degrees of killing activity. Maraba virus was the most potent of these strains. We built a recombinant system for the Maraba virus platform, engineered a series of attenuating mutations to expand its therapeutic index, and tested their potency in vitro and in vivo. A double mutant (MG1) strain containing both G protein (Q242R) and M protein (L123W) mutations attenuated Maraba virus in normal diploid cell lines, yet appeared to be hypervirulent in cancer cells. This selective attenuation was mediated through interferon (IFN)-dependent and -independent mechanisms. Finally, the Maraba MG1 strain had a 100-fold greater maximum tolerable dose (MTD) than WT Maraba in vivo and resulted in durable cures when systemically administered in syngeneic and xenograft models. In summary, we report a potent new oncolytic rhabdovirus platform with unique tumor-selective attenuating mutations. PMID:20551913

  8. Identification of genetically modified Maraba virus as an oncolytic rhabdovirus.

    PubMed

    Brun, Jan; McManus, Dan; Lefebvre, Charles; Hu, Kang; Falls, Theresa; Atkins, Harold; Bell, John C; McCart, J Andrea; Mahoney, Douglas; Stojdl, David F

    2010-08-01

    To expand our current array of safe and potent oncolytic viruses, we screened a variety of wild-type (WT) rhabdoviruses against a panel of tumor cell lines. Our screen identified a number of viruses with varying degrees of killing activity. Maraba virus was the most potent of these strains. We built a recombinant system for the Maraba virus platform, engineered a series of attenuating mutations to expand its therapeutic index, and tested their potency in vitro and in vivo. A double mutant (MG1) strain containing both G protein (Q242R) and M protein (L123W) mutations attenuated Maraba virus in normal diploid cell lines, yet appeared to be hypervirulent in cancer cells. This selective attenuation was mediated through interferon (IFN)-dependent and -independent mechanisms. Finally, the Maraba MG1 strain had a 100-fold greater maximum tolerable dose (MTD) than WT Maraba in vivo and resulted in durable cures when systemically administered in syngeneic and xenograft models. In summary, we report a potent new oncolytic rhabdovirus platform with unique tumor-selective attenuating mutations.

  9. Pharmacogenomic Testing

    MedlinePlus

    ... Financial Planning Who Should I Tell? Genetic Testing & Counseling Compensation for Genetic Testing Whole Genome Sequencing Screening vs. Testing What Is Genetic Counseling? Participating in Research Disease Research Patient Privacy Clinical ...

  10. Predictive Testing

    MedlinePlus

    ... Financial Planning Who Should I Tell? Genetic Testing & Counseling Compensation for Genetic Testing Whole Genome Sequencing Screening vs. Testing What Is Genetic Counseling? Participating in Research Disease Research Patient Privacy Clinical ...

  11. Chemical characteristics and volatile profile of genetically modified peanut cultivars.

    PubMed

    Ng, Ee Chin; Dunford, Nurhan T; Chenault, Kelly

    2008-10-01

    Genetic engineering has been used to modify peanut cultivars for improving agronomic performance and pest resistance. Food products developed through genetic engineering have to be assessed for their safety before approval for human consumption. Preservation of desirable chemical, flavor and aroma attributes of the peanut cultivars during the genetic modifications is critical for acceptance of genetically modified peanuts (GMP) by the food industry. Hence, the main objective of this study is to examine chemical characteristics and volatile profile of GMP. The genetically modified peanut cultivars, 188, 540 and 654 were obtained from the USDA-ARS in Stillwater, Oklahoma. The peanut variety Okrun was examined as a control. The volatile analysis was performed using a gas chromatograph/mass spectrometer (GC/MS) equipped with an olfactory detector. The peanut samples were also analyzed for their moisture, ash, protein, sugar and oil compositions. Experimental results showed that the variations in nutritional composition of peanut lines examined in this study were within the values reported for existing cultivars. There were minor differences in volatile profile among the samples. The implication of this study is significant, since it shows that peanut cultivars with greater pest and fungal resistance were successfully developed without major changes in their chemical characteristics.

  12. Attitude towards Pre-Marital Genetic Screening among Students of Osun State Polytechnics in Nigeria

    ERIC Educational Resources Information Center

    Odelola, J. O.; Adisa, O.; Akintaro, O. A.

    2013-01-01

    This study investigated the attitude towards pre-marital genetic screening among students of Osun State Polytechnics. Descriptive survey design was used for the study. The instrument for data collection was self developed and structured questionnaire in four-point likert scale format. Descriptive statistics of frequency count and percentages were…

  13. Resistance Management Research for PIP Crops

    EPA Science Inventory

    A significant increase in genetically modified corn planting driven by biofuel demand is expected for future planted acreages approaching 80% of total corn plantings in 2009. As demand increases, incidence of farmer non-compliance with mandated non-genetically modified refuge is...

  14. Engineer Novel Anticancer Bioagents

    DTIC Science & Technology

    2010-10-01

    selection (hence to create marker-free genetically modified organism – GMO as required by FDA regulations) have failed. The overall transformation...free genetically modified organism – GMO , as required by FDA regulations). Key Research Status 1. Reconstitution of a complete FK228 biosynthetic

  15. How does genetic risk information for Lynch syndrome translate to risk management behaviours?

    PubMed

    Steel, Emma; Robbins, Andrew; Jenkins, Mark; Flander, Louisa; Gaff, Clara; Keogh, Louise

    2017-01-01

    There is limited research on why some individuals who have undergone predictive genetic testing for Lynch syndrome do not adhere to screening recommendations. This study aimed to explore qualitatively how Lynch syndrome non-carriers and carriers translate genetic risk information and advice to decisions about risk managment behaviours in the Australian healthcare system. Participants of the Australasian Colorectal Cancer Family Registry who had undergone predictive genetic testing for Lynch syndrome were interviewed on their risk management behaviours. Transcripts were analysed thematically using a comparative coding analysis. Thirty-three people were interviewed. Of the non-carriers ( n  = 16), 2 reported having apparently unnecessary colonoscopies, and 6 were unsure about what population-based colorectal cancer screening entails. Of the carriers ( n  = 17), 2 reported they had not had regular colonoscopies, and spoke about their discomfort with the screening process and a lack of faith in the procedure's ability to reduce their risk of developing colorectal cancer. Of the female carriers ( n  = 9), 2 could not recall being informed about the associated risk of gynaecological cancers. Non-carriers and female carriers of Lynch syndrome could benefit from further clarity and advice about appropriate risk management options. For those carriers who did not adhere to colonoscopy screening, a lack of faith in both genetic test results and screening were evident. It is essential that consistent advice is offered to both carriers and non-carriers of Lynch syndrome.

  16. Newborn Screening: MedlinePlus Health Topic

    MedlinePlus

    ... deficiency (National Library of Medicine) Genetics Home Reference: glutaric acidemia type I (National Library of Medicine) Genetics Home Reference: glutaric acidemia type II (National Library of Medicine) Genetics ...

  17. A Tri-Part Model for Genetics Literacy: Exploring Undergraduate Student Reasoning about Authentic Genetics Dilemmas

    ERIC Educational Resources Information Center

    Shea, Nicole A.; Duncan, Ravit Golan; Stephenson, Celeste

    2015-01-01

    Genetics literacy is becoming increasingly important as advancements in our application of genetic technologies such as stem cell research, cloning, and genetic screening become more prevalent. Very few studies examine how genetics literacy is applied when reasoning about authentic genetic dilemmas. However, there is evidence that situational…

  18. Carrier screening in the era of expanding genetic technology.

    PubMed

    Arjunan, Aishwarya; Litwack, Karen; Collins, Nick; Charrow, Joel

    2016-12-01

    The Center for Jewish Genetics provides genetic education and carrier screening to individuals of Jewish descent. Carrier screening has traditionally been performed by targeted mutation analysis for founder mutations with an enzyme assay for Tay-Sachs carrier detection. The development of next-generation sequencing (NGS) allows for higher detection rates regardless of ethnicity. Here, we explore differences in carrier detection rates between genotyping and NGS in a primarily Jewish population. Peripheral blood samples or saliva samples were obtained from 506 individuals. All samples were analyzed by sequencing, targeted genotyping, triplet-repeat detection, and copy-number analysis; the analyses were carried out at Counsyl. Of 506 individuals screened, 288 were identified as carriers of at least 1 condition and 8 couples were carriers for the same disorder. A total of 434 pathogenic variants were identified. Three hundred twelve variants would have been detected via genotyping alone. Although no additional mutations were detected by NGS in diseases routinely screened for in the Ashkenazi Jewish population, 26.5% of carrier results and 2 carrier couples would have been missed without NGS in the larger panel. In a primarily Jewish population, NGS reveals a larger number of pathogenic variants and provides individuals with valuable information for family planning.Genet Med 18 12, 1214-1217.

  19. A systematic variant screening in familial cases of congenital heart defects demonstrates the usefulness of molecular genetics in this field

    PubMed Central

    El Malti, Rajae; Liu, Hui; Doray, Bérénice; Thauvin, Christel; Maltret, Alice; Dauphin, Claire; Gonçalves-Rocha, Miguel; Teboul, Michel; Blanchet, Patricia; Roume, Joëlle; Gronier, Céline; Ducreux, Corinne; Veyrier, Magali; Marçon, François; Acar, Philippe; Lusson, Jean-René; Levy, Marilyne; Beyler, Constance; Vigneron, Jacqueline; Cordier-Alex, Marie-Pierre; Heitz, François; Sanlaville, Damien; Bonnet, Damien; Bouvagnet, Patrice

    2016-01-01

    The etiology of congenital heart defect (CHD) combines environmental and genetic factors. So far, there were studies reporting on the screening of a single gene on unselected CHD or on familial cases selected for specific CHD types. Our goal was to systematically screen a proband of familial cases of CHD on a set of genetic tests to evaluate the prevalence of disease-causing variant identification. A systematic screening of GATA4, NKX2-5, ZIC3 and Multiplex ligation-dependent probe amplification (MLPA) P311 Kit was setup on the proband of 154 families with at least two cases of non-syndromic CHD. Additionally, ELN screening was performed on families with supravalvular arterial stenosis. Twenty-two variants were found, but segregation analysis confirmed unambiguously the causality of 16 variants: GATA4 (1 ×), NKX2-5 (6 ×), ZIC3 (3 ×), MLPA (2 ×) and ELN (4 ×). Therefore, this approach was able to identify the causal variant in 10.4% of familial CHD cases. This study demonstrated the existence of a de novo variant even in familial CHD cases and the impact of CHD variants on adult cardiac condition even in the absence of CHD. This study showed that the systematic screening of genetic factors is useful in familial CHD cases with up to 10.4% elucidated cases. When successful, it drastically improved genetic counseling by discovering unaffected variant carriers who are at risk of transmitting their variant and are also exposed to develop cardiac complications during adulthood thus prompting long-term cardiac follow-up. This study provides an important baseline at dawning of the next-generation sequencing era. PMID:26014430

  20. Genetic engineering applied to agriculture has a long row to hoe.

    PubMed

    Miller, Henry I

    2018-01-02

    In spite of the lack of scientific justification for skepticism about crops modified with molecular techniques of genetic engineering, they have been the most scrutinized agricultural products in human history. The assumption that "genetically engineered" or "genetically modified" is a meaningful - and dangerous - classification has led to excessive and dilatory regulation. The modern molecular techniques are an extension, or refinement, of older, less precise, less predictable methods of genetic modification, but as long as today's activists and regulators remain convinced that so called "GMOs" represent a distinct and dangerous category of research and products, genetic engineering will fall short of its potential.

  1. Genetically Modified Food: Knowledge and Attitude of Teachers and Students

    NASA Astrophysics Data System (ADS)

    Mohapatra, Animesh K.; Priyadarshini, Deepika; Biswas, Antara

    2010-10-01

    The concepts behind the technology of genetic modification of organisms and its applications are complex. A diverse range of opinions, public concern and considerable media interest accompanies the subject. This study explores the knowledge and attitudes of science teachers and senior secondary biology students about the application of a rapidly expanding technology, genetic engineering, to food production. The results indicated significant difference in understanding of concepts related with genetically engineered food stuffs between teachers and students. The most common ideas about genetically modified food were that cross bred plants and genetically modified plants are not same, GM organisms are produced by inserting a foreign gene into a plant or animal and are high yielding. More teachers thought that genetically engineered food stuffs were unsafe for the environment. Both teachers and students showed number of misconceptions, for example, the pesticidal proteins produced by GM organisms have indirect effects through bioaccumulation, induces production of allergic proteins, genetic engineering is production of new genes, GM plants are leaky sieves and that transgenes are more likely to introgress into wild species than mutated species. In general, more students saw benefits while teachers were cautious about the advantages of genetically engineered food stuffs.

  2. Combined zebrafish-yeast chemical-genetic screens reveal gene-copper-nutrition interactions that modulate melanocyte pigmentation.

    PubMed

    Ishizaki, Hironori; Spitzer, Michaela; Wildenhain, Jan; Anastasaki, Corina; Zeng, Zhiqiang; Dolma, Sonam; Shaw, Michael; Madsen, Erik; Gitlin, Jonathan; Marais, Richard; Tyers, Mike; Patton, E Elizabeth

    2010-01-01

    Hypopigmentation is a feature of copper deficiency in humans, as caused by mutation of the copper (Cu(2+)) transporter ATP7A in Menkes disease, or an inability to absorb copper after gastric surgery. However, many causes of copper deficiency are unknown, and genetic polymorphisms might underlie sensitivity to suboptimal environmental copper conditions. Here, we combined phenotypic screens in zebrafish for compounds that affect copper metabolism with yeast chemical-genetic profiles to identify pathways that are sensitive to copper depletion. Yeast chemical-genetic interactions revealed that defects in intracellular trafficking pathways cause sensitivity to low-copper conditions; partial knockdown of the analogous Ap3s1 and Ap1s1 trafficking components in zebrafish sensitized developing melanocytes to hypopigmentation in low-copper environmental conditions. Because trafficking pathways are essential for copper loading into cuproproteins, our results suggest that hypomorphic alleles of trafficking components might underlie sensitivity to reduced-copper nutrient conditions. In addition, we used zebrafish-yeast screening to identify a novel target pathway in copper metabolism for the small-molecule MEK kinase inhibitor U0126. The zebrafish-yeast screening method combines the power of zebrafish as a disease model with facile genome-scale identification of chemical-genetic interactions in yeast to enable the discovery and dissection of complex multigenic interactions in disease-gene networks.

  3. Genetic Counselor Practices Involving Pediatric Patients with FAP: an Investigation of their Self-Reported Strategies for Genetic Testing and Hepatoblastoma Screening.

    PubMed

    Lawson, Caitlin E; Attard, Thomas M; Dai, Hongying; Septer, Seth

    2017-06-01

    Familial adenomatous polyposis (FAP) is a cancer predisposition syndrome that causes early-onset polyposis and is associated with an increased risk for hepatoblastoma. There is currently a lack of consensus on when to order APC (adenomatous polyposis coli) gene testing or implement surveillance for hepatoblastoma. An online questionnaire was completed by 62 genetic counselors to capture their current practices regarding these questions. Extracolonic findings associated with FAP that were most likely to prompt APC testing in an otherwise asymptomatic 10 year-old child with a negative family history were multiple desmoid tumors, congenital hypertrophy of the retinal pigment epithelium (CHRPE), jaw osteomas, and hepatoblastoma. For hepatoblastoma screening, the majority did recommend this in children less than age five years with known APC mutations. An interval of every 3-6 months was most commonly suggested; however, responses extended to screening on a less than annual basis. These results highlight the need for further investigation into why some genetic counselors do not recommend APC testing in young at-risk children and what factors influence views about the ideal age and indication for APC testing. Studies of these issues would help to define the best clinical practice model for genetic testing and hepatoblastoma screening in pediatric patients with FAP.

  4. What Is Diagnostic Testing?

    MedlinePlus

    ... Financial Planning Who Should I Tell? Genetic Testing & Counseling Compensation for Genetic Testing Whole Genome Sequencing Screening vs. Testing What Is Genetic Counseling? Participating in Research Disease Research Patient Privacy Clinical ...

  5. Aquaculture: Incorporating risk assessment and risk management into public policies on genetically modified finfish and shellfish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallerman, E.M.; Kapuscinski, A.R.

    Genetically modified finfish and shellfish pose economic benefits to aquaculture, but also pose ecological and genetic risks to ecosystems receiving such organisms. Realization of benefits with minimization of risks posed by a new technology can be addressed through the processes of risk assessment and risk management. Public policies adopted by individual countries will reflect differences in the outocme of risk assessment and risk management processes resulting from differences among the receiving ecosystems and sets of human values at issue. A number of countries and international institutions have begun development of policies for oversight of genetically modified aquatic organisms. In themore » United States, a working group commissioned by the U.S. Department of Agriculture incorporated risk assessment and risk management principles into draft performance standards for safely conducting research with genetically modified finfish and shellfish. The performance standards address research with a broad range of aquatic GMO`s and compliance is intended to be voluntary. In contrast, the Canadian policy mandates adherence to specified guidelines for experiments with transgenic aquatic organisms; establishment as national policy is expended soon.« less

  6. Engineered CRISPR Systems for Next Generation Gene Therapies.

    PubMed

    Pineda, Michael; Moghadam, Farzaneh; Ebrahimkhani, Mo R; Kiani, Samira

    2017-09-15

    An ideal in vivo gene therapy platform provides safe, reprogrammable, and precise strategies which modulate cell and tissue gene regulatory networks with a high temporal and spatial resolution. Clustered regularly interspaced short palindromic repeats (CRISPR), a bacterial adoptive immune system, and its CRISPR-associated protein 9 (Cas9), have gained attention for the ability to target and modify DNA sequences on demand with unprecedented flexibility and precision. The precision and programmability of Cas9 is derived from its complexation with a guide-RNA (gRNA) that is complementary to a desired genomic sequence. CRISPR systems open-up widespread applications including genetic disease modeling, functional screens, and synthetic gene regulation. The plausibility of in vivo genetic engineering using CRISPR has garnered significant traction as a next generation in vivo therapeutic. However, there are hurdles that need to be addressed before CRISPR-based strategies are fully implemented. Some key issues center on the controllability of the CRISPR platform, including minimizing genomic-off target effects and maximizing in vivo gene editing efficiency, in vivo cellular delivery, and spatial-temporal regulation. The modifiable components of CRISPR systems: Cas9 protein, gRNA, delivery platform, and the form of CRISPR system delivered (DNA, RNA, or ribonucleoprotein) have recently been engineered independently to design a better genome engineering toolbox. This review focuses on evaluating CRISPR potential as a next generation in vivo gene therapy platform and discusses bioengineering advancements that can address challenges associated with clinical translation of this emerging technology.

  7. Evaluation of real-time PCR detection methods for detecting rice products contaminated by rice genetically modified with a CpTI-KDEL-T-nos transgenic construct.

    PubMed

    Nakamura, Kosuke; Akiyama, Hiroshi; Kawano, Noriaki; Kobayashi, Tomoko; Yoshimatsu, Kayo; Mano, Junichi; Kitta, Kazumi; Ohmori, Kiyomi; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko

    2013-12-01

    Genetically modified (GM) rice (Oryza sativa) lines, such as insecticidal Kefeng and Kemingdao, have been developed and found unauthorised in processed rice products in many countries. Therefore, qualitative detection methods for the GM rice are required for the GM food regulation. A transgenic construct for expressing cowpea (Vigna unguiculata) trypsin inhibitor (CpTI) was detected in some imported processed rice products contaminated with Kemingdao. The 3' terminal sequence of the identified transgenic construct for expression of CpTI included an endoplasmic reticulum retention signal coding sequence (KDEL) and nopaline synthase terminator (T-nos). The sequence was identical to that in a report on Kefeng. A novel construct-specific real-time polymerase chain reaction (PCR) detection method for detecting the junction region sequence between the CpTI-KDEL and T-nos was developed. The imported processed rice products were evaluated for the contamination of the GM rice using the developed construct-specific real-time PCR methods, and detection frequency was compared with five event-specific detection methods. The construct-specific detection methods detected the GM rice at higher frequency than the event-specific detection methods. Therefore, we propose that the construct-specific detection method is a beneficial tool for screening the contamination of GM rice lines, such as Kefeng, in processed rice products for the GM food regulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. A nanobiosensor composed of Exfoliated Graphene Oxide and Gold Nano-Urchins, for detection of GMO products.

    PubMed

    Aghili, Zahra; Nasirizadeh, Navid; Divsalar, Adeleh; Shoeibi, Shahram; Yaghmaei, Parichehreh

    2017-09-15

    Genetically Modified Organisms, have been entered our food chain and detection of these organisms in market products are still the main challenge for scientists. Among several developed detection/quantification methods for detection of these organisms, the electrochemical nanobiosensors are the most attended which are combining the advantages of using nanomaterials, electrochemical methods and biosensors. In this research, a novel and sensitive electrochemical nanobiosensor for detection/quantification of these organisms have been developed using nanomaterials; Exfoliated Graphene Oxide and Gold Nano-Urchins for modification of the screen-printed carbon electrode, and also applying a specific DNA probe as well as hematoxylin for electrochemical indicator. Application time period and concentration of the components have been optimized and also several reliable methods have been used to assess the correct assembling of the nanobiosensor e.g. field emission scanning electron microscope, cyclic voltammetry and electrochemical impedance spectroscopy. The results shown the linear range of the sensor was 40.0-1100.0 femtomolar and the limit of detection calculated as 13.0 femtomolar. Besides, the biosensor had good selectivity towards the target DNA over the non-specific sequences and also it was cost and time-effective and possess ability to be used in real sample environment of extracted DNA of Genetically Modified Organism products. Therefore, the superiority of the aforementioned specification to the other previously published methods was proved adequate. Copyright © 2017. Published by Elsevier B.V.

  9. Resistance Management Monitoring For the US Corn Crop

    EPA Science Inventory

    Significant increases in genetically modified corn planting are expected for future planted acreages approaching 80% of total corn plantings anticipated by 2009. As demand increases, incidence of farmer non-compliance with mandated non-genetically modified refuge is likely to in...

  10. PlasmoGEM, a database supporting a community resource for large-scale experimental genetics in malaria parasites.

    PubMed

    Schwach, Frank; Bushell, Ellen; Gomes, Ana Rita; Anar, Burcu; Girling, Gareth; Herd, Colin; Rayner, Julian C; Billker, Oliver

    2015-01-01

    The Plasmodium Genetic Modification (PlasmoGEM) database (http://plasmogem.sanger.ac.uk) provides access to a resource of modular, versatile and adaptable vectors for genome modification of Plasmodium spp. parasites. PlasmoGEM currently consists of >2000 plasmids designed to modify the genome of Plasmodium berghei, a malaria parasite of rodents, which can be requested by non-profit research organisations free of charge. PlasmoGEM vectors are designed with long homology arms for efficient genome integration and carry gene specific barcodes to identify individual mutants. They can be used for a wide array of applications, including protein localisation, gene interaction studies and high-throughput genetic screens. The vector production pipeline is supported by a custom software suite that automates both the vector design process and quality control by full-length sequencing of the finished vectors. The PlasmoGEM web interface allows users to search a database of finished knock-out and gene tagging vectors, view details of their designs, download vector sequence in different formats and view available quality control data as well as suggested genotyping strategies. We also make gDNA library clones and intermediate vectors available for researchers to produce vectors for themselves. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Implantation of Vascular Grafts Lined with Genetically Modified Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Wilson, James M.; Birinyi, Louis K.; Salomon, Robert N.; Libby, Peter; Callow, Allan D.; Mulligan, Richard C.

    1989-06-01

    The possibility of using the vascular endothelial cell as a target for gene replacement therapy was explored. Recombinant retroviruses were used to transduce the lacZ gene into endothelial cells harvested from mongrel dogs. Prosthetic vascular grafts seeded with the genetically modified cells were implanted as carotid interposition grafts into the dogs from which the original cells were harvested. Analysis of the graft 5 weeks after implantation revealed genetically modified endothelial cells lining the luminal surface of the graft. This technology could be used in the treatment of atherosclerosis disease and the design of new drug delivery systems.

  12. Genetic modifiers of muscular dystrophy act on sarcolemmal resealing and recovery from injury

    PubMed Central

    Quattrocelli, Mattia; Capote, Joanna; Ohiri, Joyce C.; Warner, James L.; Vo, Andy H.; Hadhazy, Michele; Demonbreun, Alexis R.; Spencer, Melissa J.; McNally, Elizabeth M.

    2017-01-01

    Genetic disruption of the dystrophin complex produces muscular dystrophy characterized by a fragile muscle plasma membrane leading to excessive muscle degeneration. Two genetic modifiers of Duchenne Muscular Dystrophy implicate the transforming growth factor β (TGFβ) pathway, osteopontin encoded by the SPP1 gene and latent TGFβ binding protein 4 (LTBP4). We now evaluated the functional effect of these modifiers in the context of muscle injury and repair to elucidate their mechanisms of action. We found that excess osteopontin exacerbated sarcolemmal injury, and correspondingly, that loss of osteopontin reduced injury extent both in isolated myofibers and in muscle in vivo. We found that ablation of osteopontin was associated with reduced expression of TGFβ and TGFβ-associated pathways. We identified that increased TGFβ resulted in reduced expression of Anxa1 and Anxa6, genes encoding key components of the muscle sarcolemma resealing process. Genetic manipulation of Ltbp4 in dystrophic muscle also directly modulated sarcolemmal resealing, and Ltbp4 alleles acted in concert with Anxa6, a distinct modifier of muscular dystrophy. These data provide a model in which a feed forward loop of TGFβ and osteopontin directly impacts the capacity of muscle to recover from injury, and identifies an intersection of genetic modifiers on muscular dystrophy. PMID:29065150

  13. Genetic modifiers of muscular dystrophy act on sarcolemmal resealing and recovery from injury.

    PubMed

    Quattrocelli, Mattia; Capote, Joanna; Ohiri, Joyce C; Warner, James L; Vo, Andy H; Earley, Judy U; Hadhazy, Michele; Demonbreun, Alexis R; Spencer, Melissa J; McNally, Elizabeth M

    2017-10-01

    Genetic disruption of the dystrophin complex produces muscular dystrophy characterized by a fragile muscle plasma membrane leading to excessive muscle degeneration. Two genetic modifiers of Duchenne Muscular Dystrophy implicate the transforming growth factor β (TGFβ) pathway, osteopontin encoded by the SPP1 gene and latent TGFβ binding protein 4 (LTBP4). We now evaluated the functional effect of these modifiers in the context of muscle injury and repair to elucidate their mechanisms of action. We found that excess osteopontin exacerbated sarcolemmal injury, and correspondingly, that loss of osteopontin reduced injury extent both in isolated myofibers and in muscle in vivo. We found that ablation of osteopontin was associated with reduced expression of TGFβ and TGFβ-associated pathways. We identified that increased TGFβ resulted in reduced expression of Anxa1 and Anxa6, genes encoding key components of the muscle sarcolemma resealing process. Genetic manipulation of Ltbp4 in dystrophic muscle also directly modulated sarcolemmal resealing, and Ltbp4 alleles acted in concert with Anxa6, a distinct modifier of muscular dystrophy. These data provide a model in which a feed forward loop of TGFβ and osteopontin directly impacts the capacity of muscle to recover from injury, and identifies an intersection of genetic modifiers on muscular dystrophy.

  14. CRISPR-Cas9: from Genome Editing to Cancer Research

    PubMed Central

    Chen, Si; Sun, Heng; Miao, Kai; Deng, Chu-Xia

    2016-01-01

    Cancer development is a multistep process triggered by innate and acquired mutations, which cause the functional abnormality and determine the initiation and progression of tumorigenesis. Gene editing is a widely used engineering tool for generating mutations that enhance tumorigenesis. The recent developed clustered regularly interspaced short palindromic repeats-CRISPR-associated 9 (CRISPR-Cas9) system renews the genome editing approach into a more convenient and efficient way. By rapidly introducing genetic modifications in cell lines, organs and animals, CRISPR-Cas9 system extends the gene editing into whole genome screening, both in loss-of-function and gain-of-function manners. Meanwhile, the system accelerates the establishment of animal cancer models, promoting in vivo studies for cancer research. Furthermore, CRISPR-Cas9 system is modified into diverse innovative tools for observing the dynamic bioprocesses in cancer studies, such as image tracing for targeted DNA, regulation of transcription activation or repression. Here, we view recent technical advances in the application of CRISPR-Cas9 system in cancer genetics, large-scale cancer driver gene hunting, animal cancer modeling and functional studies. PMID:27994508

  15. Looking at genes in the workplace.

    PubMed

    Holden, C

    1982-07-23

    The Office of Technology Assessment recently testified at a congressional hearing that many corporations are considering genetic screening of employees. Biochemical genetic screening of "susceptible" workers is aimed at identifying individuals unsuitable for specific jobs, and cytogenic monitoring involves the testing of groups of workers for chromosome aberrations that might occur as a result of exposure to chemicals. The apparent surge of interest in such testing requires that several legal, ethical, and policy issues be addressed, including the potential for discrimination, the misuse of screening as an alternative to cleaning up the workplace, the predictive capability of the tests, and the necessity for the development of guidelines for screening programs.

  16. [Ethical aspects of disclosing information on prenatal screening for Down's syndrome].

    PubMed

    Tóth, Adél; Szabó, János

    2005-02-06

    Giving detailed information on prenatal screening for Down's syndrome is considered as paramount since this medical procedure intends to enhance the patient's self-governance in reproductive issues. Not only the respect for autonomy, but also the increased maternal anxiety and the reproductive decisions following the positive test result demand from the genetic professional to offer the test through genetic counselling. The counsellor's awareness about the expectations of pregnant women and the clarification of her own attitude concerning the screening can contribute to the effectiveness of counselling. The content of information embraces the technical aspects of screening and its consequences, like the description of Down's syndrome, the method of screening, the way of risk assessment, the detection rate, the false positive and false negative test results, the diagnostic procedures, and the termination of pregnancy. Written information leaflets should be completed by personal communication as the combination of these two forms has proved to be the most useful. The process of consultation is influenced by the communication skill of the genetic professional and the information seeking activity of the patient, so doctors should be trained to communicate better and patients should be encouraged to get more information about the screening.

  17. Colorectal Cancer in Iran: Molecular Epidemiology and Screening Strategies

    PubMed Central

    Dolatkhah, Roya; Somi, Mohammad Hossein; Bonyadi, Mortaza Jabbarpour; Asvadi Kermani, Iraj; Farassati, Faris; Dastgiri, Saeed

    2015-01-01

    Purpose. The increasing incidence of colorectal cancer (CRC) in the past three decades in Iran has made it a major public health burden. This study aimed to report its epidemiologic features, molecular genetic aspects, survival, heredity, and screening pattern in Iran. Methods. A comprehensive literature review was conducted to identify the relevant published articles. We used medical subject headings, including colorectal cancer, molecular genetics, KRAS and BRAF mutations, screening, survival, epidemiologic study, and Iran. Results. Age standardized incidence rate of Iranian CRCs was 11.6 and 10.5 for men and women, respectively. Overall five-year survival rate was 41%, and the proportion of CRC among the younger age group was higher than that of western countries. Depending on ethnicity, geographical region, dietary, and genetic predisposition, mutation genes were considerably diverse and distinct among CRCs across Iran. The high occurrence of CRC in records of relatives of CRC patients showed that family history of CRC was more common among young CRCs. Conclusion. Appropriate screening strategies for CRC which is amenable to early detection through screening, especially in relatives of CRCs, should be considered as the first step in CRC screening programs. PMID:25685149

  18. The utility of alpha-fetoprotein screening in Beckwith-Wiedemann syndrome.

    PubMed

    Duffy, Kelly A; Deardorff, Matthew A; Kalish, Jennifer M

    2017-03-01

    Beckwith-Wiedemann syndrome (BWS) is one of the most common cancer predisposition disorders. As a result, BWS patients receive tumor screening as part of their clinical management. Until recently, this screening has been employed uniformly across all genetic and epigenetic causes of BWS, including the utilization of ultrasonography to detect abdominal tumors and alpha-fetoprotein (AFP) to detect hepatoblastoma. The advancements in our understanding of the genetics and epigenetics leading to BWS has evolved over time, and has led to the development of genotype/phenotype correlations. As tumor risk appears to correlate with genetic and epigenetic causes of BWS, several groups have proposed alterations to tumor screening protocols based on the etiology of BWS, with the elimination of AFP as a screening measure and the elimination of all screening measures in BWS patients with loss of methylation at the KCNQ1OT1:TSS-DMR 2 (IC2). There are many challenges to this suggestion, as IC2 patients may have additional factors that contribute to risk of hepatoblastoma including fetal growth patterns, relationship with assisted reproductive technologies, and the regulation of the IC2 locus. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. The use of the Modified Telephone Interview for Cognitive Status (TICS-M) in the detection of amnestic mild cognitive impairment.

    PubMed

    Cook, Sarah E; Marsiske, Michael; McCoy, Karin J M

    2009-06-01

    Many screening tools for detecting cognitive decline require in-person assessment, which is often not cost-effective or feasible for those with physical limitations. The Modified Telephone Interview for Cognitive Status has been used for screening dementia, but little is known about its usefulness in detecting amnestic mild cognitive impairment. Community-dwelling participants (mean age=74.9, mean education = 16.1 years) were administered the Modified Telephone Interview for Cognitive Status during initial screening and subsequently given a multidomain neuropsychological battery. Participants were classified by consensus panel as cognitively normal older adult (noMCI, N=54) or amnestic mild cognitive impairment (N=17) based on neuropsychological performance and Clinical Dementia Rating Scale interview, but independent of Modified Telephone Interview for Cognitive Status score. There was a significant difference between groups in Modified Telephone Interview for Cognitive Status score (t=8.04, P<.01, noMCI range 32-43, mean [SD]=37.4 [2.5], amnestic mild cognitive impairment range 25-37, mean [SD]=31.2 [3.5]). Discriminant function analysis revealed that TICS-M alone correctly classified 85.9% of participants into their respective diagnostic classification (sensitivity=82.4%, specificity=87.0%). Receiver operating characteristics analysis resulted in cutoff score of 34 that optimized sensitivity and specificity of amnestic mild cognitive impairment classification. The Modified Telephone Interview for Cognitive Status is a brief, cost-effective screening measure for identifying those with and without amnestic mild cognitive impairment.

  20. Artificial specific binders directly recovered from chemically modified nucleic acid libraries.

    PubMed

    Kasahara, Yuuya; Kuwahara, Masayasu

    2012-01-01

    Specific binders comprised of nucleic acids, that is, RNA/DNA aptamers, are attractive functional biopolymers owing to their potential broad application in medicine, food hygiene, environmental analysis, and biological research. Despite the large number of reports on selection of natural DNA/RNA aptamers, there are not many examples of direct screening of chemically modified nucleic acid aptamers. This is because of (i) the inferior efficiency and accuracy of polymerase reactions involving transcription/reverse-transcription of modified nucleotides compared with those of natural nucleotides, (ii) technical difficulties and additional time and effort required when using modified nucleic acid libraries, and (iii) ambiguous efficacies of chemical modifications in binding properties until recently; in contrast, the effects of chemical modifications on biostability are well studied using various nucleotide analogs. Although reports on the direct screening of a modified nucleic acid library remain in the minority, chemical modifications would be essential when further functional expansion of nucleic acid aptamers, in particular for medical and biological uses, is considered. This paper focuses on enzymatic production of chemically modified nucleic acids and their application to random screenings. In addition, recent advances and possible future research are also described.

  1. Genetics of pancreatic cancer and implications for therapy.

    PubMed

    Bhosale, Priya; Cox, Veronica; Faria, Silvana; Javadi, Sanaz; Viswanathan, Chitra; Koay, Eugene; Tamm, Eric

    2018-02-01

    Pancreatic cancer is a highly lethal disease with a dismal 5-year prognosis. Knowledge of its genetics may help in identifying new methods for patient screening, and cancer treatment. In this review, we will describe the most common mutations responsible for the genesis of pancreatic cancer and their impact on screening, patterns of disease progression, and therapy.

  2. Assessment of an Interactive Computer-Based Patient Prenatal Genetic Screening and Testing Education Tool

    ERIC Educational Resources Information Center

    Griffith, Jennifer M.; Sorenson, James R.; Bowling, J. Michael; Jennings-Grant, Tracey

    2005-01-01

    The Enhancing Patient Prenatal Education study tested the feasibility and educational impact of an interactive program for patient prenatal genetic screening and testing education. Patients at two private practices and one public health clinic participated (N = 207). The program collected knowledge and measures of anxiety before and after use of…

  3. Generation of Genetically Modified Organotypic Skin Cultures Using Devitalized Human Dermis.

    PubMed

    Li, Jingting; Sen, George L

    2015-12-14

    Organotypic cultures allow the reconstitution of a 3D environment critical for cell-cell contact and cell-matrix interactions which mimics the function and physiology of their in vivo tissue counterparts. This is exemplified by organotypic skin cultures which faithfully recapitulates the epidermal differentiation and stratification program. Primary human epidermal keratinocytes are genetically manipulable through retroviruses where genes can be easily overexpressed or knocked down. These genetically modified keratinocytes can then be used to regenerate human epidermis in organotypic skin cultures providing a powerful model to study genetic pathways impacting epidermal growth, differentiation, and disease progression. The protocols presented here describe methods to prepare devitalized human dermis as well as to genetically manipulate primary human keratinocytes in order to generate organotypic skin cultures. Regenerated human skin can be used in downstream applications such as gene expression profiling, immunostaining, and chromatin immunoprecipitations followed by high throughput sequencing. Thus, generation of these genetically modified organotypic skin cultures will allow the determination of genes that are critical for maintaining skin homeostasis.

  4. Use of the heteroduplex mobility assay and cell sorting to select genome sequences of the CCR5 gene in HEK 293T cells edited by transcription activator-like effector nucleases.

    PubMed

    Nerys-Junior, Arildo; Costa, Lendel C; Braga-Dias, Luciene P; Oliveira, Márcia; Rossi, Atila D; da Cunha, Rodrigo Delvecchio; Gonçalves, Gabriel S; Tanuri, Amilcar

    2014-03-01

    Engineered nucleases such as zinc finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN) are one of the most promising tools for modifying genomes. These site-specific enzymes cause double-strand breaks that allow gene disruption or gene insertion, thereby facilitating genetic manipulation. The major problem associated with this approach is the labor-intensive procedures required to screen and confirm the cellular modification by nucleases. In this work, we produced a TALEN that targets the human CCR5 gene and developed a heteroduplex mobility assay for HEK 293T cells to select positive colonies for sequencing. This approach provides a useful tool for the quick detection and easy assessment of nuclease activity.

  5. What's New with Newborn Screening

    ERIC Educational Resources Information Center

    Exceptional Parent, 2008

    2008-01-01

    Newborn screening is the process of testing and screening newborns shortly after birth for certain, potentially dangerous, conditions and/or impairments--conditions that include everything from inborn errors of metabolism and other genetic disorders to hearing impairment. Early detection through newborn screening is paramount, often allowing the…

  6. High-throughput screens in mammalian cells using the CRISPR-Cas9 system.

    PubMed

    Peng, Jingyu; Zhou, Yuexin; Zhu, Shiyou; Wei, Wensheng

    2015-06-01

    As a powerful genome-editing tool, the clustered regularly interspaced short palindromic repeats (CRISPR)-clustered regularly interspaced short palindromic repeats-associated protein 9 (Cas9) system has been quickly developed into a large-scale function-based screening strategy in mammalian cells. This new type of genetic library is constructed through the lentiviral delivery of single-guide RNA collections that direct Cas9 or inactive dead Cas9 fused with effectors to interrogate gene function or regulate gene transcription in targeted cells. Compared with RNA interference screening, the CRISPR-Cas9 system demonstrates much higher levels of effectiveness and reliability with respect to both loss-of-function and gain-of-function screening. Unlike the RNA interference strategy, a CRISPR-Cas9 library can target both protein-coding sequences and regulatory elements, including promoters, enhancers and elements transcribing microRNAs and long noncoding RNAs. This powerful genetic tool will undoubtedly accelerate the mechanistic discovery of various biological processes. In this mini review, we summarize the general procedure of CRISPR-Cas9 library mediated functional screening, system optimization strategies and applications of this new genetic toolkit. © 2015 FEBS.

  7. Relative Contribution of Genetic and Non-genetic Modifiers to Intestinal Obstruction in Cystic Fibrosis

    PubMed Central

    Blackman, Scott M.; Deering-Brose, Rebecca; McWilliams, Rita; Naughton, Kathleen; Coleman, Barbara; Lai, Teresa; Algire, Marilyn; Beck, Suzanne; Hoover-Fong, Julie; Hamosh, Ada; Fallin, M. Daniele; West, Kristen; Arking, Dan E.; Chakravarti, Aravinda; Cutler, David J.; Cutting, Garry R

    2006-01-01

    Background & Aims Neonatal intestinal obstruction (meconium ileus or MI) occurs in 15% of patients with cystic fibrosis (CF). Our aim was to determine the relative contribution of genetic and non-genetic modifiers to the development of this major complication of CF. Methods Using clinical data and DNA collected by the CF Twin and Sibling Study, 65 monozygous twin pairs, 23 dizygous twin/triplet sets, and 349 sets of siblings with CF were analyzed for MI status, significant covariates, and genome-wide linkage. Results Specific mutations in CFTR, the gene responsible for CF, correlated with MI indicating a role for CFTR genotype. Monozygous twins showed substantially greater concordance for MI than dizygous twins and siblings (p=1×10−5) demonstrating that modifier genes independent of CFTR contribute substantially to this trait. Regression analysis revealed that MI was correlated with distal intestinal obstruction syndrome (DIOS; p=8×10−4). Unlike MI, concordance analysis indicated that the risk for development of DIOS in CF patients is primarily due to non-genetic factors. Regions of suggestive linkage (logarithm of the odds of linkage >2.0) for modifier genes that cause MI (chromosomes 4q35.1, 8p23.1, and 11q25) or protect from MI (chromosomes 20p11.22 and 21q22.3) were identified by genome-wide analyses. These analyses did not support the existence of a major modifier gene within the CFM1 region on chromosome 19 that had previously been linked to MI. Conclusions The CFTR gene along with two or more modifier genes are the major determinants of intestinal obstruction in newborn CF patients, while intestinal obstruction in older CF patients is primarily due to non-genetic factors. PMID:17030173

  8. Reverse cascade screening of newborns for hereditary haemochromatosis: a model for other late onset diseases?

    PubMed

    Cadet, E; Capron, D; Gallet, M; Omanga-Léké, M-L; Boutignon, H; Julier, C; Robson, K J H; Rochette, J

    2005-05-01

    Genetic testing can determine those at risk for hereditary haemochromatosis (HH) caused by HFE mutations before the onset of symptoms. However, there is no optimum screening strategy, mainly owing to the variable penetrance in those who are homozygous for the HFE Cys282Tyr (C282Y) mutation. The objective of this study was to identify the majority of individuals at serious risk of developing HFE haemochromatosis before they developed life threatening complications. We first estimated the therapeutic penetrance of the C282Y mutation in people living in la Somme, France, using genetic, demographic, biochemical, and follow up data. We examined the benefits of neonatal screening on the basis of increased risk to relatives of newborns carrying one or two copies of the C282Y mutation. Between 1999 and 2002, we screened 7038 newborns from two maternity hospitals in the north of France for the C282Y and His63Asp (H63D) mutations in the HFE gene, using bloodspots collected on Guthrie cards. Family studies and genetic counselling were undertaken, based on the results of the baby's genotype. In la Somme, we found that 24% of the adults homozygous for the C282Y mutation required at least 5 g iron to be removed to restore normal iron parameters (that is, the therapeutic penetrance). In the reverse cascade screening study, we identified 19 C282Y homozygotes (1/370), 491 heterozygotes (1/14) and 166 compound heterozygotes (1/42) in 7038 newborns tested. The reverse cascade screening strategy resulted in 80 adults being screened for both mutations. We identified 10 previously unknown C282Y homozygotes of whom six (four men and two women) required venesection. Acceptance of neonatal screening was high; parents understood the risks of having HH and the benefits of early detection, but a number of parents were reluctant to take the test themselves. Neonatal screening for HH is straightforward. Reverse cascade screening increased the efficiency of detecting affected adults with undiagnosed haemochromatosis. This strategy allows almost complete coverage for HH and could be a model for efficient screening for other late onset genetic diseases.

  9. Ethical issues in pediatric genetic testing and screening.

    PubMed

    Botkin, Jeffrey R

    2016-12-01

    Developments in genetic test technologies enable a detailed analysis of the genomes of individuals across the range of human development from embryos to adults with increased precision and lower cost. These powerful technologies raise a number of ethical issues in pediatrics, primarily because of the frequent lack of clinical utility of genetic information, the generation of secondary results and questions over the proper scope of parental authority for testing. Several professional organizations in the fields of genetics and pediatrics have published new guidance on the ethical, legal, and policy issues relevant to genetic testing in children. The roles of predictive testing for adult-onset conditions, the management of secondary findings and the role of informed consent for newborn screening remain controversial. However, research and experience are not demonstrating serious adverse psychosocial impacts from genetic testing and screening in children. The use of these technologies is expanding with the notion that the personal utility of test results, rather than clinical utility, may be sufficient to justify testing. The use of microarray and genome sequencing technologies is expanding in the care of children. More deference to parental decision-making is evolving in contexts wherein information and counseling can be made readily available.

  10. Genetic Evaluation of Children with Global Developmental Delay--Current Status of Network Systems in Taiwan.

    PubMed

    Foo, Yong-Lin; Chow, Julie Chi; Lai, Ming-Chi; Tsai, Wen-Hui; Tung, Li-Chen; Kuo, Mei-Chin; Lin, Shio-Jean

    2015-08-01

    This review article aims to introduce the screening and referral network of genetic evaluation for children with developmental delay in Taiwan. For these children, integrated systems provide services from the medical, educational, and social welfare sectors. All cities and counties in Taiwan have established a network for screening, detection, referral, evaluation, and intervention services. Increased awareness improves early detection and intervention. There remains a gap between supply and demand, especially with regard to financial resources and professional manpower. Genetic etiology has a major role in prenatal causes of developmental delay. A summary of reports on some related genetic disorders in the Taiwanese population is included in this review. Genetic diagnosis allows counseling with regard to recurrence risk and prevention. Networking with neonatal screening, laboratory diagnosis, genetic counseling, and orphan drugs logistics systems can provide effective treatment for patients. In Taiwan, several laboratories provide genetic tests for clinical diagnosis. Accessibility to advanced expensive tests such as gene chips or whole exome sequencing is limited because of funding problems; however, the service system in Taiwan can still operate in a relatively cost-effective manner. This experience in Taiwan may serve as a reference for other countries. Copyright © 2014. Published by Elsevier B.V.

  11. Cost-effectiveness of MODY genetic testing: translating genomic advances into practical health applications.

    PubMed

    Naylor, Rochelle N; John, Priya M; Winn, Aaron N; Carmody, David; Greeley, Siri Atma W; Philipson, Louis H; Bell, Graeme I; Huang, Elbert S

    2014-01-01

    OBJECTIVE To evaluate the cost-effectiveness of a genetic testing policy for HNF1A-, HNF4A-, and GCK-MODY in a hypothetical cohort of type 2 diabetic patients 25-40 years old with a MODY prevalence of 2%. RESEARCH DESIGN AND METHODS We used a simulation model of type 2 diabetes complications based on UK Prospective Diabetes Study data, modified to account for the natural history of disease by genetic subtype to compare a policy of genetic testing at diabetes diagnosis versus a policy of no testing. Under the screening policy, successful sulfonylurea treatment of HNF1A-MODY and HNF4A-MODY was modeled to produce a glycosylated hemoglobin reduction of -1.5% compared with usual care. GCK-MODY received no therapy. Main outcome measures were costs and quality-adjusted life years (QALYs) based on lifetime risk of complications and treatments, expressed as the incremental cost-effectiveness ratio (ICER) (USD/QALY). RESULTS The testing policy yielded an average gain of 0.012 QALYs and resulted in an ICER of 205,000 USD. Sensitivity analysis showed that if the MODY prevalence was 6%, the ICER would be ~50,000 USD. If MODY prevalence was >30%, the testing policy was cost saving. Reducing genetic testing costs to 700 USD also resulted in an ICER of ~50,000 USD. CONCLUSIONS Our simulated model suggests that a policy of testing for MODY in selected populations is cost-effective for the U.S. based on contemporary ICER thresholds. Higher prevalence of MODY in the tested population or decreased testing costs would enhance cost-effectiveness. Our results make a compelling argument for routine coverage of genetic testing in patients with high clinical suspicion of MODY.

  12. Genetic background influences age-related decline in visual and nonvisual retinal responses, circadian rhythms, and sleep☆

    PubMed Central

    Banks, Gareth; Heise, Ines; Starbuck, Becky; Osborne, Tamzin; Wisby, Laura; Potter, Paul; Jackson, Ian J.; Foster, Russell G.; Peirson, Stuart N.; Nolan, Patrick M.

    2015-01-01

    The circadian system is entrained to the environmental light/dark cycle via retinal photoreceptors and regulates numerous aspects of physiology and behavior, including sleep. These processes are all key factors in healthy aging showing a gradual decline with age. Despite their importance, the exact mechanisms underlying this decline are yet to be fully understood. One of the most effective tools we have to understand the genetic factors underlying these processes are genetically inbred mouse strains. The most commonly used reference mouse strain is C57BL/6J, but recently, resources such as the International Knockout Mouse Consortium have started producing large numbers of mouse mutant lines on a pure genetic background, C57BL/6N. Considering the substantial genetic diversity between mouse strains we expect there to be phenotypic differences, including differential effects of aging, in these and other strains. Such differences need to be characterized not only to establish how different mouse strains may model the aging process but also to understand how genetic background might modify age-related phenotypes. To ascertain the effects of aging on sleep/wake behavior, circadian rhythms, and light input and whether these effects are mouse strain-dependent, we have screened C57BL/6J, C57BL/6N, C3H-HeH, and C3H-Pde6b+ mouse strains at 5 ages throughout their life span. Our data show that sleep, circadian, and light input parameters are all disrupted by the aging process. Moreover, we have cataloged a number of strain-specific aging effects, including the rate of cataract development, decline in the pupillary light response, and changes in sleep fragmentation and the proportion of time spent asleep. PMID:25179226

  13. Genetic background influences age-related decline in visual and nonvisual retinal responses, circadian rhythms, and sleep.

    PubMed

    Banks, Gareth; Heise, Ines; Starbuck, Becky; Osborne, Tamzin; Wisby, Laura; Potter, Paul; Jackson, Ian J; Foster, Russell G; Peirson, Stuart N; Nolan, Patrick M

    2015-01-01

    The circadian system is entrained to the environmental light/dark cycle via retinal photoreceptors and regulates numerous aspects of physiology and behavior, including sleep. These processes are all key factors in healthy aging showing a gradual decline with age. Despite their importance, the exact mechanisms underlying this decline are yet to be fully understood. One of the most effective tools we have to understand the genetic factors underlying these processes are genetically inbred mouse strains. The most commonly used reference mouse strain is C57BL/6J, but recently, resources such as the International Knockout Mouse Consortium have started producing large numbers of mouse mutant lines on a pure genetic background, C57BL/6N. Considering the substantial genetic diversity between mouse strains we expect there to be phenotypic differences, including differential effects of aging, in these and other strains. Such differences need to be characterized not only to establish how different mouse strains may model the aging process but also to understand how genetic background might modify age-related phenotypes. To ascertain the effects of aging on sleep/wake behavior, circadian rhythms, and light input and whether these effects are mouse strain-dependent, we have screened C57BL/6J, C57BL/6N, C3H-HeH, and C3H-Pde6b+ mouse strains at 5 ages throughout their life span. Our data show that sleep, circadian, and light input parameters are all disrupted by the aging process. Moreover, we have cataloged a number of strain-specific aging effects, including the rate of cataract development, decline in the pupillary light response, and changes in sleep fragmentation and the proportion of time spent asleep. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Delayed genetic effects of habitat fragmentation on the ecologically specialized Florida sand skink (Plestiodon reynoldsi)

    USGS Publications Warehouse

    Richmond, Jonathan Q.; Reid, Duncan T.; Ashton, Kyle G.; Zamudio, Kelly R.

    2009-01-01

    Populations rarely show immediate genetic responses to habitat fragmentation, even in taxa that possess suites of traits known to increase their vulnerability to extinction. Thus conservation geneticists must consider the time scale over which contemporary evolutionary processes operate to accurately portray the effects of habitat isolation. Here, we examine the genetic impacts of fragmentation on the Florida sand skink Plestiodon reynoldsi, a sand swimming lizard that is highly adapted to the upland scrub habitat of central Florida. We studied fragments located on the southern Lake Wales Ridge, where human activity in the latter half of the 20th century has modified the natural patchiness of the landscape. Based on a relaxed molecular clock method, we estimate that sand skinks have persisted in this region for approximately 1.5 million years and that the time frame of human disturbance is equivalent to fewer than 30 skink generations. Using genotypes from eight microsatellite loci, we screened for molecular signatures of this disturbance by assessing congruence between population structure, as inferred from spatially-informed Bayesian assignment tests, and the current geography of scrub fragments. We also tested for potential intrapopulation genetic effects of inbreeding in isolated populations by comparing the average pairwise relatedness of individuals within fragments of different areas and isolation. Our results indicate that although some patches show a higher degree of relatedness than expected under random mating, the genetic effects of recent isolation are not evident in this part of the species’ range. We argue that this result is an artefact of a time-lag in the response to disturbance, and that species-typical demographic features may explain the genetic inertia observed in these populations.

  15. The evolution of modern agriculture and its future with biotechnology.

    PubMed

    Harlander, Susan K

    2002-06-01

    Since the dawn of agriculture, humans have been manipulating crops to enhance their quality and yield. Via conventional breeding, seed producers have developed the modern corn hybrids and wheat commonly grown today. Newer techniques, such as radiation breeding, enhanced the seed producers' ability to develop new traits in crops. Then in the 1980's-1990's, scientists began applying genetic engineering techniques to improve crop quality and yield. In contrast to earlier breeding methods, these techniques raised questions about their safety to consumers and the environment. This paper provides an overview of the kinds of genetically modified crops developed and marketed to date and the value they provide farmers and consumers. The safety assessment process required for these crops is contrasted with the lack of a formal process required for traditionally bred crops. While European consumers have expressed concern about foods and animal feeds containing ingredients from genetically modified crops, Americans have largely been unconcerned or unaware of the presence of genetically modified foods on the market. This difference in attitude is reflected in Europe's decision to label foods containing genetically modified ingredients while no such labeling is required in the U.S. In the future, genetic modification will produce a variety of new products with enhanced nutritional or quality attributes.

  16. Pathways and barriers to genetic testing and screening: Molecular genetics meets the high-risk family. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duster, T.

    The proliferation of genetic screening and testing is requiring increasing numbers of Americans to integrate genetic knowledge and interventions into their family life and personal experience. This study examines the social processes that occur as families at risk for two of the most common autosomal recessive diseases, sickle cell disease (SC) and cystic fibrosis (CF), encounter genetic testing. Each of these diseases is found primarily in a different ethnic/racial group (CF in Americans of North European descent and SC in Americans of West African descent). This has permitted them to have a certain additional lens on the role of culturemore » in integrating genetic testing into family life and reproductive planning. A third type of genetic disorder, the thalassemias was added to the sample in order to extent the comparative frame and to include other ethnic and racial groups.« less

  17. Recent developments in genetics and medically assisted reproduction: from research to clinical applications.

    PubMed

    Harper, J C; Aittomäki, K; Borry, P; Cornel, M C; de Wert, G; Dondorp, W; Geraedts, J; Gianaroli, L; Ketterson, K; Liebaers, I; Lundin, K; Mertes, H; Morris, M; Pennings, G; Sermon, K; Spits, C; Soini, S; van Montfoort, A P A; Veiga, A; Vermeesch, J R; Viville, S; Macek, M

    2018-01-01

    Two leading European professional societies, the European Society of Human Genetics and the European Society for Human Reproduction and Embryology, have worked together since 2004 to evaluate the impact of fast research advances at the interface of assisted reproduction and genetics, including their application into clinical practice. In September 2016, the expert panel met for the third time. The topics discussed highlighted important issues covering the impacts of expanded carrier screening, direct-to-consumer genetic testing, voiding of the presumed anonymity of gamete donors by advanced genetic testing, advances in the research of genetic causes underlying male and female infertility, utilisation of massively parallel sequencing in preimplantation genetic testing and non-invasive prenatal screening, mitochondrial replacement in human oocytes, and additionally, issues related to cross-generational epigenetic inheritance following IVF and germline genome editing. The resulting paper represents a consensus of both professional societies involved.

  18. Functional annotation of chemical libraries across diverse biological processes.

    PubMed

    Piotrowski, Jeff S; Li, Sheena C; Deshpande, Raamesh; Simpkins, Scott W; Nelson, Justin; Yashiroda, Yoko; Barber, Jacqueline M; Safizadeh, Hamid; Wilson, Erin; Okada, Hiroki; Gebre, Abraham A; Kubo, Karen; Torres, Nikko P; LeBlanc, Marissa A; Andrusiak, Kerry; Okamoto, Reika; Yoshimura, Mami; DeRango-Adem, Eva; van Leeuwen, Jolanda; Shirahige, Katsuhiko; Baryshnikova, Anastasia; Brown, Grant W; Hirano, Hiroyuki; Costanzo, Michael; Andrews, Brenda; Ohya, Yoshikazu; Osada, Hiroyuki; Yoshida, Minoru; Myers, Chad L; Boone, Charles

    2017-09-01

    Chemical-genetic approaches offer the potential for unbiased functional annotation of chemical libraries. Mutations can alter the response of cells in the presence of a compound, revealing chemical-genetic interactions that can elucidate a compound's mode of action. We developed a highly parallel, unbiased yeast chemical-genetic screening system involving three key components. First, in a drug-sensitive genetic background, we constructed an optimized diagnostic mutant collection that is predictive for all major yeast biological processes. Second, we implemented a multiplexed (768-plex) barcode-sequencing protocol, enabling the assembly of thousands of chemical-genetic profiles. Finally, based on comparison of the chemical-genetic profiles with a compendium of genome-wide genetic interaction profiles, we predicted compound functionality. Applying this high-throughput approach, we screened seven different compound libraries and annotated their functional diversity. We further validated biological process predictions, prioritized a diverse set of compounds, and identified compounds that appear to have dual modes of action.

  19. Genetic Issues in Mental Retardation, 1996-1997.

    ERIC Educational Resources Information Center

    Genetic Issues in Mental Retardation, 1996

    1996-01-01

    This document consists of the first six issues of a newsletter, which discusses current knowledge about and concerns related to genetics and mental retardation. The second issue addresses the problem of genetic discrimination. The third issue considers genetic testing, screening, and counseling. The fourth issue addresses genetic privacy issues.…

  20. Detection of HbsAg and hATIII genetically modified goats (Caprahircus) by loop-mediated isothermal amplification.

    PubMed

    Tao, Chenyu; Zhang, Qingde; Zhai, Shanli; Liu, Bang

    2013-11-01

    In this study, sensitive and rapid detection systems were designed using a loop-mediated isothermal amplification (LAMP) method to detect the genetically modified goats. A set of 4 primers were designed for each exogenous nucleic acids HBsAg and hATIII. The DNA samples were first amplified with the outer and inner primers and released a single-stranded DNA,of which both ends were stem-loop structure. Then one inner primer hybridized with the loop, and initiated displacement synthesis in less than 1 h. The result could be visualized by both agarose gel electrophoresis and unaided eyes directly after adding SYBR GREEN 1. The detection limit of LAMP was ten copies of target molecules, indicating that LAMP was tenfold more sensitive than the classical PCR. Furthermore, all the samples of genetically modified goats were tested positively by LAMP, and the results demonstrated that the LAMP was a rapid and sensitive method for detecting the genetically modified organism.

Top